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1 IntroductionQuantization of the Chern{Simons theory in 3 dimensions has been attracting atten-tion and e�orts of many physicists and mathematicians during the last 5 years. Themost spectacular results obtained in this way are the construction of knot invariants[13] and exact solution of 2 + 1 dimensional gravity [27]. Being a 3 dimensionaltopological �eld theory, the Chern-Simons model is intimately related to the Wess-Zumino-Novikov-Witten (WZNW) model of conformal �eld theory in 2 dimensionsand to quantum groups (one may regard a quantum group as a 1 dimensional quan-tum system). Actually, it is this hierarchy of systems in di�erent dimensions whichmakes the Chern-Simons theory solvable. The relation between CS and WZNWmodels allowed to evaluate partition functions and correlators [13] using the meth-ods of conformal �eld theory. The importance of the CS theory is a motivation tolook for di�erent approaches. Among the others the perturbation theory [16] andexact evaluation of the functional integral by means of localization formulae [17]should be mentioned.In this paper we develop an approach to the CS model based on its relation to thetheory of quantum groups. One of the advantages of the quantum group approachis that we deal with �nite dimensional objects only. As a consequence, one canrepresent the answers in terms of �nite sums , whereas in other approaches the �nalresult usually has an integral form. It makes the quantum group approach helpfulin dealing with topology of 3D manifolds [24],[25],[26] and in knot theory [18], [23].The main idea is to simulate the Chern-Simons theory on the lattice in such a waythat partition functions and correlators of the lattice model coincide with those ofthe continuous CS model. It is important that the lattice model enjoys the gaugesymmetry with respect to the quantum group. It is worth mentioning that a latticesimulation of the CS model has been suggested in [5]. The drawback of this modelis the absence of gauge symmetry. The gauge symmetry may be restored if one usesthe proper combinatorial description of the moduli space of at connections [6].Let us briey characterize the content of each Section. In Section 2 we reviewthe main facts concerning the CS theory in Hamiltonian approach and introducethe combinatorial (or lattice) description following [6]. Section 3 is devoted to thequantum gauge group in the lattice model. In Section 4 we generalize the concept oflattice gauge �elds to the case of a quantum gauge group. The algebra of observablescorresponding to the Hamiltonian CS theory appears in Section 5 equipped with a*- operation. We describe the Hermitian inner product in the algebra of observablesand prove the positivity theorem in Section 6. In section 7 we generalize the theoryto weak quasi-Hopf algebras [2]. In this way we can deal with universal envelopingalgebras at roots of unity by using a procedure called \truncation". The basicde�nition of weak quasi-Hopf algebras and the truncation are reviewed in section7.1. An outlook at the end of the paper is devoted to the possible perspectives of1



the lattice approach.The basic technique which we use in this paper is the theory of quantum groups.Section 2 is supposed to play the role of the physicist oriented introduction. In theremaining part we assume that the reader is familiar with standard de�nitions andproperties of such objects as co-multiplication and R-matrix.We want to stress that the construction we propose in the following assigns aChern-Simons type model to every pair of a marked Riemann surface and a weakquasi-Hopf algebra. The latter is not necessarily given by a truncated quantizedenveloping algebra of some simple Lie algebra. It has been shown recently [8] thata weak quasi-Hopf symmetry can be constructed for every low dimensional quan-tum �eld theory. Combining this result with the considerations below, one assignsa Chern Simons type model to every low dimensional quantum �eld theory. It re-mains unclear whether these generalized Chern Simons theories are related to certainmoduli spaces in the same way as standard Chern Simons theories are related to themoduli space of at connections.2 Physical motivationsIn this paper we study the problem of quantization of the Chern-Simons theorywithin the Hamiltonian approach. The moduli space of at connections on a Rie-mann surface appears as a phase space for this model [13]. Let us briey remindthe de�nition and general features of the CS system.2.1 Chern - Simons modelThe Chern-Simons theory is a gauge theory in 3 dimensions (in principle the CSterm exists in any odd dimension). It is de�ned by the action principleCS(A) = k4�Tr ZM (AdA+ 23A3): (2.1)HereM is a 3-dimensional (3D) manifold, k is a positive integer and the gauge �eldA takes values in some semisimple Lie algebra GA = Aai tadxi: (2.2)The generators ta form a basis in G and satisfy the commutation relations[ta; tb] = fabc tc: (2.3)In this paper we concentrate on the very particular version of the CS theory whenit has a Hamiltonian interpretation. Suppose that the manifold M locally looks like2



a cylinder � �R (Cartesian product of a Riemann surface � and a segment of thereal line). Then we may choose the direction parallel to the real line R to be thetime direction. Two space{like components of the gauge �eld A become dynamicalvariables and we shall often denote byA the two component gauge �eld on the surface�. As usual, the time-component A0 becomes a Lagrangian multiplier. After thechange of variables the action (2.1) acquires the formS = k4�Tr Z (�A@0A+ 2A0F )dt; (2.4)where the �rst term is just like R pdq and the second term introduces the �rst classconstraint F = dA+A2 = 0: (2.5)The �rst term in (2.4) determines the Poisson brackets (PB) of dynamic variables.In particular, the Poisson bracket of the constraints (2.5) may be easily calculated:fF a(z1); F b(z2)g = 2�k fabc F c(z1)�(2)(z1 � z2): (2.6)As one expects, the constraints (2.5) generate gauge transformationsAg = g�1Ag + g�1dg: (2.7)Thus, the phase space of the Hamiltonian CS theory is a quotient of the space =of at connections (2.5) over the gauge group �G (2.7). We see that the modulispace (we shall often refer to the moduli space of at connections as to the modulispace) appears to be a phase space of the CS theory on the cylinder. The actionprinciple (2.4) provides canonical Poisson brackets on the moduli space. An e�cientdescription of this PB was given in [6] (see also subsection 2.3).2.2 Wilson lines and marked pointsWe continue our brief survey of the CS theory and consider possible observables.The CS model enjoys two important symmetries: gauge symmetry and the symme-try with respect to di�eomorphisms. The reparametrization symmetry appears dueto the geometric nature of the action (2.1) which is written in terms of di�erentialforms and automatically invariant with respect to di�eomorphisms of the manifoldM . It is natural to require that the observables in the CS model respect the invari-ance properties of the theory. Some observables of this type may be constructedstarting from the following data. Let us choose the closed contour � in M and arepresentation I of the algebra G. Apparently the following functional of the gauge�eld A WI(�) = TrIPexp(Z�AI) (2.8)3



is invariant with respect to both gauge and reparametrization symmetries. Usuallythe contour � is called a Wilson line and the expression (2.8) is called a Wilson lineobservable. The connection AI is equal toAI = AaT Ia ; (2.9)where matrices T aI represent the algebra G in the representation I.In the Hamiltonian formulation we may choose two special classes of Wilson lines:vertical and horizontal.We call a Wilson line horizontal if it lies on an equal time surface. The observablecorresponding to a horizontal Wilson line is a functional of the two-dimensionalgauge �eld and after quantization it becomes a physical operator.The Wilson line is called vertical if the contour � is parallel to the time axis. Inthe Hamiltonian picture we do not actually control the fact that verticalWilson linesare closed. They come from the past, go through the zero-time surface and disappearin the future. The vertical Wilson line is characterized by the representation I andthe point z where it intersects the Riemann surface �. The choice of the time axisproduces a big di�erence in the role of horizontal and vertical Wilson lines in thetheory. Vertical Wilson lines do not correspond to observables in the Hamiltonianformulation. Instead, they change the Hamiltonian system (2.4) so that both R pdqand the constraint get modi�ed.As a preparation for analysing vertical Wilson lines let us remind the correspon-dence between co-adjoint orbits and representations of semi-simple Lie groups. LetI be a representation of the Lie algebra G:[T Ia ; T Ib ] = fabc T Ic : (2.10)One may ask the question what is the underlying classical system corresponding tothe quantum algebra (2.10). The �rst idea is to simulate the commutation relationsby the Poisson brackets: fTa; Tbg = fabc Tc; (2.11)where Ta are commuting coordinates (on the dual space to the Lie algebra). Itseems that the information about the representation disappeared in the formula(2.11). However, this is not quite true. The PB (2.11) is always degenerate. At thispoint it is useful to introduce a coordinate matrixT = Tata; (2.12)where ta form a basis in the fundamental representation. In order to make thebracket (2.11) nondegenerate one should �x eigenvalues of the matrix T :T = g�1Pg: (2.13)4



A conjugation class (2.13) is also called a co-adjoint orbit. Now we have a diagonalmatrix P which parametrizes the set of orbits. Quantization of a particular orbitleads to an irreducible representation of the Lie algebra. The highest weightwI of therepresentation I represented as a diagonal matrix in the fundamental representationis related to P by wI = P � �; (2.14)where � is a half sum of positive roots of G.The information about the bracket (2.11) on the orbit may be encoded in theaction SI(g) = Tr Z Pdgg�1: (2.15)The action (2.15) is called a geometric action because it originates from the methodof geometric quantization. The family of systems (2.15) is parametrized by the setof representations of G which may be obtained upon quantization.The essence of the quantization procedure for the action (2.15) is the followingformula for a Wilson line observable:WI = Z ei(SI(g)+R Aa0Tadt)Dg: (2.16)The ordered exponent and trace are provided by the functional integral automati-cally.Using the formula (2.16), one may treat the CS correlator with n vertical Wilsonlines inserted Zk(I1; : : : ; In) = Z DAeiCS(A)WI1 : : :WIn (2.17)as an expression where the gauge �eld is still classical, whereas some modes corre-sponding to the matrices Ti are already quantized. The original functional integralwould be Z = Z DADg1 : : :DgneiStot : (2.18)The action Stot is de�ned by the formulaStot = CS(A) + nXi=1(SIi(gi) + Tr Z A0(zi)Tidt): (2.19)Here the �rst term coincides with the standard Chern-Simons action, the secondterm consists of two parts. The �rst part collects auxiliary geometric actions foreach Wilson line, the second part represents contributions of the Wilson lines intothe CS partition function (2.17).We have reformulated the Hamiltonian Chern-Simons model with vertical Wilsonlines as a theory of the 2D gauge �eld A interacting with a set of �nite dimensionalsystems with coordinates Ti localized at the points zi. As in the case of the pure CS5



theory, the Hamiltonian (2.19) is equal to zero. The action of the modi�ed systemmay be rewritten asStot = Tr(� k4� Z A@0A+ nXi=1 Pidgig�1i ) + Tr Z A0( k2�F + nXi=1 Ti�(z � zi)): (2.20)The �rst term in (2.20) is of the type R pdq of the Hamiltonian system. It is respon-sible for the Poisson brackets of dynamical variables. The second term gives themodi�ed constraint �(z) = F + 2�k nXi=1 Ti�(z � zi) = 0: (2.21)Let us remark that after quantization the formula (2.21) is still true if we shift thecentral charge k in the standard way k ! k + h� (h� is the dual Coxeter number ofthe algebra G). Actually, the shift of the parameter k is of the same nature as theshift of the highest weight in formula (2.14).The constraints (2.21) satisfy the same algebra (2.6) as in the pure CS theory.They generate gauge transformations for the gauge �eld A and conjugations for thevariables Ti: Ag = g�1Ag + g�1dg; T gi = g(zi)�1Tig(zi): (2.22)Now the phase space of the Hamiltonian Chern-Simons theory with vertical Wil-son lines may be described. First we mark n points fzig on the Riemann surface �of genus g. Each point is equipped with a representation Ii of the algebra G (andcorresponding orbit Oi). One can choose a subspace =(I1; : : : ; In) de�ned by theconstraint (2.21) in the Cartesian product Cg � O(I1) � : : : � O(IN ) of the spaceof all connections Cg on the Riemann surface and co-adjoint orbits attached to themarked points. The subspace =(I1; : : : ; In) is a natural analogue of the space ofat connections. It is invariant with respect to gauge transformations (2.22). Thequotient of =(I1; : : : ; In) by the action of the gauge group may be called the mod-uli space Mg;n(G) of at connections on the Riemann surface of genus g with nmarked points. The moduli space Mg;n(G) inherits the Poisson structure from theCS theory. This structure is the subject of the next subsection.Let us �nish by a short remark concerning the structure of Mg;n(G) and thetheory of orbits. Choosing a small loop �i surrounding the marked point zi, onecan de�ne the monodromy matrix (or parallel transport) Mi along this path. It iseasy to check that if A and fTig satisfy (2.21), the monodromy matrix Mi may bediagonalized by conjugation of the exponent of PiMi = h�1exp(2�k Pi)h (2.23)in the classical case and by Mi = h�1exp( 2�k + h�Pi)h (2.24)6



