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ON MULTILINEAR OPERATORS

COMMUTING WITH LIE DERIVATIVES

Andreas Čap
Jan Slovák

Abstract. Let E 1, . . . , Ek and E be natural vector bundles defined over the cate-
gory Mf+

m of smooth oriented m–dimensional manifolds and orientation preserving

local diffeomorphisms, with m ≥ 2. Let M be an object of Mf+
m which is con-

nected. We give a complete classification of all separately continuous k–linear op-

erators D : Γc(E1M) × . . . × Γc(EkM) → Γ(EM) defined on sections with compact

supports, which commute with Lie derivatives, i.e. which satisfy

LX(D(s1, . . . , sk)) =

k∑

i=1

D(s1, . . . ,LXsi, . . . , sk),

for all vector fields X on M and sections sj ∈ Γc(EjM), in terms of local natural

operators and absolutely invariant sections. In special cases we do not need the
continuity assumption. We also present several applications in concrete geometrical
situations, in particular we give a completely algebraic characterization of some well
known Lie brackets.

1. Natural operators

In this section we give a brief survey over notions and results from the theory of
natural bundles and operators which we will need in the sequel and we formulate
our main result. Besides the references cited for the results they can all be found
in [Kolář–Michor–Slovák].

1.1. Definition. A bundle functor (or natural bundle) on the categoryMf+
m of m-

dimensional oriented manifolds and orientation preserving smooth locally invertible
mappings (so called local diffeomorphisms) is a functor F : Mf+

m → FM with
values in fibered manifolds which satisfies:

(i) B ◦ F = idMf+
m

where B : FM→Mf is the base functor

(ii) for every inclusion i : U →M of an open submanifold, FU is the restriction
p−1
M (U) of the value FM = (pM : FM → M) to U and Fi is the inclusion

p−1
M (U)→ FM .

A vector bundle functor (or natural vector bundle) is a bundle functor with
values in the category of finite dimensional vector bundles and fiberwise invertible
vector bundle homomorphisms.
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1.2. By the general theory, cf. [Palais–Terng], [Epstein–Thurston], each natural
bundle is obtained (up to isomorphisms) by the construction of associated bundles

to the (higher order) frame bundles P r
+

M . The latter principal bundles are defined
as the bundles of r-jets of locally defined orientation preserving diffeomorphisms
Rm → M at the origin 0 ∈ Rm, and their structure groups are the Lie groups of
r-jets of orientation preserving diffeomorphisms Rm → Rm which keep the origin
fixed, the so called jet groups. Then the values of F on morphisms depend only on
r-jets for some non-negative integer r, which is called the order of F .

In particular, all natural bundles transform smoothly parameterized families of
morphisms into smoothly parameterized families (the so called regularity). Hence
we can apply a bundle functor F to flows of vector fields on M and we get flows
on the values FM . This gives rise to the so called flow operator which transforms
vector fields on M into vector fields on FM .

Vector bundle functors correspond to linear representations of the jet groups in
finite dimensional vector spaces and the flow operators can be used to define Lie
derivatives of sections of a natural vector bundle analogously to the classical case
of tensor bundles, cf. [Terng] and [Čap–Slovák]. By the regularity of vector bundle
functors, the Lie derivatives define a continuous action of the Lie algebra of vector
fields on the space of sections. This action is local in both arguments and so in
view of the localization property of the vector bundle functors we get for each vector
bundle functor F an action of the sheaf of vector fields on an oriented manifold M
on the sheaf of local sections of FM .

1.3. Absolutely invariant sections. Let F be a natural vector bundle defined
on the categoryMf+

m and let M be an object ofMf+
m which is connected. A section

s ∈ Γ(FM) is called absolutely invariant if and only if LXs = 0 for all vector fields
X on M . The finiteness of the order of the bundle functor F and arguments from
the proof of the main theorem of [Čap–Slovák] imply that s is then invariant for
the actions of all orientation preserving diffeomorphisms of M . Now assume that F
is of order r and let ρ : Gr+m → GL(V ) be the corresponding representation of the
jet group. Then one easily verifies that the absolutely invariant sections of FM are
in bijective correspondence with elements of V which are invariant for the action
ρ. In particular we see that the absolutely invariant sections always form a finite
dimensional vector space of dimension at most the fiber dimension of FM , and
that an absolutely invariant section is determined by its restriction to one point.
Moreover an absolutely invariant section s of FM gives rise to a unique absolutely
invariant section of FN for any oriented m–dimensional manifold N .

Note that in many concrete situations there exist no absolutely invariant sections.
For example in a subbundle of a tensor bundle ⊗pTM⊗⊗qT ∗M absolutely invariant
sections can exist only if p = q.

1.4. Definition. Let E,F : Mf+
m → FM be two bundle functors. A natural

operator D : E → F is a system DM of local smooth operators, for all oriented
m-dimensional manifolds M , which commute with the actions of local diffeomor-
phisms. So DM : Γ(EM)→ Γ(FM) transforms smooth families of sections of FM
into smooth families of sections of GM and DM (s)(x) depends only on the germ of s
at x for all sections s ∈ Γ(EM) and points x ∈M . Moreover for any diffeomorphism
ϕ : M → N we have F (ϕ)∗ ◦DM = DN ◦ E(ϕ)∗ : Γ(EM) → Γ(FN), and for any
open submanifold U ⊂M and section s ∈ Γ(EM) we have DU (s|U ) = DM (s)|U .
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Each local k-linear natural operator D : E1 × . . .× Ek → E satisfies

LX(DM (s1, . . . , sk)) =
k∑

i=1

DM (s1, . . . ,LXsi, . . . , sk)

for each manifold M , all vector fields X on M and all si ∈ Γ(EiM). We say
that D commutes with Lie derivatives. Moreover, each k-linear local operator
DM : Γ(E1M) × . . . × Γ(EkM) → Γ(EM) which commutes with Lie derivatives
extends to a unique natural operator D, see [Čap–Slovák, 3.2].

1.5. Determination of local natural operators. Let us consider a k–linear
natural operator D : E1 × . . . × Ek → E, where the Ei and E are natural vec-
tor bundles. By the multilinear Peetre theorem (c.f. [Cahen–de Wilde–Gutt] or
[Slovák]) D is of some finite order r. Let JrEi denote the r-jet prolongations of
the natural vector bundles Ei, let Vi and V be the standard fibers of the Ei and
E, and let T rmVi be the standard fiber of JrEi. The natural operator D is uniquely
determined by its value on Rm and DRm is induced by a k–linear vector bundle
homomorphism JrE1Rm × . . .× JrEkRm → ERm. This in turn is uniquely deter-
mined by the induced linear map D̃ : T rmV1 ⊗ · · · ⊗ T rmVk → V . The spaces T rmVi
and V are modules over the jet group Gr+`m , where ` is the maximum of the orders

of the bundle functors Ei and E, and the fact that D̃ comes from a natural operator
is equivalent to equivariancy of D̃ for these actions.

Thus the determination of natural operators of fixed order r reduces to the clas-
sification of equivariant linear maps between two finite dimensional representations
of the jet group Gr+`m . This classification has been carried out in a variety of special
cases, see [Kolář–Michor–Slovák] for a collection of results in this direction.

In particular the space of multilinear local natural operators of fixed order be-
tween fixed bundles is always finite dimensional. Moreover we can prove that there
is always some maximal order for such operators:

1.6. Lemma. Let E1, . . . , Ek and E be vector bundle functors on Mf+
m. Then

the space of all k–linear (local) natural operators D : E1 × . . . × Ek → E is finite
dimensional.

Proof. As discussed above, each such operator DM : Γ(E1M) ⊕ · · · ⊕ Γ(EkM) →
Γ(EM) factors through a k–linear Gr+`m –equivariant map on the jets of sections in

one point of Rm, D̃ : T rmV1⊗ · · · ⊗T rmVk → V , where r is the order of the operator,
` is the maximum of the orders of the natural bundles. Let us write D∗ : V ∗ →
(T rmV1)∗ ⊗ · · · ⊗ (T rmVk)∗ for the dual linear mapping to the corresponding linear
mapping on the tensor product of the jet spaces. The jet group G1

m = GL(m,R)
of order one is always a subgroup and thus, in particular the mapping D∗ is an
SL(m,R)–module homomorphism. As representation spaces for SL(m,R), all the
standard fibers V1, . . . , Vk and V decompose into irreducible representations, as well
as the whole tensor product of the duals. Each of the irreducible components is
determined by a highest weight vector sitting in the whole space, we shall write
Vλ for a component with highest weight λ. Furthermore, we always have T rmW =
⊕ri=0W⊗SiRm∗ asGL(m,R)–modules, in particular T rm(W1⊕W2) = T rmW1⊕T rmW2

for any two GL(m,R)–modules. Thus we may rewrite the target space of D∗ in
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the form

k⊗

i=1

( r⊕

j=0

V ∗i ⊗ SjRm
)

=

N⊕

s=1

r⊕

j1,...,jk=0

(
Vρs ⊗⊗ki=1S

jiRm
)

⊂
N⊕

s=1

r⊕

j1,...,jk=0

(
Vρs ⊗⊗j1+···+jkRm

)

where the spaces Vρs are the irreducible components in the tensor product V ∗1 ⊗
· · · ⊗V ∗k . Since the decomposition into irreducible components is always unique up
to order and since a homomorphism between irreducible components is a multiple
of the identity, the mapping D∗ is just the inclusion of the irreducible components
of V ∗ = ⊕iVµi into the tensor product. Thus we have only to show that highest
weight vectors in the tensor product with the weights µi can appear only in the
components Vρs ⊗⊗jRm with j less that some fixed bound.

If our jet spaces were completely reducible GL(m,R)–modules, we could apply
just the above discussion and to compare the actions of the center of GL(m,R)
on the domain and the target. The multiples of the identity matrix in the Lie
algebra gl(m,R) must act by some scalar and each copy of Rm in the tensor prod-
uct increases this scalar by one. This simple idea leads then directly to a bound
as required. Since we do not want to restrict ourselves to completely decompos-
able GL(m,R)–modules, we have to use the above decomposition into irreducible
SL(m,R)–modules and to apply the equivariancy with respect to the induced action
of the universal enveloping algebra of sl(m,R), where the center is not trivial.

Let us assume there is a highest weight vector with weight µ in Vρ ⊗ ⊗jRm.
Then we can complexify both the representation spaces, and we shall find a highest
weight vector with weight µ in the U(sl(m,C))–module Vρs⊗⊗jCm (now Vρs means
the complex irreducible representation with highest weight ρs).

