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1. INTRODUCTION

We consider the 2D wave equation

ψ̈(x, t) = ∆ψ(x, t)− V (x)ψ(x, t), x ∈ R2, (1.1)

In vector form, equation (1.1) reads
iΨ̇(t) = HΨ(t), (1.2)

where

λHΨ(t) =
(

ψ(t)
ψ̇(t)

)
, H =

(
0 i

i(∆− V ) 0

)
. (1.3)

For s, σ ∈ R, write Hs
σ = Hs

σ(R2) for the weighted Sobolev spaces with finite norms

‖ψ‖Hs
σ

= ‖(1 + |x|2)σ/2(1 + |∇|2)s/2ψ‖L2 < ∞.

Assume that V (x) is a real function and

|V (x)|+ |∇V (x)| 6 C(1 + |x|)−β , x ∈ R2, (1.4)

for some β > 5. Then the multiplication by V (x) is a bounded operator taking H1
s to H1

s+β for
any s ∈ R. We restrict ourselves to the “nonsingular case,” in the terminology of [13], where the
truncated resolvent of the Schrödinger operator H = −∆ + V (x) is bounded at the endpoints of
the continuous spectrum. In other words, the point λ = 0 is neither an eigenvalue nor a resonance
for the operator H.

Definition 1.1. (i) Let F be the Hilbert space Ḣ1(R2)⊕L2(R2) of vector functions Ψ = (ψ, π)
with the norm

‖Ψ‖F = ‖∇ψ‖L2 + ‖π‖L2 < ∞.

(ii) Let Fσ be the Hilbert space H1
σ ⊕H0

σ of vector functions Ψ = (ψ, π) with the norm

‖Ψ‖Fσ = ‖ψ‖H1
σ

+ ‖π‖H0
σ

< ∞.

Our main result is the following long-time decay of the solutions to (1.1): in the “nonsingular
case,”

‖PcΨ(t)‖F−σ = O(|t|−1 log−2 |t|), t → ±∞, (1.5)

for any initial data Ψ0 = Ψ(0) ∈ Fσ with σ > 5/2. Here Pc stands for the Riesz projection to the
continuous spectrum of the operator H.
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Let us comment on previous results in this direction. The local energy decay has been established
for the first time in scattering theory for the linear Schrödinger equation in the fifties by Birman,
Kato, Simon, and others. For wave equations with compactly supported potentials and for similar
hyperbolic PDEs, Vainberg [16] established the decay in local energy norms for solutions with
compactly supported initial data. However, applications to asymptotic stability of solutions to
nonlinear equations require an exact characterization of the decay for the corresponding linearized
equations with respect to weighted norms (see, e.g., [2, 3, 4, 15]).

The decay in weighted norms has been established by Jensen and Kato [7] for the Schrödinger
equation in the dimension n = 3. The result has been extended to other dimensions by Jensen and
Nenciu [5, 6, 8] and, for more general PDEs of Schrödinger type, by Murata [13]. In our papers
[9]-[12], the decay in the weighted energy norms has been proved for 1D and 3D Klein–Gordon
equations and for the wave equation. Note that the decay rate for wave equations depends of the
spatial decay of the initial function Ψ(0) and of the potential V (x), in contrast to the case of
Klein–Gordon equation, where the decay rate is t−3/2 for sufficiently large β and σ. This difference
is related to the presence of an interior lacuna for the wave equations. Our approach develops the
Jensen–Kato technique to relativistic equations. Namely, the decay of the low-energy component
of the solution follows by using the Jensen–Kato technique, whereas the decay for the high-energy
component requires novel robust ideas. This problem has been resolved with a modified approach
based on the Born series and the convolution.

Here we extend our approach to 2D wave equation. In this case, the decay rate in (1.5) does not
depend of β > 5 and σ > 5/2, as in the case of 1D and 3D wave equation, due to the absence of
lacunae.

Our paper is organized as follows. In Section 2, we obtain the time decay for the solution to the
free wave equation and state the spectral properties of the free resolvent. In Section 3, we obtain
spectral properties of the perturbed resolvent and prove the decay relation (1.5).

2. FREE WAVE EQUATION

First, consider the free wave equation

ψ̇(x, t) = π(x, t), π̇(x, t) = ∆ψ(x, t), x ∈ R2. (2.1)

Write system (2.1) in the form
iΨ̇(t) = H0Ψ(t), (2.2)

where

Ψ(t) =
(

ψ(t)
π(t)

)
, H0 =

(
0 i

i∆ 0

)
. (2.3)

2.1. Spectral properties

We state spectral properties of the free wave dynamical group G(t). For t > 0 and Ψ0 = Ψ(0) ∈ F ,
there exists a unique solution Ψ(t) ∈ Cb(R,F) to the free wave equation (2.2). Hence, Ψ(t) admits
the spectral Fourier–Laplace representation

θ(t)Ψ(t) =
1

2πi

∫

R
e−i(ω+iε)tR0(ω + iε)Ψ0 dω, t ∈ R (2.4)

with any ε > 0 where θ(t) stands for the Heaviside function and R0(ω) = (H0 − ω)−1 provided
that ω ∈ C+ := {Im ω > 0} is the resolvent of the operator H0. The representation follows from
the stationary equation ωΨ̃+(ω) = H0Ψ̃+(ω) + iΨ0 for the Fourier–Laplace transform

Ψ̃+(ω) :=
∫

R
θ(t)eiωtΨ(t)dt, ω ∈ C+.

