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THE STRUCTURE OF THE FRECHET DERIVATIVE IN
BANACH SPACES

EVA MATOUSKOVA AND CHARLES STEGALL

ABSTRACT. Our analysis of Fréchet differentiable functions obtains results of
the following type. An operator is factorizable if it factors through an Asplund
space or satisfies any of the conditions of [S2]. Suppose that X is a Banach
space, W is an open subset of the Banach space Z and §: W — Z is Fréchet
differentiable at every point. The set

{w € W : g'(w) factorizble}

is a dense subset of W if and only if for any continuous and convex function
¢ : X — R the composed function ¢3 is Fréchet differentiable on a dense G
subset of W. We observe that if a continuous function is Fréchet differentiable
everywhere on an open set then the derivative is in the first Baire class.

A Banach space whose dual has the Radon-Nikodym property is sometimes called
an Asplund space; a Banach space whose dual has the Radon-Nikodym property is
characterized by the property that each separable and linear subspace of it has a
norm separable dual (examples are finite dimensional spaces or reflexive spaces). We
shall say that an operator (bounded and linear function) T': 7 — X is factorizable
if and only if the operator factors linearly through an Asplund space; equivalently,
T is factorizable if and only if T(Bz(0, 1)) is equimeasurable. Negatively stated, an
operator T': Z — X is not factorizable if and only if there exists a weak® compact
subset K of X* and € > 0 so that for any weak™ open subset U of K we have that
the norm diameter of 7*(U) is greater than ¢; in fact, we may assume that K has
a countable dense set ([S1] and [S2]). Trivially, if Z or X is an Asplund space then
all operators are factorizable. If K C Bx«(0,p), 71 : Z — X is an operator, and
|71 =T < ¢/4(p+1) then Ty is also not factorizable. Tt follows that the factorizable
operators form a closed subset of of the Banach space of linear operators from 72
to X. The factorizable operators form a vector space (see eg [S2]) that is a closed
subspace of the space of all operators. If we define the convex function

ok (x) = sup{a”(2) s 2" € K)

it follows that the function ¢ T is not Fréchet differentiable at any point. We show
even more: for any fixed y € X, ¢x(y + T(z)) is not differentiable at any point.
Fix w € Z and choose any z* € Z*. By assumption, the image of

(1) (o € K 2™y + T(w)) > o (y + T(w) ~ =)
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under 7™ has diameter more than ¢. Choose z;, € K so that

o Py -+ T(w)) > by + T(w)) — 5 and
17" () = =11 > 5.

Choose u, € Z, ||uy|| = 1, so that

(3) (T*(zn) — 2%) (un) > €/3.

Computing the difference quotient

or(y+T(w+ un)) — ok (y+T(w)))

1/n — " (un)
. s T ) oty £, e
SEAUES ([0 BT (0 S
> ()45

This proves that z* is not the derivative of ¢x(y + T(2)) at ¢x(y + T'(w)); as z*
was arbitrary, there is no derivative.

Suppose that 5 : W — X is continuous where W is an open subset of the Banach
space Z. Suppose that § is Fréchet differentiable at w and f’(w) is not factorizable.
Then there exists K as above so that ¢x ' (w) has no point of differentiability. If
we write

Bv) = Bw) + B'(w)(v — w) + o(v — w)
then
¢k (B(v)) = éx (B(w) — B'(w)(w) + B'(w)(v) + o(v — w))
is not Fréchet differentiable at w because
B(v) = ¢x (B(w) = ' (w)(w) + 5 (w)(v)) |
(5) = [éx (B(w) = B'(w)(w) + B (w)(v) + o(v — w))
— ok (B(w) — B'(w)(w) + ' (w)(v)) | < [¢x (o(v — w))| < pllo(v — w)]]

Since
(e —w)l _, ,
v —wl|
it follows that ¢ is differentiable at w if and only if, with y = g(w) — 8/ (w)(w),
(6) ¢k (B(w) = B'(w)(w) + ' (w)(v)) = dx (y + ' (w)(v))

is differentiable at w, and the latter function is not differentiable at w. Similarly, if
S were continuously differentiable at w and 3’ (w) were not factorizable then there
would exist a continuous convex function ¢ and an open neighborhood V' of w such
that ¢8 was not differentiable at any point of V.

