
ar
X

iv
:1

30
8.

04
85

v3
  [

m
at

h.
A

P
]  

14
 O

ct
 2

01
3

On eigenfunction expansion of solutions

to the Hamilton equations

A. Komech1

Faculty of Mathematics of Vienna University
and Institute for Information Transmission Problems RAS

e-mail: alexander.komech@univie.ac.at

E. Kopylova2

Faculty of Mathematics of Vienna University
and Institute for Information Transmission Problems RAS

e-mail: elena.kopylova@univie.ac.at

Abstract

We establish a spectral representation for solutions to linear Hamilton equations with posi-
tive definite energy in a Hilbert space. Our approach is a special version of M. Krein’s spectral
theory of J-selfadjoint operators in the Hilbert spaces with indefinite metric. Our main result
is an application to the eigenfunction expansion for the linearized relativistic Ginzburg–Landau
equation.

Key words and phrases: Hamilton equation; selfadjoint operator;J-selfadjoint operator; Krein
space; spectral resolution; spectral representation; Ginzburg-Landau equation; kink; asymptotic
stability; eigenvector; generalized eigenfunction; eigenfunction expansion; Fermi Golden Rule.

1Supported partly by Alexander von Humboldt Research Award,Austrian Science Fund (FWF): P22198-N13, and the
grant of the Russian Foundation for Basic Research.

2 Supported partly by Austrian Science Fund (FWF): M1329-N13, and the grant of the Russian Foundation for Basic
Research.

http://arxiv.org/abs/1308.0485v3


1 Introduction

We consider complex linear Hamilton operators in a complex Hilbert spaceX ,

A= JB , where B∗ = B , J∗ =−J , J2 =−1 . (1.1)

In other words,A is a J-selfadjoint operator [35]. The selfadjoint operatorB is defined on a dense
domainD(B)⊂ X . Our aim is a spectral representation for solutions to the equation

Ẋ(t) = AX(t) , t ∈ R . (1.2)

Our main goal is an application to the eigenfunction expansion for the linearized relativistic Ginzburg–
Landau equation.

In the simplest case, whenJ = i, the solutions are given byX(t) = eiBtX(0). A more general
‘commutative case’, whenJB= BJ, reduces to the caseJ = i sinceJB= iB1, whereB1 = −iJB is
the selfadjoint operator. However,JB 6= BJ for linearizations ofU(1)-invariant nonlinear Schrödinger
equations as we show in Appendix B.

The complex Hamilton operators arise as the complexification of a linearization of nonlinear
Hamilton equations in a real Hilbert spaceXr ,

ψ̇r(t) = JrDH (ψr(t)) , (1.3)

whereH is the Hamilton functional,J∗r = −Jr , J2
r = −1, andDH stands for the differential which

is a linear operator over real numbers. The linearization of(1.3) at a stationary stateS∈ Xr reads as

Ẋr(t) = ArXr(t) , Ar = JrBr , (1.4)

whereBr := DDH (S) is a real symmetric operator. This is the Hamilton system with the Hamilton
functional

H0(Xr) =
1
2
〈BrXr ,Xr〉r , (1.5)

where the brackets denote the scalar product onXr . The complexification of the operatorAr in
the complex spaceX = Xr ⊕ iXr reads as (1.1), whereJ, B are the complexifications ofJr , Br

respectively. Moreover,B is complex selfadjoint onX if Br is real selfadjoint onXr .

The representation of solutions to the Hamilton equations in the form of oscillatory integrals is
indispensable in the proof of the dispersion decay for linearized equations in the theory of asymptotic
stability of solitary waves of nonlinear Schrödinger, wave, Klein–Gordon, Maxwell, Dirac and rela-
tivistic Ginzburg–Landau equations, which were extensively developed the last two decades [3]–[7],
[9]–[16], [28]–[31], [40]–[42], and [52]–[58]. However, many features of these representations were
not justified up to now, since the generators of the linearized equations can be non symmetric, as noted
in Introduction of [13]. In particular, the eigenfunction expansion, used in [30], was not justified with
detail.

We fill this gap in the simplest case of positive definite ‘energy operators’B satisfying the follow-
ing spectral condition:

Condition P+ σ(B)⊂ [δ ,∞) , δ > 0 . (1.6)
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Equivalently,B is invertible inX andB> 0. This framework is sufficient for our main application to
the linearized relativistic Ginzburg–Landau equation.

Our results are the following:

• The similarity ofiA to a selfadjoint operator.

• The existence and uniqueness of generalized solutions to (1.2) for all initial statesX with finite
energy〈BX,X〉, where〈·, ·〉 stands for the scalar product onX .

• A spectral representation of solutions for complex and realHamilton generators.

• Our main result is the eigenfunction expansion

(

ψ(t)
ψ̇(t)

)

=
N

∑
−N

e−iωktCkak+

∫

|ω|≥m
e−iωtC(ω)aω dω (1.7)

for solutions to the linearized relativistic nonlinear Ginzburg–Landau equation [30]. Hereak are the
eigenfunctions of the corresponding Klein-Gordon generator

A=

(

0 1
−H0 0

)

, (1.8)

whereH0 := − d2

dx2 +m2+V0(x). Finally, aω are the generalized eigenfunctions of the continuous
spectrum ofA.

Such eigenfunction expansions were used in [6, 7, 30] for thecalculation of ‘Fermi Golden Rule’
(FGR) in the context of nonlinear Schrödinger and Klein-Gordon equations. This is a nondegeneracy
condition introduced in [52] in the framework of nonlinear wave and Schrödinger equations. The
condition provides a strong coupling of discrete and continuous spectral components of solutions,
which provides the energy radiation to infinity and results in the asymptotic stability of solitary waves.
The calculation of FGR, as given in [6, 7, 30], relies on eigenfunction expansions of type (1.7). Our
main Theorem 5.4 justifies the eigenfunction expansion [30,(5.14)] which was not proved with detail.
This justification was one of our main motivation in writing the present paper.

