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DISPERSION ESTIMATES FOR ONE-DIMENSIONAL DISCRETE

DIRAC EQUATIONS

ELENA KOPYLOVA AND GERALD TESCHL

Abstract. We derive dispersion estimates for solutions of the one-dimensional
discrete perturbed Dirac equation. To this end, we develop basic scatter-
ing theory and establish a limiting absorption principle for discrete perturbed
Dirac operators.

1. Introduction

In the present paper, we are concerned with the one-dimensional discrete Dirac
equation

iẇ(t) := Dw(t) = (D0 +Q)w(t), wn = (un, vn) ∈ C
2, n ∈ Z, (1.1)

where the unperturbed discrete Dirac operator D0 is given by

D0 =

(

m d
d∗ −m

)

, m > 0,

with (du)n = un − un+1. We suppose that the matrix potential Q = (qij)i,j=1,2 is
real-valued and satisfies the conditions:

q12n ≡ q21n and q21n 6= −1, ∀n ∈ Z. (1.2)

To formulate our results, we introduce the weighted spaces ℓpσ = ℓpσ(Z), σ ∈ R,
associated with the norm

‖u‖ℓpσ =

{

(
∑

n∈Z
(1 + |n|)pσ|u(n)|p

)1/p
, p ∈ [1,∞),

supn∈Z
(1 + |n|)σ|u(n)|, p = ∞,

and the case σ = 0 corresponds to the usual ℓp0 = ℓp spaces without weight. We
also set lpσ = ℓpσ ⊕ ℓpσ.

Under the assumption qij ∈ ℓ12 the spectrum of D consists of a purely abso-

lutely continuous part covering Γ, where Γ = (−
√
m2 + 4,−m) ∪ (m,

√
m2 + 4),

plus a finite number of eigenvalues located in R \ Γ. In addition, there could be
resonances at the boundaries of the continuous spectrum, that is, there could be
a corresponding bounded solution of the underlying difference equation at these
energies.

As our first main result, we will prove the following l1 → l∞ decay

‖e−itDPc‖l1→l∞ = O(t−1/3), t→ ∞, (1.3)
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under the assumptions qij ∈ ℓ12 in the non-resonant case and qij ∈ ℓ13 in the resonant
case. Here Pc is the orthogonal projection in l2 onto the continuous spectrum of D.

In combination with conservation of the l2 norm (1.3) also gives rise to the usual
interpolation and Strichartz estimates. Moreover, (1.3) implies

‖e−itDPc‖l2σ→l2
−σ

= O(t−1/3), t→ ∞, σ > 1/2.

However, we will in fact establish the stronger result

‖e−itDPc‖l2σ→l2
−σ

= O(t−1/2), t→ ∞, σ > 1/2. (1.4)

For the remaining results we restrict ourselves to the case when the edges of the
spectrum ω = ±m,±

√
4 +m2 are no resonances for D. Then for qij ∈ ℓ13, i, j = 0, 1,

we show that

‖e−itDPc‖l1
3/2

→l∞
−3/2

= O(t−4/3), t → ∞. (1.5)

Moreover, for qij ∈ ℓ13 in the non-resonant case, we prove

‖e−itDPc‖l2σ→l2
−σ

= O(t−3/2), t → ∞, σ > 2. (1.6)

To establish the estimates (1.3)–(1.6), we represent the resolvent in terms of Jost
functions. In particular, we use this representation to prove the limiting absorp-
tion principle and to establish absence of embedded eigenvalues in the continuous
spectrum under the condition qij ∈ ℓ1.

The dispersive decay for L1 → L∞ with decay rate t−1/2 for continuous per-
turbed Schrödinger equations has been established by Weder [16] with later im-
provements by Goldberg and Schlag [6], and by Egorova, Marchenko, and us in
[4].

The dispersive decay of type (1.3) for discrete Schrödinger equation has been
established by Pelinovsky and Stefanov [13] under the assumption that there are
no resonances and under more restrictive conditions on the potential. Further
developments were given by Cuccagna and Tarulli [5]. In our recent paper [3] we
weakened the conditions of [5] in the resonant case. Moreover, in [3] and [4] we
obtain the analogous decay for discrete and continuous Klein–Gordon equations.
For the discrete Dirac equation (1.1) the decay (1.3) has not been obtain previously.

The decay of type (1.6) in weighted norms for the one-dimensional continuous
Schrödinger equation in the non-resonant case has been established by Jensen and
Nenciu [7] and, for more general PDEs of Schrödinger type, by Murata [12]. For
the one-dimensional Klein–Gordon equation the analogous decay in weighted energy
norms has been obtained by Komech and one of us [8] (see also the survey [11]).
For discrete Schrödinger and Klein–Gordon equations with compactly supported
potentials it has been obtained in [9] and generalized in [13] to discrete Schrödinger
equation with non-compactly supported potentials q under the decay condition
|qn| ≤ (1 + |n|)−β with β > 5 for σ > 5/2. In [3], we improved this result to q ∈ ℓ12
and σ > 3/2.

For the continuous one-dimensional Dirac equation the dispersive decay of type
(1.6) with σ > 5/2 has been obtained in [10]. For the discrete Dirac equation the
decay (1.6) is again new.

Asymptotics of the type (1.3)–(1.6) can be applied in proving asymptotic stabil-
ity of solitons for the associated discrete one-dimensional nonlinear Dirac equations.
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2. The free discrete Dirac equation

First we consider the free equation (1.1) with Q = 0. We have

(D0 − λ)(D0 + λ) = −∆L +m2 − λ2, (2.1)

where ∆L is the discrete Laplacian given by

(∆Lu)n = un+1 − 2un + un−1, n ∈ Z.