Suppose that f : M — 7 is a function from the complete metric space M to the
Banach space 7 (neither M mnor 7 is necessarily assumed to be separable). Then
f is a function of the first Baire class (pointwise limit of a sequence of continuous
functions) if and only if f|C has a point of continuity for any closed (or, compact)
set €' C M if and only if f=}(E) is a Gs set for any closed set £ C Z. This is
a special case of results that appear in [S6] and other places, the basic result for
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separable spaces going back to Baire himself. Recall that a Gs subset of a complete
metric space has an equivalent metric that makes it complete. The following is
trivial in the real case, but, surprisingly, not so easy in the general case, where
the proof is not constructive. The proof does reduce to the separable case (results
mentioned above) but does not seem to be easier by specifically restricting oneself to
the separable case. We were unable to locate the following result in the literature,
although there are a number of related results (see below). There is an extensive
literature concerning real valued functions which are derivatives ([Br]).

Theorem 1. Suppose that X s a Banach space, W 1is an open subset of the Banach
space Z and B : W — Z is a continuous function that is Fréchet differentiable at
every point. Then ' : W — L(Z,X), the bounded linear operators from 7 to X,
1s a function of the first Baire class.

Proof. For each pair w, v in W we define
Bv) = B(w) + B/ (w)(v — w) + 0w (v — w).

Fix C' C W that is closed and not empty. For each pair of integers n and m define

1 1
Apm ={w e C:||ow(v—w)|| < =|lv—w]| for all v such that ||v —w|| < —}.
n m

Since €' = Uy Ay m, it follows from the Baire category theorem that UmAO 1s

an open dense subset of C'. Fix n, m and wg € Z;m. Fix § > 0 so small that
d < 1/2nm, B(wy,§)NC C ZZV
Choose n > 0 so that

o and JJou, (v = wo)l| < v — woll if [[v - woll < 5.

B(wo,n) C {w : (L+][A]]) (lw — wol| + [|B(w) — Bwo)|l) < (6/2)*}

Let w € B(wo,n) N Ap m and choose any v so that |jv — w|| = 2. We have the

2
following easy inequalities:

§ _ [lv—woll _ |lv— wol §
1—-=-< = <14 -=
SRy o=l = T2
1
™) lows (v = o)l < 1o = woll and

1
w(v—w)|| < =|lv = w]|.
llow (v —w)|| < —|lv —wl|
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Continuing, we estimate
1) = ') )
e R R
18 5 - )
Blv) - Blun)
(s) d/2
(ounlv—wi) (lle—woll\ B} = B(w) | oulv - w)
(i) (5t - g+ 255
18 = Bwn) — B) + S
572
§ llowo(o = wolll | llow(v = w)]
Y S P Ty

2 d/2 n n n o n—n

(v— w)H
3/2

<1 (wo)
J

— ' (w)

<

+]

[NCE ISR

)
< Z
-2

2 2

This proves that |5 (wo) — 8’ (w)|| < 3/n. Now, choose any other wy € B(wg, n)NC.
Applying, the same techniques, we know that there exists a ball B(wy, 7), and we
assume that B(wi,7) C B(wp, ), so that if w € B(w1,7) N Ay 5, then || (w1) —
B'(w)]| < 3/n. This proves that || (wg) — f'(w1)|| < 6/n and the variation of
8" over B(wg,n) N C is no more than 6/n. This proves that 3’ restricted to C' is
continuous at each point of N, U,, Z;m, which is a dense Gy subset of C'. Since C
was an arbitrary closed subset of W, this proves that 3’ is in the first Baire class.

If ¢ : X — R is a continuous and convex function, then d¢(x) denotes the
subgradient of ¢ at x;

(9) Jo(x) ={a* € X" 12" (y — 2) < ¢(y) — ¢(x) for all y}

In [S3] (see also [S4] and [S5]) we introduced a class of topological spaces, which,
in turn define a class of Banach spaces more general than that of the Asplund spaces
([S2]). There are many equivalent ways of defining these spaces loc. cit. For more
recent results see [Z] and its references.