The solution Ψ(t) is a continuous bounded function of t ∈ R with values in F by the energy
conservation for the free wave equation (2.2). Hence, Ψ̃+(ω) = −iR0(ω)Ψ0 is an analytic function
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DISPERSIVE ESTIMATES FOR THE 2D WAVE EQUATION 213

of ω ∈ C+ with values in F which is bounded for ω ∈ R+ iε. Therefore, the integral (2.4) converges
in the sense of distributions of t ∈ R with values in F . Similarly to (2.4),

θ(−t)Ψ(t) = − 1
2πi

∫

R
e−i(ω−iε)tR0(ω − iε)Ψ0 dω, t ∈ R. (2.5)

The resolvent R0(ω) admits the matrix representation

R0(ω) =
(

ωR0(ω2) iR0(ω2)
−i(1 + ω2R0(ω2)) ωR0(ω2)

)
, (2.6)

where R0(ζ) = (−∆− ζ)−1 is the free Schrödinger resolvent with the integral kernel

R0(ζ, x− y) =
1
2π

K0(−iζ1/2|x− y|), ζ ∈ C+, Im ζ1/2 > 0, (2.7)

where K0 stands for the Macdonald function.

Definition 2.1. Denote by L(B1, B2) the Banach space of bounded linear operators from a
Banach space B1 to a Banach space B2.

Now we collect some properties of R0(ζ) (see [1, 7, 13, 9, 14]).

Lemma 2.2. (i) R0(ζ) is a strongly analytic function of the variable ζ ∈ C \ [0,∞) with values
in L(H−1

0 ,H1
0 ).

(ii) For ζ > 0 and σ > 1/2, the following convergence holds:

R0(ζ ± iε) → R0(ζ ± i0), ε → 0+,

in L(H−1
σ ,H1

−σ) uniformly with respect to ζ > r for any r > 0.
(iii) The following asymptotic expansions hold :

R0(ζ) = A0 log ζ + B0 +O(ζ3/4), ζ → 0, ζ ∈ C \ [0,∞) (2.8)

with respect to the norm of L(H−1
σ ; H1

−σ) with σ > 5/2. Here A0, B0 ∈ L(H−1
σ ; H1

−σ). σ > 1, are
operators with the kernels A0(x− y), B0(x− y), respectively, and

A0(x− y) = − 1
4π

, x, y ∈ R2 (2.9)

The asymptotics (2.8) can be differentiated twice with respect to the norm of L(H−1
σ ; H1

−σ) with
σ > 5/2.

(iv) For m = 0, 1, l = −1, 0, 1, . . . , k = 0, 1, 2, . . . and any σ > 1/2+k, the following asymptotic
relations hold :

‖R(k)
0 (ζ)‖L(Hm

σ ,Hm+l
−σ

) = O(|ζ|− 1−l+k
2 ), ζ →∞, ζ ∈ C \ (0,∞) (2.10)

Lemma 2.2 and formula (2.6) imply the corresponding properties of R0(ω).

Lemma 2.3. (i) The resolvent R0(ω) is a strongly analytic function of ω ∈ C \ R with values
in L(F0,F0).

(ii) For ω 6= 0, the convergence R0(ω ± iε) → R0(ω ± i0) as ε → 0+ holds in L(Fσ,F−σ) with
σ > 1/2, uniformly with respect to |ω| > r for any r > 0.

(iii) The following asymptotic expansion holds:

R0(ω) = A0 log ω + B0 +O(ω log ω), ω → 0, ω ∈ C \ R,

with respect to the norm of L(Fσ;F−σ) with σ > 5/2.
(iv) For k = 0, 1, 2, . . . and any σ > 1/2 + k, the following asymptotic relation holds:

‖R(k)
0 (ω)‖L(Fσ,F−σ) = O(1), ω →∞, ω ∈ C \ R. (2.11)
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Corollary 2.4. For t ∈ R and Ψ0 ∈ Fσ with σ > 1/2, the group G(t) admits the integral
representation

G(t)Ψ0 =
1

2πi

∫

R
e−iωt

[
R0(ω + i0)−R0(ω − i0)

]
Ψ0 dω, (2.12)

where the integral converges in the sense of distributions of t ∈ R with values in F−σ.

Proof. Summing up the representations (2.4) and (2.5), in the limit as ε → 0+, we obtain
(2.12) (by the Cauchy theorem) and prove Lemma 2.3.

