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1 IntroductionThe nonabelian Chern-Simons theory in 3 dimensions has been solved in [3] using itsrelation to the 2-dimensional Wess-Zumino-Novikov-Witten model. Recently it hasbeen proved that the Chern-Simons theory on the cylinder (Cartesian product of aRiemann surface and a real axis) may be e�ciently reduced to the 2 dimensionaltopological gauged WZNW model [4], [5]. We learn from these examples that thetopological 3-dimensional theory can be related to some solvable two-dimensionaltheory either conformal or topological.Here we advocate another approach to 3D-topological theories and demonstrateit on the example of the Chern-Simons model. Namely, instead of dealing with some2-dimensional model we reduce the problem to a solvable quantum mechanics. Thenatural question in the Chern-Simons theory is to evaluate a correlation functionon some 3D manifold with several Wilson lines inserted. It was suggested in [3] andadvocated in [6] that the Chern-Simons theory may be represented as a 3D gaugetheory interacting with some quantum mechanical systems living on the Wilsonlines. These systems give a physical interpretation of the representation theory ofLie algebras [7]. The models of these family are designed in such a way that theirHilbert spaces coincide with particular irreducible representations of a given Liealgebra. Our aim in this paper is to get rid of the gauge �elds in the model and endup with somewhat modi�ed quantum mechanics on the Wilson lines. We restrictourselves to the geometry of the cylinder and ful�l the described program.When the gauge �eld disappears from the system the quantum mechanics on theWilson lines changes. Fortunately, this particular way to modify the orbit quantummechanics has been studied previously [8], [1]. It corresponds to the generalizationof the notion of the Lie group to Poisson-Lie group when the group manifold carriesa nontrivial Poisson bracket. After quantization this idea leads to a de�nition ofquantum groups.We always stay here on the classical level of consideration as quantum e�ectsin the Chern-Simons model lead only to a �nite renormalization of the couplingconstant.The paper is organized as follows. In Section 2 we remind the construction ofKirillov symplectic form and then de�ne quantum mechanical systems appropriatefor description of Wilson lines. Section 3 is devoted to machinery of Poisson-Liegroups. There we introduce the modi�ed symplectic structures which will replacenaive Kirillov form in the Chern-Simons model. In Section 4 we turn to the mainpoint of the paper and �rst represent the Chern-Simons theory on a cylinder as aninteracting theory of 3D gauge �elds and Wilson line quantum mechanics following[6]. As it was pointed out in [3] the problem reduces to analysis of the moduli spaceof 
at connections on a Riemann surface with marked points. We reexamine thesymplectic structure of this space and discover that it splits into the direct sumof several terms. Some of these terms may be naturally assigned to the Wilsonlines. They coincide with certain symplectic forms related to Poisson-Lie groupsand described in Section 3. The other terms have a similar structure and takeinto account topology of a 3D-manifold. More exactly, each handle of the Riemann1



surface is roughly speaking equivalent to two marked points.2 Geometric quantization and Wilson linesFor the purpose of selfconsistency we collect in this section some well-known resultsconcerning Poisson and symplectic structures associated to Lie groups. The mostimportant part of our brief survey is a theory of coadjoint orbits. We concentrate onKirillov symplectic form and the corresponding action for the dynamical system onthe orbit. It appears that a Wilson line observable may be represented as a quantumpartition function for such system.2.1 Kirillov formLet us �x notations. The main object of our interest is a simple Lie group G. Wedenote the corresponding Lie algebra by G. The linear space G is supplied with Liecommutator [,]. If f"ag is a basis in G, we can de�ne structure constants fabc in thefollowing way: ["a; "b ] =Xc fabc "c : (2.1)The Lie group G has a representation which acts in G. It is called adjoint repre-sentation: "g � Ad(g�1)" : (2.2)For a matrix realization of the group G the adjoint action is represented by conju-gation: "g � g�1"g : (2.3)The corresponding representation of the algebra G is realized by the commutator:ad(")� = ["; �] : (2.4)We denote elements of the algebra G by small Greek letters.Let us introduce a space G� dual to the Lie algebra G. There is a canonical pairing< ;> between G� and G and we may construct a basis flag in G� dual to the basisf"ag so that < la ; "b >= �ba : (2.5)We use small Latin letters for elements of G�. Each vector " from G de�nes a linearfunction on G�: H"(l)=< l; " > : (2.6)In particular, a linear function Ha corresponds to an element "a of the basis in G.By duality the group G and its Lie algebra G act in the space G� via the coadjointrepresentation: < Ad�(g)l; " >=< l;Ad(g�1)" > ; (2.7)< ad�(")l; � >= � < l; ["; �] > : (2.8)2



The space G can be considered as a space of left-invariant or right-invariant vector�elds on the group G. Let us de�ne the universal right-invariant one-form �g on Gwhich takes values in G : �g(") = �" : (2.9)We treat " in the l.h.s. of formula (2.9) as a right-invariant vector �eld whereasin the r.h.s. as an element of G. Since the one-form �g and the vector �eld " areright-invariant the result does not depend on the point g of the group. �g is knownas Maurer-Cartan form.Similarly, the universal left-invariant one-form �g can be introduced:�g(") = " ; �g = Ad(g�1)�g ; (2.10)where " is a left-invariant vector �eld, Ad acts on values of �g.In the case of matrix group G the invariant forms �g and �g look like follows:�g = �g g�1 ; (2.11)�g = g�1�g : (2.12)For any group G there exist two covariant di�erential operators rL and rR takingvalues in the space G�. These are left and right derivatives:< rLf; " > (g) = � ��tf(exp(t")g) ; (2.13)< rRf; " > (g) = ��tf(g exp(t")) ; (2.14)where exp is the exponential map from a Lie algebra to a Lie group. The simplerelation for left and right derivatives of the same function f holds:rRf = �Ad�(g�1)rLf : (2.15)The space G� carries a natural Poisson structure invariant with respect to thecoadjoint action of G on G�. Let us remark that the di�erential of any function onG� is an element of the dual space , i.e. of the Lie algebra G. It gives us a possibilityto de�ne the following Kirillov-Kostant Poisson bracket:ff; hg(l) =< l; [�f(l); �h(l)]> : (2.16)In particular, for linear functions H" the r.h.s. of (2.16) simpli�es:fH";H�g = H[";�] ; (2.17)fHa;Hbg =Xc fabc Hc : (2.18)The last formula simulates the commutation relations (2.1).In general situation the space G� supplied with Poisson bracket (2.16) is not asymplectic manifold. The Kirillov-Kostant bracket is degenerate. For example, in3



the simplest case of G = su(2) the space G� is 3-dimensional. The matrix of Poissonbracket is antisymmetric and degenerates as any antisymmetric matrix in an odd-dimensional space.The relation between symplectic and Poisson theories is the following. Any Pois-son manifold with degenerate Poisson bracket splits into a set of symplectic leaves.A symplectic leaf is de�ned so that its tangent space at any point consists of thevalues of all hamiltonian vector �elds at this point:vh(f) = fh; fg : (2.19)Each symplectic leaf inherits the Poisson bracket from the manifold. However, beingrestricted onto the symplectic leaf the Poisson bracket becomes nondegenerate andwe can de�ne the symplectic two-form 
 so that:
(vf ; vh) = ff; hg : (2.20)The relation (2.20) de�nes 
 completely because any tangent vector to the symplec-tic leaf may be represented as a value of some hamiltonian vector �eld.If we choose dual bases feag and feag in tangent and cotangent spaces to thesymplectic leaf we can rewrite the bracket and the symplectic form as follows:ff; hg = �Xab P ab < �f; ea >< �h; eb > ; (2.21)
 =Xab 
ab ea
eb = 12Xab 
ab eâ eb : (2.22)Using de�nition (2.20) of the form 
 and formulae (2.21), (2.22) one can check thatthe matrix 
ab is inverse to the matrix P ab:Xc 
acP cb = �ba : (2.23)For the particular case of the space G� with Poisson structure (2.16), there exists anice description of the symplectic leaves. They coincide with the orbits of coadjointaction (2.7) of the group G. Starting from any point l0, we can construct an orbitOl0 = fl = Ad�(g)l0 ; g 2 Gg : (2.24)Any point of G� belongs to some coadjoint orbit. The orbit Ol0 can be regarded asa quotient space of the group G over its subgroup Sl0:Ol0 � G=Sl0 ; (2.25)where Sl0 is de�ned as follows:Sl0 = fg 2 G ; Ad�(g)l0 = l0g : (2.26)In the case of G = SU(2) the coadjoint action is represented by rotations inthe 3-dimensional space G�. The orbits are spheres and there is one exceptional4