Definition 2. Let C denote the class of completely reqular spaces with the properties
that T € C if and only if given any complete metric space M, any upper semicon-
tinuous and compact valued mapping ® : M — p(T) then there exists a dense Gj
subset My of M and a continuous function B : My — T such that f(m) € ®(m)
for each m € My. The class X of Banach spaces is defined such that X € X if and
only if the unit ball of X*, in the weak™ topology, is i C.

Proposition 3. For any pair of Banach spaces, denote by Le¢(Z, X) the linear
operators such that T € L¢(Z, X) if and only if T*(Bz+(0,1)) € C (T transforms
bounded sets into sets which belong to the class C). Then Le(Z,X) is a closed
vector subspace of L(Z, X)) containing the factorizable operators.

Proof. We shall give complete details in the Gateaux differentiable case. Suppose
that there exist a dense subset D of W, w € D, and a function ¢ : D — X* such
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that ¢(z) € 9¢(8(z)) and (B (w))*¢ is weak* continuous at w. Fix any v, ||v]| = 1,
and t, # 0 and t, — 0. Define
(10) o(t) = B(w + tv) — B(v) — §'(w)(tv)

and choose v, = v, ||vp]| = 1, and s, # 0 so that s, = 0, w+ s,v, € D,

”O(ti”) _Blu S"SUZ) —2) 4 g (wel] < and
(1 8B(w +ta2) — 6(r) 9w+ snvn) —8B() 1
I th Sn 1< n
Then,
(12)
o< LD Z O ) 3 (o)
S %_1_ ¢ﬁ(w + Sn;;n) - (/)ﬁ(v) _ w(w)(ﬁ’(w)v)
< %+¢(w+8nvn) <¢ﬂ(w+5nsvnn) — ¢ﬂ(v)) —w(w)(ﬁ’(w)v)
< - + (w4 spvy) (qbﬂ(w + Snsv:) — #8(v) — ﬂ/(w)v)
+ (P (w + spvn) — P(w)) (B (w)v)
< L+ o) (7”0&”')” + l) (0w 50vm) = (w) (5 (w)0).

We know that
(V(w + spvn) — () (B (w)v) =0,
sup ||¢(w + spv,)|| < oo and

lott)ll _, o

[tn

The converse is proved by using the same inequalities.

(13)

The following proposition and theorem appear in [S3] and [S4].

Proposition 4. With the same hypothesis as above on W, Z and X, suppose that
B is continuous and Gateaur differentiable (respectively, Fréchet differentiable) at
every point and let ¢ : X — R be a continuous and convex function. Then ¢S is
Gateaur differentiable (respectively, Fréchet differentiable) at w € W if and only if
there exist a dense subset D of W, w € D, and a function ¥ : D — X* such that
P(z) € 0¢(B(2)) and (B (w))*¢ is weak™ continuous at w (respectively, (5'(w))*y
is norm continuous at w).

Theorem 5. With the same hypothesis as above on W and Z, suppose that X € X
(respectively, X is an Asplund space), and suppose that B is everywhere Gateaur
differentiable (respectively, Frechét differentiable), then for any continuous and con-
ver function ¢ : X — R the composed function ¢ is Gateaur differentiable (respec-
tively, Frechét differentiable) on a dense Gs subset of W.

The main result here is the following, and in the Frechét case generalizes the
result above.
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Theorem 6. Suppose that X s a Banach space, W 1is an open subset of the Banach
space Z and B : W — Z is a continuous function that is Fréchet differentiable at
every pownt. If the set

{weW:p(w) e Le(X,Y)}

14
(14) (respectively, {w € W : §'(w) is representable})

is a dense subset of W then for any continuous and convex function ¢ : X — R the
composed function ¢f is Gateaur differentiable (respectively, Frechét differentiable)
on a dense Gy subset of W.

