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Abstract. The discrete Schrödinger equation with a nonlinearity concentrated at a single
point is an interesting and important model to study the long-time behavior of solutions,
including the asymptotic stability of solitary waves and properties of global attractors. In this
note, the global well-posedness of this equation and the existence of solitary waves is proved
and the properties of these waves are studied.
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1. INTRODUCTION

Consider a model U(1)-invariant discrete Schrödinger equation with a nonlinearity concentrated
at a single point,

iψ̇(x, t) = −∆L ψ(x, t)− δ(x)F (ψ(0, t)), x ∈ Z. (1.1)

Here δ(x) = δ0x, the symbol ∆L stands for the difference Laplacian on Z defined by ∆Lψ(x) =
ψ(x + 1) − 2ψ(x) + ψ(x − 1), x ∈ Z, for functions ψ : Z → C, and F for a continuous function.
Physically, equation (1.1) describes the system of the free Schrödinger equation coupled to an
oscillator attached at the point x = 0, and F is a nonlinear “oscillator force.”

Assume that F (ψ) = −∇U(ψ), where U(ψ) = u(|ψ|2). In this case, (1.1) defines a U(1)-invariant
Hamiltonian system. The value of the Hamiltonian functional is preserved on solutions to (1.1)
belonging to l2 = l2(Z). We claim the well-posedness in l2 for equation (1.1) and the existence of
special solutions of type ψω(x)eiωt, the so-called solitary waves or nonlinear eigenfunctions. The
solitary waves form a two-dimensional solitary manifold in the Hilbert phase space of finite-energy
states of the system.

Our ultimate goal here is to prove the asymptotic stability of solitary waves for equation (1.1) and
to establish the global attraction to the solitary manifold. The asymptotic stability of solitary waves
for a continuous Schrödinger equation coupled to a nonlinear oscillator was considered recently
in [1]. The asymptotic stability of solitary waves in continuous nonlinear Schrödinger equations
was treated in [2–4, 9–11]. The global attractor for the continuous Klein–Gordon equation coupled
to a nonlinear oscillator was found in [7]. However, no work has been reported towards the proof of
the asymptotic stability of solitary waves and global attraction to a solitary manifold for discrete
nonlinear equations. This paper is a preparatory step in this direction.

The paper is organized as follows. In Section 2, the notation and definitions are given. The
global well-posedness is proved in Section 3. In Section 4, we describe the nonzero solitary waves
and analyze their properties.

2. NOTATION AND DEFINITIONS

We identify a complex number ψ=ψ1+iψ2 with the real two-dimensional vector Ψ=(ψ1, ψ2)∈R2

and assume that the vector version F of the oscillator force F admits a real-valued potential,

F(Ψ) = −∇U(Ψ), Ψ ∈ R2, U ∈ C2(R2). (2.1)
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Then (1.1) becomes a Hamiltonian system with the Hamiltonian

H(Ψ) =
1
2
〈−∆LΨ, Ψ〉+ U(Ψ(0)) =

1
2
〈∇LΨ,∇LΨ〉+ U(Ψ(0)), (2.2)

where 〈·〉 stands for the inner product in l2 and ∇Lψ(x) = ψ(x + 1)−ψ(x). The Hamiltonian form
of (1.1) is

Ψ̇ = JDH(Ψ), (2.3)

where

J =
(

0 1
−1 0

)
(2.4)

and DH is the Fréchet derivative in the Hilbert space l2. Our key assumption concerns the U(1)-in-
variance of the oscillator, where U(1) stands for the group eiθ, θ ∈ [0, 2π], acting by phase rotations
ψ 7→ eiθψ. Namely, assume that U(ψ) = u(|ψ|2) with u ∈ C2(R). Then, by (2.1),

F (ψ) = a(|ψ|2)ψ, ψ ∈ C, a ∈ C1(R), (2.5)

where a(|ψ|2) is real. In this case, F (eiθψ) = eiθF (ψ), θ ∈ [0, 2π], and F (0) = 0 for continuous F .
Hence, eiθψ(x, t) is a solution to (1.1) if ψ(x, t) is. Therefore, equation (1.1) is U(1)-invariant in
the sense of [5], and the Noether theorem implies the conservation of l2 norm, ‖ψ(t)‖ = ‖ψ(0)‖.
Here and further, ‖ · ‖ = ‖ · ‖l2 .

