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We study the generalizations of the well-known Lieb-Thirring inequality for the mag-
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rally expected magnetic Lieb-Thirring estimate on the moments of the negative eigenvalues
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factor.
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1 Introduction

In this paper we discuss generalizations of the magnetic Lieb-Thirring inequality obtained in
[LSY-II] for the constant magnetic field. The main goal is to obtain reasonable estimates for
the moments of the negative eigenvalues of the three-dimensional Pauli operator with external
potential (describing a nonrelativistic spin-1/2 electron in an electromagnetic field). The basic
difference from the previous related works is that we focus on nonhomogeneous magnetic field.

For the possible applications of this inequality, especially its role played in the proof of the
semiclassical formulas, we refer to the papers [LSY-I] and [LSY-II]. Here we just note two

requirements that a useful Lieb-Thirring type estimate is expected to fulfil:

e it must be comparable (up to universal constants) with the corresponding semiclassical



formula;

e apart from the necessary integrability conditions (which make the semiclassical formula
finite) no extra condition should be imposed on the external potential (since in the appli-
cations the electric potential is usually chosen to be an effective potential whose detailed

properties might not be known).

In addition to these basic requirements we mention that in the related works ([Sob], [LSY-]],
[LSY-II], etc.) special attention is devoted to the case of a strong magnetic field. We also found
it physically interesting, and at the same time mathematically difficult, and hence challenging,

to treat strong nonhomogeneous magnetic fields.

There is a vast literature of various spectral studies in the case of the homogeneous mag-
netic field, but results, especially quantitative ones, are fairly rare for nonhomogeneous field
(see [AHS], [CdV], [AC], [Mat-1990], [Mat-1991], [T]). The technical reason for this (apart from
the obvious physical relevance of the constant magnetic field) is twofold. First, the Schrodinger
operator with constant magnetic field (without electric potential) is exactly solvable, and after
decomposing the operator according to the Landau levels one obtains a simplified (lower dimen-
sional) setup, so the additional effect of the external potential becomes easier. Some version of
this strategy has almost always been used in any work concerning homogeneous magnetic field.

The second technical difficulty is that perturbations of the magnetic field can be much less
controlled than that of the external potential. Naively, one would expect that a local change
of the magnetic field does not have a large effect on local quantities observed far away, but the
magnetic vector potential, appearing in the operator is a nonlocal quantity (i.e. it undergoes a
nonlocal change with a long tail even under local perturbation of the field itself). This is the

source of the Aharonov-Bohm effect.

Our basic method is stochastic via the Feynman-Kac formula, which is valid under fairly



general conditions on the magnetic field. The analysis of the stochastic oscillatory integral in
the Feynman-Kac formula involves a new localization technique in path space which enables
us to estimate the heat kernel of the Pauli operator (without electric potential). The key idea
of this technique has been presented in the simplest possible setup in [E-1993(b)] yielding new
pointwise estimates on the magnetic heat kernel. In the present paper we refine this technique
to obtain a stronger estimate (unfortunately under more restrictive conditions) which can be
combined with the Birman-Schwinger principle (in order to include the external potential) to

obtain the desired Lieb-Thirring inequality.

2 Definitions, conjectures, results

The three-dimensional Pauli Hamiltonian is
Hpgii :=[(p—A)-o]*+ V-1 (1)

acting on L*(R? C?), the Hilbert space of a spin-1/2 particle. Here & = (oy, 02, 03) stands
for the vector of Pauli matrices, A is the vector potential of the underlying magnetic field
B(x) = curlA(x), x € R?, Tis the 2 x 2 identity matrix and p = —iV.

Throughout our work we consider nonhomogeneous magnetic field with constant direction,
i.e. assume that B(x) = (0,0, B(x)) € R?, where B(x) > 0. By divB = 0 the function B(x)
depends only on the first two coordinates of x = (1, 22,23) € R?, which we will denote by
v := (x1,22) € R?. We do not specify the gauge A(x) here, but we will always restrict ourselves
to an appropriate two-dimensional gauge, i.e. A(x) = (A1(x), Az(x),0) =: (A(x),0) (depending
only on x). We will use the convention that A = (A, A2, A3) denotes a vectorfield in R? and
A = (A1, Ay) denotes the associated two-dimensional vectorfield, similarly to the convention on
the points x € R? and € R?*. We assume that A and divA are continuous and that B(z) is

continuously differentiable.



Under these conditions Hp,,; decouples into two operators of the form (p — A)*> + B+ V
acting on the spin-up and spin-down subspaces, respectively. For upper bounds on the moments

of the negative eigenvalues it is clearly enough to study
Hy = (p— AP~ B+V, 2)

since the contribution from the other operator yields a factor of at most 2 in the estimate for
Hpg.; by the variational principle. The negative eigenvalues of Hy are denoted by F; < Fy <
. <0.

Remark. We are not aware of any general theorem that would ensure apriori (after imposing
some LP-bound on V) the selfadjointness of Hpgu or Hyg. The usual theorems about the
perturbation of a selfadjoint operator do not seem to work if B is unbounded (which will be
our main concern). Nevertheless, the way we will prove our Lieb-Thirring inequalities implies
almost immediately that the operator is semibounded (so it has a selfadjoint extension) and

has no negative essential spectrum. The details are found in Appendix A.
The naive conjecture for the moments of the negative eigenvalues is the following:

Naive conjecture. For any v > 1/2 there exist two absolute constants C1(v) and Cs(y) such

that
SIEP <G [ BV s+ Cala) [ Veo[ 3
(|V|- denotes the negative part of V).

Remark 1. This conjecture is based on the following heuristic argument. The two-dimensional

unperturbed operator

Hi=(p— A1)+ (o~ A) = B=(p—-A)-B (4)



is nonnegative and has a nontrivial zero energy spectral projection Py with a kernel Py(x,y),
whose diagonal element Py(x, ) is more or less equal to B(x)/27. For more precise statements
see [E-1993(a)]. Recall that Hy = H + p5 + V, so over each point x € R? the operator

1/2 o
|Z+ / dzs as a contribution

p> + V acting on a one-dimensional fiber gives rise to [g |V(x,x3)
to the eigenvalue moment. Multiplying it by the density of states ~ B(x)/27 and integrating
over x € R? one obtains the first term in (3). The second term comes from the contribution
of the strictly positive part of the spectrum of H and it has the form as of the usual Lieb-
Thirring inequality. The reason for it is that (1 — FPy)H can be estimated from below by the

two-dimensional free Laplacian (in some suitable sense).

Remark 2. The conjecture above is not true without any further condition on B. A coun-
terexample is provided in Appendix B. The spirit of this counterexample suggests a simple
but necessary modification in (3), namely B(x) on the right hand side must be replaced by a

screened version of B(z) with screening length ~ B(x)~'/2, i.e. by

B) := (B * Fagyir) (), (5)

where F' > 0 is a C'**-function supported on the unit disc with [ F' =1, and F.(z) := e*F(ex).

Our methods are too weak to deal with magnetic fields if there is a substantial difference
between B(x) and B(l‘), more precisely, whenever we are able to prove (3), the conditions will
automatically imply that B(x) and B(l‘) are comparable, uniformly in x. Therefore we will

concentrate on proving (3). The discussion of a different (much rougher) modification of B is

found in [E-1994].

First we present a simple Lieb-Thirring type estimate.

