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1 Introduction

In this paper, we establish a dispersive long time decay in weighted energy norms for the
solutions to 1D Klein-Gordon equation in a moving frame with the velocity v

U(t) = AW(t) (1.1)

- (5) (s &) e ek

with m > 0, and |v| < 1. For s,0 € R, we denote by H = HZ(R) the weighted Agmon-Sobolev
spaces [I], with the finite norms

1]

Denote L2 = H?. We assume that V(z) is a real function, and

iy = @) (V) 0llamy < 00, (@) = (1+ [af?)?

V()| + |V'(z)] < Clz)?, reR (1.2)

for some 3 > 5. Then the multiplication by V(z) is bounded operator H! — H! L for any
s € R.

We consider the “nonsingular case” in the terminology of [9], when the truncated resolvent
of the operator —A + 72V (z), v = 1/v/1 —v? is bounded at the edge point ( = 0 of the
continuous spectrum. In other words,

the point ¢ = 0 is neither eigenvalue nor resonance for the operator — A +~*V(z) (1.3)

By definition (see [9, page 18]) the point ¢ = 0 is the resonance if there exists a nonzero solution
(NS L2_1/2_0 \ L? to the equation (—A + 2V (z))y = 0.

Definition 1.1. F, is the complex Hilbert space H! & H? of vector-functions W = (1, w) with
the norm
197, = ¥l + 7y < oo

Our main result is the following long time decay of the solutions to (ILI]): in the nonsingular
case, the asymptotics hold

1P ()7, = O(t] ), t = o0 (1.4)

for initial data Wy = U(0) € F, with o > 5/2, where P, is a Riesz projection onto the continuous
spectrum of the operator A. The decay is desirable for the study of asymptotic stability and
scattering for the solutions to nonlinear hyperbolic equations.

Let us comment on previous results in this direction. The decay of type (.4 in weighted
norms has been established first by Jensen and Kato [6] for the Schrédinger equation in the
dimension n = 3. The result has been extended to all other dimensions by Jensen and Nenciu
[4, 5] 7], and to more general PDEs of the Schrodinger type by Murata [9].

The Jensen-Kato-Murata approach is not applicable directly to the relativistic equations.
The difference reflects distinct character of wave propagation in the relativistic and nonrela-
tivistic equations (see the discussion in [8, Introduction]).
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In [§] the decay of type (L4) in the weighted energy norms has been proved for the 1D Klein-
Gordon equation with v = 0. The approach develops the Jensen-Kato-Murata techniques to
make it applicable to the relativistic equations. Namely, we apply the finite Born series and
convolution. Here we extend the result [§] to the case v # 0.

Our paper is organized as follows. In Section 2 we obtain the time decay for the solution to
the free modified Klein-Gordon equation and state the spectral properties of the free resolvent..
In Section Bl we obtain spectral properties of the perturbed resolvent and prove the decay (I.4).

2 Free equation
Here we consider the free equation with zero potential V(x) = 0:
(t) = AgU(t) (2.1)

where

2.1 Spectral properties

For t > 0 and ¥y = ¥(0) € Fo, the solution ¥(¢) to (21 admits the spectral Fourier-Laplace
representation

1 )
O()W(t) = - IR (iw 4 €)¥g dw, tER (2.2)
s
R
with any € > 0, where 6(t) is the Heaviside function, Ro(\) = (Ag — A)~! for ReA > 0

is the resolvent of the operator Ay. The representation follows from the stationary equation
AUT(A) = AgUt(A) + U, for the Fourier-Laplace transform Wt (\) := / O(t)e MW (t)dt, Re X >

0. The solution ¥(t) is continuous bounded function of ¢ € R with Fhe values in Fy by the
energy conservation for the equation (ZI)). Hence, U+(\) = —Ro(\) ¥, is analytic function
in ReA > 0 with the values in Fy, and bounded for Re\ > e. Therefore, the integral (2.2])
converges in the sense of distributions of ¢ € R with the values in Fy. Similarly to (2.2)),

1

" or

O(—t)¥(t) /e(iw_a)tRo(z'w — )Wy dw, teR (2.3)

R

Let us calculate the resolvent Ry(A). We have

B Vo) o1 -
RQ()\):(AQ—)\)1:<2_m2 ’Uv—>\) , ReA >0

In the Fourier space we obtain

—(ivk + A) 1 o o o o1 [ —(ivk+A) —1
(—(k2+m2) —(wk+A)) = |Gk + A7+ &+ ] ( k2 + m? —(wk+A))
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Taking the inverse Fourier transform, we obtain the resolvent