The main objective of this paper is to study the special role played by “quantum stationary
states,” or solitary waves, in the sense of [5], which are finite-energy solutions of the form

ψ(x, t) = ψω(x)eiωt, ω ∈ R. (2.6)

The frequency ω and the amplitude ψω(x) solve the following nonlinear eigenvalue problem:

−ωψω(x) = −∆Lψω(x)− δ(x)F (ψω(0)), x ∈ Z, (2.7)

which follows directly from (1.1) and (2.5) since ω ∈ R.

Definition 2.1. The symbol S denotes the set of all solutions ψω(x) ∈ l2(Z) to (2.7) with all
possible ω ∈ R.

Below, in Section 4, we present a complete analysis of the set S of all nonzero solitary waves
ψω(x) by an explicit calculation. For ω ∈ (−∞, 0) and ω ∈ (4,∞), the set S consists of the functions
C(ω)e−k(ω)|x|+iθ and C(ω)(−1)|x|e−k(ω)|x|+iθ, respectively, for C > 0 and any θ ∈ [0, 2π], where C
must belong to a set which is the finite union of one-dimensional intervals if F is a polynomial.
Note that C = 0 corresponds to the zero function ψ(x) = 0, which is always a solitary wave because
F (0) = 0, and, for ω ∈ [0, 4], the only solitary wave is zero.

3. GLOBAL WELL-POSEDNESS

The existence of a global solution to (1.1) is guaranteed by the following theorem whose proof
is similar to that of Theorem 1.1 in [7].

Theorem 3.1. i) Let conditions (2.1) and (2.5) hold. Then, for any ψ0 ∈ l2, there exists a
unique solution ψ ∈ Cb(R, l2) to equation (1.1) with initial condition ψ(x, 0) = ψ0(x).

ii) The value of energy functional is preserved,

H(ψ(t)) = H(ψ0), t ∈ R. (3.1)

iii) The norm of the solution is preserved,

‖ψ(t)‖ = ‖ψ0‖. (3.2)

iv) The mapping U : ψ0 7→ ψ is continuous from l2 to Cb([0, T ], l2) for any T > 0.
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Let us outline the proof. We first show that, without loss of generality, it suffices to prove the
theorem assuming that U is uniformly bounded together with its derivatives. Indeed, the a priori
bounds for the l2-norm of ψ imply that the nonlinearity F (z) can be modified for large values of |z|.
After this, we establish the existence and uniqueness of a solution ψ ∈ Cb([0, τ ], l2) for some τ > 0
by using the contraction mapping theorem. Further, we show that ψ can be extended to all t > 0,
and the energy and the norm are preserved. We then use this preservation to extend the solution
ψ(x, t) for t ∈ R and prove that ψ ∈ Cb(R, l2).

Lemma 3.2 (see [7, Lemma 2.2]). Suppose that Theorem 3.1 holds for the nonlinearities U that
satisfy the following additional condition:

For k = 0, 1, 2, there exist some Uk < ∞ such that sup
z∈C

|∇kU(z)| 6 Uk. (3.3)

Then Theorem 3.1 remains valid without this additional condition.

Proof. Suppose U does not satisfy (3.3). For any initial data ψ0 ∈ l2, choose Ũ(z) ∈ C2(C) in
such a way that Ũ(z) = Ũ(|z|) for z ∈ C and Ũ(z) = U(z) for |z| 6 ‖ψ0‖. Here Ũ can be chosen
to satisfy the uniform bounds supz∈C |∇kŨ(z)| 6 ∞, k = 0, 1, 2. By the assumption of the lemma,
Theorem 3.1 holds for the nonlinearity F̃ = −∇Ũ instead of F = −∇U . Hence, there is a unique so-
lution ψ(x, t) ∈ Cb(R, l2) to the equation iψ̇(x, t) = −∆Lψ(x, t)−δ(x)F̃ (ψ(0, t)) with ψ(x, 0) = ψ0.
Identity (3.2) implies that |ψ(0, t)| 6 ‖ψ0‖ for t ∈ R. Therefore, F̃ (ψ(0, t)) = F (ψ(0, t)) for t ∈ R,
and ψ(x, t) is also a solution to (1.1) with the nonlinearity F = −∇U .