A converse of this, in the Gateaux case, is the following: suppose that
(15) {weW: #(w) € Le(X,Y)}

is not dense in W. Then there exists w € W, an open neighborhood V of w, a
complete metric space M, an upper semicontinuous and compact valued mapping
$: M — p(X) so that for allv € V, g'(v)® : M — p(7) has no selection as in the
definition of C.

Proposition 7. With the same hypothesis as above on W, Z and X, suppose that
B is a continuous function that is everywhere Frechét differentiable at every point,
and assume that

{w: f'(w) € Le(Z, X)},

16
(16) (respectively, {w : B’ (w) is factorizable})

is dense in W. Let ¢ : X — R be a continuous and convex function. Then
there exists a dense Gs set G C W and a function A : G = Z* such that A(z) €
(B'(2))*09(B(2)) that is weak* continuous (respectively, norm continuous).

Proof. We give the details in the Frechét case that {w : '(w) is factorizable} is
dense. Since /3’ is in the first Baire class and the space of factorizable operators
is a Banach space, {w : 8'(w) factorizable} is Gy and it is dense by hypothesis.
Also, the set of points where 3’ is continuous contains is a Gs set. Let H be a
dense Gs such that 4’ is continuous at each point w of H and §'(w) is factorizable.
Define ((z) = (8'(2))*0¢(8(z)) for each z € H. Clearly, ((z) is weak™ compact
and we shall show that not only is it weak™ upper semicontinuous but satisfies the
hypothesis of Proposition C, page 192 of [S5]. Tt is also possible to argue as in the
proof of Theorem 3 of [S6]. To see that ¢ is weak® upper semicontinuous suppose
that z, — zo, F is a weak* closed subset of Z* and ((z,) N F # §. To show that
C(z0) N F # B, we need only show that ((zg) N (F + Bz+(0,¢)) # @ for any € > 0.
Observe, that since (8/(z0))* is weak* continuous, the mapping (8'(z0))* 9¢(5(#))
is upper semicontinuous. Since 8’ is continuous at zq, ||’ (zn) — A/ (2)|| = 0 which
means that for large n,

(B (20))706(B(2n)) N (F + Bz+(0,¢)) # 0.
Since f(zn) — B(z0) and (8 (20))*0¢(5(%)) is upper semicontinuous, we have that
(8(20))"0¢(B(20)) N (F + Bz+(0,€)) = ((20) N (F + Bz+(0,¢)) # 0.
and, by compactness, {(zg) N F # §. Let w € H and € > 0. Since d¢(z) is locally
bounded there exist p > 0 and n > 0 so that if ||z — S(w)|| < n then d¢(z) C
Bx+(0,p). Let v € H such that ||3(v) — B(w)]| < n and ||f'(w) — B/ (v)|| < €/4p.
Then,
(8 (1) 06((v)) C (9())" B (0, ) + B+ (0,6)
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and since (B'(w))*Bx« (0, p) is a weak* compact set with the Radon-Nikodym prop-
erty, the hypothesis of [S5] loc. cit. is satisfied; there exists a dense Gs subset G of
H (hence, G is a dense G subset W) and A : GG = Z* as required.

The case that 8 is an operator and X or Z is an Asplund space appears in [S2],
for arbitrary g and X an Asplund space in [S3] and [S4], and another nonlinear
version appears in [MS]. It is rather surprising that it is true in the following
generality.

Theorem 8. Suppose that X s a Banach space, W 1is an open subset of the Banach
space 7, and B : W — Z s a continuous function that is Fréchet differentiable at
every point. The set

{we W : p'(w) is factorizable}
1s a dense subset of W if and only if for any continuous and convex function ¢ :
X — R the composed function ¢ is Fréchet differentiable on a dense Gs subset of
w.