2.2. Time decay

Estimates (2.11) give no possibility to prove the decay of G(t) by partial integration in (2.12).
Let us derive the decay by using explicit formulas. To be definite, consider the case of t > 0. The
matrix kernel of the dynamical group G(t) reads

G(t, x− y) =
(

Ġ(t, x− y) G(t, x− y)
G̈(t, x− y) Ġ(t, x− y)

)
, x, y ∈ R2 (2.13)

Here

G(t, z) =
1
2π

θ(t− |z|)√
t2 − |z|2 (2.14)

The group G(t) decays like t−1, which does not correspond to (1.5). Split G(t) as

G(t) = G0(t) + Gr(t),

where G0(t) is the operator with the kernel

G0(t, x− y) =
1

2πt

(
0 1
0 0

)
, x, y ∈ R2. (2.15)

Below we show that G0(t) is the only term responsible for the slow decay. More exactly, in the next
section we prove the following basic proposition

Proposition 2.5. Let σ > 5/2. Then the following asymptotic relation holds:

Gr(t) = O(|t|−3/2), t →∞, (2.16)

in the norm of L(Fσ;F−σ).

Further, introduce the following low-energy and high-energy components of G(t):

Gl(t) =
1

2πi

∫

R
e−iωtl(ω)

[
R0(ω + i0)−R0(ω − i0)

]
dω, (2.17)

Gh(t) =
1

2πi

∫

R
e−iωth(ω)

[
R0(ω + i0)−R0(ω − i0)

]
dω, (2.18)

where l(ω) ∈ C∞0 (R) is an even function, supp l ∈ [−2ε, 2ε], l(ω) = 1 if |ω| 6 ε with an ε > 0, and
h(ω) = 1 − l(ω). The following key observation is that the term G0(t) does not contribute to the
high-energy component.

Lemma 2.6. Let σ > 5/2. Then the following asymptotic relation holds:

Gl(t) = G0(t) +O(t−7/4), t →∞, (2.19)

with respect to the norm of L(Fσ;F−σ).

We prove this lemma in Appendix A. Let us now find the asymptotics of Gh(t).
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Theorem 2.7. Let σ > 5/2. Then the following asymptotic relation holds:

Gh(t) = O(|t|−3/2), t →∞, (2.20)

with respect to the norm of L(Fσ;F−σ).

Proof. First, consider a small t 6 1. By the energy conservation for the wave equation,

‖ψ′(t)‖L2 + ‖ψ̇(t)‖L2 = ‖G(t)Ψ(0)‖F = ‖Ψ(0)‖F 6 ‖Ψ(0)‖F0 (2.21)

where (ψ(t), ψ̇(t)) = G(t)Ψ(0). Further, the Hölder inequality and (2.21) imply

‖ψ(t)‖2L2 =
∫ ( ∫ t

0

ψ̇(x, s)ds− ψ(x, 0)
)2

dx 6 2‖ψ(0)‖2L2 + 2t

∫ t

0

‖ψ̇(s)‖2L2ds 6 2‖Ψ(0)‖2F0
.

Hence,
‖G(t)Ψ(0)‖F0 6 C‖Ψ(0)‖F0 , t 6 1. (2.22)

The integrand in (2.17) is finitely supported, and it belongs to L(Fσ;F−σ) for σ > 1/2. Hence, for
σ > 1/2,

‖Gl(t)‖L(Fσ ;F−σ) 6 C, t > 0 (2.23)

This implies (2.20) for small t 6 1, since Gh(t) = G(t)− Gl(t).
For large t > 1, we derive the asymptotic relation (2.20) from Proposition 2.5 and Lemma 2.6.

Using (2.19), we obtain

G(t) = Gl(t) + Gh(t) = G0(t) + Gh(t) +O(t−7/4), t →∞ (2.24)

with respect to the norm of L(Fσ;F−σ). On the other hand, (2.16) implies

G(t) = G0(t) + Gr(t) = G0(t) +O(t−3/2), t →∞, (2.25)

in the norm of L(Fσ;F−σ). Comparing (2.24) and (2.25), we obtain the asymptotic relation (2.20).

2.3. Proof of Proposition 2.5

Consider an arbitrary t > 1. Split the initial function Ψ into two terms,

Ψ0 = Ψ1,t + Ψ2,t,

such that
Ψ1,t(x) = 0 for |x| > t/3, Ψ2,t(x) = 0 for |x| < t/4, (2.26)

‖Ψ1,t‖Fσ + ‖Ψ2,t‖Fσ 6 C‖Ψ0‖Fσ , t > 1, (2.27)

and estimate Gr(t)Ψ1,t and Gr(t)Ψ2,t separately.
Step (i). Let us first estimate

Gr(t)Ψ2,t = G(t)Ψ2,t − G0(t)Ψ2,t.

Let
G(s)Ψ2,t = (ψ2,t(s), ψ̇2,t(s)).

Using energy conservation for the wave equation and properties (2.26)–(2.27), we obtain

‖∇ψ2,t(t)‖H0
−σ

+ ‖ψ̇2,t(t)‖H0
−σ

6 ‖G(t)Ψ2,t‖F = ‖Ψ2,t‖F 6 Ct−σ‖Ψ2,t‖Fσ 6 Ct−σ‖Ψ0‖Fσ . (2.28)

RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS Vol. 17 No. 2 2010



216 E. A. KOPYLOVA

The Hölder inequality, energy conservation, and properties (2.26)–(2.27) imply

‖ψ2,t(t)‖2H0
−σ

6
∫ ( ∫ t

0

ψ̇2,t(x, s)ds− ψ2,t(x, 0)
)2

dx 6 2‖ψ2,t(0)‖2L2 + 2t

∫ t

0

‖ψ̇2,t(s)‖2L2ds
(2.29)

6 2
(
‖Ψ2,t‖2F0

+ t

∫ t

0

‖Ψ2,t‖2Fds
)

6 C
(
t−2σ‖Ψ0‖2Fσ

+ t2−2σ‖Ψ0‖2Fσ

)
6 Ct2−2σ‖Ψ0‖2Fσ

.