For the semisimple Lie algebra sl(m,C), there is the Casimir operator C sitting
in the center of U(sl(m,C)) and so acting by a scalar Cµ on each irreducible rep-
resentation space Vµ. This scalar can be computed easily by means of the highest
weights, Cµ = 〈µ, µ+ 2δ〉 where 2δ is the sum of all positive roots and 〈 , 〉 is the
Killing form on the algebra, see e.g. [Samelson, p. 121]. In our case, the weights are
in the dual to the Cartan algebra which consists of trace free diagonal matrices. If
e1, . . . , em is the usual linear basis, the positive roots are ei− ej with i < j, all pos-
sible highest weights are of the form a1e

1 + · · ·+am−1e
m−1 with integers a1 ≥ a2 ≥

· · · ≥ am−1 ≥ 0, and the Killing form is just the Euclidean metric up to a constant
negative multiple. In particular we get δ = (m− 1)e1 + (m− 2)e2 + · · ·+ em−1.

In order to estimate Cµ for our irreducible component in the tensor product, we
have to know which weights may appear in a tensor product of two irreducible
representations. A general answer is obtained easily by means of some of the
well known consequences of the Weyl’s character formula, e.g. Klimyk’s formula,
see [Samelson, p. 128]: We have only to consider the highest weight of the first
representation and to add any weight of the other one (only those which yield
dominant weights can apply and the multiplicity must be computed). In our case
this means, we take the weight ρ and we add, step by step, the weights of Cm. To
get all of them, we apply first the Weyl group to the highest weight e1 of Cm which
yields just the weights e1, . . . , em. These must be involved, but the dimension of the
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sum of the corresponding weight spaces is at least m, so we are done. Altogether,
a highest weight in Vρ⊗⊗jRm must be of the form ρ+ei1 + · · ·+eij and we obtain

Cµ = 〈ρ+ ei1 + · · ·+ eij , ρ+ ei1 + · · ·+ eij + 2((m− 1)e1 + · · ·+ em−1)〉
= Cρ + 2〈ρ, ei1 + · · ·+ eij 〉+ 〈ei1 + · · ·+ eij , ei1 + · · ·+ eij + 2δ〉
≤ const− a positive constant multiple of j.

This estimate implies that for each fixed ρ and µ, the order j is bounded and the
lemma is proved. ¤

In fact the proof of lemma 1.6 shows even that the same statement holds for
vector bundle functors and operators defined on the category of smooth oriented
m–dimensional manifolds with fixed volume forms and volume preserving local
diffeomorphisms.

Next we introduce a class of non–local operators which commute with Lie deriva-
tives.

1.7. Definition. Let E1, . . . , Ek, E be natural vector bundles defined on the cate-
goryMf+

m, and let us write Γc(EiM) for the space of compactly supported smooth
sections of the vector bundle EiM over anm-dimensional oriented manifoldM while
Γ(EM) means the space of all smooth sections. Let I1 = {i11 < · · · < i1n1

}, . . . , Ir =

{ir1 < · · · < irnr}, J = {j1 < · · · < jn} with i11 < · · · < ir1 be a partition of the set

{1, . . . , k} into disjoint subsets, such that all Ij are nonempty, while J is allowed
to be empty.

An elementary almost natural operator Γc(E1M) × . . . × Γc(EkM) → Γ(EM)
of type (I1, . . . , Ir, J) is an operator of the form

(s1, . . . sk) 7→ λ1(si11 , . . . , si1n1
) . . . λr(sir1 , . . . , sirnr )DM (sj1 , . . . , sjn),

where D : Ej1 × . . .× Ejn → E is a jn–linear local natural operator and any λ` is
an operator Γc(Ei`1)× . . .× Γc(Ei`n`

)→ R of the form

(s1, . . . , sn`) 7→
∫

M

〈D`
M (s1, . . . , sn`−1), sn`〉,

where D` : Ei`1×. . .×Ei`n`−1
→ E∗i`n`

⊗ΛmT ∗ is a (n`−1)–linear local natural opera-

tor and 〈 , 〉 denotes the canonical pairing Γc(E
∗
i`n`
M⊗ΛmT ∗M)×Γc(Ei`n`

M)→
Γc(Λ

mT ∗M). In this notation we use the convention that a local natural operator
without arguments is just an absolutely invariant section of the target bundle.

An almost natural operator E1M × . . . × EkM → EM is a linear combination
of elementary almost natural operators.

1.8. Proposition. Any almost natural operator commutes with Lie derivatives.

Proof. Let us first show that for a multilinear map λ as in definition 1.7 we have∑n
i=1 λ(s1, . . . ,LXsi, . . . , sn) = 0 for any sections si and any vector field X on M .

Since any Lie derivative of an m-form on an m-dimensional manifold is an exact
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form we have:

0 =

∫

M

LX(〈DM (s1, . . . , sn−1), sn〉) =

=

∫

M

(〈LX(DM (s1, . . . , sn−1)), sn〉+ 〈DM (s1, . . . , sn−1),LXsn〉) =

=
n−1∑

i=1

∫

M

〈DM (s1, . . . ,LXsi, . . . , sn−1), sn〉+

+

∫

M

〈DM (s1, . . . , sn−1),LXsn〉 =

=

n∑

i=1

λ(s1, . . . ,LXsi, . . . , sn)

¿From this the result is obvious. ¤
The main result of this paper is the converse of this proposition, which will be

proved in section 5:

1.9. Theorem. Let E1, . . . , Ek, E be natural vector bundles defined on the category
Mf+

m, m ≥ 2, and let M be a connected oriented smooth manifold of dimension m.
Then any separately continuous k–linear operator D : Γc(E1M)× . . .×Γc(EkM)→
Γ(EM) which commutes with Lie derivatives is an almost natural operator. In
particular any such operator is automatically jointly continuous and the space of
such operators is always finite dimensional and independent of the manifold M .

2. Natural presheaves

Although our results apply mainly to natural vector bundles and their sections
we have to use the more technical notion of an admissible natural presheaf in the
proofs.

2.1. Definitions. Let M be a smooth manifold. By X ( ) we denote the sheaf
of smooth vector fields over M .
(1) A natural presheaf F on M is a presheaf of locally convex modules over the
sheaf of Lie algebras X (M). This means that for any open subset U of M there is a
locally convex vector space F(U) on which the Lie algebra X (U) acts by continuous
linear operators, which we denote by LX for X ∈ X (U). By the same symbol we
denote the actions of the restrictions of X to open subsets of U on the corresponding
spaces. Moreover for any open subset V ⊂ U there is a continuous linear restriction
mapping rUV : F(U)→ F(V ) which is equivariant over the corresponding restriction
map for vector fields for the Lie algebra actions.
(2) An element s ∈ F(U) is called absolutely invariant if and only if LXs = 0 for
all X ∈ X (M) with support contained in U .
(3) A natural presheaf F over M is called admissible if and only if the following
two conditions are satisfied:

(i) For any open subset U of M and system of countably many open sets {Ui}
such that Ui ⊂ Ui+1 for all i, and such that U = ∪i∈NUi, each element of
F(U) is uniquely determined by its restrictions to all spaces F(Ui).
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(ii) For any connected open subset U of M and any absolutely invariant
element s ∈ F(U) there is a unique absolutely invariant element s̃ ∈ F(M)
such that rMU (s̃) = s. Moreover the operator of extending absolutely invariant
elements is continuous.

(4) Let E1 →M, . . . , Ek →M be vector bundles, F a presheaf of vector spaces over
M and let us write Γc(Ei) for the space of sections of Ei with compact support. A
k–linear operator D : Γc(E1) × . . . × Γc(Ek) → F(M) is called local if and only if
for each open subset U of M and each i, 1 ≤ i ≤ k, the condition si|U = 0 implies
that rMU (D(s1, . . . , sk)) = 0.
(5) Let E1 →M, . . . , Ek →M be vector bundles, V a vector space. A k–linear map
λ : Γc(E1)× . . .×Γc(Ek)→ V is called weakly local if and only if λ(s1, . . . , sk) = 0
for all sections with supp(s1) ∩ · · · ∩ supp(sk) = ∅.
2.2. Topologies on spaces of sections and operators between them.
Before we give examples of natural presheaves we describe the topologies we will
use. For an open subset U ⊂ Rm we put on C∞(U,Rn) as usual the topology of
uniform convergence in all derivatives separately, which is a Fréchet topology. Next
for a smooth vector bundle E → M over a smooth manifold a vector bundle atlas
(Ui) gives rise to linear maps Γ(E)→ C∞(Ui,Rn), where n is the fiber dimension
of E, and we put on Γ(E) the initial topology with respect to these maps. Since
we can use a countable atlas Γ(E) is again a Fréchet space. Next for any compact
subset K ⊂ M the space Γc(E;K) of all sections of E with support contained
in K is a closed linear subspace of Γ(E) and thus also a Fréchet space with the
induced topology. Now for i ∈ N we can choose compact subsets Ki ⊂M such that
Ki ⊂ Ki+1 and such that M = ∪i∈NKi. Then Γc(E;Ki) is a closed linear subspace
of Γc(E;Ki+1) and Γc(E) = ∪i∈NΓc(E;Ki) as a set. We topologize Γc(E) as the
inductive limit of the spaces Γc(E;Ki), so Γc(E) is the strict inductive limit of a
sequence of Fréchet spaces. In particular this implies that Γc(E) is a bornological
space, i.e. a linear map from Γc(E) to any locally convex vector space is continuous
if and only if it is bounded.

Consider the space L(Γc(E1), . . . ,Γc(Ek); Γ(E)) of all bounded k–linear maps
Γc(E1) × . . . × Γc(Ek) → Γ(E), where the Ei and E are vector bundles over M .
Since Γc(Ei) is bornological we conclude from [Frölicher–Kriegl, 3.7.5] that the
bounded k–linear maps are exactly the separately continuous ones.

Now we declare a subset B ⊂ L(Γc(E1), . . . ,Γc(Ek); Γ(E)) to be bounded if and
only if B(A1 × . . .× Ak) is bounded in Γ(E) for all bounded subsets Ai ⊂ Γc(Ei).
Then on L(Γc(E1), . . . ,Γc(Ek); Γ(E)) we put the associated locally convex topology,
i.e. we take as a basis of neighborhoods of zero all absolutely convex subsets U such
that for any bounded subset B there exists some t ∈ R such that B ⊂ t · U . Note
that by definition this is a bornological topology. Moreover by [Frölicher–Kriegl,
3.7.3] flipping coordinates gives an isomorphism

L(Γc(E1), . . . ,Γc(Ek); Γ(E)) ∼=
∼= L(Γc(E1), . . . ,Γc(E`);L(Γc(E`+1), . . . ,Γc(Ek); Γ(E))).

2.3. Examples of natural presheaves. (1) Let E be a vector bundle functor
defined on the categoryMfm of m–dimensional smooth manifolds and local diffeo-
morphisms. Then with the usual notion of the Lie derivative along vector fields and
the topology described above, the spaces Γ(EU) of smooth sections of EU form a
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natural presheaf (in fact a natural sheaf) over M . In section 4 we will prove that
this natural presheaf is admissible.
(2) A less simple example which will be crucial in the sequel is the following: Let
E1, . . . , Ek, E be vector bundle functors as above. Put

F(U) := L(Γc(E1U), . . . ,Γc(EkU); Γ(EU)),

the space of all separately continuous k–linear operators. On this space we define
the action of the Lie algebra X (U) by

(LXD)(s1, . . . , sk) := LX(D(s1, . . . , sk))−
k∑

i=1

D(s1, . . . ,LXsi, . . . , sk).