after quantization. Thus, the monodromy matrix belongs to the exponentiated orbitassigned to the corresponding marked point. Formulae (2.23) and (2.24) characterizeelementary monodromies. They will be quite helpful for quantization of Mg;n(G).2.3 Combinatorial description and Exchange relationsIn the previous subsection we have found that the moduli space Mg;n(G) appearsas a phase space in the Chern-Simons theory with vertical Wilson lines. In order toquantize the theory we need the Poisson structure on Mg;n. In principle one mayproceed starting from the 2D gauge �elds with the Poisson bracketfAai (z1); Abj(z2)g = �2�k �ab�ij�(2)(z1 � z2): (2.25)The quantization of the relations (2.25) is straightforward[Aai (z1; Abj(z2)] = �2�k �ab�ij�(2)(z1 � z2): (2.26)Observables may be described as gauge invariant functionals of A, where the con-straint (2.21) is imposed. In this approach we deal with the representations ofthe in�nite dimensional algebra (2.26) and construct the quantum mechanics corre-sponding to the CS system starting from the �eld theory of the gauge �eld A. It isa motivation to look for another approach. A recent progress [6] in this directionallows to reformulate the problem. The idea is to simulate the Riemann surfaceby the oriented fat graph drawn on it. Dealing with a fat graph one uses ribbonsinstead of strings. It means that the cyclic order of links incident to a given vertexis �xed.Suppose that we have a gauge �eld A on the Riemann surface and a graph drawnon it. We assume that the surface is divided by the graph into plaquettes so thatany plaquette is contractible. The graph should be chosen in such a way that thenumber of marked points inside each plaquette does not exceed one. The gauge�eld de�nes a parallel transport along each link of the graph. Let us enumerate thevertices of the graph by letters x; y; z : : : and the links by i; j; k : : :. It is convenientto introduce notations s(i) and t(i) for the end-points of the link i. The paralleltransport corresponding to this link may be written as an ordered exponentU(i) = Pexp(Z t(i)s(i) A): (2.27)As for the Wilson lines, one may introduce the set of matrices U I (i)U I(i) = Pexp(Z t(i)s(i) AI): (2.28)7



using the gauge �eld in di�erent representations (2.9).Some information about the connection A is encoded in the link variables (2.27).The question is whether this information is su�cient to reconstruct the modulispace Mg;n(G)? The answer is obviously positive. To recover the moduli spacewe should factorize over residual gauge transformations and take into account theatness condition. Gauge transformations act on the graph connections (2.27) asfollows U(i)h = h(t(i))�1U(i)h(s(i)): (2.29)It is remarkable that the gauge group becomes e�ectively �nite dimensional becauseonly values of h in graph vertices enter into (2.29).The condition of atness may be simulated using the properties of the mon-odromy from the previous Section. We form the monodromy for each plaquette andconstraint it by the condition (2.23). If there is no marked point inside the plaquettethe monodromy is simply equal to identity.It is proved [6] that factorizing the space of at graph connections over graphgauge transformations one obtains the same space Mg;n(G)! Moreover, the Poissonstructure on the space of graph connections leading to the standard Poisson structureonMg;n(G) is known. In this approach the moduli space is represented as a quotientof the �nite dimensional space over the �nite dimensional group. This is the reasonto call it combinatorial description of the moduli space.One may think that the Poisson brackets for graph connections are de�neduniquely since U(i) are functionals of the gauge �eld A and the Poisson brack-ets for A are �xed by (2.25). In fact, this is not correct. The reason is the �-function singularity in the brackets (2.25). Calculating the PB of two matrices U(i)and U(j), where the links i and j have at least one common end-point, one hasto resolve the singularity appearing at this very point. There is no canonical wayof resolution. In general the Jacobi identity breaks down after regularization. Itmeans that one can't construct the Poisson bracket applicable for both local gauge�elds A(x)) and arbitrary link variables U(i). However, it is possible to introducemeaningful Poisson brackets for link variables U(i). So, the brackets for A(x) andfor U(i) are to some extent independent from each other. One calls them consistentif they give the same answer for Poisson brackets of gauge invariant variables. Inother words, A- and U -bracket may di�er in nonphysical sector but they coincidewhen we restrict ourselves to physical gauge invariant observables.In order to simplify the analysis of U -bracket we remind here some standardde�nitions and properties of quadratic Poisson brackets and Exchange algebras.Suppose that we have a Poisson bracket de�ned on the matrix group. The sim-plest form of such bracket is quadratic in matrix elementsfU1; U2g = U1U2r; (2.30)8



where we have used tensor notationsU1 = U 
 id; U2 = id
 U (2.31)and the matrix r is de�ned in the tensor product of two vector spaces. To ensurethe Jacobi identity the following condition on the matrix r must be satis�ed[r12; r23] + [r12; r13] + [r13; r23] = 0: (2.32)The constraint (2.32) is the classical Yang-Baxter equation. Fortunately, for anysimple Lie algebra we know two solutions to the very complicated equation (2.32).Usually they are called r and r0 and look like followsr =Xi hi 
 hi + 2X� t� 
 t��; (2.33)r0 =Xi hi 
 hi + 2X� t�� 
 t�: (2.34)Here the sum in the �rst term runs over the set of simple roots and in the secondover the set of positive roots.The Poisson algebra (2.30) may be quantized if one knows a one parameter familyof solutions R(h) of the quantum Yang-Baxter equationR12R13R23 = R23R13R12 (2.35)with given asymptotics R = 1 + hr + : : : (2.36)Using R(h) we quantize the bracket (2.30) in the following wayU1U2 = U2U1R: (2.37)We shall denote solutions of the quantum Yang{Baxter equation corresponding tothe classical r-matrices (2.33,2.34) by R and R0. It is assumed everywhere in the textthat both of them depend on the deformation parameter h. It is worth mentioningthat R0 = PRP; (2.38)where P is a permutation matrix in the tensor product of two copies of the samevector space. It is important that along with R- matrices in the fundamental repre-sentation there exists a family of R- matrices parametrized by pairs (I; J) of �nitedimensional representations of G so that RI;J act in the tensor product of the repre-sentation spaces of I and J and equation (2.35) holds for any triple of representations(I; J;K) corresponding to the indices 1,2,3.9



In the class of regularizations suggested in [6] the Poisson brackets of graphconnections are quadratic. Let us �rst describe these brackets and then quantize.To �x Poisson brackets for graph connections one must choose some particularregularization of the singularity in (2.25). In practice it means that each vertexshould be equipped with a classical r-matrix (in the quantum case { quantum R-matrix) from a certain equivalence class. Roughly speaking the class is de�ned bythe choice of the deformation parameter h. One also should �x a linear order ofincident links at each vertex in addition to the natural cyclic order. The latter maybe done by putting a little eyelash at each graph vertex. The eyelash determinesfrom where we enumerate links coming to the vertex. Concerning the choice ofr-matrices, we shall restrict ourselves to the particular regularization so that ther-matrices assigned to all vertices of the graph coincide.There are three rules which determine the structure of the Poisson algebra ofgraph connections:1) The Poisson bracket of any matrix elements of two parallel transport matricescorresponding to links which have no common end-points vanishes:fU(i)1; U(j)2g = 0: (2.39)This condition brings locality into the de�nition of the Poisson bracket. Indeed,the original bracket for 2-dimensional connections had a support at the coincidentpoints. If the links have no common end-points, they do not intersect at all. Itmeans that the bracket of the corresponding matrix elements should vanish if wewant to reproduce the continuous theory.2) For the matrix elements of the same matrix we havefU(i)1; U(i)2g = 2�k (rU(i)1U(i)2 � U(i)1U(i)2r0): (2.40)3) If the links have one common end-point, the Poisson bracket acquires the formfU(i)1; U(j)2g = 2�k U(i)1U(j)2r: (2.41)if the link i is elder than the link j in the counter clock-wise order starting from theeyelash (we can express it as i < j) andfU(i)1; U(j)2g = �2�k U(i)1U(j)2r0: (2.42)otherwise.>From the de�nitions of the Poisson algebra on the space of graph connectionswe learn that the deformation parameter in this theory is equal to h = 2�k . Ac-tually, this formula is correct only semiclassicaly. In the Hamiltonian formulation10



the Chern-Simons integral is Gaussian. So, we should worry only about possibleone-loop corrections. It is well known that the parameter k indeed receives a oneloop correction equal to the dual Coxeter number k ! k+ h�. So, the correct valueof the deformation parameter is h = 2�k+h� .Another one loop e�ect which shows up in the Chern-Simons theory is the framinganomaly (see e.g. [20]). It appears that in order to de�ne the renormalized CS modelone should �x a frame in the 3D manifold M and replace Wilson lines by ribbons.Physical correlation functions depend on the choice of framing. The exact form ofthis dependance is governed by the framing anomaly. In the Hamiltonian versionof the CS theory we always have a prefered framing invariant with respect to shiftsalong the time axis. We can stick to this framing from the very beginning and inthis way we do not trace the framing anomaly in the Hamiltonian approach.At this point we want to stress that the information about the one loop correctionof k is the only external data which we bring into the scheme of combinatorialquantization. Further steps are quite independent of the Lagrangian formulation ofthe theory and give a selfconsistent approach to the Chern-Simons model.The relations (2.41) and (2.42) are written for the situation when both orientedlinks have a target at the common end-point. All the other relations may be derivedfollowing the rules if we assume that for the same link taken with two di�erentorientations the corresponding link variables are inverse to each other:U(i)U(�i) = U(�i)U(i) = 1: (2.43)For example, if i < j and link j starts from the common end-point the Poissonbracket (2.42) will be modi�edfU(i)1; U(j)2g = �U(j)2rU(i)1: (2.44)So we have described the Poisson algebra for the gauge �eld on the graph. Now theproblem of quantization is in order. As we discussed, quadratic r-matrix Poissonbrackets admit straightforward quantization. Let us list the corresponding quantumformulae: U(i)1U(j)2 = U(j)2U(i)1; (2.45)for links i and j which have no intersection points;U(i)1U(i)2 = RU(i)2U(i)1(R0)�1; (2.46)for the matrix elements of the same matrix;U(i)1U(j)2 = U(j)2U(i)1R; (2.47)for two links which have a common end-point when i < j andU(i)1U(j)2 = U(j)2U(i)1(R0)�1 (2.48)11



for i > j. The quantum algebra de�ned by the relations (2.45- 2.48) may be treatedas a noncommutative analogue of a lattice gauge �eld. As we see, the lattice emergesnaturally in this approach. Moreover, we don't know how to get rid of it in thistype of noncommutative gauge models. It may happen that the lattice formulationis dictated by the noncommutative nature of the gauge �eld algebra.The next question concerns the generalization of the gauge symmetry to thenoncommutative gauge theory. As in any lattice gauge theory, gauge transformationsact at the lattice vertices: U(i)h = h(t(i))�1U(i)h(s(i)): (2.49)It is easy to check that these transformations do not preserve the exchange relationsfor U 's unless we assume that h entering (2.49) are also noncommutative. Moreexactly, h(x) and h(y) commute for x and y being di�erent verticesh(x)1h(y)2 = h(y)2h(x)1 (2.50)and form a Hopf algebra at each vertex.The fact that the noncommutative gauge algebra is invariant with respect to thequantum group valued gauge transformations may be expressed also in the followingway. We can treat matrix indices of U(i) as indices of the fundamental representationof the corresponding quantized universal enveloping algebra. If we consider theChern-Simons theory of G-valued gauge �elds with coe�cient k in the action, thequantum symmetry is an algebra Uq(G) for q being equal to exp(2�i=(k + h�)).Here one can change the point of view and try to construct the noncommutativegauge �elds starting from some symmetry algebra placed to the lattice sites. Itmay be a quantum group but also one can choose some other symmetry algebra. Inparticular, choosing the nondeformed Lie algebra G one should recover the standardtwo dimensional lattice gauge theory. In this paper we explore the approach basedon the symmetry algebra and �nd that the gauge theory may be reconstructed ifthe symmetry algebra is endowed with co-multiplication. The latter means thatone can construct tensor products of representations of the symmetry algebra anddecompose them into irreducible ones. In more mathematical language it meansthat the symmetry algebra is considered as a Hopf algebra (see Section 3) or as aquasi-Hopf algebra (see Section 7).Down to earth, along with the matrix U(i) in the fundamental representation ofthe symmetry algebra we introduce a bunch of matrices for any representation as informula (2.28). It is not di�cult to generalize quadratic exchange relations for thiscase. For example, instead of (2.47) we getU I (i)1UJ (j)2 = UJ (j)2U I (i)1RI;J : (2.51)Matrices U I (i) are not independent. They form a closed algebra so that a prod-uct of any two matrix elements may be decomposed into a linear combination of12



