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1 Introduction

We establish a dispersive long time decay for the solutions to 3D magnetic Schrödinger equation

iψ̇(x, t) = Hψ(x, t) := [−i∇−A(x)]2ψ(x, t) + V (x)ψ(x, t), x ∈ R
3 (1.1)

in weighted norms. For s, σ ∈ R, denote by Hs
σ = Hs

σ(R
3) the weighted Sobolev spaces

introduced by Agmon, [1], with the finite norms

‖ψ‖Hs
σ
= ‖〈x〉σ〈∇〉sψ‖L2(R3) <∞, 〈x〉 = (1 + |x|2)1/2. (1.2)

We will also denote L2
σ = H0

σ. We assume that V (x) ∈ C(R3), Aj ∈ C2(R3) are real functions,
and for some β > 3 and β1 > 2 the bounds hold

|V (x)|+ |A(x)|+ |∇A(x)| ≤ C〈x〉−β, x ∈ R
3, (1.3)

|∇∇A(x)| ≤ C〈x〉−β1, x ∈ R
3. (1.4)

We restrict ourselves to the “regular case” in the terminology of [8] (or “nonsingular case” in
[14]), where the truncated resolvent of the operator H is bounded at the edge point λ = 0 of
the continuous spectrum. In other words, the point λ = 0 is neither eigenvalue nor resonance
for the operator H ; this holds for generic potentials.

Our main result is the following long time decay of the solutions to (1.1): in the regular
case,

‖Pcψ(t)‖H0
−σ

= O(|t|−3/2), t→ ±∞ (1.5)

for initial data ψ0 = ψ(0) ∈ H0
σ with σ > 5/2 where Pc is a Riesz projection onto the continuous

spectrum of H . The decay is desirable for the study of asymptotic stability and scattering for
the solutions to nonlinear equations.

Let us comment on previous results in this direction. Asymptotic completeness for the
magnetic Schrödinger equation follows by methods of the Birman-Kato theory [15]. Spectral
representation for this case has been obtained by Iwatsuka [7] developing the Kuroda approach
[11, 12]. The Strichartz estimates for magnetic Schrödinger equation with small potentials
were obtained in [3, 5] and with large potentials in [4]. The decay in weighted norms has
been obtained first by Jensen and Kato for the Schrödinger equation with scalar potential [8].
However, for the magnetic Schrödinger equation the decay in weighted norms was not obtain
up to now.

Finally, let us comment on our approach. We extend methods of Agmon [1], and Jensen and
Kato [8], to the magnetic Schrödinger equation. Our main novelties - Theorems 3.7 and 3.8 on
high energy decay for the magnetic resolvent, and Lemmas A.2 and A.3 which are extensions
of known Agmon’s Lemma A.2 and A.3 from [1] (see also Lemma 4 from [15, p. 442]). Main
problem in this extension - presence of the first order derivatives in the perturbation. These
derivatives cannot be handle with the perturbation theory like [1, 8] since the correponding
terms do not decay in suitable norms. To avoid the perturbation approach, we apply spectral
resolution for magnetic Schrödinger operator in our extension of Lemma A.3 from [1].

Our techniques rely on the D’Ancona-Fanelly magnetic version of the Hardy inequality [2],
spectral resolution established by Iwatsuka [7], result of Ionescu and Schlag [6] on absence of
singular spectrum, and result of Koch and Tataru [9] on absence of embedded eigenvalues in
continuous spectrum. We also apply limiting absorption principle for the magnetic Schrödinger
equation. We deduce the principle by a suitable generalization of methods of Agmon [1].
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2 Free equation

Denote by R0(ω) = (H0 − ω)−1 the resolvent of the free Schrödinger operator H0 = −∆. The
resolvent is an integral operator with the integral kernel

R0(ω, x− y) = exp(iω1/2|x− y|)/4π|x− y|, ω ∈ C \ [0,∞), Imω1/2 > 0. (2.1)

Denote by L(B1, B2) the Banach space of bounded linear operators from a Banach space B1 to
a Banach space B2.

Explicit formula (2.1) implies the properties of R0(ω) which are obtained in [1, 8] (see also
[10, Appendix A]):

i) R0(ω) is analytic function of ω ∈ C \ [0,∞) with the values in L(Hm
0 ,Hm+2

0 ) for any m ∈ R;
ii) The limiting absorption principle holds:

R0(λ± iε) → R0(λ± i0), ε→ 0+, λ > 0 (2.2)

where the convergence holds in L(Hm
σ ,Hm+2

−σ ) with σ > 1/2;
iii) The asymptotics hold for ω ∈ C \ [0,∞),

‖R0(ω)−R0(0)‖L(Hm
σ ,Hm+2

−σ′ ) → 0, ω → 0, σ, σ′ > 1/2, σ + σ′ > 2 (2.3)

‖R(k)
0 (ω)‖L(Hm

σ ,Hm+2

−σ ) = O(ω1/2−k), ω → 0, σ > 1/2 + k, k = 1, 2, ... (2.4)

iv) For m ∈ R, k = 1, 2, ... and σ > k + 1/2 the asymptotics hold

‖R(k)
0 (ω)‖L(Hm

σ ,Hm+l
−σ ) = O(|ω|− 1−l+k

2 ), ω → ∞, ω ∈ C \ [0,∞) (2.5)

where l = −1, 0, 1, 2 for k = 0, and l = −1, 0, 1 for k = 1, 2, ....