zero radius orbit which is just the origin. The group Sl0 is isomorphic to U(1) andcorresponds to rotations around the axis parallel to l0. For the exceptional orbitSl0 = G and the quotient space G=G is a point.Let us denote by pl0 the projection from G to Ol0:pl0 : g �! lg = Ad�(g)l0 : (2.27)We may investigate the symplectic form 
 on the orbit directly. However, for tech-nical reasons it is more convenient to consider its pull-back 
Gl0 = p�l0
 de�ned onthe group G itself. We reformulate the famous Kirillov's result in the following form.Let Ol0 be a coadjoint orbit of the group G and pl0 be the projection (2.27). ThePoisson structure (2.16) de�nes a symplectic form 
 on Ol0.Theorem 1 The pull-back of 
 along the projection pl0 is the following:
Gl0 = 12 < �lg ;̂ �g > : (2.28)We do not prove formula (2.28) but the proof of its Poisson-Lie counterpart insubsection 3.4 will �ll this gap. Let us make only few remarks. First of all, the form
Gl0 actually is a pull-back of some two-form on the orbit Ol0. Then, 
Gl0 is a closedform: �
Gl0 = 0 : (2.29)This is a direct consequence of the Jacobi identity for the Poisson bracket (2.16).The form 
Gl0 is exact, while the original form 
 belongs to a nontrivial cohomologyclass. The left-invariant one-form� =< lg; �g >=< l0; �g > (2.30)satis�es the equation �� = 
Gl0 : (2.31)In physical applications the form � de�nes an action for a hamiltonian systemon the orbit: S = Z � : (2.32)This action plays a crucial role in the representation of a Wilson line via functionalintegral. (see section 2.2).The rest of this subsection is devoted to the cotangent bundle T �G of the groupG. Actually, the bundle T �G is trivial. The group G acts on itself by means of rightand left multiplications. Both these actions may be used to trivialize T �G. So wehave two parametrizations of T �G = G � G� (2.33)by pairs (g; l) and (g;m) where l andm are elements of G�. In the left parametrizationG acts on T �G as follows:L h : (g;m) �! (hg;m) ; (2.34)5



R h : (g;m) �! (gh�1; Ad�(h)m) : (2.35)In the right parametrization left and right multiplications change roles:L h : (g; l) �! (hg;Ad�(h)l) ; (2.36)R h : (g; l) �! (gh�1; l) : (2.37)The two coordinates l and m are related:l = Ad�(g)m : (2.38)The cotangent bundle T �G carries the canonical symplectic structure 
T �G [9].Using coordinates (g; l;m), we write a formula for 
T �G without proof:
T �G = 12(< �m ;̂ �g > + < �l ;̂ �g >) : (2.39)The symplectic structure on T �G is a sort of universal one. We can recover theKirillov two-form (2.28) for any orbit starting from (2.39). More exactly, let usimpose in (2.39) the condition: m = m0 = const : (2.40)It means that instead of T �G we consider a reduced symplectic manifold with thesymplectic structure (for justi�cation see subsection 3.3):
r = 12 < �l; �g > ; (2.41)where l is subject to constraint l = Ad�(g)m0 : (2.42)Formulae (2.41), (2.42) reproduce formulae (2.27), (2.28) and we can conclude thatthe reduction leads to the orbit Om0 of the point m0 in G�.2.2 Functional integral for a coadjoint orbitOur main motivation to consider geometric quantization and Kirillov symplecticform is the application of this theory to the Chern-Simons model. More exactly, werewrite the expression for a Wilson line observable as a certain functional integralover a coadjoint orbit of the group G. It is convenient to restrict ourselves to thecase of G being a simple Lie group as it is the main example which we are interestedin in the framework of the Chern-Simons theory.First, let us remind that the quantization of Kirillov-Kostant bracket (2.16) re-produces the Lie algebraic commutator (2.1). So, we expect that after quantizationthe Lie algebra G acts in the Hilbert space of the corresponding quantum system.If we start with an orbit we expect that the corresponding representation is irre-ducible. This guess is based on the observation that before quantization the group6



action can move any given point on the orbit to any other point. Procedure of geo-metric quantization [10] provides a mathematical proof of this conjecture. However,in this paper we use a physical language and treat the quantization procedure in theframework of path integral formulation.To begin with we need an action which describes our physical system. As we liveon the orbit, our nearest concern is to introduce some e�cient coordinates. Actually,it has been done in the previous subsection where we parametrized a point on theorbit by the group element (2.27): T = v�1Dv: (2.43)Here we introduced special notations for the case of the simple group G. We denotea point on the orbit represented by matrix from G by T . The �xed point D is adiagonal matrix which de�nes the orbit. The group G acts by conjugations:T g = g�1Tg: (2.44)We remind T gives a momentummapping corresponding to this action. In terms ofD and v 2 G Kirillov form (2.28) looks as:$ = TrD(�vv�1)2: (2.45)So, the action for such a system may be written asSD(v) = Z TrD(�vv�1)� Z Hdt: (2.46)Here Hamiltonian H is an arbitrary function on the orbit. For our purposes it isconvenient to choose it to be a linear function:H = iT r(AT ); (2.47)where A = A(t) is a time-dependent source. The main problem of this theory is toevaluate the partition function:ZD(A) = Z DveiSD(v): (2.48)We shall consider this integral with periodic boundary conditions. Strictly speaking,it is not well-de�ned because of the gauge symmetry with respect to the left actionof the diagonal subgroup of G: u! hu. However, this symmetry may be taken intoaccount by the standard renormalization of the integration measure. As for anyfunctional integral, we can rewrite the partition function using an ordered exponentof the Hamiltonian: ZD(A) = TrHPexp(Z Xa Aa(t)T̂ adt): (2.49)Here T̂ a is an operator corresponding to T a after quantization, H is a Hilbert spaceof the resulting theory. As we discussed, this Hilbert space is expected to be anirreducible representation of the Lie algebra G. The problem is how to �nd out which7



representation we get starting from the action SD(u). The answer looks like follows.Let us represent the highest weight w(D) of the corresponding representation as adiagonal matrix. Then w(D) = D � �; (2.50)for � being a half sum of positive roots of G.Let us conclude that we obtained a nice representation for a Wilson line ob-servable in the Chern-Simons theory. Namely, such an observable may be alwaysrepresented as a partition function in the auxiliary theory on the certain coadjointorbit: Ww(D)(�) = ZD(A(t)); (2.51)where A(t) is the restriction of the gauge �eld A on the curve �.For further information on the orbit functional integral we send the reader tooriginal papers [11],[7],[12]. The representation (2.51) has been applied to the Chern-Simons theory in [6].3 Symplectic structures associated to Poisson-LiegroupsIn this Section we develop machinery of Poisson-Lie groups and �nd out how Kirillovform modi�es when we introduce a nontrivial Poisson bracket on a group manifold.We follow the approach of [1].3.1 Heisenberg double of Lie bialgebra.One of the ways to introduce deformation leading to Poisson-Lie groups is to considerthe bialgebra structure on G. Following [13], we consider a pair (G; G�), where wetreat G� as another Lie algebra with the commutator [;]�. For a given commutator [;]in G we can not choose an arbitrary commutator [;]� in G�. The axioms of bialgebracan be reformulated as follows. The linear spaceD = G + G� (3.1)with the commutator [;]D: ["; �]D = ["; �] ; (3.2)[x; y]D = [x; y]� ; (3.3)["; x]D = ad�(")x� ad�(x)" : (3.4)must be a Lie algebra. In the last formula (3.4) ad�(") is the usual ad�-operatorfor the Lie algebra G acting on G�. The symbol ad�(x) corresponds to the coadjointaction of the Lie algebra G� on its dual space G.8



The only thing we have to check is the Jacobi identity for the commutator [;]D.If it is satis�ed, we call the pair (G; G�) Lie bialgebra. Algebra D is called Drinfelddouble. It has the nondegenerate scalar product < ;>D :< ("; x); (�; y) >D=< y; " > + < x; � > ; (3.5)where in the r.h.s. < ;> is the canonical pairing of G and G�. It is easy to see that< G; G >D= 0 ; < G�; G� >D= 0 : (3.6)In other words, G and G� are isotropic subspaces in D with respect to the form < ;>D.We call the form < ;>D on the algebra D standard product in D.We shall need two operators P and P � acting in D. P is de�ned as a projectoronto the subspace G: P (x+ ") = " : (3.7)The operator P � is its conjugate with respect to form (3.5). It appears to be aprojector onto the subspace G�: P �(x+ ") = x : (3.8)The standard product in D enables us to de�ne the canonical isomorphism J :D� �! D by means of the formula< J(a�); b >D=< a�; b > ; (3.9)where a� is an element of D� and b belongs to D. In the r.h.s. we use the canonicalpairing of D and D�. The standard product can be de�ned on the space D�:< a�; b� >D�=< J(a�); J(b�) >D ; (3.10)where a� and b� belong to D�. The scalar product < ;>D is invariant with respectto the commutator in D:< [a; b]; c >D + < b; [a; c] >D= 0 : (3.11)It is easy to check that the operator J converts ad� into ad:Jad�(a)J�1 = ad(a) : (3.12)Using the standard scalar product in D, one can construct elements r and r� inD 
 D which correspond to the operators P and P �:< a
b; r >D
D=< a;Pb >D ; (3.13)< a
b; r� >D
D= � < a;P �b >D : (3.14)In terms of dual bases f"ag and flag in G and G�r =Xa "a 
 la ; r� = �Xa la 
 "a : (3.15)9