From now on, in the proof of Theorem 3.1, we assume that the bounds (3.3) hold.

Lemma 3.3. i) Let ψ0 ∈ l2. There is a τ > 0 depending only on U2 in (3.3) for which there is
a unique solution ψ ∈ Cb([0, τ ], l2) to equation (1.1) with initial data ψ0.

ii) The mapping U : ψ0 7→ ψ is continuous from l2 to Cb([0, τ ], l2).
iii) The values of the functionals H and Q are preserved in time.

Proof. Denote the dynamical group for the free Scfrödinger equation by W (t). The discrete
Fourier transform of u : Z→ C is defined by the formula û(θ) =

∑
x∈Z u(x)eiθx, θ ∈ T := R/2πZ.

After taking the Fourier transform, the operator −∆L becomes the operator of multiplication by
2− 2 cos θ, −∆̂Lu(θ) = φ(θ)û(θ), and, in the Fourier transform,

Fx→θ[W (t)u(x)](θ) = e−i(2−2 cos θ)tû(θ), θ ∈ T. (3.4)

The solution ψ to (1.1) with the initial data ψ(x, 0) = ψ0(x) admits the Duhamel representation

ψ(x, t) = W (t)ψ0(x) + Zψ(x, t), (3.5)

where

Zψ(x, t) = −
∫ t

0

W (s)δF (ψ(0, t− s))ds, δ := δ(x). (3.6)

By the Parseval identity, ‖W (s)δ‖ = ‖Fx→θ[W (t)δ](θ)‖L2(T ) = ‖e−i(2−2 cos θ)t‖L2(T ) = C < ∞.

Hence, if ψ1, ψ2 ∈ Cb([0, τ ], l2), then

‖Zψ2(·, t)− Zψ1(·, t)‖ =
∥∥∥

∫ t

0

W (s)δ
(
F (ψ2(0, t− s))− F (ψ2(0, t− s))

)
ds

∥∥∥

6
∫ t

0

‖W (s)δ‖|F (ψ2(0, t− s))− F (ψ2(0, t− s))|ds (3.7)

= C

∫ t

0

|F (ψ2(0, t− s))− F (ψ2(0, t− s))|ds 6 U2t sup
06s6t

|ψ2(s)− ψ1(s)|,

RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS Vol. 15 No. 4 2008



490 E. A. KOPYLOVA

where we have used (3.3) with k = 2. In this case, the mapping ψ 7→ W (t)ψ0 + Zψ is con-
tracting in the space Cb([0, τ ], l2) for τ = 1/(2U2). This proves part i) of the lemma. Part ii)
also follows by contraction. The energy and the charge preservation follows from the Hamiltonian
structure (2.3). Namely, the differentiation of the Hamiltonian functional gives (by the chain rule)
(d/dt)H(Ψ(t)) = 〈DH(Ψ(t)), Ψ̇(t)〉 = 〈DH(Ψ(t)), JDH(Ψ(t))〉 = 0, t ∈ [0, τ ]. Similarly, the norm
preservation follows by differentiation,

d

dt
‖Ψ(t)‖2 = 2〈Ψ(t), Ψ̇(t)〉 = 2〈Ψ(t), JDH(Ψ(t))〉

= 2〈Ψ(x, t), J∆LΨ(t)〉 − 2〈Ψ(x, t), Jδ(x)F (Ψ(0, t))〉 = 0, t ∈ [0.τ ],

since 〈Ψ(x, t), J∆LΨ(t)〉 = 〈∇LΨ(x, t), J∇LΨ(t)〉 = 0 and 〈Ψ(x, t), Jδ(x)F (Ψ(0, t))〉 = Ψ(0, t) ·
JF (Ψ(0, t)) = a(|Ψ(0, t)|)Ψ(0, t) · JΨ(0, t) = 0, where “ · ” stands for the real inner product on R2.