AV | (VV — A)Ro(N) —Ro(N\)
Ro(A) = ( —A+m? oV — A ) (V) = < 1— (V= N2Ry(A) (vV = N Ry(N) ) (2:4)

where Ry(\) is the operator with the integral kernel

1
-1
RO()\a x7y) - Fk—)x—yk2 +m?2 + (7/0]{; + )\)27

z,y € R (2.5)

which is well defined since the denominator in (Z5) does not vanish for ReA > 0. Denote
Ho=—(1—vH)A+m? = —,Y%A + m?. Since

(Ho + A2 = 20AV)(x) = e (Hoy + 72 A2)e” ) () (2.6)

we have

Ro(\) = (Ho + A2 — 20AV) ! = e "2 Ry (72m? + 42 A%)er W (2.7)

where

6—x/Z|2|]

Bo(Q) =(-2+0)™ = 0p|

is the Schrodinger resolvent. Finally,
e (V222 [yl +oX(z—)) im
N
Denote T := (—ico, —j1, ) U (i, ico). We choose Rey/A2 — 12 > 0 for A € C\ T. Then
0 < Re(v)) < Rey/A2 — 2, AeC\T (2.9)

Denote by £(Bj1, By) the Banach space of bounded linear operators from a Banach space B; to
a Banach space B,. Formulas (2.8)) implies the following properties of Ry(\):

RO()\a xz, y) =

(2.8)

Lemma 2.1. (¢f. [1,[9]) B
i) The operator Ry(\) is analytic function of X € C\ T with the values in L(HY, H}).
i1) For X € ', the convergence (limiting absorption principle) holds

in L(H?, HY ) with o > 1/2, uniformly in |\ > |u| +r for any r > 0.
iii) The asymptotics hold

1
N
in L(H?, H! ) with o > 5/2, where

Ro(\)=Bf — + BE+O(|v|"?), v=AFpu—0, AeC\T (2.11)

eFrPvn(z—y)
2121
B A 2eFr vn(z—y) |z — |
2

B = Op[ ]GE(HS,HEU), o >1/2 (2.12)

B = Op[ }eﬁ(H}},HL,), o> 3/2
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iv) The asymptotics (2Z11]) can be differentiated two times:

Ry(\) = Boiﬁ+o(|u|—1/2), RN =0(jv|™?), v=AFu—0, AeC\T (2.13)

in L(H?, H ) with 0 > 5/2.
v) ForseR, 1 =-1,0,1,2, k=0,1,2,... and 0 > 1/2 + k the decay holds

RS M gas ey = OUNTO™), |A[ =00, AeC\T (2.14)

Proof. We prove the properties ii) and v) since other properties follow directly from (2.8]).
Step i) First, we prove the convergence (ZI0). The norm of the operator Ro(\) : H? — H! is
equivalent to the norm of the operator

(@) "Ro(\){y) ™"+ L* — H'
The norm of the latter operator does not exceed the sum in k, k = 0, 1, of the norms of operators
0p[{a) " Ro(A, 2, y)(y) ] : L* — L? (2.15)
According (2.8) and (2.9]),
|0FRo(\, z,y)| < C(N\), k=0,1, z,yecR, AeC\T

Hence for o > 1/2 we have
> / 104 [(2)~ Ro(A, 2, ) (y) =] Pdady < C(N) / (2)2 (y) > dedy < C1(\)

The estimate implies that Hilbert-Schmidt norms of operators (2.I7]) is finite. For A € I' and
x,y € R, there exists the pointwise limit

Ry(Ate,xz,y) > Ry(Ax0,z,y), & — 0+

Therefore,
> J104160) " Bolr - 2, ) )7 = (a) " Rulh £ €. 9) ) Py =0, £ = 0+

by the Lebesgue dominated convergence theorem, hence (2.10]) is proved.

