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1 Introduction

We establish a dispersive long time decay for solutions to 3D magnetic Klein-Gordon equation

ψ̈(x, t) =
(

∇− iA(x)
)2
ψ(x, t)−m2ψ(x, t)− V (x)ψ(x, t), m > 0. (1.1)

For s, σ ∈ R, denote by Hs
σ = Hs

σ(R
3) the weighted Sobolev spaces introduced by Agmon, [1],

with the finite norms

‖ψ‖Hs
σ
= ‖〈x〉σ〈∇〉sψ‖L2(R3) <∞, 〈x〉 = (1 + |x|2)1/2. (1.2)

We assume that V (x) ∈ C1(R3), Aj ∈ C4(R3) are real functions, and for some β > 3 the bounds
hold

|V (x)|+ |∇V (x)|+
∑

|α|≤4

3
∑

j=1

|DαAj(x)| ≤ C〈x〉−β, x ∈ R
3. (1.3)

We restrict ourselves to the “regular case” in the terminology of [10] where the truncated
resolvent of the corresponding magnetic Schrödinger operator

H = (i∇ + A
)2

+ V = −∆+ 2iA · ∇+ i∇ · A + A2 + V

is bounded at the edge point 0 of the continuous spectrum. In other words, the point 0 is
neither an eigenvalue nor a resonance for the operator H ; this holds for generic potentials.

In vector form, equation (1.1) reads

iΨ̇(t) = KΨ(t), (1.4)

where

Ψ(t) =

(

ψ(t)

ψ̇(t)

)

, K =

(

0 i
i
(

(∇− iA(x))2 −m2 − V (x)
)

0

)

.

Denote Fσ = H1
σ ⊕H0

σ, and let U(t) : F0 → F0 be the dynamical group of equation (1.4).
Our main result is the following long time decay: in the regular case for any σ > 5/2

‖U(t)Ψ(0)‖F−σ
≤ C(1 + t)−3/2‖Ψ(0)‖Fσ

, t > 0 (1.5)

for solutions to (1.4) with initial data Ψ(0) from the space of continuous spectrum of K.

Let us comment on previous results in this direction. The decay of type (1.5) in weighted
norms has been established first by Jensen and Kato [10] for 3D Schrödinger equation with
scalar potential. The result has been extended to more general PDEs of the Schrödinger type
by Murata [14]. The survey of the results can be found in [16]. For the Klein-Gordon and wave
equations with scalar potential, the weighed energy decay has been established in [11] and [13],
and for the Dirac equation in [3]. The Strichartz estimates for magnetic Schrödinger, wave,
Klein-Gordon and Dirac equations with smallness conditions on the potentials were obtained
in [5, 6, 7] and for magnetic Schrödinger equations with large potentials in [4].

The decay in weighted norms for magnetic Schrödinger equation has been established in
[12]. For the Klein-Gordon equations with magnetic potential, the decay ∼ t−3/2 was obtained
by Vainberg [22, 23] in local energy norms for initial data with a compact support. However,
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the decay in weighed energy norms for magnetic Klein-Gordon equation was not obtain up to
now.

Let us comment on our approach. We extend the method of Jensen and Kato [10] to the
Klein-Gordon equation with magnetic potential. The main problem consists in the presence of
the first order derivatives in the perturbation. These derivatives cannot be handled with the
perturbation theory like [11] since the corresponding terms do not decay in suitable norms.

Our main novelties are Propositions 3.2 and 3.3 on decay of propagators far from thresholds.
First, we prove the decay for magnetic Klein-Gordon equation with V = 0. The proof rely on

the Mourre estimates for the operator BA = ((i∇+A
)2
+m2)1/2 and the minimal escape velocity

estimates of Hunziker, Sigal and Soffer [9] and their development by Boussaid [3]. Finally, we
obtain the decay for the Klein-Gordon equation with V 6= 0 using the Born perturbation series
and our recent results on the decay of the magnetic Schrödinger resolvent [12].

2 Spectral properties

Denote L2 = L2(R3). Similarly to [10, p. 589], [14, formula (3.1)] and [12, §3.2], let us introduce
a generalized eigenspace M for the Schrödinger operator H :

M = {ψ ∈ H0
−1/2−0 : (1 + A0W )ψ = 0},

where A0 is the operator with the integral kernel 1/4π|x−y| andW = 2iA ·∇+ i∇·A+A2+V .
Functions ψ ∈ M∩L2 are the zero eigenfunctions of H and functions ψ ∈ M\L2 are the zero
resonances of H .

