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Abstract

We describe the construction of non-commutative manifolds, which are the non-commutative
analogs of homogeneous spaces using coherent states. In the commutative limit we obtain stan-
dard manifolds. Applications to the Fuzzy sphere and to the Fuzzy hyperboloid are discussed
in more detail.
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1 Introduction

In recent years the method of non-commutative geometry was developed [1] and applied to
various physical problems [2]. The main idea consists in reformulating the geometry of a manifold
in terms of an algebra of smooth functions defined on it, and then to generalize the differential
calculus to a non-commutative algebra. If one takes for this algebra the set of n × n complex
matrices Mn, one calls the resulting formalism a matrix geometry [3,4]. A sequence of matrix
geometries on Mn has been given which allows to recover the geometry of the smooth 2-sphere
in the limit n→∞ [5]. It was possible to formulate the Schwinger model on this Fuzzy sphere
and to discuss the continuum limit [6].

Here we construct non-commutative manifolds which are the non-commutative analogs of
homogeneous spaces. We extend some of the matrix models given in [5–7].

A non-commutative geometry is based on

i) a suitable non-commutative algebra A (replacing the abelian algebra of smooth functions
on a manifold) together with a representation in a Hilbert space H,

ii) an exterior differential algebra Ω(A) over A together with an operator d mapping from
n-forms to (n+ 1)-forms,

iii) eventually some additional structures like p-summable Fredholm modules connected to
Dirac operators.

Our construction of the algebra A and the exterior differential algebra Ω(A) is based on
coherent states defined on homogeneous spaces [8–10]. Mathematical details, relevant for our
purposes, can be found in [11].

We describe the construction of the algebras A and Ω(A) for the non-commutative analogs of
homogeneous spaces in Section 2. More specific non-commutative manifolds (non-commutative
co-adjoint orbits) leading to standard manifolds in the commutative limit are investigated in
Section 3. The next Section 4 contains applications to the non-commutative sphere and to the
non-commutative hyperboloid. The last Section 5 is devoted to concluding remarks.

2 Coherent States and the Algebras A and Ω(A)

We briefly describe the construction of coherent states on homogeneous spaces following Refs.
[10] and [12]. Let T (g) be an unitary irreducible representation of an unimodular Lie group G
in a Hilbert space H. We assume that the normalized state |x0〉 ∈ H is from the G̊arding space
of the representation T (g). The function

ω(g, x0) = 〈x0|T (g)|x0〉 (1)

is then a smooth (analytic) function of g ∈ G. Let H be the stability group of |x0〉 for which

T (h)|x0〉 = d(h)|x0〉, h ∈ H, (2)

where d(h), a phase factor, is a unitary character of the subgroup H ⊂ G.
To any point x = gxx0 ∈M = G/H we assign a coherent state

|x〉 = d(g−1
x )T (gx)|x0〉, (3)
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where d(g) = ω(g, x0)/|ω(g, x0)| denotes a phase factor. To x0 ∈M we assign |x0〉 by definition.
The kernel function

ω(g, x) = 〈x|T (g)|x〉 = ω(g−1
x ggx, x0) (4)

is a smooth function in both variables.
To any finite distribution (with compact support) f̃(g) over smooth functions on G we assign

the operator

f̂ =

∫
dgf̃(g)T (g), (5)

where dg denotes the both-sided invariant Haar measure on G. The operator f̂ has well-defined
smooth coherent states matrix elements. In this way we assign to any f̃(g) the smooth function
on M :

f(x) = 〈x|f̂ |x〉 =

∫
dgf̃(g)ω(g, x). (6)

Due to (4) f(x) may be reinterpreted as a smooth function on G

f(g) =

∫
dg′f̃(g′)ω(g−1g′g, x0) =

∫
dg′f̃(gg′g−1)ω(g′, x0), (7)

which is right H-invariant: f(gh) = f(g) for h ∈ H; we use the same symbol for f(x) and f(g).
The non-commutative algebra A is defined as the algebra of functions (6). The *-product

of two functions f1(x) = 〈x|f̂1|x〉 and f2(x) = 〈x|f̂2|x〉 is given by

(f1 ∗ f2)(x) = 〈x|f̂1f̂2|x〉 =

∫
dg(f̃1 ∗ f̃2)(g)ω(g, x). (8)