Theorem 2.1 For the negative eigenvalues of Hy we have

STIEL < Coe|Bll [ IV R+ Co [ Ve (6)

K3



where

Ch:= d Cyi=————— |14+ —
! T(4y2—1)1 = A o : m(4y% — 1) A? +M

with 0 < A < 1 and p > 0 being free parameters and v > 1/2.

2-le 1 971 1( 1)3/2

Remark. This theorem does not impose any condition on B apart from the uniform bound-
edness. But the estimate is weaker than (3) unless we have positive lower bound 0 < By < B(x)
(in which case C; and C3 in (3) will depend on By). For magnetic fields that are close to zero
on some domain (3) is definitely stronger than (6). At the same time the counterexample in
Appendix B shows that the vanishing magnetic field might cause troubles in the original conjec-
ture. Therefore we will impose a uniform positive lower bound on B, and we then address the
question of eliminating the condition on the upper bound. Although the necessary conditions
given in Theorem 2.2 below are still very restrictive and the proof of this theorem requires
a conceptually new approach, we do obtain the original form, (3), of the naive conjecture by

imposing these conditions.

Theorem 2.2 Assume that the magnetic field has a positive lower bound 0 < By < B(x) and

for some constant ¢ it satisfies

|B(z) — B(y)| < ¢~ d(z)|x —y (8)
where b\
o) = B (Bé)) )

for any x,y € R?. Then there exist two constants Cy and Cy depending only on ¢ such that the
estimate (3) is valid with

-2t B Cly - 2VF3/2
T—nar—p  @0)=mar sy

where 0 < A < 1 is a free parameter.

Ciy) = (10)



Remark 1. The conditions (8), (9) essentially impose a condition on the size of the gradient
of B. Only a small gradient is allowed on the regions where B(x) is large. Nevertheless, the
theorem applies to any magnetic field with positive lower bound By and asymptotic behaviour

/37 at infinity (with the corresponding asymptotics < |z|~'+%/%7 for the

not bigger than |z
gradient). The exponent 31/6, which appears in (9) and determines the maximal growth rate
of B at infinity, is necessary for the following proof, but, as we remarked above, the conjecture
(3) is expected to hold under much more general circumstances. Therefore this exponent only

expresses the limitations of our method and does not have any physical meaning.

Remark 2. The conditions (8) and (9) are almost homogeneous in the magnetic field,
therefore we have a semiclassical statement as well. If we include the Planck constant in the

original Pauli Hamiltonian, [(hp — A) - ]* + V - I, then Hy becomes

A\ B V
2 —_ — _ —_—
h[( h) R

so the magnetic field must be rescaled by A~!. Notice that this change makes the conditions

: (11)

even weaker (moreover they become irrelevant in the h — 0 limit). The estimate for the

eigenvalue moment is
SIEL < Co) - 27 [V ) n7 [ BV, (12)

Since Cy(7) is not the semiclassical constant, the second term becomes relevant only for large

magnetic field.

Before going into the details of the proofs, we would like to mention very briefly two other
results related to the naive conjecture (3) which can be found in the author’s Ph.D. Thesis
[E-1994].

One can try to check the naive conjecture directly for exactly solvable models. It turns out

that for the ”Coulombic” magnetic field, B(x) := b/|z| (with b > 0), the operator (with the

8



natural gauge choice) H := (p — A)? — B is exactly solvable (and actually it has dense point
spectrum in the interval [0, B?], similar to a phenomenon investigated qualitatively in [MS]).
Using explicit formulas for the eigenfunctions, one can estimate the spectral density of H with a
precision that is sufficient to prove (3). The proof involves various estimates on the asymptotic
behaviour of the Laguerre polynomials. The significance of this result is that the Coulombic
magnetic field is neither bounded from above nor has a positive lower bound (so none of the
previous theorems apply), and it shows that the conjecture can be valid even for magnetic fields
with a singularity.

The second, related result deals with cylindrically symmetric situation.

Proposition 2.3 Assume that B(z) = B(|z]) > 0 and V(x) = V(|z|,x3) (where |z| =
Vol +a3) and let a(r) := (1/r) [y B(s)ds be the absolute value of the natural radial gauge.
Then for any v > 0 there exists a universal constant ¢(vy) such that

v+

ST < of) %/R . ‘—B(r) V() + (2 - a(r))Z ordrdes (13

The main idea of the proof is that one can investigate the problem separately in each angular
momentum sector (so that the magnetic field becomes an effective potential) and apply a
modified version of the idea of [L-1980]. This estimate is not comparable directly to the original
form of the conjecture, but imposes no condition on the magnetic field apart from the symmetry,

so it might be useful in some situations when Theorems 2.1 and 2.2 do not apply.

3 Separation of the external potential

For the proof of both theorems we follow the method of [LSY-II]. The key idea is to split the

Birman-Schwinger kernel

1/2 E -1 E1/2
(H+p§+—) V+ o

FE
Kg =V 4+ —
\E ‘ + 5 5

(14)

9



(E > 0) into a lower and an upper part at level L, Kp = KE,L + K7 1» defined as

1/2 1/2

E -1
AEL_‘V+§ HL<H—|—p§—I—§) HLV+§ (15)

1/2 1/2

i (16)

V‘|‘§

E—l
Kppi=|Vg| - (H+p+5) (-1

where let Pp, be the spectral projection onto [0, L] in the spectrum of H (which is nonnegative),
and let II;, := P, @ Id be its natural extension to L?*(R?). (According to the heuristic argu-
ment outlined in the previous section we should choose L = 0, but sometimes the splitting is
technically more convenient at a positive L.) Using Lemma 2.3 in [LSY-II] (where we do not

really have to assume that the operators in question are of trace class) we have
Ng < (1 —=XN)"'"Tr(K5) + A2 Te[(KZ)?, (17)

for Ng, the number of eigenvalues of Hy := H + p% + V less than —F (0 < A < 1 is a free

parameter). Naturally

SO |E = /Oo NpE""'dE < (18)
- 0

<a-n7 [0

0

Te(KS, ) E" dE + A\~ /Oo Te[(K2, )2 BV dE.
? 0 ?

Using that
PL < etL . e—tH (19)

(for any ¢ > 0) and that Tr(CA) < Tr(CB) in case of 0 < A < B and C > 0, a simple
calculation, similar to (2.15) in [LSY-II], shows that

Tr(Kgp) <Tr

v+—‘ HL< ) ] (20)

E _
Sl (e ) ] 7 eV

10

<Tr

V_I_ tL —tH(

x,x)dx,




—tH(

where e x,x) denotes the diagonal element of the heat kernel of H (its existence will be

discussed later). Then, still following the technique of [LSY-1I], we obtain

27+ +1/2 L —tH
V()T et e (2, x)dx (21)

&0 - -1
A To(RELEME < oy |

(recall that for the moment ¢ and L are free parameters).