Denote by U0(t) the dynamical group of the free Schrödinger equation. For t ∈ R and ψ0 ∈ H0
σ

with σ > 1, the group U0(t) admits the integral representation

U0(t)ψ0 =
1

2πi

∞
∫

0

e−iωt
[

R0(ω + i0)− R0(ω − i0)
]

Ψ0 dω (2.6)

where the integral converges in the sense of distributions of t ∈ R with the values in H0
−σ.

Representation (2.6), properties i)-iii), and bounds (2.5) imply the weighted decay (1.5) for
the solutions to the free Schrödinger equation (see [8]).

3 Perturbed equation

3.1 Limiting absorption principle

Here we extend (2.2) to perturbed resolvent R(ω) = (H − ω)−1, where

H = H0 +W, Wψ = (i∇ ·A+A2 + V )ψ + iA · ∇ψ. (3.1)
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Theorem 3.1. Let condition (1.3) hold with β > 2. Then for λ > 0, the convergence holds

R(λ± iε) → R(λ± i0), ε → 0+ (3.2)

in L(L2
σ, L

2
−σ) with σ > 1/2.

Theorem 3.1 follows from the result of [4] where slightly weaker conditions on potentials are
imposed. For the convenience of readers we give the independent proof in our case. For the
proof we will use the Born splitting

R(ω) = [1 +R0(ω)W ]−1R0(ω), ω ∈ C \ [0,∞) (3.3)

where the operator function [1+R0(ω)W ]−1 is meromorphic in C\[0,∞) by the Gohberg-Bleher
theorem. The key role in the proofs of (3.2) plays the result on the absence of the embedded
eigenvalues in the continuous spectrum which is known due from the paper of Koch and Tataru
[9]. We start with the following lemma

Lemma 3.2. i) Let condition (1.3) hold with some β > 1. Then for λ > 0, the operators
R0(λ± i0)W : L2

−σ → L2
−σ and WR0(λ± i0) : L2

σ → L2
σ are compact for σ ∈ (1/2, β − 1/2).

ii) Let condition (1.3) hold with some β > 2. Then the operators R0(0)W : L2
−σ → L2

−σ and
WR0(0) : L

2
σ → L2

σ are compact for σ ∈ (1/2, β − 1/2).

Proof. i) Choose σ′ ∈ (1/2,min(σ, β − σ)). The operator W : L2
−σ → H−1

σ′ is continuous by
(1.3) since σ + σ′ < β. Further, R0(λ ± i0) : H−1

σ′ → H1
−σ′ is continuous by (2.2) and the

embedding H1
−σ′ → L2

−σ is compact by the Sobolev embedding theorem. Hence, the operators
R0(λ ± i0)W : L2

−σ → L2
−σ are compact. The compactness of WR0(λ± i0) : L2

σ → L2
σ follows

by duality.
ii) Choose sufficienlty small ε > 0 such that

σ′ := β − σ − ε > 1/2, σ′′ := σ − ε > 1/2, σ′ + σ′′ = β − 2ε > 2. (3.4)

The operatorW : L2
−σ → H−1

σ′ is continuous by (1.3) since σ′+σ = β−ε < β, and the operator
R0(0) : H−1

σ′ → H1
−σ′′ is continuous by (2.3). The embedding H1

−σ′′ → L2
−σ is compact by

the Sobolev embedding theorem. Hence, the operator R0(0)W : L2
−σ → L2

−σ is compact. The
compactness of WR0(0) : L

2
σ → L2

σ follows by duality.

Theorem 3.1 will follow from convergence (2.2) and the Born splitting (3.3) if

[1 +R0(λ± iε)W ]−1 → [1 +R0(λ± i0)W ]−1, ε→ +0, λ > 0

in L(L2
−σ, L

2
−σ) with σ > 1/2. The convergence holds if and only if the both limiting operators

1 +R0(λ± i0)W : L2
−σ → L2

−σ are invertible for λ > 0. The operators are invertible according
to the Fredholm theorem by Lemma 3.2 i) and the following lemma.

Lemma 3.3. Let condition (1.3) holds with some β > 2. Then for λ > 0 the equations

[1 +R0(λ± i0)W ]ψ = 0 (3.5)

admit only zero solution in L2
−1/2−0.
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Proof. We adopt general strategy from [1].

Step i) We consider the case λ+ i0 for concreteness. Equality (3.5) implies that

(H − λ)ψ = (H0 − λ)(1 +R0(λ+ i0)W )ψ = 0. (3.6)

We will show that if ψ ∈ L2
−1/2−0 is the solution to (3.5) then ψ ∈ L2, i.e ψ is the eigenfunction

of H corresponding to the positive eigenvalue λ > 0. However, the embedded eigenvalue is
forbidden, and then ψ = 0.