The Lie algebra D may be used to construct the Lie group D. We supposethat D exists (for example, for �nite dimensional algebras it is granted by the Lietheorem) and we choose it to be connected. Originally the double is de�ned as aconnected and simply connected group. However, we may use any connected groupD corresponding to Lie algebra D. Property (3.12) can be generalized for Ad andAd�: JAd�(d)J�1 = Ad(d) ; (3.16)where d is an element of D.Let us denote byG and G� the subgroups inD corresponding to subalgebras G andG� in D. In the vicinityD0 of the unit element of D the following two decompositionsare applicable: d = gg� = h�h ; (3.17)where d is an element of D, coordinates g; h belong to the subgroup G, coordinatesg�; h� belong to the subgroup G�. In general, the subset D0 does not cover the wholegroup D. However, it is open and dense. In the further consideration we restrictourselves to the cell D0 in D and send the reader to [1] for complete description.Now we turn to the description of the Poisson brackets on the manifoldD. DoubleD admits two natural Poisson structures. First of them was proposed by Drinfeld[13]. For two functions f and h on D the Drinfeld bracket is equal toff; hg =< rLf 
rLh; r > � < rRf 
rRh; r > ; (3.18)where< ;> is the canonical pairing between D
D and D�
D�. Poisson bracket (3.18)de�nes a structure of a Poisson-Lie group on D. However, the most important forus is the second Poisson structure on D suggested by Semenov-Tian-Shansky [14]:ff; hg = �(< rLf 
rLh; r > + < rRf 
rRh; r� >) : (3.19)The manifold D equipped with bracket (3.19) is called Heisenberg double or D+.It is a natural analogue of T �G in the Poisson-Lie case. When G� is abelian, G� = G�and D+ = T �G. If the double D is a matrix group, we can rewrite the basic formula(3.19) in the following form:fd1; d2g = �(rd1d2 + d1d2r�) ; (3.20)where d1 = d 
 I ; d2 = I 
 d.For concrete calculations let us choose the left identi�cation of the tangent spaceto D with D. We can rewrite the Poisson bracket (3.19) in terms of left derivativesrL:ff; hg(d) = �(< rLf 
rLh; r > + < Ad�(d�1)rLf 
Ad�(d�1)rLh; r� >) == � < rLf 
rLh; r +Ad(d) 
Ad(d) r� > : (3.21)Here we use relation (2.15) between left and right derivatives on a group.Given a hamiltonian h one can produce the hamiltonian vector �eld vh so thatthe formula < �f; vh >= fh; fg (3.22)10



holds for any function f . Using (3.21), (3.22) we can reconstruct the �eld vh:vh =< rLh; r +Ad(d)
Ad(d) r� >2 : (3.23)Having identi�ed D and D� by means of the operator J , we can rewrite the r.h.s. of(3.23) as follows:vhjd = P�h = (P �Ad(d)P �Ad(d�1))J(rLh(d)) ; (3.24)where P acts in D: P = P �Ad(d)P �Ad(d�1) : (3.25)It is called Poisson operator.The problem which appears immediately in the theory of D+ is the possibledegeneracy of Poisson structure (3.19) in some points of D. Strati�cation of D+into the set of symplectic leaves is described in [1]. Here we need only a simple factabout this strati�cation:Lemma 1 The subset D0 = GG� \G�G (3.26)is a symplectic leave in D with respect to the Poisson bracket (3.19).It means that the bracket (3.19) is actually nondegenerate on D0.3.2 Symplectic structure of the Heisenberg doubleThe subject of this subsection is to �nd an e�cient description of the symplecticform � on D0. Let us introduce two sets of coordinates on D0:d = gg� = h�h: (3.27)In terms of (g; g�) and (h�; h) we can write down the answer for �.Theorem 2 The symplectic form � on D0 can be represented as follows:� = 12(< �h� ;̂ �g> + < �g� ;̂ �h>) : (3.28)In the formula (3.28) �g; �h�; �h; �g� are Maurer-Cartan forms on G and G�. Thepairing < ;> is applied to their values, which can be treated as elements of G andG� embedded to D = G + G�. So we can use < ;>D as well as < ;>.Proof of Theorem 2The strategy of the proof is quite straightforward. We consider Poisson bracket(3.19) on the symplectic leaf D0. If we use dual bases feag and feag (a = 1; : : : ; n=dimD) of right-invariant vector �elds and one-forms on D, the formula (3.19) ac-quires the following form:ff; hg(d) = � < rLf 
rLh; r +Ad(d)
Ad(d) r� >== � nXa;b=1 < rLf; ea >< rLh; eb >< ea;PJeb > : (3.29)11



The last multiplier in (3.29) is Poisson matrix corresponding to the bracket (3.19):Pab =< ea;PJeb > : (3.30)Here P is the same as in (3.25). It is ensured by Lemma 1 that the matrix Pab isnondegenerate. The symplectic form � can be represented as follows (see subsection2.1): � = nXa;b=1�abea
eb ; (3.31)where the matrix � satis�es the following condition:nXc=1�acPcb = �ba : (3.32)So what we need is inverse matrix P�1 for Pab. To this end let us introduce twooperators P1 and P2: P1 = P +Ad(d)P � ; (3.33)P2 = P � �Ad(d)P : (3.34)P may be decomposed in two ways, using P1 and P2:P = P1P�2 = �P2P�1 : (3.35)The de�nition of P1 and P2 permit us to write down the answer for �ab:�ab =< ea;�eb >D ; � = PP�11 � P �P�12 : (3.36)We must check condition (3.32):�ba = nXc=1�acPcb == nXc=1 < ea;�ec >< ec;PJ(eb) >= (3.37)=< ea;�PJ(eb) >D :The product �P can be easily calculated using (3.35), (3.36):�P = PP�11 P1P�2 + P �P�12 P2P�1 == P (P � P �Ad(d�1)) + P �(P � + PAd(d�1)) = (3.38)= P + P � = I :So, the answer is < ea;�PJ(eb) >D=< eb; ea >= �ba (3.39)as it is required by (3.32).We can rewrite formula (3.36) in more invariant way:� =< �d 
; ��d >D ; (3.40)12



where �d is the Maurer-Cartan on D. Expression (3.36) for the operator � stillincludes inverse operators P�11;2 implying that some equations must be solved. Tothis end we represent the Maurer-Cartan form �d in two di�erent ways:�d = �g +Ad(d)�g� ; (3.41)�d = �h� +Ad(d)�h : (3.42)Representations (3.41), (3.42) allow us to calculate P�11;2p��d explicitly:P�11 �d = �g + �g� ; (3.43)P�12 �d = �h� � �h : (3.44)Putting together (3.36), (3.40), (3.43) and (3.44), we obtain the following formulafor the symplectic form:� =< (�g +Ad(d)�g�) 
; �g >D � < (�h� +Ad(d)�h) 
; �h� >D==< Ad(d)�g� 
; �g >D � < Ad(d)�h 
; �h� >D : (3.45)Actually, the form (3.45) is antisymmetric. To make it evident, let us consider theidentity < p��d 
; p��d >D==< Ad(d)�g� 
; �g >D + < �g 
; Ad(d)�g� >D= (3.46)=< Ad(d)�h 
; �h� >D + < �h� 
; Ad(d)�h >D :Or, equivalently,< Ad(d)�g� 
; �g >D � < Ad(d)�h 
; �h� >D== � < �g 
; Ad(d)�g� >D + < �h� 
; Ad(d)�h >D : (3.47)Applying 3.47 to make (3.45) manifestly antisymmetric, one gets:� = 12(< Ad(d)�g� ;̂ �g >D + < �h� ;̂ Ad(d)�h >D) : (3.48)Using representation of d in terms of (g; g�) and (h�; h), it is easy to check thatformula (3.48) coincides with� = �12(< �g ;̂ �g� >D + < �h ;̂ �h� >D) : (3.49)To obtain formula (3.28) one can use (3.41), (3.42):�d = �g +Ad(d)�g� = �h� +Ad(d)�h : (3.50)Or, equivalently, �g �Ad(d)�h = �h� �Ad(d)�g� : (3.51)13