Let us comment on our approach. First, we reduce the problem to a selfadjoint generator defined
uniquely byA justifying the classical M. Krein transformation under condition (1.6). This reduction
is a special version of spectral theory ofJ-selfadjoint operators in the Hilbert spaces with an indefinite
metric [2, 33]. We plan to extend elsewhere these methods andresults to more general degenerated
case when KerB 6= 0.

Second, we apply the abstract spectral theory to the operator (1.8) and develop a modification of
the eigenfunction expansion theory [45, pp 114-115] for thereduced selfadjoint operator, see Remark
4.1. Finally, we apply the theory of PDO to deduce (1.7) from this modification.

One of the novelties here is a vector-valued treatment of theconvergence of the integral over the
continuous spectrum in (1.7). Namely, we show that the integral is the limit of the corresponding
integrals overm≤ |ω| ≤ M asM → ∞ in the Sobolev spaceH1(R)⊕L2(R). In its own turn, the
integral overm≤ |ω| ≤ M is absolutely converging in the weightedL2-space with the weight(1+
|x|)−s wheres> 1.

Let us comment on related works. Some spectral properties ofthe Hamilton non-selfadjoint op-
erators were studied by V. Buslaev and G. Perelman [5, 6, 7], M.B. Erdogan and W. Schlag [17, 49],
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S. Cuccagna, D. Pelinovsky and V. Vougalter [11]. The eigenfunction expansions ofJ-selfadjoint
operators were not justified previously.

The spectral resolution of boundedJ-selfadjoint nonnegative operators in the Krein spaces was
constructed by M. Krein, H. Langer and Yu. Smul’jan [33, 34],and extended to unboundeddefiniti-
zableoperators by M. Krein, P. Jonas, H. Langer and others [21, 22,24, 35, 36]. The corresponding
unitary operators were considered by P. Jonas [23]. However, the spectral resolution alone is insuffi-
cient for a justification of eigenfunction expansions. Our version of the theory under condition (1.6)
allows us to justify the eigenfunction expansion (1.8).

The spectral theory of definitizable operators was applied to the Klein-Gordon equations with
non-positive energy by P. Jonas, H. Langer, B. Najman and C. Tretter [25, 26, 37, 38, 39], where the
existence and uniqueness of classical solutions were proved, and the existence of unstable eigenvalues
(imaginary frequencies) was studied. The instability is related to the knownKlein paradoxin quantum
mechanics [48].

The scattering theory for the Klein-Gordon equations with non-positive energy was developed by
C. Gérard and T. Kako using the theory of the definitizable operators in the Krein spaces [18, 27].

The plan of our paper is as follows. In Section 2 we justify theM. Krein transformation under
condition (1.6), and construct a unitary dynamical group and its spectral representation. In Section
3 we check condition (1.6) for the operator (1.8), and in Sections 4-6 we justify the eigenfunction
expansion (1.7) applying the methods of Section 2. In Appendix A we check the spectral condition
(1.6) for a class of operators, and in Appendix B we check thatJB 6=BJ for linearizations of nonlinear
Schrödinger equations.

Acknowledgments The authors thank V. Ivrii, A. Kostenko, M. Malamud and G. Teschl for useful
discussions on pseudodifferential operators andJ-selfadjoint operators.

2 Spectral representation

We are going to obtain a spectral representation for solutions to equation (1.2).

2.1 Generalized solutions

Let D(B) denote the dense domain of the selfadjoint operatorB. We setΛ := B1/2 > 0 and denote by
V ⊂ X the Hilbert space which is the domain ofΛ endowed with the norm

‖X‖V := ‖ΛX‖X (2.1)

which is positive definite by (1.6). We have a continuous injection of Hilbert spacesV ⊂ X , and the
unitary operator

Λ : V → X . (2.2)

In particular,
Λ−1 : X → V (2.3)

is a bounded operator. For example,V is the Sobolev spaceH1(Rn) in the case ofX = L2(Rn) and
operatorA= i(−∆+m2) with any realm 6= 0.

Finally, J is the unitary operator inX by (1.1), and hence

A−1 =−B−1J : X → V (2.4)
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is a bounded operator by (2.3). We will consider solutions

X(t) ∈C(R,V ) (2.5)

to equation (1.2). We will understand the equation in the sense ofmild solutions[8]

X(t)−X(0) = A
∫ t

0
X(s)ds, t ∈ R . (2.6)

By (2.4) this is equivalent to the identity

A−1[X(t)−X(0)] =
∫ t

0
X(s)ds, t ∈ R , (2.7)

where the Riemann integral converges inV by (2.5).

2.2 Krein transformation

We apply well known formal similarity transformation

A= JΛ2 → ΛAΛ−1 = ΛJΛ , (2.8)

rising to M. Krein. This transformation corresponds to the substitution

Z(t) := ΛX(t) ∈C(R,X ) , (2.9)

used by M. Krein in the theory of parametric resonance: see formula (1.40) of [19, Chapter VI].
Applying the transformation (2.8) to the both sides of (1.2), we obtain formally the corresponding
’Schrödinger equation’

iŻ(t) = HZ(t) , t ∈ R . (2.10)

HereH stands for the ‘Schrödinger operator’

H = ΛiJΛ , (2.11)

which is symmetric on the domain

D(H) = {X ∈ V : JΛX ∈ V } . (2.12)

These arguments give all solutions to (1.2) in the case of finite dimensional spaceX . In the infinite
dimensional case the problem is less trivial.

2.3 Selfadjoint generator

We must justify that the operatorH is densely defined and selfadjoint in our situation. Otherwise, the
formal transformation (2.8) would not help to construct solutions of equation (1.2).

Lemma 2.1. Let condition(1.6)hold. Then D(H) is dense inX and the operator H is selfadjoint.
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Proof The operatorH is injective. Further, RanΛ = X by (1.6), andJ : X → X is the unitary
operator. Hence, RanH = X . Consider the inverse operator

R := H−1 = Λ−1iJΛ−1 . (2.13)

It is selfadjoint sinceD(R) = RanH = X andR is bounded and symmetric. Finally,R is injective,
and hence,

H = R−1 (2.14)

is a densely defined selfadjoint operator by Theorem 13.11 (b) of [47]:

H∗ = H , D(H) = RanR⊂ V .