Our key assumption is the following spectral condition (cf. Condition (i) in [14, Theorem
7.2]):

M = 0 (2.1)

In other words, the point zero is neither an eigenvalue nor a resonance for the operator H .
Condition (2.1) holds for a generic W . Denote by L(B1, B2) the Banach space of bounded
linear operators from a Banach space B1 to a Banach space B2. Denote by R(ω) = (H − ω)−1

the resolvent of the operator H . Let us collect the properties of R(ω) obtained in [12] under
conditions (1.3) and (2.1):

Lemma 2.1. Let condition ( 1.3) holds. Then
i) For ω > 0, the limiting absorption principle holds

R(ω ± iε) → R(ω ± i0), ε→ 0+ (2.2)

in L(H0
σ,H2

−σ) with σ > 1/2.

ii) For k = 0, 1, 2, σ > 1/2 + k, and s = 0, 1, the asymptotics hold

‖R(k)(ω)‖L(Hs
σ;H

s+l
−σ ) = O(|ω|− 1−l+k

2 ), |ω| → ∞, ω ∈ C \ [0,∞). (2.3)

where l = 0, 1 for s = 0, and l = 0,−1 for s = 1.

Note that asymptotics (2.3) have been proved in [12] for s = 0 only. In the case s = 1 the
proof is given in Appendix.
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Lemma 2.2. Let conditions ( 1.3) and ( 2.1) hold. Then
i) For σ > 1 the asymptotics hold

‖R(ω)−R(0)‖L(H0
σ,H

2
−σ)

→ 0, ω → 0, ω ∈ C \ [0,∞) (2.4)

where R(0) : H0
σ → H2

−σ′ is a continuous operator.

ii) For k = 1, 2 and σ > 1/2 + k the asymptotics hold

‖R(k)(ω)‖L(H0
σ,H

2
−σ)

= O(|ω|1/2−k), ω→ 0, ω ∈ C \ [0,∞). (2.5)

Denote Γ := (−∞,−m)∪ (m,∞) and let R(ω) = (K−ω)−1 be the resolvent of the operator
K. The resolvent R can be expressed in terms of the resolvent R:

R(ω) =

(

ωR(ω2 −m2) iR(ω2 −m2)
−i(1 + ω2R(ω2 −m2)) ωR(ω2 −m2)

)

(2.6)

Hence, the properties of R imply the corresponding properties of R:

Lemma 2.3. Let conditions ( 1.3) and ( 2.1) hold. Then
i) The limiting absorption principle holds:

R(ω ± iε) → R(ω ± i0), ω ∈ Γ ε → 0+ (2.7)

in L(Fσ,F−σ) with σ > 1/2.

ii) For ω ∈ C \ Γ the asymptotics hold

‖R(ω)‖L(Fσ,F−σ) = O(1), ω ±m→ 0, σ > 1 (2.8)

‖R(k)(ω)‖L(Fσ,F−σ) = O(|ω ±m|1/2−k), ω ±m→ 0, σ > 1/2 + k, k = 1, 2, ... (2.9)

iii) For k = 0, 1, 2, ... and σ > 1/2 + k the asymptotics hold

‖R(k)(ω)‖L(Fσ,F−σ) = O(1) ω → ∞, ω ∈ C \ Γ (2.10)

Under conditions (1.3) and (2.1) the representation holds

U(t)Pc(K)Ψ(0) =
1

2πi

∫

Γ

e−iωt[R(ω + i0)−R(ω − i0)]Ψ(0) dω, t ∈ R (2.11)

for initial state Ψ(0) ∈ Fσ with σ > 1. Here

Pc(K) = IΓ(K)

is the projector associated with the continuous spectrum of K. The representation (2.11) follows
from the Cauchy residue theorem, and Lemma 2.3 (cf. [11, §2.2]).
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3 Time decay

We are now able to state our main result

Theorem 3.1. (Weighed energy decay) Let assumptions ( 1.3) and ( 2.1) hold. Then for σ >
5/2 the time decay holds

‖U(t)Pc(K)‖L(Fσ ,F−σ) ≤ C〈t〉−3/2, t ∈ R. (3.1)

We prove the decay separately for the components of the solution near thresholds and far
from thresholds. More precisely, we choose a function χm ∈ C∞