Here f̃1 ∗ f̃2 denotes the convolution of two finite distributions defined by

∫
dg(f̃1 ∗ f̃2)(g)ω(g, x) =

∫
dg1

∫
dg2f̃1(g1)f̃2(g2)ω(g1g2, x). (9)

Let xi be a basis of the Lie algebra G of the group G satisfying the relations

[xi, xj ] = fkijxk (10)

where [·, ·] denotes the Lie algebra structure in G. To any xi we assign differential operators x̂i
acting on smooth functions on G as

(x̂iϕ)(g) = lim
t↘0

1

t
[ϕ(g etAdgxi)− ϕ(g)]. (11)

The operators x̂i are the left-invariant vector fields on G and satisfy the same commutation
relations as (10)

[x̂i, x̂j ] = fkij x̂k, (12)

where [·, ·] now denotes the commutator.
The canonical 1-forms Θi form a dual basis to xi and satisfy the Maurer-Cartan equations

dΘi = −1

2
f ijkΘ

j ∧Θk. (13)
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The elements of the exterior differential algebra Ω(G) over G have the form

A = Ai1...ipΘ
i1 ∧ . . . ∧Θip . (14)

The differential of a function f(g) is given by

df = (x̂if)Θi. (15)

Eqs. (13) and (15) together with the Leibniz rule

d(A ∧B) = dA ∧B + (−1)degAA ∧ dB (16)

define the exterior differentiation of p-forms on G (14) algebraically.
As a next step we choose the coefficient functions Ai1...ip so that (14) represents only dif-

ferential forms from Ω(M), M = G/H. This is guaranteed if all Ai1...ip are represented by
differentials (15) of right-invariant functions on G, i.e. functions on M such that

A =
∑

α

a0
αda

1
α ∧ . . . ∧ dapα, (17)

where akα are smooth functions on M , and dakα are given by (15). Obviously,

dA =
∑

α

da0
α ∧ . . . ∧ dapα. (18)

In the non-commutative case the elements of Ω(A) and their differentials will be given by the
same expressions, but with the *-product replacing the usual product among different factors:

A =
∑

α

a0
α ∗ da1

α

∗∧ . . . ∗∧ dapα, (19)

and
dA =

∑

α

da0
α

∗∧ . . . ∗∧ dapα. (20)

Here
da`α

∗∧ . . . ∗∧ dapα = (x̂i`a
`
α) ∗ . . . ∗ (x̂ipa

p
α)Θi` ∧ . . . ∧Θip , (21)

where Θi will be treated as Grassmann variables satisfying (13) and commuting with the ele-
ments of A.

It remains to be shown that x̂if ∈ A if f ∈ A. This can be proven easily: we rewrite (7) as

f(g) =

∫
dg′f̃g′(g)ω(g′, x0) ∈ A, (22)

where we have put f̃g′(g) = f̃(gg′g−1) in order to indicate explicitly the variable g on which x̂i
acts. Then (x̂if)(g) =

∫
dg′(x̂if̃g′)(g)ω(g′, x0). Performing the shift of the integration variable

g′ → g−1g′g, we obtain

(x̂if)(g) =

∫
dg′(x̂if̃g−1g′g)(g)ω(g′, gx0) ∈ A. (23)

This expression is simple but non-trivial, since it might contain only a rather limited set of
functions (confirm Sec. 4).
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3 Non-Commutative Algebras A0 and Ω(A0)

To any element xi ∈ G we can assign the distribution x̃i(g) (with support at the one point
e ∈ G) defined by ∫

dgx̃i(g)ω(g, x) = (x̂iω)(e, x) =: (−i)ϕi(x). (24)

The *-product of the functions ϕi is given by (8)

(ϕi1 ∗ . . . ∗ ϕik)(x) = (−i)k(x̂i1 . . . x̂ikω)(e, x). (25)

¿From (12) it follows that the *-commutator

[ϕi, ϕj ]∗ =: ϕi ∗ ϕj − ϕj ∗ ϕi (26)

satisfies the relations
[ϕi, ϕj ]∗ = ifkijϕk. (27)