If we choose L = 0, then we can see that F has a kernel with well defined diagonal function
Po(x, ) (defined via the zero energy eigenfunctions of H exactly as it was done in [E-1993(a)]),
and in this case the estimate (21) can be replaced by

v+l
V(%) Py(a, )dx (22)

o] . _1
A (KGR < g [

(use directly the kernel of P, in (20)).
For the contribution of the upper part for each £ > 0, L > 0 we will present an operator

Mg 1, satisfying

Aty (104 5 =) < a0 - ), (23)

and such that Mg ; has a continuous kernel. Then using the following trace estimates for

nonnegative operators:
e 0 <A< B=— TrA? <TrB?
o Tr(PA) <Tr(A) for any projection P and A > 0,

o Te(CDCD) < Tr(C?D?),

we obtain
EL/2? EL/2? 2
Tr[(KﬁL)Q] <Tr (‘V + 5 Mg |V + 5 ) < (24)
E? E?
§HOV+§_M&):A§W@+§_M&QJMX

11



As we will show later, MZ ; (x,x) < C(L)/v'E uniformly in x for some L-dependent number
C(L), therefore

00 00 I 2
| mlKG e < o) /R / ‘V(x)+§‘ E32dEdx < (25)
0 3.Jo
97+3/2
< L ’V+3/2d .
B LS

Combining (18) (21) and (25) we can reduce the proof of Theorems 2.1 and 2.2 to the

following two Propositions.

Proposition 3.1 In the case of the bounded magnetic field we have

et a,a) < (L4 |Bll.) (26)
47
Jort:= (L +||B||le)™". Furthermore, the operator
L BN
My, _Ap+ o) 27
= (rr e -7+ 3) )
satisfies (23) and
o) ! 18]l
2 .
ME,L(X7X) S ﬁ with C(L) = 25/27'[' (1 + I . (28)

Remark. After proving this Proposition, we choose L := || Bl| to finish the proof of Theorem
2.1. O

Proposition 3.2 Under the conditions of Theorem 2.2 there are two constants C1 and Cy
depending only on ¢, and there is an operator Mg o satisfying (23) (with L = 0) such that

Po(x,2) < Cy - B(x), (29)
and
2 02
ME,O(va) < ﬁv (30)

which imply Theorem 2.2 via (17), (22) and (25).

12



The proof of these Propositions relies on the magnetic Feynman-Kac formula for the Pauli
operator, which we present in the most general form recalling the statement of Appendix B in
[E-1993(a)]. For the rest of the paper ngf denotes the expectation for the two-dimensional
Brownian bridge W(s) (0 < s < 2t) under the conditions W(0) = x and W (2t) = y.

Proposition 3.3 Let A be a vectorfield on R* such that A € L? , divA € L? ; A and divA

loc? loc?

do not grow faster than some polynomial at infinity, furthermore for B := rotA assume that
0 < B(x) < co|2]*~° + 1) with some positive ¢ and c¢og. Then the heat operator exp (—tH) of

the two-dimensional operator H := (p — A)?> — B has a kernel DY (x,y) defined by
1 (z=)?

DY (z, y) = ey e_Tngf exp W(W), (31)
where
V(W)= —i/o AW(s))odW(s)+ %/0 B(W(s))ds = (32)

2 ot 1 g2t
= =i [T AWEDAW () + 5 [ divA(W(s))ds + 5 [ BOV(s))ds
0 0 0
(as usual, { F(W)dW denotes the Ito integral, while [ F(W)odW is the Stratonovich integral),

and there exists a continuous function I'(¢,z) : [0,00) x R?* = Ry such that

I(t 2
(t’“') e (33)

If, in addition, B is continuously differentiable, and A and divA are continuous then DO (z,y)

is continuous and e~ maps L*(R?) into C(R?).

D' (2, y)] <

Remark 1. The growth condition on B is clearly satisfied for the fields investigated in this
paper. The conditions on A are very weak and will always be satisfied when we explicitly
specify the gauge.

Remark 2. The only difference between this Proposition and the statement in Appendix B
of [E-1993(a)] is that in (33) we take into account the 1/¢ singularity, so I'(t, z) is continuous
for ¢t > 0, while the corresponding function in Equation (71) in [E-1993(a)] was continuous only
for t > 0.

13



4 Bounded magnetic field

In this section we prove Proposition 3.1. By Proposition 3.3 we have

1 2 1 g2t
e (2, 2) = —E2 exp (—@/ AW (s) odW(s) +5 [ B(W(s))ds). (34)
At 0 2 Jo
Estimating the oscillatory part trivially (diamagnetic inequality) and using || B|| := || Bl >
B(x) we have
ete™ ™ (2, 2) < etLet”B”L. (35)

4t
m we obtain that etLe_tH(x,x) < ﬁ(lj + || B|])-

For the upper part we use the fact (see [LSY-II]) that

Choosing the optimal ¢ :=

(L= PYH(L = Py) = (1= P)l(p— A = Bl = P;) > L (36)

and B < ||B|| imply that

(L= T)l(p = AP = B = 10y) = el = )(p = AF(I =1L, (37)
that is »
(-t (Hapie D) - < (39)

< (= 1) (- A7+ ) (-1,

showing that Mg 1 chosen in Proposition 3.1 satisfies (23).
To estimate the kernel of MJ%JJ we use the diamagnetic inequality as in [LSY-II], and one

can easily show that

/2
L1 18I
M]%,L(va) S ﬁ25/2ﬂ. (1 + T (39)

which finishes the proof of Proposition 3.1. O

14



We briefly remark that the trick to estimate (p — A)? — B by (const) - (p — A)?* from below
(see (37) without the projections Il;) works for general (not necessarily bounded) magnetic
field if the so-called electron g factor is smaller than 2 (see [FLL]). In this case one considers

Hy:=(p—A)’ —1g- B instead of H, and clearly

=5 -Ar-5+(1-5)p-ar=(1-)(p-A7 (40)

By the diamagnetic inequality the usual (non-magnetic) Lieb-Thirring inequality can be used

and we obtain

y 2! 2\ v+3/2

SIEP < ST (2_9) [ Ve ax (41)

5 Unbounded magnetic field; reduction to the Main
Lemma

In the rest of the paper we present the proof of Proposition 3.2. The crucial estimate (37) in
Section 4 relied on the global boundedness of B. If we do not want to assume this, or we wish
to obtain the "real” estimate (3) instead of (6), then we have to analyse the local behaviour of
H=(p—A?-B.

The first inequality in Proposition 3.2 is a straightforward consequence of Lemma 5.1 below.
At this point we still do not make use of the oscillation effect in the magnetic Feynman-Kac
formula due to the —i [ A o dW term. The proof of the second inequality (30) is much more
difficult because we have to exploit the full power of this oscillation. We will compare the heat
kernel of H with that of the operator with constant magnetic field. This is the content of the
Main Lemma 5.2, formulated at the end of this section.

First we prove the following technical estimate which will be used throughout our stochastic

analysis.

15



Lemma 5.1 Let F : R* — R be a measurable function with |F(w)| < d|wl|, furthermore
assume that 0 <t <1/By, d < cBg/2 for some positive By and ¢. Then there exist two constants
OO = CO(e) and CV = CW(c) depending only on ¢ such that the following estimates hold
for z € R?%:

ng(’f exp (% /0% F(W(S))ds) < CWexp (42—(;) (42)
and
1%%(%%fqu@»@)@@(%AmFQVQ»@)gcwwu+¢%@@(§%). (43)

Proof. Consider the absolute value process r(s) := |W(s)| (Bessel process) and use the upper
bound for |F| to transform (42) and (43) into inequalities about r(s). There is an explicit
formula for the exponential moment of the integral of r?(s), so we estimate r(s) from above by

K + Mr?(s) where K :=100t*d/7* and M := 1/(4K). Therefore
2 1 2t Kd b2 ot
Eqy exp (5/ F(W(S))ds) <. Eexp 5/ r?(s)ds | =
0 0

20t z?
o P (E(l — 2bt Cot(th))) \ (44)

where b := VMd < 3, i.e 2bt < 7/10, and E denotes the expectation for the process r(s).