Denote by R0(λ) = (D0 − λ)−1 the resolvent of the free Dirac operator D0. Then
(2.1) implies

R0(λ) = (D0 + λ)R0(λ
2 −m2), (2.2)

where R0(ω) = (−∆L − ω)−1 is the resolvent of operator −∆L. Adopting the
notation [K]n,k for the kernel of an operator K, that is,

(Ku)n =
∑

k∈Z

[K]n,kuk, n ∈ Z,

the kernel of the resolvent R0(ω) is given by (see [9, 15])

[R0(ω)]n,k =
1

2π

∫

T

e−iθ(n−k)

φ(θ)− ω
dθ =

e−iθ(ω)|n−k|

2i sin θ(ω)
, ω ∈ C \ [0, 4], (2.3)

n, k ∈ Z. Here θ(ω) is the unique solution of the equation

2− 2 cos θ = ω, θ ∈ Σ := {−π ≤ Re θ ≤ π, Im θ < 0}/2πZ. (2.4)

Observe that θ 7→ ω = 2− 2 cosω is a biholomorphic map from Σ → C \ [0, 4].
The kernel of the free Dirac propagator can be easily computed using the spectral

theorem and formulas (2.2)–(2.3)

[e−itD0 ]n,k =
1

2πi

∫

Γ

e−itλ[R0(λ+ i0)−R0(λ− i0)]n,k dλ

= − 1

4π

∫

Γ

e−itλ

(

m+ λ d
d∗ −m+ λ

)

(e−iθ+|n−k|

sin θ+
− e−iθ−|n−k|

sin θ−

)

dλ,

where

θ+ = θ((λ+ i0)2 −m2) ∈ [−π, 0], θ− = θ((λ− i0)2 −m2) ∈ [0, π], λ ∈ Γ. (2.5)

Finally,

[e−itD0]n,k =
1

2π

1
∑

j=−1

∫ π

−π

Ωj(θ)

g(θ)
e−itg(θ) e−iθ|n−k+j|dθ, (2.6)

where g(θ) :=
√
2− 2 cos θ +m2 and

Ω−1(θ) =

(

0 0
−1 0

)

, Ω1(θ) =

(

0 −1
0 0

)

, Ω0(θ) =

(

m+ g(θ) 1
1 −m+ g(θ)

)

.

For the free discrete Dirac equation the l1 → l∞ decay of type (1.3) holds. However,
the l2σ → l2−σ decay holds with rate t−1/2 only (as in the continuous case). This is

caused by the presence of resonances at the edge points µ = ±m,±
√
m2 + 4.
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Proposition 2.1. The following asymptotics hold:

‖e−itD0‖l1→l∞ = O(t−1/3), t→ ∞, (2.7)

‖e−itD0‖l2σ→l2
−σ

= O(t−1/2), t→ ∞, σ > 1/2. (2.8)

Proof. It suffices to consider the operator K(t) with the kernel

[K(t)]n,k =

∫ π

−π

ψ(θ)e−itg(θ) e−iθ|n−k|dθ, (2.9)

where ψ(θ) is some smooth function, and obtain the asymptotics

‖K(t)‖ℓ1→ℓ∞ = O(t−1/3), t→ ∞, (2.10)

‖K(t)‖ℓ2σ→ℓ2
−σ

= O(t−1/2), t→ ∞, σ > 1/2. (2.11)

Step i) Since

‖K(t)‖ℓ1→ℓ∞ = sup
‖f‖ℓ1=1,‖g‖ℓ1=1

〈f,K(t)g〉 ≤ sup
n,k∈Z

|[K(t)]n,k|, (2.12)

then for (2.10) it suffices to prove that

sup
n,k∈Z

|[K(t)]n,k| ≤ Ct−1/3. (2.13)

Abbreviate v := |n−k|
t ≥ 0 and set κ = (2 +m2 −

√
4m2 +m4)/2, 0 < κ < 1. It is

easy to check that for v 6= v0 :=
√
κ the phase function

Φv(θ) = g(θ) + vθ (2.14)

has at most two non-degenerate stationary points. In the case v = v0 there exists
a unique degenerate stationary point θ0 = − arccosκ, −π/2 < θ0 < 0, such that
Φ′′′(θ0) =

√
κ 6= 0. Hence (2.13) follows from the following lemma:

Lemma 2.2. (cf. [14]) Consider the oscillatory integral

I(t) =

∫ b

a

ψ(θ)eitφ(θ)dθ, −π ≤ a < b ≤ π,

where φ(θ) is real-valued smooth function, and |ψ(θ)|+|ψ′(θ)| ≤M . If |φ(k)(θ)| > 0,
θ ∈ [a, b], for some k ≥ 2 then

|I(t)| ≤ Ck(M)
(

tmin
[a,b]

|φ(k)(θ)|
)−1/k

, t ≥ 1.

Step ii) The norm of the operator K(t) : ℓ2σ → ℓ2−σ is equivalent to the norm

of the operator Kσ(t) = (1 + |n|)−σK(t)(1 + |k|)−σ : ℓ2 → ℓ2. Hence for (2.11) it
suffices to prove that the Hilbert-Schmidt norm of Kσ(t) does not exceed Ct

−1/2,
i.e.