Step ii) From (3.5) it follows that

ψ = R0(λ+ i0)f, where f = −Wψ. (3.7)

Moreover, (3.5) also implies that ψ ∈ H1
−1/2−0. Hence, f ∈ L2

1 by (1.3) with β > 3/2. In the

Fourier transform, equation (3.7) becomes

ψ̂(ξ) =
f̂(ξ)

ξ2 − λ− i0
, ξ ∈ R

3

where f̂ is a function from the Sobolev space H1.

Step iii) Next, we prove that

f̂(ξ)
∣

∣

∣

S√
λ

= 0 (3.8)

where S√
λ := {ξ ∈ R3 : |ξ| =

√
λ}. Note that the trace on the sphere S√

λ exists, and

f̂(ξ)
∣

∣

∣

S√
λ

∈ H1/2(S√
λ). Moreover, in the polar coordinates r = |ξ| ∈ [0,∞), ϕ = ξ/|ξ| ∈ S1, the

map
M : [0,∞) → L2(S1), M(r) = f̂(rϕ), ϕ ∈ S1

is Hölder continuous with the Hölder exponent α ∈ (0, 1/2). This follows from the Sobolev
theorem on the traces ([13, Ch. 1]). Define

ψ̂ε(ξ) =
f̂(ξ)

ξ2 − λ− iε
, ε > 0.

Then both f̂ , ψ̂ε ∈ L2(R3), hence the Parseval identity implies that

(ψε, f) = (ψ̂ε, f̂)

=

∫ |f̂(ξ)|2
ξ2 − λ− iε

dξ −→ iπ

2
√
λ

∫

S√
λ

|f̂(ξ)|2dS(ξ) + lim
δ→0

∫

||ξ|−
√
λ|>δ

|f̂(ξ)|2
ξ2 − λ

dξ, ε→ 0+ (3.9)

by the Sokhotsky-Plemelj formula since the map

M1 : [0,∞) → L1(S1), M1(r) = |f̂(rϕ)|2, ϕ ∈ S1

is the Hölder continuous with the same Hölder exponent α ∈ (0, 1/2). On the other hand,

(ψε, f) = (R0(λ+ iε)f, f) −→ (ψ, f) = −(ψ,Wψ), ε→ 0+ (3.10)
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since R0(λ+ iε)f → ψ in H2
−1/2−0 by (2.2), while f ∈ L2

1. The operator W is selfajoint, hence

the scalar product (ψ,Wψ) is real. Comparing (3.9) and (3.10), we conclude that

∫

S√
λ

|f̂(ξ)|2dS(ξ) = 0

i.e. (3.8) is proved. Relation (3.8) and the Hölder continuity imply that

ψ̂(ξ) =
f̂(ξ)

ξ2 − λ
∈ L1

loc(R
3). (3.11)

Step iv) Finally we prove that
‖ψ̂‖L2 ≤ C‖f̂‖H1. (3.12)

For the proof we take any ε ∈ (0,
√
λ/2), and a cutoff function

ζ(ξ) ∈ C∞
0 (R3), ζ(ξ) =

{

1, ||ξ| −
√
λ| < ε

0, ||ξ| −
√
λ| > 2ε

By (3.11), we have

‖(1− ζ(ξ))ψ̂(ξ)‖H1 = ‖1− ζ(ξ)

ξ2 − λ
f̂(ξ)‖H1 ≤ C‖f̂‖H1 .

Hence, it remains to estimate the norm of the function ζ(ξ)ψ̂(ξ). Choose a finite partition of
unity

∑

ζj(ξ) = 1, ξ ∈ supp ζ , with ζj ∈ C∞
0 (R3 \ 0). We may assume that in the supp ζj, for

every fixed j, there exist the corresponding local coordinates η1, η2, η3 with η1 = ξ2 − λ. Then,
the problem reduces to the estimate

‖ϕ(η)‖L2 ≤ C‖η1ϕ(η)‖H1

taking into account that ϕ(η) ∈ L1(R3) by (3.11). It suffices to prove the bound

‖φ(x)‖L2 ≤ C‖∂1φ(x)‖L2
1

(3.13)

for the function φ(x) := F−1ϕ, knowing that φ(x) → 0 as |x| → ∞ by the Riemann-Lebesgue
theorem. Bound (3.13) follows by the Hardy inequality (see [1])

∫

φ2(x1, x
′)dx1 ≤ 4

∫

|x1|2|∂1φ(x1, x′)|2dx1, a.a. x′ := (x2, x3) ∈ R
2

by integration over x′ ∈ R2. Now (3.12) is proved. Finally, (3.12) can be rewritten as

‖ψ‖L2 ≤ C‖f‖L2
1

that proves Lemma 3.3.

