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Abstract

We strengthen known Agmon-Jensen-Kato decay of the resolvent [1, 4] for special case
of Schrödinger equation in arbitrary dimension n ≥ 1. The decay is of crucial importance
in application to linear and nonlinear hyperbolic PDEs.
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1 Introduction

In this paper, we establish a decay for the resolvent of Schrödinger equation

iψ̇(x, t) = −∆ψ(x, t), x ∈ R
n, t ∈ R (1.1)

in weighted energy norms.

Definition 1.1. For s, σ ∈ R, let us denote by Hs
σ = Hs

σ(R
n) the weighted Sobolev spaces

introduced by Agmon, [1], with the finite norms

‖ψ‖Hs
σ
= ‖〈x〉σ〈∇〉sψ‖L2 <∞, 〈x〉 = (1 + |x|2)1/2.

Definition 1.2. Denote by L(B1, B2) the Banach space of bounded linear operators from a
Banach space B1 to a Banach space B2.

Denote by R(ζ) = (−∆ − ζ)−1, Im ζ > 0 the resolvent of the operator −∆. The following
properties of R(ζ) are well known (see [1], and [4] in 3D case):

i) R(ζ) is strongly analytic function of ζ ∈ C \ [0,∞) with the values in L(H−1
0 , H1

0 );
ii) For ζ > 0, the convergence holds R(ζ ± iε) → R(ζ ± i0) as ε → 0+ in L(H−1

σ , H1
−σ) with

σ > 1/2, uniformly in ζ ≥ r for any r > 0.
For t ∈ R and Ψ0 ∈ H−1

σ with σ > 1, the solution Ψ(t) to the equation (1.1) admits the
spectral Fourier-Laplace representation

Ψ(t) =
1

2πi

∞
∫

0

e−iζt
[

R(ζ + i0)− R(ζ − i0)
]

Ψ0 dζ (1.2)

where the integral converges in the sense of distributions of t ∈ R with the values in H1
−σ.

In present paper we study the asymptotics of R(ζ) as ζ → ∞. We strengthen known Agmon-
Jensen-Kato decay of the resolvent [1, (A.2’)], [4, (8.1)] and proof the following statements

Theorem 1.3. For k = 0, 1, 2, ..., m ∈ R, and σ > 1/2 + k, the asymptotics hold

‖R(k)(ζ)‖L(Hm
σ ,Hm+l

−σ ) = O(|ζ |− 1−l+k
2 ), |ζ | → ∞, ζ ∈ C \ [0,∞) (1.3)

with l = −1, 0, 1, 2 for k = 0, and l = −1, 0, 1 for k = 1, 2, ....

We give the proof with details
i) since the bound (A.2’) is stated in [1] without a formal proof,
ii) to consider the simple special case and to avoid any ambiguity since the basic Lemma A.3
in [1] is stated for ζ ∈ K where K ⊂ C is a compact set (the lemma includes some additional
bounds which are valid only for the compact set and are nonrelevant to our goals),

We also include in the statement a rapid decay with the loss of the smoothness corresponding
to l = −1 in the proposition below. The rapid decay is of crucial importance in the different
application. We deduce the rapid decay using some Vainberg’s idea from the proof of [7, formula
(17), p. 348].
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Remark 1.4. Note that asymptotics ( 1.3) does not follow from the explicit formulas for the
resolvent. For example, in 3D case the resolvent of the Schrödinger equation is the integral
operator with the kernel

R(ζ, x− y) =
ei

√
ζ|x−y|

4π|x− y| ,

and the decay ( 1.3) is not obvious since the kernel does not decay for |ζ | → ∞.

2 The decay of the resolvent

Here we consider the case k = 0. We reduce the proof of Theorem 1.3 to the proof of certain
lemmas. The first two lemmas are well known (see [1, Lemma A.1 and A.2], and [6, Lemma 3
and 4, p.442]).