[

∑

n,k∈Z

([K(t)]n,k)
2

(1 + |n|)2σ(1 + |k|)2σ
]1/2

≤ Ct−1/2, σ > 1/2. (2.15)

We divide the domain of integration in (2.9) into the domains

J± = {θ : |θ ∓ θ0| ≤ ν|θ0|}, J = [−π, π] \ (J+ ∪ J−), (2.16)
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where ν = ν(m) ∈ (0, 1/2], will be specified below. Since |Φ′′(θ)| ≥ C(ν) for θ ∈ J,
we infer

sup
n,k∈Z

∣

∣

∫

J

ψ(θ)e−itΦv(θ)dθ
∣

∣ ≤ Ct−1/2, t ≥ 1,

from the van der Corput Lemma 2.2. Consequently, (2.15) for the part over J

follows. For the part over J− we apply integration by parts to obtain

sup
n,k∈Z

∣

∣

∫

J−

ψ(θ)e−itΦv(θ)dθ
∣

∣ ≤ Ct−1, t ≥ 1,

from which (2.15) for the part over J− follows.
It remains to consider the part over J+. For any fixed σ > 1/2, there exist an

integer N > 0 such that
σ > 1/2 + (1/2)N . (2.17)

Denote tj = t−( 1
2 )

j

, 1 ≤ j ≤ N , t0 = 0, tN+1 = ν|θ0|. We further divide the domain

J+ into subdomains J
j
+ = tj ≤ |θ − θ0| ≤ tj+1, 0 ≤ j ≤ N . For the integral over

J0
+ the estimate (2.15) evidently holds. It remains to get (2.15) for the operators
Kj(t) with kernels

[Kj(t)]n,k =

∫

J
j
+

ψ(θ)e−itΦv(θ)dθ, 1 ≤ j ≤ N. (2.18)

By the van der Corput lemma

sup
n,k∈Z

|[Kj(t)]n,k| ≤ Ct−1/2

(

min
θ∈Jj

+

|Φ′′
v(θ)|

)−1/2

≤ C(ttj)
−1/2. (2.19)

Now we choose ε = 2−N , so that tε = t−1
N , and consider |v0 − v| ≤ 1

2v0tjt
ε and

|v0 − v| ≥ 1
2v0tjt

ε separately.

In the first case, we take Tj =
{

(n, k) ∈ Z2 : |v0t− |n− k|| ≤ 1
2v0tjt

1+ε
}

as the
domain of summation. Since this domain is symmetric with respect to the map
(n, k) 7→ (−n,−k), we can make the change of variables p = n− k, q = n+ k and
estimate

bj(t) :=
∑

(n,k)∈Tj

1

(1 + |n|)2σ(1 + |k|)2σ

by

bj(t) ≤
∑

q∈Z

⌊v0(t+
1
2 tj t

1+ε)⌋
∑

p=⌈v0(t−
1
2 tj t

1+ε)⌉

2

(1 + 1
2 |p+ q|)2σ(1 + 1

2 |p− q|)2σ ,

where ⌊·⌋ and ⌈·⌉ denote the usual floor and ceiling functions, respectively. The sum
with respect to p is finite with the number of summands less then ⌊v0tjt1+ε⌋ + 2.
Since tjt

1+ε ≤ t for j = 1, . . . , N , we have p ≥ 1
2v0t in the domain of summation.

Consequently p + q ≥ 1
2v0t for q ≥ 0 and p − q ≥ 1

2v0t for q < 0. Using these
estimates and interchanging the order of summation, we get

bj(t) ≤ C
⌊tjt1+ε⌋
t2σ

≤ Ctjt
1+ε−2σ. (2.20)

Thus, by (2.19), (2.20), and (2.17)

∑

n,k∈Tj

([Kj(t)]n,k)
2

(1 + |n|)2σ(1 + |k|)2σ ≤ sup
n,k∈Z

([Kj(t)]n,k)
2bj(t) ≤ Ct−2σ+ε ≤ Ct−1 (2.21)
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implying

‖Kj(t)‖ℓ2σ→ℓ2
−σ

≤ Ct−1/2, j = 1, . . . , N, σ > 1/2, (2.22)

in the first case.

In the second case, we apply integration by parts. To this end we have to
estimate: (a) |Φ′

v(θ)|−1 at the points θ0 ± tj and θ0 ± tj+1, and (b) the integral of
the function |Φ′′

v (θ)|(Φ′
v(θ))

−2 between these points. But since the function Φ′′
v (θ)

does not change its sign on the intervals [θ0 + tj , θ0 + tj+1] and [θ0 − tj+1, θ0 − tj ],
the antiderivative of |Φ′′

v (θ)|(Φ′
v(θ))

−2 is equal up to a sign to (Φ′
v(θ))

−1. Thus it
is sufficient to consider the case (a) only.

We have Φv(θ) = g(θ) + vθ, therefore

Φ′
v(θ) = g′(θ) + v = g′(θ0) +

1

2
g′′′(θ̃)(θ − θ0)

2 + v =
1

2
g′′′(θ̃)(θ − θ0)

2 + v − v0.

Here we used g′(θ0) = −v0 and g′′(θ0) = 0. Hence for large t

|Φ′
v(θ0±tj+s)| ≥ |v−v0|−Ct2j+s ≥ tj(

v0t
ε

2
−C) ≥ C1tj , j = 1, . . . , N−1, s = 0, 1

and then

|[Kj(t)]n,k| ≤ Ct−1t−1
j ≤ Ct−1/2, j = 1, . . . , N − 1. (2.23)

In the case j = N , we have |v − v0| ≥ 1
2v0. Furthermore,

Φ′
v(θ0 ± tN+1) =

1

2
g′′′(θ̃)(ν|θ0|)2 + v − v0.

Since |g′′′(θ)| ≤ G = G(µ), θ ∈ [−π, π], then we can choose ν = min{ 1
2 ,
√

2v0
3Gθ2

0
} to

obtain |Φ′
v(θ0 ± tN+1)| ≥ 1

6v0. Respectively, |Φ′
v(θ0 ± tN+1)|−1 ≤ 6/v0, and hence

|[KN (t)]n,k| ≤ Ct−1. (2.24)

Taking into account (2.23) and (2.24), we obtain (2.22) also in this case. �

3. Jost solutions

In this section, we establish basic properties of the Jost functions. For related
results in the special case of a diagonal potential, we refer to [2], [1]. In the spe-
cial case of supersymmetric operators these results can also be inferred from the
corresponding results for Jacobi operators (cf. [15, Sect. 14.3]).

