
MOLLIFYING THE RIEMANN ZETA-FUNCTION

J. B. Conrey

Introduction

This talk is in two parts: the first part is about large values of ζ and serves to give some
motivation about the behavior of ζ which necessitates ‘the mollifying’ or smoothing of ζ
that the second part of the paper deals with.

Let

Ik = Ik(T ) =
1

T

∫ T

0

|ζ(1/2 + it)|2k dt.

Hardy [H] showed that

I1 ∼
∑

n≤T

1

n

and Ingham [I] proved

I2 ∼ 2
∑

n≤T

d(n)2

n
.

Conrey and Ghosh [CG] conjectured that

I3(T ) ∼ 42
∑

n≤T

d3(n)
2

n
;

Conrey and Gonek [CGo] conjecture that

I4(T ) ∼ 24024
∑

n≤T

d4(n)
2

n
.

Is it true that

Ik(T ) ∼ ck
∑

n≤T

dk(n)
2

n
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for some ck? If so, how does ck grow?
The work leading to the conjecture of Conrey and Gonek suggests that ck grows at least

as fast as an order 2 function; i.e.

ck ≥ 2k
2

(1 + o(1))

(The conjecture of Keating and Snaith [KS] presented at this conference also supports
this.)

It is known that
∑

n≤T

dk(n)
2

n
∼ ak

Γ(k2 + 1)
logk

2

T

where (for integer k)

ak =
∏

p

(

1− 1

p

)(k−1)2 k−1
∑

j=0

(

k−1
j

)2

pj

It can be shown [CGo] that

log ak = −k2 log(2eγ log k) + o(k2).

A lower bound for ck in the shape ck > rk
2

together with this information about ak
suggests that

max
t≤T
|ζ(1/2 + it)| À exp

(

(re−1−γ)1/2
√
L√

logL

)

where L = log T .
The best known result is due to Balasubramanian and Ramachandra [BR] who show

max
t≤T
|ζ(1/2 + it)| À exp

(

3

4

√
L√

logL

)

.

The conjecture of Keating and Snaith [KS] suggests that one can take r = k− ε above.
(See [CF] for details.)

The best known upper bound, assuming RH is

ζ(1/2 + it)¿ exp

(

c
L

logL

)

for some c.
Generally, it has been conjectured that the omega result is closer to the true maximal

order of ζ (see [M] for example). However, the above considerations suggest that it could
be the upper bound which is actually closer to the truth.
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Mollifier definition

The discussion of the last section shows that mean values of ζ are controlled by infre-
quent large values of ζ. In particular, the loss of ‘logs’ inherent in Cauchy’s inequality

∫ T

0

|ζ(1/2 + it)| dt ≤
(

T

∫ T

0

|ζ(1/2 + it)|2 dt
)1/2

makes the use of a ‘mollifier’ essential for obtaining results about ‘a positive proportion of
zeros of ζ’ on or near the critical line. In 1942 Selberg [S1] gave the first use of a mollifier
in this context when he proved that a positive proportion of zeros of ζ are on the critical
line. Levinson [L] invented a different approach in 1974 when he showed that at least 1/3
of the zeros of ζ are on the critical-line.

The mollifiers we are interested in are given by:

M(s, θ) =
∑

n≤y

µ(n)P
(

log y
n

log y

)

ns

with y = tθ and P (0) = 0.
Some pictures of mollifiers with θ = 1/2 and θ = 1 are presented at the end of the paper

to illustrate the qualitative behavior of a mollifier.

Theorem 1. (Conrey [C2]). If θ < 4/7, then

1

T

∫ T

0

∣

∣

∣

∣

M

(

1

2
+ it, θ

)

ζ

(

1

2
+ it

)∣

∣

∣

∣

2

dt ∼ |P (1)|2 +
∫ 1

0

|P ′(x)|2 dx.

The techniques used in proving the above lead to

Corollary. More than 2/5 of the zeros of ζ(s) are simple and on the line σ = 1/2.

Another application is to zeros of the derivatives of the Riemann ξ-function. This
function is defined by

ξ(s) =
1

2
s(s− 1)π−s/2Γ

(s

2

)

ζ(s)

so that the functional equation for ζ is

ξ(s) = ξ(1− s).