Proof. The case that {w € W : g'(w) is factorizable} is not dense is essentially
treated above. Choose w where ' is continuous at w and f’(u) is not factorizable
for uw in some neighborhood of w. Proceed as above. Suppose that {w € W :
B'(w) is factorizable} is dense. Let A : G — Z* where A and G are defined as in the
proposition above. Choose arbitrarily ¢(z) € d¢3(z) so that (8'(2))*(¥(2)) = A(z).
Fix any wg € G and any sequence {w,} C G such that w, — wy. We need to show
that

103" (w0))™ (¥(wn) = ¢ (wo)) || = 0.
We may assume that {9¢(58(wy)) : n > 0} is a bounded subset of Z7*. We have the
following inequalities

(17)
108" (wo))™ (¥ (wn) — ¥(wo)) ||
<18 (wo) = B'(wn))™ ((wn) = d(wo)) || +1(8" (wn))™ (¢(wn) — ¥ (wo)) |
< 118" (wo) = B'(wn))™ (¥ (wn) = ¥ (wo)) |
+ 1A (wn) = Awo) || + [[A(wo) — (B (wn))™ (¢ (wo)).
We know that A(wp) — A(wg),
Mwo) — (8" (wn))* (¥(wo)) = (B'(wo) — ' (wn))” (¥(wo)) and
(B'(wy) — B'(wn))* converges uniformly to the origin on the bounded set
{Y(wo), ¥(wr),...}.
By the proposition above, ¢ is Fréchet differentiable at each point of .

Wy

Corollary 9. With the same hypothesis as above on W, Z and 8 let ¢ : X — R
be a conlinuous and convexr function. Suppose that U C W s an open set and ¢j3
15 not differentiable at any point of U. Then there exists an open set V. C U and a
weak™ compact K C X™* such that ¢ B is not differentiable at any point of V.

Proof. ;From the theorem above,
(18) F ={z€U: B (z) factorizable}

cannot be dense in U. Choose w € U \ F so that 8’ is continuous at w. Choose a
weak* compact K C Bx=« (0, p) and € > 0 corresponding to #'(w). Choose ¢ > 0 so
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that if ||v — w|| < 6 then ||’ (v) — B/ (w)|| < ¢/4(p + 1). Then, as in the arguments
above, ¢/ is not differentiable at any point of Bz(w,d).

Corollary 10. With the same hypothesis as above on W, Z and 8 let ¢ : X — R
be a continuous and convex function. Assume that X = C(Ky), the Banach space
of conlinuous functions on the compact Hausdor[f space Ky. Suppose that U C W
1s an open set and ¢S is not differentiable at any point of U. Then there exists an
open set V. .C U and a compact K C Ky such that ¢ is not differentiable at any
point of V.

Proof. A linear operator T': Z — C'(Kjy) is not factorizable if and only we may find
K C Ky and € > 0 so that the norm variation of 7" over any open subset of K is
greater than ¢; this is proved in [S2]. We may now follow the corollary above.

A consequence of the Bishop—Phelps theorem is that if X has a Frechét differ-
entiable norm, then X is an Asplund space. More generally, if ¢(z) = ||#]||, and
there is a selection A(x) € O0¢(x) that is in some (countable) Baire class (in the
norm topology) then X is an Asplund space. A separable Banach space X has an
equivalent norm so that the dual norm is strictly convex, hence this norm on X is
Gateaux differentiable everywhere (except the origin). See [D] for an introduction
to renorming theorems. Thus, there cannot be an analogous result for Gateaux
smooth functions, even for norms.

Preiss [P2] has shown that a Lipschitz function that is Gateaux differentiable
everywhere on an Asplund space is Fréchet differentiable on a dense set and he has
an example [P1] of a continuous function on the separable Hilbert space that is
Gateaux differentiable everywhere but the set of points of Fréchet differentiability
is of the first category.

If a function is Gateaux differentiable on a neighborhood of a point, and the
Gateaux derivative is continuous at that point, then the function is Fréchet dif-
ferentiable at that point (an easy consequence of the “vector valued mean value
theorem” [Di]). If a continuous function is Gateaux differentiable everywhere then
it is locally Lipschitz on a dense open set [BS]; in fact, the function need only be
measurable with respect to the Baire property sets (inverse images of Borel sets
have the Baire property) [Ska]. Without measurability, the function can be even
discontinuous everywhere. Shkarin shows in [Ska] that on every weakly compactly
generated Banach space X (in particular, on any separable Banach space) there is
an everywhere Gateaux differentiable function 8 which is continuous at no point of
X. He does not know if this is the case for an arbitrary Banach space.