_ Kt

Here we used the analytic extension of the Laplace transform of [ r%(s)ds given, for example,
in [Y-1992, p.17] or in [E-1993(b)]. The analytic extension is possible for 2bt < 7. Using that
(1 — 2bt cot(2bt)) < 1/10 and 2bt < 2sin (2bt) for 2bt < 7/10, we easily obtain (42).

For (43) one uses Holder’s inequality

B35 (o [ POVEds)esp (5 [T FOV(s))ds) <

d 1 g2t 2 2t
§§m§@+(§A|W@MQ)£LMWWS (45)

C(O)d 22 d 1 2t . Md 2t 2
< _ 2 Kdt = 5= o T (s)ds
< exp ( ) + 2E <_2t/o r (S)ds) e e

40t

16



using (42) and r(s) < K + Mr*(s) as above. Differentiating the explicit formula (see (44)) for
E exp(b?/2 [ r*(s)ds) with respect to b one can estimate the obtained expression for 2bt < 7/10

E (b / : r2(s)ds) exp (62—2 / : r2(s)ds) < (const) - 2 exp (%) (46)

(by (const) we shall denote universal constants, not necessary the same ones). Combining this

as follows

with (45) and with the conditions on ¢ and d, one obtains (43). O

Now we can easily prove (29):

tB(x) 23
SE e (5 [T (BOV(S) ~ Ble)ds ) (47)

Choose t := 1/B(x) and apply the estimate (42) from Lemma 5.1 with F(w) := B(x+w)— B(x)
using (9). O

€

Po(z,z) < e H(z,2) <

To treat the contribution from the upper part of the spectrum of H first we have to present
an operator Mg satisfying (23) and the continuity requirement for the kernel of Méo, and
prove (30).

The first trick is to realize that (I — Py)H(I — Py) > 2By because of the spectral gap (the
spectrum of H has a gap of size at least 2B, above 0, for details see [CFKS]). On the other
hand for v > 2B,

™ < (const) (e — e~ () (48)
with 3 :=1/(2By), therefore
(1= Po)e™™(I = Py) < (const) (e — =+ (49)

as operators on L?(R?). (Note that it is enough to check this inequality on Ran(I — Fy) where
H > 2By = 7', since on Ran(/FP,) both sides are 0.) Extending this inequality to L?(R?) and

multiplying with exp [—¢(p3 + %)] we obtain

(I — Ho)e_t(H"'pg"'%)([ —1y) < (const) - (P34 %) (e_tH — e_(t"'ﬁ)H) (50)

17



(here we use that if 0 < A < B, and C > 0 commutes with A and B then AC < BC). The
Ié]
e~ E) gt (51)

next simple trick is to realize that
1
< (const) /
u+ 0

v |t

_(t+ﬁ)H) dt,

E) (e—tH_e

if u>p=t
Therefore by (50) and (51)
(1= 1) (H + 3 + 2)_1 (1= T) < (eonst) [ (1= Tg)e™ (5 )1 11y) < M, (52)
(53)

where
B >
Mg := (const) / et %
0
(23) is satisfied.
By Proposition 3.3 (and especially by the estimate (33)) it is clear that Mg o(x,y) exists
for x # y, and
sl _(x=y)?
Mio(x,y) < (const) / T ) dt (54)
’ o 13/2
Therefore Mg , has a kernel even for x =y, since using the estimate (54)
Mg o(x,x) = /RS Mg o(x,2)Mpo(z,x)dz < (55)
It x)
< (const) / / 3—|—t3/2 dsdt<oo
(the existence of Mg o(x,y) for x # y is even more obvious)
Calculating Mg (x,x) from (53) one obtains
) (e—tH . e—(t+ﬁ)H):| (X7y)><
(56)

Mp o(x,x) = (const) / dt/ ds/ dy[
y [e_s(p§+§) ( —sH _ e—(s—l—ﬁ)H)] (v, ).
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The main point in this computation was that we wanted to estimate the projected resolvent
kernel by the heat kernel (so that we could use the Feynman-Kac formula). On the other hand
the heat kernel is always larger than the ground state projection kernel Fy, which grows linearly
with B (this is why we had to treat its contribution separately), but we need a B-independent
estimate. Therefore we have to deal with the difference of two heat kernels, so that Fy be
cancelled.

The next problem is that we will be able to estimate effectively the heat kernel from above
(via Feynman-Kac), but obtaining lower bound is much harder. The best thing we can do is

to introduce an approximating Hamiltonian H. with constant magnetic field, use that e=*Hc —

tH _ e—tHe ig gmall. This last

e~(+AHe can be exactly calculated, and try to prove that e~
statement can be proved only for small ¢, this is why the truncation in the limit of integration in
(51) was needed (this step shows implicitely that the positive lower bound on B(z) is necessary

for the proof). So we anticipate the following Main Lemma:

Main Lemma 5.2 Assume the conditions of Theorem 2.2 and choose a gauge A = (A,0) so

that A satisfies the conditions of Proposition 3.3. Fiz v,y € R? and let B := B(z). For any

z = (z1,22) € R* define the following divergence free gauge (written as a 1-form on R?)

B(z)
2

generating the constant B(z) magnetic field: rotA*(u) = B(z). Let H.:= (p — A*)* — B be the

A*(u) = [(u1 — z1)duz — (ug — z2)duy] (57)

operator with constant B = B(x) magnetic field. Then there exist a real number ¢ = o(x,y)
and a constant C' = C(c¢) depending only on ¢ (the constant appearing in (8) and (9) in Theorem
2.2), such that for any t < 1/ By we have

—tH(

e (@, y) — eve Me(a,y)| < —ew (58)

or, equivalently,

(z—y)?

‘Egtxy (e_ifO”A(W(s))odW(s)Jr%fO”B(W(s))ds B ewe_if(ftAE(W(S))odW(s)JrBt) <0 (59)

19



Estimating (e=(+AHe — e=tHey( 4} is relatively easy using the explicit formula (see e.g.
[S-1979)):

Be! (z —y)?
—tH,
¢ — — B coth (Bt)——— 60
‘ (2.9) = 4m sinh Bt exp( coth (Bt) 4 (60)
and its derivative with respect to t. Notice that
d A, const _ (v—y)?
[ o1

independently of B, although e~7#¢ itself grows linearly with B. Therefore using the Main
Lemma 5.2 above for t < 3 =1/(2By), we have

‘(e_tH _ e—(t-l—ﬁ)H) (:E,y)‘ < H8dr _@-w> O _(-p? C (2—y)?

t 2 o e T e . sE+H
(cons )/t T2 c + 47Tt€ + An(t + ﬁ)e

(62)
Now we plug this estimate into (56). The dy integration is done explicitly, but then we arrive
at the following complicated ds and dt integral

(56)<C’/ dt/ ds t+s' (1) E [/Jrﬁdr/ T+C)

e dr 4+ dr
—I_/t T(T—I—S)—I_/t T(T—I—S—I—ﬁ)—l_/ +/ §—|—t—|—[3)
+ ! + 2 + 1 ] (63)
t+s t4+s+0 t+s+20

SC//Oﬁdt/oﬁdS —(t+s) & [/t-l—ﬁ / T+O

8 dr st8. d( 4
+2/t T(T—|—5)+2/5 §(§+t)+t—|—3]

where 7 depends on the constant C' obtained in the Main Lemma 5.2. The right hand side of

(63) is monotone increasing in # and we need a § = 1/(2Bp)-independent estimate for (30), so

we can take immediately 3 = oo:

(o6) < [t [T ds — .—<s+f>§[/t°odr/5°°dgﬁ+
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4
+2/ r+s) gg+t)+t+s]§

o o dr T 2 S
' dt/ ds —— (0 / T ( ) ah (1 —) A
[ Sme . o8 +5 Foles{ly)+ (64

2 t 4
Flog (14 < O (eonst) [t [
—I—tlog <1+5)+t—|—3] < C"-(const dt ds

. o o (T-|—S)
- C (const)/ dT/ JS Cy
0

- WVE JTS(T + 5) ~VE

(using that log(1 + u) < \/u), which proves (30), and so Theorem 2.2.