0 (R) supported in a sufficiently
small neighborhood of [−m,m]. Then

‖U(t)Pc(K)‖L(Fσ ,F−σ) ≤ ‖U(t)χm(K)Pc(K)‖L(Fσ ,F−σ) + ‖U(t)(1− χm)(K)‖L(Fσ ,F−σ). (3.2)

The decay of the first low energy component can be treated by the method of Jensen and Kato
[10]. Namely, using the spectral representation (cf. (2.11))

U(t)χm(K)Pc(K)Ψ(0) =
1

2πi

∫

Γ

e−iωtχm(ω)[R(ω + i0)−R(ω − i0)]Ψ(0) dω, t ∈ R, (3.3)

and asymptotics (2.8) - (2.9), we obtain for σ > 5/2

‖U(t)χm(K)Pc(K)‖L(Fσ ,F−σ) ≤ C(σ)〈t〉−3/2, t ∈ R (3.4)

by [10, Lemma 10.2]. To treat the decay of the second high energy component we cannot use the
spectral representation since the resolvent R(ω) does not decay in L(Fσ,F−σ) as ω → ∞ (see
(2.10)). We obtain the required decay in the following way. First, we consider the Klein-Gordon
equation without a scalar potential, i.e with V = 0:

iΨ̇(t) = K0Ψ(t), K0 =

(

0 i
i
(

(∇− iA(x))2 −m2
)

0

)

. (3.5)

Denote U0(t) : F0 → F0 the dynamical group of equation (3.5). Applying the minimal escape
velocity estimates of Hunziker, Sigal and Soffer [9, Theorem 1.1.] and their modification [3,
Proposition 2.2] we will prove

Proposition 3.2. (The case V = 0) Let assumption ( 1.3) hold. Then for any bounded χ ∈
C∞(R) supported in Γ, any σ ≥ 2 and any ε > 0 the decay holds

‖U0(t)χ(K0)‖L(Fσ ,F−σ) ≤ C(ε)〈t〉−2+ε, t ∈ R. (3.6)

Finally, we will prove the decay for the Klein-Gordon equation with V 6= 0 using the Born
perturbation series (5.3).

Proposition 3.3. (The case V 6= 0) Let assumption ( 1.3) hold. Then for any bounded χ ∈
C∞(R) supported in Γ, any σ > 5/2 and any ε > 0 the decay holds

‖U(t)χ(K)‖L(Fσ ,F−σ) ≤ C(σ, ε)〈t〉−2+ε, t ∈ R. (3.7)

Theorem 3.1 follows from (3.2), (3.4), and Propositions 3.2 and 3.3. We prove Propositions
3.2 and 3.3 in the remaining part of the paper.
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4 The case V = 0

First, we prove Proposition 3.2. Denote

B =
[

(i∇− A(x)
)2

+m2
]1/2

which is positive and self-adjoint in L2. Then

U0(t) =





cos Bt B−1 sin Bt

−B sin Bt cos Bt



 . (4.1)

Hence, for the proof of (3.6) it suffices to check that

‖e−itBχ(B)‖L(H0
σ,H

0
−σ)

≤ C(ε)〈t〉−2+ε, t ∈ R (4.2)

for σ ≥ 2, ε > 0, and any bounded χ ∈ C∞(R) with support in (m,∞). We will deduce
(4.2) from the minimal escape velocity estimates [9] which rely on the Mourre estimates for the
operator B.

4.1 Mourre estimates

Denote

P =
i

2
(x · ∇+∇ · x), PB = PB−1 +B−1P. (4.3)

and let IM be the characteristic function of a set M .

Lemma 4.1. Suppose that assumption ( 1.3) holds. Then
i) For any θ ∈ (0, 1) there exists ν ≥ 0 such that

I|B|≥m+ν i[B,PB] I|B|≥m+ν ≥ θ I|B|≥m+ν . (4.4)

ii) For any λ ∈ Γ and any δ > 0, there exists µ > 0 such that

I|B−λ|≤µ i[B,PB] I|B−λ|≤µ ≥
(λ2 −m2

λ2
− δ

)

I|B−λ|≤µ. (4.5)

Proof. Step i) Let us obtain a suitable formula for commutator [B,PB]. First,

[B,PB] = [B,P ]B−1 +B−1[B,P ].