Step i1) Now we prove the decay (ZI4)). It suffices to verify the case s = 0 since Ry(\) commutes
with the operators (V)® with arbitrary s € R. For k = 0 and [ = 0, 1, 2 the decay (2.14) follows
obviously from (2.8)). In the case k = 0 and [ = —1 the decay follows from the identity

1 (1+ ARy(N)
m? + A2 ~?2
Namely, using (2.14)) with { = 0 and [ = 1, we obtain

IV RNl g1y = OUAT, ARl g,y = O(1)

hence (2.16]) implies

Ro(\) = + 20AV Ry(N)) (2.16)

1R (M| £aag. -1y = OAI™?)
In the case k # 0 the bounds (2.14)) follow 81m11ar1y by differentiating (2.5)). 0O
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Formula (2.4]) and Lemma 2.1 imply

Corollary 2.2. i) The resolvent Ro()\) is analytic function of X € C\ T with the values in
L(Fo, Fo)-
ii) For A € ', the convergence (limiting absorption principle) holds

Ro(A£¢) = Ro(A£0), & — 0+ (2.17)
in L(Fy, F_y) with o > 1/2.
i11) The asymptotics hold
Ro(A) = \/1_—|—Bi+(9(|u|1/2), v=AFu—0, Ae€C\T (2.18)
in L(Fy, F_,) with o > 5/2, where
BE = B* ( fg%’; :lelm ) € L(F, F.,) with o> 1/2 (2.19)

and B € L(F,, F_,) with o > 3/2.
iv) The asymptotics (2.18]) can be differentiated two times:

Ro(A) = Bﬁﬁ O(v[7), RGN = O(W[™), v=AFu—0, AeC\T (220
in L(Fy, F_y) with o > 5/2.
v) Fork=0,1,2,... and 0 > 1/2 + k the asymptotics hold
IR Nllews, 7y = O1), |\l =00, A€C\T (2.21)
Denote by G,(t) the dynamical group of equation (2.1).

Corollary 2.3. Fort € R and Vg € F, with o > 1/2, the group G,(t) admits the integral
representation

g ( )\II(] L /e)‘t [Ro()\ - 0) - R(]()\ + O) \Ifo dA (222)

27rz
r

where the integral converges in the sense of distributions of t € R with the values in F_,.
Proof. Summing up the representations (2.2]) and (2.3)), and sending £ — 0+, we obtain (2.22))
by the Cauchy theorem and Corollary 2.2l O

2.2 Time decay

For the integral kernel of the operator G,(t) we have

Go(z —y,t)=Go(x —y —vt,t), z,yeR, teR (2.23)
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Here

Go(z,1) = ( gzgzg gzgzg ) - Golzt) = 30— D I(mVE =), z=a—y (220

where Jj is the Bessel function. The relation (Z23) implies the Huygen’s principle for the group
Gu(1), i.e.
gv(z_yat)zoa |l’—y—1}t|>t

Also, the relation (Z23) implies the energy conservation for the group G,(t). Namely, for
U(t) = (¢¥(-,t),m(-,t)) = Gu(t) ¥ we have
/[|7T(x,t) +v - Vo(z, t)|* + |[V(z, t))? + m?|¢(z, t)|*]dz = const, teR

In particular, this gives that
()7 < CllYlr, teR
We represent G,(z,t) as
Gu(2,t) = Gp(2,t) + G, (2,1), z€R, t>0

where
] —% sin[m(% +yvz) — 7 cos[m(% + yvz) — 5]
G(2,1) == NeTg ) (2.25)
mat /7y —T—Q cos[m(% + yvz) — %] —% Sin[m(% +yvz) — %]

The entries of the matrix G,(z,t) admit the bounds

G/ (1) < C(v)/VE, i,j=12 z€R, t>1 (2.26)
The group G, (t) slow decays, like ~1/2. We will show that Gy (t) = Op|[Gy(x — y, )] is only term
responsible for the slow decay. More exactly, in the next section we will prove the following
basic proposition
Proposition 2.4. The decay holds

G (t) = OplG,(x —y,1)] = O(t™?), 1 = o0 (2.27)

in the norm of L(F,, F_o) with o > 5/2.