6 Proof of the Main Lemma

This section contains the essence of the whole proof; we compare the heat kernel of the operator
with nonconstant field with that of an operator with frozen constant field. We use a localization
technique in path space; a similar method has been used in [E-1993(b)], but the present setup is
more complicated and we need better estimates. Nevertheless, the intuitive idea of the method
outlined in Section 2 of [E-1993(b)] might help to understand the present proof.

Introduce the following notations
F*(w) := B(z + w) — B(2) (65)

G*(w) = /01 LF*(tw)dt(wydwy — wadwy), (66)

then G is a 1-form generating F'%, i.e. dG*(w) = F*(w) (we use the canonical identification be-
tween 1-forms A = Ayday 4 Asdry and vectorfields A = (Ay, Az) without any further comment).
Let

AZ(u) 1= ) — G (u— =), (67)
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then dAZ(u) = B(u) — F*(u — z) = B(z), so AZ and A* both generate the constant B(z) field.
Therefore there is a function ¢* : R? — R such that A? = A® 4+ dp*. The phase difference
¢ = ¢(x,y) in the Main Lemma 5.2 will be given as ¢ := ¢"(x) — ¢"(y).

We will not give the exact value of C' = C'(¢), but it is explicitly computable from the proof
below. Also we will use the same letter C' for various positive constants depending only on c.

First we eliminate some extreme cases.

Case 1. (short time): If Bt <1 (recall that B := B(x)) then by the roughest estimate

LHS of (59) < P! + ngfe%fomB(W(s))ds < Bt (1 n Egzyeéffth(W(s)_x)ds) <

§6Bt<1—|—C'(O)-e£%L)§C-e£$_gfL (68)

using Lemma 5.1.

Case 2. (large distance): If (x — y)* > 16B¢? then Bt < (@ — y)?/(16t), so one can use the

same rough estimate (68) as above to obtain

)2 (z—y)?

LHS of (59) < ¢ 7 (1 + OO ) <Ot (69)

So from now on we can assume that Bt > 1, (z —y)? < 16Bt? and we have to bound the

expression (for brevity we use a straightforward shorthand notation when it makes no confusion)
[ = ‘E (e—iondWJr%fB . ewe—z’fA%dWJrBt)‘ (70)

from above.
Let e := 2t/([Bt]+1) (here | ] denotes the integer part) and we define a sequence of stopping

times 7; inductively as follows. Let 75 := 0, a; := W(7;) and for j > 0 let

. [Sjﬂ n 1] 7
€
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where

Sjt1 1= inf{r c 1 <r <2t and

[ aenavs| -3 ™)

which is also a stopping time (if there is no such r then we stop defining the sequence 7;). The

crucial idea is that s;;; is the first time when the flux of the frozen constant magnetic field
B(x;) between the Brownian curve starting at time 7; from the point x; and the corresponding
chord reaches 7/2 in absolute value. After that, we look for the next stopping time with the
same property, but for technical reasons we have to discretize the set of the starting times, this
is why we introduce the 7’s.

Let 7,(w) be the last stopping time defined above (n(W) < [tB] 4+ 1 = 2t/c is an integer
valued random variable). Define H, := {W : n(W) = n}, then clearly P(U,H,) = 1, and
define the 7 reflection T; : H,, — H, (0 < j <n —1) in the following way. It will affect only
the {W(s) : 7; <s < s;41} part of the Brownian bridge, so let [T;(W)](s) := W (s) for s < 7;
or s > sj11. For 75 < s < sj4q let [T;(W)](s) be the geometric reflection of W (s) onto the
segment [W(7;), W(s;41)]. By the strong Markov property 7} preserves the probability measure
and the sequence of stopping times 7;, and 7} is an involution. These last two statements follow

from the crucial relation:
| AW DdW (s) = = [ A% (T ()T (s) (72)

for any 7; < r < sj41, where W := T;(W) for simplicity.
Define the following stochastic integrals for 0 < j < n = n(W) for paths W belonging to

Ni(W) = N, o= —i [ TGV O (W (s) =W (r;))odW (s / WO (W ()= W (7,))ds, (73)

M) = My = = [T AT () 0 i (s), (74
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L,(W) = L 2= SBOV(5)(mi — 7). (75)

where 7,4, := 2¢ (it might be that 7, = 2¢, then N, = M,, = [, = 0.) Let N; := N;(T;W) and
M; := M;(T;W) be the same quantities for the T;-reflected path. Then for 0 < 7 <n — 1 we

have |M; — M ;| = 7 by the careful definition of the stopping times, since

|M; — M| =

LA dws) — [TUALEW () 0 (5

= (76)

S5+1

=[O0 dw(s) - [T AN () 0 diF (s

J Ty

:’]'['7

using first the fundamental theorem of calculus for the Stratonovich integral, then the fact that
A7 is divergence free, so its [to and Stratonovich integrals are the same, and finally the relation

(72) and the definition of s;41.

We shall decompose the quantity I to be estimated (see (70)) according to the disjoint

events H,:
2t/e
1= Z 1, (77)
n=0
with
Iy o B2 (M) (A B e Ao ). i

The n = 0 case must be treated separately; on this event the contribution from both terms
in (70) is proportional to B, but they will cancel each other. In the operator language this
corresponds to the ground states; we know that the heat kernel contains the ground state
projection, which is proportional to B, but we need a B-independent estimate. On the other
hand we wanted to estimate the heat kernel only on the subspace orthogonal to the ground
states, which allowed us to subtract an other heat kernel (namely that of with constant magnetic
field) having more or less the same ground state projection as H. This was the essence of the

calculation in Section 5.
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Case n = 0. Using the notations above we have

[lo] < P'ESLY (X(Ho) | —1]) . (79)
We have to treat the largely deviating bridges separately. Let R := 8tv/B and let
E:={W(s): sup |W(s)—z| <R} (80)
0<s<2t

be a measurable subset of the path space. By standard large deviation estimate (see e.g.