Bogachev and Shkarin [BS] show that if a function is Gateaux differentiable
everywhere and Fréchet differentiable on a dense Gy set then the derivative is
continuous on a dense (necessarily Gs) set; the converse follows from the vector
mean value theorem. In particular, this implies that if a continuous function is
Fréchet differentiable everywhere then its derivative is continuous at each point of
a dense (necessarily Gg) set. Our argument above shows directly that the derivative
(of a continuous function that is Fréchet differentiable everywhere) is in the first
Baire class, a stronger statement than that it has many points of continuity.

It should also be mentioned, in connection with the classical theory [Br], the
result of Maly [Ma] that the Frechet derivative has the Darboux property.
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Let F' be a bounded subset of X and z € X. We say that ¢ 1s uniformly Gateaux
differentiable in directions F' if there exists a u™ € X* such that

lim sup o +ty) — 9(2) —u*(y)| = 0.
t=0yecF i

Lemma 11. Let T : 7 — X be an operator, ¢ : X — R a continuous and convex
function and x € X. Then ¢ s uniformly Gateaur differentiable wn directions
{T(z) . ||z]| < 1} at @ if and only if there exists a function ¢ : 7 — X* such that
¥(z) € 9p(x + T(2)) for all z and T*y is norm to norm continuous at 0.

Proof. Suppose that ¢ is uniformly Gateaux differentiable in directions F' = {T'(z) :
||z]] < 1} and let u* be the derivative. Make any selection ¢ (z) € d¢(x + T(2)).
We shall show that 7 (0) = T*(u*) and T™¢ is norm to norm continuous at 0.
Let ¢t < 0, then

b(tz)(1T%) — (¢(z +1Tz) — ¢(x))
| |
we have that || T4 (tz)—T" 4 (0)|| = 0. This convergence is uniformin {z : ||z|]| < 1}
|

as t — 07 but since {T'(z) : ||z|| < 1} is symmetric we have convergence as ¢ — 0.
Also, for t > 0,

— (1) <

—u*(Tz) =0

(6(0) = u*) (1) < AT =0

which proves that T*¢(0) = T*(u*). Conversely, suppose that we have a selection
¢ : 7 — X* such that ¢(z) € 0¢(x + T(z)) for all z € 7 and T4 is norm to norm
continuous at 0. Then, for ¢t > 0,

(19)
0<

—u™(Tz)

e 1) 00 o)) < (o1) = 610) (T2) < [T76(22) = T 0(0)].

Theorem 12. A bounded subset E of a Banach space X is equimeasurable if and
only if: given any continuous and convex function ¢ : X — R there exists at
least one point in X where ¢ is uniformly Gateaur differentiable in directions E
(equivalently, there exists a dense G5 subset of such points).

Proof. Let E be a bounded subset of X and let T': ¢1(F) — X be the canonical
operator. The E is equimeasurable if and only if 7" is factorizable [S2]. The result
follows from the elementary discussions at the beginning.

There exist bounded subsets of Banach spaces that have the property that any
sequence in the set has a pointwise Cauchy sequence (“weakly precompact sets”, by
which is meant that for any sequence {#,} in the set there exist y** € X** and a
sequence {ym } C {x,} such that limy, 2*(ym) = 2**(2*) for all z* € X*) but need
not be equimeasurable; the canonical example is the Haar system in the continuous
functions on the Cantor space. It i1s quite easy to see that equimeasurable sets
are weakly precompact (see [S2]). A pointwise Cauchy sequence is equimeasurable.
Suppose that F' C X is bounded and weakly precompact; then any sequence {x,} C
F has a pointwise Cauchy subsequence, say {y, }, which is equimeasurable. Thus,
for any continuous and convex ¢ : X — R, ¢ is uniformly Gateaux differentiable
in the directions {ym,} at each point of a dense Gj subset of X. Our results are
considerable generalizations of the results of the type in, for example, [M] and [BL]
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and indicate that the proper setting for such results is not in the context of weakly
precompact sets but that of equimeasurable sets.
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