Thus, the lemma is proved.

As a result, under condition (1.6) the identity

A=−iΛ−1HΛ (2.15)

holds on the domainΛ−1D(H), which is dense inV . We will understand equation (2.10) similarly to
(2.7):

iH−1[Z(t)−Z(0)] =
∫ t

0
Z(s)ds, t ∈ R , (2.16)

where the Riemann integral converges inX by (2.9).

Corollary 2.2. Let condition(1.6) hold. Then for any Z(0) ∈ X equation(2.10)admits a unique
solution Z(t) ∈C(R,X ) in the sense(2.16). The solution is given by

Z(t) = e−iHt Z(0) ∈C(R,X ) . (2.17)

2.4 Unitary dynamical group

It is easy to check that equation (2.10) forZ(t)∈C(R,X ) in the sense (2.16) is equivalent to equation
(1.2) in the sense (2.7) for

X(t) = Λ−1Z(t) ∈C(R,V ) . (2.18)

Hence, Corollary 2.2 implies the following lemma.

Lemma 2.3. Let condition(1.6)hold. Then

i) For any X(0) ∈ V , the function

X(t) = Λ−1e−iHt ΛX(0) ∈C(R,V ) (2.19)

is the unique solution to(1.2) in the sense(2.7).

ii) The dynamical group V(t) : X(0) 7→ X(t) is unitary inV , since

‖X(t)‖V := ‖ΛX(t)‖X = ‖e−iHt ΛX(0)‖X = ‖ΛX(0)‖X =: ‖X(0)‖V . (2.20)
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2.5 Spectral resolution

Let E(ω) denote the spectral resolution of the selfadjoint operatorH; i.e.,

HZ =

∫

ω dE(ω)Z , Z ∈ D(H) , (2.21)

the Riemann–Stieltjes integrals converging inX . This resolution and (2.19) imply the following
proposition.

Proposition 2.4. Let condition(1.6)hold. Then the following spectral representation holds forsolu-
tions to the complex Hamilton equations(1.2):

X(t) = Λ−1
∫

e−iωtdE(ω)ΛX(0), X(0) ∈ V . (2.22)

Now let us apply our results to real Hamilton equations (1.4). Let Br be a nonnegative invertible
selfadjoint operator on a real Hilbert spaceXr . Then condition (1.6) holds forBr .

Let us consider complexificationsB andJ of the operatorsBr andJr in the spaceX = Xr + iXr ;
these are defined by

B(X1+ iX2) = BrX1+ iBrX2 , J(X1+ iX2) = JrX1+ iJrX2 , X1, X2 ∈ Xr . (2.23)

We claim thatB satisfies condition (1.6). First,B is invertible since the complexification ofB−1
r gives

B−1. Moreover,B−1 is a bounded injective selfadjoint operator, and henceB is a densely defined
selfadjoint operator inX by Theorem 13.11 (b) of [47]. Finally,B is obviously nonnegative.

Further, letVr denote the domain of the real selfadjoint operatorΛr := B1/2
r . Therefore,V :=

D(Λ) = Vr + iVr , sinceΛ := B1/2 is the complexification ofΛr := B1/2
r . Hence, Corollary 2.3 implies

that equation (1.2) admits a unique solution

X(t) =Y1(t)+ iY2(t) ∈C(R,V ) , Y1(t),Y2(t) ∈ Vr (2.24)

for anyX(0) = Xr ∈ Vr . The solution admits a spectral representation of type (2.22), whereE(ω)
is the spectral family of the corresponding selfadjoint operator H defined by (2.13). Summarizing,
Corollary 2.3 and Proposition 2.4 imply the following corollary. Let us denote byErr (ω) andEir (ω)
the real and imaginary components ofE(ω)|Xr .

Corollary 2.5. Let Br be a nonnegative invertible selfadjoint operator in a real Hilbert spaceXr .
Then

i) A solution Xr(t) ∈ C(R,Vr) to (1.4) exists and is unique for any initial state Xr(0) ∈ Vr , and the
energy(1.5) is conserved.

ii) This solution admits the spectral representation

Xr(t) = Λ−1
r

∫

[cosωtdErr (ω)+sinωtdEir (ω)]ΛrXr(0) , Xr(0) ∈ Vr , (2.25)

where the Riemann–Stieltjes integral converges inXr .
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Proof i) First, the real partY1(t) ∈ C(R,Vr) of solution (2.24) is the unique solution to (1.4) with
Y1(0) = Xr , since the real subspaceXr is invariant with respect toAr = JrBr . Similarly, the imagi-
nary partY2(t) ∈ C(R,Vr) vanishes, sinceY2(0) = 0, and hence the energy conservation for the real
solution follows from (2.20) and (1.5).

ii) Formula (2.25) follows from (2.22). The convergence of the Riemann-Stieltjes integral of (2.25)
in Xr follows from the convergence inX of the corresponding integral of (2.22) since the conver-
gence of a sequence in the Hilbert spaceX = Xr + iXr is equivalent to the convergence of the
corresponding real and imaginary parts inXr .

3 Application to eigenfunction expansion

We are going to apply our results to justification of the eigenfunction expansion (1.7) in the context of
the system considered in [30]. We have used this expansion for the calculation of the Fermi Golden
Rule [30, (5.14)].