[S-1984]) for the complement of £ we have

2
PUY(E°) < demter < 4P (81)

Y

and on the subset F° the left hand side of (79) can be easily estimated by

P (B (Ho) [ — 1) < e (PYLY(E7) + B (o) 0Tt} < s

< P! (Péff(Ec) + (P?ff(EC) .nggf‘%f?w(vv(s))ds)” 2) <0
using Lemma 5.1 again (now for 2F* instead of F'*, so the constant C' obtained here is essentially
C©(2¢) with the notations of Lemma 5.1).
On the subset E, by the general estimate [e XY — 1| < |X| + |V]e! for real numbers X
and Y, we have

eBtngf (X(E N Ho) \eNO — 1D <

< P (vm o) (| [ G wis) - mpam(s)] + (83)

2
divG®(W (s) — x)ds

0

1 1 2t 12t o
- 5 [T () = w)lds - e s F<W<s>—$>ds)).
0

Notice that we have replaced the Stratonovich integral by the Ito integral plus the divergence

term. The reason for it is that the Ito integral is a martingale so the calculations become easier.
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We estimate each term in (83) separately. For the last term use that
FE (W (s) — 2)] < ed(a) [W(s) — 2] < ed(e) R (34)
on the event F to obtain that
Last term on the RHS of (83) <e 2753"(7—[0)cd( )Rt - ccU@) R, (85)

For estimating the probability of Hy we recall Lemma 4.1 from [E-1993(b)] (in a simplified

form)
Lemma 6.1 [For any 7,7 € R? let

=5 / (Wi () — 1) dWa(u) — (Wa(u) — To)dWi (u) (36)

be the random flux process of the two dimensional Brownian bridge under the constraints W(0) =

T, W(2t) =7 for the constant magnetic field B. Assume that
Bi>e (87)
for some positive €, then there exists a constant C = C(€) depending only on € such that
Pg? ( sup [€(s)] < g) <O(1 —I-Ef)e_gg. (88)
By the definition of A” (see (57)) and the sequence of stopping times 7; we have
| A waw ()

after applying Lemma 6.1 (recall that Bt > 1). Plugging (89) and the value R := 8t\/B into
(85) we have

P2 (Hy) = ( up

0<s<2t

< g) < (const)(1 + Bt)e_Bt (89)

Last term in (83) < (const)Bt - \/EtQCd(:L') L 8VBed(z) < (90)
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by (9) and t < 1/By.
The estimate of the divergence term in (83) is similar. By the definition of G* (see (66))

clearly
|divG®(w)| < |w] - sup [VF] = |w|- sup |VB(u)| <cw|- sup d(u) (91)
[0,20] u€[z,z+w] u€[z,z+w]

since the function cd(u) clearly dominates |V B(u)| by (8) ([x, 2 +w] C R* denotes the segment

joining @ and x + w). For |u — 2| < R we have

Bo
B(x)
especially B(u) > B(x) — 8¢By which implies in particular that B(u) > B(x)/(1 + 8c¢) (recall
that B(u) > By), therefore

B(a) - B(u) < B

R < 8¢By, (92)

lu—2| < R= B(u) > CB(zx) and d(u) < Cd(x) (93)

(recall that C' denotes different positive constants depending only on ¢). Therefore on the event

E
|divG* (W (s) —a)| < [W(s)— x|+ sup d(u) < CRd(z), (94)

w:|u—z|<R

which allows us to estimate the divergence term in (83) as
Second term on the RHS of (83) < CeBtth(:lﬁ)ngf(Ho) <. (95)

Finally we have to estimate the first term on the right hand side of (83). This is much
harder since one cannot plug an upper estimate on the integrand into a stochastic integral.
First we have to estimate the stochastic integral by an ordinary integral using the Kolmogorov
inequality for martingales. This is the content of Lemma 4.3 in [E-1993(b)] which we recall

here for convenience:

27



Lemma 6.2 Let W be the Brownian bridge in R? with W(0) = 0 and W(20) = z. Then for
any function H : R?* — R? with at most polynomial growth and u > 1 integer

1/4 1

5, THOV(s)P¥ds. (96)

= (/ H<W<s>>dw<s>) " < (consty(: 400 B

Before applying this lemma we have to separate the y(Ho N E) factor since on a restricted
set the stochastic integral is not a martingale.

Let p := [Bt] (integer part) and use Holder’s inequality

PESY (X(Ho NE)

) <

< B (P2 (Hy)) (ngf ( /0 " W (s) — x)dW(s))m) & (97)

For the probability of Hy we use the same estimate as before, notice that this factor still

/0% G (W (s) — 2)dW (s)

essentially cancels ¢P?, since
1
T2

( 2“’(7‘[0)) Rz < ((const)(l + Bt)e_Bt) < (const)(1 + Bt)e_Bt (98)

since Bt <2u by Bt > 1. For the other term in (97) we use Lemma 6.2 to obtain

RIS of (97) < (const)(1 + Bu)((a =) + )% (B L [¥Go(w(s) = o) poas) ™ <

1
8

< (const)ed(x)V/t(Bt)*/? (1 + @) ( zty% / |16Md5) ’ (99)

where in addition to some arithmetic estimates we have used that

G ()] < ol - sup |[F*(u)] < |- sup |Blu+a) = B(a)| < cd(@)lwf  (100)

w€[0,w] w€[0,w]

based upon (66).
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Estimating the expectation in (99) is standard, one uses the following representation for the
Brownian bridge:

W(s):x+(y—x)-%+\/§b<%), (101)

where b(7) is the standard two-dimensional Brownian loop under constraints b(0) = b(1) = 0.

We denote by E, the expectation with respect to the measure of b(7). Therefore

2ty 1 2 164
E . |W(s) — x| ™ ds <
0

0,z 2_

(1 s 16ud - 1 2t sy (5 16ud

< — oyl 2 — i <

< (eonst) (Qt /0 ('x vl Zt) SRIREDY /0 (20) <2t) S) = (102)
< (const)* (| — y["™ + (20)(8p)!)

using the explicit formula for the moments of b(7):
E,[b(7)]*" = (2m — DIt (27(1 — 7)™ (103)

for any positive integer m.
Plugging (102) and p < Bt into (99), using Stirling’s formula to estimate the factorial we
get

(x=y)*\ "
RHS of (97) < (const)cd(:z;)\/g(Bt)w?’ (1 + T) ((x — y)2 + Btz) < (104)
(z=1)* (z=1)*

< (const)cd(x)(Bt)8/3t3/2 e s < (e s

which finishes the estimate of I;.
Casen > 1.

We first note that for n > 1 the contribution to (78) from the operator H® (with frozen

constant field) is zero, since

E (X(Hn)e—ifjtAE(W(S))odW(S)) _ %E (X(Hn) (e—z’fO”Af(W(s))odW(s) n e—ifOQtAm(W(s))odW(s))) —0
)
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(where W := TyW), because the difference of the phase factors is exactly 7 (see (76) with
Jj = 0). We use the shorthand notation E = Eotxy and similarly P = P2t Y. Therefore only

, 2t/ n '
B (1= x(Ho))e I ATk v ZE( n>HeNﬂ+ZMJ+LJ) (106)

7=0
remains to be estimated.
The trick is that on the set ‘H,, we consider all the 2" paths of the form TZW together,
where ¢ € {0,1}" and T2 = Tg°Ty" ... T, 7", Therefore

n

Z[ = %:/5 E( Z H ( S(TZW) 4N, (T W)) iMp(TZW )+ N (TZW H [(TeW)

n>1 CTE{O 1}m 7=0 7=0

Av

107)
Clearly M,,, N, and L, do not depend on o, and

n—1 n—1 _
Z H ( ))+N; (TEW)) =+ H eiMJ(W) (eNJ — eNJ) (108)
oe{0,1}7 j=0 =0 i=0

using (76). Putting (106), (107) and (108) together, (59) will follow from

2t/e _
1 i s=y)?
- ( H, N E) H ( — eNJ|eLJ) |eN"|eL") <C- S5 (109)
n=1 7=0
and from
27,‘/5 n—1 . eey)?
Z 2nE ( (Ho N E%) IT (1™ — e]et) |eN"|eL") < (-, (110)
7=0
where
E = {W(s) Vo e {013 sup |TZW(s) — 2| < R}. (111)
0<s<2t