Further, we express [B,P ] via [B2, P ] following [20]. Namely, using the Kato square root
formula [15, page 317], we obtain for any ψ ∈ L2

Bψ =
1

π

∫ ∞

0

ω−1/2B2(B2 + ω)−1ψ dω. (4.6)

Hence, one has

[B,P ] =
1

π

∫ ∞

0

ω−1/2[B2(B2 + ω)−1, P ] dω. (4.7)
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Further,

(B2 + ω)[B2(B2 + ω)−1, P ](B2 + ω) = B2P (B2 + ω)− (B2 + ω)PB2 = ω[B2, P ].

Then (4.6) becomes

[B,P ] =
1

π

∫ ∞

0

ω1/2(B2 + ω)−1[B2, P ](B2 + ω)−1 dω. (4.8)

It is easy to calculate
i[B2, P ] = B2 −m2 +Q, (4.9)

where
Q = −A2 + 2i(∇ · A)− x · (∇A2) + 2ix · (∇(∇ · A)) + i

∑

j,k

xj(∇jAk)∇k.

Substituting into (4.8), we get

i[B,P ]B−1 =
1

π

∫ ∞

0

ω1/2(B2 −m2)B−1(B2 + ω)−2 dω

+
1

π

∫ ∞

0

ω1/2(B2 + ω)−1QB−1(B2 + ω)−1 dω = J1 + J2

iB−1[B,P ] =
1

π

∫ ∞

0

ω1/2(B2 −m2)B−1(B2 + ω)−2 dω

+
1

π

∫ ∞

0

ω1/2(B2 + ω)−1B−1Q(B2 + ω)−1 dω = J1 + J3

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(4.10)

Applying the integration by parts, we rewrite J1 as

J1 = −1

π

∫ ∞

0

ω1/2 d

dω
(B2 + ω)−1(B2 −m2)B−1 dω

(4.11)

=
1

2

∫ ∞

0

ω−1/2(B2 + ω)−1(B2 −m2)B−1 dω =
1

2
(B2 −m2)B−2,

which follows from (4.6) and the bound

‖(B2 + ω)−1ψ‖L2 ≤ (m2 + ω)−1‖ψ‖L2. (4.12)

Finally,

i[B,PB] =
B2 −m2

B2
+ J, J = J2 + J3. (4.13)
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Step ii) Let us prove that J = J2 + J3 : L2 → L2 is a compact operator. First, bounds (1.3)
and (4.12) imply for any 0 < σ < β and 0 < α < 1

‖(B2 + ω)−1+αQB−1(B2 + ω)−1ψ‖H0
σ

≤ C(1 + ω)−2+α‖ψ‖L2,

‖(B2 + ω)−1+αB−1Q(B2 + ω)−1ψ‖H0
σ

≤ C(1 + ω)−2+α‖ψ‖L2

by the technique of [17] and the standard technique of PDOs [2, 19, 21]. Second, for any
0 < α < 1 and φ ∈ H0

σ the bound holds

‖(B2 + ω)−αφ‖H2α
σ

≤ C‖φ‖H0
σ
. (4.14)

Indeed, using the technique [17], we get

‖(B2 + ω)−αφ‖H2α
σ

≤ C‖B2α(B2 + ω)−αφ‖H0
σ
≤ C1‖φ‖H0

σ

since B is a positive elliptic first order PDO. Finally, choosing 0 < α < 1/2, we obtain

‖J2ψ‖H2α
σ

+ ‖J3ψ‖H2α
σ

≤ C‖ψ‖L2 . (4.15)

Thetefore, J2, J3 : L
2 → L2 are compact operators since the embedding H2α

σ ⊂ L2 is compact
by Sobolev’s Embedding Theorem.

Step iii) In the case A = 0 (and then J = 0) bounds (4.4) and (4.5) follow from (4.13). For
A 6= 0 and any κ > 0 we split the compact operator J as

J = Jκ +

N
∑

1

|fj〉〈gj|,

where ‖Jκ‖ ≤ κ, and fj, gj ∈ L2. Then

‖ I|B−λ|≤µ| fj〉〈gj |I|B−λ|≤µ‖L2→L2 ≤ ‖ I|B−λ|≤µf̂j‖L2 · ‖ I|B−λ|≤µĝj‖L2 → 0, µ → 0

due to absolute continuity of spectral representatives f̂j , ĝj ∈ L2([0,∞), X) of fj, gj in the
spectral resolution of B, where X is an appropriate Hilbert space. Hence, for sufficiently
small κ and µ bound (4.5) follows. Similarly, bound (4.4) follows for sufficiently small κ and
sufficiently large ν.