Lemma 2.1. (n=1) For s > 1/2 the following inequality holds:

‖v‖0,−s ≤ Cs‖[
d

dx
− λ]v‖0,s, λ ∈ C, v ∈ C∞

0 (R). (2.1)

Proof. We set f(x) = [ d
dx

− λ]v(x). Then we have

v(x) =

x
∫

−∞

f(y)eλ(x−y)dy.

It suffices to consider Reλ ≤ 0. Then using the Cauchy inequality, we obtain

|v(x)|2 ≤
(

x
∫

−∞

|f(y)|dy
)2

≤ Cs

∞
∫

−∞

(1 + y2)s|f(y)|2dy (2.2)

Multiplying (2.2) by (1 + x2)−s and integrating over R, we obtain

∞
∫

−∞

|v(x)|2(1 + x2)−sdx ≤ C2
s

∞
∫

−∞

(1 + y2)s|f(y)|2dy

This yields the lemma.

Let us denote ∂j =
∂

∂xj
, j = 1, ..., n.

Lemma 2.2. For s > 1/2, the following inequality holds:

∫

Rn

(1 + x2j )
−s|∂ju|2dx ≤ C2

s

∫

Rn

(1 + x2j )
s|∆u− z|2dx, z ∈ C , u ∈ C∞

0 (Rn). (2.3)
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Proof. It suffices to consider j = 1. We have

−ξ21 − ξ22 − ...− ξ2n − z = [iξ1 − λ1(ξ
′)][iξ1 − λ2(ξ

′)], (2.4)

where ξ′ = (ξ2, ..., ξn). Differentiating in ξ1, we obtain

2iξ1 = [iξ1 − λ1(ξ
′)] + [iξ1 − λ2(ξ

′)] (2.5)

Let us write u(x) = u(x1, x
′) where x′ = (x2, ..., xn). We denote by ũ(x1, ξ

′) the Fourier
transform of u with respect to the variable x′. Then (2.5) implies that

2
∂

∂x1
ũ(x1, ξ

′) = [∂1 − λ1(ξ
′))ũ(x1, ξ

′] + [∂1 − λ2(ξ
′))ũ(x1, ξ

′] (2.6)

Let us apply Lemma 2.1 to the functions v(x1) = [∂1 − λj(ξ
′)]ũ(x1, ξ

′) for j = 1, 2, taking
λ = λk(ξ

′) with k 6= j. Then (2.1) and (2.4) imply that

∞
∫

−∞

(1 + x21)
−s|[∂1 − λj(ξ

′)]ũ(x1, ξ
′)|2dx1 (2.7)

≤ C2
s

∞
∫

−∞

(1 + x21)
s|[∂1 − λk(ξ

′)][∂1 − λj(ξ
′)]ũ(x1, ξ

′)|2dx1

= C2
s

∞
∫

−∞

(1 + x21)
s|[∂21 − ξ22 − ...− ξ2n − z]ũ(x1, ξ

′)|2dx1

Combining (2.6) and (2.11), we get

∞
∫

−∞

(1 + x21)
−s|∂1ũ(x1, ξ′)|2dx1 ≤ C2

s

∞
∫

−∞

(1 + x21)
s|[∂21 − ξ22 − ...− ξ2n − z]ũ(x1, ξ

′)|2dx1 (2.8)

Integrating (2.8) with respect to ξ′, and using Parseval’s formula, we find that

∫

Rn

(1 + x21)
−s|∂1u(x)|2dx =

∫

Rn−1

dξ′
∞
∫

−∞

(1 + x21)
−s|∂1ũ(x1, ξ′)|2dx1 (2.9)

≤
∫

Rn−1

dξ′
∞
∫

−∞

(1 + x21)
−s|[∂21 − ξ22 − ...− ξ2n − z]ũ(x1, ξ

′)|2dx1

= C2
s

∫

Rn

(1 + x21)
s|(∆− z)u(x)|2dx.

This establishes the lemma.