Denote by Γ = (−
√
m2 + 4,−m)∪ (m,

√
m2 + 4), Ξ := C \Γ, and let Ξ+ = {λ ∈

Ξ, Reλ ≥ 0}. For any λ ∈ Ξ+ consider the Jost solutions w = (u, v) to

Dw = λw (3.1)

satisfying the boundary conditions

w±
n (θ) =

(

u±n (θ)
v±n (θ)

)

→
(

1
α±(θ)

)

e∓iθn, n→ ±∞, (3.2)

where

α±(θ) =
1− e±iθ

m+ λ
,

and θ = θ(λ) ∈ Σ solves

2− 2 cos θ = λ2 −m2.
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The boundary condition (3.2) arise naturally in (3.1) with Q ≡ 0. For nonzero Q
with qij ∈ ℓ11 the Jost solution exists everywhere in Ξ+, but for qij ∈ ℓ1 it exists
only away from the edges of continuous spectrum. Introduce

h±
n (θ) = e±inθw±

n (θ) (3.3)

and set

ΣM : = {θ ∈ Σ : | Im θ| ≤M}, M ≥ 1,

ΣM,δ : = {θ ∈ ΣM : |e−iθ ± 1| > δ}, 0 < δ <
√
2.

Proposition 3.1. (i) Let qij ∈ ℓ1s with s = 0, 1, 2. Then the functions h±
n (θ) can

be differentiated s times on ΣM,δ, and the following estimates hold:

| ∂
p

∂θp
h±
n (θ)| ≤ C(M, δ)max((∓n)|n|p−1, 1), n ∈ Z, 0 ≤ p ≤ s, θ ∈ ΣM,δ. (3.4)

(ii) If additionally qij ∈ ℓ1s+1, then h±
n (θ) can be differentiated s times on ΣM , and

the following estimates hold:

| ∂
p

∂θp
h±
n (θ)| ≤ C(M)max((∓n)|n|p, 1), n ∈ Z, 0 ≤ p ≤ s, θ ∈ ΣM . (3.5)

Proof. The Green’s function representation for the solutions of (3.1) reads:

h±
n (θ) =

(

1
α±(θ)

)

+

±∞
∑

k=n

G±(k − n, θ)Qkh
±
k (θ), (3.6)

where

G±(l, θ) =
(m+ λ)

2i sin θ

(

1− e∓2iθl α∓ − α±e
∓2iθl

α± − α∓e
∓2iθl (1 − e∓2iθl)λ−m

m+λ

)

, ±l ≥ 1,

G+(0, θ) =

(

0 0
−1 0

)

, G−(0, θ) =

(

0 −1
0 0

)

.

We consider the case “+” only since in the “−” case the proof is similar. Abbreviate
hn(z) = h+

n (θ) with z = e−iθ. Equation (3.6) implies

Anhn(z) =

(

1
α+

)

+
∞
∑

k=n+1

G(k − n, z)Qkhk(z), (3.7)

where

G(l, z) =
(m+ λ)

z−1 − z

(

1− z2l α+ − α−z
2l

α− − α+z
2l (1− z2l)λ−m

m+λ

)

, An =

(

1 0
q11n 1 + q12n

)

,

and α± = α±(z) = (1− z∓1)/(m+ λ).
For θ ∈ ΣM,δ, we have |z2 − 1| ≥ C(δ) > 0. Then

|G(l, z)| ≤ C(M)

|z2 − 1| ≤ C(M, δ), l > 0,

and the method of successive approximations (cf. [15]) implies |hn(z)| ≤ C(M, δ).
Then (3.4) with p = 0 follows. Furthermore,

| d
p

dzp
G(l, z)| ≤ C(M, δ)(k − n)p, p ≥ 1, l > 0, θ ∈ ΣM,δ. (3.8)
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Now let qij ∈ ℓ11. Consider the first derivative of hn(z). We have

An
d

dz
hn(z) =

(

0
d
dzα+

)

+ φn(z) +

∞
∑

m=n+1

G(k − n, z)Qk
d

dz
hk(z), (3.9)

where

φn(z) :=
∞
∑

k=n+1

d

dz
G(k − n, z)Qkhk(z).

Moreover, we we have the estimate |φn(z)| ≤ C(M, δ) for n ≥ 0 and θ ∈ ΣM,δ by
(3.4) with p = 0 and (3.8). Applying the method of successive approximations to
(3.9), we get (3.4) with p = 1. For the case p = 2, we proceed in the same way.

The estimate (3.5) can be obtained from (3.7) by the same approach by virtue

of the estimate | dp

dzpG(l, z)| ≤ C(M)lp+1, which is valid for l > 0. �

Corollary 3.2. In the case qij ∈ l1 Proposition 3.1 (i) implies in particular that
for any θ ∈ Σ \ {0;±π} we have the estimate |h±

n (θ)| ≤ C(θ) for all n ∈ Z. Here
C(θ) can be chosen uniformly on compact subsets of Σ avoiding the band edges.
Together with (3.3) this implies

|w±
n (θ)| ≤ C(θ)e± Im(θ)n , θ ∈ Σ \ {0;±π}, n ∈ Z. (3.10)

Now we define the Jost function for Reλ ≤ 0. Similarly to the analysis for
Reλ ≥ 0, we consider solutions of system (3.1) according the boundary conditions

w̃±
n (θ) =

(

ũ±n (θ)
ṽ±n (θ)

)

→
(

α̃±(θ)
1

)

e∓iθn, n→ ±∞, (3.11)

where

α̃±(θ) =
1− e∓iθ

λ−m
.

Using a similar Green’s function, Propositions 3.1 can be extended to functions
w̃±

n (θ). In particular, for w̃±
n (θ) and h̃±

n (θ) = w̃±
n (θ)e

±iθn the bounds (3.4), (3.5)
and (3.10) hold.

4. Wronskians

As before we consider the case Reλ ≥ 0 only. Denote byW (w1,w2) the Wronski
determinant of any two solutions w1 and w2 to (3.1):

W (w1,w2) :=

∣

∣

∣

∣

u1n u2n
v1n+1 v2n+1

∣

∣

∣

∣

.