Now the proof of Theorem 3.1 is also completed.
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Corollary 3.4. Under the conditions of Theorem 3.1, convergence (3.2) holds in L(H0
σ,H2

−σ)
with σ > 1/2.

Proof. The operators 1+WR0(λ± i0) : L2
σ → L2

σ are adjoint to 1+R0(λ∓ i0)W : L2
−σ → L2

−σ.
The operators 1 + R0(λ∓ i0)W are invertible by Lemma 3.3, hence 1 +WR0(λ± i0) also are
invertible by the Fredholm theorem. Therefore, the corollary follows by the alternative Born
splitting

R(ω) = R0(ω)[1 +WR0(ω)]
−1, ω ∈ C \ [0,∞) (3.14)

and convergence (2.2).

3.2 Zero point ω = 0

Here we consider R(ω) near ω = 0. We set

M = {ψ ∈ L2
−1/2−0 : ψ +R0(0)Wψ = 0}.

The functions ψ ∈ M∩L2 are the zero eigenfunctions of H since Hψ = H0(1+R0(0)W )ψ = 0
by splitting (3.3). The functions ψ ∈ M \ L2 are called the zero resonances of H .

Our key assumption is (cf. Condition (i) in [14, Theorem 7.2]):

Spectral Condition : M = 0 (3.15)

In the other words, the point ω = 0 is neither eigenvalue nor resonance for the operator H .
Condition (3.15) holds for generic W .

Lemma 3.5. Let condition (1.3) with a β > 2 and Spectral Condition (3.15) hold. Then the
discrete spectral set Σ is finite, and for σ, σ′ > 1/2 with σ + σ′ > 2, the asymptotics hold,

‖R(ω)− R(0)‖L(H0
σ,H2

−σ′)
→ 0, ω → 0, ω ∈ C \ [0,∞) (3.16)

where the operator R(0) : H0
σ → H2

−σ′ is continuous.

Proof. It suffices to consider the case

1/2 < σ, σ′ < β − 1/2, σ + σ′ > 2

since asymptotics (3.16) hold then for larger σ, σ′. Spectral Condition (3.15) implies that the
operators [1+R0(0)W ] : L2

−σ → L2
−σ and [1+WR0(0)] : L

2
σ → L2

σ are invertible by Lemma 3.2
ii) and the Fredholm theorem. Then the operator [1 +WR0(ω)] : L

2
σ → L2

σ also is invertible
and the operator function [1 +WR0(ω)]

−1 with the values in L(L2
σ, L

2
σ) is continuous for small

ω ∈ C \ [0,∞). Therefore, convergence (3.16) holds by (3.14) and (2.3).

Lemma 3.6. Let condition (1.3) with a β > 3 and Spectral Condition (3.15) hold. Then

‖R(ω)‖L(H0
σ,H2

−σ)
= O(1), ω → 0, ω ∈ C \ [0,∞), σ > 1, (3.17)

‖R(k)(ω)‖L(H0
σ,H2

−σ)
= O(|ω|1/2−k), ω→ 0, ω ∈ C \ [0,∞), σ > 1/2 + k, k = 1, 2. (3.18)
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Proof. Bound (3.17) holds by Lemma 3.5. To prove (3.18) with k = 1 we apply the identity

R′ = (1−RW )R′
0(1−WR) = R′

0 −RWR′
0 −R′

0WR +RWR′
0WR. (3.19)

The relation implies (3.18) with k = 1 and σ > 3/2 by (2.4) with k = 1 and (3.17). Namely,
for the first term in the RHS of (3.19) this is obvious. Consider the second term. Choosing
σ′ ∈ (3/2, β − 3/2), we obtain

‖R(ω)WR′
0(ω)ψ‖H2

−σ
≤ C‖WR′

0(ω)ψ‖L2

σ′
≤ C1‖R′

0(ω)ψ‖H1

σ′−β
≤ C2|ω|−1/2‖ψ‖L2

σ
. (3.20)

The remaining terms can be estimated similarly. Hence, (3.18) with k = 1 is proved.

For k = 2 we apply the formula:

R′′ = (1−RW )R′′
0(1−WR)− 2R′WR′

0(1−WR) (3.21)

= R′′
0 − RWR′′

0 − R′′
0WR+RWR′′

0WR− 2R′WR′
0 + 2R′WR′

0WR.