It is not difficult to show that RH implies that all of the zeros of ξ(m)(s) are on the line
σ = 1/2. Unconditionally we can show (see [C1],[F3])
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Theorem 2. At least 79.89% of the zeros of ξ′ are on the critical line. At least 93.4% of
the zeros of ξ′′ are on the critical line. As m → ∞ the percentage of zeros of ξ(m) on the
critical line approaches 100%.

Mean value of ζ mollified

A more general theorem (see [CGG1]) is given by

Theorem 3. Suppose that a, b, c, d ≈ 1. Let M(s) =M(s, P ) with P (x) = x in the earlier
notation. Then, for θ < 4/7,

∫ T

0

ζ
(

s+
a

L

)

ζ

(

1− s+ b

L

)

M
(

s+
c

L

)

M

(

1− s+ d

L

)

dt

∼ T

(

1 +
1

θ

∂

∂u

∂

∂v
I(u, v, θ)J(u, v, θ)|u=v=0

)

where

I(u, v, θ) =

∫ 1

0

e−a(x+θu)−b(x+θv) dx

and

J(u, v, θ) =

∫ 1

0

(y + u)(y + v)e−cθ(1−y−u)−dθ(1−y−v) dy.

Similar formulas exist for discrete means, i.e. for

∑

γ≤T

ζ(ρ+ a)ζ(1− ρ+ b)M(ρ, P1)M(1− ρ, P2).

These can be used to get conditional results such as (GLH stands for “Generalized Lindelöf
Hypothesis)

Theorem 4. (Conrey, Ghosh, and Gonek [CGG2]). Assuming RH + GLH, at least 19/27
of the zeros of ζ(s) are simple.

Farmer’s Conjecture

If we let θ →∞ in the Theorem 3, we are led to

Conjecture. (Farmer [F1]) If a, b, c, d ≈ 1/ log T with c and d positive, then

1

T

∫ T

0

ζ(s+ a)ζ(1− s+ b)

ζ(s+ c)ζ(1− s+ d)
dt ∼ 1 +

(

1− T−a−b
)

(a− c)(b− d)
(a+ b)(c+ d)

as T →∞.
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Consistency checks for Farmer conjecture

Limiting cases: a = c, c→∞, d→∞
These can be verified by other means.
Internal Consistency checks:

∂a|a=c = ∂c|c=a

These obviously hold for the mean in question and for the conjectural formula.
External Consistency: (1) The formula for

∫ T

0

ζ ′

ζ
(s+ a)

ζ ′

ζ
(1− s+ b) dt

is equivalent to “almost everywhere Pair Correlation” (see [GGM]).
(2) The formula for

∫ T

0

ζ ′

ζ

2

(s+ a)
ζ ′

ζ
(1− s+ b) dt

is consistent with triple correlation predictions (see [F2]).

Sketch of proof of Theorem 1 using Estermann’s function D(s, h/k)

We have

I =

∫ T

0

|ζM(1/2 + it)|2 dt = 1

i

∫ 1/2+iT

1/2

ζ(s)ζ(1− s)M(s)M(1− s) ds

=
1

i

∫ 1/2+iT

1/2

χ(1− s)ζ(s)2M(s)M(1− s) ds

where
χ(1− s) = Γ(s)

(

(2πi)−s + (−2πi)−s
)

.

We move the path to the region of absolute convergence and integrate term-by-term. This
leads to

I ∼
∑

h,k≤y

b(h)b(k)

k

∑

n≤Tk/2πh

d(n)e(−nh/k).

Now

D(s, h/k) =
∞
∑

n=1

d(n)e(nh/k)

ns

has meromorphic continuation to the whole plane with a double pole at s = 1 with principal
part the same as that of

K1−2sζ(s)2
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where K = k/(h, k). We use Perron’s formula on the sum over n. We move the path
of integration past the poles at s = 1. The main terms then arise from the residues of
these poles. The error terms can be handled by large sieve inequalities. To go beyond
θ = 1/2, we use the functional equation for D, followed by Vaughan’s identity for µ, and
then extimates for quintilinear exponential sums due to Deshouillers and Iwaniec [DI]. The
latter depend on deep results using the theory of automorphic forms on Hecke congruence
groups.