Due to antisymmetry we have< (�g �Ad(d)�h) ;̂ (�h� �Ad(d)�g�) >D= 0 : (3.52)Therefore, 12(< �h� ;̂ �g >D + < �g� ;̂ �h >D) == 12(< Ad(d)�g� ;̂ �g >D + < �h� ;̂ Ad(d)�h >D) = � ; (3.53)which coincides with (3.28).One can easily check that the r.h.s. of formula (3.28) does represent the pull-backof some two-form on D0.It is known from general Poisson theory that�� = 0 ; (3.54)but it is interesting to check that form (3.28) is closed by direct calculations. Rewrit-ing equation (3.51) we get:�g � �h� = Ad(d)�h �Ad(d)�g� : (3.55)Taking the cube of the last equation we get:< �g ;̂ �g ^ �g >D � < �h� ;̂ �h� ^ �h� >D ++3 < �g ;̂ �h� ^ �h� >D �3 < �g ^ �g ;̂ �h� >D==< �h ;̂ �h ^ �h >D � < �g� ;̂ �g� ^ �g� >D + (3.56)+3 < �h ;̂ �g� ^ �g� >D �3 < �h ^ �h ;̂ �g� >D :As �g^�g = 12 [�g ;̂ �g] and �h^�h = 12 [�h ;̂ �h] take values in G, �h�^�h� = 12 [�h� ;̂ �h�]and �g� ^ �g� = 12 [�g� ;̂ �g� ] take values in G� we may use the pairing < ;>D forthem. Moreover, as both G and G� are isotropic subspaces in D, we rewrite (3.56) asfollows: < �g ;̂ �h� ^ �h� >D � < �g ^ �g ;̂ �h� >D �� < �h ;̂ �g� ^ �g� >D + < �h ^ �h ;̂ �g� >D= 0 : (3.57)We remind that ��g = �g ^ �g and ��g = ��g ^ �g. Thus,�� = � < ��g ;̂ �h� >D + < �g ;̂ ��h� >D �� < ��h ;̂ �g� >D + < �h ;̂ ��g� >D= 0 : (3.58)Now it is interesting to consider the classical limit of our theory to recover thestandard answer for T �G. There is no deformation parameter in bracket (3.19) butit may be introduced by hand: ff; hg
 = 
ff; hg : (3.59)14



For the new bracket (3.59) we have the symplectic form:�
 = 1
� : (3.60)To recover coordinates on T �G one have to parametrize a vicinity of the unit elementin the group G� by means of the exponential map:g� = exp(
m) ; (3.61)h� = exp(
l) ; (3.62)where m and l belong to G�. Coordinates m and l are adjusted in such a way thatthey have �nite values after the limit procedure. When 
 tends to zero, the formulad = gg� = h�h (3.63)leads to the following relations:g = h ; l = Ad�(g)m : (3.64)Expanding the form �
 into the series in 
 we keep only the constant term (singular-ity 
�1 disappears from the answer because the corresponding two-form is identicallyequal to zero). The answer is the following:�
 = 12(< �m ;̂ �g > + < �l ;̂ �g >) (3.65)and it recovers classical answer (see subsection 2.1). Deriving formula (3.65), we usethe expansions for the Maurer-Cartan forms on G�:�g� = 
�m+O(
2) ; (3.66)�h� = 
�l+O(
2) : (3.67)We have considered general properties of the symplectic structure on the maincell D0 of the Heisenberg double D+. Our next aim is the Poisson-Lie analogue ofthe theory of coadjoint orbits. The necessary technical tools will be introduced inthe next subsection.3.3 Dual pairsOne of powerful tools in Hamiltonian mechanics is the language of dual pairs. LetX be a symplectic space. Obviously, it carries a nondegenerate Poisson structures.De�nition 1 A pair of Poisson mappings� : X ! Y;� : X ! Z (3.68)is called a dual pair iffff; hg = 0;8f = ~f � �; ~f : Y ! Cg , f9~h : Z ! C; h = ~h � �g: (3.69)15



In other words, any function lifted from Y is in involution with any function liftedfrom Z and moreover, if some function commute with any function lifted from Y itmeans that it is lifted from Z.The standard source of dual pairs is Hamiltonian reduction. If we have a Hamilto-nian action of a group G on a symplecticmanifoldX, the following pair of projectionsis dual: � : X ! G�;� : X ! X=G: (3.70)Here the mapping � is the momentum mapping from the manifold X to the spacedual to the Lie algebra G.Dual pairs provide the method to classify symplectic leaves in the Poisson spacesY and Z. For any point y 2 Y the subspace �(��1(y)) is a symplectic leaf inZ. It carries nondegenerate symplectic structure. The same is true in the otherdirection. Take any point z 2 Z, then the subspace �(��1(z)) is a symplectic leafin Y . Actually, in this paper we don't need the full machinery of dual pairs. Onlyone simple fact will be of importance for us.Lemma 2 Let the pair of mappings (�; �) (3.68) be a dual pair. Under these condi-tions the restriction of the symplectic form 
 on X to the subspace ��1(y) coincideswith the pull back of the symplectic form !y on the symplectic leave �(��1(y)) alongthe projection �: 
 j��1(y)= ��!y : (3.71)This lemma relates the symplectic structure of the reduced phase space with thesymplectic structure of the global space X which is usually much simpler.3.4 Theory of orbits.In this subsection we describe reductions of the Heisenberg double D+ which leadto Poisson-Lie analogues of coadjoint orbits.The coordinates g; g�; h; h� introduced in subsection 3.2 will be quite convenientfor this purpose. Let us remark that the relationgg� = h�h (3.72)may be used to de�ne the action of G on G�g : g� ! g�0(g; g�) = h�: (3.73)This action usually appears in literature with the name dressing transformation [14].The decomposition d = gg� = h�h (3.74)16



induces Poisson structures on the groups G and G�. Indeed, let us consider forexample the realization of the group G� : G�L � D=G. This formula is not quitecorrect because the decomposition D � G�G is not global. However, Poisson andsymplectic structures are local objects and we can ignore this subtlety. We haveused the notation G�L to indicate that we treat G� as a special quotient of D.Functions on G�L may be regarded as functions on D invariant with respect toright action of G : f(dg) = f(d) : (3.75)The right derivative rRf is orthogonal to G for functions on G�L:< rRf; G >= 0 : (3.76)For a pair of invariant functions f and h the second term in the formula (3.19)vanishes because r� 2 G�
G. The �rst term is an invariant function because theleft derivative rL preserves the condition (3.75). So we conclude that the Poissonbracket ff; hg = � < rLf 
rLh; r > (3.77)is well-de�ned on invariant functions and hence it can be treated as a Poisson bracketon G�L. This bracket is consistent with the group multiplication in G� so that thegroup G� equipped with such Poisson bracket becomes a Poisson-Lie group. Thesame is true for the other three quotients G�R = GnD, GR = G�nD and GL = D=G�.The purpose of this subsection is to study the strati�cation of the space G�R intosymplectic leaves and describe the corresponding symplectic forms on them.It is instructive to consider the classical limit, when g� and h� are very close tothe identity. Then formula (3.73) transforms into the coadjoint action of G on G�:g� = I + 
l + : : : ; (3.78)h� = I + 
l0 + : : : ; (3.79)l0 = Ad�(g)l : (3.80)We denote the transformations (3.73) by AD� to remind their relation to the coad-joint action: h�(g; g�) = AD�(g)g� : (3.81)In order to describe symplectic leaves in G� let us consider the following pair ofPoisson mappings: D0. & (3.82)G�L G�R :This pair is a dual pair [14],[15].Let us apply the general prescription of the previous subsection to the dual pair(3.82). In order to �nd a symplectic leaf in G�R one should pick up some element17



h�G 2 D=G, consider its preimage in D and project it into G nD. It is easy to seethat we get an orbit of dressing transformationsOh� = fg� 2 G�; g� = AD(g�1)h�g: (3.83)The de�nition (3.83) introduces at the same time the projection p from G to Oh�:p : g ! g� = AD(g�1)h�: (3.84)So, the orbits of dressing transformations coincide with symplectic leaves in G�. Ournext task is to evaluate the corresponding symplectic forms. Due to Lemma 2 thepull back of symplectic form on the orbit to its preimage in D coincides with therestriction of the symplectic form (3.49) on D0 to this preimage. As h� is set tobe equal to constant, the �rst term in (3.49) disappears and we end up with thefollowing formula for the symplectic form # on the orbit:p�# = 12 < �g�; �g > : (3.85)To consider the classical limit we can introduce a deformation parameter into theformula (3.85): p�#
 = 12
 < �g�; �g > : (3.86)In this way one can recover the classical Kirillov form (2.28) as we did it for T �G insubsection 3.2.3.5 Example: simple groupIn this subsection we rewrite formulae for symplectic forms on D+ and orbits ofdressing transformations for the case of G being a simple Lie group. We beginwith form (3.85) on the orbit. In order to make the expression for this form moretransparent we need more detailed information about the group G�. Let us introducetwo Borel subgroups B+ and B� in the group G. In the case of G = SL(n) these aresubgroups of upper-triangular and lower-triangular matrices correspondingly. Forboth B+ and B� one can de�ne a canonical projection to the Cartan subgroup inG. For SL(n) the projection picks up a diagonal part of upper- or lower-triangularmatrix. If we denote elements of B+ or B� by big letters, then the correspondingsmall letters always denote the diagonal parts. The group G� is de�ned as follows[14]: G� = f(L+; L�) 2 B+ �B�; l+l� = Ig: (3.87)Multiplication in G� is component-wise:(L+; L�)(M+;M�) = (L+M+; L�M�): (3.88)There is a natural mapping � from G� to G which is given by Gauss decompositionformula: 18



