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THE STRUCTURE OF THE FR�ECHET DERIVATIVE INBANACH SPACESEVA MATOU�SKOV�A AND CHARLES STEGALLAbstra
t. Our analysis of Fr�e
het di�erentiable fun
tions obtains results ofthe following type. An operator is fa
torizable if it fa
tors through an Asplundspa
e or satis�es any of the 
onditions of [S2℄. Suppose that X is a Bana
hspa
e, W is an open subset of the Bana
h spa
e Z and � : W ! Z is Fr�e
hetdi�erentiable at every point. The setfw 2W : �0(w) fa
torizblegis a dense subset of W if and only if for any 
ontinuous and 
onvex fun
tion� : X ! < the 
omposed fun
tion �� is Fr�e
het di�erentiable on a dense GÆsubset of W . We observe that if a 
ontinuous fun
tion is Fr�e
het di�erentiableeverywhere on an open set then the derivative is in the �rst Baire 
lass.ABana
h spa
e whose dual has the Radon-Nikod�ymproperty is sometimes 
alledan Asplund spa
e; a Bana
h spa
e whose dual has the Radon-Nikod�ym property is
hara
terized by the property that ea
h separable and linear subspa
e of it has anorm separable dual (examples are �nite dimensional spa
es or re
exive spa
es). Weshall say that an operator (bounded and linear fun
tion) T : Z ! X is fa
torizableif and only if the operator fa
tors linearly through an Asplund spa
e; equivalently,T is fa
torizable if and only if T (BZ(0; 1)) is equimeasurable. Negatively stated, anoperator T : Z ! X is not fa
torizable if and only if there exists a weak� 
ompa
tsubset K of X� and � > 0 so that for any weak� open subset U of K we have thatthe norm diameter of T �(U ) is greater than �; in fa
t, we may assume that K hasa 
ountable dense set ([S1℄ and [S2℄). Trivially, if Z or X is an Asplund spa
e thenall operators are fa
torizable. If K � BX� (0; �), T1 : Z ! X is an operator, andkT1�Tk < �=4(�+1) then T1 is also not fa
torizable. It follows that the fa
torizableoperators form a 
losed subset of of the Bana
h spa
e of linear operators from Zto X. The fa
torizable operators form a ve
tor spa
e (see eg [S2℄) that is a 
losedsubspa
e of the spa
e of all operators. If we de�ne the 
onvex fun
tion�K(x) = supfx�(x) : x� 2 Kgit follows that the fun
tion �KT is not Fr�e
het di�erentiable at any point. We showeven more: for any �xed y 2 X, �K(y + T (z)) is not di�erentiable at any point.Fix w 2 Z and 
hoose any z� 2 Z�. By assumption, the image of(1) fx� 2 K : x�(y + T (w)) > �K(y + T (w)) � 1n2 g1991 Mathemati
s Subje
t Classi�
ation. Primary: 46B20, Se
ondary: 46G05, 46B22.Key words and phrases. Fr�e
het derivative, Bana
h spa
es.1



2 EVA MATOU�SKOV�A AND CHARLES STEGALLunder T � has diameter more than �. Choose x�n 2 K so thatx�(y + T (w)) > �K(y + T (w))� 1n2 andkT �(xn) � z�k > �3 :(2)Choose un 2 Z, kunk = 1, so that(3) (T �(xn)� z�) (un) > �=3:Computing the di�eren
e quotient�K(y + T (w + 1nun))� �K(y + T (w)))1=n � z�(un)� x�n(y + T (w + 1nun))� �K(y + T (w))1=n ) � z�(un)� x�n(y + T (w)) � �K(y + T (w))1=n + (T �(xn) � z�)(un)� �( 1n ) + �3 :(4)This proves that z� is not the derivative of �K(y + T (z)) at �K(y + T (w)); as z�was arbitrary, there is no derivative.Suppose that � :W ! X is 