This action is continuous since it is just given by compositions with continuous
linear operators. To define the restriction mappings just note that for open sets
V ⊂ U any section with compact support of the restricted vector bundle over V
can be extended by zero to a section over U . It will be shown in section 5 that this
natural presheaf is also admissible. Note that the absolutely invariant elements in
F(U) are by definition exactly those operators which commute with Lie derivatives.

2.4. Remark. When dealing with operators with values in spaces of operators
one has to be very careful about the various meanings of locality and weak locality.
Moreover the name ‘weakly local’ is a little misleading when dealing with operators
with values in general admissible natural presheaves. Clearly any local operator
with values in a sheaf over M is a weakly local mapping. But if one deals with
presheaves which only satisfy the very weak condition (i) of 2.1.(3) then there are
local operators which are not weakly local. Let us discuss this in an example which
is relevant in the sequel:

For a smooth manifold M of dimension m consider the trilinear operator

D : C∞c (M,R)× C∞c (M,R)× Ωmc (M)→ C∞(M,R)

defined by D(f, g, ω) := f ·
∫
M
g · ω. As a trilinear operator this is neither local

nor weakly local. But we can consider D in three ways as a linear operator with
values in a space of bilinear operators. In fact all these associated linear operators
are local, since this just means that if one of the three sections f, g and ω vanishes
on an open subset U and the other two sections have support contained in U then
D(f, g, ω) vanishes on U and this is clearly satisfied.

Next we can consider D in three ways as a bilinear operator with values in
a space of linear operators. In particular consider the operator (f, g) 7→ (ω 7→
D(f, g, ω)). Then this operator is local since if either f or g vanish on an open
subset U of M and ω has support contained in U then D(f, g, ω) vanishes on U .
On the other hand this operator is not weakly local since f and g having disjoint
supports does not imply that D(f, g, ω) = 0. Similarly one checks that the operator
(f, ω) 7→ (g 7→ D(f, g, ω)) is local but not weakly local while on the other hand
(g, ω) 7→ (f 7→ D(f, g, ω)) is weakly local but not local.

2.5. Let E1, . . . , Ek be vector bundle functors defined on the categoryMf+
m, m ≥

2, and let F be an admissible natural presheaf over an oriented connected m–
dimensional manifold M . Let D : Γc(E1M) × . . . × Γc(EkM) → F(M) be a
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k–linear operator which commutes with Lie derivatives, i.e. such that

LX(D(s1, . . . , sk)) =
k∑

i=1

D(s1, . . . ,LXsi, . . . , sk)

for all X ∈ X (M), si ∈ Γc(EiM).
First consider sections si ∈ Γc(EiM) and suppose that over some open set U all si

are identically zero. Then LXsi is globally zero for all vector fields X with support
in U and so the commutation with Lie derivatives implies that the restriction of
D(s1, . . . , sk) to U is absolutely invariant.

Lemma. Suppose that W := M \ (∪i supp(si)) 6= ∅. Then there is a unique abso-
lutely invariant element D(s1, . . . , sk)inv ∈ F(M) such that rMW (D(s1, . . . , sk)inv) =
rMW (D(s1, . . . , sk)).

Proof. Since F is admissible, the absolutely invariant restrictions of D(s1, . . . , sk)
to the individual connected components of W extend uniquely to globally de-
fined absolutely invariant elements. Thus, we only have to show that for any
two connected components U and V of W the two absolutely invariant elements
in F(M) determined by the restrictions of D(s1, . . . , sk) to U and V coincide.
Since M is connected and of dimension at least 2 we can choose k + 1 smooth
curves c1, . . . , ck+1 : [0, 1] → M , which all start in U , end in V and are pair-
wise disjoint. Then there are open sets Ui and Vi for 1 ≤ i ≤ k + 1 such that
ci([0, 1]) ⊂ Ui ⊂ Ūi ⊂ Vi and such that the sets Vi are pairwise disjoint. Next for
each i = 1, . . . , k choose a smooth function fi ∈ C∞(M, [0, 1]) which is identically

1 on Ūi and vanishes outside of Vi and put fk+1 := 1−∑k
i=1 fi.

By k–linearity D(s1, . . . , sk) =
∑
I D(fi1s1, . . . , fiksk), where I runs over the set

of all multiindices (i1, . . . , ik) with 1 ≤ ij ≤ k + 1. But now observe that for any
such multiindex there is at least one integer `, 1 ≤ ` ≤ k+1, which does not appear
in the multiindex. Thus all sections fi1s1, . . . , fiksk vanish locally around the curve
c` and hence on a connected open set which intersects both U and V . So for each
of the summands the two extensions coincide and hence the same is true for the
sum. ¤
2.6. For i = 1, . . . , k choose nonempty open subsets Ui and Vi of M such that
Ui ⊂ Ūi ⊂ Vi and such that the sets V̄i are pairwise disjoint. Since M is connected
the open subset Uk+1 := M \ (∪iV̄i) is nonempty. Clearly it is possible to find such
a configuration with all Vi contained in an arbitrary small open subset of M . Then
choose smooth functions fi ∈ C∞(M, [0, 1]) such that fi is identically 1 on Ūi and
identically zero on M \ Vi and put fk+1 := 1−∑i fi.

Now fix arbitrary sections si ∈ Γc(EiM). For each multiindex I = (i1, . . . , ik) of
integers i1, . . . , ik between 1 and k+1 there is an open subset of M on which all the
sections fi1s1, . . . , fiksk vanish by the choice of the functions. So by the previous
lemma we get an absolutely invariant element D(fi1s1, . . . , fiksk)inv ∈ F(M). Let
us define

λ(s1, . . . , sk) = λf1,...,fk(s1, . . . , sk) =
∑

I

D(fi1s1, . . . , fiksk)inv.

This operator is obviously k–linear, and since the presheaf F is admissible it is
continuous provided that D is continuous.
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2.7. Lemma. The operator λ does not depend on the choices of Ui, Vi and fi.
Moreover if for some open subset U of M the sections sj ∈ Γc(EjM) all restrict to
zero on U , then rMU (λ(s1, . . . , sk)) = rMU (D(s1, . . . , sk)).

Proof. We show that we may replace (Uj , Vj , fj) by (U ′j , V
′
j , f
′
j) for one fixed j if

the new set of triples still satisfies the conditions of 2.6. Clearly, it suffices to do
this for j = 1. So let us take a second choice U ′i , V

′
i and f ′i where the data do not

change for i > 1.
By the multilinearity of D, we get

D(fi1s1, . . . , fiksk)−D(f ′i1s1, . . . , f
′
ik
sk) =

=
∑

j

D(f ′i1s1, . . . , f
′
ij−1

sj−1, (fij − f ′ij )sj , fij+1
sj+1, . . . , fiksk).

By the assumption on V̄ ′1 all sections occurring as arguments in this equation vanish
simultaneously on some open subset in M , so we get the analogous equation for the
invariant elements D(fi1s1, . . . , fiksk)inv −D(f ′i1s1, . . . , f

′
ik
sk)inv. Thus we obtain

λf1,...,fk(s1, . . . , sk)− λf ′1,...,f ′k(s1, . . . , sk) =

=
k∑

j=1

∑

I

D(f ′i1s1, . . . , f
′
ij−1

sj−1, (fij − f ′ij )sj , fij+1
sj+1, . . . , fiksk)inv.

But in fact only the terms with either ij = 1 or ij = k + 1 can contribute, since
otherwise fij = f ′ij and so one argument vanishes globally on M . Thus

λf1,...,fk(s1, . . . , sk)− λf ′1,...,f ′k(s1, . . . , sk) =

=
k∑

j=1

∑

(i1,...,ij−1,ij+1,...,ik)

(
D(f ′i1s1, . . . , f

′
ij−1

sj−1, (f1−f ′1)sj , fij+1
sj+1, . . . , fiksk)inv

+D(f ′i1s1, . . . , f
′
ij−1

sj−1, (fk+1 − f ′k+1)sj , fij+1
sj+1, . . . , fiksk)inv

)
.

Since fk+1 − f ′k+1 = f ′1 − f1 by definition, the two terms in the most inner sum
annihilate each other and so the whole expression vanishes.

Finally if all sj restrict to zero on an open subset U of M then by the first part of
this proof we may compute λ using triples (Ui, Vi, fi) such that f1, . . . , fk have sup-
port contained in U . Then by definition λ(s1, . . . , sk) = D(fk+1s1, . . . , fk+1sk)inv =
D(s1, . . . , sk)inv and thus again by definition

rMU (λ(s1, . . . , sk)) = rMU (D(s1, . . . , sk)). ¤

2.8. Lemma. The operator λ commutes with Lie derivatives, i.e. for any X ∈
X (M) and any si ∈ Γc(EiM) we have

∑k
i=1 λ(s1, . . . ,LXsi, . . . , sk) = 0.

Proof. First we may clearly assume that X has compact support. Thus we may
assume that the support of X is arbitrarily small. So we may choose Ui, Vi and fi
as in 2.6 in such a way that the support of X is contained in U1. Since fLXs =
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LX(fs) − (Xf)s and all fi are constant on the support of X, we see that LX
commutes with the multiplication by fi for each i and thus we get

k∑

j=1

λ(s1, . . . ,LXsj , . . . , sk) =

k∑

j=1

∑

I

D(fi1s1, . . . ,LXfijsj , . . . , fiksk)inv.

Now we exchange the two sums. For a fixed I all sections fi`s` and LXfi`s` vanish
simultaneously on some open subset. Then for the restrictions to this subset we get

k∑

j=1

D(fi1s1, . . . ,LXfijsj , . . . , fiksk)inv =

=

k∑

j=1

D(fi1s1, . . . ,LXfijsj , . . . , fiksk) = LX(D(fi1s1, . . . , fiksk)) = 0,

since the restriction of D(fi1s1, . . . , fiksk) to this subset is absolutely invariant.
Since absolutely invariant elements are determined by their restrictions to any open
subset the sum vanishes globally and the result follows. ¤
2.9. Theorem. Let E1, . . . , Ek be vector bundle functors defined on the category
Mf+

m, m ≥ 2, and let F be an admissible natural presheaf over a connected m–
dimensional manifold M . Let D : Γc(E1M)× . . .×Γc(EkM)→ F(M) be a k–linear
operator which commutes with Lie derivatives. Let λ : Γc(E1M)× . . .×Γc(EkM)→
F(M) be the k–linear operator constructed above, and put D̃ = D − λ. Then we
have:

(1) Both D̃ and λ commute with Lie derivatives.