matrix elements. Formula (2.43) gives a simplest example of such relations. Thealgebra of matrix elements of U I(i) is closely related to the algebra of functions onthe �nite dimensional group G. The structure constants [: : :] which appear in thedecomposition gIabgJcd =X [I J Ka c e ]� gKef [I J Kb d f ]� (2.52)for the matrix elements of G are usually called Clebsch-Gordan coe�cients. Theyare de�ned as invariant tensors in the triple tensor product of representations I,Jand K and parametrized by �. Here we have to use in practice Hopf (or quasi-Hopf) structure of the symmetry algebra. In formula (2.52) the summation overe; f;K and � is assumed. The algebra of U I(i) looks exactly like (2.52) but thestructure constants C must be replaced by the Clebsch-Gordan coe�cients for thecorresponding quantum algebra.Let us give a simple example to clarify the de�nition of the exchange algebra forgraph connections. We pick up an elementary plaquette on the Riemann surfaceand enumerate the links from 1 to s in the counter clock-wise order. It is convenientto choose the orientations so that all the arrows are also directed against the clockrotation. We choose the eyelashes at all vertices to be directed inside the plaquette.Under these conditions link variables U(1) : : : U(s) may be treated independently ofthe rest of the graph. The corresponding exchange algebra looks as follows:U(i)1U(i)2 = RU(i)2U(i)1(R0)�1 (2.53)for any link i; U(i)1U(i+ 1)2 = U(i+ 1)2R�1U(i)1; (2.54)where we assume that by de�nition U(s+1) = U(1). As usual, the matrix elementsof U(i) and U(j) commute if i and j have no common end-points.Actually, the graph connection algebra does not know if there is a piece of surfaceinside the plaquette or, perhaps, there is a hole there and the links which surroundthe plaquette lie on the boundary of the surface. So one can try to describe theboundary in the Chern-Simons theory using the algebra (2.53,2.54). The theoryliving on the boundary is the chiral WZNW model. It is not topological and wecan't hope to describe it in an adequate way using our rough lattice approximation.On the other hand, if one increases the number of lattice sites so that the distancebetween them becomes smaller and smaller, the lattice exchange algebra (2.53,2.54)admits a nice continuous limit. Under certain assumptions it is possible to provethat this continuous limit coincides with the Kac-Moody algebra which governs theWZNW model assigned to the boundary. It was the reason to introduce the latticeexchange algebra (2.53,2.54) as lattice current algebra in [19].So, for an appropriate choice of ciliation the graph connection exchange algebraincludes lattice Kac-Moody algebras for particular plaquettes as its subalgebras. Itis one extra check of consistency of our lattice model.13



We have described the basic structures that we are going to investigate in thispaper. Let us remark that the lattice simulations of the Chern-Simons theory and ofthe moduli space of at connections are expected to give exact results because thePoisson structure and the phase space may be reproduced exactly on the semiclas-sical level. The quantum theory on the graph appears to be a lattice gauge theoryassociated to the quantum group. This theory enjoys the quantum gauge symme-try and this is the main di�erence between our model and the model [5] where therelations (2.47-2.48) are replaced by the commutative relation of the type (2.45). Itis remarkable that the quantization of the Chern-Simons theory leads to quadraticalgebra which uses R-matrices as structure constants. It makes the theory e�-ciently �nite dimensional and this is the reason to call this approach combinatorialquantization of the Chern-Simons model.Now we change the language to a more mathematical one and turn to the sys-tematical treatment of the algebra of observables of the Hamiltonian Chern-Simonstheory.3 The algebra G of gauge transformationsThis section is devoted to a precise formulation of local gauge symmetries on thegraph or lattice. Gauge transformations � will be assigned to the vertices of thegraph. The algebra G of all gauge transformations comes equipped with the structureof a ribbon Hopf-*-algebra.3.1 The algebraic structure of GTo be speci�c, we consider a graph G formed by the edges and vertices of a tri-angulation of a given oriented Riemann surface �. For every oriented link i of Gthere is an oriented link �i which has opposite orientation. The set of oriented linksi;�i; j;�j; k;�k; : : : will be denoted by L. For elements in the set S of vertices weuse the letters x; y; z. We introduce the map t : L 7! S such that t(i) = x, if theoriented link i points towards the vertex x.We describe the local gauge symmetry by assigning a ribbon Hopf-*-algebra Gx toevery vertex x 2 S. Ribbon Hopf-algebras were introduced in [28]. Their de�nitionis based on the algebraic structure of quasitriangular Hopf-*-algebras, so that thealgebras Gx come equipped with a co-unit �x, a co-product �x, an antipode Sxand an R-matrix Rx. While we assume the reader to be familiar with the de�ningproperties of a quasitriangular Hopf algebra, we want to make some more detailedremarks on the �-operation. In a Hopf-*-algebra co-product, co-unit and antipodehave to be consistent with the conjugation �. In detail this implies that �x and �x14



are *-homomorphisms, i.e.�x(��) = �x(�) ; �x(��) = �x(�)� :Since �x(�) is an element of Gx
Gx, the second equation requires an action of � onGx 
Gx. This action is not unique. One can either de�ne (� 
 �)� = �� 
 �� or (cp.[2]) (� 
 �)� = �� 
 �� : (3.1)Throughout this paper we will consider the second case (3.1). The main reasonis that this type of �-operation appears in many interesting examples, e.g. inUq(sl2); qp = 1. Readers interested in the �rst case can easily rewrite everythingbelow. The construction of a scalar product on the space of physical states simpli-�es dramatically.It is consistent to demand that the antipode Sx is a *-anti-homomorphism [12],Sx(��) = Sx(�)� :In a quasi-triangular Hopf-*-algebra, unitarity of the R-matrix Rx = P� r1x� 
 r2x�,R�x =X� r2�x� 
 r1�x� = R�1x (3.2)is assumed to hold. Again these properties can easily be checked in the exampleUq(sl2); qp = 1.Now let us proceed towards a description of ribbon Hopf-*-algebras [28]. Giventhe Rx-element, we build ux 2 Gx from its components,ux =X� Sx(r2x�)r1x� :The standard properties of the element ux areuxS�1x (�) = Sx(�)ux ; u�x = u�1x (3.3)�x(ux) = (ux 
 ux)(R0xRx)�1 = (R0xRx)�1(ux 
 ux) (3.4)Moreover, the combination uxSx(ux) is in the center of Gx. To obtain a ribbon Hopf-*-algebra we postulate the existence of a central \square root" vx of this elementwhich is supposed to obeyv2x = uxSx(ux) ; Sx(vx) = vx ; �x(vx) = 1 ; (3.5)v�x = v�1x ; �x(vx) = (R0xRx)�1(vx 
 vx) : (3.6)Such elements are known to exist for the quantized universal enveloping algebras ofall simple Lie algebras [28]. 15



One could demand that all the algebras Gx are isomorphic as Hopf algebras. Butthis is more than we need. To prepare for a weaker statement let us recall thenotion of twist equivalence. Gx is said to be twist equivalent to another ribbon Hopf-*-algebra G� with co-unit e�, co-product ��, antipode S�, R-matrix R�, and ribbonelement v�, if there is a *-isomorphism �x : Gx 7! G� such that�x(�) = ��(�x(�)) ; �x(Sx(�)) = S�(�x(�)) ;(�x 
 �x)(�x(�)) = F�1x ��(�x(�))Fx ; (3.7)(�x 
 �x)(Rx) = F 0�1x R�Fx ; �x(vx) = v�holds for all � 2 Gx. Here Fx 2 G�
G� is unitary, i.e. F �x = F�1x , and F 0x denotes thesame elementwith exchanged components in the tensor product. If we would restrictourselves to the case Fx = e
e, we would end up with the usual notion of isomorphicHopf-*-algebras. For the moment we assume that both co-products �x;�� are co-associative. This amounts to a severe restriction on Fx. However one can check thatFx = R�1� is related to a non-trivial twist, which gives (�x 
 �x)(Rx) = R0�1� . Usingthis weak notion of equivalence of Hopf-*-algebras it is natural to demand that allthe algebras Gx are twist equivalent to the same ribbon Hopf-*-algebra G�. In otherwords we assume the algebras Gx of local gauge transformations to be pairwise twist-equivalent. Let us mention that the element ux introduced above is independent ofthe twist in the sense that �x(ux) = u� :The full gauge symmetry G is obtained as a product over all local gauge symme-tries Gx, G = Ox2S Gx :The algebraic structure of the local symmetries induces a co-product �, a co-unit �,an antipode S and a R-matrix for the full gauge symmetry G such that G becomesa quasitriangular Hopf-*-algebra in the sense discussed above. Ribbon elementsvx 2 Gx furnish a ribbon element v for G.3.2 Representation theory of GWe start a discussion of the representation theory of G with some general remarks.Given two representations �; � 0 of a Hopf-algebra G, their tensor product � 2� � 0 isde�ned with the help of the co-product �(� 2� � 0)(�) � (� 
 � 0)(�(�)) :The co-unit � is a one-dimensional representation of G. It is a trivial representationin the sense that (�2� � )(�) = � (�) = (� 2� �)(�) holds for all � 2 G. A representation16



� on a Hilbert space V is called unitary, if � (��) = � (�)� for all � 2 G. Note that thetensor product of two unitary representations �; � 0 is not unitary in general (providedthat we use the standard scalar product on the tensor product of Hilbert spaces).Instead we have (� 
 � 0)(�0(��)) = ((� 
 � 0)(�(�))� :The (nonunitary) matrix (� 
 � 0)(R) furnishes an intertwiner between the represen-tations (� 
 � 0) ��0 and (� 
 � 0) ��.There are two natural \contragredient" representations which come with theantipode S. They are obtained as(1) ~� (�) � t� (S�1(�)) ; (3.8)(2) �� (�) � t� (S(�)) ; (3.9)for all � 2 G. Here t denotes the transpose of matrices. The relations (3.3) assertthat ~� and �� are equivalent but non-equal unless u = e. Unitarity of � results in theunitarity of both contragredient representations. The tensor products � 2� �� ; �� 2� �contain � as a subrepresentation (hence the name \contragredient"). These proper-ties can be abstracted from the relationsX� ��ab(�1�)�ac(�2�) = �(�)�b;c ;X� �cb(�1�)��ab(�2�) = �(�)�a;c ; (3.10)which are a direct consequence of the de�nition of the antipode S.Representations of the algebra G of gauge transformations are obtained as families(�x)x2S of representations of the symmetries Gx. We are mainly interested in thoserepresentations of G which come from the same representation of G�. At this pointlet us assume that G� is semisimple and that every equivalence class [J ] of irreduciblerepresentations of G� contains a unitary representative � J� with carrier space V J . Forthe moment, the most interesting examples of gauge symmetries, e.g. Uq(sl2); qp = 1,are ruled out by this assumption. This will be revisited in section 7. Tensor products� I� 2� � J� can be decomposed into irreducibles �K� . This decomposition determinesthe Clebsch-Gordon maps Ca� [IJ jK] : V I 
 V J 7! V K,Ca� [IJ jK](� I2� � J)(�) = �K(�)Ca� [IJ jK] : (3.11)The same representations �K in general appears with some multiplicity N IJK . Thesuperscript a = 1; : : : ; N IJK keeps track of these subrepresentations. We assume theClebsch Gordon intertwiners to be normalized byCa� [IJ jK]Cb�[IJ jL]c = �a;b�K;L : (3.12)If P JI : V J 
V I 7! V I
V J is the permutation map, the conjugate Clebsch Gordonmaps Cb�[IJ jK]c are given byCa� [IJ jK]c = �P JICa� [JIjL]� ; (3.13)17