Bound (3.18) with k = 2 and σ > 5/2 for the first term in the RHS of (3.21) follows from (2.4)
with k = 2. The last two terms can be estimated similarly to (3.20) using (3.17) and (3.18)
with k = 1. Consider the remaining terms. Using (3.17) and (2.4) with k = 2, we obtain that
a) for σ′ ∈ (5/2, β − 1/2) the bounds hold

‖RWR′′
0ψ‖H2

−σ
≤ C‖WR′′

0ψ‖L2

−σ′+β
≤ C1‖R′′

0ψ‖H1

−σ′
≤ C2|ω|−3/2‖ψ‖L2

σ
,

‖R′′
0WRψ‖H2

−σ
≤ C|ω|−3/2‖WRψ‖L2

σ′
≤ C1|ω|−3/2‖Rψ‖H1

σ′−β
≤ C2|ω|−3/2‖ψ‖L2

σ

by Lemma 3.5 since −σ′ + β > 1/2 and σ + β − σ′ > 2.
b) for σ′ ∈ (1/2, β − 5/2) the bound holds

‖RWR′′
0WRψ‖H2

−σ
≤ C‖WR′′

0WRψ‖L2

σ′
≤ C1‖R′′

0WRψ‖H1

σ′−β

≤ C2|ω|−3/2‖WRψ‖L2

−σ′+β
≤ C3|ω|−3/2‖Rψ‖H1

−σ′
≤ C4|ω|−3/2‖ψ‖L2

σ

by Lemma 3.5 since β − σ′ > 5/2 and σ + σ′ > 2. Hence, (3.18) with k = 2 is proved.

3.3 High energy decay

Denote by RA(ω) = (HA−ω)−1 the resolvent of the operator HA = [−i∇−A(x)]2. In Appendix
A we will prove the folowing asymprotics of RA(ω) for large ω:

Theorem 3.7. Let Aj(x) ∈ C2(R3) are real functions and for some β > 2 the bound holds

|A(x)|+ |∇A(x)|+ |∇∇A(x)| ≤ C〈x〉−β (3.22)

Then for σ > 1/2 and l = 0; 1 the asymptotics hold

‖RA(ω)‖L(H0
σ;Hl

−σ)
= O(|ω|− 1−l

2 ), |ω| → ∞, ω ∈ C \ [0,∞). (3.23)
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Now we derive the asymptotics of R(ω) and its derivatives for large ω from (3.23).

Theorem 3.8. Let (1.3)with β > 3 and (1.4) with β > 2 hold. Then for k = 0, 1, 2, σ > 1/2+k,
and l = 0, 1, the asymptotics hold

‖R(k)(ω)‖L(H0
σ;Hl

−σ)
= O(|ω|− 1−l+k

2 ), |ω| → ∞, ω ∈ C \ [0,∞). (3.24)

Proof. Step i) For k = 0 asymptotics (3.24) follows from the Born splitting

R(ω) = RA(ω)[1 + V RA(ω)]
−1

and (3.23), since the norm of [1 + V RA(ω)]
−1 : H0

σ → H0
σ is bounded for large ω ∈ C \ [0,∞)

and σ ∈ (1/2, β/2].
Step ii) For k = 1 we use identity (3.19). The identity implies (3.24) with k = 1 and σ > 3/2
by (2.5) with k = 1, and (3.24) with k = 0. Indeed, this is obvious for the first term in the
RHS of (3.19). Let us consider the second term. Choosing σ′ ∈ (3/2, β − 3/2), we obtain for
large ω ∈ C \ [0,∞)

‖RWR′
0ψ‖Hl

−σ
≤ C|ω|− 1−l

2 ‖WR′
0ψ‖H0

σ′
≤ C1|ω|−

1−l
2 ‖R′

0ψ‖H1

σ′−β
≤ C2|ω|−

2−l
2 ‖ψ‖H0

σ
, l = 0; 1.

(3.25)
The remaining terms in the RHS of (3.19) can be estimated similarly. Hence, (3.24) with k = 1
and σ > 3/2 is proved.

Step iii) In the case k = 2 we apply identity (3.21). Asymptotics (3.24) with k = 2 for the first
term in the RHS of (3.21) follows from (2.5) with k = 2. The last two terms can be estimated
similarly to (3.25) using (2.5) with k = 1 and (3.24) with k = 0; 1.

Consider the remaining terms. Using (3.24) with k = 0 and (2.5) with k = 2 and l = 0; 1,
we obtain that
a) for σ′ ∈ (5/2, β − 1/2) the bounds hold

‖RWR′′
0ψ‖Hl

−σ
≤ C|ω|− 1−l

2 ‖WR′′
0ψ‖H0

−σ′+β
≤ C1|ω|−

1−l
2 ‖R′′

0ψ‖H1

−σ′
≤ C2|ω|−

3−l
2 ‖ψ‖H0

σ
,

‖R′′
0WRψ‖Hl

−σ
≤ C|ω|− 3−l

2 ‖WRψ‖H0

σ′
≤ C1|ω|−

3−l
2 ‖Rψ‖H1

σ′−β
≤ C2|ω|−

3−l
2 ‖ψ‖H0

σ
,

b) for σ′ ∈ (1/2, β − 5/2) the bound holds

‖RWR′′
0WRψ‖Hl

−σ
≤ C|ω|− 1−l

2 ‖WR′′
0WRψ‖H0

σ′
≤ C1|ω|−

1−l
2 ‖R′′

0WRψ‖H1

σ′−β

≤ C2|ω|−
3−l
2 ‖WRψ‖H0

−σ′+β
≤ C3|ω|−

3−l
2 ‖Rψ‖H1

−σ′
≤ C4|ω|−

3−l
2 ‖ψ‖H0

σ
.