(2) If D is separately continuous then so are D̃ and λ.
(3) λ has values in the subspace of absolutely invariant elements.
(4) Suppose that D satisfies the following condition:

Let U ⊂ M be an open subset, s` ∈ Γc(E`M) for ` = 1, . . . , k. If there are
i and j between 1 and k such that si vanishes on U and the support of sj
is contained in U , then D(s1, . . . , sk) restricts to zero on U .

Then λ is weakly local and D̃ is local.

The only point that remains to be proved is (4). First we need a lemma:

2.10. Lemma. Suppose that D : Γc(E1M)× . . .×Γc(EkM)→ F(M) satisfies the
condition of 2.9.(4), and suppose that s1, . . . , sk are sections such that for some
` ≤ k and some i1, . . . , i` between 1 and k we have supp(si1) ∩ · · · ∩ supp(si`) = ∅.
Then D(s1, . . . , sk) restricts to zero on M \ (∪`j=1 supp sij ).

Proof. We proceed by induction on `. For ` = 1 there is nothing to prove. If ` = 2
we assume without loss of generality that s1 and s2 have disjoint supports. Then
s1 vanishes on the open set M \ supp(s1) and s2 has support contained in this open
set so by the condition 2.9.(4), D(s1, . . . , sk) restricts to zero on M \ supp(s1) and
thus also on M \ (supp(s1) ∪ supp(s2)).

So let us assume that ` > 2 and that the result has been proved for all integers
smaller than `. Without loss of generality we assume that supp(s1)∩· · ·∩supp(s`) =
∅ and that all intersections of ` − 1 of these sets are nonempty. Then for i =
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1, . . . , ` we can construct open sets Ui such that Ui is an open neighborhood of
supp(s1) ∩ · · · ∩ supp(si−1) ∩ supp(si+1) ∩ · · · ∩ supp(s`), the sets Ūi are pairwise
disjoint and Ūi ∩ supp(si) = ∅. Next for any i choose a smooth function fi ∈
C∞(M, [0, 1]) such that fi has support contained in Ui and is identically one on
supp(s1) ∩ · · · ∩ supp(si−1) ∩ supp(si+1) ∩ · · · ∩ supp(s`), and put f`+1 = 1 −∑`
i=1 fi. By multilinearity of D we get D(s1, . . . , sk) =

∑
I D(fi1s1, . . . , fiksk),

where I = (i1, . . . , ik) runs over all k–tuples of integers between 1 and `+ 1. Now
put W := M \ (∪`i=1 supp(si)). If there are at least two numbers between 1 and
` in the multiindex I, then the two corresponding functions have disjoint supports
and thus from above we see that the summand corresponding to I vanishes on
an open set which certainly contains W . So only summands corresponding to
multiindices in which there is only one fixed j ≤ ` can contribute to the restriction
to W . But if ij = j then by construction fijsj = 0 and if ir = j for some
r 6= j then the corresponding function has support disjoint to the support of sj
and so again the corresponding summand vanishes on an open set which contains
W . Thus we see that rMW (D(s1, . . . , sk)) = rMW (D(f`+1s1, . . . , f`+1sk)). But by
construction the support of f`+1 is disjoint to supp(s1) ∩ · · · ∩ supp(s`−1), so we
see that supp(f`+1s1) ∩ · · · ∩ supp(f`+1s`−1) = ∅, so by the induction hypothesis
D(f`+1s1, . . . , f`+1sk) vanishes on an open set which contains W . ¤

2.11. Next we prove that under the condition 2.9.(4) the operator λ is weakly lo-
cal. So assume that s1, . . . , sk are sections such that supp(s1) ∩ · · · ∩ supp(sk) =
∅. Choose any triples (Ui, Vi, fi) as in 2.6. Then by 2.10 for any multiindex
I = (i1, . . . , ik) the element D(fi1s1, . . . , fiksk) restricts to zero on the open sub-
set M \ (∪j supp(fijsj)). By construction this set is nonempty and moreover by
definition the restrictions of D(fi1s1, . . . , fiksk) and D(fi1s1, . . . , fiksk)inv to this
subset coincide. Thus D(fi1s1, . . . , fiksk)inv = 0 since absolutely invariant ele-
ments are determined by their restrictions to arbitrary open sets, and consequently
λ(s1, . . . , sk) = 0.

2.12. So it remains to show that under the condition 2.9.(4) the operator D̃ is
local. So assume that we have given sections s1, . . . , sk and an open subset W such
that s1 restricts to zero on W . Then we have to show that rMW (D(s1, . . . , sk)) =
rMW (λ(s1, . . . , sk)). Let U ⊂ W be open and such that Ū ⊂ W . Put U1 := U ,
V1 := W and choose a function f1 and triples (Ui, Vi, fi) for i ≥ 2 like in 2.6.
Consider a multiindex I = (i1, . . . , ik). If i1 = 1 then fi1s1 = 0 and if ij = 1 for
some other j then the section fijsj has support contained in W , while fi1s1 vanishes

on W . So by the proof of 2.10 and multilinearity we see that rMW (D(s1, . . . , sk)) =∑
I:ij 6=1 r

M
W (D(fi1s1, . . . , fiksk)).

Next λ(s1, . . . , sk) =
∑
I:ij 6=1D(fi1s1, . . . , fiksk)inv by weak locality and multi-

linearity. For any multiindex I with all i` 6= 1 the sections fi1s1, . . . , fiksk vanish
simultaneously on the set U1 = U . Consequently we see that rMU (λ(s1, . . . , sk)) =
rMU (D(s1, . . . , sk)).

Now the set W can be covered by countably many open subsets Wi such that
there are homeomorphisms wi : Wi → Rm. For any (i, j) ∈ N2 let Wij be the
preimage under wi of the open ball of radius j around the origin. Then for all i, j
the closure of Wij is contained in W . Next take a bijection κ : N→ N2 and define
U` := ∪i≤`Wκ(i). Then clearly U` ⊂ U`+1 for all ` and Ū` ⊂W and W = ∪`∈NU`.

¿From above we see that D̃(s1, . . . , sk) restricts to zero on each set U`. Since
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the presheaf F is admissible we see that D̃(s1, . . . , sk) restricts to zero on W by
condition (i) of 2.1.(3).

This finishes the proof of theorem 2.9.

3. Weakly local natural functionals

In this section we give a complete description of weakly local multilinear func-
tionals which commute with Lie derivatives. This classification can be found in
[Kirillov], but the proofs are only briefly sketched there. To have this paper self
contained we present full proofs here. Moreover we weaken some continuity as-
sumptions. The proofs are rather technical, so readers who are not interested in
details should only read lemma 3.3 and skip the rest of this section.

3.1. Lemma. Let τ : C∞c (Rm,R)→ R be a not necessarily continuous linear map
such that for any f ∈ C∞c (Rm,R) and any i = 1, . . . ,m we have τ(∂if) = 0, where
∂if denotes the i–th partial derivative of f . Then τ(f) = c

∫
Rm f(x)dx for some

real constant c. In particular τ is automatically continuous.

Proof. A similar proof to that used for distributions in [Hörmander, 3.1.4 and 3.1.4’]
applies. Let us first assume that m = 1. Choose a function ψ ∈ C∞c (R,R) such
that

∫
R ψ = 1. Then for any f ∈ C∞c (R,R) we get

f(t)− ψ(t)

∫

R
f = d

dt

∫ t

−∞

(
f(x)− ψ(x)

∫

R
f

)
dx,

and since the integral over the left hand side obviously vanishes, the function which
is differentiated on the right hand side has compact support. Thus we get 0 =
τ(f − ψ

∫
R f) and hence τ(f) = τ(ψ)

∫
R f .

Next for m > 1 take the function ψ from above, and for g ∈ C∞c (Rm−1,R)
define gm ∈ C∞c (Rm,R) by gm(x1, . . . , xm) := g(x1, . . . , xm−1)·ψ(xm). Then define
τm : C∞c (Rm−1,R) → R by τm(g) = τ(gm). For f ∈ C∞c (Rm,R) consider Im(f) ∈
C∞c (Rm−1,R) defined by Im(f)(x1, . . . , xm−1) :=

∫
R f(x1, . . . , xm)dxm. Now as

above one shows that the function f(x1, . . . , xm)− Im(f)(x1, . . . , xm−1) · ψ(xm) is
the m–th partial derivative of a compactly supported smooth function so we see
that τ(f) = τ((Im(f))m) = τm(Im(f)). Since by construction τm is again linear an
vanishes on partial derivatives the result follows by induction. ¤
3.2. Lemma. Let λ : (C∞c (Rm,R))k → R be a k–linear functional of the form

λ(f1, . . . , fk) =
∑

α1,...,αk

∫

Rm
cα1...αk(x)∂α

1

f1(x) . . . ∂α
k

fk(x)dx,

where each cα1...αk is a continuous function on Rm and the sum is over finitely many

k–tuples of multiindices αj = (αj1, . . . , α
j
m) of nonnegative integers, and ∂α

j

is the
composition of partial derivatives corresponding to αj. If λ commutes with partial

derivatives, i.e.
∑k
i=1 λ(f1, . . . , ∂`fi, . . . , fk) = 0 for all functions fj ∈ C∞c (Rm,R)

and any ` = 1, . . . ,m, then there are constants dβ1...βk−1 such that

λ(f1, . . . , fk) =
∑

β1,...,βk−1

∫

Rm
dβ1...βk−1fk(x)∂β

1

f1(x) . . . ∂β
k−1

fk−1(x)dx,
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where again the sum is over a finite set of multiindices.

Proof. In order to bring a given expression for λ to the required final form we will
rewrite its summands recursively. Therefore we need an appropriate ordering on
the sets of multi–multi indices. What we will need is (k− 1)–tuples (α1, . . . , αk−1)

where each αj = (αj1, . . . , α
j
m) is an m–tuple of nonnegative integers. First we

order these m–tuples by their total degree |αj | =
∑
αji and within each total

degree lexicographically. Then we order the (k − 1)–tuples by their total degree
|(α1, . . . , αk−1)| = ∑ |αj | and within each total degree lexicographically.

So let assume that for some fixed (k−1)–tuple (β1, . . . , βk−1) and fixed m–tuple
β we already have an expression for λ of the following form:

λ(f1, . . . , fk) =
∑

(α1,...,αk−1)<(β1,...,βk−1)

∫

Rm
dα1...αk−1fk(x)∂α

1

f1(x) . . . ∂α
k−1

fk−1(x)dx+

+
∑

βk≤β

∫

Rm
cβ1...βk(x)∂β

1

f1(x) . . . ∂β
k

fk(x)dx+

+
∑

(α1,...,αk−1)>(β1,...,βk−1)

∑

αk

∫

Rm
cα1...αk(x)∂α

1

f1(x) . . . ∂α
k

fk(x)dx,(1)

where the d’s are constants, the c’s are continuous functions and cβ1...βk−1β is
nonzero.