where the sign in front of this expression is completely determined by the eigenvaluesof the permutation map. The normalization (3.12) can always be achieved as aconsequence of Schurs lemma. An assumption we want to mention at this pointis directly related to the positivity of the Chern Simons model. Since the ribbonelement v� is central, evaluation in the irreducible representations � I gives complexnumbers cI = � I(v). We suppose that there exists a set of square roots �I ; �2I = cI ;such that Ca� [IJ jK](� I 
 � J )(R)Cb�[IJ jL]� = �a;b�K;L�I�J�K : (3.14)By equation (3.5), eigenvalues of R0�R� are given by cIcJ=cK so that (3.14) is guar-anteed except from a possible factor �1. Our assumption that this factor is +1 ismet by the the quantized universal enveloping algebras of all simple Lie algebrasbecause they are obtained as a deformation of a Hopf-algebra which clearly satis�es(3.14).The notion of conjugate representations furnishes a conjugation in the set ofequivalence classes of irreducible representations. We use [ �J] to denote the classconjugate to [J ]. Let us �nally mention that the trace of the element S�(u�)v�1� in agiven representation � I computes the \quantum dimension" dJ of the representation� I [22], i.e. dJ = dimq(V J) � Tr(� J(S�(u�)v�1� )) :Representations and intertwiners of G� are now transported to the algebras Gx.This is accomplished with the help of isomorphisms �x and twist elements Fx.� Ix (�) = � I� (�x(�)) for all � 2 Gx ;Cax [IJ jK] = Ca� [IJ jK](� I� 
 � J� )(F�1x ) :The representations � Ix act on the space V Ix = V I . It is immediately checked thatthe new maps Cx satisfy the standard intertwining relations�Kx (�)Cax[IJ jK] = Cax[IJ jK](� Ix 
 � Jx )(�x(�)) for all � 2 Gx : (3.15)Similar relations hold for the conjugate intertwinersCax [IJ jK]c = (� I� 
 � J� )(Fx)Ca� [IJ jK]c ;Cax[IJ jK]c�Kx (�) = (� Ix 
 � Jx )(�x(�))Cax [IJ jK]c for all � 2 Gx :So far we have only described the representation theory of the Gx. Among all therepresentations of the total algebra G of gauge transformations which can be builtfrom representations of the Gx, we need only one family (� I;i)i2L assigned to the linksof the graph. The representations � I;i of G will later describe the transformation18



properties of the basic quantum variables U I (i), i.e. of the parallel transportersalong the link i. � I;i(�) � 8>><>>: � Iy (�) if � 2 Gy�� Ix(�) if � 2 Gx�z(�) elsefor x = t(�i); y = t(i). To decompose tensor products of representations � I;i, � J;iassigned to the same link i, we use the following intertwinersCa[IJ jK]i � Cay [IJ jK]
 t((� I 
 � J)(Rx)Cax [IJ jK]c) : (3.16)As usual, t denotes the transpose. Ca[IJ jK] is a map from (V Iy 
 V Jy )
 (V Ix 
 V Jx )to V Ky 
 V Kx which enjoys the intertwining property�K;i(�)Ca[IJ jK]i = Ca[IJ jK]i(� I;i 
 � J;i)(�(�)) for all � 2 G : (3.17)There are further relations between representations on the same link, which in-volve both orientations i;�i. In fact, there is an equivalence between the repre-sentations � I;i and ~� I;�i. Let us describe this explicitly. By rel. (3.3), the elementSy(uy) furnishes intertwiners �Iy = � Iy (Sy(uy)) with the property�Iy� Iy (Sy(�)) = � Iy (S�1y (�))�Iy :>From this equation one deduces that�I;i~� I;i(�) = � I;�i(�)�I;i ; (3.18)with �I;i � eIx 
 t�Iy :Here eJx is the identity on V Ix = V I . A similar equivalence appears between therepresentations � I;�i and � �I;i. This time the intertwiner is constructed from theClebsch Gordon maps. We introduce it according to�I;i = nI t2C[I �Ij0]i(�I;i)�1 ;where t2 means transpose only with respect to the second component and nI =n�I is a normalization determined by �I;i��I;�i = id. The element �I;i enjoys theintertwining property �I;i� I;�i(�) = � �I;i(�)�I;i : (3.19)4 Quantum group valued gauge �eldsIn this section we plan to introduce our basic lattice algebra B. It is an algebragenerated by the quantum lattice connections U I together with the quantum gaugetransformations � 2 G discussed in the preceeding section. Relations between theelements U I and the gauge transformations � 2 G are determined by the covarianceproperties of the quantum lattice connection. All other relations among elementsU I(i) are postulated in the spirit of section 2.19



4.1 De�nition of the lattice algebra BTo de�ne the lattice algebra B we have to introduce some extra structure on thegraph G. The orientation of the Riemann surface � determines a canonical cyclicorder in the set Lx = fi 2 L : t(i) = xg of links incident to the vertex x. Writingthe relations in B we are forced to specify a linear order within Lx. To this end oneconsiders ciliated graphs Gcil. A ciliated graph can be represented by picturing theunderlying graph together with a small cilium cx at each vertex. For i; j 2 Lx wewrite i � j, if (cx; i; j) appear in a clockwise order.De�nition 1 (Lattice algebra B) The associative algebra B = B(Gcil) is generatedby elements U I�(i) = U Ia1a2(i), i 2 L;� = 1; : : : ;dim(� I;i), and the elements of G suchthat1. the unit element e of G acts as a unit element of B, i.e. U I�(i)e = U I�(i) =eU I�(i).2. the tuples (U I�(i)) transform covariantly according to the representation � I;i�U I�(i) = U I�(i)(� I;i�� 
 id)(�(�)) for all � 2 G : (4.1)3. \functoriality" holds on the linksU I�(i)UJ� (i) = XUK (i)Ca[I J K� �  ]i ; (4.2)U Iab(i)U Icb(�i) = �a;c ; U Iba(�i)U Ibc(i) = �a;c : (4.3)Here C[::] are matrix elements of the Clebsch Gordon intertwiners (3.16) in-troduced in the last section.4. elements U I�(i) satisfy braid relationsU I�(i)UJ� (j) = UJ (j)U I� (i)(� I;i�� 
 � J;j� )(R) : (4.4)for i � j or if i,j have no common endpoints.This de�nition is rather central and requires some thoughtful discussion. Intu-itively, we prefer to think about the generators U Ia1a2(i) as elements of a matrix. Nev-ertheless proofs often simplify if we regard them as vectors in a dim(� I;i)-dimensionalvector space. Whenever we adopt the second point of view, we use the multiindex� instead of its components a1; a2.The covariance relation in 2: can be written in a more explicit form if we insertthe expansion �(�) =P �1� 
 �2�.�U I�(i) = U I� (i)� I;i��(�1�)�2� :This tells us how to shift elements � 2 G through factors U I�(i) from left to right.We note a simple consequence of this fact.20



Proposition 2 Every element of B is a complex linear combination of elements ofthe form U I1�1(i1) : : : U In�n(in)� with n � 0; � 2 G :The relations (4.1) appear as a special case of a more general notion of covariance.De�nition 3 (G (right-) covariance) Let � = (���)�;�2I be a representation matrixof a n-dimensional representation of G. An n-tuple F = (F�)�2I; F� 2 B; is said totransform (right-) covariantly according to the representation � of G if�F� = F�(��� 
 id)(�(�)) (4.5)for all � 2 G. F 2 B is called G-invariant if it transforms according to the trivialrepresentation � of G, or equivalently, if�F = F� (4.6)for all � 2 G.Indeed this is an appropriate notion of covariance. Assume for a moment that �is an element of a unitary group rather than a Hopf algebra. Then the co-productand the �-operation act according to �(�) = � 
 � and �� = ��1. So the covariancerelation (4.5) simpli�es to �F��� = F����(�).After this preparation we see that the covariance (4.1) can be regarded as aquantum version of the classical relation (2.29). The latter means that the variableU Ia1a2(i) transforms covariantly according to the representation � Iy in the secondindex while it transforms according to the representation t� Ix � Sx in the �rst index(if i points from x to y). This is encoded in the de�nition of � I;i.We will often have to move elements � 2 G from right to left. According to thefollowing proposition, this is always possible.Proposition 4 (left covariance) Suppose that the tuple (F�); F� 2 B transformscovariantly according to the representation � of G. Then we haveF�� = (~��� 
 id)(�(�))F� (4.7)for all � 2 G. In other words, every right-covariant tuple in B is also left-covariant.Proof: We write the covariance relation for the components �2� in the expansionof �(�). �2�F� = F����(�21�� )�22�� :Multiplication with ��(S�1(�1�)), summation over � and the co-associativity of �lead to �2�F���(S�1(�1�)) = F���(�12��S�1(�11�� ))�2�= F�(�1�)�2� = F� :21



The left hand side of this equation is equal to ~��(�1�)�2�F�.This concludes our discussion of item 2: above. Let us turn to functorialitynext. At the end of the preceding section we described a number of equivalencesbetween representations assigned to the link i. The relations in 3: mean that allthese equivalences reect themselves as equalities among the variables U I�(i). Whilethis explains the term \functoriality" it is much more instructive to check that thepostulated relations are consistent with the covariance. This is done by comparisonof the de�nitions in 2:; 3: with the intertwining relations (3.17) of Ca[IJ jK]i andproperty (3.10).Equations (4.2) should be regarded as a kind of operator product expansions.They can be written in a form which comes close to the classical relations (2.52), ifthe de�nition (3.16) of Ca[IJ jK]i is inserted. The set of relations (4.2) reect thebehaviour of U I (i) under i ! �i. In the formulation given in 3: they look exactlylike their counterparts (2.43) in section 2. In the quantum algebra B we would liketo substitute (4.2) by a new set of relations which is manifestly covariant. Using theoperator product expansions (4.2) one derivesU I�(�i) = U �I�(i)�I;i�� : (4.8)(The element �I;i was de�ned in (3.19)). In fact, relations (4.2,4.8) are equivalentto the pair (4.2,4.2) and thus furnish a new de�nition of B. The latter impliesthat every product of elements U I�(i) and U I�(�i) is a complex linear combinationof UJ� (i).We can now proceed to the discussion of item 4:. Of course braid relations sub-stitute for the commutation relations of classical lattice connections. The braidrelations between the components of U I (i); UJ(j); i � j; are almost uniquely deter-mined by the consistency with the transformation law and with the associativity ofthe product in B. Since (� I;i 
 � J;j)(R) furnishes an intertwiner between the rep-resentations � I;i2� � J;j and � J;j 2� � I;i, both sides of the braid relations transformaccording to the same representation � I;i2� � J;j. Consistency with the associativityrelies on the Yang Baxter equation for R. One should also notice that these braidrelations require the introduction of eyelashes.Actually the braid relations in the de�nition of B are identical to the correspond-ing relations in section 2. If i; j have no common endpoints then (� I;i 
 � J;j)(R)is the identity matrix so that the corresponding variables U I (i); UJ(j) commute.Suppose next that the links i; j point towards the same vertex x while their secondendpoints are disjoint. Then (� I;i 
 � J;j)(R) = (� Iy 
 � Jy )(Ry) and this matrix actsonly on the second component of the indices  = (c1; c2); � = (d1; d2). So we endup with the relations (2.47) if i < j. Finally we come to the case i = j, where theR-matrix in 4: picks up contributions from both endpoints of the link i. More pre-cisely (� I;i
 � J;j)(R) is equal to the matrix (� Iy 
 � Jy )(Ry)( t� Ix 
 t� Jx )(Rx) acting on22



both components of the indices ; �. To see this one uses that (Sx 
Sx)(Rx) = Rx.Consequently, the braid relations (4.4) can be written in the form of relation (2.46).The braid relations spelled out in 4: do not determine the commutation relationsfor arbitrary choice of the links i; j. For example if i;�j point towards the sameendpoint x, the commutation relations for U I(i); UJ (j) are not stated explicitly.However they can be derived from the relations among U I(i); U �J (�j). The reasonis that (4.8) provides a complex linear relation between U I(i) and U �I(�i). As anexample we give the relations for �i;�j if i � j.U I�(�i)UJ� (�j) = (~� J;�j�� 
 ~� I;�i�� )(R0)UJ� (�j)U I (�i) (4.9)The reader is invited to verify this relation explicitly. We arrive at the ratherimportant conclusion that any two variables U I (i); UJ(j) can be (braid-) commuted.Proposition 5 Suppose that i1; i2; : : : in is a maximal ordered set of oriented linkswith the property that every link appears only once and only in one orientation, i.e.�i� 6= i� for all � 6= �. Then any element of B is a complex linear combination ofelements U I1�1(i1) : : : U In�n(in)� with n � 0; � 2 G : (4.10)The following proposition asserts that the functoriality is consistent with thebraid relations.Proposition 6 (braid relations for composite operators) Suppose that F = (F�),F 0 = (F 0�) and F 00 = (F 00 ) transform covariantly according to representations � , � 0and � 00 of G.(i) Suppose that the braid relationsF�F 0� = F 0�F�(��� 
 � 0��)(R)F�F 00 = F 00�F�(��� 
 � 00��)(R)hold true. Then F and F 0F 00 satisfy braid relationsF�F 0�F 00 = F 0�F 00� F�(��� 
 (� 02� � 00)��;�)(R) (4.11)The proof of this proposition is a standard application of the quasi-triangularityrelation of R (cp.[1] for details).Before we �nish our discussion on de�nition 1 we want to remark that an algebrasimilar to B was proposed by Boulatov [5]. In his approach, variables assigned todi�erent links commute. We see that this is in general not consistent with the localquantum symmetry of the model, i.e. by the consistency with the transformation lawunder local quantum symmetry transformations one is forced to use braid relationsinstead of ordinary commutation. 23