Hence, (3.24) with k = 2 is proved.

4 Time Decay

We prove time decay (1.5) follow the methods of [8]. Under conditions (1.3), (1.4) and (3.15)
the solution ψ(t) to (1.1) admits the representation

ψ(t) =

N
∑

j=1

e−iωjtPjψ(0) +
1

2πi

∫ ∞

0

e−iωt[R(ω + i0)− R(ω − i0)]ψ(0) dω, t ∈ R (4.1)
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for initial state ψ(0) ∈ L2
σ with σ > 1. The representation follows from the Cauchy residue

theorem, Theorem 3.1, and (3.24) with k = 0.

Definition 4.1. i) Xd :=
∑N

j=1 PjL
2 is the discrete spectral subspace of H spanned by all

eigenfunctions.
ii)Xc := X⊥

d is the orthogonal to Xd subspace of the continuous spectrum of H.

Theorem 4.2. Let conditions (1.3), (1.4) and (3.15) hold. Then

‖ψ(t)‖L2
−σ

≤ C〈t〉−3/2‖ψ(0)‖L2
σ
, t ∈ R (4.2)

for any initial state ψ(0) ∈ Xc ∩ L2
σ with σ > 5/2.

Proof. Since Pjψ(0) = 0, then (4.1) reduces to

ψ(t) =
1

2πi

∫ ∞

0

e−iωt[R(ω + i0)−R(ω − i0)]ψ(0) dω, t ∈ R. (4.3)

To deduce (4.2), introduce the partition of unity 1 = ζl(ω) + ζh(ω), ω ∈ R, where

ζl ∈ C∞
0 (R), ζl(ω) =

{

1, |ω| ≤ ε/2
0, |ω| ≥ ε

with a small ε > 0. Then (4.3) reads

ψ(t) = ψl(t) + ψh(t) =
1

2πi

∫ ∞

0

ζl(ω)e
−iωt[R(ω + i0)−R(ω − i0)]ψ(0) dω

+
1

2πi

∫ ∞

0

ζh(ω)e
−iωt[R(ω + i0)−R(ω − i0)]ψ(0) dω. (4.4)

Integrating twice by parts and using (3.24) with k = 2 we obtain for the “high energy compo-
nent” ψh(t) the decay

‖ψh(t)‖L2
−σ

≤ C〈t〉−2‖ψ(0)‖L2
σ
.

To estimate the “low energy component” ψl(t) we apply the following lemma of Jensen-Kato
[8, Lemma 10.2] to the vector function F (ω) := ζl(ω)[R(ω + i0) − R(ω − i0)]ψ(0) with the
values in the Banach space B = L2

−σ with σ > 5/2:

Lemma 4.3. Let F ∈ C(0, a;B) satisfy

F (0) = F (a) = 0; ‖F ′′(ω)‖B ≤ C|ω|−3/2, ω ∈ (0, a). (4.5)

Then

‖
a

∫

0

e−iωtF (ω)dω‖B = O(t−3/2), t→ ∞. (4.6)

All the conditions of Lemma 4.3 are satisfied due to (3.17)-(3.18). Then

‖ψl(t)‖L2
−σ

≤ C〈t〉−3/2‖ψ(0)‖L2
σ
. (4.7)
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A Proof of Theorem 3.7

Here we extend the Agmon-Jensen-Kato estimates [1, (A.2’)] and [8, (8.1)] to the resolvent
RA(ω). The operator HA for A(x) ∈ C1(R3) is a symmetric operator in the Hilbert space
L2 := L2(R3) with the domain D := C∞

0 (R3). Moreover, HA is nonnegative, hence it admits

the unique selfadjoint extension which is its closure, by the Friedrichs theorem. Denote by H
1/2
A

the nonnegative square root of HA which is also selfadjoint operator in L2, so

‖H1/2
A u‖ = ‖∇Au‖, u ∈ D

where ∇A = ∇− iA, and ‖ · ‖ stands for the norm in L2.

Lemma A.1. Let A(x) ∈ C(R3) and |A(x)| ≤ C〈x〉−β with a β ≥ 1. Then for any σ ∈ R, the
bounds hold

‖∇u‖ ≤ C1‖∇Au‖ ≤ C2‖∇u‖, u ∈ D. (A.1)

Proof. We apply the magnetic version of the Hardy inequality ([2]):

‖u‖L2
−1

≤ 4‖∇Au‖, u ∈ D. (A.2)

Writing ∇u =
(

∇− iA(x)
)

u+ iA(x)u, we obtain by (A.2),

‖∇u‖ ≤ ‖
(

∇− iA(x)
)

u‖+ ‖Au‖ ≤ ‖∇Au‖+ C‖u‖L2
−1

≤ C1‖∇Au‖.

Further,

‖∇Au‖ = ‖
(

∇−iA(x)
)

u‖ ≤ ‖∇u‖+ ‖Au‖ ≤ ‖∇u‖+ C‖u‖L2
−1

≤ C2‖∇u‖

where the last bound follows from (A.2) with A(x) ≡ 0.