The following key observation is that (2.25]) contains just two frequencies +p which are the
edge points of the continuous spectrum. This suggests that the term G(t) with “bad decay”
t=1/2 should not contribute to the high energy component of the group G,(t) and the high
energy component of the group G,(t) decays like t=3/2,

More precisely, let us introduce the low energy and high energy components of G, (t):

Gi(t) = % / M) [RO(A —0) = Ro(A+ 0)} ) (2.28)
Gu(t) = % / (i) [RO(A —0) = Ro(A+ 0)} d\ (2.29)

where [(w) € C§°(R) is an even function, {(w) = 0 if |w| > |p| 4+ 2¢, and l(w) = 1 if |w| < |p|+¢
with an € > 0, and h(w) =1 — l(w).
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Theorem 2.5. In L(F,, F_,) with 0 > 5/2 the decay holds
Gu(t) = O(t™3?), t— oo (2.30)

Proof. We deduce asymptotics (2.30) from Proposition 2.4
Step 1) Let Wy € F,. Denote

() = 0()Gu(t)To, W (t) = 0(1)G(1) Vo, Ty (1) = O(1)Gn(t)Wo, ¥, (1) = O(1)G, (1) Vo
Then
1

Uh(t) = —5- e h(w)Ro(iw + 0)¥odw
m
R
= 5| (W)U (iw)dw = %/e h(w) [\Ifb (iw) + ¥ (iw)| dw
R R
1 . ~ 1 . -
= Uft)+ —/eZ“th(w)lIf;r(z'w)dw — —/e“'fl(w)\lfj(z'w)dw (2.31)
2w 2m
R
where U+(\) = [ e MU+ (¢)dt and so on. By (2.27)
0
10 @)z, = OF*?), t— o0 (2.32)

Step i) Let us consider the second summand in the last line of (2.31)). By (2.28) the vector
function W} (iw) is a smooth function for |w| > |u| + ¢, and 5V} (iw) = O(|w|~Y27F), k =
0,1,2..., w — o00. Hence partial integration implies that

| / e“%(w)@j(z’w)dw“Fc —O(tN), YNeN, t— o (2.33)

Step iii) Finally, let us consider the third summand in the last line of (2.31)). Introducing the
function L(t) such that L(A\) = [(i\), we obtain

1

. / (W) T (iw)dw = [Lx UH](t) = O(F2), ¢ = o0 (2.34)

R

in the norm of F_,, since L(t) = O(t™N), t — oo for any N € N, and || (¢)||z ., = Ot 3/?)
by (2.27). Finally, (Z31)- (Z.34) imply (2.30). O

2.3 Proof of Proposition 2.4

Let us fix an arbitrary € € (|v|,1). Denote e = ¢ — |v|. For any ¢ > 1 we split the initial
function ¥y € F, in two terms, Wo = Wg, + W5, ¥4, = (Vo4 m04), Yor = (Y54 70,), such that

15,7 + 1967 < CllYollz,, t>1 (2.35)
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t t
Vo, (x) =0 for |z]> %, and Vg, (z) =0 for [z]< % (2.36)
We estimate G, (t)¥g, and G, (t)¥g, separately.
Step i) First we consider G.(t)¥5, = G,(t)¥5, — Gy(t)¥g,. Using energy conservation and

properties (Z35])- (2306) we obtain

1G. ()Gl < 1Gu(O¥G M7 < OGNz < Clet7IVG,ll7 < Cule)t™ | Woll7,, t>1
(2.37)
since o > 5/2. Further, (226]) and the Cauchy inequality imply

@@omawl < S| [ @] < S ( [ 1”)0@)1/2(7%)1/2

e1t/4
C(e)
Vit

Hence ||g§2(t)7rg,t||H90 < C(e)t™2||m || mo. The functions Gi*(t)mg, and Gi'(t)vf,, i = 1,2 can
be estimated similarly. Therefore,

< =t Mg e < Ot Img g, ¢ 21 (2.38)

G ()5 Nl 5, < CE)t 2 Wol|7,, t>1 (2.39)
and - imply that
Yy
169G 17, < Clet2([Wollz,, t>1 (2.40)

Step ii) Denote by ¢ the operator of multiplication by the function ((|z|/t), where { = ((s) €
CP(R), ((s) =1 for |s| < e1/4, ((s) =0 for |s| > €1/2. Obviously, for any k, we have

05¢(l2l/O)] < Cle) <00, 121
Since 1 — ((|z|/t) = 0 for |z| < e1t/4, then by the energy conservation and (2.35]), we obtain

11 = Q)G ¥l 7, < Cle)t NGt W0l 7 < CrlE)t || Wl < Cale)t™ (o]l t2
4

1
(2.41)
Further, (220) and the Cauchy inequality imply, similarly (238]), that

/ C / C /
(G 0m) ) < 2] [ mufe)ds] < il

Hence, we obtain

/ C [ dy e
10 =GOl < bl (| W> < C() 2l lmg

e1t/4

The functions (1—¢)G}?(t)mg, and (1— )Gy (t)ig,, @ = 1,2 can be estimated similarly. Hence,