ontinuous where W is an open subset of the Bana
hspa
e Z. Suppose that � is Fr�e
het di�erentiable at w and �0(w) is not fa
torizable.Then there exists K as above so that �K�0(w) has no point of di�erentiability. Ifwe write �(v) = �(w) + �0(w)(v �w) + o(v �w)then �K (�(v)) = �K (�(w) � �0(w)(w) + �0(w)(v) + o(v � w))is not Fr�e
het di�erentiable at w be
ausej�(v) � �K (�(w) � �0(w)(w) + �0(w)(v)) j= j�K (�(w) � �0(w)(w) + �0(w)(v) + o(v �w))� �K (�(w) � �0(w)(w) + �0(w)(v)) j � j�K(o(v � w))j � �ko(v �w)k(5)Sin
e ko(v �w)kkv �wk ! 0it follows that �� is di�erentiable at w if and only if, with y = �(w) � �0(w)(w),(6) �K(�(w) � �0(w)(w) + �0(w)(v)) = �K(y + �0(w)(v))is di�erentiable at w, and the latter fun
tion is not di�erentiable at w. Similarly, if� were 
ontinuously di�erentiable at w and �0(w) were not fa
torizable then therewould exist a 
ontinuous 
onvex fun
tion � and an open neighborhood V of w su
hthat �� was not di�erentiable at any point of V .Suppose that f :M ! Z is a fun
tion from the 
omplete metri
 spa
e M to theBana
h spa
e Z (neither M nor Z is ne
essarily assumed to be separable). Thenf is a fun
tion of the �rst Baire 
lass (pointwise limit of a sequen
e of 
ontinuousfun
tions) if and only if f jC has a point of 
ontinuity for any 
losed (or, 
ompa
t)set C � M if and only if f�1(E) is a GÆ set for any 
losed set E � Z. This isa spe
ial 
ase of results that appear in [S6℄ and other pla
es, the basi
 result for



FR�ECHET DERIVATIVE : : : 3separable spa
es going ba
k to Baire himself. Re
all that a GÆ subset of a 
ompletemetri
 spa
e has an equivalent metri
 that makes it 
omplete. The following istrivial in the real 
ase, but, surprisingly, not so easy in the general 
ase, wherethe proof is not 
onstru
tive. The proof does redu
e to the separable 
ase (resultsmentioned above) but does not seem to be easier by spe
i�
ally restri
ting oneself tothe separable 
ase. We were unable to lo
ate the following result in the literature,although there are a number of related results (see below). There is an extensiveliterature 
on
erning real valued fun
tions whi
h are derivatives ([Br℄).Theorem 1. Suppose that X is a Bana
h spa
e, W is an open subset of the Bana
hspa
e Z and � : W ! Z is a 
ontinuous fun
tion that is Fr�e
het di�erentiable atevery point. Then �0 : W ! L(Z;X), the bounded linear operators from Z to X,is a fun
tion of the �rst Baire 
lass.Proof. For ea
h pair w; v in W we de�ne�(v) = �(w) + �0(w)(v � w) + ow(v �w):Fix C � W that is 
losed and not empty. For ea
h pair of integers n and m de�neAn;m = fw 2 C : kow(v �w)k � 1nkv �wk for all v su
h that kv �wk � 1mg:Sin
e C = [mAn;m, it follows from the Baire 
ategory theorem that [mAÆn;m isan open dense subset of C. Fix n, m and w0 2 AÆn;m. Fix Æ > 0 so small thatÆ < 1=2nm, B(w0; Æ)\C � AÆn;m and kow0(v �w0)k � 1nkv �w0k if kv �w0k � Æ.Choose � > 0 so thatB(w0; �) � fw : (1 + k�0k) (kw �w0k+ k�(w) � �(w0)k) � (Æ=2)2gLet w 2 B(w0; �) \ An;m and 