We reduce Theorem 3.7 to certain lemmas. The first lemma generalizes Lemma A.2 from
[1].

Lemma A.2. Let the conditions of Theorem 3.7 hold. Then for σ > 1/2, the bound holds

‖(−i∇− A)ψ‖H0
−σ

≤ C(σ)‖(HA − ω)ψ‖H0
σ
, ψ ∈ D, ω ∈ C. (A.3)

Proof. It suffices to estimate each component:

‖(−i∇j − Aj(x))ψ‖H0
−σ

≤ C(σ)‖(HA − ω)ψ‖H0
σ
, j = 1, 2, 3. (A.4)

Consider j = 1 for the concreteness. Applying the gauge transformation ψ(x) 7→ ψ(x)eiΦ(x) with

Φ(x) =

∫

A1(x)dx1, we reduce the estimate to the case A1(x) = 0 and A′
j(x) = Aj(x)−∇jΦ(x)

instead of Aj(x) for j 6= 1. By (3.22), for the real functions A′
j(x) the bound holds

|A′
j(x)|+ |∇A′

j(x)| ≤ C〈x′〉−β, x′ := (x2, x3) ∈ R
2. (A.5)
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Note that this is the only place we need the condition (1.4) on the second derivatives of Aj.
Now (A.4) reduce to bound

∫

〈x1〉−2σ|∇1ψ(x)|2dx ≤ C(σ)

∫

〈x1〉2σ|(−∇2
1 + Λ(x1)− ω)ψ(x)|2dx. (A.6)

where

Λ(x1) =

3
∑

2

[−i∇j −A′
j(x)]

2

is a nonnegative selfadjoint operator in L2(R2). From [6, Theorem 1.3 (e)] it follows that
Hsing(Λ(x1)) = 0. Moreover, Hpp(Λ(x1)) = 0 since eigenvalues λj > 0 are forbidden by the
results of [9], while λj ≤ 0 are absent since the operator is nonnegative definite.

Denote by S the circle {θ ∈ R2 : |θ| = 1} and by X the Hilbert space L2(S). Since
L2(R2) = Hac(Λ(x1)) then there exists a unitary generalized Fourier transform

F (x1) : L
2(R2) → L2([0,∞), dλ,X) (A.7)

such that functions ψ ∈ C∞
0 (R2) and the operator Λ(x1) admit the spectral representations

F (x1) : ψ(x1, ·) 7→ ψ̃(x1, λ) ; F (x1)[Λ(x1)ψ(x1, ·)] = λψ̃(x1, λ), λ ≥ 0. (A.8)

The transform exists by [7, Theorem 4.2] since Hsing(Λ(x1)) = 0 and Hpp(Λ(x1)) = 0.
Now (A.6) is equivalent to bound

∫

〈x1〉−2σ‖∇1ψ̃(x1, λ)‖2X dλdx1 ≤ C(σ)

∫

〈x1〉2σ‖(−∇2
1 + λ− ω)ψ̃(x1, λ)‖2X dλdx1. (A.9)

Finally, (A.9) follows by the Fubini theorem from vector valued version of [1, Lemma A.2] (see
also [15, Lemma 4, p. 442]).

Next lemma generalizes Lemma A.3 from [1].

Lemma A.3. For any s ∈ R, b > 0, and ψ ∈ D, the estimate holds

‖ψ‖Hl
s
≤ C(s, b)|ω|− 1−l

2

(

‖(HA − ω)ψ‖H0
s
+ ‖(−i∇−A)ψ‖H0

s

)

, ω ∈ C, |ω| ≥ b, l = 0, 1.

(A.10)

Proof. Step i) First consider s = 0. By (A.1), in this case (A.10) is equivalent to estimate

‖ψ‖2 + ‖H l/2
A ψ‖2 ≤ C(b)|ω|−(1−l)

(

‖(HA − ω)ψ‖2 + ‖H1/2
A ψ‖2

)

, l = 0, 1. (A.11)

We will deduce (A.11) from bound

(1 + λl/2)2 ≤ C(b)|ω|−(1−l)(|λ− ω|2 + λ), λ ≥ 0, ω ∈ C, |ω| ≥ b, l = 0, 1. (A.12)

In the case l = 1 the bound is trivial, and in the case l = 0 it is evident separately for
|λ− ω| < |ω|/2 and for |λ− ω| > |ω|/2.
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For the selfadjoint operator HA and functions ψ ∈ D the spectral representations of type
(A.8) also hold:

F : ψ 7→ ψ̃(λ), F : HAψ 7→ λψ̃(λ)

Here F : L2(R3) → L2([0,∞), dλ, Y ) is a unitary operator, Y = L2(S), and S is the sphere
{θ ∈ R3 : |θ| = 1}.

Multiplying both sides of (A.12) by ‖ψ̃(λ)‖2Y and integrating in λ, we obtain (A.11).