11 = QGO ol < CEt | ollz, t=1 (2.42)
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and (2.41)) - (2.42) imply
11 = Q)G (Vo7 < Cle)t 21 Wollr,, t21 (2.43)

Step iii) Finally, let us estimate (G, (t)¥g ;. Let x; be the characteristic function of the ball [z| <
e1t/2. We will use the same notation for the operator of multiplication by this characteristic
function. By (2.30), we have

€G- () W5, = €G- ()Xt oy (2.44)

The matrix kernel of the operator (G, (t)y; is equal to

Gr(x —y,t) = ((|z]/1)Gr(x =y, )xa(y)

Well known asymptotics of the Bessel function [10] imply the following lemma, which we prove
in Appendix.

Lemma 2.6. For any ¢ € (|v|,1) the bounds hold
105G, (2,8)| < C(e)(1+ 2732 2| < (e—|u)t, t>1, k=0,1 (2.45)

Since ((|z|/t) = 0 for || > 1t/2 and x:(y) = 0 for |y| > e1t/2 then G/ (x — y,t) = 0 for
|z — y| > et = (¢ — |v|)t. Hence, ([2:45) imply that

105G (z —y, )| S Ce)(1 + (x —y)t*2%, k=01, t>1 (2.46)
The norm of the operator (G,.(t)x; : F, — F_, is equivalent to the norm of the operator
(@)=7CG (O)xe(y){y) ™" = Fo = Fo
The norm of the later operator does not exceed the sum in k, k = 0, 1 of the norms of operators
0p[{2) "¢ (O xe(y)(y) 7] : L*(R) @ L*(R) — L*(R) & L*(R) (2.47)

The bounds (2.40) imply that the Hilbert-Schmidt norms of operators (Z47) do not exceed
C(e)t™*/? since o > 5/2. Hence, (Z.35) and (Z44)) imply that

166 ()Wl < CE*|Wh,ll5 < Cre)t™|Wol|7,, t21 (2.48)
Finally, (243) and (2.48)) imply
1G- ()Wl < CEt 2|1 Woll5,, t21

Proposition [2.4] is proved.
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3 Perturbed equation

3.1 Perturbed resolvent

Now we consider the resolvent of the perturbed equation. We use the formula

RO = (1+ReWV) " Ro(N), V= ( o g) (3.1)
By (24]) we have
1+ RNV 0\ " (1+ Ro(N)V)~! 0
(1+Ro(N)V) ™! = _
( ~OV-NRWV 1 ) (V=X (1=(1+ Re()V) ) 1

Let us denote
H=—1-0vHA+m*+V, R\ =(H+IN-20\V)" =1+ R(\V) ' Ro(\)
Substituting (8.2) into ([B.I) we obtain
(14 Ro(M)V)~ 0 ( (VY — A)Ro(\) —Ro(N) )
(

R(N) =

(0V — \) (1 1+ RO(A)V)‘1> 1 A+ m2)Ro(N) (vV — M) Ro(N)

RO 0V = \) “R(\)
} ( 1= (0¥ = VROV = A) (¥ = MRV ) &
Similarly ([28)-[ZT), we obtain
(H + A% = 20AV )ih(z) = e 7N (H 4+ 42A2) e Nop(z) (3.4)
R(\) = e "2 R(y?m? 4 41 A%)er (3.5)

where R(¢) = (—A 4 ¢ + V~?)~! is the resolvent of the Schrédinger operator —A + VA2,

3.2 Spectral properties

To prove the long time decay for the perturbed equation, we first establish the spectral prop-
erties of the generator.

3.2.1 Limiting absorption principle

Proposition 3.1. Let the potential V' satisfy (L2]). Then
i)R(X) is meromorphic function of X € C\ T with the values in L(HY, H});
it) For A € I, the convergence holds

RA£e) = ROA£0), — 0+ (3.6)

in L(H?, H! ) with o > 1/2, uniformly in |\ > |u| + 7 for any r > 0.
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Proof. Step i) The statement i) follows from Lemma 2.1}), the Born splitting
R(A) = Ro(\)(1+ VRo(N) ™ (3.7)

and the Gohberg-Bleher theorem [2 [3] since V Ry()\) is a compact operator in L? for A € C\T.
Step ii) The convergence (B3.6]) follow from (2.10) by the Born splitting (B.7) if