We denote by A0 the algebra generated by *-polynomials in ϕi’s.
Using (10), (11) and (24), (27) we can show that

ix̂iϕj = ifkijϕk = [ϕi, ϕj ]∗. (28)

By the Leibniz rule this extends to any polynomial f ∈ A0

ix̂if = [ϕi, f ]∗, f ∈ A0. (29)

The elements of Ω(A0) and their exterior differentials are given by eqs. (19) and (20), but
the differential of any f ∈ A0 is given by the following algebraic rule

df = [D, f ]∗ = [ϕi, f ]∗Θi, (30)

where D = ϕiΘ
i is the *-analog of a Dirac operator.

It is interesting to analyze the relation between the algebra A and its subalgebra A0. The
latter is determined by the behaviour of ω(g, x) in the neighbourhood of the point g = e ∈ G.
We put g = eX , X ∈ G, and obtain

ω(eX , x0) = exp[i(〈F0, X〉+ r0(X))], (31)

where F0 is a fixed element of the Lie co-algebra G∗ and r0(X) contains quadratic and higher
terms. If x = gxx0, then

ω(eX , x) = ω(exp[AdgxX], x0) = exp[i(〈F,X〉+ r(X,x))], (32)

where F = Ad∗gxF0 and r(X,x) = r0(AdgxX). Since (32) should be H-invariant, we obtain

Ad∗hF0 = F0, r0(AdhX) = r0(X), h ∈ H. (33)

The first condition tells us that H is a subgroup of the stability group K of F0:

Ad∗kF0 = F0, k ∈ K. (34)



5

In general, H ⊂ K and therefore the co-orbit Γ = Ad∗GF0 ' G/K is a submanifold of M = G/H.
Using (32) we obtain for ϕi, defined in (24), the expression

ϕi = i〈F, xi〉. (35)

We see that ϕi is a linear function on Γ. Thus, the algebra A0 is a non-commutative algebra of
*-polynomials on Γ with generators ϕi satisfying the *-commutator relations (26).

Finally, we shall describe the commutative limit of A0 within the tower of unitary irreducible
representations Tλ(g) leading, instead of (31), to

ωλ(eX , x) = 〈x|Tλ(eX)|x〉 = exp(iλ〈F,X〉+ rλ(X,x)), (36)

where F = Ad∗gxF0 ∈ Γ, and we shall suppose that

rλ

(
1

λ
X, x

)
→ 0 for λ→∞. (37)

We note that for a compact group G only discrete values for λ are admissible, but in any case
arbitrary large values of λ are allowed, and this limit is assumed in what follows.

We stress the explicit presence of λ in the first term in the exponent in (36), which guarantees
that the size of Γ remains unchanged. In order to eliminate here the λ-dependence we put
X = xiXλ

i with Xλ
i = 1

λXi (leading to λ〈F,X〉 = xiϕi). The Xλ
i satisfy relations

[Xλ
i , X

λ
j ] =

1

λ
fkijX

λ
k . (38)

Repeating the construction given above one obtains that (26) is changed to

[ϕi, ϕj ]∗ =
i

λ
fkijϕk. (39)

There are two direct consequences:

(i) The algebra A0 becomes commutative in the limit λ→∞,

(ii) the rescaled *-commutator

λ

i
[ϕi, ϕj ]∗ = fkijϕk =: {ϕi, ϕj} (40)

is λ-independent and generates the Lie-Poisson bracket {·, ·} on Γ (corresponding to the
standard Lie-Kirillov symplectic structure on Γ).

Note: Eq. (40) plays the same role as 1
ih̄ [x, p] = 1 = {x, p} in quantum and classical

mechanics.