4.2 Minimal escape velocity

Here we adapt the methods of [9, Theorem 1.1] to our case (see also [3, Theorem 2.1])

Lemma 4.2. Let assumption ( 1.3) hold. Then for any bounded χ ∈ C∞ with support in Γ,
there exists θ > 0 such that for any v ∈ (0, θ), any a ∈ R, and any ε > 0 the bound holds

‖IPB≤a+v|t| e
−itBχ(B)IPB≥a‖ ≤ C(v, ε)〈t〉−2+ε, t ∈ R, (4.16)

where C does not depend on a and t.
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Proof. According to [9, Theorem 1.1] and [3, Theorem 2.1] bound (4.16) follows from the Mourre
estimates (4.4) - (4.5) and the boundedness of commutators adkPB

(B) : L2 → L2 for 1 ≤ k ≤ 3,
where

ad1PB
(B) = [B,PB], and adkPB

(B) = [adk−1
PB

(B), PB].

The boundedness of ad1PB
(B) = [B,PB] follows from (4.13) and (4.15).

For k = 2, 3 we have

adkPB
(B) = −i

[

adk−1
PB

(2J1) + adk−1
PB

(J2) + adk−1
PB

(J3)
]

by (4.13). The boundedness of adk−1
PB

(J2) and ad
k−1
PB

(J3) is obvious due to (1.3) and definition
(4.10) of J2 and J3. Hence, it remains to prove that [PB, 2J1] and [PB, [PB, 2J1]] are bounded
in L2. The boundedness of [B,PB] imply the boundedness of

[PB, B
−1] = B−1[B,PB]B

−1.

Then by (4.11) the operator

[PB, 2J1] = [PB, (B
2 −m2)B−2] = −m2[PB, B

−2] = −m2
(

[PB, B
−1]B−1 +B−1[PB, B

−1]
)

is also bounded in L2. Further, (4.3) and (4.9) imply

[PB, 2J1] = m2B−2[PB, B
2]B−2 = m2B−3[P,B2]B−2 +m2B−2[P,B2]B−3

= m2i
(

2(B2 −m2)B−5 +B−3QB−2 +B−2QB−3
)

.

Hence, the boundedness of [PB, [PB, 2J1]] in L2 follows from (1.3) and the boundedness of
[PB, B

−l] for any l ∈ N.

Proof of Proposition 3.2 For any c ≥ 0 and any σ > 0 one has

〈PB〉−σ = 〈PB〉−σI±PB≤c|t| +O(|t|−σ), |t| > 1

in L(L2, L2). Hence,

〈PB〉−σe−itBχ(B)〈PB〉−σ = 〈PB〉−σIPB≤(θ−γ)|t|/2e
−itBχ(B)IPB≥−θ|t|/2〈PB〉−σ +O(|t|−σ), γ < θ.

Choosing a = −θ|t|
2

and v = θ − γ
2
in Lemma 4.2, we obtain for σ = 2 and ε > 0

‖〈PB〉−σ〈x〉σ〈x〉−σe−itBχ(B)〈x〉−σ〈x〉σ〈PB〉−σ‖L(L2,L2) ≤ C(ε)〈t〉−2+ε, t ∈ R.

Now (4.2) follows since 〈PB〉−σ〈x〉σ and 〈x〉σ〈PB〉−σ are bounded in L(L2, L2). This follows
by the arguments from the proof of Proposition 2.2 in [3] (page 770), relying on the multi-
commutator expansion [8, Identity (B.24)] and the identity [18, (1.2)].
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5 The case V 6= 0

Here we prove Proposition 3.3. Denote

X(t) := U(t)χ(K)Ψ(0) =
1

2πi

∫

Γ

χ(ω)e−iωt
[

R(ω + i0)−R(ω − i0)
]

Ψ0 dω. (5.1)

Our final goal is the bound

‖X(t)‖F−σ
≤ C(σ, ε)‖Ψ0‖Fσ

〈t〉−2+ε, t ∈ R, σ > 5/2. (5.2)

Let us apply the Born perturbation series

R(ω) = R0(ω)−R0(ω)VR0(ω) +R0(ω)VR0(ω)VR(ω), (5.3)

which follows by iteration of R(ω) = R0(ω)−R0(ω)VR(ω). Here R0(ω) = (K0 − ω)−1 is the
resolvent of the operator K0 and