1+ VRA\Ee)] ™ =1+ VRA£0)]™, =40, XeT

in L(H?; H?). This convergence holds if and only if both limit operators 1 + V Ry(A + 0) are
invertible in H? for A € T'. The operators are invertible according to the reversibility of the
operators 1 + 2V Ro(¢ £140) in HY for ¢ < 0 (see [I, Theorem 3.3 and Lemma 4.2]) and the
relations

14+ VRy(A£0) = e (1 4+ 2V Ry(v*m? + 7 (A £i0)?)) 2"
which follows from (2.7]). O
Formula (3.3)) and Proposition B.1] imply

Corollary 3.2. Let the conditions (L2]) holds. Then
i) R(X) is meromorphic function of A € C\ I' with the values in L(Fo, Fo);
it) For A € I, the convergence holds

R(Ate) > R(AL0), &—0+ (3.8)
in L(Fy, F_y) with o > 1/2.

3.2.2 High energy decay

Lemma 3.3. Fork=0,1,2,s=0,1 and | = —1,0,1 with s +1 € {0, 1} the asymptotics hold
IB® £ 0l grp oty = QAU Al =00, A €T (3.9)

with o > 1/2+ k.

Proof. The decay follows from formula (33) and the known decay of Schridinger resolvent R(()
(see [1L [6 9 [§]). O

Corollary 3.4. For k=0,1,2 and 0 > 1/2 + k the asymptotics hold
RO £ 0)ler,ry = OL), N =00, A€l (3.10)
The resolvents R(A) and Ry(A) are related by the Born perturbation series
R(A) = Ro(A) = Ro(AM)VRo(A) + Ro(A)VRo(A)VR(A), AeC\[I'U] (3.11)

where ¥ is the set of eigenvalues of the operator 4. An important role in (B.I1]) plays the
product W(A) := VRo(A\)V. Now we obtain the asymptotics of W(A) for large .

Lemma 3.5. Let k = 0,1,2, and the potential V' satisfy (L2) with f > 1/2 + k + o where
o > 0. Then the asymptotics hold

WO ooz = OA), N =00, A€ C\T (312)
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Proof. Asymptotics (8.12]) follow from the algebraic structure of the matrix

0 0
B\ — PRE ()Y —
WH ) = VRP W)Y <—Vng>(A)v o)

since (ZI4) with s =1 and [ = —1 implies that

VROV Fllag < CIR OV Fllge, = OV £l = OUA) fll,
since f —o > 1/2 + k. 0O

3.2.3 Low energy expansions

Proposition 3.6. The asymptotics hold

R(N\) = BE + O(v'/?)
R'(\) = O(v=1/2) vi=AFp—0 XeC\TI (3.13)
R"(\) = O(v=3/?)

in the norm L(F,, F_,) with o >5/2, where BX € L(F,,F_,) does not depend on \.

First we prove the boundedness of the resolvent near the points 4.

Lemma 3.7. Let the conditions (L2) and (L3)) hold. Then the families {R(£u+e¢) : Tu+e €
C\ T, |e| < 0} are bounded in the operator norm of L(Fy, F—,) for any o > 3/2 and sufficiently
small 0.

Proof. Let us consider the equation for eigenfunctions of operator A with eigenvalues A = +pu:

(s ) (5)=2e(2) w=(7)en

From the first equation we have m = —(vV F p). Then the second equation becomes
) 1 )
(H + p* F 20uV ) = qu””mx(—?A + V)eFvmey), = (3.14)
Hence, the condition (L3) implies that ¥ = 0. Similarly, (3]) implies that the equation

AV = £,V has no nonzero solutions ¥ € F_;/5_¢. Then the required boundedness of the
resolvent near the points + follows similarly to [9, Theorem 7.2 |.