Hence, (2.28) and (2.29) yield

‖G(t)Ψ2,t‖F−σ 6 Ct−σ+1‖Ψ0‖Fσ , t > 1. (2.30)

Let us now estimate G0(t)Ψ2,t = (ϕ2(t), 0). By the Cauchy inequality,

|ϕ2(t)| =
∣∣∣ 1
2πt

∫
π2,t(x)dx

∣∣∣ 6 C

t

( ∫
|π2,t(x)|2(1 + |x|2)σdx

)1/2( ∫

|x|>t/3

dx

(1 + |x|2)σ

)1/2

6 Ct−σ‖π2,t‖H0
σ

6 Ct−σ‖Ψ0‖Fσ
, (2.31)

where π2,t is the second component of Ψ2,t. Therefore,

‖G0(t)Ψ2,t‖F−σ = |ϕ2(t)|
(∫

dx

(1 + |x|2)σ

)1/2

6 Ct−σ‖Ψ0‖Fσ , t > 1. (2.32)

Finally, (2.30)–(2.32) imply

‖Gr(t)Ψ2,t‖F−σ 6 Ct−3/2‖Ψ0‖Fσ , t > 1 (2.33)

since σ > 5/2.
Step (ii). Now we consider Gr(t)Ψ1,t. We split the operator Gr(t), for t > 1, in two terms:

Gr(t) = (1− ζ)Gr(t) + ζGr(t)

where ζ is the operator of multiplication by the function ζ(|x|/t) such that ζ = ζ(s) ∈ C∞0 (R),
ζ(s) = 1 for |s| < 1/4, and ζ(s) = 0 for |s| > 1/3. Obviously, for |α| 6 1, we have

|∂α
x ζ(|x|/t)| 6 C < ∞, t > 1. (2.34)

Furthermore, 1− ζ(|x|/t) = 0 for |x| < t/4, and therefore

||(1− ζ)G(t)Ψ1,t||F−σ 6 Ct−σ‖(1− ζ)G(t)Ψ1,t‖F0 6 C1t
−σ||G(t)Ψ1,t||F0 . (2.35)

Let G(s)Ψ1,t = (ψ1,t(s), ψ̇1,t(s)). By the energy conservation and by (2.9), we obtain

‖∇ψ1,t(t)‖L2 + ‖ψ̇1,t(t)‖L2 = ‖G(t)Ψ1,t‖F = ‖Ψ1,t‖F 6 ‖Ψ1,t‖Fσ 6 C‖Ψ0‖Fσ (2.36)

Further, similarly to (2.29), the energy conservation implies

‖ψ1,t(t)‖2L2 6 2‖ψ1,t(0)‖2L2 + 2t

∫ t

0

‖ψ̇1,t(s)‖2L2 ds 6 2
(
‖Ψ1,t‖2F0

+ t

∫ t

0

‖G(s)Ψ1,t‖2F ds
)

6 C
(
‖Ψ0‖2Fσ

+ t2‖Ψ1,t‖2F
)

6 Ct2‖Ψ0‖2Fσ
. (2.37)
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Hence, (2.35)–(2.37) yield

‖(1− ζ)G(t)Ψ1,t‖F−σ 6 Ct−σ+1‖Ψ0‖Fσ (2.38)

Let us now estimate (1− ζ)G0(t)Ψ1,t. Similarly to (2.31), we obtain (by the Cauchy inequality)

|ϕ1(t)| =
∣∣∣ 1
2πt

∫
π1,t(x)dx

∣∣∣ 6 Ct−1‖Ψ0‖Fσ , t > 1

where π1,t is the second component of Ψ1,t. Hence, (2.34) yields

‖(1− ζ)G0(t)Ψ1,t‖F−σ = |ϕ1(t)|‖(1− ζ)‖H1
−σ

6 C

t
‖Ψ0‖Fσ

(∫

|x|>t/4

dx

(1 + |x|2)σ

) 1
2 6 C(ε)

tσ
‖Ψ0‖Fσ

The last inequality and (2.38) imply

‖(1−ζ)Gr(t)Ψ1,t‖F−σ 6 ‖(1−ζ)G(t)Ψ1,t‖F−σ +‖(1−ζ)G0(t)Ψ1,t‖F−σ 6 C(ε)t−σ+1‖Ψ0‖Fσ (2.39)

Step (iii). Finally, let us estimate ζGr(t)Ψ1,t. Let χt be the characteristic function of the ball
|x| 6 t/4. Use the same notation for the operator of multiplication by this characteristic function.
By (2.26),

ζGr(t)Ψ1,t = ζGr(t)χtΨ1,t (2.40)

The matrix kernel of the operator ζGr(t)χt is equal to

G′r(x− y, t) = ζ(|x|/t)Gr(x− y, t)χt(y)

In Appendix B, we prove the following lemma.