4.2 The anti-homomorphism �We will obtain the observables of Chern Simons as a subalgebra of B. In quantumphysics observables come with a *-operation. This *-operation will be a reminiscentof an anti-homomorphism � : B 7! B. The construction of � and its basic propertieswill be the main topic within this subsection.Theorem 7 (anti-homomorphism �) There is a unique anti-homomorphism � :B 7! B with the properties�(�) = �� (4.12)�(U I�(i)) = U I (�i)(� I;�i� 
 id)(R�1)�I;i�� : (4.13)In particular, � extends the �-operation on G � B.\Conjugations" of this type were �rst proposed in [2] (cp. also [9] for a simpleexample). If the R-matrix would be trivial (as it is for group algebras), the action of� would simplify to �(U I�(i)) = U I�(�i). This is the familiar unitarity of the latticeconnection. The formula (4.12) looks more convincing, if we use the elementsRx; Ryinstead of R. One can check that�(U Iad(i)) = (� Ix 
 id)ab(Rx)U Ibc(�i)(� Iy 
 id)cd(R�1y ) : (4.14)We start the proof of the theorem with the following lemma.Lemma 8 With cI = � I(v�) the expression (4.12) for � can be rewritten accordingto �(U I�(i)) = c�2I �I;�i�� (~� I;�i� 
 id)(R)U I (�i) : (4.15)Proof: To prove this relation we apply the covariance relation (proposition 4)to move the R-matrix from the right to the left and insert the de�nition of ~� I;�i.�(U I�(i)) = (� I;�i� 
 ~� I;�i� 
 id)((id
�)(R�1))U I� (�i)�I;i��= (~� I;�i� 
 ~� I;�i� 
 id)((S 
 id
 id)(id
�)(R�1))U I� (�i)�I;i��= (~� I;�i�� 
 id)((S 
 id)R�1(S(u�1)
 e))U I� (�i)�I;i�� :The last step uses the quasi-triangularity of R and the de�nition of u (3.3). Now(S 
 id)R�1(S(u�1) 
 e) = (S(u�1) 
 e)(S�1 
 id)R�1 = (S(u�1) 
 e)R and withthe de�nition (3.18) of �I;i this �nally gives the formula anticipated in the lemma.Proof of theorem 7: Since the action of � is speci�ed on all generators of B,uniqueness is obvious. We have to show that the extension of � to B is consistentwith the relations in B. The simplest part is the consistency with the covariance24



relations. We apply � to the right hand side of the covariance relation (de�nition1.2) and use a series of intertwining relations.�(U I� (i)(� I;i�� 
 id)�(�))= c�2I (� I;i�� 
 id)�0(��)�I;�i� (~� I;�i� 
 id)(R)U I� (�i)= c�2I �I;�i�� (~� I;�i� 
 id)(R)(~� I;�i� 
 id)�(��)U I� (�i)= c�2I �I;�i�� (~� I;�i� 
 id)(R)U I (�i)�� = �(�U Ia (i)) :The reader is invited to check this calculation carefully. The consistency with thecovariance relations provides the main motivation for the de�nition of �. The factor(� I;�i� 
 id)(R�1)�I;i��which appears in �(U�(i)) is designed to match the transformation law of �(U I�(i))and U I�(�i).Let us turn to the braid relations next. If i; j have no common endpoints, therelations which result after the applications of � are obviously identical to the com-mutation relations for U I(�i); UJ(�j). So let us concentrate on the case i � j. Wehave to check that�(UJ� (j))�(U I�(i)) = (� I;i�� 
 � J;j� )(R0�1)�(U I� (i))�(UJ (j)) :To do this we insert the formula for �(U) given in the lemma above. After dividingby c�2I �I;i we obtain(~� J;�j�� 
 id)(R)UJ� (�j)(~� I;�i�� 
 id)(R)U I� (�i)= (~� I;�i�� 
 ~� J;�j� )(R0�1)(~� I;�i�� 
 id)(R)U I� (�i)(~� J;�j� 
 id)(R)UJ� (�j) :We apply the transformation law (proposition 4) to move all factors involving R tothe left. (~� I;�i�� 
 ~� J;�j�� 
 id)(R23(id
�)R)UJ� (�j)U I� (�i)= (~� J;�j�� 
 ~� I;�i�� 
 id)(R�112 R23(id
�)R)U I� (�i)UJ� (�j) :The quasi-triangularity of R helps to simplify the product of R matrices. Moreprecisely, we apply (id
�)(R�1)R�123 R12R13R23R012 = R012to end up with the formula (4.9). Consistency of � with the relations (4.2, 4.8) isleft as an exercise. 25



We stated before that � does not give rise to a �-operation on B. In other words� � � turns out to be non-equal to the identity unless R0 = R�1. This is the contentof the following calculation.� � �(U I�(i)) = �(U I (�i)(� I;�i� 
 id)(R�1)�I;i��)= �I;i��� (� I;�i� 
 id)(R0)�(U I (�i))= �I;i��� (� I;�i� 
 id)(R0)c�2I �I;i� (~� I;i�� 
 id)(R)U�(i)= c�2I (~� I;i�� 
 id)(R0R)U I� (i)= vU I�(i)v�1 :Proposition 9 (the homomorphism �2) The automorphism �2 : B 7! B acts on Bby conjugation with the ribbon element v 2 G, i.e. �2(F ) = vFv�1 for all F 2 B.5 The *-algebra A of observablesWe now come to the central part of this paper. The algebra A of observables,i.e. invariant elements generated by the gauge �eld, will be constructed. The anti-homomorphism � can be restricted to A and furnishes a �-operation. Even thoughthe gauge �elds and the map � depend on the position of cilia, the �-algebra Ais essentially independent and thus A(Gcil) = A(G). To avoid confusion aboutthe term \observables" we should stress that the observables of the Chern Simonstheory are only obtained after imposing the additional atness conditions. This willbe discussed in a forthcoming publication. The true observable algebras of ChernSimons will be identi�ed as subalgebras of A and all statements we make aboutA in the following { in particular about the �-structure and positivity { implycorresponding results for Chern Simons observables.5.1 The de�nition of AThe elements U I�(i); i 2 L generate a subalgebra of B. It will be denoted by <U I�(i) >.De�nition 10 (algebra of observables) The algebra A of observables is the invariantsubalgebra of < U I�(i) >, i.e.A � fA 2< U I�(i) >� Bj�A = A� for all � 2 Gg :A is spanned by elements of the formC�1:::�nU I1�1(i1) : : :U In�n(in) n � 0 ; (5.1)26



where C is supposed to possess the following intertwining propertyC(~� I1;i1 2� : : : 2� ~� In;in)(�) = �(�)C for all � 2 G :Before we state our �rst result in this subsection we want to introduce the fol-lowing shorthand notation�(1) = � ; A(1) = A ;�(n+1) = (idn 
�)(�(n)) for all n � 1 ; (5.2)A(n+1) = (id
�(n))(A)A(n) for all n � 1 :Here A is an arbitrary element in G 
 G.Theorem 11 (*-operation on A) The anti-automorphism � : B 7! B restricts to aninvolution on the subalgebra of observables A, i.e. �(A) 2 A and � � �(A) = A forall A 2 A. Consequently, A is a �-algebra with conjugation A� � �(A).Proof: We show that all elements of the form (5.1) are mapped to elements inA. �(C�1:::�nU I1�1(i1) : : : U In�n(in))= �(U In�n(in)) : : : �(U I1�1(i1))C�1:::�n= U Inn (�in) : : : U I11 (�i1)(� I;�inn�n 
 : : : � I;�i11�1 
 id)((R�1)(n))C 0�1:::�n :Here we used the de�nition (5.2) for (R�1)(n). Factors �I;i have been absorbed inthe complex coe�cients C 0�1:::�n. C 0 has again a \good" intertwining property.(� In;�in 2� : : : 2� � I1;�i1)(�)C 0 = C 0�(�) for all � 2 G :Since (R�1)(n) has n+ 1 components and we apply representation � I;�i only to the�rst n components, the above linear combination still has coe�cients in G. Howeverone can show (e.g. by drawing a picture),(� In;�inn�n 
 : : : � I1;�i11�1 
 id)((R�1)(n))C 0�1:::�n= (� In;�inn�n 
 : : : � I1;�i11�1 )((R�1)(n�1))C 0�1:::�n ;so that the image of elements of the form (5.1) under � is indeed an invariant elementgenerated by the U(i)0s. The involution property follows from proposition 9. Sincethe ribbon element v is in G it commutes with all invariant element in B and inparticular with all the observables. Hence �2(A) = vAv�1 = A for all A 2 A.27



5.2 Independence of the eyelashThe braid relations in B and hence B; �;A depend on the choice of the cilia at thevertices x. While this should not disturb us as far as the \unphysical" algebra B isconcerned, we want the observable algebra A with �-operation � to be de�ned onthe graph G rather than on a ciliated graph Gcil.Proposition 12 Suppose Gcil and Gcil0 are two ciliated graphs which di�er only bytheir ciliations. Then A(Gcil) �= A(Gcil0) as �-algebras.Proof: Let us consider an elementary move when the eyelash position changesat one vertex x 2 S for one step. This means that the smallest link incident to x(in the ciliated graph Gcil) becomes the largest link incident to x in Gcil0. This linkwill be denoted by i. We agree to use U I�(j) for generators in B(Gcil) = B and Û I�(j)for generators of B(Gcil0) = B0. If F 2 B we write F̂ to denote the correspondingelement in B0 where all generators U I�(j) have been replaced by Û I�(j). The onlye�ect of the di�erent position of eyelashes is that the relationsU I�(i)UJ� (j) = UJ (j)U I� (i)(� I;i�� 
 � J;j� )(Rx)which hold for all links j 6= i on Gcil incident to x are substituted byÛ I�(i)ÛJ� (j) = ÛJ (j)Û I� (i)(� I;i�� 
 � J;j� )(R0�1x ) :Observables in B are obtained as linear combinations ofA = F�U I�(i)C�� :Here F� is a tuple of elements in B generated by U I�(j);�j 6= i; and F� is supposedto transform covariantly according to the representation � of G. C�� are complexnumbers chosen in such a way that A is invariant. Let A0 be a second observable inB which is written in the same form with a tuple F 0� transforming according to therepresentation � 0, i.e. A0 = F 0�UJ� (i)C 0��. The product AA0 de�nes coe�cients ~C����such that AA0 = F�F 0�U I�(i)UJ� (i) ~C���� :If we perform the same calculation in B0 we obtainÂÂ0 = F̂�F̂ 0�Û I (i)ÛJ� (i)(� I;i� 
 � 0��)(RxR0x)�1 ~C���� :This basically follows from proposition 6 and the inuence of the di�erent positionsof the eyelash. Using the intertwining properties of the coe�cients ~C, the equation(S 
 id)R = R�1, relations (3.5) and functoriality on the link i the product ÂÂ0 canbe rewritten as ÂÂ0 = F̂�F̂ 0�Û I (i)ÛJ� (i)(� I;i� 
 � J;j�� )(R0xRx) ~C����= XK F̂�F̂ 0�ÛK (i)Ca[I J K� �  ]i ~C���� cIcJcK :28