� : (L+; L�)! L = L+L�1� : (3.89)The group structures of G and G� are di�erent and the mapping � is not a grouphomomorphism. However, we shall see in Section 4 that it may be useful to replacethe requirements of group homomorphism by some weaker conditions. The mapping(3.89) provides an identi�cation of the spaces G and G�. Then the pairing <;> maybe replaced by the invariant form Tr on G.It is remarkable that for the element L the dressing action simpli�es and acquiresthe form of group conjugations: AD(g)L = gLg�1: (3.90)Let us choose the orbit of dressing transformations which contains a Cartanmatrix C: L = AD(g�1)C = g�1Cg = L+L�1� : (3.91)Here we specify the de�nition (3.83) for the case of simple group G. In the notations(3.91) the symplectic form (3.85) may be represented as:#(g;C) = 12Tr(�L+L�1+ � �L�L�1� ) ^ g�1�g == 12TrfC�gg�1 ^ C�1�gg�1 + L�1+ �L+ ^ L�1� �L�g: (3.92)The second line may be obtained from the �rst by straightforward but lengthycalculation.Now we have an e�cient formula for symplectic forms on the orbits and thesymplectic form on D+ is in order. As we learn from formula (3.49), the symplecticform on D+ consists of two terms. Each term resembles the symplectic form on theorbit of dressing transformations. Let us make this statement more precise. In thesimple case one can rewrite the relation (3.72) as follows:L0 = gL�1g�1: (3.93)Here L0 represents an analogue of right momentum in D+. We have inverted matrixL in order to get similar Poisson brackets for L and L0 . Following the pattern ofthe dressing orbits, we introduce the diagonal matrix C which consists of commoneigenvalues of L and L0�1: L = u�1Cu;L0 = v�1C�1v: (3.94)The group variable g may be represented as a ratio of u and v:g = v�1u: (3.95)19



In the notations (3.94,3.95) the form � looks as�(u; v; C) = #(u;C) + #(v;C�1) + Tr�CC�1 ^ (�uu�1 � �vv�1): (3.96)The last term in (3.96) corresponds to the fact that the diagonal matrix C is dy-namical in D+. Speaking about the dressing orbits we have no analogue of this termbecause there C is constant.In the next Section we shall be considering the symplectic form on the modulispace of 
at connections on a Riemann surface with marked points. We shall �ndthat the orbit symplectic structure # may be naturally assigned to a marked pointand the form � to a handle. Formula (3.96) demonstrates that in some sense onehandle is equivalent to two marked points.4 Symplectic structure of the moduli spaceThis section is devoted to symplectic geometry of the Chern-Simons theory. Aswe discussed in Introduction, this theory is de�ned by the canonical symplecticstructure on the moduli space of 
at connections on a Riemann surface. Surprisingly,this symplectic structure may be expressed in terms of Poisson-Lie symplectic formsintroduced in the previous Section.4.1 Chern - Simons modelThe purpose of this subsection is to provide some physical motivations for study ofthe moduli space of 
at connections starting from the Chern-Simons theory. Wefollow the approach of [6].The Chern-Simons theory is a gauge theory in 3 dimensions (in principle the CSterm exists in any odd dimension). It is de�ned by the action principleCS(A) = �Tr ZM(AdA+ 23A3): (4.1)Here M is a 3-dimensional (3D) manifold, the gauge �eld A takes values in somesimple Lie algebra G A = Aai tadxi: (4.2)The generators ta form a basis in G and satisfy the commutation relations[ta; tb] = fabc tc: (4.3)We concentrate on the very special case of the CS theory. Suppose that themanifold M locally looks like a cylinder � � R (Cartesian product of a Riemannsurface � and a segment of the real line). In this case we may interpret the theoryin terms of Hamiltonian mechanics. We choose the direction parallel to the real lineR to be the time direction. Two space{like components of the gauge �eld A becomedynamical variables and we often denote by A the two component gauge �eld on the20



Riemann surface �. As usual, the time-component A0 is a Lagrangian multiplier.After the change of variables the action (4.1) acquires the formCS(A) = Tr Z (A@0A� 2A0F )dt; (4.4)where the �rst term is a short action R pdq and the second term introduces a �rstclass constraint F = dA+A2 = 0: (4.5)The �rst term in (4.4) determines the Poisson brackets of dynamical variables. Inparticular, the Poisson bracket of the constraints (4.5) may be easily calculated:fF a(z1); F b(z2)g = fabc F c(z1)�(2)(z1 � z2): (4.6)As one expects, the constraints (4.5) generate gauge transformationsAg = g�1Ag + g�1dg: (4.7)Thus, the phase space in the Hamiltonian CS theory is a quotient of the space =of 
at connections (4.5) over the gauge group �G (4.7). We see that the modulispace (we shall often refer to the moduli space of 
at connections as to the modulispace) appears to be a phase space of the CS theory on the cylinder. The actionprinciple (4.4) provides canonical Poisson brackets on the moduli space. The e�cientdescription of this Poisson bracket was given in [16].We continue our brief survey of the CS theory by consideration of possible ob-servables. The CS model enjoys two important symmetries: gauge symmetry andthe symmetry with respect to di�eomorphisms. The reparametrization symmetryappears due to the geometric nature of the action (4.1) which is written in termsof di�erential forms and automatically invariant with respect to di�eomorphismsof the manifold M . It is natural to require that the observables in the CS modelrespect the invariant properties of the theory. Some observables of this type may beconstructed starting from the following data. Let us choose the closed contour � inM and a representation I of the algebra G. Apparently the following functional ofthe gauge �eld A WI(�) = TrIPexp(Z�AI) (4.8)is invariant with respect to both gauge and reparametrization symmetries. Usuallythe contour � and also the expression (4.8) are called a Wilson line and a Wilsonline observable. The connection AI is equal toAI = AaT aI ; (4.9)where matrices T aI represent the algebra G in the representation I.In the Hamiltonian formulation we may choose two special classes of Wilsonlines| vertical and horizontal.We call a Wilson line horizontal if it lies on an equal time surface. The observablecorresponding to a horizontal Wilson line is a functional of two-dimensional gauge21



�eld and after quantization it becomes a physical operator. It is important to stressthat Wilson lines do not cover the whole set of observables in the CS model.The Wilson line is called vertical if the contour � is parallel to the time axis.In Hamiltonian picture we do not actually control the fact that vertical Wilsonlines are closed. They come from the past through reality and disappear in thefuture. The vertical Wilson line is characterized by the representation I and thepoint z where it intersects the Riemann surface �. The choice of the time axisproduces a big di�erence in the role of horizontal and vertical Wilson lines in thetheory. Vertical Wilson lines do not correspond to observables in the Hamiltonianformulation. Instead they change the Hamiltonian system (4.4) so that both shortaction and the constraint get modi�ed.Using the formula (2.51), one may treat the CS correlator with n vertical Wilsonlines inserted Zk(I1; : : : ; In) = Z DAe ik4�CS(A)WI1 : : :WIn (4.10)as an expression where the gauge �eld is still classical, whereas some modes corre-sponding to the matrices TI are already quantized. The original functional integralwould be Z = Z DADg1 : : :DgneiStot : (4.11)The action Stot is de�ned by the formulaStot = k4�CS(A) + nXi=1(SIi(vi) + Tr Z dtA0(zi)Ti): (4.12)Here the �rst term coincides with the standard Chern-Simons action, the secondterm consists of two parts. The �rst part collects auxiliary orbit actions for eachWilson line, the second part represents contributions of the Wilson lines into the CSpartition function (4.10).We have reformulated the Hamiltonian Chern-Simons model with vertical Wilsonlines as a theory of the 2D gauge �eld A interacting with a set of �nite dimensionalsystems with coordinates Ti localized at the points zi. As in the case of the pure CStheory, the Hamiltonian (4.12) is equal to zero. The action of the modi�ed systemmay be rewritten asStot = Tr( k4� Z A@0A+ nXi=1Di@0viv�1i ) + Tr Z A0( nXi=1 Ti�(z � zi) � k2�F ): (4.13)The �rst term in (4.13) is a short action of the Hamiltonian system. It is responsiblefor the Poisson brackets of dynamical variables. The second term gives the modi�edconstraint �(z) = nXi=1 Ti�(z � zi)� k2�F = 0: (4.14)Let us remark that after quantization the formula (4.14) is still true if we shift thecentral charge k in the standard way k ! k + h (h is the dual Coxeter number ofthe algebra G). Actually, the shift of the parameter k is of the same nature as ashift of the highest weight in formula (2.50).22