hoose any v so that kv � wk = Æ2 . We have thefollowing easy inequalities:1� Æ2 � kv �w0kÆ=2 = kv � w0kkv � wk � 1 + Æ2 ;kow0(v � w0)k � 1nkv �w0k andkow(v �w)k � 1nkv �wk:(7)



4 EVA MATOU�SKOV�A AND CHARLES STEGALLContinuing, we estimatek (�0(w0)� �0(w)) (v �w)Æ=2 k� k�0(w0) (w0 �w)Æ=2 k+ k�0(w0) (v � w0)Æ=2 � �0(w) (v � w)Æ=2 k� Æ2 + k�0(w0) (v � w0)Æ=2 � �0(w) (v �w)Æ=2 k= Æ2 + k�(v) � �(w0)Æ=2� �ow0 (v �w0)kv � w0k ��kv � w0kÆ=2 �� �(v) � �(w)Æ=2 + ow(v �w)Æ=2 k� Æ2 + k�(v) � �(w0)� �(v) + �(w)kÆ=2+ (1 + Æ2)kow0(v � w0)kkv � w0k + kow(v �w)kÆ=2� Æ2 + k�(w) � �(w0)kÆ=2 + 1n �1 + Æ2�+ 1n � 3Æ2 + 1n + 1n � 3n:(8)This proves that k�0(w0)��0(w)k � 3=n. Now, 
hoose any other w1 2 B(w0; �)\C.Applying, the same te
hniques, we know that there exists a ball B(w1; � ), and weassume that B(w1; � ) � B(w0; �), so that if w 2 B(w1; � ) \ An;m then k�0(w1) ��0(w)k � 3=n. This proves that k�0(w0) � �0(w1)k � 6=n and the variation of�0 over B(w0; �) \ C is no more than 6=n. This proves that �0 restri
ted to C is
ontinuous at ea
h point of \n [m AÆn;m, whi
h is a dense GÆ subset of C. Sin
e Cwas an arbitrary 
losed subset ofW , this proves that �0 is in the �rst Baire 
lass.If � : X ! < is a 
ontinuous and 
onvex fun
tion, then ��(x) denotes thesubgradient of � at x;(9) ��(x) = fx� 2 X� : x�(y � x) � �(y) � �(x) for all ygIn [S3℄ (see also [S4℄ and [S5℄) we introdu
ed a 
lass of topologi
al spa
es, whi
h,in turn de�ne a 
lass of Bana
h spa
es more general than that of the Asplund spa
es([S2℄). There are many equivalent ways of de�ning these spa
es lo
. 
it. For morere
ent results see [Z℄ and its referen
es.De�nition 2. Let C denote the 
lass of 
ompletely regular spa
es with the propertiesthat T 2 C if and only if given any 
omplete metri
 spa
e M , any upper semi
on-tinuous and 
ompa
t valued mapping � : M ! }(T ) then there exists a dense GÆsubset M0 of M and a 
ontinuous fun
tion � : M0 ! T su
h that �(m) 2 �(m)for ea
h m 2M0. The 
lass X of Bana
h spa
es is de�ned su
h that X 2 X if andonly if the unit ball of X�, in the weak� topology, is in C.Proposition 3. For any pair of Bana
h spa
es, denote by LC(Z;X) the linearoperators su
h that T 2 LC(Z;X) if and only if T �(BZ�(0; 1)) 2 C (T transformsbounded sets into sets whi
h belong to the 
lass C). Then LC(Z;X) is a 
losedve
tor subspa
e of L(Z;X) 
ontaining the fa
torizable operators.Proof. We shall give 
omplete details in the Gâteaux di�erentiable 
ase. Supposethat there exist a dense subset D of W , w 2 D, and a fun
tion  : D ! X� su
h



FR�ECHET DERIVATIVE : : : 5that  (z) 2 ��(�(z)) and (�0(w))� is weak� 
ontinuous at w. Fix any v, kvk = 1,and tn 6= 0 and tn ! 0. De�ne(10) o(t) = �(w + tv)� �(v) � �0(w)(tv)and 
hoose vn ! v, kvnk = 1, and sn 6= 0 so that sn ! 0, w + snvn 2 D,ko(tn)tn � �(w + snvn) � �(w)sn + �0(w)vk < 1n andk��(w + tnv) � ��(v)tn � ��(w + snvn)� ��(v)sn k < 1n:(11)Then,0 � ��(w + tnv) � ��(v)tn �  (w)(�0(w)v)� 1n + ��(w + snvn) � ��(v)sn �  (w)(�0(w)v)� 1n +  (w + snvn)���(w + snvn)� ��(v)sn ��  (w)(�0(w)v)� 1n +  (w + snvn)���(w + snvn)� ��(v)sn � �0(w)v�+ ( (w + snvn) �  (w)) (�0(w)v)� 1n + k (w + snvn)k�ko(tn)kjtnj + 1n�+ ( (w + snvn)�  (w)) (�0(w)v):