Lemma 2.8. The following bound holds:

|∂α
z Gr(t, z)| 6 Ct−2(1 + |z|), |z| 6 t/2, t > 1, |α| 6 1. (2.41)

Since ζ(|x|/t) = 0 for |x| > t/4 and χt(y) = 0 for |y| > t/4, the estimate (2.41) implies that

|∂α
xG′r(x− y, t)| 6 Ct−2(1 + |x− y|), |α| 6 1, t > 1. (2.10)

The norm of the operator ζGr(t)χt : Fσ → F−σ is equivalent to the norm of the operator

〈x〉−σζGr(t)χt(y)〈y〉−σ : F0 → F0.

The norm of this operator does not exceed the sum over α, |α| 6 1, of the norms of the operators

∂α
x [〈x〉−σζGr(t)χt(y)〈y〉−σ] : L2(R2)⊕ L2(R2) → L2(R2)⊕ L2(R2). (2.43)

Estimates (2.42) imply that the operators (2.43) are of Hilbert–Schmidt class, since σ > 5/2 > 2,
and their Hilbert–Schmidt norms do not exceed Ct−2. Hence, (2.27) and (2.40) yield

||ζGr(t)Ψ1,t||F−σ 6 Ct−2||Ψ1,t||Fσ 6 Ct−2||Ψ0||Fσ , t > 1. (2.44)

Finally, estimates (2.33), (2.39), and (2.12) imply

||Gr(t)Ψ0||F−σ 6 Ct−3/2||Ψ0||Fσ , t > 1. ¤(2.45)

RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS Vol. 17 No. 2 2010



218 E. A. KOPYLOVA

3. PERTURBED WAVE EQUATION

To prove the long-time decay for the perturbed wave equation, we first establish the spectral
properties of the generator.

3.1. Spectral properties

According to [13, formula (3.1)], introduce a generalized eigenspace M for the perturbed Schrö-
dinger operator H = −∆ + V as follows:

M = {ψ ∈ H1
−1/2−0 : (1 + B0V )ψ ∈ <(A0), A0V ψ = 0}.

Where A0 and B0 are defined in (2.8), and <(A0) is the range of A0. Below we assume that

M = 0 (3.1)

Remark 3.1. N(H) ⊂ M where N(H) is the zero eigenspace of the operator H. This embedding
is obtained in [13, Lemma 3.2]. The functions in M \ N(H) are referred to as zero-resonance
functions. Hence, the condition (3.1) means that λ = 0 is neither eigenvalue nor resonance for the
operator H.

Let us collect the properties of the perturbed Schrödinger resolvent R(ζ) = (H − ζ)−1 obtained
in [1, 7, 13, 9] under assumptions (1.4) and (3.1).

R1. R(ζ) is a strongly meromorphic function of ζ ∈ C \ [0,∞) with values in L(H−1
0 ,H1

0 ); the
poles of R(ζ) are placed at a finite set of eigenvalues ζj < 0, j = 1, . . . , N , of the operator H with
the corresponding eigenfunctions

ψ1
j (x), .., ψkj

j (x) ∈ H2
s

for any s ∈ R, where kj is the multiplicity of ζj .
R2. For ζ > 0, the convergence R(ζ ± iε) → R(ζ ± i0) holds as ε → 0+ in L(H−1

σ ,H1
−σ) with

σ > 1/2, uniformly in ζ > r for any r > 0.
R3. The following expansion holds:

R(ζ) = A1 + A2 log−1 ζ +O(log−2 ζ)
R′(ζ) = −A2ζ

−1 log−2 ζ +O(ζ−1 log−3 ζ)
R′′(ζ) = O(ζ−2 log−2 ζ)

∣∣∣∣∣∣
ζ → 0, ζ ∈ C \ [0,∞) (3.2)

with respect to the norms of L(H−1
σ , H1

−σ) with σ > 5/2. Here A1, A2 ∈ L(H−1
σ ,H1

−σ) with σ > 5/2.
R4. For k = 0, 1, 2, s = 0, 1, and l = −1, 0, 1 with s+l ∈ {0, 1}, the following asymptotic relation

holds:
‖R(k)(ζ)‖L(Hs

σ,Hs+l
−σ

) = O(|ζ|− 1−l+k
2 ), |ζ| → ∞, ζ ∈ C \ [0,∞) (3.3)

with σ > 1/2 + k.
The resolvent R(ω) = (H− ω)−1, can be expressed similarly to (2.6),

R(ω) =
(

ωR(ω2) iR(ω2)
−i(1 + ω2R(ω2)) ωR(ω2)

)
(3.4)

Hence, properties R1-R3 imply the corresponding properties of R(ω). The corresponding equation
is as follows.