V =

(

0 0
−iV 0

)

. (5.4)

Substituting (5.3) into (5.1) we obtain

X(t) =
1

2πi

∫

Γ

χ(ω)e−iωt
[

R0(ω + i0)−R0(ω − i0)
]

Ψ0 dω

+
1

2πi

∫

Γ

χ(ω)e−iωt
[

R0(ω + i0)VR0(ω + i0)−R0(ω − i0)VR0(ω − i0)
]

Ψ0 dω

+
1

2πi

∫

Γ

χ(ω)e−iωt
[

R0VR0VR(ω + i0)−R0VR0VR(ω − i0)
]

Ψ0 dω (5.5)

= X1(t) +X2(t) +X3(t), t ∈ R

We analyze each term Xk separately.

Step i) For X1(t) = U0(t)χ(K0)Ψ(0) Proposition 3.2 implies that for any σ ≥ 2 and any ε > 0

‖X1(t)‖F−σ
≤ C(ε)‖Ψ0‖Fσ

〈t〉−2+ε, t ∈ R. (5.6)

Step ii) Consider the second term X2(t). We can choose the function χ(ω) such that χ(ω) =
χ2
1(ω). Denote

Y1(t) =
1

2πi

∫

Γ

χ1(ω)e
−iωt

[

R0(ω + i0)−R0(ω − i0)
]

Ψ0 dω

It is obvious that for Y1(t) the inequality (5.6) also holds. Namely,

‖Y1(t)‖F−σ
≤ C(ε)‖Ψ0‖Fσ

〈t〉−2+ε, t ∈ R, σ ≥ 2, ε > 0. (5.7)

Now the second term X2(t) can be rewritten as a convolution.
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Lemma 5.1. The convolution representation holds

X2(t) = i

t
∫

0

U(t− τ)VY1(τ) dτ, t ∈ R (5.8)

where the integral converges in F−σ with σ ≥ 2.

Proof. We have

X2(t) =
1

2πi

∫

R

e−iωtχ1(ω)
2R0(ω + i0)VR0(ω + i0)Ψ0 dω (5.9)

− 1

2πi

∫

R

e−iωtχ1(ω)
2R0(ω − i0)VR0(ω − i0)

]

Ψ0 dω = X+
2 (t) +X−

2 (t)

Denote Y +
1 (t) := θ(t)Y1(t). Then χ1(ω)R0(ω + i0)Ψ0 = iỸ +

1 (ω) and we obtain that

X+
2 (t) =

1

2π

∫

R

e−iωtχ1(ω)R0(ω + i0)VỸ +
1 (ω) dω

=
1

2π

∫

R

e−iωtχ1(ω)R0(ω + i0)V
[

∫

R

eiωτY +
1 (τ)dτ

]

dω

=
1

2π
(i∂t + i)2

∫

R

e−iωt

(ω + i)2
χ1(ω)R0(ω + i0)V

[

∫

R

eiωτY +
1 (τ)dτ

]

dω.

The last double integral converges in F−σ with σ ≥ 2 by (5.7) with 0 < ε < 1, Lemma 2.3 i),
and (2.10) with k = 0. Hence, we can change the order of integration by the Fubini theorem
and we obtain that

X+
2 (t) =







i

∫ t

0

U0(t− τ)χ1(K0)VY1(τ)dτ , t > 0

0 , t < 0
(5.10)

since

1

2πi
(i∂t + i)2

∫

R

e−iω(t−τ)

(ω + i)2
χ1(ω)R0(ω + i0) dω =

1

2πi

∫

R

e−iω(t−τ)χ1(ω)R0(ω + i0) dω

= θ(t− τ)U0(t− τ)χ1(K0)

Similarly, we obtain

X−
2 (t) =







0 , t > 0

i

∫ t

0

U0(t− τ)χ1(K0)VY1(τ)dτ , t < 0
(5.11)

Now (5.8) follows since X2(t) is the sum of two expressions (5.10) and (5.11).