In the last line cI = � Ix (vx) etc. . In other words, the map E : A 7! A0 given byE(F�U I�(i)C��) = F̂�Û I�(i)C��c�1Iis an automorphism, i.e. E(AA0) = E(A)E(A0). Let us �nally check that thisautomorphism is compatible with the �-operation on observables.E(A)� = (F̂�Û I�(i)C��c�1I )�= C��cI�(Û I�(i))�(F̂�)= F̂ 0�Û �I�(i) ~C��cI :The last row is again meant to de�ne the coe�cients ~C and the tuple F̂ 0�. On theother hand we haveE(A�) = E(F 0�U �I� (i)(� �I;i�� 
 � 0��)(RxR0x) ~C��)= E(F 0�U �I�(i) ~C��)c2I= F̂ 0�Û �I�(i) ~C��cI :So we conclude that E(A�) = E(A)�, i.e. E de�nes a *-automorphism between thealgebrasA andA0. Since two arbitrary ciliations of the graph G can be obtained fromeach other by a series the elementary moves considered in this proof, we establishedthe independence of the eyelash.6 The regular representationLet us �nally construct the regular representations of the lattice algebra B and thesubalgebra A of observables. Both will act by multiplication operators on a space F .Elements F have an interpretation as \functions" on the (noncommutative) space oflattice connections. As an algebra, F is generated by a set of \coordinate functions"uI�(i). The elements of the gauge symmetry G act on F as generalized derivations.We are mainly interested in the invariants within F , i.e. in the \functions" on themoduli space of connections. On the space F inv of invariants, a scalar product canbe de�ned.6.1 The de�nition of FIn our present context it is obvious how to de�ne the algebra F of \functions" on thespace of lattice connections. So instead of giving a lengthy construction which worksalso in the more general cases considered below, we present an ad hoc de�nition forF and check that it carries the announced representation of B.29



De�nition 13 (Algebra F) The algebra F = F(Gcil) is an associative unital alge-bra with unit 
. It is generated by elements uI�(i); i 2 L; subject to the relationsuI�(i) � uJ�(i) = XuK (i)Ca[I J K� �  ]i ; (6.1)uI�(�i) = u�I�(i)�I;i�� ; (6.2)uI�(i) � uJ�(j) = uJ� (j) � uI(i)(� I;i� 
 � J;j�� )(R) ; (6.3)for i � j or if i,j have no common endpoints.We immediately recognize F to be our old algebra < U I�(i) >. However, thisisomorphism is a mere coincidence. In the more general framework of quasi-Hopfalgebras, the analogue of F turns out to be non-associative and consequently cannotbe isomorphic to any subalgebra of the associative algebra B. This remark mightseem too prospective, but it should at least explain why we decided to give anindependent de�nition of F .Because of their interpretation as functions in the non-commutative coordinatesu = (uI�(i)), we will often use symbols  (u); �(u) for elements in F . A representation� of B on F is de�ned by the following relations�(U I�(i)) (u) = uI�(i) �  (u) ; (6.4)�(�)( 1(u) �  2(u)) = X�(�1�) 1(u) � �(�2�) 2(u) ; (6.5)�(�)uI�(i) = uI�(i)� I;i��(�) ; �(�)
 = 
�(�)for all  (u);  1(u);  2(u) 2 F . The �rst equation means that elements U I�(i) act asmultiplication operators on F . The last two lines specify the action of the gaugesymmetry G. Because of relation (6.4) one says that elements � of the quantumsymmetry act as generalized derivations on the algebra F .We see that the operators �(U I�(i)) generate F from the \constant function"
. In particular uI�(i) = �(U I�(i))
. Given an element  (u) 2 F , its \generator"	(U) 2 B (i.e.  (u) = �(	(U))
) is nearly unique. The only freedom in thechoice of 	(U) comes from the possibility to multiply from the right by factors� 2 G; �(�) = 1; without changing the generated element  (u) 2 F .A tuple  �(u) of elements in F is said to transform covariantly according to therepresentation � of G if �(�) �(u) =  �(u)���(�) :�(u) 2 F is invariant, if �(�)�(u) = �(u)�(�). Invariant elements �(u) 2 F generatea subalgebra F inv of F . This subalgebra carries a representation of the algebra A ofobservables (the restriction of � to the algebra of invariants A). F inv is the \algebraof functions" on the moduli space of connections.30



6.2 A scalar product on the subspace of invariant functionsIt is our aim to construct a scalar product on F inv, i.e. for invariant \functions"on the space of connections. The procedure mimics the classical situation. Themain ingredient is a multidimensional Haar measure !, which allows to computeintegrals of arbitrary functions on the space of connections. The scalar product oftwo invariant functions �i(u) = �i(U)
; i = 1; 2 is then de�ned as < �2(u)j�1(u) >�!(�2(U)��1(U)). Positive de�niteness of < j > amounts to the positivity of !regarded as a functional on A.Instead of de�ning a functional directly on the algebra F , we prefer to work witha linear map ! : B 7! C. The relation to the multidimensional Haar measure will beapparent. By proposition 5, a linear functional on ! is speci�ed when we prescribethe values it has on elements of the form (4.10). In the case of ! we want !(e) = 1and !(U I1�1(i1) : : : U In�n(in)�) = �(�)�I1;0 : : : �In;0 : (6.6)For this to be well de�ned it is essential that every link appears only once and onlyin one orientation among the links i� . Some properties of ! are obvious. We statethem here without proof. !(�F ) = !(F )�(�) ; (6.7)!(F ) = !(�(F )) (6.8)for all � 2 G, F 2 B.The interpretation of ! as a multidimensional Haar measure uses the correspon-dence between elements  (u) 2 F and their generators 	(U). Since ! depends on� only through the value �(�), !h( (u)) � !(	(U)) does make sense. Relation (6.7)is the usual invariance !h(�(�) (u)) = !h( (u))�(�) of the multidimensional Haarmeasure.De�nition (6.6) has a fundamental drawback. Usually it requires an enormouscalculation to bring an arbitrary element in B into the form (4.10). However thereis a recursive way to calculate !. Once all elements assigned to a given link i;�i aregathered, integration over these variables can be performed. The formal expressionis !(FU I�(i)G) � !(FG)!(U I�(i)) = !(FG)�I;0 (6.9)for all F;G generated by UJ� (j); j 6= i;�i and elements � 2 G.Let us practise the calculation of the functional ! in a simple but fundamentalexample.Lemma 14 With the quantum dimension dJ =Tr(� J(S�(u�)v�1� )) and cI = � I(v�)we have !(�(U I�(i))U I�(i)) = c�2I !(�I;�i� U I (i)U I�(i)) = ��;� c�1IdJ :31



Proof: The simplest proof for this formula makes use of the invariance (6.7) of!. The latter can be reformulated into the following intertwining property of thematrix 
I;i�� = !(�(U I�(i))U I�(i)).� I;i��(�)
I;i� = 
I;i��� I;i� (�) for all � 2 G :Since � I;i is irreducible, we obtain that 
I;i�� = �I;i��;� . To calculate the complexnumber �I;i we multiply this equation with (�I;�i)�1�� and sum over �; �. The resultis �I;iTr((�I;�i)�1) = X(�I;�i)�1��!(�(U I�(i))U I�(i))= X c�2I !(U I�(�i)U I�(i)) = c�2I �I :In this calculation we used the formula (4.15) for �, the invariance (6.7) of ! and thefunctoriality on the link i (4.2). �I is the ordinary dimension of the representation� I� , i.e. �I =dim(V I). Since Tr((�I;�i)�1) = �ITr(� I(S�(u�1� ))) = c�1I �IdI we inferthat �I;i = c�1I =dI .After this warm up we can address more complicated examples. Recall that weplan to evaluate !(�(�2(U))�1(U)) for observables ��(U) 2 A. This motivates tocalculate !(�(U I1�1(i1) : : : U In�n(in))U I1�1(i1) : : : U In�n(in)) (6.10)for a set of links i� which satis�es the assumption of proposition 5. Since � is ananti-automorphism we �nd that all variables attached to the link i1;�i1 are alreadygathered in the middle of the functional. So the \integration" can be performed andresults in an expression where variables on i2;�i2 appear together. This continuesuntil everything is reduced to the unit element e. Evaluation on a single link is anapplication of the lemma. All one has to care about are the factors involving theR-matrix which come with the anti-automorphism �. The value of (6.10) is(� I1 ;i1�1�1 
 : : :
 � In;in�n�n)(R(n�1)0)Y� c�1I� d�1I� ; (6.11)where the 0 means that one uses �0 instead of � in de�nition (5.2)Theorem 15 (scalar product) Let ��(U); � = 1; 2 be the elements in A which gen-erate the invariant states ��(u) in the sense that ��(u) = �(��(U))j0i. The bilinearform < �1(u)j�2(u) >� !(�1(U)��2(U))de�nes a scalar product on Finv if and only if the quantum dimensions dI satisfydI > 0 for all labels I (and provided that the condition (3.14) is satis�ed). Inparticular, the assumption on dI guarantees that ! is a positive linear functional onA. 32



Proof: We remarked before that < j > is well de�ned. It is linear in the secondargument and anti-linear in the �rst. The property< �1(u)j�2(u) > =< �2(u)j�1(u) >holds due to relation (6.7). Positivity is a consequence of the formula (6.11) and ourassumption (3.14). If C�1:::�n has again the standard intertwining property(� I1;i1�1�1 2� : : : 2� � In;in�n�n)(�)C�1:::�n = �(�)C�1:::�n ;relation 3:14 implies thatC�1:::�n(� I1;i1�1�1 
 : : :
 � In;in�n�n)(R(n�1)0)C�1:::�n = C�1:::�nC�1:::�nY� cI� :Here we used that c0 = 1 and �2i = cI . We see that the complex phases in thelast expression cancel the phases in (6.11). With A = U I1�1(i1) : : :U In�n(in)C�1:::�n weobtain !(A�A) = C�1:::�nC�1:::�nY� 1dI� :This is positive, if the quantum dimensions are.There is one important remark we have to make at this point. Everything wedid so far works for Uq(sl2) at generic values of the deformation parameter q, sinceUq(sl2) is semisimple in these cases. So it may seem that we just quantized Chern-Simons for arbitrary (non-integer) values of the level k. However, the positivity ofthe scalar product is conditional on the positivity of the quantum dimensions dJ .The latter fails to hold for many representations of Uq(sl2), so that we recover theusual quantization condition. In the next section we will deal with the roots of unity.It is shown that Chern Simons can be quantized only for primitive roots of unity,i.e. for integer values of k.7 Generalization to quasi Hopf algebrasIn this section we want to generalize our theory to cases in which the local symmetryGx is a quasi-Hopf algebra. There are at least two motivations to do this. Whenwe discussed the twist equivalence of the symmetry algebras Gx we saw that the co-associativity of �x led to a severe constraint on the possible twist. One is temptedto remove this constraint and admit all possible unitary twist elements Fx withoutcaring about co-associativity. This is precisely what quasi-Hopf algebra are designedfor. We will see that our observable algebra depends only on the \twist class" of thesymmetry Gx. To understand the second motivation we recall that the assumptionabout semisimplicity does not apply to the most interesting cases, e.g. Uq(sl2); qp =33



1. However, working with the semisimple \truncated" symmetry algebra UTq (sl2)introduced in [2], we can bypass this problem. By construction, the representationtheory of UTq (sl2) coincides with the \physical" part of the representation theory ofUq(sl2). There is a price we have to pay for this: UTq (sl2) is no longer a Hopf algebrabut only a quasi-Hopf algebra.7.1 Short reminder on quasi-Hopf algebrasAt this point we want to recall some of the de�ning features of (weak) quasi-Hopfalgebras. Quasi-Hopf algebras have been introduced in [11]. The axioms stated therecan be weakened to allow for \truncation" in the tensor product of representations.These resulting structures were called \weak quasi Hopf algebras" [2].In comparison to Drinfel'd, we want to admit that �(e) 6= e
 e, where e is theunit element in an algebra G. It still follows from the homomorphism property of�, �(��) = �(�)�(�), that �(e) is a projector P in G 
 G and that this projectorcommutes with �(�) for all � 2 G. Consequently, the linear map (�
� 0)(P ) projectsonto a subrepresentation of � 2� � 0. If (� 
 � 0)(P ) 6= id, the tensor product � 2� � 0 issaid to be truncated.The generalization of Drinfel'ds axioms to the \weak" case is almost straightforward. As in [11] we demand that an element ' 2 G 
 G 
 G is given whichimplements (weak) quasi{co-associativity of the coproduct,'(�
 id)�(�) = (id 
�)�(�)' for all � 2 G: (7.1)Because of the truncation, this element ' cannot be invertible in general. So in-vertibility is substituted by a weaker assumption on the existence of a quasi-inverse,still denoted by '�1, such that''�1 = (id
�)�(e) ; '�1' = (�
 id)�(e); (7.2)(id
 �
 id)(') = �(e) :The statement that '�1 is a quasi-inverse of ' means that ''�1' = '. Evalu-ated with the representations �; � 0; � 00, the re-associator ' furnishes an intertwinerbetween the representations (� 2� � 0)2� � 00 and � 2� (� 02� � 00). This means that thetensor product of representations is associative up to equivalence.Similarly we do not demand that the element R be invertible. Instead it shouldhave a quasi-inverse R�1 such thatRR�1 = �0(e) ; R�1R = �(e) : (7.3)This is su�cient to implement the equivalence between representations � 2� � 0 and� 02� � . 34