The constraints (4.14) satisfy the same algebra (4.6) as in the pure CS theory.They generate gauge transformations for the gauge �eld A and conjugations for thevariables Ti: Ag = g�1Ag + g�1dg; T gi = g(zi)�1Tig(zi): (4.15)The analogue of 
atness condition (4.14) together with the modi�ed gauge trans-formations (4.15) lead to the de�nition of the moduli space of 
at connections on aRiemann surface with marked points (see the next subsection).So the moduli space of 
at connections emerges naturally as a phase space inthe Chern-Simons theory. The rest of the paper is devoted to the analysis of thesymplectic structure of this space.4.2 De�nition of the symplectic structure on the modulispaceLet � be a Riemann surface of genus g with n marked points. Consider a connectionA on � taking values in a simple Lie algebra G. The canonical symplectic structure[17] on the space A of all smooth connections may be read from the action (4.4)
A = k4�Tr Z� �A ^ �A: (4.16)The form (4.16) is obviously nondegenerate and invariant with respect to theaction of the gauge group G�: Ag = g�1Ag + g�1dg: (4.17)We denote the exterior derivative on the Riemann surface by d, whereas the exteriorderivative on the space of connections, moduli space or elsewhere is always �. Theaction (4.17) is actually Hamiltonian and the corresponding momentummapping isgiven (up to a multiplier) by the curvature:�(A) = � k2�F ;F = dA+A2: (4.18)Let us start with a case when there is no marked points.De�nition 2 The space of 
at connections =g on a Riemann surface of genus g isde�ned as a zero level surface of the momentum mapping (4.18):F (z) = 0: (4.19)De�nition 3 The moduli space of 
at connections is a quotient of the space of 
atconnections =g over the gauge group action (4.17):Mg = =g=G�: (4.20)23



The curvature being the momentummapping for the gauge group, the moduli spacemay be obtained by Hamiltonian reduction from the space of smooth connections.General theory of Hamiltonian reduction [9],[18] ensures that the moduli space car-ries canonical nondegenerate symplectic structure induced from the symplectic struc-ture (4.16) on A.Now we turn to more so�sticated case of the Riemann surface with marked points.We have a coadjoint orbit assigned to each marked point zi. As the gauge �eld Amay develop a singularity in the vicinity of a marked point we have to choose a classof connections di�erent from smooth connections on �. To this end we introduce anotion of decoration.De�nition 4 A decorated Riemann surface with n marked points is a Riemann sur-face and a set of coadjoint orbits O1; : : : ;On assigned to the marked points z1; : : : ; zn.In order to explain this de�nition let us introduce the local coordinate �i in thesmall neighborhood of the marked point zi so thatISi d�i = 2�: (4.21)Here Si is a closed contour which surrounds the marked point. Apparently, thecoordinate �i measures the angle in the neighborhood of zi. On the surface withmarked points we admit connections which have singularities of the formA(z)z�zi = Aid( �i2� ) + ~A(z); (4.22)where Ai are constant coe�cients and ~A(z) is a smooth connection. We call thecoe�cients Ai singular parts of A.De�nition 5 The space of connections Ag;n on a decorated Riemann surface withmarked points is de�ned by the requirement that the singular parts of the connectionbelong to the coadjoint orbits assigned to the corresponding marked points:2�k Ai 2 Oi: (4.23)It is remarkable that the symplectic structure (4.16) may be used for the space Ag;nas well. It is convenient to introduce one more symplectic space which is the directproduct of Ag;n and its collection of coadjoint orbits:Atotg;n = Ag;n �O1 � : : :�On: (4.24)It carries the symplectic structure
totA = 
A + nXi $i; (4.25)The action of the gauge group may be de�ned on the space Atotg;n as follows:24



Ag = g�1Ag + g�1dg :T gi = g(zi)�1Tig(zi); vgi = vig(zi): (4.26)As we see, the modi�ed gauge transformations are combined from the standard gaugetransformations (4.17) and orbit conjugations (2.44). The momentum mapping isgiven by the coe�cient before A0 in the action (4.13):�(z) = nXi Ti�(z � zi)� k2�F (z): (4.27)It is easy to see that the de�nition of Ag;n ensures that there is a lot of solutions ofthe zero level conditions.De�nition 6 The space of 
at connections on a decorated Riemann surface =g;nis de�ned as a space of solutions of the following equation which replaces the zerocurvature condition: �(z) = 0: (4.28)Let us choose a loop Si surrounding the marked point zi. One can de�ne themonodromy matrix (or parallel transport)Mi along this way. It is easy to check thatif A and fTig satisfy (4.28), the monodromy matrix Mi belongs to the conjugancyclass of the exponent of Di Mi = u�1i exp(2�k Di)ui: (4.29)De�nition 7 The moduli space of 
at connections on a Riemann surface of genusg with n marked points Mg;n is de�ned as a quotient of the space of 
at connectionon a decorated Riemann surface over the gauge group action (4.26):Mg;n = =g;n=G�: (4.30)It is important that the moduli space Mg;n is obtained by Hamiltonian reductionfrom the symplectic space Atotg;n. This procedure provides the nondegenerate sym-plectic form on Mg;n which is the main object of this paper.4.3 Combinatorial description of the symplectic structureon the moduli spaceAs it was explained in subsection 3.3, the symplectic structure on the reduced phasespace obtained by Hamiltonian reduction from some symplectic space is easy todescribe. More exactly, we get the reduced phase space as a projection of someconstant momentum surface to the quotient of the global phase space over the groupaction. The pull-back of the reduced symplectic form to the constant momentumsurface is equal to the restriction of the global symplectic form to the same subspace.25



The moduli space of 
at connections plays the role of the reduced phase spacethe global space being the space of smooth connections with the symplectic form(4.16). So our main concern is to restrict the form (4.16) to the space of 
at connec-tions e�ciently. To this end it is convenient to introduce some intermediate �nitedimensional space between the moduli space and the space of 
at connections whichadmits an e�cient parametrization.Let us choose a point P on the Riemann surface which does not coincide withmarked points zi. One can de�ne a subgroup of the gauge group G�(P ) by therequirement: G�(P ) = fg 2 G�; g(P ) = Ig: (4.31)The quotient space Mg;n(P ) = =g;n=G�(P ) (4.32)is already �nite dimensional and admits e�cient parametrization.Let us draw a bunch of circles on the Riemann surface so that there is only oneintersection point P . In this bunch we have two circles for each handle (correspond-ing to a- and b- cycles) and one circle for each marked point. We shall denote thecircles corresponding to the i's handle by ai and bi (i = 1; : : : ; g) and we shall usesymbols mi (i = 1; : : : ; n) for the circles surrounding marked points. We assumethat the circles on � are chosen in such a way that the only de�ning relation in�1(�g;n) looks as m1 : : :mn(a1b�11 a�11 b1) : : : (agb�1g a�1g bg) = id: (4.33)To each circle we assign the corresponding monodromy matrix de�ned by the 
atconnection A. Let us denote these matrices by Ai,Bi andMi for a-, b- and m-circles.The set of monodromy matrices provides coordinates on Mg;n and a representationof the fundamental group �1(�g;n). It implies the relationM1 : : :Mn(A1B�11 A�11 B1) : : : (AgB�1g A�1g Bg) = I (4.34)imposed on the values of Ai,Bi andMi. Actually, monodromiesMi are not arbitrary.They belong to conjugancy classes Ci(G) de�ned byMi = u�1i Ciui; (4.35)where Ci = exp (2�k Di): (4.36)So the space Mg;n(P ) is a subspace inFg;n = G2g � nYi=1Ci(G) (4.37)de�ned by the relation (4.34). 26



The original moduli space may be represented as a quotient of Mg;n over theresidual gauge group which is isomorphic to the group G:Mg;n =Mg;n(P )=G: (4.38)It is convenient to de�ne some additional coordinates Ki on Fg;n:K0 = I;Ki =M1 : : :Mi; 1 � i � nKn+2i�1 = Kn+2i�2Ai; (4.39)Kn+2i = Kn+2i�1B�1i A�1i Bi:It follows from the equation (4.34) thatKn+2g = K0 = I: (4.40)Unfortunately, coordinates A;B;M and K are not su�cient for analysis of thesymplectic form on the moduli space and we have to introduce a new space ~F :~F = Gn+2g �Hn+g : (4.41)Here H is a Cartan subgroup of G. ~F may be parametrized by matrices ui; i =1; : : : ; n + 2g from the group G and by Cartan elements Ci; i = 1; : : : ; n + g. Wede�ne a projection from ~F to F by the formulae:Mi = u�1i Ciui;Ai = u�1n+2i�1Cn+iun+2i�1; (4.42)Bi = un+2iu�1n+2i�1:Let us call ~Mg;n(P ) the preimage of Mg;n(P ) in ~F .After this lengthy preparations we are ready to formulate the main result of thissubsection.Theorem 3 The pull-back of the canonical symplectic form on Mg;n to ~Mg;n(P )coincides with the restriction of the following two-form de�ned on ~F :
F = k4�Tr[n+2gXi=1 �uiu�1i Ci ^ �uiu�1i C�1i � n+2gXi=1 �KiK�1i ^ �Ki�1K�1i�1 ++ gXi=1 �Cn+iC�1n+i ^ (�un+2iu�1n+2i � �un+2i�1u�1n+2i�1)]: (4.43)The rest of the subsection is devoted to proof of Theorem 3.Proof. 27