Step ii) Now consider an arbitrary s ∈ R. For an ε > 0, denote ρε(x) = (1+ |εx|2)1/2. Then
(A.10) is equivalent to the estimate:

∑

|α|≤l

‖ρsε∂αψ‖ ≤ C(s, b)|ω|− 1−l
2

(

‖ρsε(HA − ω)ψ‖+ ‖ρsε(−i∇−A)ψ‖
)

, |ω| ≥ b, (A.13)

since for any fixed ε > 0 the weighted norm with ρε(x) is equivalent to the weigted norm with
ρ1(x) defined in (1.2). We apply (A.11) to ρsε(x)ψ(x) and obtain

∑

|α|≤l

‖∂α[ρsεψ]‖ ≤ C(b)|ω|− 1−l
2

(

‖(HA − ω)[ρsεψ]‖+ ‖(−i∇−A)[ρsεψ]‖
)

, l = 0, 1. (A.14)

To deduce (A.13) from (A.14), we should commute the multiplicators ρε with differential oper-
ators. For example, consider the commutators

∂α(ρsεψ)− ρsε∂
αψ =

∑

0≤γj≤αj , |γ| ≥1

Cα,γ∂
γρsε · ∂α−γψ. (A.15)

The commutators are small and their contributions are negligible for small ε. Namely,

|∇jρ
s
ε(x)| =

∣

∣

s

2
(1 + |εx|2)s/2−12ε2xj

∣

∣ ≤ |s|
2
(1 + |εx|2)s/2−1ε(1 + ε2x2j ) ≤ εCρsε(x)

where C = C(s). Similarly, we have

|∂αρsε(x)| ≤ ε|α|Cρsε(x), x ∈ R
3, 0 ≤ |α| ≤ 2.

Hence, (A.15) implies that

‖∂α(ρsεψ)− ρsε∂
αψ‖ ≤ εC1

∑

|γ|≤|α|−1

‖ρsε∂γψ‖. (A.16)

Therefore,

‖(HA − ω)(ρsεψ)− ρsε(HA − ω)ψ‖ ≤ εC2

∑

|γ|≤1

‖ρsε∂γψ‖, (A.17)

‖(−i∇− A)(ρsεψ)− ρsε(−i∇− A)ψ‖ ≤ εC3‖ρsεψ‖. (A.18)
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Step iii) Now we can prove (A.13). First, we prove it for l = 0. Applying (A.14), we obtain
by (A.17) and (A.18) that

‖ρsεψ‖ ≤ C(b)
1

√

|ω|

(

‖(HA − ω)(ρsεψ)‖+ ‖(−i∇− A)(ρsεψ)‖
)

≤ C(b)
1

√

|ω|

(

‖ρsε(HA − ω)ψ‖+ εC2(‖ρsεψ‖+ ‖ρsε(−i∇− A)ψ‖)

+ ‖ρsε(−i∇−A)ψ‖+ εC1‖ρsεψ‖
)

≤ C(b)
1

√

|ω|

(

‖ρsε(HA − ω)ψ‖+ ‖ρsε(−i∇− A)ψ‖
)

+
1√
ω
εC1(b)‖ρsεψ‖.

Choosing ε > 0 small enough such that εC1(b)/
√

|ω| < 1, we obtain

‖ρsεψ‖ ≤ C2(b)
1

√

|ω|

(

‖ρsε(HA − ω)ψ‖+ ‖ρsε(−i∇−A)ψ‖
)

.

Hence, (A.13) with l = 0 follows.
Finally, we prove (A.13) for l = 1. Applying (A.14), we obtain by (A.16) with |α| = 1 and
(A.17), (A.18), that

∑

|α|≤1

‖ρsε∂αψ‖ ≤
∑

|α|≤1

‖∂α(ρsεψ)‖+ εC1‖ρsεψ‖

≤ C(b)
(

‖(HA − ω)(ρsεψ)‖+ ‖(−i∇− A)(ρsεψ)‖
)

+ εC1‖ρsεψ‖

≤ C(b)
(

‖ρsε(HA − ω)ψ‖+ ‖ρsε(−i∇− A)ψ‖
)

+ εC3(b)
∑

|γ|≤1

‖ρsε∂γψ‖.

Choosing ε > 0 small enough, we obtain

∑

|α|≤1

‖ρsε∂αψ‖ ≤ C4(b)
(

‖ρsε(HA − ω)ψ‖+ ‖ρsε(−i∇−A)ψ‖
)

that implies (A.13) with l = 1. Lemma A.3 is proved.

Proof of Theorem 3.7 Combining (A.10) with s = −σ and (A.3), we obtain for all ψ ∈ D

‖ψ‖Hl
−σ

≤ C(σ, b)|ω|− 1−l
2

(

‖(HA − ω)ψ‖H0
−σ

+ C(σ)‖(HA − ω)ψ‖H0
σ

)

≤ C1(σ, b)|ω|−
1−l
2 ‖(HA − ω)ψ‖H0

σ

and then Theorem 3.7 is proved.
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