Weighted energy decay for magnetic Klein-Gordon equation 11

Now we choose an arbitrary σ ≥ 2, 0 < ε < 1 and σ1 ∈ [2, min{σ, β/2}). Applying
Proposition 3.2 with χ1 instead χ to the integrand in (5.8), we obtain that

‖U0(t− τ)χ1(K0)VY1(τ)‖F−σ
≤ ‖U0(t− τ)χ1(K0)VY1(τ)‖F−σ1

≤
C‖VY1(τ)‖Fσ1

(1 + |t− τ |)2−ε

≤
C‖Y1(τ)‖F−σ1

(1 + |t− τ |)2−ε
≤

C‖Ψ0‖Fσ1

(1 + |t− τ |)2−ε(1 + |τ |)2−ε
≤ C‖Ψ0‖Fσ

(1 + |t− τ |)2−ε(1 + |τ |)2−ε

Integrating, we obtain by (5.8) that

‖X2(t)‖F−σ
≤ C(ε)‖Ψ0‖Fσ

〈t〉−2+ε, t ∈ R, σ ≥ 2. (5.12)

Step iii) Finally, we rewrite the last term in (5.5) as

X3(t) =
1

2πi

∫

Γ

e−iωtχ(ω)N(ω)Ψ0 dω, (5.13)

where N(ω) :=M(ω + i0)−M(ω − i0) and

M(ω) := R0(ω)VR0(ω)VR(ω) = R0L(ω)R(ω).

First, we obtain the asymptotics of L(ω) := VR0(ω)V for large ω.

Lemma 5.2. Let σ > 0, k = 0, 1, 2, and V satisfy ( 1.3) with β > 1/2 + k + σ. Then the
asymptotics hold

‖L(k)(ω)‖L(F−σ,Fσ) = O(|ω|−2), |ω| → ∞, ω ∈ C \ Γ. (5.14)

Proof. DenoteR0(ω) = (H0−ω)−1, whereH0 corresponds toH with V = 0, i.e., H0 = (i∇+A)2.
Bounds (5.14) follow from the algebraic structure of the matrix

L(k)(ω) = VR(k)
0 (ω)V =

(

0 0

−iV R(k)
0 (ω2 −m2)V 0

)

(5.15)

For σ > 1/2 + k asymptotics (2.3) with s = 1 and l = −1 implies that

‖R(k)
0 (ω2 −m2)‖L(H1

σ;H
0
−σ)

= O(|ω|−2), |ω| → ∞, ω ∈ C \ Γ, k = 0, 1, 2.

Therefore, for 1/2 + k < β − σ the asymptotics hold

‖V R(k)
0 (ω2−m2)V f‖H0

σ
≤ C‖R(k)

0 (ω2−m2)V f‖H0
σ−β

= O(|ω|−2)‖V f‖H1
β−σ

= O(|ω|−2)‖f‖H1
−σ
.

Further, we obtain the asymptotics of M(ω) and its derivatives for large ω.
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Lemma 5.3. Let V satisfy ( 1.3) with β > 3. Then for k = 0, 1, 2, the asymptotics hold

‖M (k)(ω)‖L(Fσ,F−σ) = O(|ω|−2), |ω| → ∞, ω ∈ C \ Γ, σ > 1/2 + k. (5.16)

Proof. The asymptotics (5.16) follow from asymptotics (2.10) for R(k)
0 and R(k), and asymp-

totics (5.14) for L(k). For example, consider the case k = 2. We have

M ′′ = R′′
0LR+R0L

′′R+R0LR′′ + 2R′
0L

′R+ 2R′
0LR′ + 2R0L

′R′. (5.17)

For a fixed σ > 5/2, let us choose σ′ ∈ (5/2, min{σ, β−1/2}). Then for the first term in (5.17)
we obtain by (2.10) and (5.14)

‖R′′
0(ω)L(ω)R(ω)f‖F−σ

≤ ‖R′′
0(ω)L(ω)R(ω)f‖F

−σ′
≤ ‖L(ω)R(ω)f‖Fσ′

≤ C

|ω|2‖R(ω)f‖F
−σ′

≤ C1

|ω|2‖f‖Fσ′
≤ C2

|ω|2‖f‖Fσ
, ω → ∞, ω ∈ C \ Γ.

Other terms can be estimated similarly choosing an appropriate values of σ′.

Now we prove the decay of X3(t). By Lemma 5.3

(χN)′′ ∈ L1(Γ;L(Fσ,F−σ))

with σ > 5/2. Hence, two times partial integration in (5.13) implies that

‖X3(t)‖F−σ
≤ C(σ)‖Ψ0‖Fσ

〈t〉−2, t ∈ R

Together with (5.6) and (5.12) this completes the proof of Proposition 3.3.