Now fix a relatively compact open subset U ⊂ Rm. Then choose a compactly
supported smooth function f on Rm such that f is identically one on U , and

consider the distribution fk 7→ λ(xβ
1

f, . . . , xβ
k−1

f, fk) on C∞c (U,R). Then this is
given by

fk 7→
∑

(α1,...,αk−1)<(β1,...,βk−1)

αi≤βi

∫

Rm
dα1...αk−1

β1!
(β1−α1)! . . .

βk−1!
(βk−1−αk−1)!

fk(x)·

· xβ1−α1

. . . xβ
k−1−αk−1

dx+

+
∑

βk≤β

∫

Rm
β1! . . . βk!cβ1...βk(x)∂β

k

fk(x)dx(2)

where the first sum collects all summands with (α1, . . . , αk−1) < (β1, . . . , βk−1),
since the remaining terms vanish. Using the commutation of λ with partial deriva-
tives and (1) we get:

(3) λ(xβ
1

f, . . . , xβ
k−1

f, ∂ifk) = −
k−1∑

j=1

λ(xβ
1

f, . . . , ∂i(x
βjf), . . . , xβ

k−1

f, fk) =

= −
∑

j

∑

(α1,...,αk−1)<(β1,...,βk−1)

αi≤βi

∫

Rm
dα1...αk−1

β1!
(β1−α1)! . . .

βk−1!
(βk−1−αk−1)!

fk(x)·

· xβ1−α1

. . . ∂i(x
βj−αj ) . . . xβ

k−1−αk−1

dx+ 0.
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On the other hand using (2) we compute:

λ(xβ
1

f, . . . , xβ
k−1

f, ∂ifk) =
∑

(α1,...,αk−1)<(β1,...,βk−1)

αi≤βi

∫

Rm
dα1...αk−1

β1!
(β1−α1)! . . .

βk−1!
(βk−1−αk−1)!

∂ifk(x)·

· xβ1−α1

. . . xβ
k−1−αk−1

dx+

+
∑

βk≤β

∫

Rm
β1! . . . βk!cβ1...βk(x)∂i∂

βkfk(x)dx.(4)

Now all terms in the first sum of (4) can be integrated by parts and this gives
exactly the sum in (3). Thus the remaining sum must be zero. This means that
for the restrictions of the c’s to U we get the equation

(5) 0 = ∂i
( ∑

βk≤β
(−1)|β

k|+1β1! . . . βk!∂β
k

cβ1...βk
)
,

where the derivatives are interpreted in the distributional sense. Since this equation
holds over each relatively compact open subset of Rm it holds on Rm.

Assume first that β = (0, . . . , 0). Then (5) implies that cβ1...βk−1β is constant on

Rm and thus we can rewrite the expression (1) for λ with (β1, . . . , βk−1) replaced
by some greater (γ1, . . . , γk−1). Moreover in this procedure we do not increase the
maximal total degree occurring in the expression.

Next assume that β > (0, . . . , 0). Then we see from (5) that there is a constant
C such that

(−1)|β|+1β!∂βcβ1...βk−1β = C +
∑

βk<β

(−1)|β
k|βk!∂β

k

cβ1...βk .

Thus for arbitrary f1, . . . , fk ∈ C∞c (Rm,R) we have

−
∫

Rm
β!cβ1...βk−1β(x)∂β

(
fk∂

β1

f1 . . . ∂
βk−1

fk−1

)
(x)dx =

= C

∫

Rm
fk(x)∂β

1

f1(x) . . . ∂β
k−1

fk−1(x)dx+

+
∑

βk<β

βk!cβ1...βk(x)∂β
k
(
fk∂

β1

f1 . . . ∂
βk−1

fk−1

)
(x)dx.

Expanding the partial derivatives of products in this identity we see that we can
express ∫

Rm
cβ1...βk−1β(x)∂β

1

f1(x) . . . ∂β
k−1

fk−1(x)∂βfk(x)dx

as a sum of terms of the form
∫
Rm c̃γ1...γk(x)∂γ

1

f1(x) . . . ∂γ
k

fk(x)dx in which either

(γ1, . . . , γk−1) > (β1, . . . , βk−1) or (γ1, . . . , γk−1) = (β1, . . . , βk−1) and γk < β.
Moreover we always have |γ1|+ · · ·+ |γk| ≤ |β1|+ · · ·+ |βk−1|+ |β|.

Thus finitely many applications of this procedure lead to an expression for λ of
the required form. ¤
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3.3. Lemma. Let E1, . . . , Ek be natural vector bundles defined on Mf+
m, and let

λ : Γc(E1M)× . . .×Γc(EkM)→ R be a weakly local separately continuous k–linear
map, where M is a connected m–dimensional oriented manifold. Then there is a
(k− 1)–linear local natural operator Dλ : E1× . . .×Ek−1 → E∗k ⊗ΛmT ∗, where E∗k
is the bundle functor which assigns to each manifold M the dual bundle of EkM ,
such that

λ(s1, . . . , sk) =

∫

M

〈Dλ(s1, . . . , sk−1), sk〉.

Here 〈 , 〉 denotes the canonical pairing

Γc(E
∗
kM ⊗ ΛmT ∗M)× Γc(EkM)→ Γc(Λ

mT ∗M).

In particular λ is automatically jointly continuous.
If k = 1, i.e. λ is linear, this means that there is an absolutely invariant section σ

of E∗1M ⊗ΛmT ∗M such that λ(s) =
∫
M
〈σ, s〉. Moreover in this case the continuity

follows from the other assumptions.

Proof. Let us first consider the case M = Rm. Up to a natural isomorphism, for
each natural bundle Ej we have EjRm = Rm×Vj , with the action of the translations
tx : y 7→ x + y given by tx × idVj . Thus the Lie derivatives with respect to the
constant fields are just the partial derivatives of the coordinate functions. (This
identification is always achieved by EjRm 3 v 7→ (pj(v), E(t−pj(v))(v)) ∈ Rm×Vj .)

Now in any Vj choose a fixed basis. Then for any multiindex (i1, . . . , ik) with
1 ≤ ij ≤ dim(Vj) consider the k–linear functional λi1...ik : C∞(Rm,R)k → R
which gives the coordinate expression of λ. These functionals are clearly separately
continuous, weakly local and they commute with partial derivatives if λ has these
properties.

Let us first treat the case k = 1, i.e. λ is linear. Then without continuity
assumptions we conclude from lemma 3.1 that for each i1 there is a constant ci1
such that λi1(f) = ci1

∫
Rm f(x)dx. Hence for any section f = (f 1, . . . , fn1) ∈

C∞c (Rm, V1) we have λ(f) =
∫
Rm
∑
i cif

i(x)dx. Now we interpret (c1, . . . , cn1
)dx

as a section σ of Rm × V ∗1 ⊗ ΛmRm∗ = E∗1Rm ⊗ ΛmT ∗Rm. Hence we have λ(f) =∫
Rm〈f, σ〉. Since any Lie derivative of an m–form on Rm is exact we get:

0 =

∫

Rm
LX(〈σ, f〉) =

∫

Rm
〈σ,LXf〉+

∫

Rm
〈LXσ, f〉 =

= λ(LXf) +

∫

Rm
〈LXσ, f〉 =

∫

Rm
〈LXσ, f〉.

Since this holds for all f ∈ Γc(EM) and X ∈ X (Rm) we have LXσ = 0 and thus σ
is absolutely invariant.

So let us turn back to the general multilinear case. Applying the Schwartz kernel
theorem (c.f. [Hörmander, 5.2.1]) to λi1...ik we see that this functional is given by
a distribution on (Rm)k, which has support in the diagonal by the weak locality.
Thus it is given (at least locally) as

λi1...ik(f1, . . . , fk) =
∑

α1,...,αk

∫

Rm
cα1...αk(x)∂α1f1(x) . . . ∂αkfk(x)dx,
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where the c’s are continuous functions and the sum is over some finite number of
multiindices αj (c.f. [Hörmander, 5.2.3]).

By lemma 3.2 we can express λi1...ik locally as

∑

β1,...,βk−1

∫

Rm
di1...ik
β1...βk−1fk(x)∂β

1

f1(x) . . . ∂β
k−1

fk−1(x)dx.

Fix an open subset U over which such a representation is valid. Then for smooth
sections fj ∈ C∞c (U, Vj) we have

λ(f1, . . . , fk) =
∑

i1,...,ik

∑

β1,...,βk−1

∫

Rm
di1...ik
β1...βk−1f

ik
k (x)∂β

1

f i11 (x) . . . ∂β
k−1

f
ik−1

k−1 (x)dx.

We can now define an operator DU : C∞c (U, V1)× . . .×C∞c (U, Vk−1)→ C∞c (U, V ∗k ⊗
ΛmRm∗) by

〈DU (f1, . . . , fk−1), fk〉 :=
∑

β1,...,βk−1

i1,...,ik

di1...ik
β1...βk−1f

ik
k (x)∂β

1

f i11 (x) . . . ∂β
k−1

f
ik−1

k−1 (x)dx.

Clearly this is a well defined local operator and over U ,

λ(f1, . . . , fk) =

∫

Rm
〈DU (f1, . . . , fk−1), fk〉,

and DU is uniquely determined by this formula. As in the linear case we compute
now:

0 =

∫

Rm
LX〈DU (f1, . . . , fk−1), fk〉 =

=

∫

Rm
〈LXDU (f1, . . . , fk−1), fk〉+

∫

Rm
〈DU (f1, . . . , fk−1),LXfk〉 =

=

∫

Rm
〈LXDU (f1, . . . , fk−1), fk〉+ λ(f1, . . . , fk−1,LXfk) =

=

∫

Rm
〈LXDU (f1, . . . , fk−1), fk〉 −

k−1∑

i=1

λ(f1, . . . ,LXfi, . . . , fk) =

=

∫

Rm
〈LXDU (f1, . . . , fk−1), fk〉 −

k−1∑

i=1

〈DU (f1, . . . ,LXfi, . . . , fk−1), fk〉.

Thus DU commutes with Lie derivatives, so it extends uniquely to a natural oper-
ator by [Čap–Slovák, 3.2], i.e. there is a unique natural operator D on Mf+

m such
that its value on U is DU .

Any point of Rm has a neighborhood on which the construction can be carried out
as above. Moreover from the uniqueness of the extension we see that for intersecting
open sets the natural operators obtained coincide, and thus λ is given on Rm by
the formula

λ(f1, . . . , fk) =

∫

Rm
〈DRm(f1, . . . , fk−1), fk〉.
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Finally take an arbitrary manifold M . Choose an oriented atlas (Ui, ui) of M
such that any ui is a diffeomorphism onto Rm. Then we have the induced isomor-
phisms Ej(ui) : EjM ⊃ EjUi → EjRm. Any section of EjM with support in Ui
can be written as u∗i fj for a compactly supported section fj . Now by the first part
of this proof there is a unique natural operator D such that

λ(u∗i f1, . . . , u
∗
i fk) =

∫

Rm
〈DRm(f1, . . . , fk−1), fk〉 =

=

∫

Rm
〈(u−1

i )∗DM (u∗i f1, . . . , u
∗
i fk−1), fk〉 =

=

∫

M

〈DM (u∗i f1, . . . , u
∗
i fk−1), u∗i fk〉.