3.1 Linearization at the kink

In [30, 31] we studied the 1D relativistic Ginzburg–Landau equation

ψ̈(x, t) =
d2

dx2ψ(x, t)+F(ψ(x, t)) , x∈ R (3.1)

for real solutionsψ(x, t). HereF(ψ) = −U ′(ψ), whereU(ψ) is similar to the Ginzburg–Landau
potentialUGL(ψ) = (ψ2 − 1)2/4, which corresponds to the cubic equation withF(ψ) = ψ −ψ3.
Namely,U(ψ) is a real smooth even function satisfying the following conditions:

U(ψ)> 0 , ψ 6=±a ; U(ψ) =
m2

2
(ψ ∓a)2+O(|ψ ∓a|14) , x→±a , (3.2)

wherea,m> 0. The main goal of [30, 31] was to prove of the asymptotic stability of solitons (kinks)
ψ(x, t) = sv(x−vt) that move with constant velocity|v|< 1, and

sv(x)→±a , x→±∞ . (3.3)

Substitutingψ(x, t) = sv(x−vt) into (3.1), we obtain

v2s′′v(x) = s′′v(x)+F(sv(x)) , x∈ R . (3.4)

The linearization of (3.1) at the kinksv(x−vt) in the moving frame reads as (1.2) withX = (ψ, ψ̇) ∈
L2(R)⊗C2 (for the corresponding complexification) and with the generator [31, (4.6)]

Av =

(

v d
dx 1

d2

dx2 −m2−Vv(x) v d
dx

)

. (3.5)

Here the potential
Vv(x) =−F ′(sv(x))−m2 ∈C∞(R) . (3.6)
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The kinksv(x) is an odd monotonic function in a suitable coordinatex, while F ′(ψ) =−U ′′(ψ) is an
even function ofψ. Hence, the potentialVv(x) is the even function ofx. Moreover,

|Vv(x)| ≤Ce−κ|x| , x∈ R , (3.7)

whereκ > 0. The generator (3.5) has the formAv = JBv with

Bv =

(

Sv −v d
dx

v d
dx 1

)

, Sv :=− d2

dx2 +m2+Vv(x) , J :=

(

0 1
−1 0

)

. (3.8)

Obviously,JBv 6= BvJ. Differentiating (3.4), we obtain

S̃vs
′
v(x) = 0 , S̃v :=−(1−v2)

d2

dx2 +m2+Vv(x) . (3.9)

3.2 Spectral condition

Here we check condition (1.6) for operatorBv in the space of the odd states in the casev= 0. The
general case|v|< 1 is considered in Appendix A (see Corollary A.3). We will writeA, B andSinstead
of A0, B0 andS0:

A=

(

0 1
−S 0

)

, B=

(

S 0
0 1

)

, S:=− d2

dx2 +m2+V0(x) . (3.10)

The operatorsB andSare essentially selfadjoint inL2(R)⊗C2 andL2(R) respectively, by (3.7) and
Theorems X.7 and X.8 of [44]. Now (3.9) withv= 0 means thatλ = 0∈ σpp(S). Moreover,λ = 0 is
the minimal eigenvalue ofS, since the corresponding eigenfunctions′0(x) does not vanish [31, (1.9)].
Hence,

σ(S)⊂ [0,∞) . (3.11)

Moreover,
KerS= (s′0(x)) , (3.12)

since any second linearly independent solution of the homogeneous equation cannot belong toL2(R)
by Theorem X.8 of [44].

Below we restrict the phase spaceL2(R)⊗C2 to the invariant subspace of the odd states

X = {ψ ∈ L2(R)⊗C
2 : ψ(−x) =−ψ(x) , x∈ R} , (3.13)

as in [30]. The subspace is invariant for the operatorsA andB, since the potentialV0(x) is an even
function. Respectively, we consider the operatorSon the Hilbert space of odd functionsL2

odd(R).

Lemma 3.1. Condition(1.6)holds for the operator B onX .

Proof The ground states′0(x) of Son L2(R)⊗C2 is an even function. Hence, KerS= 0 for Son X

by (3.12). Further, the continuous spectrum ofS lies in [m2,∞). Hence, (3.11) implies that

σ(S) = {λ1 , .... ,λN}∪ [m2,∞) , (3.14)

where 0< λ1 < ... < λN < m2. Finally,σ(B) = σ(S)∪{1}, which implies (1.6).

We will assume below the following spectral condition on theedge point of the continuous spec-
trum ofS imposed in [30]:

The point m2 is neither an eigenvalue nor a resonance of S . (3.15)
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4 Orthogonal eigenfunction expansion

Let us apply Proposition 2.4 to the case of operators (3.10).We have

Λ := B1/2 =

( √
S 0

0 1

)

, H := ΛiJΛ = i

(

0
√

S
−
√

S 0

)

= iJ
√

S . (4.1)

Thus,H is obviously selfadjoint in accordance to Lemma 2.1. Hence,(3.14) implies that

σ(H)= (−∞,−m]∪{ω−N , .... ,ω−1 ,ω1 , ... ,ωN}∪ [m,∞) , ω2
±k = λk , k= 1 , ... ,N . (4.2)

Respectively, formula (2.22) for solutions to (1.2) reads

X(t) = Λ−1
∫

σ(H)
e−iωtdE(ω)ΛX(0) =

N

∑
−N

e−iωktCkak+Λ−1
∫

σc(H)
e−iωtdE(ω)ΛX(0) , (4.3)

whereσc(H) = σc = (−∞,−m]∪ [m,∞) is the continuous spectrum ofH, andak = Λ−1hk ∈ X ,
wherehk are the eigenfunctions ofH corresponding to the eigenvaluesωk . Formula (2.15) implies
thatak are the eigenfunctions ofA corresponding to the eigenvalues−iωk .

Let us denote byXc(t) the last integral in (4.3):

Xc(t) = Λ−1
∫

σc

e−iωtdE(ω)ΛX(0) . (4.4)

To prove (1.7) it remains to justify the eigenfunction expansion

Xc(t) =
∫

σc

e−iωtC(ω)aω dω , (4.5)

whereaω are the generalized odd eigenfunctions from the continuousspectral space ofA correspond-
ing to the eigenvalues−iω . Then (1.7) will follow from (4.3).