A Decay of magnetic Schrödinger resolvent

Here we prove Lemma 2.1 ii) for s = 1. First, we consider the case V = 0. Recall that

H0 = (i∇+ A)2, and R0(ω) = (H0 − ω)−1.

Lemma A.1. Let A(x) ∈ C2(R3) be a real function, and for some β > 2 the bound holds

|A(x)|+ |∇A(x)|+ |∇∇A(x)| ≤ C〈x〉−β. (A.1)

Then for l = −1, 0, 1 and σ > 1/2, the asymptotics hold

‖R0(ω)‖L(H1
σ;H

1+l
−σ ) = O(|ω|− 1−l

2 ), |ω| → ∞, ω ∈ C \ [0,∞). (A.2)

Proof. Step i) Consider l = 0. Applying the technique of PDO [19, 21] we obtain for large
ω ∈ C \ [0,∞)

‖R0(ω)ψ‖H1
−σ

≤ ‖∇R0(ω)ψ‖H0
−σ

+ ‖R0(ω)ψ‖H0
−σ

≤ C‖
√

H0 + 1R0(ω)ψ‖H0
−σ

= C1‖R0(ω)
√

H0 + 1ψ‖H0
−σ

≤ C2|ω|−1/2‖
√

H0 + 1ψ‖H0
σ

≤ C3|ω|−1/2‖ψ‖H1
σ



Weighted energy decay for magnetic Klein-Gordon equation 13

by (2.3) with k = s = l = 0 and V = 0.

Step ii) Similarly, (2.3) with k = s = 0 and l = 1, implies for large ω ∈ C \ [0,∞)

‖R0(ω)ψ‖H2
−σ

= ‖(H0 + 1)R0(ω)ψ‖H0
−σ

≤ C‖(
√
−∆+ 1

√

H0 + 1R0(ω)ψ‖H0
−σ

= C‖
√
−∆+ 1R0(ω)

√

H0 + 1ψ‖H0
−σ

≤ C1‖R0(ω)
√

H0 + 1ψ‖H1
−σ

≤ C2‖
√

H0 + 1ψ‖H0
σ
≤ C‖ψ‖H1

σ

Then (A.2) with l = 1 follows.

Step iii) It remains to consider the case l = −1. We have by (A.2) with l = 1

‖R0(ω)ψ‖H0
−σ

= ‖ω−1(−1 +H0R0(ω))ψ‖H0
−σ

≤ C|ω|−1
[

‖ψ‖H0
−σ

+ ‖R0(ω)ψ‖H2
−σ

]

≤ C1|ω|−1‖ψ‖H1
−σ

Now we consider V 6= 0.

Lemma A.2. Let for some β > 3

|V (x)|+ |A(x)|+ |∇A(x)|+ |∇∇A(x)| ≤ C〈x〉−β.

Then for k = 0, 1, 2, σ > 1/2 + k, and l = −1, 0, the asymptotics hold

‖R(k)(ω)‖L(H1
σ;H

1+l
−σ ) = O(|ω|− 1−l+k

2 ), |ω| → ∞, ω ∈ C \ [0,∞). (A.3)

Proof. For k = 0 asymptotics (2.3) follow from the Born splitting

R(ω) = R0(ω)[1 + V R0(ω)]
−1

and (A.2), since the norm of the operator [1 + V R0(ω)]
−1 : H1

σ → H1
σ is bounded for large

ω ∈ C \ [0,∞) and σ ∈ (1/2, β/2].

For k = 1 and k = 2 we use the identities

R′ = (1−RW )R′
∆(1−WR) = R′

∆ − RWR′
∆ −R′

∆WR +RWR′
∆WR. (A.4)

R′′ = (1−RW )R′′
∆(1−WR)− 2R′WR′

∆(1−WR) (A.5)

= R′′
∆ − RWR′′

∆ −R′′
∆WR +RWR′′

∆WR− 2R′WR′
∆ + 2R′WR′

∆WR.

and well-known asymptotics for R∆(ω) = (−∆− ω)−1 (see [10, 11]):

‖R(k)
∆ (ω)‖L(Hs

σ,H
s+l
−σ ) = O(|ω|− 1−l+k

2 ), ω → ∞, ω ∈ C \ [0,∞) (A.6)

for s ∈ R, l = −1, 0, 1, k = 0, 1, 2, ... and σ > k + 1/2. Identities (A.4)-(A.5) and asymptotics
(A.6) imply (A.3) (cf. [12, Theorem 3.8]).
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