The left hand side of (110) is estimated very crudely as follows (using that E is invariant under
the reflections)

2t/5

LHS of (110) < 3 E( H, N E° H(|eNJ|+|eWJ|) eLJ|eN"|eL") < (112)

n= 1
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<E (X(EC)G% f02t B(W(s))ds) < eBtpl/Q(Ec) ) El/zefothm(W(s)_x)ds‘
Now use Lemma 5.1 and that
P(FF) < 2BHHL. P(E°) < (const)e B! (113)

(since n(W) < [Bt] 4+ 1 for each path) to obtain (110).
For the proof of (109) we are going to split the path W : [0, 2¢{] — R?* into pieces according
to the stopping times 7; = ¢k; (integer k; is defined as 7;/¢). First we split the event H,, N E
by defining
E; = {W(S) : j <n(W) and for o € {0,1} sup [TV W (s) — 2| < R} (114)
ekj<s<ekji1
with the remark that if sup [£(s)| < 7/2 for ek; < s < ek;jpq (ie. €kjy1 = 2t and there is no
reflection T}) then only o = 0 should be considered in the definition of E;. These events clearly
depend only on the corresponding part of the path W(s), and
N (E;NH,) =ENH,. (115)
0<j<n
Furthermore, let «; := W (r;) = W(ek;), and let
§(s) = [ AB(W ()W (u)
be the flux process starting at 7; = ¢k; from the point x;. We decompose the path (and the
corresponding measure) at times 7; using the strong Markov property of the Brownian bridge
to get the following formula (6 := ¢/2)

2t/e

1 (z—y)?
RHS of (109) = Z on (4Art) - e = /| <n dxydzs ... dz,
n=1 T=Tj|S

=0 (Zmelkjpn — k) | (2m(20 = eky))

> (n M%)) IE=8

0<k1 <..<kn<2t/e
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— ck 1,1’J 1 AT
H( SR DN {X(EMGNJ—GNJIx (116)

s

X el<Ts s lg)])
ek;<s<e(kjy1—1) ekj<s<ekji1

_ . 2ty " T
et B L) 109 x sl < 5) )

ckn<s<2t

where in the case of 7,, = ¢k, = 2t the exponential factor containing 2¢ —ck,, in the denominator
is considered 1.

Estimating the last line of (116) is easy. If 2t = ¢k, then it is simply 1, so we can assume
that 2t — ek, > e (recall that 2t/e is an integer). Use that on the event F, we have (for
ek, < s <2t)

[ (W (s) = @a)| = [B(W(s)) = Blw,)| < ed(2,)|W(s) —2n| < Cd(z)R (117)

by (93) and [W(s) — z,| < |[W(s) — 2| + |z — 2,| < 2R. Now use Lemma 6.1 with B := B(z,)
and

20:=2t—kye>ec>1/B>C/B(z,)=C/B (118)

(by (93)) to estimate the probability in the last line of (116) and combine it with (117) and the
definition of NV, to obtain

Last line of (116) < e(1=8kn)Blon) (Cd(w RtC(l + B(a,)(t — kp6))e” (t=3kn)B(wn) < (Bt (119)
(at the last estimate we used again (93)).

To estimate the third and fourth line of (116) we use Holder’s inequality for each fixed j
with exponents P and P/(P — 1) where P := 2[tB(x;)] + 2 (depending on j), and we omit the
part of the conditions on &;(s). Therefore

E;’;;;;;w{X<Ej>|em_em|.x( sup ()l <5< sup |§j<s>|)}§ (120)

ekj<s<e(kjy1—1) ek; <s<ekjt1
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ekjt1,@j41 N L/r ekjp1sTi4 T o
< (B el - S PL (e jgel<3))

ck;<s<e(kj11-1) 2
The second factor is estimated by Lemma 6.1 if k;41 — 1 > k; (in which case B(x;)(kjt1 —
1 — k;j)e > C, so the condition (87) is satisfied), otherwise it is simply 1. So

Second factor on the RHS of (120) < (121)

{0(1 + tB(:z;j))e—B(%)(kHl—1—kj)5}1_1/P < CtB - e Bl kiri=k;)

by (93) and by the definition of P.
For the first factor in (120) use that

N; _ N

e < et — 14 [ -1 (122)

and recalling the definition of N; (see (73) with W(r;) = x;) we have

1 Ti+1 1 [75+1 g2y Sz Vds
‘GNJ _1‘ = 2 /T ' FS(W(s) — a;)ds -e2fTJ W)=
Tj+1 1 Ti41
[T W) = e aw (s)| 45 | [T divGm (W (s) = 2;)ds (123)

and similarly for N;, using the simple estimate |¢X*Y — 1| < |Y]e¥ + | X]| as before. On the
event I; we have |[W(s) —z;] < 2R and |[W(s) — z;| < 2R for the reflected path W := T;W.
Therefore (using (93))

|FP9 (W (s) — a;)| < 2ed(x;)R < Cd(x)R, (124)
|divG™ (W (s) — x;)| < Cd(z)R (125)
|GP (W (s) = a;)| < ed(2)|W(s) = 2;]" < Cd(x)|W(s) — ;] (126)

similarly to (84), (94) and (100), and the same estimates are valid for W (s) as well. Remark

that (126) is valid for any path, while the first two inequalities are valid only for paths in E;.
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So to estimate the first factor on the right hand side of (120) first separate the six different
terms obtained in (122) and (123) using the Minkowski inequality then treat each of them sep-
arately. The |1 [ F%5 ds|” exp (£ [ F'™ ds) and the |1 [ div(s ds|” terms are estimated directly
by (Cd(z)tR)F - CURP and (Cd(x)Rt)T, respectively (7,11 — 7; is roughly overestimated by
2t).

For the stochastic integral we use Lemma 6.2 (here with g = P/2, recall that P is even)
and (126) to obtain a bound

P

Tj4+1,T541
7]71’]

< (Cd(z))" - PP (127)

[T )~ apas)

J

1/4
z 1 2n; "
oy = el ") |50 50 [ W) a7
J

with 2n; := 7541 — 7; and W*(s) := W (s + 7;). Recall that we had to omit x(F£;)x(7; exists)
since the martingale technique of Lemma 6.2 is not valid for restricted processes. Using the

crudest estimates n; <1, |¥; — ;41| < 2R and the scaling

(241 — )3 ( s )
W (s) — @ o= LTS S (2 128

where b(u) is the standard Brownian loop, we have
LHS. of (127) < (129)
1
< (Cd@) P2 (RP +4772) (|xj —apa+ B |b(u)|8Pdu) <
0

< (Cateyp ) (5 + 7% (9 + (onsi )"

using the moments of the standard Brownian loop.

Collecting the estimates for the terms in (123) we have

First factor on the RHS of (120) <
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= [(Cd(x)tR)P (GOd(x)tRP + 1) + (Cd(x)Pz/S)P (RP + tP/Q) (RZP + ((const)tP)P)] e <

(130)
C

(Bt)*
where in the calculation we used that Bt > 1, the explicit value of R = 8tv/B and P =
2[tB(x;)] +2 < CBt (by (93)). The last line shows that the critical exponent in the definition

< Cd( )t3/2(Bt)13/6

of d(x) in (9) determining the maximal growth rate of B(x) at infinity must be at least 31/6
in order to obtain the C'(Bt)~® estimate which is necessary for the rest of the proof.