By (4.3), Xc(t) is the solution to (1.2), and henceZc(t) := ΛXc(t) is the solution to (2.10). We
will deduce (4.5) from the corresponding representation

Zc(t) =
∫

σc

e−iωtC(ω)hω dω , (4.6)

wherehω are the generalized odd eigenfunctions ofH with the eigenvaluesω. We will prove (4.6) by
solving equation (2.10) forZc(t) = (Zc

1(t),Z
c
2(t)). By (4.1), this equation is equivalent to the system

Żc
1(t) =

√
SZc

2(t) , Żc
2(t) =−

√
SZc

1(t) . (4.7)

EliminatingZc
2, we obtain

Z̈c
1(t) =−SZc

1(t) . (4.8)

Further we apply Theorem XI.41 of [45] and the arguments of [45, pp 114-115]. Namely, the rapid de-
cay (3.7) and our spectral condition (3.15) imply the following Limiting Absorption Principle (LAP)
[1, 32, 45]:

R(λ ± iε)→ R±(λ ), ε →+0 , λ ∈ [m2,∞) , (4.9)
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whereR(z) := (S−z)−1 and the convergence holds in the strong topology of the spaceof continuous
operatorsL2

s → L2
−s with s> 1. Moreover, the traces of the resolventR±(λ ) are continuous functions

of λ ≥ m2 with values inL(L2
s,L

2
−s), see [1, 32]. HereL2

ρ = L2
ρ(R) with ρ ∈ R denotes the weighted

Hilbert space with the norm

‖ψ‖2
L2

ρ
:=
∫

〈x〉2ρ |ψ(x)|2dx , 〈x〉 := (1+x2)1/2 . (4.10)

The LAP serves as the basis for the eigenfunction expansion

Zc
1(t) =

∫

σc

dE (ω2)[Zc
1(0)cosωt +Zc

2(0)sinωt] =
∫

σc

e−iωtC(ω)eω dω , (4.11)

wheredE (λ ) is the spectral resolution ofS in the spaceL2
odd(R), while eω ∈ L2

−s are generalized
odd eigenfunctions ofScorresponding to the eigenvaluesω2 ≥ m2. Here the first identity follows by
Spectral Theorem, while the second follows by Theorem XI.41(e) of [45]. The eigenfunctions are
defined by formulas of [45, pp 114-115]:

eω =W∗(ω) fω , fω(x) := sin|ω|x , W(ω) := [1+VR0(ω2+ i0)]−1 , ω ∈ σc . (4.12)

whereR0(λ ) := (−∆+m2−λ )−1. The operatorW(ω) is a continuous function ofω ∈ σc with values
in L(L2

s,L
2
s) by the formula

[1+VR0(λ )]−1 = 1−VR(λ ) (4.13)

and the decay (3.7). Respectively, the adjoint operatorW∗(ω) is a continuous function ofω ∈ σc with
values inL(L2

−s,L
2
−s). As the result,eω is a continuous function ofω ∈ σc with values inL2

−s. The
normalization ofeω coincides with the same of the ’free’ generalized eigenfunctions fω :

〈eω ,eω ′〉= π δ (|ω|− |ω ′|) , ω,ω ′ ∈ σc , (4.14)

which follows from the last formula on page 115 of [45]. Finally, Theorem XI.41 (e) of [45] implies
that the last integral (4.11) converges inL2 = L2(R):

‖Zc
1(t)−

∫

m≤|ω|≤M
e−iωtC(ω)eω dω‖L2 → 0 , M → ∞ . (4.15)

Remark 4.1. Our modification of the eigenfunction expansion theory differs from[45, pp 114-115]
only in the use of Hilbert spaces with weights〈x〉s instead of es|x|. All conclusions of Theorem XI.41
from [45] remain valid in the modified theory. This modification allowsus to apply Lemma 5.2 below.

Now (4.6) forZc
1(t) follows from (4.11). ForZc

2(t)we use the first equation of (4.7), which implies

Zc
2(t) =−i

∫

σc

sgnω e−iωtC(ω)eω dω . (4.16)

Combining (4.11) and (4.16), we obtain (4.6) with

hω :=

(

1
−i sgnω

)

eω ∈ L2
−s⊗C

2 , ω ∈ σc , ∀s> 1 . (4.17)

Normalization (4.14) implies the corresponding normalization for hω :

〈hω ,hω ′〉= 2π δ (ω −ω ′) , ω,ω ′ ∈ σc . (4.18)
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Lemma 4.2. Let condition (3.15) hold and s> 1. Then

i) hω are generalized eigenfunctions of H, i.e.,

HZc(t) =
∫

σc

e−iωtω C(ω)hω dω f or Zc(t) ∈ D(H) . (4.19)

ii) hω is a continuous function ofω ∈ σc with values in L2−s⊗C2 .

iii) The integral (4.6) converges in L2⊗C
2 in the following sense:

‖Zc(t)−
∫

m≤|ω|≤M
e−iωtC(ω)hω dω‖L2⊗C2 → 0 , M → ∞ . (4.20)

Proof i) Zc(t) ∈ D(H) means thatZc
1,2(t) ∈ D(

√
S). Furthermore,

HZc(t) = i
√

S

(

Zc
2(t)

−Zc
1(t)

)

. (4.21)

Now (4.19) follows from the expansions (4.11) and (4.16) forZc
1,2(t) by [45, Theorem XI.41 (c)],

sinceeω are the generalized eigenfunctions ofSwith the eigenvaluesω2, andformally,

i
√

S

(

−i sgnω
−1

)

eω =

(

sgnω
−i

)

|ω|eω = ωhω . (4.22)

ii) hω is a continuous function ofω ∈ σc by similar property ofeω .

iii) (4.20) follows from (4.15) and similar convergence forZc
2.

Remark 4.3. The generalized eigenfunctions (4.17) are proportional toeω since H and S commute
with each other. This argument was the main idea of our derivation of the eigenfunctions (4.17).

5 Non-orthogonal eigenfunction expansion

Let us denote byZc
M(t,x) the integral in (4.20). It is defined for almost allx, i.e.,

Zc
M(t,x) :=

∫

m≤|ω|≤M
e−iωtC(ω)hω(x) dω , a.a. x∈ R . (5.1)

To justify (4.5) we should adjust the meaning of this integral by the following lemma.