As before the uniqueness implies that the operators obtained from intersecting
charts coincide, and since M is connected and any compactly supported section
can be written as a finite sum of sections having support in some chart Ui the proof
is finished. ¤

4. The linear case

Now we give a complete description of linear operators between sections of nat-
ural vector bundles over oriented manifolds which commute with Lie derivatives.
In the next section this result will be used as the starting point for an induction
procedure.

4.1. Proposition. Let F be a natural vector bundle defined on the category Mf+
m

of oriented m–dimensional manifolds and orientation preserving local diffeomor-
phisms and let M be such a manifold which is connected. Then the sheaf of smooth
sections of FM is an admissible natural presheaf over M .

Proof. By the general theory mentioned in 1.2, there is the canonically defined
continuous action of the sheaf of Lie algebras of vector fields on the base manifold
on the sections of the natural vector bundle.

Since the sections of a vector bundle form a sheaf, condition (i) of 2.1.(3) is triv-
ially satisfied. On the other hand the existence and uniqueness condition in (ii) of
2.1.(3) follows immediately from 1.3. Finally continuity of the extension operators
is trivial since the absolutely invariant sections always form a finite dimensional
space. ¤
4.2. Let E and F be natural vector bundles over Mf+

m, let M be a connected
oriented manifold of dimension m ≥ 2 and let D : Γc(EM) → Γ(FM) be a linear
operator which commutes with Lie derivatives. Then the condition of 2.9.(4) is
automatically satisfied since in the linear case it just means that D(0) = 0. Thus

we may apply theorem 2.9 to split D into a local linear operator D̃ and a linear
map λ with values in the space of absolutely invariant sections which vanishes on
Lie derivatives. Theorem 3.2 of [Čap–Slovák] shows that D̃ is a natural operator,
which in particular implies that it is continuous.

To discuss the linear map λ let v1, . . . , vn be a basis of the space of absolutely
invariant sections of FM and let {v∗i } be the dual basis. Then for any i = 1, . . . , n
the map λi := v∗i ◦ λ : Γc(EM) → R is a linear functional which vanishes on Lie
derivatives. Using lemma 3.3 we get:
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4.3. Theorem. Let M be a connected oriented smooth manifold of dimension
m ≥ 2, E and F natural vector bundles defined over Mf+

m, v1, . . . , vn a basis for
the space of absolutely invariant sections of FM and let D : Γc(EM) → Γ(FM)
be a linear operator which commutes with Lie derivatives. Then there is a (local)

natural operator D̃ : Γ(EM)→ Γ(FM) and there are absolutely invariant sections
σ1, . . . , σn ∈ Γ(E∗M ⊗ ΛmT ∗M) such that

D(s) = D̃(s) +
n∑

i=1

(

∫

M

〈σi, s〉)vi.

So D is an almost natural operator and thus in particular automatically continuous.

4.4. Corollary. In the setting of theorem 4.3 assume that either FM or E∗M ⊗
ΛmT ∗M has no absolutely invariant sections. Then any linear operator Γc(EM)→
Γ(FM) or Γ(EM)→ Γ(FM) which commutes with Lie derivatives is a local natural
operator.

Note that the conditions in the corollary are satisfied in many concrete situations.
In subbundles of tensor bundles for example absolutely invariant sections can only
exist if the numbers of covariant and contravariant indices are equal.

4.5. Corollary. In the setting of theorem 4.3 assume that M is not compact.
Then any linear operator Γc(EM) → Γc(FM) as well as any continuous linear
operator Γ(EM)→ Γ(FM) which commutes with Lie derivatives is a (local) natural
operator.

Proof. In the case of compact supports the result follows immediately from the
fact that on a noncompact manifold no nonzero absolutely invariant section can
have compact support by 4.1. In the second case we may restrict the operator to
an operator Γc(EM) → Γ(FM). There it splits by theorem 4.3 as D̃ +

∑
i λivi,

where the vi are a basis for the space of absolutely invariant sections of FM .
Now the natural operator D̃ extends continuously to Γ(EM), and we consider
the difference λ between this extension and the original operator. On compactly
supported sections this difference has the form

∑
i λivi, where λi(s) =

∫
M
〈σi, s〉,

for an absolutely invariant section σi ∈ Γ(E∗M⊗ΛmT ∗M). Now assume that some
σi, say σ1 is nonzero. Then using a chart construction one easily concludes that for
any open subset U ⊂ M there is a section s ∈ Γc(EM) with support contained in
U such that λ1(s) = 1.

Now choose compact subsets Ki ⊂ M such that each Ki is contained in the
interior of Ki+1 and such that M = ∪i∈NKi. Then for any i ∈ N choose an open
subset Ui ⊂ Ki \Ki−1 and a smooth section si ∈ Γc(EM) with support contained
in Ui such that λ1(si) = 1. Then any compact subset of M is contained in some Kn

and thus intersects only finitely many Ui. Thus the sum
∑
i∈N si is actually finite

over each compact and thus converges in Γ(EM). By continuity of λ we see that

this element is mapped by λ to the limit of
∑k
i=1 λ(si). But this sum is divergent

by construction.

Thus we see that λ vanishes on all compactly supported sections and since these
are dense in all sections the result follows. ¤
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4.6. Corollary. Let E and F be vector bundle functors on Mf+
m. The natural

presheaf F(U) := L(Γc(EU); Γ(FU)) of continuous linear operators is admissible.

Proof. By definition, an element D ∈ F(U) := L(Γc(EU); Γ(FU)) is absolutely
invariant if and only if D commutes with Lie derivatives. But then D is of the
form D(s) = D̃(s) +

∑
i(
∫
M
〈σi, s〉)vi with D̃ natural and σi absolutely invariant.

Thus both summands are completely determined by any restriction to an open sub-
manifold. Moreover using 1.6 and 4.1 we see that the space of absolutely invariant
elements is finite dimensional and thus condition (ii) of 2.1.(3) is satisfied.

Let U ⊂ M be open and let Ui, i ∈ N, be a system of open subsets such that
Ui ⊂ Ui+1 for all i and such that U = ∪i∈NUi. Suppose that D ∈ L(Γc(EU ); Γ(FU))
restricts to zero on each Ui. Take a section s ∈ Γc(EU). Then the support of s is
contained in some Ui and thus in all Uj where j > i. Hence by assumption D(s)
vanishes on each Uj and thus on the union of all Uj and so condition (i) of 2.1.(3)
is satisfied as well. ¤

5. Proof of Theorem 1.9

The main idea is to view k–linear operators between sections of vector bundles
as `–linear operators with values in the natural presheaf of (k− `)–linear operators,
as defined in example 2.3.(2), to apply theorem 2.9 and to use induction.

5.1. Definition. Let E1, . . . , Ek, E be natural vector bundles defined on Mf+
m,

and let D : Γc(E1M)× . . .× Γc(EkM)→ Γ(EM) be a k–linear separately contin-
uous operator, where M is an m–dimensional oriented manifold. For an `–tuple
(i1, . . . , i`) of integers with 1 ≤ i1 < · · · < i` ≤ k we define the associated `–linear
operator of type (i1, . . . , i`) to D to be the operator

Di1,...,i` : Γc(Ei1M)× . . .×Γc(Ei`M)→ L(Γc(Ei`+1
M)× . . .×Γc(EikM); Γ(EM))

given by Di1,...,i`(si1 , . . . , si`)(si`+1
, . . . , sik) := D(s1, . . . , sk). Here (i`+1, . . . , ik)

denotes the ordered sequence of integers between 1 and k which do not occur in
(i1, . . . , i`).

5.2. In the notation of 5.1 assume that D commutes with Lie derivatives. Then by
definition of the Lie derivatives on the natural presheaf of (k − `)–linear operators
any associated `–linear operator commutes with Lie derivatives, too.

Next the condition 2.9.(4) can be interpreted nicely in this situation. Consider
the operator Di1,...,i` from above. Then the condition of 2.9(4) for fixed j means
that if any of the other sections si1 , . . . , si` vanishes on an open subset U ⊂ M
which contains the support of sij then Di1,...,i`(si1 , . . . , si`) restricts to zero on
U . This in turn means that if all si`+1

, . . . , sik have support contained in U , then
D(s1, . . . , sk) restricts to zero on U . But this is exactly equivalent to locality of the
operator Di1,...,ij−1,ij+1,...,i` .

Thus the condition in 2.9.(4) means for `–linear operators with values in the
presheaf of (k−`)–linear operators of the type we consider exactly that all associated
(`−1)–linear operators with values in the presheaves of (k− `+1)–linear operators
are local.

Before we can prove our main theorem we have to study the locality properties
of almost natural operators.
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5.3. Lemma. Let D be an elementary almost natural k–linear operator of the type
(I1, . . . , Ir, J), and let I be any subset of {1, . . . , k}. Then the associated operator
DI is local if and only if no Ij is a subset of I.

Proof. Let us assume that no Ij is a subset of I, take some i ∈ I and consider
a section si which vanishes on some open subset U of M . If i ∈ J then clearly
D(s1, . . . , sk) vanishes on U for arbitrary sections s`, ` 6= i. On the other hand if i
is in some Ij then by assumption there is some ` ∈ Ij which is not in I. Then for
any section s` with support contained in U we have λj(. . . , si, . . . , s`, . . . ) = 0 by
weak locality of λj .

Conversely assume that Ij ⊂ I. Choose a small open subset U of M . Then
we can find sections sn for n ∈ Ij which have support in M \ U such that λj is
nonzero on these sections. On the other hand for all ` 6= j we can find sections
corresponding to I` with support contained in U on which λ` is nonzero. Moreover
we can also find sections corresponding to J with support in U on which the local
natural part does not vanish, and hence we get a nonzero result over U which
contradicts locality of DI . ¤

5.4. Next let us consider a general almost natural operator D. By definition we
can write D as a sum of nonzero elementary almost natural operators.

Lemma. Let D be an almost natural operator and let I be a subset of {1, . . . , k}.
Then the associated operator DI is local if and only if the associated operator of
type I to any of the elementary summands is local.

Moreover, any set of elementary almost natural operators of pairwise different
type is linearly independent.

Proof. The non-trivial part of the proof is to show that if DI is local then each
elementary summand has the same locality property. By 5.3 this means that the
elementary summands must not involve a set Ij ⊂ I in their types. We may
assume without loss of generality that if there are several elementary almost natural
operators of the same type in this sum, then their local natural parts (corresponding
to the last set in the type) are linearly independent. ¿From now on we will assume
that all representations of almost natural operators as sums of elementary ones are
of this form.