The next lemma (and its proof) is a streamlined version of corresponding [1, Lemma A.3].
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Lemma 2.3. Let us fix any ρ > 0 and s ∈ R. Then the following estimate holds for ψ ∈ C∞
0 (Rn)

‖ψ‖Hl
s
≤ C(s, ρ)|ζ |− 1−l

2

(

‖(−∆− ζ)ψ‖H0
s
+

n
∑

j=1

‖∂jψ(x)‖H0
s

)

, ζ ∈ C, |ζ | ≥ ρ, l = 0, 1.

(2.10)

Proof. Step i) First we prove (2.10) for s = 0. For the proof we use the bound

(1 + |ξ|l)2 ≤ C(ρ)|ζ |−(1−l)
(

||ξ|2 − ζ |2 + |ξ|2
)

, ξ ∈ R
n, |ζ | ≥ ρ, l = 0, 1. (2.11)

For l = 1 the bound is obvious. For l = 0 we assume for the simplicity that ρ > 1/2. Then
(2.11) reduces to a quadratic inequality for y = |ξ|2 − |ζ | ≥ −|ζ | since then

||ξ|2 − ζ |2 + |ξ|2 ≥ ||ξ|2 − |ζ ||2 + |ξ|2 = y2 + y + |ζ |

≥ min
y≥−|ζ|

(y2 + y) + |ζ | ≥ |ζ |
2
, |ζ | ≥ 1/2. (2.12)

Further, let us multiply both sides of (2.11) by |ψ̂(ξ)|2 and integrate over Rn. Then using
Parseval’s formula, we find for |ζ | ≥ ρ that

∑

|α|≤l

‖Dαψ‖2 ≤ C

∫

Rn

(1+|ξ|l)2|ψ̂(ξ)|2dξ ≤ C0(ρ)|ζ |−(1−l)
(

‖(−∆−ζ)ψ‖2+
n

∑

j=1

‖∂jψ(x)‖2
)

(2.13)

Step ii) To prove (2.10) for arbitrary s ∈ R, let us introduce the family of weight functions
ρε(x) = (1+|εx|2)s/2 with 0 < ε ≤ 1. Observe that the weight with any fixed ε > 0 is equivalent
to ρ1(x) defining the Agmon spaces, and

|∂jρε(x)| =
∣

∣

s

2
(1 + |εx|2)s/2−12ε2xj

∣

∣ ≤ |s|
2
(1 + |εx|2)s/2−1ε(1 + ε2x2j ) ≤ εCρε(x)

where C = C(s). Similarly, we have

|∂αρε(x)| ≤ ε|α|Cρε(x), x ∈ R
n, 0 < ε ≤ 1, 0 ≤ |α| ≤ 2. (2.14)

Further, we obtain

∂α(ρεψ)− ρε∂
αψ =

∑

0≤βj≤αj , |β| ≥1

Cα,β∂
βρε · ∂α−βψ,

Hence, (2.14) implies that

‖∂α(ρεψ)− ρε∂
αψ‖ ≤ εC1

∑

|γ|≤|α|−1

‖ρε∂γψ‖. (2.15)

Therefore,

‖(−∆− ζ)(ρεψ)− ρε(−∆− ζ)ψ‖ ≤ εC2

∑

|α|≤1

‖ρε∂αψ‖. (2.16)
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Now let us apply the estimate (2.10) for s = 0 proved above to the function ρεψ:

∑

|α|≤l

‖∂α(ρεψ)‖ ≤ C0(ρ)|ζ |−
1−l
2

(

‖(−∆− ζ)(ρεψ)‖+
n

∑

j=1

‖∂j(ρεψ)‖
)

, |ζ | ≥ ρ. (2.17)

Step iii) Let us prove (2.10) for l = 0. Applying (2.17) with l = 0, we obtain by (2.16)

‖ρεψ‖ ≤ C0(ρ)
1

√

|ζ |

(

‖(−∆− ζ)(ρεψ)‖+
n

∑

j=1

‖∂j(ρεψ)‖
)