Lemma 3.2. Let the potential V satisfy (1.4) and (3.1). The following assertions hold.
(i) R(ω) is a strongly meromorphic function of ω ∈ C \R with values in L(F0,F0). The poles of

R(ω) are placed at a finite set

Σ = {ω±j = ±
√

ζj , j = 1, . . . , N}
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of eigenvalues of the operator H with the corresponding eigenfunctions
(

cψk
j (x)

iω±j ψk
j (x)

)
, k = 1, . . . kj .

(ii) For ω 6= 0, the convergence R(ω ± iε) → R(ω ± i0) holds as ε → 0+ in L(Fσ,F−σ) for
σ > 1/2, uniformly in |ω| > r for any r > 0.

(iii) The following asymptotic relation holds:

R(ω) = A1 +A2 log−1 ω +O(log−2 ω)
R′(ω) = −A2ω

−1 log−2 ω +O(ω−1 log−3 ω)
R′′(ω) = O(ω−2 log−2 ω)

∣∣∣∣∣∣
ω → 0, ω ∈ C \ R, (3.5)

with respect to the norm of L(Fσ;F−σ) with σ > 5/2. Here A1,A2 ∈ L(Fσ;F−σ) with σ > 5/2.
(iv) For k = 0, 1, 2,

‖R(k)(ω)‖L(Fσ,F−σ) = O(1), |ω| → ∞, ω ∈ C \ R (3.6)

with σ > 1/2 + k.

Finally, denote by V the matrix

V =
(

0 0
−iV 0

)
. (3.7)

Then the vector equation (1.2) reads

iΨ̇(t) = (H0 + V)Ψ(t)

The resolvents R(ω) and R0(ω) are related by the Born perturbation series

R(ω) = R0(ω)−R0(ω)VR0(ω) +R0(ω)VR0(ω)VR(ω), ω ∈ C \ [R ∪ Σ], (3.8)

which follows by iterating the relation

R(ω) = R0(ω)−R0(ω)VR(ω).

An important role in (3.8) plays the product W(ω) := VR0(ω)V. We obtain the asymptotics of
W(ω) for large ω.

Lemma 3.3. Let the potential V satisfy (1.4) with β > 1/2 + k + σ, for k = 0, 1, 2, . . . , with
some σ > 0. Then the following asymptotic relation holds:

‖W(k)(ω)‖L(F−σ,Fσ) = O(|ω|−2), |ω| → ∞, ω ∈ C \ R. (3.9)

Proof. The bounds (3.9) follow from the algebraic structure of the matrix

W(k)(ω) = VR(k)
0 (ω)V =

(
0 0

−iV R
(k)
0 (ω2)V 0

)
, (3.10)

since (2.10) for s = 1 and l = −1 implies that, for large ζ ∈ C \ [0,∞),

‖V R
(k)
0 (ζ)V f‖H0

σ
6 C‖R(k)

0 (ζ)V f‖H0
σ−β

= O(|ζ|−1− k
2 )‖V f‖H1

β−σ
= O(|ζ|−1− k

2 )‖f‖H1
−σ

(3.611)

with 1/2 + k < β − σ for k = 0, 1, 2, . . . .
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3.2. Time decay

Our main result is the following.

Theorem 3.4. Let conditions (1.4) and (3.1) hold. Then for σ > 5/2

‖e−itH −
∑

ωJ∈Σ

e−iωJ tPJ‖L(Fσ,F−σ) = O(|t|−1 log−2 |t|), t → ±∞ (3.12)

Here PJ are the Riesz projections onto the corresponding eigenspaces.

Proof. Lemma 3.2 and the bounds (3.6) with k = 0 implym similarly to (2.12), that

Ψ(t)−
∑

ωJ∈Σ

e−iωJ tPJΨ0 =
1

2πi

∫
e−iωt

[
R(ω + i0)−R(ω − i0)

]
Ψ0 dω = Ψl(t) + Ψh(t) (3.13)

where PJ stands for the corresponding Riesz projection

PjΨ0 := − 1
2πi

∫

|ω−ωJ |=δ

R(ω)Ψ0dω

with a small δ > 0, and

Ψl(t) =
1

2πi

∫

R
l(ω)e−iωt

[
R(ω + i0)−R(ω − i0)

]
Ψ0 dω (3.14)

Ψh(t) =
1

2πi

∫

R
h(ω)e−iωt

[
R(ω + i0)−R(ω − i0)

]
Ψ0 dω, (3.15)

where l(ω) and h(ω) are defined in Section 2.2. Further, let us study Ψl(t) and Ψh(t) separately.

3.2.1. Low energy component. We consider only the integral over (0, 2ε). The integral over
(−2ε, 0) deal with the same way. We prove the desired decay of Ψl(t) using a special case of
Lemma 10.2 in [7].

Lemma 3.5. Assume B be a Banach space, and F ∈ C(0, b;B) satisfies F (0) = 0 and F (ω) = 0
for ω > b,

F ′ ∈ L1(δ, b;B)

for any δ > 0. Moreover,
F ′(ω) = O(ω−1 log−3 ω)

as well as
F ′′(ω) = O(ω−2 log−2 ω)

as ω → 0+. Then ∫ ∞

0

e−itωF (ω)dω = O(|t|−1 log−2 |t|), t →∞.