O

This lemma implies that the operators (1+Ro(A)V)™' =1—R(\)V and (1+VRo(N))™' =
1—VR(A) are bounded in £(F_,,F_,) and in L(F,, F,) respectively for [\Fu| < §, A € C\T.
Now we prove more detailed asymptotics

Lemma 3.8. The asymptotics hold
(HRoAV) " BE = O(VP),  BE(IHVR(N) = O(#), v =AFu—0, AeC\[ (3.15)

in L(Fy, F_y) with o > 3/2.
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Proof. The asymptotics (ZI8)) implies

R(\) = (1+Ro(WV) " Ro(A) = (1+Ro(W)V) " (B5 7 o)
v=AFu—0, e C\I

R() = Ro(W)(L+ VRo(N) ™" = (B = +O(1)) (1 + VRa(M)
Hence, the boundedness R()), (1 + Ro(A)V)™! and (1 + VRo(N))™! at the points A = +4 in
corresponding norms imply the asymptotics (B.15]). O
Corollary 3.9. i) The asymptotics hold

(1 4+ RoMNV) T "™ || =ORWV), v=AFu—0, AeC\T, ¢>3/2 (3.16)
i) For any f € F, with o > 3/2

/ei”“’m[(l +VRoN) M fl(x)de = O(Vv), v=AFu—0, Ae€C\T (3.17)
Proof of Proposition B.13l Taking into account the identities
R = (1+RV) '"RHy(1+VRo)™, R’ = |(1+ReV) 'Rl —2R'VR,|(1 +VRy) ™"

we obtain from (2.20) and (3.16)-(3.17) the asymptotics (8.13)) for the derivatives. The asymp-
totics (BI3) for R(A) follows by integration of asymptotics for R'(A). Proposition B.I3 is
proved.

Corollary 3.10. Let the conditions (L.2]) and (L3)) hold. Then the set ¥ of eigenvalues of the
operator A is finite, i.e. X ={);, j=1,..,N}.

3.3 Time decay

Our main result is
Theorem 3.11. Let conditions ([.2]) and (L.3]) hold. Then
AN NP er ) = O(E?),  t— £oo (3.18)
w; €D
with o > 5/2, where P; are the Riesz projections onto the corresponding eigenspaces.
Proof. Corollaries 3.2 and B:4] and Proposition 3.6 imply similarly to (2:22)), that

— ) NP, = —/ M R(A—0) — R+ 0)] Wy d\ = Uy(t) + W,(2)
AjET
1
where PV, := — R(A\)Wod\ with a small § > 0, and low and high energy components

270 Sy |=5
are defined by

U (t) = % / 1(iN)e [R(A —0)—R(\+ 0)} Ty dA (3.19)
U (t) = 2% / h(iX)e [R()\ —0)—R(\+ o)} W, dA (3.20)

where [(i\) and h(i)) are defined in Section We analyze U,(t) and ¥, (t) separately.
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3.3.1 Low energy component

We prove the desired decay of W;(t) using a special case of Lemma 10.2 from [6]. We consider
only the integral (3.19) over (u, pu + 2ie). The integral over (—u — 2ie, —p) is dealt with in the
same way. Denote by B a Banach space with the norm || - || .

Lemma 3.12. Let F € C([a,b], B), satisfy
F(a)=F() =0, [F'(w)l=0(w-al??), w—a

Then
b

/e‘it“’F(w)dw = O(t™3?), t— oo

Due to (3.13), we can apply Lemma with w = =i\, F = [(w)(R(iw — 0) — R(iw + 0)),
B =L(F,,F-), a=|ul, b=|u|+ 2¢ and o > 5/2, to get

1@z, < CA+ ) Yollz, teR, o>5/2

3.3.2 High energy component
Let us substitute the series (8.11) into the spectral representation ([3.20) for Wy (t):

Uy (t) = % / (i) [Ro(A = 0) = Ro(A+0)| ¥ dA
+ QLm / eMh (i) :R()O\ —0)VRo(A —0) — Ro(A + 0)VRo(A + O)} Wy dA

;1 / Mh(iN) [ReVROVR(A — 0) — ReVRoVR(A + 0)} Wy dX
I

2mi
= Upi(t) + Wna(t) + Wps(t), teR

We analyze each term V., k = 1,2, 3 separately.
Step 1) The first term Wy, (t) = G (t) ¥y by ([2.29). Hence, Theorem 2.5 implies that

U ()7, <CA+[t)?|Vollr, teR, o>5/2 (3.21)

Step i) Now we consider the second term Wy (t). Denote hy(w) = y/h(w) (we can assume that
h(w) >0 and hy € CP(R)). We set

1
(I)hl = % / e’\thl (Z)\) [Ro()\ - 0) - R(]()\ + O):| \Ifo dA
T
It is obvious that for @5, the inequality (B.21I]) also holds. Namely,

1P ®)ll7, < CA+I)2Vll7, teR, o>5/2

Further, the second term Wj,(t) can be written as a convolution.
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Lemma 3.13. (¢f. [8, Lemma 3.11]) The convolution representation holds
Wpo(t /ghl (t—7)VPpi(r) dr, teR (3.22)

where the integral converges in F_, with o > 5/2.