Proof of Theorem 3.1. The solution ψ ∈ Cb([0, τ ], l2) constructed in the last lemma exists
for 0 6 t 6 τ , where the τ depends only on U2. Hence, the bound (3.2) at t = τ allows us to extend
the solution ψ to the time interval [τ, 2τ ]. We proceed by induction. This completes the proof of
Theorem 3.1.

4. SOLITARY WAVES

There are two different sets of solitary waves. The first set S1 corresponds to ω ∈ (0,∞), and the
other set S2 corresponds to ω ∈ (−∞,−4). Denote by k(ω) the positive solution of the equation
cosh k(ω) = |ω − 2|/2.

Lemma 4.1. The sets of all nonzero solitary waves are given by

S+=
{
ψωeiθ = Ceiθ−k(ω)|x| : ω ∈ (0,∞), C > 0, sinh k(ω) = a(C2)/2 > 0, θ ∈ [0, 2π]

}
,

S−=
{
ψωeiθ = C(−1)|x|eiθ−k(ω)|x| : ω ∈ (−∞,−4), C > 0, sinh k(ω)=−a(C2)/2 > 0, θ ∈ [0, 2π]

}
.

Proof. Let us calculate all solitary waves (2.6). After taking the Fourier transform, equa-
tion (2.7) becomes

(2− 2 cos θ + ω)ψ̂ω = F (C), (4.1)

where C = ψω(0). Therefore, ψω(x) = (2π)−1
∫

T

(
e−iθxF (C)/(φ(θ) + ω)

)
dθ, ω ∈ C \ [−4, 0]. Using

the results of [8] (see Lemma 2.1), we see that, for ω ∈ C \ [−4, 0],

ψω(x) = −i
F (C)e−iθ(ω)|x|

2 sin θ(ω)
, x ∈ Z, (4.2)

where θ(ω) is the unique root of the equation

2 cos θ − 2 = ω (4.3)

in the domain D := {−π 6 Re θ 6 π, Im θ < 0}. Below we consider two cases separately.
First, let us consider the case ω ∈ (0,∞). Then θ(ω) = −ik(ω), k(ω) > 0, and sin θ(ω) =

− sin ik(ω) = −i sinh k(ω). Therefore, (4.2) yields ψω(x) = F (C)e−k(ω)|x|/(2 sinh k(ω)), x ∈ Z.
Hence, C = ψω(0) = F (C)/(2 sinh k(ω)). This implies that

sinh k(ω) =
F (C)
2C

=
a(C2)

2
. (4.4)

Now we consider the case of ω ∈ (−∞,−4). Then θ(ω) = π − ik(ω), k(ω) > 0, and sin θ(ω) =
sin ik(ω) = i sinh k(ω). Therefore, (4.2) yields ψω(x) = −F (C)(−1)|x|e−k(ω)|x|/(2 sinh k(ω)), x ∈ Z.
Hence, C = ψω(0) = −F (C)/(2 sinh k(ω)), and

sinh k(ω) = −F (C)
2C

= −a(C2)
2

> 0. (4.5)
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Corollary 4.2. The set S+ (S−) is a smooth manifold with the coordinates θ ∈ Rmod 2π and
C > 0 such that a(C2) > 0 (a(C2) < 0, respectively).

Remark 4.3. We shall analyze only the solitary waves with a′(C2) 6= 0. On the manifolds S±,
we have ω = ±2 cosh k − 2 with sinh k = ±a(C2)/2, according to (4.4) and (4.5). Hence, the
parameters θ, ω are locally smooth coordinates on S± at the points with a′(C2) 6= 0, because

ω′ = ±2k′ sinh k =
2a′(C2)C sinh k

cosh k
6= 0 in this case.