Due to (3.8), we can apply Lemma 3.5 for

F = l(ω)
(R(ω + i0)−R(ω − i0)

)
,

for B = L(Fσ,F−σ) with σ > 5/2, and for b = 2ε to obtain

‖Ψl(t)‖F−σ 6 C(1 + |t|)−1 log−2(1 + |t|)‖Ψ0‖Fσ , t ∈ R.
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3.2.2. High energy component. Substitute the series (3.8) into the spectral representation
(3.15) for Ψh(t):

Ψh(t) =
1

2πi

∫

R
e−iωth(ω)

[
R0(ω + i0)−R0(ω − i0)

]
Ψ0 dω

+
1

2πi

∫

R
e−iωth(ω)

[
R0(ω + i0)VR0(ω + i0)−R0(ω − i0)VR0(ω − i0)

]
Ψ0 dω

+
1

2πi

∫

R
e−iωth(ω)

[
R0VR0VR(ω + i0)−R0VR0VR(ω − i0)

]
Ψ0 dω

= Ψh1(t) + Ψh2(t) + Ψh3(t), t ∈ R.

(3.16)

Below we study each of the terms Ψhk, k = 1, 2, 3, separately.
Step (i). The first term is Ψh1(t) = Gh(t)Ψ0 by (2.18). Hence, Theorem 2.7 implies

‖Ψh1(t)‖F−σ
6 C(1 + |t|)−3/2‖Ψ0‖Fσ

, t ∈ R (3.17)

Step (ii). Consider the second term Ψh2(t). Write h1(ω) =
√

h(ω) (we can assume that h(ω) > 0
and h1 ∈ C∞0 (R)). Set

Φh1 =
1

2πi

∫

R
e−iωth1(ω)

[
R0(ω + i0)−R0(ω − i0)

]
Ψ0 dω

It is obvious that, for Φh1, the inequality (3.17) also holds. Namely,

‖Φh1(t)‖F−σ 6 C(1 + |t|)−3/2‖Ψ0‖Fσ , t ∈ R. (3.18)

Now the second term Ψh2(t) can be represented as a convolution.

Lemma 3.6 (cf. [10, Lemma 3.11]). The following convolution representation holds:

Ψh2(t) = i

∫ t

0

Gh1(t− τ)VΦh1(τ) dτ, t ∈ R, (3.19)

where the integral converges in F−σ with σ > 5/2.

Let us now apply Theorem 2.7, with h1 instead of h, to the integrand in (3.19). For an arbitrary
σ′ ∈ (5/2, β − 5/2), we obtain

‖Gh1(t− τ)VΦh1(τ)‖F−σ 6 C‖VΦh1(τ)‖Fσ′

(1 + |t− τ |)3/2
6

C‖Φh1(τ)‖Fσ′−β

(1 + |t− τ |)3/2
6 C‖Ψ0‖Fσ

(1 + |t− τ |)3/2(1 + |τ |)3/2

Hence, the convolution representation (3.19) gives

‖Ψh2(t)‖F−σ 6 C(1 + |t|)−3/2‖Ψ0‖Fσ , t ∈ R. (3.20)

Step (iii). Finally, let us rewrite the last term Ψh3 as

Ψh3(t) =
1

2πi

∫

R
e−iωth(ω)N (ω)Ψ0 dω, (3.21)

where
N (ω) := M(ω + i0)−M(ω − i0)

for ω ∈ R, and

M(ω) := R0(ω)VR0(ω)VR(ω) = R0(ω)W(ω)R(ω), ω ∈ C \ [R ∪ Σ]. (3.22)

Let us now obtain the asymptotics for M and its derivatives for large ω.
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Lemma 3.7. For k = 0, 1, 2, the following asymptotic relation holds:

‖M(k)(ω)‖L(Fσ,F−σ) = O(|ω|−2), |ω| → ∞, ω ∈ C \ R, σ > 1/2 + k (3.23)

Proof. The asymptotic relation (3.23) follows from the asymptotic relations (2.11), (3.6), and
(3.9) for R(k)

0 (ω), R(k)(ω), and W(k)(ω). For example, consider the case k = 2. Differentiating
(3.22), we obtain

M′′ = R′′0WR+R0W ′′R+R0WR′′ + 2R′0W ′R+ 2R′0WR′ + 2R0W ′R′ (3.24)

For a fixed σ > 5/2, choose σ′ ∈ (5/2, β − 1/2}). Then, for the first term in (3.24), for large
ω ∈ C \ R, we obtain (by (3.6) and (3.9))

‖R′′0(ω)W(ω)R(ω)f‖F−σ
6 C‖W(ω)R(ω)f‖Fσ′ 6 C1|ω|−2‖R(ω)f‖F−σ′ 6 C2|ω|−2‖f‖Fσ

Other terms can be estimated similarly, by choosing an appropriate value of σ′. Namely, we can
take σ′ ∈ (1/2, β−5/2) for the second term, σ′ ∈ (5/2, β−1/2) for the third one, σ′ ∈ (3/2, β−3/2)
for the forth and sixth terms, and σ′ ∈ (3/2, β − 1/2) for the fifth term. ¤

Let us now prove the desired decay for Ψh3(t). By Lemma 3.7,

(hN )′′ ∈ L1((−ε, ε);L(Fσ,F−σ))

with σ > 5/2. Then we can integrate by parts twice in (3.21) to obtain

‖Ψh3(t)‖F−σ 6 C(1 + |t|)−2‖Ψ0‖Fσ , t ∈ R.