Lemma 5.1. Let condition(3.15)hold and s> 1. Then

i) The integral(5.1)converges absolutely in L2
−s⊗C

2:
∫

m≤|ω|≤M
‖C(ω)hω‖L2

−s⊗C2 dω < ∞ , M > m . (5.2)

ii) The integral(5.1)coincides a.e. with the corresponding integral of the L2
−s⊗C2-valued integrand.
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Proof i) (4.18) and the Plancherel identity [45, (82e′)] imply that

‖
∫ β

α
C(ω)hω dω‖2

X = 2π
∫ β

α
|C(ω)|2dω = ‖P[α,β ]Z

c(0)‖2
X ≤ ‖Z(0)‖2

X , [α,β ]⊂ σc . (5.3)

Hence, (5.2) follows by the Cauchy–Schwarz inequality and Lemma 4.2 i).

ii) The scalar products of the both integrals with any test functionϕ ∈C∞
0 (R) coincide by the Fubini

theorem sincehω(x) can be chosen a measurable function of(ω,x) ∈ σc×R by Lemma 4.2 ii).

Now we are going to deduce (4.5) applyingΛ−1 to (4.6).

Lemma 5.2. The operatorΛ−1 : L2
ρ ⊗C2 → L2

ρ ⊗C2 is continuous for everyρ ∈ R.

Proof By (4.1) we have

Λ−1 =

(

S−1/2 0
0 1

)

. (5.4)

Hence, it suffices to prove the continuity for the operatorS−1/2 in L2
ρ , which means the continuity of

operator
〈x〉ρS−1/2〈x〉−ρ : L2(R)→ L2(R) .

This continuity follows by the Theorem of Composition of PDO, sinceS−1/2 is a PDO of the class
HG−1,−1

1 , see definition 25.2 in [50]. This follows from [20, Theorem 29.1.9] and also by an extension
of [50, Theorem 11.2] to PDO with nonempty continuous spectrum. It is important that operatorS
and its main symbolξ 2 satisfy

ξ 2 6∈ (−∞,0] , ξ 6= 0 ; σ(S)∩ (−∞,0] = /0 .

Hence, conditions (10.1) and (10.2) of [50] hold.

Lemma 5.2 and (4.17) imply that

aω := Λ−1hω ∈ L2
−s⊗C

2 , s> 1 . (5.5)

Lemma 5.3. aω are generalized eigenfunctions of A corresponding to the eigenvalues−iω.

Proof Let PM
c denote the spectral projectionχM

c (H), where χM
c is the indicator ofσM

c := σc ∩
[−M,M]. Let us take anyZc(0) ∈ PM

c X . ThenZc(0) ∈ D(H), and hence (4.6) and (4.19) with
t = 0 imply the expansions

Zc(0) =
∫

σM
c

C(ω)hω dω , HZc(0) =
∫

σM
c

ω C(ω)hω dω . (5.6)

Now let us take anyX ∈ Λ−1PM
c X and write (5.6) forZc(0) = ΛX. Applying Λ−1 to each side, we

obtain
X =

∫

σM
c

C(ω)aω dω , Λ−1HΛX = AX =−i
∫

σM
c

ω C(ω)aω dω , (5.7)

where we have used definition (5.5), Lemmas 5.1 and 5.2, and the expression (2.15) forA. Identities
(5.7) mean thataω are generalized eigenfunctions in the sense of [45, (80b)].

Finally, the main result of our paper is the following.
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Theorem 5.4. Let condition(3.15)hold, X(0) ∈ V and s> 1. Then eigenfunction expansion(4.5)
holds in the following sense:

‖Xc(t)−
∫

m≤|ω|≤M
e−iωtC(ω)aω dω‖V → 0 , M → ∞ , (5.8)

where the integral converges in L2
−s⊗C2, and hence, a.e., as in(5.1).

Proof We should prove that

‖ΛXc(t)−Λ
∫

m≤|ω|≤M
e−iωtC(ω)aω dω‖X → 0 , M → ∞ . (5.9)

First, we recall thatΛXc(t) = Zc(t). Second,
∫

m≤|ω|≤M
e−iωtC(ω)aω dω = Λ−1

∫

m≤|ω|≤M
e−iωtC(ω)hω dω (5.10)

by definition (5.5) and Lemmas 5.1, 5.2. Now (5.9) follows from (4.20).

6 Symplectic normalization

Now let us renormalizehω as follows:

〈hω ,hω ′〉= |ω|δ (ω −ω ′) , ω,ω ′ ∈ σc . (6.1)

This means that for anyM < ∞

〈Z1,Z2〉=
∫

m≤|ω|≤M
|ω|C1(ω)C2(ω)dω , for Z1,2 =

∫

m≤|ω|≤M
C1,2(ω)hωdω ∈ X . (6.2)

Let us express these formulas in terms ofX1,2 := Λ−1Z1,2 ∈ V and the eigenfunctionsaω := Λ−1hω .
First, (4.19) and (6.2) imply that

〈H−1Z1,Z2〉=
∫

m≤|ω|≤M
sgnω C1(ω)C2(ω)dω . (6.3)

On the other hand, (2.13) implies that

〈H−1Z1,Z2〉= 〈Λ−1iJΛ−1Z1,Z2〉=−i〈Λ−1Z1,JΛ−1Z2〉=−i〈X1,JX2〉 . (6.4)

Finally, (6.3) - (6.4) imply that

− i〈X1,JX2〉=
∫

m≤|ω|≤M
sgnω C1(ω)C2(ω)dω for X1,2 =

∫

m≤|ω|≤M
C1,2(ω)aωdω . (6.5)

By definition, this means that

〈aω , Jaω ′〉= i sgnω δ (ω −ω ′) , ω,ω ′ ∈ σc . (6.6)

Now the expansion (4.5) coincides with [7, (2.1.13)], thereby justifying our calculation of the Fermi
Golden Rule [30, (5.14)].
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A Spectral condition for |v|< 1

Let us check the spectral condition (1.6) for operatorsBv from (3.8) with any|v| < 1 in the space of
the odd states. First let us check the continuous spectrum.