≤ C0(ρ)
1

√

|ζ |

(

‖ρε(−∆− ζ)ψ‖+ εC2(‖ρεψ‖+
n

∑

j=1

‖ρε∂jψ‖) +
n

∑

j=1

‖ρε∂jψ‖+ εC1‖ρεψ‖
)

≤ C0(ρ)
1

√

|ζ |

(

‖ρε(−∆− ζ)ψ‖+
n

∑

j=1

‖ρε∂jψ‖
)

+
1√
ζ
εC3(ρ)‖ρεψ‖

Choosing ε > 0 small enough such that 1√
|ζ|
εC3(ρ) < 1 we obtain

‖ρεψ‖ ≤ C4(ρ)
1

√

|ζ |

(

‖ρε(−∆− ζ)ψ‖+
n

∑

j=1

‖ρε
∂

∂xj
ψ‖

)

Hence, (2.10) with l = 0 follows since the weight function ρε(x), with any fixed ε > 0, is
equivalent to ρ1(x) defining the Agmon spaces.
Step iv) Finally let us prove (2.10) for l = 1. Applying (2.15) with |α| = 1 and (2.17) with
l = 1, we obtain

∑

|α|≤1

‖ρε∂αψ‖ ≤
∑

|α|≤1

‖∂α(ρεψ)‖+ εC5‖ρεψ‖

≤ C0(ρ)
(

‖(−∆− ζ)(ρεψ)‖+
n

∑

j=1

‖∂j(ρεψ)‖
)

+ εC5‖ρεψ‖

≤ C0(ρ)
(

‖ρε(−∆− ζ)ψ‖+
n

∑

j=1

‖ρε∂jψ‖
)

+ εC6(ρ)‖ρεψ‖

using (2.16) as above. Choosing ε > 0 small enough, we obtain

∑

|α|≤1

‖ρε∂αψ‖ ≤ C7(ρ)
(

‖ρε(−∆− ζ)ψ‖+
n

∑

j=1

‖ρε
∂

∂xj
ψ‖

)

that implies (2.10) with l = 1.

Proof of Theorem 1.3 for k = 0. It suffices to verify the case m = 0 since R(ζ) commutes
with the operator 〈∇〉m. We must prove that

‖R(ζ)‖L(H0
σ,H

l
−σ)

= O(|ζ |− 1−l
2 ), |ζ | → ∞, ζ ∈ C \ [0,∞), l = −1, 0, 1, 2 (2.18)
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for σ > 1/2. By Lemma 2.3 with s = −σ,

‖ψ‖Hl
−σ

≤ C(σ, ρ)|ζ |− 1−l
2

(

‖(−∆− ζ)ψ‖H0
−σ

+

n
∑

j=1

‖∂jψ‖H0
−σ

)

, |ζ | ≥ ρ > 0, l = 0, 1 (2.19)

for all ψ ∈ H2
σ(R

n). By Lemma 2.2, we have

n
∑

j=1

‖∂jψ‖H0
−σ

≤ C(σ)‖(∆− ζ)ψ‖H0
σ
, j = 1, ..., n. (2.20)

Combining (2.19) and (2.20), we obtain

‖ψ‖Hl
−σ

≤ C(σ, ρ)|ζ |− 1−l
2

(

‖(∆−ζ)ψ‖H0
−σ
+C(σ)‖(−∆−ζ)ψ‖H0

σ

)

≤ C1(σ, ρ)|ζ |−
1−l
2 ‖(∆−ζ)ψ‖H0

σ

and then (2.18) with l = 0, 1 is proved. It remains to prove (2.18) for l = −1 and l = 2.
The bound with l = 1 implies that R(ζ) = O(1) in L(H0

σ, H
1
−σ), hence ∆R(ζ) = O(1) in

L(H0
σ, H

−1
−σ). Therefore

R(ζ) = −1

ζ
− ∆R(ζ)

ζ
= O(|ζ |−1) in L(H0

σ, H
−1
−σ).