It is easy to check that if q12 ≡ q21 then W (w1,w2) is constant in n ∈ Z for
arbitrary solutions w1 and w2 of (3.1). The Jost solutions w±(θ) and w±(−θ) are
independent for θ ∈ (−π, 0) ∪ (0, π) since

W (w±(θ),w±(−θ)) =
∣

∣

∣

∣

1 1
α±(θ)e

∓iθ α±(−θ)e±iθ

∣

∣

∣

∣

= ±2i sin θ

m+ λ
6= 0, (4.1)

if θ 6= 0,±π. Then there exist (unique) functions a±(θ) and b±(θ) such that

w±(θ) = a∓(θ)w
∓(−θ) + b∓(θ)w

∓(θ). (4.2)

Calculating the Wronskians, for θ ∈ (−π, 0) ∪ (0, π) we obtain

a−(θ) = a+(θ) =
W (θ)

W (w−(−θ),w−(θ))
=
W (θ)(m+ λ)

2i sin θ
(4.3)
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and

b±(θ) = ± W±(θ)

W (w−(θ),w−(−θ)) = ±W
±(θ)(m+ λ)

2i sin θ
, (4.4)

where
W (θ) =W (w+(θ),w−(θ)), W±(θ) =W (w∓(θ),w±(−θ)).

Lemma 4.1. Let qij ∈ ℓ1. Then W (θ) 6= 0 for θ ∈ (−π, 0) ∪ (0, π).

Proof. Since w+(−θ) = w+(θ) then (4.2) implies

w+(−θ) = b−(θ)w
−(−θ) + a−(θ)w

−(θ).

Therefore,

W (w+(θ),w+(−θ)) = (|a−(θ)|2 − |b−(θ)|2)W (w−(−θ),w−(θ)).

Hence, from (4.1) it follows that

|a−(θ)|2 − |b−(θ)|2 = 1. (4.5)

Now the assertion of the lemma follows from (4.3) and (4.4). �

Remark 4.2. Proposition 3.1 and Lemma 4.1 eliminates the possibility of embed-
ded eigenvalues in the continuous spectrum of D for qij ∈ ℓ1 because the space of
solutions of the Dirac system (3.1) for λ ∈ (−

√
4 +m2,−m) and λ ∈ (m,

√
4 +m2)

is spanned by the two fundamental solutions w̃±
n (θ) and w±

n (θ) which are not square
summable near n→ ±∞.

Now we discuss an alternative definition of resonances.

Definition 4.3. For λ ∈ {m,
√
4 +m2} any nonzero solution w ∈ l∞ of the equa-

tion Dw = λw is called a resonance function, and in this case λ is called a reso-
nance.

Lemma 4.4. Let qij ∈ ℓ11. Then λ = m (or λ =
√
4 +m2) is a resonance if and

only if W (0) = 0 (or W (π) = 0).

Proof. Step i) In the case λ = m, we have

w±
n =

(

u±n
v±n

)

=

(

1
0

)

+ o(1), n→ ±∞. (4.6)

Introduce another solution w∗ = (u∗, v∗) to (3.1) satisfying

W (w+,w∗) = u+n v
∗
n+1 − u∗nv

+
n+1 = 1. (4.7)

If the sequence u∗n is bounded for positive n, then from (4.6)–(4.7) it follows that
v∗n → 1 for n→ +∞. Then the second line of equation (3.1) with λ = m implies

u∗n+1 − u∗n = mv∗n+1 − q21n+1u
∗
n+1 − q22n+1v

∗
n+1 → m, n→ +∞.

Hence, for sufficiently large positive n0, we obtain

u∗n0+k = u∗n0
+ km+ o(k), k → +∞,

which contradicts our assumption on the boundedness of u∗n. Since w− = αw+ +
βw∗, then it is a bounded solution if and only if β =W (w+,w−) = 0.

Step ii) Consider now the case λ =
√
m2 + 4. In this case

w±
n =

(

u±n
v±n

)

= (−1)n
(

1
2/m̃

)

+ o(1), n→ ±∞. (4.8)
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where m̃ = m +
√
m2 + 4. Introduce another solution w∗ = (u∗, v∗) to (3.1)

satisfying (4.7) and suppose that the sequence u∗n is bounded for positive n, then
the sequence v∗n is also bounded due to (4.8). Then (4.7) implies that

m̃v∗n+1 = −2u∗n + (−1)nm̃+ o(1), n→ +∞.

Now the second line of equation (3.1) with λ =
√
m2 + 4 yields

u∗n+1 = −u∗n + (−1)nm̃+ o(1), n→ +∞.

Hence, for sufficiently large positive n0, we obtain

u∗n0+k = (−1)ku∗n0
+ k(−1)n0+km̃+ o(k), k → +∞,

which contradicts our assumption on the boundedness of u∗n. Since w− = αw+ +
βw∗, then it is a bounded solution if and only if β =W (w+,w−) = 0. �

Remark 4.5. From (4.5) it follows that the zeros of the Wronskians W (θ) and
W±(θ) at the points 0, π can be at most of first order.

For Reλ ≤ 0 the corresponding Wronskian W̃ (θ) has the same properties.

5. The limiting absorption principle

Given the Jost solutions, we can express the kernel of the resolventR(λ) : l2 → l2

for λ ∈ C \ Γ. Recall that θ 7→ ω(θ) is a biholomorphic map Σ → Ξ. The method
of variation of parameters gives

Lemma 5.1. Let qij ∈ ℓ1. Then for any λ ∈ C \ Γ, Reλ ≥ 0, the operators
R(λ) : l2 → l2 can be represented by the integral kernel as follows

[R(λ)]k,n =
1

W (θ(λ))

{

w−
k (θ(λ)) ⊗w+

n (θ(λ)), k ≤ n,

w+
k (θ(λ)) ⊗w−

n (θ(λ)), k ≥ n,
(5.1)

where

w1
k ⊗w2

n =

(

u1ku
2
n v1k+1u

2
n

u1kv
2
n v1k+1v

2
n

)

and

[R(λ)w]n =

∞
∑

k=−∞

[R(λ)]k,n

(

uk
vk+1

)

.