Example 4.4. Consider the function F (C) = (−C2+1)C = −C3+C, C > 0. The interval (0, 1)
corresponds to a(C2) = −C2+1 > 0, and the interval (1,∞) corresponds to a(C2) < 0 (see Figure).

Figure.

For C ∈ (0, 1), the equation 2 sinh k(ω)C = F (C) has a unique solution if sinh k ∈ (0, 1/2),
cosh k ∈ (1,

√
5/2) and ω = 2 cosh k − 2 ∈ (0,

√
5− 2).

For C ∈ (1,∞), the equation 2 sinh k(ω)C = −F (C) has a unique solution for sinh k ∈ (0,∞),
cosh k ∈ (1,∞) and ω = −2 cosh k − 2 ∈ (−∞,−4). Therefore, nonzero solitary waves exist for
ω ∈ (0,

√
5− 2) ∪ (−∞,−4).

A soliton solution is a trajectory ψω(t)(x)eiθ(t) in which the parameters satisfy the equation
θ̇ = ω, ω̇ = 0. In time, the solitary waves eiθψω(x) form an orbit of the U(1) symmetry group.
This group acts on the phase space l2(Z), preserving the Hamiltonian H. The orbital stability of
solitary waves in Hamiltonian U(1)-invariant systems is a well-studied topic (see [5] for very general
theorems in this area and [12] for an approach closer to that used here). The standard condition
for orbital stability in the continuous case reads as ∂ω

∫ |ψω(x)|2dx > 0; this is expected to be a
necessary and sufficient condition for orbital stability when the Hessian of the augmented Hamil-
tonian (see [12]) has a single negative eigenvalue. A similar condition for the discrete equation is
∂ω

∑
x∈Z |ψω(x)|2 > 0.

Write N(C) =
∑

x∈Z |ψω(x)|2 with ω = ±2 cosh k − 2 and sinh k = ±a(C2)/2, according to
(4.4)–(4.5). Then

N(C) = C2
( ∞∑

x=0

e−2kx +
∞∑

x=1

e−2kx
)

= C2
( 1

1− e−2k
+

e−2k

1− e−2k

)
= C2 ek + e−k

ek − e−k
= C2 cosh k

sinh k
.

Differentiating gives N ′(C) = 2C cosh k/sinh k−C2 k′/sinh2 k. Differentiating (4.4)–(4.5), we obtain
k′ cosh k = ±a′C, a′ = a′(C2). Thus, again by (4.4)–(4.5), we have

N ′(C) = 2C
cosh k

sinh k
∓ C2 a′C

cosh k sinh2 k
= ± 4C

a2 cosh k
(a cosh2 k − a′C2)

= ± 4C

a2 cosh k
(a + a sinh2 k − a′C2) = ± 4C

a2 cosh k

(
a +

a3

4
− a′C2

)
6= 0 (4.6)
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if C > 0 and a′ 6= (4a + a3)/(4C2). Therefore, noticing that

N ′(C) = ω′(C)∂ω

∑

x∈Z
|ψω(x)|2 (4.7)

with ω′(C) = ±2k′ sinh k = 2a′C sinh k/cosh k = ± a′aC/cosh k, we obtain the following result.

Lemma 4.5. For C > 0, the inequality ∂ω

∑
x∈Z |ψω(x)|2 > 0 holds if

i) a′ ∈ (0, (a3 + 4a)/(4C2)) for ψω ∈ S+,
ii) a′ ∈ (−∞, (a3 + 4a)/(4C2)) ∪ (0, +∞) for ψω ∈ S−.

Proof. Equations (4.6) and (4.7) yield

∂ω

∑

x∈Z
|ψω(x)|2 =

N ′(C)
ω′(C)

=
4

a3a′

(
a +

a3

4
− a′C2

)
.

Taking into account that a > 0 for ψω ∈ S+ and a < 0 for ψω ∈ S−, we obtain the conclusion of
the lemma.
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