Suppose that D and I are given and take some i0 ∈ I such that there is an
elementary summand which has in its type a set Ij ⊂ I which contains i0, and
consider only those summands which have this property. Next consider only those
operators for which the corresponding set Ij is of minimal cardinality. Next take
the minimal cardinality of the other sets in the types of the remaining operators
and consider only those which have a set of this cardinality in their type. Next take
again the minimal cardinality of the remaining sets and the corresponding operators
and so on up to a point where there are only operators left which have all the same
cardinalities of sets in their types. Now choose one of the remaining operators
and renumber the bundles in such a way that i0 becomes 1 and the operator has
type I1 = {1, 2, . . . , n1}, . . . , Ir = {n1 + · · · + nr−1 + 1, . . . , n1 + · · · + nr}, J =

{nr + 1, . . . , k}, with n2 ≤ n3 ≤ · · · ≤ nr. Assume that it is of the form λ1 . . . λrD̃.
Now choose an open subset U of M and sections s1, . . . , sn1

which all vanish on
U such that λ1 is nonzero on these sections. Next choose r disjoint open subsets
U2, . . . , Ur+1 contained in U , for any i ≤ r choose sections with support in Ui on
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which λi is nonzero and choose sections with support contained in Ur+1 on which

D̃ is nonzero.
Since all λi are weakly local (cf. 1.7) we see that any operator in the linear

combination which does not vanish identically on these sections must belong to
those which remained at the end of our choices. So let us consider such operators,
and let us denote their types with tildes. By definition of the type we must have
1 ∈ Ĩ1 or 1 ∈ J̃ . By minimality of the cardinality of I1 we must then have Ĩ1 = I1

or J̃ = I1 to get something nonzero. If J̃ = I1 we must have n1 + 1 ∈ Ĩ1 so again
by minimality we must have Ĩ1 = I2, then Ĩ2 = I3 and so on. On the other hand
if Ĩ1 = I1 then n1 + 1 ∈ Ĩ2 or n1 + 1 ∈ J̃ and again the only possibility to get a
different type is J̃ = I2, Ĩ2 = I3 and so on. Thus we see that the only operators
which can produce something nonzero are those whose types satisfy Ĩj = Ij for
j ≤ `, Ĩj = Ij+1 for ` < j ≤ r, Ĩr = J and J̃ = I`+1, or those with J̃ = ∅ for which
we must have Ĩj = Ij for j ≤ r and Ĩr+1 = J .

If DI is local, these operators must add up to zero on U for each choice of
sections as above. The operators with J̃ 6= ∅ produce section with support in U` if
J̃ = I`, while the ones with J̃ = ∅ produce absolutely invariant sections which in
particular have no zeros. Thus for any remaining type the operators of this type
have to add up to zero on some U` or on U . Since we may assume that for each
fixed type the occurring local natural parts are linearly independent this implies
that the individual elementary summands must already be zero. Thus, altogether,
if DI is local, then there is no elementary summand with Ij ⊂ I in its type.

This concludes the proof of the first assertion of the lemma. The linear inde-
pendence of any set of elementary almost natural operators with pairwise different
types can be proved completely analogously. Indeed, if we assume that we can write
the zero operator as a linear combination of elementary almost natural operators
of different types, then we take the minimal cardinality of all sets occurring in the
types of the operators and consider those which have one set of this cardinality in
their type, and so on, exactly as above. At the end we choose r + 1 disjoint open
sets Ui ⊂ M and sections supported in the appropriate Ui. The same arguments
as above then apply. ¤
5.5. Corollary. Let D be an almost natural operator on a manifold M , U an
open subset of M and I any subset of {1, . . . , k}. If the operator (D|U )I associated
to the restriction of D to U is local then DI is local.

Proof. This is clear since by 5.3 and 5.4 the locality properties of an almost natural
operator are independent of the manifold on which the operator is defined. ¤
5.6. Now we can pass to the proof of our main result, the theorem 1.9:

Theorem. Let E1, . . . , Ek, E be natural vector bundles defined on the category
Mf+

m, m ≥ 2, and let M be a connected oriented smooth manifold of dimension m.
Then any separately continuous k–linear operator D : Γc(E1M)× . . .×Γc(EkM)→
Γ(EM) which commutes with Lie derivatives is an almost natural operator. In par-
ticular any such operator is automatically jointly continuous and the space of such
operators is always finite dimensional and independent of the manifold M .

Proof. We proceed by induction on k. For k = 1 the theorem has been proved in
section 4. So let us assume that k ≥ 2 and that the theorem has been proved
for all ` < k. Using the induction hypothesis, the space of absolutely invari-
ant elements in the natural presheaf U 7→ L(Γc(Ei1U), . . . ,Γc(Ei`U); Γ(EU)) is
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finite dimensional and each of them is determined by any restriction to an open
subset. Thus, the presheaf satisfies condition (ii) of 2.1.(3). Furthermore, ex-
actly as in the proof of 4.6 we verify condition (i) of 2.1.(3). Hence the natural
presheaf U 7→ L(Γc(Ei1U), . . . ,Γc(Ei`U); Γ(EU)) is admissible for all ` < k. So
we may apply theorem 2.9 to the continuous linear operator D1 : Γc(E1M) →
L(Γc(E2M), . . . ,Γc(EkM); Γ(EM)). Thus we see that D1 = D̃1 + λ1, where D̃1 is
a local operator and λ1 is a continuous linear functional with values in the space of
absolutely invariant elements of L(Γc(E2M), . . . ,Γc(EkM); Γ(EM)), which are by
definition exactly the operators which commute with Lie derivatives. By induction
this is the finite dimensional space of almost natural operators, so using proposition
3.3 we see that λ1 gives an almost natural operator.

So let us assume that D has the property that D1 is local. Then consider the
associated continuous linear operator D2. Again by 2.9 this operator splits as
D2 = D̃2 + λ2, where D̃2 is local and λ2 again gives rise to some almost natural
operator. Next assume that U 6= ∅ is open and that s2 ∈ Γc(E2M) has support
contained in M \ Ū . Then by lemma 2.7, rMU (λ2(s2)) = rMU (D2(s2)). Then suppose
that we take a section s1 ∈ Γc(E1M) which has support contained in U and vanishes
on some open subset V of U and sections si ∈ Γc(EiM) with support contained in
V for i = 3, . . . , k. Then by construction supp(si) ⊂ M \ supp(s1) for all i > 1,
so D(s1, . . . , sk) = D2(s2)(s1, s3, . . . , sk) restricts to zero on M \ supp(s1) and thus
we see that λ2(s2)(s1, s3, . . . , sk) restricts to zero on V . Thus λ2(s2) restricts on U
to an almost natural operator which has the property that the associated operator
of type 1 is local, so by 5.5 λ2(s2) has this property. Since any section s2 can be
written as the sum of two sections having supports in some open subsets U 6= M
this holds for any s2. Consequently the k–linear operator associated to λ2 also has
the property that its associated operator of type 1 is local and thus the same holds
for the k–linear operator associated to D̃2.

Together we see that subtracting almost natural operators we come from the
original operator D to an operator D̂ such that the associated operators D̂1 and
D̂2 are local.

Iterating this procedure we see that subtracting suitable almost natural operators
from D we arrive at an operator which has the property that all associated linear
operators are local. So let us assume that D itself already has this property.

Then we consider the first associated bilinear operator D1,2. By theorem 2.9
this operator splits as D1,2 = D̃1,2 + λ1,2 where D̃1,2 is local and λ1,2 is weakly
local. Using the induction hypothesis and 3.3 we see that λ1,2 gives again rise
to an almost natural operator. Similar arguments as above show that the k–linear
operator corresponding to D̃1,2 has the property that all associated linear operators
and the associated bilinear operator of type (1, 2) are local. Let us again write D
for this operator.

Then we consider the associated operator D1,3. By 2.9 this splits as D1,3 =
D̃1,3 + λ1,3, with D̃1,3 local and λ1,3 weakly local, and again λ1,3 gives rise to
an almost natural operator. Now consider the k–linear operator D̃ associated to
D̃1,3. We claim that its associated operator of type (1, 2) is local. Let us first
assume that we have a section s1 which vanishes on some open subset U of M
an sections si with support in U for i ≥ 3. Then in particular s1 and s3 have
disjoint supports and hence λ1,3(s1, s3) = 0 by weak locality. Consequently for

such sections D̃ coincides with D and thus vanishes on U . Moreover similarly as
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before one shows that λ1,3 has values in the space of almost natural operators
which have the property that the associated linear operator corresponding to s2 is
local. Thus if we have a section s2 which vanishes on some open subset U while the
sections si have support in U for all i ≥ 3 then λ1,3(s1, s3)(s2, s4, . . . , sk) restricts
to zero on U . But since D1,2 is local the same is true for D1,3(s1, s3)(s2, s4, . . . , sk)

and thus also D̃1,3(s1, s3)(s2, s4, . . . , sk) restricts to zero on U . So again no locality
properties are lost.

Iterating this procedure we see that subtracting suitable almost natural operators
we arrive at an operator such that all associated bilinear (and thus all associated
linear operators) are local. Next we consider the associated trilinear operators in
some succession, then the 4–linear ones and so on until we arrive at an operator
which has the property that all associated (k − 1)–linear operators are local. To
this operator we can now directly apply theorem 2.9 to split it into a local and a
weakly local part which by 3.3 is again an almost natural operator.

Finally from 1.6 it is clear that the space of almost natural k–linear operators is
again finite dimensional. ¤

6. Examples and Applications

In order to illustrate the strength of our results, we shall discuss several concrete
geometrical problems. In particular we shall give a completely algebraic character-
ization of several well known brackets, the Lie bracket, the Schouten bracket, the
Schouten–Nijenhuis bracket and a bracket closely related to the Frölicher–Nijenhuis
bracket.

6.1. Remark. In fact the only point where we need the continuity assumption
on the operators is the description of weakly local multilinear functionals which
commute with Lie derivatives. Hence using assumptions which make sure that only
linear functionals can occur we can obtain automatic continuity results. We carry
this out only for the bilinear case.

6.2. Corollary. Let E1, E2 and F be natural vector bundles defined onMf+
m such

that F has no absolutely invariant sections. Let M be a smooth oriented manifold of
dimension m ≥ 2 and let D : Γc(E1M)×Γc(E2M)→ Γ(FM) be a (not necessarily
continuous) bilinear operator which commutes with Lie derivatives. Then D is an
almost natural operator and thus in particular jointly continuous.