Similarly, for any λ ∈ C \ Γ, Reλ ≤ 0, we obtain

[R(λ)]k,n =
1

W̃ (θ(λ))

{

w̃−
k (θ(λ)) ⊗ w̃+

n (θ(λ)), k ≤ n,

w̃+
k (θ(λ)) ⊗ w̃−

n (θ(λ)), k ≥ n,
(5.2)

where W̃ (θ) =W (w̃+(θ), w̃−(θ)).

The representations (5.1)–(5.2), the fact that W (θ) and W̃ (θ) do not vanish
for λ ∈ Γ, and the bound (3.10) imply the limiting absorption principle for the
perturbed one-dimensional Dirac equation.

Lemma 5.2. Let qij ∈ ℓ1. Then the convergence

R(λ± iε) → R(λ± i0), ε→ 0+, λ ∈ Γ (5.3)

holds in L(l2σ, l2−σ) with σ > 1/2.



DISPERSION ESTIMATES FOR DISCRETE DIRAC EQUATIONS 11

Proof. For any λ ∈ Γ and any n, k ∈ Z, there exist the pointwise limit

[R(λ± iε)]n,k → [R(λ ± i0)]n,k, ε→ 0.

Moreover, the bound (3.10) implies that |[R(λ±iε)]n,k| ≤ C(λ). Hence, the Hilbert–
Schmidt norm of the difference R(λ± iε)−R(λ± i0) converges to zero in L(l2σ, l2−σ)
with σ > 1/2 by the dominated convergence theorem. �

Of course the limiting absorption principle implies that the spectrum of D is
purely absolutely continuous on Γ.

Corollary 5.3. For any fixed σ > 1/2, the operators R±(λ) := R(λ±i0) : l2σ → l2−σ

have integral kernels given by

[R±(λ)]n,k =
1

W (θ±)

{

w+
n (θ±)⊗w−

k (θ±), n ≥ k,

w+
k (θ±)⊗w−

n (θ±), n ≤ k,
(5.4)

for λ ∈ Γ+ = (m,
√
m2 + 4) and

[R±(λ)]n,k =
1

W̃ (θ±)

{

w̃+
n (θ±)⊗ w̃−

k (θ±), n ≥ k,

w̃+
k (θ±)⊗ w̃−

n (θ±), n ≤ k,
(5.5)

for λ ∈ Γ− = (−
√
m2 + 4,−m), where θ+, and θ− = −θ+ are defined by (2.5).

6. Dispersive decay

Now we are able to prove the l1 → l∞ decay.

Theorem 6.1. Let qij ∈ ℓ12 in the non-resonant case and qij ∈ ℓ13 in the resonant
case. Then the asymptotics (1.3) and (1.4) hold, i.e.,

‖e−itDPc‖l1→l∞ = O(t−1/3), t→ ∞, (6.1)

and
‖e−itDPc‖l2σ→l2

−σ
= O(t−1/2), t→ ∞, σ > 1/2. (6.2)

Proof. We apply the spectral representation

e−itDPc = e−itDP+
c + e−itDP−

c =
1

2πi

∫

Γ+

e−itω(R(λ + i0)−R(λ − i0)) dλ

+
1

2πi

∫

Γ−

e−itω(R(λ + i0)−R(λ− i0)) dλ. (6.3)

We consider the first summand only. Expressing the kernel of the resolvent in terms
of the Jost solutions, the kernel of e−itDP+

c reads:

[

e−itDP+
c

]

n,k
=

1

2πi

∫

Γ+

e−itλ

[

w+
k (θ+)⊗w−

n (θ+)

W (θ+)
− w+

k (θ−)⊗w−
n (θ−)

W (θ−)

]

dλ

=
1

2πi

∫ π

−π

e−itg(θ)

g(θ)

w+
k (θ)⊗w−

n (θ)

W (θ)
sin θ dθ

for n ≤ k and by symmetry
[

e−itDP+
c

]

n,k
=
[

e−itDP+
c

]

k,n
for n ≥ k.

Step i) For (6.1) it suffices to prove that

sup
n,k∈Z

|
[

eitHP+
c

]

n,k
| = O(t−1/3), t→ ∞. (6.4)
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independent of n, k. We suppose n ≤ k for notational simplicity. Then

[

e−itDP+
c

]

n,k
= −m+ λ

4π

∫ π

−π

e−itΦv(θ)

g(θ)
T (θ)h+

k (θ) ⊗ h−
n (θ)dθ, (6.5)

where v = k−n
t ≥ 0, Φv(θ) is defined in (2.14), and

T (θ) =
1

a−(θ)
=

2i sin θ

(m+ λ)W (θ)
.

The quantities T (θ) and

R±(θ) =
b±(θ)

a±(θ)
= ±W

±(θ)

W (θ)

are known as transmission and reflection coefficient, respectively. From (4.2) there
follow the scattering relations

T (θ)w±(θ) = R∓(θ)w∓(θ) +w∓(−θ), θ ∈ [−π, π], (6.6)

which imply the representations

T (θ)h+
k (θ)⊗h−

n (θ) =

{

R−(θ)h−
n (θ) ⊗ h−

k (θ)e
2ikθ + h−

n (θ) ⊗ h−
k (−θ), n ≤ k ≤ 0,

R+(θ)h+
k (θ)⊗ h+

n (θ)e
−2inθ + h+

k (θ)⊗ h+
n (−θ), 0 ≤ n ≤ k.