Lemma A.1. The continuous spectrum of Bv lies in [δ ,∞) with someδ > 0.

Proof By Corollary 2 (c) of [46, XIII.4] and (3.7) it suffices to find the continuous spectrum of the
unperturbed operatorB0

v corresponding toVv(x) = 0. Consider the spectral equation

(B0
v−λ )ψ = 0 (A. 1)

and find the solution of typeψ = eikxφ with realk andφ ∈ C2. Substituting to (A. 1) we obtain
(

k2+m2−λ ikv
−ikv 1−λ

)

φ = 0 .

For nonzero vectorsφ , the determinant of the matrix vanishes:

k2(1−λ −v2)+(m2−λ )(1−λ ) = 0 . (A. 2)

Thenk2 = (m2−λ )(1−λ )/(λ −1+v2)≥ 0. This inequality holds if






















λ ∈ [1−v2,1]∪ [m2,∞) for 1≤ m2 ,

λ ∈ [m2,1−v2)∪ (1,∞) for m2 ≤ 1−v2 ≤ 1 ,

λ ∈ [1−v2,m2]∪ [1,∞) for 1−v2 ≤ m2 ≤ 1 .

Now the lemma follows withδ = min(1−v2,m2).

Now let us consider the discrete spectrum.

Lemma A.2. i) dimKerB is generated by(s′0(x),−vs′′0(x)), where s′0(x) is an even function.
ii) The nonzero discrete spectrum of B is positive.

Proof i) EquationBψ = 0 is equivalent to the system

(

Sv −v d
dx

v d
dx 1

)(

ψ1

ψ2

)

= 0 . (A. 3)

The second equation (A. 7) impliesψ2 =−vψ ′
1. Substituting into the first equation we obtain

S̃vψ1 = 0 , (A. 4)

whereS̃v is defined in (3.9). However, the equation (3.9) withv = 0 means thatλ = 0 ∈ σpp(S̃v).
Moreover,λ = 0 is the minimal eigenvalue of̃Sv, since the corresponding eigenfunctions′v(x) does
not vanish [31, (1.9)]. Hence,

σ(S̃v)⊂ [0,∞) . (A. 5)
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Moreover,
KerS̃v = (s′0(x)) , (A. 6)

since any second linearly independent solution of the homogeneous equation cannot belong toL2(R)
by Theorem X.8 of [44].

Step ii)Consider equationBvψ = λψ with λ < 0:

(

Sv−λ −v d
dx

v d
dx 1−λ

)(

ψ1
ψ2

)

= 0 . (A. 7)

The second equation (A. 7) impliesψ2 = vψ ′
1/(λ −1) . Substituting into the first equation we obtain

(S̃v+
v2λ

1−λ
d2

dx2 −λ )ψ1 = 0 . (A. 8)

For λ < 0 the operator is positive sincẽSv ≥ 0 by (A. 5). Hence, equation (A. 8) has no nonzero
solutionsψ1 ∈ L2.

Corollary A.3. Lemmas 3.1 and A.2 imply that condition (1.6) holds for|v| < 1 in the space of the
odd states.

B Linearization of U(1)-invariant Hamilton PDEs

Equations (1.2) withJB 6= BJ arise in the linearization of nonlinearU(1)-invariant Hamilton PDEs.
Namely, consider theU(1)-invariant Hamilton functional

H (ψ) =
1
2

∫

[

|∇ψ(x)|2+U(x, |ψ(x)|2)
]

dx (B. 9)

with a real potentialU(x, r) andψ(x) ∈ C= R2. The corresponding Hamilton equation reads as the
nonlinear Schrödinger equation

iψ̇(x, t) = ∇ψH (ψ) =−∆ψ(x, t)+Ur(x, |ψ|2)ψ , x∈ R
n , (B. 10)

wherei can be regarded as a real 2×2 matrixJ of type (3.8). The linearization at a stationary state
s0(x) is obtained by substitutionψ = s0+ϕ and expansion|ψ|2 = |s0|2+2s0 ·ϕ + |ϕ|2, wheres0 ·ϕ
is the scalar product of the real vectors fromR2. Neglecting the terms of higher order, we obtain the
linearized equation

iϕ̇(x, t) =−∆ϕ(x, t)+Ur(x, |s0(x)|2)ϕ +2Urr (x, |s0(x)|2)(s0 ·ϕ)s0 , (B. 11)

which can be represented in the form (1.2) withJ = −i and X(t) = (Reϕ(t), Imϕ(t)). The last
term of (B. 11) is not complex linear operator ofϕ. In other words, it does not commute with the
multiplication of ϕ by i. So JB 6= BJ if Urr (x, |s0(x)|2) 6≡ 0. Let us assume thatU(x, r) is a real-
analytic function ofr > 0, ands0(x) 6≡ 0. Then the last term of (B. 11) vanishes exactly for the linear
Schrödinger equation whenU(x, r) =V(x)r.
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vances and Applications, Vol.17, Birkhäuser Verlag, Basel-Boston-Stuttgart, 1986.

[24] P. Jonas, On a class of selfadjoint operators in Krein space and their compact perturbations,
Integral Equ. Oper. Theory11 (1988), 351-384.

[25] P. Jonas, On the spectral theory of operators associated with perturbed Klein- Gordon and wave
type equations,J. Oper. Theory29 (1993), 207-224.

[26] P. Jonas, On bounded perturbations of operators of Klein-Gordon type,Glasnik Math.35 (2000),
59-74.