New approach to Theorem 1 via an explicit formula

We sketch a new proof of Theorem 1 with θ (currently) restricted to θ < 1/2. It is
hoped, however, that this method will suggest the possibility of obtaining theorems with
mollifiers longer even than θ = 4/7.

Let

M(s) =
∑

n≤y

µ(n) log y/n

ns log y
=
∑

n≤y

b(m)

ms
.

Then, assuming (for notational convenience only) that all of the zeros of ζ(s) are simple,
we have

ζ(s)M(s) = 1− 1

log y

ζ ′

ζ
(s) +

ζ(s)

log y

∑

ρ

yρ−s

ζ ′(ρ)(ρ− s)2 + e(s)

where e(s) is small. Hence,

ζ(s)ζ(1− s)M(s)M(1− s)

= ζ(1− s)M(1− s)
(

1

log y

χ′

χ
(s)

)

+
M(1− s)ζ ′(1− s)

log y

+
ζ(s)ζ(1− s)M(1− s)

log y

∑

ρ

yρ−s

ζ ′(ρ)(ρ− s)2 + e1(s).

The integral of the first term is ∼ T (1 + 1/θ). The integral of the second term is o(T ).
The last term gives, after switching summation and integration and changing the ranges
is

1

i

∑

γ≤T

yρ

ζ ′(ρ) log y

∫

(1/2)

ζ(s)ζ(1− s)M(1− s)
(s− ρ)2 y−s ds.

Now let

Tρ(x) =
1

2πi

∫

(1/2)

ζ(s)ζ(1− s)
(ρ− s)2 x−s ds.

Then

Tρ(x) =
−1
xρ

∫ ∞

0





∑

n≤u

1

nρ
− u1−ρ

1− ρ









∑

n≤ux

1

n1−ρ
− (ux)ρ

ρ





du

u
.
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So we have

−2π
∑

γ≤T

yρ

ζ ′(ρ) log y

∑

m≤y

b(m)

m

(

m

y

)ρ

Tρ(y/m).

Now we let

Ux(s) =

∫ ∞

1/x



ζ(s)−
∑

n≤u

1

ns
+
u1−s

1− s







ζ(1− s)−
∑

n≤xu

1

n1−s
+

(xu)s

s





du

u
.

Then Ux(s) is an entire function of s for each x > 0. Our sum in question is

−2π
log y

∑

γ≤T

B(1− ρ)
ζ ′(ρ)

where

B(s) =
∑

m≤y

b(m)Uy/m(1− s)
ms

.

We write the sum over zeros as a contour integral

i

log y

∫

CT

B(1− s)
ζ(s)

ds

for an appropriate contour CT . The integral on the left side can be shown to be small. The
integral on the right hand side can be evaluated by the mean value theorem for Dirichlet
polynomials

∫ T

0

|
∑

n≤N

ann
it|2 dt =

∑

n≤N

(T +O(n))|an|2.

After some arithmetical calculations we deduce that the whole sum is O(T/ log y) for
θ < 1/2.

Conclusion

The goal of the new proof is to try to ‘localize’ the integral in question. By this I
mean we want to try to model a proof as closely as possible to proofs of high moments of
S(t) or log |ζ(1/2 + it)| which have been treated by Selberg [S2] and others. These proofs
use Dirichlet polynomials in a fundamentally different way than existing approaches to
Theorem 1. In particular, the lengths of the Dirichlet polynomial approximations to S(T )
for example do not limit the size of the moment that can be treated in the way that such
a limitation occurs in the (past) treatment of ‘global’ integrals. The techniques for the
local integrals involve approximating the function in question through an explicit formula
that features a sum of a Dirichlet polynomial and a sum over zeros. (We have tried to
do the same for our mollified ζ integrals.) Then, the key step is that the sums over
zeros can be eliminated by bounding them by Dirichlet polynomials! We are looking for
a similar approach here, when after our many manipulations, we eliminate the sum over
zeros and return to Dirichlet polynomials. However, we have not yet succeeded in doing
this. Nevertheless, the above sketch may be of some interest.
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