Let us cut the surface along every circle ai; bi;mi. We get n + 1 disconnectedparts. The �rst n are similar. Each of them is a neighborhood of the marked pointwith the cycle mi as a boundary. We denote these disjoint parts by Pi. The lastone is a polygon. There is no marked points inside and the boundary is composedof a-,b-, and m-cycles as it is prescribed by formula (4.33). We denote the polygonby P0.Being restricted to P0 a 
at connection A becomes trivial:A jP0= g�10 dg0: (4.44)For any other part Pi we get a bit more complicated expression:A jPi= 1kg�1i Digid�i + g�1i dgi: (4.45)We remind that Di is a diagonal matrix which characterizes the orbit attached tothe marked point zi. There is a set of consistency conditions which tells that theconnection described by formulae (4.44,4.45) is actually smooth on the Riemannsurface everywhere except the marked points. It means that when one approachesthe cuts from two sides, one always gets the same value of A. To be explicit, let usconsider them-cycle which surrounds the marked point zi. Comparison of equations(4.44,4.45) gives: g�10 dg0 jmi= (1kg�1i Digid�i + g�1i dgi) jmi : (4.46)This equation may be easily solved:g0 jmi= NMgi jmi; (4.47)where N is an arbitrary constant matrix and M is equal toM(�i) = exp (1kDi�i): (4.48)Now we turn to consistency conditions which arise when one considers a- or b-cycles. In this case both sides of the cut belong to the polygon P0. Let us denotethe restrictions of g0 on the cut sides by g0 and g00 . So we have:g0�1dg0 = g00�1dg00 : (4.49)We conclude that the matrices g0 and g00 may di�er only by a constant left multiplier:g00 = Ng0 : (4.50)By now we considered connection A in the region of the surface where it is 
at.However, it is not true at the marked points. We calculate the curvature in theregion Pi and get a �-function singularity:F (z) jPi= 2�k g�1i Digi�(z � zi): (4.51)28



Equations (4.51,4.27,4.28) imply that the value gi(zi) coincides with the matrixvi: gi(zi) = vi: (4.52)Let us remind that vi diagonalizes the matrix Ti attached to the marked point zi byde�nition of the decorated Riemann surface.Now we are prepared to consider the symplectic structure on the space of 
atconnections. First, let us rewrite the de�nition (4.25) in the following way:
tot = !0 + nXi=1 !i; (4.53)where the summands correspond to di�erent parts of the Riemann surface:!0 = k4�Tr ZP0 �A ^ �A;!i = k4�Tr ZPi �A ^ �A+$i: (4.54)The next step must be to substitute (4.44,4.45) into formulae (4.54). The followinglemma provides an appropriate technical tool for this operation.Lemma 3 Let A be a G-valued connection de�ned in the region P of the Riemannsurface �. Suppose that A = g�1Bg + g�1dg: (4.55)Then the canonical symplectic form!P = Tr ZP �A ^ �A (4.56)may be rewritten as!P = Tr ZPf�B^�B+2�[FB�gg�1]g+Tr Z@Pf�gg�1d(�gg�1)��[B�gg�1]g; (4.57)where FB is a curvature of the connection BFB = dB �B2: (4.58)One can prove Lemma 3 by straightforward calculation.Let us apply Lemma 3 to the polygon P0. In this case B = 0 and the answerreduces to !0 = k4�Tr Z@P0 �g0g�10 d(�g0g�10 ): (4.59)29



The boundary of the polygon @P0 consists of n+4g cycles (4.33). So actually wehave n+ 4g contour integrals in the r.h.s. of (4.59).Now we use formula (4.57) to rewrite symplectic structures !i:!i = k4�Tr Z@PIf�gig�1i d(�gig�1i )� 2�k �[Di�gig�1i ]g ��Tr ZPI �fDi�gig�1i g�(z � zi) + TrDi(�viv�1i )2: (4.60)The last term in (4.60) represents Kirillov form attached to the marked point zi.Taking into account relation (4.52) we discover that this term together with thethird term in (4.60) cancel each other.At this point it is convenient to denote the values of g0 at the corners of thepolygon. We enumerate the corners by the index i = 0; : : : ; n + 4g � 1 so that theend-points of the cycle mi are labeled by i � 1 and i. One can easily read fromformula (4.33) the enumeration of the ends of a- and b-cycles (see Fig. 1). Forexample, the end-points of ai are labeled by n+4(i�1) and n+4(i�1)+1, whereasthe end-points of a�1i entering in the same word are labeled by n+ 4(i� 1) + 2 andn+ 4(i� 1) + 3. We denote the value of g0 at the i's corner by hi.XXX XXX@@@@@@RCCCCCCCCW������������������������9XXXXXXXXy@@@@CCCCCCCCO���
�������� ����������:M1
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Monodromies Ai,Bi and Mi may be expressed in terms of hi asMi = h�1i�1hi; (4.61)Ai = h�1n+4(i�1)hn+4(i�1)+1 = h�1n+4(i�1)+3h4(i�1)+2; (4.62)Bi = h�1n+4(i�1)+1hn+4(i�1)+2 = h�1n+4ih4(i�1)+3: (4.63)Let us remark that without loss of generality we can choose g0 in such a way thatits value h0 is equal to unit element in G. After that some of the corner values himay be identi�ed with Ki;Ki = 8><>:hi for 1 � i � nh2i�n�1 for (i� n) oddh2i�n for (i� n) even (4.64)Our strategy is to adjust notations to the description of Poisson-Lie symplecticforms (see subsection 3.2). Using formula (4.47) one can diagonalize MiMi = u�1i Ciui: (4.65)Here ui is the value of the variable gi at the point P .Let us rewrite formula (4.59) in the following way:!0 = nXi=1 'i + gXi=1  i: (4.66)Here 'i is a contribution corresponding to the marked point:'i = k4�Tr Zmi �g0g�10 d(�g0g�10 ); (4.67)and  i is a contribution of the handle: i = k4�Tr Zaib�1i a�1i bi �g0g�10 d(�g0g�10 ): (4.68)First, we are going to evaluate the total contribution of the givenM -cycle whichis equal to a sum of two terms: 
i = !i + 'i: (4.69)Actually, each summand in (4.69) includes an integral over the m-cycle. However,this sum of integrals is an integral of exact form and it depends only on some�nite number of boundary values. This situation is typical and will repeat when weconsider a contribution of a handle.Lemma 4 The form !i depends only on �nite number of parameters and may bewritten as !i = k4�Tr[Ci�uiu�1i ^ C�1i �uiu�1i � �KiK�1i ^ �Ki�1K�1i�1]: (4.70)31



To prove Lemma 4 one should substitute formula (4.47) into expression for 'i,integrate by parts and compare the result with the expression for !i. The integrals in'i and !i cancel each other and after rearrangements the boundary terms reproduceformula (4.70).Now we turn to the contribution of a handle  i into the symplectic form onthe moduli space. One can see that each a-cycle and each b-cycle enter twice intoexpression (4.66). These two contributions correspond to two sides of the cut. Asusual, the result simpli�es if we combine the contributions of two cut sides together.Lemma 5 Let g0; g00 be two mappings from the segment [x1; x2] into the group G withboundary values g01;2; g001;2. Suppose that these mappings di�er by the x-independentleft multiplier g00 = Ng0 : (4.71)Then the following equality holds:
 [x1;x2] = Tr Z x2x1 �g00g00�1d(�g00g00�1)� Tr Z x2x1 �g0g0�1d(�g0g0�1) == Tr(g0�11 �g01 ^ g00�11 �g001 � g0�12 �g02 ^ g00�12 �g002 ): (4.72)Proof is straightforward.Let us parametrize Ai and Bi as in (4.42):Ai = u�1n+2i�1Cn+iun+2i�1; un+2i = Biun+2i�1: (4.73)One of the motivations for such notations is the following identity:B�1i A�1i Bi = u�1n+2iC�1n+iun+2i: (4.74)In principle, one can introduce the following uniformal variablesMn+2i�1 = Ai = u�1n+2i�1Cn+iun+2i�1;Mn+2i = B�1i A�1i Bi = u�1n+2iC�1n+iun+2i: (4.75)so that the de�ning relation (4.34) looks asM1 : : :MnMn+1 : : :Mn+2g = I: (4.76)In these variables we treat handles and marked points in the same way. Roughlyspeaking, one handle produces two marked points which have the inverse values ofC: C1 = Cn+i, C2 = C�1n+i. It resembles the relation between the double D+ andtwo orbits of dressing transformations (see subsection 3.4). Using the de�nition ofM (4.75) we can clarify the de�nition of Ki:Ki =M1 : : :Mi: (4.77)Now we turn to the contribution  i of a handle into symplectic form (4.66).32