Finally after estimating the last three lines of (116) by quantities independent of x;’s (see
(119), (120), (121) and (130)), we can drop the condition |z —x;| < R on the range of integration

and use the semigroup property of the heat kernel to perform the z; integrations. Therefore

2t/e n
1 C
RHS of (109) < >~ — > ( 2) - CBt. (131)
n=1 0<k1 <...<kn<2t/e (Bt)

Finally use that k, < 2t/ = [Bt] + 1, therefore the sum over all possible 0 < ky < ... < k,
contains altogether ( [Bt}l—l_ L ) choices. So eventually we have

RHS of (109) Z]Izi( L+1)((B(’;)2)n-03t§

[Bi]+1
C
1 —1
( * 2<Bt>2)

using Bt > 1, [Bt]+ 1 < 2Bt and the fact that the function

.CBt<C (132)

X & [(1+%)X—1] X (133)

is bounded uniformly for X > 1 by a constant depending only on C' (use for X := 2Bt). The
estimate (132) finishes the proof of Main Lemma 5.2 and Theorem 2.2. O
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Appendices

A Selfadjointness and negative essential spetrum

Here we prove a statement about the self-adjointness, the negative essential spectrum of Hy
(see (2)) and their connection with the Lieb-Thirring inequality. (The conclusions for Hpgu;

are obvious.)

Proposition A.1 Suppose that for some L >0 and v > 1/2
/Jw@ﬁpﬂM<m mz/zwmﬁﬁﬁﬂw<m (134)
0 ' 0 '

Then Hy is self-adjoint and it has no negative essential spectrum.

Remark. Since all Lieb-Thirring type inequalities in this paper are proved via the Birman-
Schwinger kernel, the conditions of this Proposition are automatically satisfied if for a given B

and V any of the Lieb-Thirring inequalities proved in this paper gives a finite bound.

Proof: The selfadjointness is trivial, since the conditions via (17) and the Birman-Schwinger
principle imply that Hy is bounded from below.

For the essential spectrum we note that Tr(K 5 ) and Tr[( Kz ;)?] are monotone decreasing
functions of £ (for fixed L). Therefore it follows from the conditions that they are finite for
any I > 0, thus

B ENT? B ENT?
W+§¢m(ﬂ+@+§)1h md‘v+5ML4nWH+@+§)(L4h)u%)
are compact, so it is their sum |V + %|_(H +p3 + %)_1.
Using Corollary 2 in [RS, Ch. X.] we have that for Ug := H +pi+ £ — [V + Z|_

E E
Oess(Up) = 0ess (H +p3 + 5) C [5, oo] : (136)
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Clearly

—E>Up—E>H4+p2—|V]_ -

K
+ 2

E
HOZUE+‘V+§ (137)

On the other hand, when proving the Lieb-Thirring inequality via the Birman-Schwinger
principle we basically give a bound to the negative eigenvalues of H + p2 — |V/|_, and since by
the conditions their ¥/* moment is finite, we have that i + p2 — |V|_ is bounded from below.

Now we use the simple fact that if two operators X < Y are bounded from below then

inf o.s5(X) < infoess(Y), we have

inf o.s5(Ho) > inf oegs(Up — E) > —g (138)

by (137). Since this is true for any £ > 0, the proof is finished. O

B Counterexample

For any v > 0 and given constants C; and Cy we construct a special magnetic field B(x) and
potential V(x) such that the v* moment of the negative eigenvalues of Hy is not bounded by
e /Rg B(o)|V(x)[ T 2dx + ¢y /Rg V()7 . (139)

The key idea is that we will choose B and V' such that their supports are disjoint, so the
first term disappears in the possible bound (139). Then we will show that the sum of the
negative eigenvalues behaves at least like (const)N if we rescale the magnetic field by N2, but

this rescaling does not effect the bound (139).

For the proof, choose a one-dimensional potential v with |v|_ € L??(R) such that p2 +v(xs)
has a negative eigenvalue —\ and let ¢(x3) be the corresponding normalized eigenfunction. (E.g.
v(r3) =a3—2, A= —1,¢(x3) = 7T_1/4e_9”§/2.) Let V(x) := v(as)x(]z| < 1), i.e. the potential

is supported in a cylinder built over the unit disc in R?; and let B(z) = N*y(|x| > 1) where
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N is a free positive parameter, B := N?. In this case the conjecture (3) says that
SSIE < Com [ Jolas) [ des (140)

independently of B = N?. On the other hand we will show that 3, |E;|" > (const) - N. Notice
that B(x) is not continuous since the calculation happens to be simpler in this way, but the
same idea easily provides a counterexample with a C'*° magnetic field which is sufficiently close
to B(x).

We will use the complex notation z := xy + ias for © = (21, 22) in the plane of the first two
coordinates. As it is explained in the proof of the Aharonov-Casher theorem (see [AC], [CFKS,
Section 6.4]) the ground state eigenfunctions of H = (p — A(x))* — B(x) can be found in the
form of e?)g(z) where h satisfies —Ah(z) = B(z) and g(z) is analytic.

In our case let h(z) be the following function:

o —B/4 for |z] <1
hz) = { CBllog |+ — |2)/4  for  |2|>1 (141)
then clearly —Ah(z) = B(z) for the B(z) = B(x) defined above. The functions

B/

falz) = 2" { 2| B2~ F I

for | <1

- 142
for |>1 (142)
(n = 0,1,2...) are ground states of H, and they are orthogonal in L?*(C) = L*(R?). Define
Fo(x) := fa(2)¥(23), then ||F,||z2®2) = ||fallz2(R?), and they are all linearly independent. By

variational principle

Ky-1 I H.F ol
SIE > > (B, HoFr) 02”) : (143)
; b S N PN

where Ky is any integer (to be determined later) not greater than the number of negative

eigenvalues (with multiplicity). Computing

(Fuw Bl ) = V0l [ Vo) Pz =2 [ (o) P (144)

lz|<1
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(using Hy = H + p2+V and H f, = 0), we have that

Rt A = Tl VY Famy |
SIE = T &) (145)
7 n=0 n

where

_ anHiut o f|x|21 |fn(=’1/’)|2d:1?
12 fger () 2da

is the ratio of the norms of f,, outside and inside the unit disc.

T, :

(146)

The inside norm is easily computed: || f.[|Z, = n”?e_B/z. The outside norm can be estimated
from above as follows (in polar coordinates):
N fullZ: = 27T/ P tBHL =3 g < 27r/ P tBHL = 5% g (147)
1 0
n+B o
= 2 (z) ’ /2/ (B2t
B \B 0 '

The gamma integral is estimated by the Stirling formula, yielding

const _B/2
—c
v B

forn<(e—2)B,so T, < co% = co% with some universal ¢ > 0.

Choose
N
Kyi=|——ot (149)
[200"v¢"%2(R)]

([x] denotes the integer part), then by (144) there are at least Ky negative eigenvalues, since

(Fo, HoF,) <0for 0 <n < Ky—1(and n < (e—2)B is also satisfied). So by (145) and (149)

S B> f"’Nil (AN — co(n + )|V 72g,
[ co(n+1) + N

7

1 fallous < (148)

)W > (const) - N, (150)

where this last positive constant depends on everything except N. O
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