Using the identities

i(n− k) + 2ik = i(k + n) = −i|k + n|, n ≤ k ≤ 0,

i(n− k)− 2in = −i(k + n) = −i|k + n|, 0 ≤ n ≤ k, (6.7)

we rewrite (6.5) as

[

e−itDP+
c

]

n,k
= −m+ λ

4π

[

∫ π

−π

e−itΦv(θ)

g(θ)
Y 1
n,k(θ)dθ +

∫ π

−π

e−itΦ̃v(θ)

g(θ)
Y 2
n,k(θ)dθ

]

,

(6.8)
where

Y 1
n,k(θ) =











T (θ)h+
k (θ)⊗ h−

n (θ), n ≤ 0 ≤ k,

h−
n (θ)⊗ h−

k (−θ), n ≤ k ≤ 0,

h+
k (θ)⊗ h+

n (−θ), 0 ≤ n ≤ k,

Y 2
n,k(θ) =











0, n ≤ 0 ≤ k,

R−(θ)h−
n (θ)⊗ h−

k (θ), n ≤ k ≤ 0,

R+(θ)h+
n (θ)⊗ h+

k (θ), 0 ≤ n ≤ k,

and
Φ̃v(θ) = g(θ) + ṽθ, with ṽ = |n+ k|/t ≥ 0. (6.9)

In the non-resonant case and qij ∈ ℓ12, we have

|Y j
n,k(θ)|+ | ∂

∂θ
Y j
n,k(θ)| ≤ C, j = 1, 2, n ≤ k, (6.10)

by Proposition 3.1 (ii). It the resonant case for (6.10), we need qij ∈ ℓ13. ThenW (θ)
and W±(θ) can be differentiated two times on [−π, π] according to Proposition 3.1
(ii), and hence

| ∂
p

∂θp
T (θ)|, | ∂

p

∂θp
R±(θ)| ≤ C, p = 0.1, θ ∈ [−π, π],

due to Remark 4.5. Therefore (6.10) follows by Proposition 3.1 (ii).
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Now, as in the proof of Proposition 2.1 (i), we split the domains of integration
in (6.8) into regions where either the second or third derivative of the phases is
nonzero and apply the van der Corput Lemma 2.2 to obtain (6.4).

Step ii) We represent e−itDP+
c as the sum

e−itDP+
c = K±(t) +K(t),

where

[K±(t)]n,k = − 1

4π

∫

J±

[

e−itΦv(θ)Y 1
n,k(θ) + e−iΦ̃v(θ)Y 2

n,k(θ)
] dθ

g(θ)
,

[K(t)]n,k = − 1

4π

∫

J

[

e−itΦv(θ)Y 1
n,k(θ) + e−iΦ̃v(θ)Y 2

n,k(θ)
] dθ

g(θ)
,

where J± and J are defined in (2.16). The the van der Corput Lemma 2.2 with
k = 2 and the estimate (6.10) imply

sup
n≤k

|[K(t)]n,k| ≤ Ct−1/2, t ≥ 1.

Hence
‖K(t)‖l2σ→l2

−σ
≤ Ct−1/2, σ > 1/2, t ≥ 1.

Furthermore, integration by parts gives

sup
n≤k

|[K−(t)]n,k| ≤ Ct−1, t ≥ 1,

and hence
‖K−(t)‖l2σ→l2

−σ
≤ Ct−1, σ > 1/2, t ≥ 1.

To estimate K+(t) we employ the following lemma.

Lemma 6.2. Let Yn,k(θ) satisfies

|Yn,k(θ)|+ | d
dθ
Yn,k(θ)| ≤ (1 + |n|p)(1 + |k|p), n, k ∈ Z, (6.11)

with some p ≥ 0. Let Φv(θ) = g(θ)+vθ, where v = |k−n|/t or v = |k+n|/t. Then
for the operator K(t) with the kernel

[K(t)]n,k =

∫

J+

e−itΦv(θ)Yn,k(θ)dθ

the following asymptotics hold

‖K(t)‖ℓ2p+σ→ℓ2
−(p+σ)

= O(t−1/2), t→ ∞, σ > 1/2. (6.12)

Proof. In the case v = |k−n|/t, we repeat literally the main estimates of Proposition
2.1 (ii). Namely, consider the operators Kj(t) which differ from the operators
defined in (2.18) by the additional factor Yn,k(θ). Then (2.19) will change according
to

|[Kj(t)]n,k| ≤ Ct−1/2t
−1/2
j (1 + |n|p)(1 + |k|p) (6.13)

by virtue of the van der Corput Lemma 2.2. Furthermore, instead of (2.21), we
will use the following estimate

∑

n,k∈Tj

([Kj(t)]n,k)
2

(1 + |n|)2σ+2p(1 + |k|)2σ+2p
≤ sup

n,k∈Z

(
([Kj(t)]n,k)

2

(1 + |n|)2p(1 + |k|)2p bj(t)

≤ Ct−2σ+ε ≤ Ct−1, j = 1, . . . , N,
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which implies (6.12) in the first case corresponding to |v0−v| ≤ 1
2v0tjt

ε. Moreover,
(6.11) gives the additional factor (1+ |n|p)(1+ |k|p) in the right-hand side of (2.23)
and (2.24) and hence (6.12) in the second case when |v0 − v| ≥ 1

2v0tjt
ε. In the case

v = |k + n|/t the proof is similar. �

Thus, applying (6.10) and the Lemma 6.2 with p = 0, we obtain

‖K+(t)‖l2σ→l2
−σ

≤ Ct−1/2, σ > 1/2, t→ ∞. �

Now we consider the non-resonant case and prove the asymptotics (1.5) and
(1.6).