4 Applications and Concluding Remarks

We interpret S2 as an orbit of G = SU(2), the group of matrices

g =

(
u v
−v∗ u∗

)
, u = cos

ϑ

2
exp

[
− i

2
(ϕ+ ψ)

]
, v = sin

ϑ

2
exp

[
− i

2
(ϕ− ψ)

]
, (41)
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where 0 ≤ ϑ ≤ π, |ϕ| ≤ π, |ψ| ≤ π.
Let T (g) be the standard (2` + 1)-dimensional unitary representation of G. In this repre-

sentation we can choose
ω(g, x0) = (u∗)n, (42)

where n = 2` is an integer. The subgroup H = U(1) of diagonal matrices

h =

(
u 0
0 u∗

)
, u = exp

(
− i

2
ψ

)
, (43)

is a stability group, since
ω(h, x0) = einψ. (44)

The points of the factor space M = G/H we parametrize by x ∈ C∪{∞} ' S2. We identify
|x0〉 with |0〉, and we define the coherent state |x〉 by

|x〉 = T (gx)|0〉, gx = (1 + |x|2)−1/2

(
1 x
−x∗ 1

)
. (45)

Then

ω(g, x) = 〈x|T (gx)|x〉 =

(
u∗ + vx∗ − v∗x+ u|x|2

1 + |x|2

)n
. (46)

Choosing the basis in the algebra G = su(2) as

Xj =
1

in
σj , σj– Pauli matrices, j = 1, 2, 3, (47)

we obtain the left-invariant vector fields

X̂1 =
2

n

[
cosϕ cotϑ∂ϕ + sinϕ∂ϑ −

cosϕ

sinϑ
∂ψ

]
,

X̂2 =
2

n

[
sinϕ cotϑ∂ϕ − cosϕ∂ϑ −

sinϕ

sinϑ
∂ψ

]
,

X̂3 = − 2

n
∂ϕ, (48)

satisfying the commutation relations

[X̂i, X̂j ] = fkijX̂k, (49)

where fkij = 2
nεijk, εijk – totally antisymmetric and ε123 = 1. For completeness we give the dual

1-forms

Θ1 =
n

2
[sinϕdϑ− cosϕ sinϑdψ],

Θ2 =
n

2
[− cosϕdϑ− sinϕ sinϑdψ],

Θ3 =
n

2
[−dϕ− cosϕdψ], (50)

satisfying the Maurer-Cartan relations

dΘi = −1

2
f ijkΘ

j ∧Θk. (51)



7

Putting X = xjXj from (46) we obtain

ω(eX , x) = exp(in〈F,X〉+ o(X2)), (52)

where F = Ad∗gxF0 ∈ Γ and F0 = 1
2iσ3. The stability group of F0 is H, and thus Γ = M in this

case.
According to (46) the quantities ϕi = i−1(X̂iω)(e, x) are

ϕ1 =
2 Re x

|x|2 + 1
, ϕ2 =

2 Im x

|x|2 + 1
, ϕ3 =

|x|2 − 1

|x|2 + 1
. (53)

The direct calculation gives

ϕi ∗ ϕj = −(X̂iX̂jω)(e, x) =

(
1− 1

n

)
ϕiϕj + ifkijϕk +

1

n
δij . (54)

Similarly one obtains

ϕi1 ∗ . . . ∗ ϕik =

(
1− 1

n

)
. . .

(
1− k − 1

n

)
ϕi1 . . . ϕik + o(1/n), (55)

where the o(1/n) term contains only polynomials of degree < k.
The specific factor in the first term on rhs of (55) guarantees that the *-product generates

a finite dimensional algebra A0 = A of polynomials of the degree ≤ n. These polynomials can
be taken as *-polynomials (or as usual polynomials, the relation among them is given by (55),
or its inversion). The algebra of polynomials is factorized by the relation

∑
ϕi ∗ ϕi = 1 + 2

n
(or equivalently by

∑
ϕ2
i = 1).

The exterior algebra Ω(A0) is generated by (abstract) Grassmann variables Θi, i = 1, 2, 3,
satisfying Maurer-Cartan relations (51), with *-polynomial coefficients. Besides 0-forms the
algebra Ω(A0) contains 1- and 2-forms

A =
∑

α

a0
α ∗ da1

α, F =
∑

α

a0
α ∗ da1

α

∗∧ da2
α, (56)

where akα ∈ A0. The exterior differential of any element f ∈ A0 is given by

df = {D, f}∗, D = ϕiΘ̃
i, (57)

where {·, ·}∗ = n
i [·, ·]∗ and the rescaled Grassmann variables Θ̃i = 1

nΘi satisfy Maurer-Cartan
relations

dΘ̃i = −1

2
εijkΘ̃

j ∧ Θ̃k (58)

not depending on n.
Our construction for the Fuzzy sphere S2 is in fact identical to the construction of matrix

models for S2 presented in [6] and [7]. The next example is connected with the non-compact
group SU(1, 1) and goes beyond matrix models.