Hence, the bound (2.18) follow with l = −1.
Using the identity (1−∆)R(ζ) = 1 + (1 + ζ)R(ζ), we obtain

‖R(ζ)‖L(H0
σ,H

2
−σ)

= ‖(1−∆)R(ζ)‖L(H0
σ,H

0
−σ)

= ‖1 + (1 + ζ)R(ζ)‖L(H0
σ,H

0
−σ)

= 1 +O(|ζ |)‖R(ζ)‖L(H0
σ,H

0
−σ)

= O(|ζ |1/2) (2.21)

then the bound (2.18) follow with l = 2. ✷

3 The decay of the derivatives

First we prepare two lemma concerning the relation between derivatives of R(ζ) stated in [4,
(8.2)].

Lemma 3.1. The following identity (Lavine-type) holds

ζR′
0(ζ) = −R(ζ) + 1

2
[x · ∇, R(ζ)], ζ ∈ C \ [0,∞) (3.1)

where [·, ·] stands for the commutator.

Proof. Applying Fourier transform to RHS of (3.1), we obtain

Fx−y→ξ{−R(ζ) +
1

2
[x · ∇, R(ζ)]} = − 1

|ξ|2 − ζ
+

1

2
i∇

( 1

|ξ|2 − ζ

)

· (−iξ) (3.2)

since

[x · ∇, R(ζ)] = x · ∇R(ζ)− R(ζ)x · ∇ = xR(ζ) · ∇ − R(ζ)x · ∇ = [x,R(ζ)] · ∇
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Simplifying (3.2), we have

Fx−y→ξ{−R(ζ) +
1

2
[x · ∇, R(ζ)]}= −1

|ξ|2 − ζ
+

|ξ|2
(|ξ|2 − ζ)2

=
−1

|ξ|2 − ζ
+

|ξ|2 − ζ + ζ

(|ξ|2 − ζ)2
=

ζ

(|ξ|2 − ζ)2

which coincides with the Fourier transform of LHS (3.1)

Lemma 3.2. The following identity holds

2ζR(k)(ζ) = −(2k − n)R(k−1)(ζ)− 1

2
[x, [x,R(k−2)(ζ)]], k ≥ 2 (3.3)

Proof. Applying Fourier transform to RHS of (3.3), we obtain

−(2k − n)
(k − 1)!

(|ξ|2 − ζ)k
− 1

2
(i∇)2

(k − 2)!

(|ξ|2 − ζ)k−1
= −(2k − n)

(k − 1)!

(|ξ|2 − ζ)k
−∇ · (k − 1)! ξ

(|ξ|2 − ζ)k

= −(2k − n)
(k − 1)!

(|ξ|2 − ζ)k
− n

(k − 1)!

(|ξ|2 − ζ)k
+

2k!|ξ|2
(|ξ|2 − ζ)k+1

= − 2k!

(|ξ|2 − ζ)k
+

2k!(|ξ|2 − ζ + ζ)

(|ξ|2 − ζ)k+1

= 2ζ
k!

(|ξ|2 − ζ)k+1

which coincides with the Fourier transform of LHS (3.3).

Proof of Theorem 1.3

For k = 1 the asymptotics (1.3) follows from (2.18) and (3.1) since

x ∈ L(Hm
σ , H

m
σ−1), ∇ ∈ L(Hm

σ , H
m−1
σ )

Namely, (2.18) for σ > 3/2 implies

‖R(ζ)‖L(H0
σ−1,H

1+l
−σ+1)

= O(|ζ |−
1−(1+l)

2 ), 0 ≤ 1 + l ≤ 2

Hence,

‖x · ∇R(ζ)‖L(H0
σ−1,H

l
−σ)

= O(|ζ | l2 ), ‖R(ζ)x · ∇‖L(H0
σ ,H

l
−σ+1)

= O(|ζ | l2 )
Therefore (2.18) and (3.1) imply that

‖R′(ζ)‖L(H0
σ,H

l
−σ)

= O(|ζ |− 2−l
2 )

Finally, we obtain (1.3) for all k ≥ 2 by induction using the identity (3.3).
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