Applying Theorem with A instead of h to the integrand in (3.22]), we obtain that

ClVeum (s, _ Cllem(7)ll7,_, _ Y| %,

— P <
N (R | i e (A e E R e

where ¢’ € (5/2, 8 — 5/2). Therefore, integrating here in 7, we obtain by ([3.22)) that
1Wna()lr, < COL+[) 2|l tER, o>5/2

Step i) Let us rewrite the last term W,3(¢) as

1
Ups(t) = — / MhENN (V)T d,
211
T

where N'(A) := M(A = 0) = M(A+0) for A € T, and
M+ 0) = Ro(A + 0)VRo(A £ 0)VR(A £ 0) = Ro(A+£ 0)WA+0)RA+0), AeTl

The asymptotics (221, (310) and BI) for R (A +0), R® (A £ 0) and WH (X £ 0) imply
Lemma 3.14. (cf.[8, Lemma 3.12]) For k = 0,1,2 the asymptotics hold

IMBPNL0)||zm 70 = O(N), [N =00, XET, o>1/2+k
Finally, we prove the decay of W,3(¢). By Lemma 314l
(RN)" € LY((—ico, —p — ie) U (p + ig,i00); L(Fy, F-g))
with o > 5/2. Hence, two times partial integration implies that
1)l 7, < CA+[H) [ Wollz, tER
This completes the proof of Theorem B.1T1 O

Corollary 3.15. The asymptotics (B3.18) imply (I4]) with the projection

7Dc::[_,73d7 Pd:ZPj

ijE
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A Proof of Lemma
Formulas (2.23))- (2.24) imply

Qv(z, t) = gb('z?t) + gr(z>t)

where
_mt sin(m+/t? — (z —vt)?2 = %) cos(my/t? — (z —vt)? = 7)
5 —|z—v V(2= (2 —vt)?)? /12 — (z — vt)?
Qb(zat):w
mr _m2t2 cos(my/t? — (z —vt)* = 7)  misin(m/t? — (2 —vt)? — )
V(= (e — ot V(E =z = v

For € € (Jv],1) and |z| < (¢ — |v|)t we have |z — vt| < et. Hence
065G, (2,0)] < Ce)t™2, |2 < (e = |ol)t, k=01

by known asymptotics of the Bessel function (see [10], p.195). It remains to prove the bounds
of type (Z48)) for the difference Q(z,t) = Gy(z,t) — Gy(2,t). Let us consider the entry Q'?(¢, 2):

1 [cos(m\/t2 —(z—wt)2=1%) B cos(m(% +yvz) — %)}
V2mm V2 — (z — vt)? t/y

For |z] < (e — |v|)t we have

Q(t,2) =

1 1
T Vi

|22 — 2utz| < C(e)lz|

V== R (V= (= + i) (VE— v +/7) Wi

Further,

’ cos (m t2—(z—vt)?2— %) —cos (%(t—i—vzvz) - %)’ < 2‘ sin (%( t2—(z—vt)?— ! +Z2vz>
o il ) 22(1 4 7*0?) Cle)2?
SC‘\/t (z—vt)2—(t+ 7~ vz)/v‘ §C| oy pr S PR oY < ;
since v2|v||z| < (1 — |v|)t/(1 —v?) <t/(1+ |v]) < t. Hence,
QU(t,2)] < Cle)(1+2°)t7%2, |2] < (e — |u])t (A.23)

Differentiating Q'%(¢, z), we obtain for |z| < (e — |v|)t

120y 5y Z Ut cos(my/t? — (z —vt)? = %) m zsin(my/t* = (z —vt)* — 7)
D e aE o \/; N GEICETODE

N ﬁvt[—sin(m\/t2 —(z—wt)2=1%) N sin(m(% +vz) — %)}
P =) )
Hence, by the arguments above,
0.Q(t,2)] < Cle)(L+22) 2, |2 < (e —|o))t (A.24)

Other entries Q¥ (t, z) also admit the estimates of type (A.23) and (A.24). Hence, the lemma
follows since G,.(t) = G,(t) + Q(t, 2).
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