Lemma 6 The handle contribution into symplectic form depends only on the valuesof g0 at the end-points of the corresponding a- and b-cycles and may be written as i = k4�Tr[Cn+i�un+2i�1u�1n+2i�1 ^ C�1n+i�un+2i�1u�1n+2i�1 ���Kn+2i�1K�1n+2i�1 ^ �Kn+2(i�1)K�1n+2(i�1) ++C�1n+i�un+2iu�1n+2i ^ Cn+i�un+2iu�1n+2i � �Kn+2iK�1n+2i ^ �Kn+2i�1K�1n+2i�1 + (4.78)+�Cn+iC�1n+i ^ (�un+2i�1u�1n+2i�1 � �un+2iu�1n+2i)]:If we take into account Lemma 5, the proof of Lemma 6 becomes straightforwardbut long calculation. Let us remark that the terrible formula (4.78) contains twocopies of the marked point contribution (4.70) with parameters Cn+i and C�1n+i. Thelast term includes �Cn+iC�1n+i and coincides with the corresponding additional termin formula (3.96) for the symplectic form on the double D+.Summarizing Lemma 4 and Lemma 6 we get the proof of Theorem 3 completed.4.4 Equivalence to Poisson-Lie symplectic structureFormula (4.43) contains cross-terms with di�erent indices i. In this subsection werepresent the canonical symplectic structure as a direct sum of several terms. Usingthe results of Section 3, each term may be identi�ed with either Kirillov form forthe Poisson-Lie group G� or symplectic form on the Heisenberg double D+ of thePoisson-Lie group G. To achieve this result we have to make a change of variables.The new set of variables is designed to "decouple" contributions of di�erent handlesand marked points.The following remark is important for understanding of the construction of de-coupled variables. Monodromy matricesMi, Ai and Bi are elements of the group G.In accordance with this fact we use G-multiplication to de�ne the variables Ki (4.77)and to constraint monodromies (4.34). On the other hand, natural variables for de-scription of orbits of dressing transformations or double D+ must belong to G�. Insubsection 3.5 we de�ned the mapping � : G� ! G. Unfortunately, � is not a grouphomomorphism. So, we would face di�culties applying � to identities (4.77,4.34).This is a motivation to introduce a notion of a weak group homomorphism.De�nition 8 Let G and G0 be two groups. A set of mappings�(n) : Gn ! G0n (4.79)is called a weak homomorphism if the following diagram is commutative for any i:Gn �(n)�! G0nmi # m0i # (4.80)Gn�1 �(n�1)�! G0n�1 :Here mi and m0i are multiplication mappings in G and G0 correspondingly whichmap the product of n copies of the group into the product of n � 1 copies:33



mi : (g1; : : : ; gi; gi+1; : : : ; gn)! (g1; : : : ; gigi+1; : : : ; gn) :m0i : (g01; : : : ; g0i; g0i+1; : : : ; g0n)! (g01; : : : ; g0ig0i+1; : : : ; g0n) : (4.81)The mapping � (3.89) may be considered as a �rst mapping of a weak homomor-phism from G� to G. To de�ne the other mappings �(n) we introduce the productsK�(i) = L�(1) : : : L�(i): (4.82)The action of �(n) looks as follows. A tuple (L+(i); L�(i)) 2 G�; i = 1; : : : n ismapped into the tuple Mi 2 G; i = 1; : : : n:Mi = K�(i� 1)LiK�(i� 1)�1: (4.83)Here Li is the image of the pair (L+(i); L�(i)) under the action of �:Li = L+(i)L�(i)�1: (4.84)One can easily check that the set of mappings (4.83) satis�es the requirements of aweak homomorphism.The next step is to implement the de�nition (4.83) to the space ~F . Let usintroduce a set of variables on ~F which consists of vi; i = 1; : : : ; n+2g taking valuesin G and C 0i ; i = 1; : : : ; n + g taking values in H. In addition we introduce theelements of G�: Li = v�1i C 0ivi for1 � i � n;Ln+2i�1 = vn+2i�1C 0n+ivn+2i�1 for1 � i � g; (4.85)Ln+2i = vn+2iC 0�1n+ivn+2i for1 � i � g:together with their Gauss components (3.89). So, we have natural variables todescribe n copies of the orbit of dressing transformations in G� and g copies of theHeisenberg double. The canonical symplectic form on this object is equal to thesum of symplectic forms for each copy of the orbit (3.92) and each copy of double(3.96): 
PL = nXi=1 #(ui; C 0i) + gXi=1�(un+2i�1; un+2i; C 0n+i): (4.86)Let us compare the forms (4.43) and (4.86). Motivated by the de�nition (4.83) weintroduce the mapping � : ~F ! ~F de�ned by the relations:ui = viK�1� (i� 1); Ci = C 0i: (4.87)Here K�(i) are de�ned as in (4.82). It is easy to see that the mapping � inducesthe mapping �(n+2g) from the set of pairs (L+(i); L+(i)) into the set of monodromies34



Mi. It is guaranteed by the de�nition of weak homomorphism that G-product inthe relation (4.34) is now replaced by G�-product:K�(n+ 2g) = L�(1) : : : L�(n + 2g) = I: (4.88)Equation (4.88) de�nes the preimage of ~Mg;n in ~F with respect to the mapping �.It is worth mentioning that the matrices Ki from the previous subsection may berepresented as Ki = K+(i)K�(i)�1: (4.89)This also a consequence of the de�nition of weak homomorphism. Indeed, Ki hasbeen de�ned as a product in G of the �rst i monodromies. Formula (4.82) de�nesa product in G� of i �rst elements (L+(i); L+(i)). Using the basic property of weakhomomorphism (i� 1) times we check (4.89).The mapping � provides a possibility to compare two-forms 
F and 
PL.Lemma 7 The two-forms 
F is proportional to the pull-back of the form 
PL alongthe mapping �: 
F = k4���(
PL): (4.90)Lemma 7 may be proved by straightforward calculation. Theorem 3 and Lemma7 imply the following theorem which is the main result of this paper.Theorem 4 Being restricted to the subset (4.88), the direct sum of n copies ofKirillov symplectic form on the orbit of dressing transformations in G� and g copiesof the canonical form on the Heisenberg double of the group G coincides up to ascalar multiplier with the pull-back of the canonical symplectic form on the modulispace of 
at connections on the Riemann surface of genus g with n marked points.5 ConclusionsWe have started in Section 4 from the correlator of the Chern-Simons theory on thecylinder with inserted vertical Wilson lines. This system may be represented as a3D gauge �eld interacting to a �nite number degrees of freedom living on the Wilsonlines. As there is no Hamiltonian, the system is completely de�ned by the symplecticform on the phase space. We proved that this symplectic form may be decomposedinto the direct sum of Poisson-Lie symplectic structures subject to constraint (4.34).So, the functional integral for the correlator (4.10) may be rewritten as:Zk(I1; : : : ; In) = Z n+2gYi=1 Dui n+gYi=n+1DCi��e k+h2� R ��1fPni=1 #(ui ;Ci)+Pgi=1�(un+2i�1 ;un+2i ;Cn+i)g�(M1 : : :Bg): (5.91)Here we took into account the standard shift k ! k+h in the Chern-Simons actionand used the symbol ��1 as in Wess-Zumino action.. If we compare expression (5.91)35



with original formula (4.10), we �nd that the gauge �eld disappeared and the Wilsonline insertions got modi�ed. One can say that the Chern-Simons theory in the bulkquantizes the group variables living on the Wilson lines. In addition to the modi�edWilson lines one �nds in the partition function (5.91) the �nite number of degreesof freedom which carry topological information about genus of the Riemann surface.If we turn to operator approach, each Wilson line multiplier in (5.91) presentsa deformed analogue of the orbit quantum mechanics considered in subsection 2.2.It is natural to expect that quantization leads to the Hilbert space which coincideswith the space of certain irreducible representation of the quantum group with thehighest weight w given by the formula (2.50). Each multiplier corresponding to ahandle gives a regular representation < of the same quantum group. The parts ofthe system corresponding to the di�erent summands in the action (5.91) are relatedonly by the constraint (4.34). It prescribes that the Hilbert space of the wholesystem is equal to the space of invariants in the tensor product.H = Invq(I1 
 : : : In 
<
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