[27] Kako, T.: Spectral and scattering theory for the J-selfadjoint operators associated with the per-
turbed Klein- Gordon type equations. J. Fac. Sci. Univ. Tokyo Sec. I A 23, 199221 (1976)

[28] V. Imaykin, A.I. Komech, H. Spohn, Scattering asymptotics for a charged particle coupled to
the Maxwell field,J. Math. Physics52 (2011), no. 4, 042701-042701-33. arXiv:0807.1972

[29] A.I. Komech, E.A. Kopylova, H. Spohn, Scattering of solitons for Dirac equation coupled to a
particle,J. Math. Analysis and Appl.383 (2011), no. 2, 265–290. arXiv: 1012.3109

[30] E.A. Kopylova, A.I. Komech, On asymptotic stability ofkink for relativistic Ginzburg–Landau
equation,Arch. Rat. Mech. Anal.202 (2011), no. 2, 213–245. arXiv:0910.5539

[31] E.A. Kopylova, A.I. Komech, On asymptotic stability ofmoving kink for relativistic Ginzburg–
Landau equation,Comm. Math. Physics302 (2011), no.1, 225-252. arXiv:0910.5538

[32] A. Komech, E.A. Kopylova, Dispersion decay and scattering theory, Wiley, Hoboken, NJ, 2012.

[33] M.G. Krein, H.K. Langer, The spectral function of a selfadjoint operator in a space with indefi-
nite metric,Sov. Math. Dokl.4 (1963), 1236-1239.

17

http://arxiv.org/abs/0807.1972
http://arxiv.org/abs/0910.5539
http://arxiv.org/abs/0910.5538


[34] M.G. Krein, Yu. Shmul’jan,J-polar representations of plus-operators,Mat. Issled.1 (1966),
no.2, 172-210. [Russian]

[35] H. Langer, Spectral functions of definitizable operators in Krein spaces, pp. 1-46 in: D.
Butkovic, H. Kraljevic, S. Kurepa, Functional Analysis, LNM0948, Berlin, Springer, 1981.

[36] Langer, H.; Najman, B.: Perturbation theory for definitizable operators in Krein spaces,
J.Operator Theory 9 (1983), 297-317.

[37] H. Langer, B. Najman, C. Tretter, Spectral theory of theKlein-Gordon equation in Krein spaces,
Proc. Edinb. Math. Soc., II. Ser.51 (2008), no. 3, 711-750.

[38] H. Langer, B. Najman, C. Tretter, Spectral theory of theKlein-Gordon equation in Pontryagin
spaces,Commun. Math. Phys.267 (2006), no. 1, 159-180.

[39] H. Langer, C. Tretter, Variational principles for eigenvalues of the Klein-Gordon equation,J.
Math. Phys.47 (2006), no. 10, 103506, 18 p.

[40] Y. Martel, F. Merle, Asymptotic stability of solitons of the gKdV equations with general nonlin-
earity,Math. Ann.341 (2008), 391-427.

[41] J. Miller, M. Weinstein, Asymptotic stability of solitary waves for the regularized long-wave
equation,Comm. Pure Appl. Math.49 (1996), 399-441.

[42] R.L. Pego, M.I. Weinstein, Asymptotic stability of solitary waves,Comm. Math. Phys.164
(1994), 305-349.

[43] M. Reed, B. Simon, Methods of modern mathematical physics I: Functional Analysis, Academic
Press, NY, 1980.

[44] M. Reed, B. Simon, Methods of modern mathematical physics II: Fourier Analysis, Self-
Adjointness, Academic Press, NY, 1975.

[45] M. Reed, B. Simon, Methods of modern mathematical physics III: Scattering Theory, Academic
Press, NY, 1979.

[46] M. Reed, B. Simon, Methods of modern mathematical physics IV: Analysis of Operators, Aca-
demic Press, NY, 1978.

[47] W. Rudin, Functional analysis, McGraw-Hill, New York,1991.

[48] J.J.Sakurai, Advanced Quantum Mechanics, Addison-Wesley, Reading, Mass., 1967.

[49] W.Schlag, Dispersive estimates for Schrdinger operators: a survey, pp 255-285 in: J. Bourgain
(ed.) et al., Mathematical aspects of nonlinear dispersiveequations. Lectures of the CMI/IAS
workshop on mathematical aspects of nonlinear PDEs, Princeton, NJ, USA, 2004. NJ: Princeton
University Press, Princeton, 2007.

[50] M.A. Shubin, Pseudodifferential operators and spectral theory, Springer, NY, 1987.

18



[51] R.T. Seeley, Complex powers of an elliptic operator,Proc. Sympos. Pure Math.10 (1967), 288-
307.

[52] I.M. Sigal, Nonlinear wave and Schrödinger equations. I: Instability of periodic and quasiperi-
odic solutions,Commun. Math. Phys.153 (1993), no.2, 297-320.

[53] A. Soffer, M.I. Weinstein, Multichannel nonlinear scattering in nonintegrable systems,Comm.
Math. Phys.133 (1990), 119-146.

[54] A. Soffer, M.I. Weinstein, Multichannel nonlinear scattering and stability II. The case of
anisotropic and potential and data,J. Differential Equations98 (1992), 376-390.

[55] A. Soffer, M.I. Weinstein, Resonances, radiation damping and instability in Hamiltonian non-
linear wave equations,Invent. Math.136 (1999), 9-74.

[56] A. Soffer, M.I. Weinstein, Selection of the ground state for nonlinear Schrödinger equations,
Rev. Math. Phys.16 (2004), no. 8, 977-1071. arXiv:nlin/0308020.

[57] H. Spohn, Dynamics of charged particles and their radiation field, Cambridge University Press,
Cambridge, 2004.

[58] Tai-Peng Tsai, Asymptotic dynamics of nonlinear Schr¨odinger equations with many bound
states,J. Differ. Equations192 (2003), no. 1, 225-282.

19

http://arxiv.org/abs/nlin/0308020

	1 Introduction
	2 Spectral representation
	2.1 Generalized solutions
	2.2 Krein transformation
	2.3 Selfadjoint generator
	2.4 Unitary dynamical group
	2.5 Spectral resolution

	3 Application to eigenfunction expansion
	3.1 Linearization at the kink
	3.2 Spectral condition

	4 Orthogonal eigenfunction expansion
	5 Non-orthogonal eigenfunction expansion
	6 Symplectic normalization
	A Spectral condition for |v|<1
	B Linearization of U(1)-invariant Hamilton PDEs