Following Drinfeld we postulate several relations between �,R, and '.(id
 id
�)(')(�
 id
 id)(') = (e
 ')(id
�
 id)(')('
 e) ;(id
�)(R) = '�1231R13'213R12'�1 ; (7.4)(�
 id)(R) = '312R13'�1132R23' :We used the standard notation. If s is any permutation of 123 and ' = P'1�
'2�
'3�then 's(1)s(2)s(3) =X� 's�1(1)� 
 's�1(2)� 
 's�1(3)� : (7.5)Eqs. (7.4)) imply validity of quasi Yang Baxter equations,R12'312R13'�1132R23' = '321R23'�1231R13'213R12 ; (7.6)and this guarantees that R together with ' determines a representation of the braidgroup [1].It is assumed that (id
 �
 id)(') = �(e). Similar relations for the action of theco-unit � on other components of ' and the components of R follow from this.All relations for the antipode S can be copied from Drinfel'd. It is supposed thatthere is an anti-automorphism S and two elements �; � 2 G, such thatXS(�1�)��2� = ��(�) ; X �1��S(�2�) = ��(�) : (7.7)Moreover, the following relations are required to hold.X'1��S('2�)�'3� = e ; XS(�1�)��2��S(�3s) = e : (7.8)Here � = '�1 = P�1� 
 �2� 
 �3�.Everything we said about *-structures in section 3 remains true. But we haveto add two more requirements which describe the behaviour of the elements ' and�; � with respect to conjugation. One can check that the equations'� =X'3�� 
 '2�� 
 '1�� = ' ; �� = � (7.9)are consistent with the other relations which involve ' or �; �.For Hopf-algebras it is well known that �(�) = (S 
 S)�0(S�1(�)). A general-ization of this fact was already noticed by Drinfel'd [11]. To state his observationwe introduce the following notations. = XS(U�)�V� 
 S(T�)�W�with XT� 
 U� 
 V� 
W� = ('
 e)(�
 id
 id)('�1) ;f = X(S 
 S)(�0(�1p))�(�2p�S(�3p)) ; (7.10)with � = '�1 =X �1p 
 �2p 
 �3p :35



Drinfel'd proved in [11] that the element f satis�esf�(�)f�1 = (S 
 S)�0(S�1(�)) for all � 2 G ; (7.11) = f�(�) :The �rst equation asserts that f \intertwines" between the co-product � and thecombination of � and S on the right hand side.Nontriviality of ';� e�ects the expression for the element u 2 G. The relations(3.3) now hold for (cp. [22])u =XS(�2��S(�3�))S(r2�)�r1��1� ; (7.12)with � = '�1 = P�1� 
 �2� 
 �3�. Altschuler and Coste also introduced the conceptof ribbon quasi-Hopf algebras. As before, uS(u) is central and a \square root" vwith properties (3.5,3.5) it called ribbon element.Examples of weak ribbon quasi-Hopf algebras G are canonically associated withUq(sl2) with q a root of unity. As an algebra G � UTq (sl2) � Uq(sl2)=J , where J isthe ideal which is annihilated by all the physical representations � I ; 2I = 0 : : : p� 2,of Uq(sl2). UTq (sl2) is semisimple, its representations are fully reducible, and theirreducible ones are precisely the physical representations of Uq(sl2). Letu(I; J) = minfjI + J j; p� 2� I � Jg (7.13)and let PIJ be the projector on the physical subrepresentations K, jI � J j � K �u(I; J) of the tensor product � I 2� q� J of Uq(sl2) representations. There exists P 2 Gsuch that PIJ = (� I 
 � J)(P ). The coproduct in UTq (sl2) is determined in terms ofthe coproduct �q in Uq(sl2) as �(�) = P�q(�) ; (7.14)hence �(e) = P 6= e 
 e. This coproduct speci�es a tensor product 2� which isequal to the truncated tensor product of physical Uq(sl2) representations. Thus� I 2� � J = MjI�Jj�K�u(IJ) �K : (7.15)There exists an element ' 2 UTq (sl2)
3 such that 'IJK = (� I 
 � J 
 �K)(')implements the well known unitary equivalence of the truncated tensor products� I 2� (� J 2� �K) and (� I 2� � J )2� �K. The map 'IJK can be speci�ed by its actionon Clebsch Gordon intertwiners, together with the condition ' = (id 
 �)�(e)',viz. C(IP jL)C(JKjP )23' =XQ fK J PI L QgqC(IJ jQ)C(QKjL)12 ; (7.16)36



where C(::j:) denote the Clebsch Gordon maps and fg the 6J-symbols of Uq(sl2),qp = 1; evaluated for physical labels I; J;K.The R{element of UTq (sl2) 
 UTq (sl2) is given in terms of the R{element Rq forUq(sl2) by R = Rq�(e) = �0(e)Rq ; (7.17)while antipode,* and co-unit are the same as in Uq(sl2). One can show (cp. ref.[2]) that the de�ning properties of a weak quasitriangular quasi Hopf-*-algebra aresatis�ed. The *-operation is of the type discussed above, i.e. � is a �-homomorphismprovided that (� 
 �)� = �� 
 ��. The ribbon element v in Uq(sl2) survives thetruncation and gives a ribbon element in UTq (sl2).The truncation procedure described here can be generalized to other quantizedenveloping algebras. We emphasize that the assumption (3.14) holds for all trun-cated quantized universal enveloping algebras associated with simple Lie algebras.7.2 Results on quasi-quantum group gauge �eldsOur exposition will be restricted to the main results and those parts which deviatefrom the above theory for Hopf algebras.A formulation of twist-equivalence involves the additional relations(�x 
 �x 
 �x)('x) = (e
 F�1x )(e
��)(F�1x ) '� (�� 
 e)(Fx)(Fx 
 e) ;�x(�x) = X S�(f1x�)��f2x�with f ix� de�ned through Fx = P f1x�
f2x�. Observe that the element ux introducedin (7.12) is independent of the twist, i.e. �x(ux) = u�. The same holds for the ribbonelement vx.The discussion of gauge symmetry remains unchanged except from some minorpoints in de�ning the intertwiners at the end of section 3. Of course we use theelement (7.12) now to obtain the intertwiner �I;i. The change in �I;i is slightly moresubtle. In the quasi-Hopf case the right substitute is�I;i = nI t2C[I �Ij0]i� I;i(S�1(�))(�I;i)�1 ;The intertwiners Ca[IJ jK]i remain unchanged. The last change we have to mentionconcerns the de�nition of quantum dimensions dI . Their de�nition gets modi�edaccording to (cp. [22]) dJ � Tr(� J(S�(��u�)v�1� ��) :The construction of the lattice algebra B is seriously e�ected by the generaliza-tion. To understand the major changes which occur when passing to quasi- Hopfalgebras, it is crucial to notice that due to the lack of co-associativity, products of37



covariant elements are not covariant in general. This motivates the de�nition of\covariant products" [2].Suppose that an algebra B contains a quasi- Hopf algebra G as subalgebra andthat (F�)�2I; (F 0�)�2I 0 transform covariantly according to representations � and � 0of G with dimensions n and n0 (in the sense of de�nition 4.5). De�ne the �-productof the components by(F� � F 0�) =X2IX�2I 0FF 0�(�� 
 � 0�� 
 id)(') 2 A : (7.18)Using the expansion ' = P'1� 
 '2� 
 '3� the de�ning eq.(7.18) takes the form(F� � F 0�) =X� FF 0���('1�)� 0��('2�)'3� : (7.19)This exhibits the fact that the (F� � F 0b) are complex linear combinations of termsFF 0�'3� with coe�cients '3� 2 G.Proposition 16 (Properties of the �-product) Let (F�); (F 0�) be speci�ed as aboveand suppose that the unit e 2 G is a unit element in B. Then the �-product (7.18)has the following properties.1. Eq.(7.18) can be inverted to recover ordinary products from covariant ones, viz.F�F 0� =X(F � F 0�)(�� 
 � 0�� 
 id)('�1) : (7.20)2. The tuple F � F 0 = (F� � F 0�) transforms covariantly according to the tensorproduct representation � 2� � 0 of G. Hence we will often use the term covariantproduct instead of �-product.3. The �-product is not associative. But it is quasi{ associative in the followingsense. If F 00 = (F 00 ) transforms covariantly according to representations and� 00 of G and F;F 0 as above, then(i) ((F� � F 0�)� F 00 ) = (F� � (F 0� � F 00� ))(��� 
 � 0�� 
 � 00�)(')(ii) (F� � (F 0� � F 00 )) = ((F� � F 0�)� F 00� )(��� 
 � 0�� 
 � 00�)('�1) :4. If G 2 B is G-invariant thenG� F� = GF� ; Fa �G = F�G : (7.21)All items in this proposition follow from the properties of the re-associator '.Proofs are spelled out in [1].Armed with the notion of covariant products the de�nition of the lattice algebraB is straight forward. We basically follow the rule to substitute all ordinary products38



between generators U I�(i) by �- products. So only functoriality and braid relationsare concerned. To implement functoriality on the link we divide by the new relationsU I�(i)� UJ� (i) = XUK (i)Ca[I J K� �  ]i ; (7.22)U I�(�i) = U �I�(i)�I;i�� : (7.23)while the braid relations becomeU I�(i)� UJ� (j) = UJ (j)� U I� (i)(� I;i�� 
 � J;j� )(R) : (7.24)for i � j or if i,j have no common endpoints. These relations can be written inan alternative form involving again the ordinary (associative) product in B. Forexample the braid relations can be formulated asU�(i)U�(j) = U(j)U�(i)(� i�� 
 � j� 
 id)(R) ; (7.25)where R = '213R12'�1 is the element which is used to build up the representationof the braid group in the quasi-Hopf case [1].The proposition 5 carries over to the more general case but is is often moreconvenient to use another set of linear generators built with the help of the covariantproduct. By proposition 16, elementsU In�n(in)� (: : :� (U I2�2(i2)� U I1a1 (i1)) : : :)� with n � 0; � 2 G :span B. The brackets in this expression are necessary since the �-product is notassociative if ' is non-trivial.Observe that the possibility to move elements � 2 G was an important ingre-dient in the Hopf-algebra case. However, the proof of proposition 4 relied on theco-associativity. Analogue formulas in context of quasi-Hopf algebras are more com-plicated.Proposition 17 (right covariance) Let the element w 2 G 
 G be de�ned by w �P'2�S�1('1��)
 '3� and m 2 G 
 G similarly as m � PS�1(�1�)��2� 
 �3� with thecomponents �i� of � = '�1. Suppose that the tuple (F�); F� 2 B transforms (right-)covariantly according to the representation � of G. Then the linear combination�F � F�(��� 
 id)(w) (7.26)has the following properties.1. �F transforms left-covariantly according to the representation ~� ,�F� = (~��� 
 id)(�(�)) �F (7.27)for all � 2 G. 39