This completes the proof of Theorem 3.4.

Corollary 3.8. The asymptotic relation (3.12) implies (1.5) with the projection

Pc = 1−
∑

ωJ∈Σ

PJ . (3.25)

APPENDIX A. PROOF OF LEMMA 2.6

For an operator A ∈ L(H−1
σ ; H1

−σ), write Re A := (A + A∗)/2 and Im A := (A−A∗)/2i.
Step i) First, we obtain a convenient representation for Gl(t). Formula (2.17) yields

Gl(t) =
1

2πi

∫

R
l(ω)

(
ω i

−iω2 ω

)
e−iωt

(
P (ω + i0)− P (ω − i0)

)
dω,

where P (ω) = R0(ω2). Using the identity

R0(ζ − i0) = R∗0(ζ + i0), ζ ∈ R, (A.1)

we obtain P (ω − i0) = P ∗(ω + i0). Hence,

Gl(t) =
1
π

∫

R
l(ω)

(
ω i

−iω2 ω

)
e−iωt ImP (ω + i0)dω

=
1
π

∫ ∞

0

l(ω)
[ (

ω i
−iω2 ω

)
e−iωt Im P (ω + i0) +

(
−ω i
−iω2 −ω

)
eiωt ImP (−ω + i0)

]
dω
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Applying (A.1) again, we see that P (−ω + i0) = P ∗(ω + i0). Hence,

Gl(t) =
2
π

Re
∫ ∞

0

l(ω)
(

ω i
−iω2 ω

)
e−iωt Im P (ω + i0)dω =

2
π

Re
∫ ∞

0

l(ω)e−iωtP(ω). (A.2)

Step (ii). Second, we obtain the asymptotics for the matrix operator

P(ω) =
(

ω i
−iω2 ω

)
Im P (ω + i0)

Using (2.8) and (2.9), we see that

P(ω) = P0(ω) + Pr(ω), ω → +0 (A.3)

where P0(ω) is the operator with the matrix integral kernel

P0(ω, x, y) =
(

0 i/4
0 0

)
,

and, for the remainder Pr(ω), we obtain

Pr(ω) = O(ω3/4), P ′r(ω) = O(ω−1/4), P ′′r (ω) = O(ω−5/4), ω → +0 (A.4)

with respect to the norm of L(Fσ;F−σ) with σ > 5/2.
Step (iii). Further, consider the contribution of the first term in (A.3) into the right-hand side

of (A.2). Integrating by parts N times, N = 1, 2, 3, . . . , we obtain

∫ ∞

0

e−iωtl(ω)dω =
1
it

+
1
it

∫ ∞

0

e−iωtl′(ω)dω = · · · = 1
it

+O(t−N ), t →∞, (A.5)

since l(0) = 1 and l(k)(0) = 0, k = 1, 2, . . . . Hence,

2
π

Re
∫ ∞

0

l(ω)e−iωtP0dω = G0(t) +O(t−N ), t →∞.

Step (iv). Finally, Let us prove that the contribution of the remainder Pr(ω) into the right-hand
side of (A.2) is O(t−7/4). This results from the following lemma (cf. [7, Lemma 10.2]).

Lemma A.1. Let B be a Banach space, let F ∈ C(0, b;B) satisfy F (0) = 0 and F (ω) = 0
for ω > b > 0, and let F ′ ∈ L1(δ, b;B) for any δ > 0. Moreover, let F ′(ω) = O(ω−1/4) and
F ′′(ω) = O(ω−5/4) as ω → 0+. Then

∫ ∞

0

e−itωF (ω)dω = O(t−7/4), t →∞.

APPENDIX B. PROOF OF LEMMA 2.8

Differentiating G(t, z) for |z| < t, we obtain

G11(t, z) = G22(t, z) = − t

2π
√

(t2 − |z|2)3 , G21(t, z) = − 1
2π

√
(t2 − |z|2)3 +

3t2

2π
√

(t2 − |z|2)5 .
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Hence, (2.13)–(2.15) imply that, for |α| 6 1,

|∂α
z Gij

r (t, z)| = |∂α
z Gij(t, z)| 6 Ct−2, |z| 6 t/2, t > 1, (i, j) 6= (1, 2)

Further,

G12
r (t, z) =

1
2π

( 1√
t2 − |z|2 −

1
t

)
, |z| < t

Then the Lagrange formula implies

|G12
r (t, z)| 6 C|z|2t−3 6 C|z|t−2, |z| 6 t/2

Differentiating G12
r (t, z), we obtain

|∂zjG12
r (t, z)| = |zj |

2π
√

(t2 − |z|2)3 6 Ct−2, j = 1, 2, |z| 6 t/2

Hence, the bound (2.41) follows.
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