Theorem 6.3. Let qij ∈ ℓ13. Then in the non-resonant case

‖e−itDPc‖l1
3/2

→l∞
−3/2

= O(t−4/3), t→ ∞, (6.14)

‖e−itHPc‖ℓ2σ→ℓ2
−σ

= O(t−3/2), t→ ∞, σ > 2. (6.15)

Proof. Step i) To prove (6.14) it suffices to show that

|
[

e−itDPc

]

n,k
| ≤ C(1 + |n|3/2)(1 + |k|3/2)t−4/3, t ≥ 1. (6.16)

For n ≤ k, we represent the jump of the resolvent across the spectrum as (cf. [3,
p13])

R(ω + i0)−R(ω − i0)) =
|T (θ)|2(m+ λ)

−2i sin θ
[w+

k (θ)⊗w+
n (−θ) +w−

k (θ)⊗w−
n (−θ)].

Inserting this into (6.3) and integrating by parts, we get
[

e−itDPc

]

n,k

=
i(m+ λ)

2πt

∫ π

−π

e−itg(θ) d

dθ

[ |T (θ)|2
sin θ

(w+
k (θ)⊗w+

n (−θ) +w−
k (θ)⊗w−

n (−θ))
]

dθ

= [P+(t)]n,k + [P−(t)]n,k.

We consider the first summand only. Evaluating the derivative, we further obtain

[

P+(t)
]

n,k
=

i(m+ λ)

2πt

∫ π

−π

e−itg(θ) d

dθ

[ |T (θ)|2
sin θ

e−iθ(k−n)h+
k (θ) ⊗ h+

n (−θ)
]

dθ

=
m+ λ

2πt

∫ π

−π

e−itΦv(θ)
(

(k − n) + i
d

dθ

) |T (θ)|2
sin θ

h+
k (θ)⊗ h+

n (−θ), (6.17)

where Φv(θ) is defined in (2.14). Applying the scattering relation

T (−θ)h+
n (−θ) = R−(−θ)h−

n (−θ)e−2inθ + h−
n (θ),

we get the representation

[

P+(t)
]+

n,k
=

1

2πt

∫ π

−π

e−itΦv(θ)Z1
n,k(θ)dθ +

1

2πt

∫ π

−π

e−itΦ̆v(θ)Z2
n,k(θ)dθ, (6.18)

where Φv(θ) is the same as before,

Φ̆v(θ) = g(θ) + v̆θ, with v̆ = (n+ k)/t, (6.19)
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and

Z1
n,k(θ) =

{

(

(k − n) + i d
dθ

) |T (θ)|2

sin θ h+
k (θ)⊗ h+

n (−θ), 0 ≤ n ≤ k,
(

(k − n) + i d
dθ

)T (θ)
sin θh

+
k (θ)⊗ h−

n (θ), n ≤ k ≤ 0 ∪ n ≤ 0 ≤ k,

Z2
n,k(θ) =

{

0, 0 ≤ n ≤ k,
(

(k + n) + i d
dθ

)T (θ)
sin θR

−(−θ)h+
k (θ)⊗ h−

n (−θ), n ≤ k ≤ 0 ∪ n ≤ 0 ≤ k.

Since T (θ)
sin θ = 2i

(m+λ)W (θ) then, in the non-resonant case, Proposition 3.1 (ii) implies

|Zj
n,k(θ)| + | d

dθ
Zj
n,k(θ)| ≤ C(1 + |k|), 0 ≤ n ≤ k,

|Zj
n,k(θ)| + | d

dθ
Zj
n,k(θ)| ≤ C(1 + max{|k|, |n|}), n ≤ 0 ≤ k,

|Zj
n,k(θ)| + | d

dθ
Zj
n,k(θ)| ≤ C

(

(1 + |n|)(1 + |k|2) + (1 + |k|3)
)

≤ C(1 + |n|3/2)(1 + |k|3/2), n ≤ k ≤ 0, (6.20)

and we obtain (6.16) by the method of Theorem 6.1 (i) .

Step ii). To prove (6.15), we represent P+ as the sum

P+(t) = K±(t) + K̆±(t) +K(t), (6.21)

where

[K±(t)]n,k =
m+ λ

2πt

∫

J±

e−itΦv(θ)Z1
n,k(θ)dθ,

[K̆±(t)]n,k =
m+ λ

2πt

∫

J±

e−itΦ̆v(θ)Z2
n,k(θ)dθ,

[K(t)]n,k =
m+ λ

2πt

∫

J

(

e−itΦv(θ)Z1
n,k(θ) + e−itΦ̆v(θ)Z2

n,k(θ)
)

dθ,

where J± and J are defined in (2.16). By virtue of (6.20), the van der Corput
Lemma 2.2 and integration by parts, we obtain

|[K(t)]n,k| ≤ Ct−3/2(1 + |n|3/2)(1 + |k|3/2),
|[K−(t)]n,k| ≤ Ct−2(1 + |n|3/2)(1 + |k|3/2), t ≥ 1,

respectively. Then

‖K(t)‖l2σ→l2
−σ

≤ Ct−3/2, ‖K−(t)‖l2σ→l2
−σ

≤ Ct−2, σ > 2, t ≥ 1.

To estimate K+(t), we apply (6.20) together with Lemma 6.2 with p = 3/2 and
obtain

‖K+(t)‖l2σ→l2
−σ

≤ Ct−3/2, σ > 2, t ≥ 1.

It remains to estimate K̆±(t). We split K̆±(t) according to

K̆+(t) = K̆+
+(t) + K̆+

−(t), K̆−(t) = K̆−
+(t) + K̆−

−(t),

where the kernels of the corresponding operators are of the form

[K̆±
+(t)]n,k =

{

[K̆±(t)]n,k, n+ k ≥ 0,

0, n+ k < 0,
[K̆±

−(t)]n,k =

{

0, n+ k ≥ 0,

[K̆±(t)]n,k, n+ k < 0.
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The operators K̆±
+(t) can be estimated similarly to the operators K±(t). To esti-

mate K̆±
−(t) one needs to interchange the method for ′′+′′ and ′′−′′ cases. �
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