2. The transformation from right- to left-covariant elements can be inverted,F� = (~��� 
 id)(m) �F : (7.28)3. The passage (7.26) from right- to left covariant elements is consistent withbraid relations. Suppose that F 0� is a second right-covariant multiplet trans-forming covariantly according to the representation � 0 and that F�; F 0� satisfybraid relations F�F 0� = F 0�F(�� 
 � 0�� 
 e)('213R12'�1) :Then the corresponding left covariant multiplets obey braid relations of the form�F �F 0 = (~�� 
 ~� 0�� 
 e)('213R12'�1) �F 0 F : (7.29)4. On covariant products, the transformation (7.26) acts according to�F � �F 0((�� 2� � 0��)
 e)(w)) = (~�� 
 ~� 0�� 
 e)(f12'�1) �F �F 0 ; (7.30)where f is the element (7.10). Note that the expression on the right handside of the equation can be regarded as a linear combination of \left covariantproducts".We do not want to prove this proposition here. Details can be found in [8].Especially the last two items are cumbersome. Note that the theorem establishesa complete symmetry between left and right. It implies that it was just a matterof convenience to write all the relations de�ning B in terms of the right covariantproduct. They can all be rewritten in terms of a \left covariant product" and evenin a mixed form, where 'x appears on the right and 'y to the left of the productU I(i)UJ (j). In spite of this left-right symmetry, there is now an algebraic di�erencebetween components U I�(i) and the \matrix-elements" of a quasi-quantum groupvalued gauge �eld. Matrix elements should be identi�ed with aU Ib (i) and the latterdi�er from U Iab(i).Now we can proceed exactly as in the Hopf-algebra case. We de�ne a anti-homomorphism � by �(�) = �� and its action on left covariant elements.�( �U I (i)) = U I (�i)(� I;�i� 
 id)(R�1)�I;i�� : (7.31)On right covariant elements, � acts according to�(U I�(i)) = c�2I �I;�i�� (~� I;�i� 
 id)(R) U I(�i) : (7.32)Although this second formula looks very familiar, it is hard work to derive it from thede�nition of �. Consistency with the transformation law is a word by word repetition40



of the above arguments. To check the compatibility with the braid relations, we startfrom the equation (7.29) and apply �. The rest is straight forward.The observable algebra A is obtained as an algebra of invariants again. Let <U I�(i);� > denote the linear space generated by the multipletsU I�(i) with the (right-)covariant product �. Observe that this space is not closed under ordinary associativeproducts in B. Within < U I�(i);� > only the quasi-associative multiplication withthe covariant product � is possible. We de�ne A to be the subspace of invariants,i.e. A � fA 2< U I�(i);� > j�A = A� for all � 2 Gg : (7.33)Obviously A is closed under covariant multiplication and since (by proposition 16)the covariant product and the associative product coincide for invariants, A comesequipped with an associative product.Theorem 18 (algebra A of observables) Let G � NGx be a ribbon quasi-Hopfalgebra. Then the the associative algebra A of invariants in the vector space <U I�(i);� > is a *-algebra with �-operation A� = �(A). If the quantum dimensionsdI are positive and assumption (3.14) is satis�ed, the linear functional ! : B 7! Cde�ned by (6.6) restricts to a positive linear functional ! on A, i.e. !(A�A) � 0 forall A 2 A. The algebra A is independent of the position of eyelashes.To construct the regular representation one can follow a recipe given in [1]. We donot want to repeat the individual steps here. Instead let us sketch the main results.The analogue of F is non-associative unital algebra with unit 
. The generatorsuI�(i) of F can be braid commuted with (6.1) (i.e. the braid relations of elementsuI�(i) contain no '.) One can prove that eq. (6.1,6.1) continue to hold. To de�ne arepresentation � of B on F one uses rel. (6.4,6.4). This provides us with a notionof covariance and invariance in F in the same way as before. Invariant elements inF form an associative subalgebra F inv.The non-associativity of F is relatively harmless. As one may guess by now, Fturns out to be quasi-associative in the sense that products with di�erent positionsof brackets are linear combinations of each other. The \re-association" can beperformed with the help of( � �  0�) �  00 =  � � ( 0� �  00�)(��� 
 � 0�� 
 � 00�)(') ;which hold whenever  �;  0�;  00c transform covariantly according to the representa-tion �; � 0; � 00 of G. In the title of this subsection we suggest the name \quasi-quantumgroup" for the algebra generated by the uI�(i) on a given link i. Because of the quasi-associativity of � there is now a dramatic di�erence between \quasi-quantum groups"and quasi-Hopf algebras. At least for a special choice of the twists Fx in the end-points, the algebra generated by the uI�(i) is dual to the quasi-Hopf algebra G�.41



Since co-associativity generically fails to hold in G�, this duality gives another \ex-planation" why the the algebra of \functions" on the space of connections becomesquasi-associative.As a corollary of the above theorem and the remarks we made before it is �nallyobtained thatCorollary 19 Hamiltonian Chern Simons theory can be quantized for all integervalues of the level k and for every simple Lie algebra.7.3 Twist equivalenceWe are now prepared to show that the algebra of observables actually does onlydepend on the \twist class" of Gx. Let us make this statement precise. Supposethat Ĝx is a second set of quasitriangular quasi Hopf-*-algebras which are againtwist equivalent to the G� but with possibly di�erent twist elements F̂x 2 G�. Thenone can follow all the steps described above to build a lattice algebra B̂, and anti-automorphism �̂, an algebra of invariants Â etc.. In general these structures willdepend on the choice of Gx. The observable part of the theory, however, does notchange.Theorem 20 (twist independence of A) Suppose that (Gx)x2S and (Ĝx)x2S are twofamilies of gauge symmetries and that Gx as well as Ĝx are twist equivalent to thequasitriangular quasi Hopf-*-algebra G� for all x 2 S. Then there is a *-isomorphismi : Â 7! A.Proof: We denote the ratio of the twist elements by hx = F�1x F̂x. With thehelp of the isomorphism �x this family is lifted to an element h 2 G 
 G. There isan isomorphism i : B̂ 7! B de�ned by i(�) = ��1x � �̂x(�) for all � 2 Ĝx andi(Û I�(i)) = U I�(i)(� I;i�� 
 id)(h) (7.34)With all the experience we gained in prior calculations, the homomorphism propertyis now almost obvious. So let us directly proceed to the consistency with �. To provethat i � �̂ = � � i, one has to know, how the element w behaves under twists. Theanswer is w = �(h2�)h(i
 i)(ŵ)(S�1(h1�)
 e) ; h =Xh1� 
 h2� :Let us agree from now on to identify elements in G and Ĝ with the help of theisomorphism i, so that, for example, ŵ can be regarded as an element in Ĝ 
 Ĝwithout the extra action of (i
 i). The twist dependence of w yields the action ofi on left-covariant elements.i( �Û I(i)) = (~� i�� 
 id)(h�1) �U I�(i) :42



The element � is independent of the twist, and consequently �̂I;i and �I;i can beidenti�ed in the following calculationi(�̂( �Û I(i))) = U I (�i)(� I;�i� 
 id)(hR̂�1)�I;i��= U I (�i)(� I;�i� 
 id)(R�1h0)�I;i��= �( �U I(i))(~� I;i�� 
 id)(h0)= �((~� I;i�� 
 id)(h�1) �U I (i)) = �(i( �U I (i)) :So i is a indeed compatible with the anti-automorphism �. The proof of twistindependence is complete if we can show that i restricts to a map between theobservable algebras Â and A. To see this we recall that observables are linearcombinations of elementsÛ In�n(in)�̂(: : : �̂(Û I2�2(i2)�̂Û I1�1(i1)) : : :)Ĉ�n;:::�2;�1 ; (7.35)where Ĉ is supposed to possess the usual intertwining properties,(� In;in 2̂� (: : : 2̂� (� I2;i2 2̂� � I1;i1) : : :))(�)Ĉ = Ĉ�(�)for all � 2 Ĝ. To evaluate i on such elements one uses the following compatibilityof i with covariant multiplicationi(Û I�(i)�̂ÛJ� (j)) = U I (i)UJ� (j)(� I;i� 
 � J;j�� 
 e)((id
�)(h)h23'̂)= U I (i)UJ� (j)(� I;i� 
 � J;j�� 
 e)('h12(�̂
 id)(h)) := U I (i)� UJ� (j)(� I;i� 
 � J;j�� 
 id)(h12(�̂
 id)(h)) :When we act on multiple �-products we obtain a similar expression in which theargument of (� In;in 
 : : : 
 � I1;i1 
 id) splits into two factors. The right factoressentially annihilates by the multiplication with Ĉ while the left factor is trivial inthe last component and consequently gives rise to a complex linear combination ofU In�n(in)� (: : :� (U I2�2(i2)� U I1�1(i1)) : : :)Ĉ�n;:::�2;�1 : (7.36)Since the image i(G) of an invariant element G 2 B̂ is automatically invariant, thisproves the proposition.8 OutlookIn the �rst part of our work we discussed a new notion of quantum group latticegauge model. The algebra of observables in such a model has been constructed. Ourde�nitions were motivated by the Fock-Rosly discussion of classical Chern Simons43



theories. From our initial remarks on this topic it is almost clear that there is a deepconnection between quantized Chern Simons theories and our lattice gauge models.Let us sketch here the main points that we are going to discuss in details in thesecond paper devoted to the same subject.The �rst important step towards the quantum Chern-Simons theory is to imple-ment the atness condition in the lattice gauge theory. The idea is the following.Let us introduce a monodromy matrix for each plaquette so thatM = U(i1) : : :U(is); (8.1)where the links i1 : : : is surround the chosen plaquette. Our purpose is to �x somehowthe eigenvalues of the matrix M as we did in Section 2 (see formulae (2.23,2.24)).From the very beginning it is not clear that there exists a quantum analogue ofthis procedure. It might happen that operators corresponding to eigenvalues of Mdo not commute and it would cause serious problems. Fortunately, these operatorscommute with each other and moreover they belong to the center of the algebra ofobservables. So one can �nd a set of central projectors which e�ciently �x eigen-values of monodromy matrices for all elementary plaquettes. One of such projectorshas been introduced in [5] and called quantum �-function. Having imposed the con-dition of atness we obtain the quantum algebra of functions on the moduli spaceof at connections (moduli algebra) or, in other words, the algebra of observablesof the Hamiltonian Chern-Simons theory. The moduli algebra enjoys an importantproperty. It does not depend on the graph on the Riemann surface which we havestarted with [6]! It is possible to prove that the moduli algebras constructed startingfrom di�erent graphs are canonically isomorphic to each other. Thus, the algebraof observables is de�ned by the symmetry algebra, Riemann surface with markedpoints and by the set of representations of the symmetry algebra assigned to themarked points. After the graph independence of the construction is established wehave a good chance to prove that the lattice gauge model de�nes the same theoryas the continuous Chern Simons model.The important question which we face at this stage is how to construct therepresentation theory of the moduli algebra. There are two di�erent approachesto this problem. First of them (let us call it algebraic) is based on the graphindependence of the moduli algebra. One can choose the simplest possible graphand consider the moduli algebra in some explicit coordinates given by the algebraof graph connections on this chosen graph. For generic values of the deformationparameter q this method has been applied in [21]. There the graph is chosen to be abunch of circles on a Riemann surface of genus g with n marked points. The circlesrepresent a� and b-cycles winding around the handles of the surface and g cycleswhich surround the marked points. Using this particular graph one can describethe representation theory of the moduli algebra quite e�ciently. We shall ful�l thisprogram for q being a root of unity. 44



The second approach to the representation theory (let us call it geometric) isbased on two simple observations. First of them is that we already know the desir-able answer. The algebra of observables of the Hamiltonian Chern-Simons theorymust act in the Hilbert space of this theory. The latter is isomorphic to the spaceof conformal blocks in the corresponding WZNW model or, more technically, to thespace of solutions of the Knizhnik-Zamolodchikov equation satisfying certain con-ditions. The second observation concerns the nature of structure constants whichwe use to de�ne the algebra of graph connections. Basically we use two objects, R-matrix and the associator '. Both of them may be regarded as certain monodromymatrices for solutions of the Knizhnik-Zamolodchikov equation [11]. These twofacts enable us to represent the observable algebra directly in the space of conformalblocks. Particular operators act as combinations of monodromies of the Knizhnik-Zamolodchikov equation. Let us mention that the idea of the geometric approachis essentially borrowed from the combinatorial description of Vassiliev-Kontsevichknot invariants [18], [23].The geometric construction of the representation theory of the moduli algebrawill provide the representations which are realized directly in the Hilbert space of thecontinuous Chern Simons theory. This will be a �nal check of the conjecture that thelattice gauge model presented in this paper indeed coincides with the HamiltonianChern Simons theory.The ideas which we have shortly described in this Section will be considered indetails in the forthcoming paper.9 AcknowledgmentsThis work was initiated while two of us (A.A.,V.S.) stayed at the Erwin Schr�odingerInternational Institute in Vienna. We would like to thank the local organizers forproviding ideal working conditions and a pleasant atmosphere. In the initial phase,V. V. Fock contributed through intense discussions with one of the authors (A.A.).Conversations with A. Beilinson, V.G. Drinfeld, A. Ja�e, A. Lesniewski, G. Mack,F. Nill and K. Szlachanyi are gratefully acknowledged.The work of V.S. was partly supported by the Department of Energy under DOEGrant No. DE-FG02-88ER25065. A.A. was supported by the Swedish NaturalScience Research Council (NFR) under the contract F-FU 06821-304. The workof H.G. was done in the framework of the project P8916-PHY of the 'Fonds zurF�orderung der wissenschaftlichen Forschung in �Osterreich'.References[1] G. Mack, V. Schomerus, Action of truncated quantum groups on quasi quan-45
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