The group G = SU(1, 1) consists of complex matrices

g =

(
u v
−v∗ u∗

)
, u = cosh

ϑ

2
exp

[
− i

2
(ϕ+ ψ)

]
, v = sinh

ϑ

2
exp

[
− i

2
(ϕ− ψ)

]
, (59)
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where ϑ ∈ R, |ϕ| ≤ π, |ψ| ≤ π. We briefly sketch the construction of coherent states in the
unitary representation T (g) in the discrete series (see [9], [10] and [12]), in which

ω(g, x0) = (y∗)−n. (60)

The Bargmann index n/2 takes the values 1, 3/2, 2, . . .. The stability subgroup of (60) is the
compact group H = U(1) of diagonal matrices (43).

The factor space M = SU(1, 1)/U(1) is one sheet of a two-sided hyperboloid and its points
are parametrized by the complex parameter x, |x| < 1. The coherent state is given as

|x〉 = T (gx)|0〉, gx = (1− |x|2)−1/2

(
1 x
x∗ 1

)
, (61)

(we identified |x0〉 with |0〉). Then

ω(g, x) = 〈x|T (gx)|x〉 =

(
u∗ − vx∗ + v∗x− u|x|2

1− |x|2

)−n
. (62)

The left-invariant vector fields on G = su(1, 1) are

X̂1 =
2

n

[
cothϑ cosϕ∂ϕ + sinϕ∂ϑ −

cosϕ

sinh τ
∂ψ

]
,

X̂2 =
2

n

[
cothϑ sinϕ∂ϕ − cosϕ∂ϑ −

sinϕ

sinh τ
∂ψ

]
,

X̂3 = − 2

n
∂ϕ. (63)

The quantities ϕi = i−1(X̂iω)(e, x) now are

ϕ1 =
2 Re x

1− |x|2 , ϕ2 =
2 Im x

1− |x|2 , ϕ3 =
1 + |x|2
1− |x|2 . (64)

The *-product is now given as

ϕi ∗ ϕj = −(X̂iX̂jω)(e, x) =

(
1 +

1

n

)
ϕiϕj + ifkijϕk +

1

n
δij (65)

where fkij = gk`εij`, gi` = diag (1,−1,−1). Similarly

ϕi1 ∗ . . . ∗ ϕik =

(
1 +

1

n

)
. . .

(
1 +

k − 1

n

)
ϕi1 . . . ϕik + o(1/n), (66)

where the o(1/n) term contains polynomials of degree < k. We stress the different form of the
factor in the first term on the rhs of (66). Consequently the algebra A0 is infinite dimensional
(and A is a closure of it in a suitable topology).

The formulas (56) – (58) defining the exterior algebras remain unchanged (except the proper
definition of f ijk has to be taken into account).

Note: The group su(1, 1) has more series of unitary representations. For a specific purpose,
a difference to the discussed one could be more appropriate.
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5 Concluding Remarks

Our approach is close to the geometrical quantization (see [11], [14] and [15]) but the interpre-
tation is different. We intensively use the notions of coherent spaces (see [8] and [9]), and of the
*-product (introduced in [16]) and specify them for particular Lie orbits. For recent results see
[17] and [18].

The supercoherent states were introduced recently, see e.g. [12] and [13]. Obviously the
non-commutative homogeneous super-spaces can be introduced too following the scheme given
above. We shall treat them separately.

Our construction is simple, transparent and it allows to investigate the commutative limit,
but many important questions remain open. For physical application more realistic models
(higher dimensional and/or relativistic) are required. Moreover, important structures (like spin
structure, monopoles, ...) should be well understood within non-commutative geometry. These
problems are under current study.

After finishing this letter, Prof. A. Perelomov informed us that the procedure how we in-
troduced the limit n → ∞ is similar to that one used in the Berezin quantization scheme (for
details see [10]).
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