Proof. Since we proved the description of the linear weakly local functionals com-
muting with Lie derivatives without continuity assumptions the proof of 4.6 shows
also that the presheaf F(U) := L̃(Γc(EiU),Γ(FU)) of not necessarily continuous
linear operators is admissible. Now as in the proof of the main theorem subtracting
almost natural operators from D we arrive at an operator such that both associ-
ated linear operators are local. Applying to this operator theorem 2.9 we see that
it must be local since F has no absolutely invariant sections. ¤

6.3. The operators on exterior forms. Our first application will give a com-
plete description of all k–linear separately continuous operators D : Γc(Λ

p1T ∗M)×
. . .× Γc(Λ

pkT ∗M)→ Γ(ΛqT ∗M) commuting with the Lie derivatives, where M is
an arbitrary m–dimensional oriented connected manifold, m ≥ 2.
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According to theorem 1.9, D must be an almost natural operator. Thus all opera-
tors in question are linearly generated by the possible elementary almost natural op-
erators. So let us focus on the multilinear functionals λ and local natural operators
D̃ which may appear in D. First assume q = 0 and assume D = λ is a multilinear
functional vanishing on Lie derivatives. Then λ is defined by means of a local nat-
ural operator D̂ : Γc(Λ

p1T ∗M) × . . . × Γc(Λ
pk−1T ∗M) → Γc(Λ

pkTM ⊗ ΛmT ∗M).
However, ΛpkRm ⊗ ΛmRm∗ ' Λm−pkRm∗ as GL(m,R)–spaces and so the corre-
sponding natural vector bundles are naturally equivalent. Moreover, under this
identification, the canonical pairing with values in the m–forms is just the wedge
product.

What remains is to classify all local natural operators D : Γc(Λ
p1T ∗M) × . . . ×

Γc(Λ
p`T ∗M) → Γc(Λ

qT ∗M), 0 ≤ q ≤ m. This can be done very easily by the
general technique described in 1.5. Let us sketch briefly how to do it. At the
level of standard fibers of the jet spaces, we can write the operator in question
as a linear combination of terms ϕi1...ip1

,α . . . ψj1...jp` ,β denoting tensor product of
derivatives of the tensors. The indices indicated by α, . . . , β are symmetric, we
have to alternate all indices at the end, and there are no indices to contract over,
which implies that each individual term in the tensor product can be differentiated
at most once. Thus, up to scalar multiples, the only way to get a local natural
operator is to choose n = q − (p1 + · · ·+ p`) ≥ 0 indices 1 ≤ j1 < . . . jn ≤ ` and to
define

Dp1,...,p`
j1,...,jn

(s1, . . . , s`) := dsj1 ∧ · · · ∧ dsjn ∧ si1 ∧ · · · ∧ si`−n
where i1, . . . , i`−n are the remaining indices among {1, . . . , `}.

In words, the operators in question are built from the wedge products, exte-
rior differentials and integration of m–forms. The classification in each concrete
situation is a matter of simple combinatorics. Let us formulate two corollaries.

6.4. Corollary. Let M be an arbitrary m–dimensional oriented smooth mani-
fold, m ≥ 2. All bilinear (not necessarily continuous) operators D : Γc(Λ

p1T ∗M)×
Γc(Λ

p2T ∗M) → Γ(ΛqT ∗M), q > 0, p1 < m, p2 < m, commuting with the Lie
derivatives are local natural operators (thus obtained by means of wedge product
and exterior differential).

If we drop one of the assumptions that p1, p2 < m and q > 0 then there are
operators like

D : Γc(Λ
mT ∗M)× Γc(Λ

pT ∗M)→ Γ(Λp+1T ∗M), (ω, ϕ) 7→ (

∫

M

ω)dϕ

D : Γc(Λ
m−pT ∗M)× Γc(Λ

pT ∗M)→ C∞(M), (ω, ϕ) 7→
∫

M

(ω ∧ ϕ).

The next corollary generalizes one of the results from [de Wilde–Lecomte].

6.5. Corollary. The space of all separately continuous k–linear operators

C∞c (M)× . . .× C∞c (M)→ C∞(M)

is linearly generated by the elementary almost natural operators obtained by choos-
ing pairwise disjoint m-tuples of indices Ij = {ij1 < · · · < ijm} among {1, . . . , k},
considering the m–forms dfij1

∧· · ·∧dfijm , distributing some of the other functions to
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the m–forms in order to integrate them, and to multiply the result of the integrations
with the remaining functions.

In particular, all symmetric k–linear operators are the scalar multiples of the
pointwise multiplication.

6.6. A more difficult task is to get similar complete descriptions for operations with
arguments involving some contravariant indices. We shall restrict ourselves to some
bilinear operations. First we reprove the completely algebraic characterization of
the Lie bracket, cf. [de Wilde–Lecomte].

Theorem. Let M be an oriented smooth manifold of dimension ≥ 2, D : Xc(M)×
Xc(M)→ X (M) a (not necessarily continuous) bilinear operator which maps com-
pactly supported vector fields to vector fields and commutes with Lie derivatives.
Then D is a scalar multiple of the Lie bracket.

Proof. Since TM has no absolutely invariant sections, D must be an almost natural
operator according to 6.2. Moreover T ∗M ⊗ ΛmT ∗M has no absolutely invariant
sections since the elements λ · Id from the center of GL(m,R) act by multiplication
with a nonzero power of λ, and so D must in fact be a local natural operator. Now
assuming locality it is easy to prove uniqueness of the Lie bracket by means of the
technique indicated in 1.5 (c.f. [Čap], [Krupka–Mikolášová] and [van Strien]). ¤
6.7. The Schouten bracket. The Lie bracket is a special case of the so called
Schouten bracket D : Γc(S

kTM) × Γc(S
`TM) → Γ(Sk+`−1TM), k > 0, l > 0,

(or symmetric Schouten concomitant) which can be defined as the restriction of
the canonical Poisson bracket on the symplectic manifold T ∗M to the fiberwise
polynomial functions on T ∗M identified with sections of SkTM and S`TM .

Since the natural bundle SkTM , k > 0, corresponds to a non-trivial irreducible
representation of GL(m,R), there are no absolutely invariant sections in the tar-
get of the operations in question. Thus 6.2 implies that the operator must be a
linear combination of elementary almost natural operators. But since there are
no absolutely invariant sections in SkT ∗M ⊗ΛmT ∗M , the operator must be local.
Then the general procedure for the classification shows that there is a unique local
operator, up to scalar multiples. Thus we have proved

Theorem. Let M be an m–dimensional oriented smooth manifold, m ≥ 2. Each
bilinear operator D : Γc(S

kTM)×Γc(S
`TM)→ Γ(Sk+`−1TM), k > 0, l > 0, which

commutes with Lie derivatives is a scalar multiple of the Schouten bracket.

6.8. The Schouten–Nijenhuis bracket. Another generalization of the Lie
bracket is the bracket D : Γc(Λ

pTM) × Γc(Λ
qTM) → Γc(Λ

p+q−1TM) defined by
the formula

D(X1 ∧ · · · ∧Xp, Y1 ∧ · · · ∧ Yq) =

=
∑

i,j

(−1)i+j [Xi, Yj ] ∧X1 ∧ . . . ∧i . . . ∧Xp ∧ Y1 ∧ . . . ∧j . . . ∧ Yq.

This operation is called Schouten–Nijenhuis bracket and defines the structure of a
graded Lie algebra on the space ΛTM .

Exactly as in 5.10, both the target bundle and ΛqT ∗M ⊗ ΛmT ∗M admit no
absolute invariant sections and so all operators of the given type which commute
with Lie derivatives (without any continuity assumption) must be local. But this
implies, cf. [Michor 1],
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Theorem. Let M be an m–dimensional oriented smooth manifold, m ≥ 2. Each
bilinear operator D : Γc(Λ

pTM) × Γc(Λ
qTM) → Γ(p+q−1TM), p > 0, q > 0,

which commutes with Lie derivatives is a scalar multiple of the Schouten–Nijenhuis
bracket.

6.9. The Frölicher–Nijenhuis bracket. Consider the first order natural vec-
tor bundles ΛkT ∗ ⊗ T . Sections of values of such a natural bundle are usually
called vector valued k–forms, and the space of these sections over M is denoted
by Ωk(M,TM). We shall give a completely algebraic characterization of a bracket
which is closely related to the Frölicher–Nijenhuis bracket.

For any M the bundle ΛT ∗M ⊗ TM = ⊕kΛkT ∗M ⊗ TM is a bundle of graded
modules over the bundle of graded commutative algebras ΛT ∗M , where the action
is induced by the wedge product. Moreover there is an absolutely invariant section
I of T ∗M ⊗TM , which corresponds to the identity map on TM . By acting on this
element we can view Λk−1T ∗M as a subbundle of ΛkT ∗M ⊗ TM . This subbundle
is actually a direct summand, and a projection ΛkT ∗M ⊗ TM → Λk−1T ∗M is

induced by mapping ω ⊗ X to (−1)k−1

m−k+1 iXω, where iX denotes the usual insertion

operator. The kernel of this projection is again a natural vector bundle Ck, whose
sections are called trace free vector valued k–forms. We shall write briefly Ck(M)
for the space of these sections. (The decomposition of ΛkT ∗M ⊗ TM constructed
above corresponds exactly to the decomposition of the representation ΛkRm∗⊗Rm
of GL(m,R) into irreducible representations.)

There is a bilinear natural operator [ , ] : ΛkT ∗⊗T×Λ`T ∗⊗T → Λk+`T ∗⊗T
called the Frölicher–Nijenhuis bracket, which defines a graded Lie algebra structure
on the space of vector valued differential forms and plays an important role in
the theory of generalized connections (c.f. [Frölicher–Nijenhuis] and [Michor 2]).
Using the projections onto trace free vector valued forms constructed above we can
compress this bracket to a bilinear natural operator [ , ]c : Ck(M) × C`(M) →
Ck+`(M) for any smooth manifold M . It turns out that this is again a graded Lie
bracket (c.f. [Michor–Schicketanz]).

6.10. Theorem. Let M be an oriented smooth manifold of dimension m ≥ 2,
D : Ckc (M)×C`c(M)→ Ck+`(M) a not necessarily continuous bilinear operator which
commutes with Lie derivatives. Then D is a scalar multiple of the compression of
the Frölicher–Nijenhuis bracket.

Proof. First note that Ck+` has no nonzero absolutely invariant sections since it
corresponds to an irreducible representation of GL(m,R). Thus by 6.2 D must be
an almost natural operator. Moreover for k < m there are no absolutely invariant
sections of Ck∗M ⊗ΛmT ∗M , since scalar multiples of the identity act nontrivially.
But Cm(M) = 0 since ΛmRm∗⊗Rm ' Λm−1Rm∗ (c.f. [Michor–Schicketanz]). Thus
D must be a local operator. Now using the projections on the left hand side and the
inclusion into all vector valued differential forms on the right hand side, D induces a
local natural operator D̃ : Ωk(M,TM)× Ω`(M,TM)→ Ωk+`(M,TM). But these
operators have been completely classified in [Kolář–Michor] and [Čap]. Looking at
the list of possible operators and taking into account that the values must be trace
free and the operator depends only on the trace free parts of the arguments one
sees that in fact it must be a scalar multiple of the Frölicher–Nijenhuis bracket, so
the result follows. ¤
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and Erwin Schr ödinger International Institute for Mathematical Physics, Pasteur-

gasse 6/7, 1090 Wien, Austria

Department of Algebra and Geometry, Masaryk University, Jan áčkovo nám. 2a
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