(12)
We know that ( (w + snvn)�  (w)) (�0(w)v)! 0;supn k (w + snvn)k <1 andko(tn)kjtnj ! 0:(13)The 
onverse is proved by using the same inequalities.The following proposition and theorem appear in [S3℄ and [S4℄.Proposition 4. With the same hypothesis as above on W , Z and X, suppose that� is 
ontinuous and Gâteaux di�erentiable (respe
tively, Fr�e
het di�erentiable) atevery point and let � : X ! < be a 
ontinuous and 
onvex fun
tion. Then �� isGâteaux di�erentiable (respe
tively, Fr�e
het di�erentiable) at w 2W if and only ifthere exist a dense subset D of W , w 2 D, and a fun
tion  : D ! X� su
h that (z) 2 ��(�(z)) and (�0(w))� is weak� 
ontinuous at w (respe
tively, (�0(w))� is norm 
ontinuous at w).Theorem 5. With the same hypothesis as above on W and Z, suppose that X 2 X(respe
tively, X is an Asplund spa
e), and suppose that � is everywhere Gâteauxdi�erentiable (respe
tively, Fre
h�et di�erentiable), then for any 
ontinuous and 
on-vex fun
tion � : X ! < the 
omposed fun
tion �� is Gâteaux di�erentiable (respe
-tively, Fre
h�et di�erentiable) on a dense GÆ subset of W .The main result here is the following, and in the Fre
h�et 
ase generalizes theresult above.



6 EVA MATOU�SKOV�A AND CHARLES STEGALLTheorem 6. Suppose that X is a Bana
h spa
e, W is an open subset of the Bana
hspa
e Z and � : W ! Z is a 
ontinuous fun
tion that is Fr�e
het di�erentiable atevery point. If the setfw 2W : �0(w) 2 LC(X;Y )g(respe
tively, fw 2W : �0(w) is representableg)(14)is a dense subset of W then for any 
ontinuous and 
onvex fun
tion � : X ! < the
omposed fun
tion �� is Gâteaux di�erentiable (respe
tively, Fre
h�et di�erentiable)on a dense GÆ subset of W .A 
onverse of this, in the Gâteaux 
ase, is the following: suppose that(15) fw 2W : �0(w) 2 LC(X;Y )gis not dense in W . Then there exists w 2 W , an open neighborhood V of w, a
omplete metri
 spa
e M , an upper semi
ontinuous and 
ompa
t valued mapping� :M ! }(X) so that for all v 2 V , �0(v)� :M ! }(Z) has no sele
tion as in thede�nition of C.Proposition 7. With the same hypothesis as above on W , Z and X, suppose that� is a 
ontinuous fun
tion that is everywhere Fre
h�et di�erentiable at every point,and assume that fw : �0(w) 2 LC(Z;X)g;(respe
tively, fw : �0(w) is fa
torizableg)(16)is dense in W . Let � : X ! < be a 
ontinuous and 
onvex fun
tion. Thenthere exists a dense GÆ set G � W and a fun
tion � : G ! Z� su
h that �(z) 2(�0(z))���(�(z)) that is weak� 
ontinuous (respe
tively, norm 
ontinuous).Proof. We give the details in the Fre
h�et 
ase that fw : �0(w) is fa
torizableg isdense. Sin
e �0 is in the �rst Baire 
lass and the spa
e of fa
torizable operatorsis a Bana
h spa
e, fw : �0(w) fa
torizableg is GÆ and it is dense by hypothesis.Also, the set of points where �0 is 
ontinuous 
ontains is a GÆ set. Let H be adense GÆ su
h that �0 is 
ontinuous at ea
h point w of H and �0(w) is fa
torizable.De�ne �(z) = (�0(z))���(�(z)) for ea
h z 2 H. Clearly, �(z) is weak� 
ompa
tand we shall show that not only is it weak� upper semi
ontinuous but satis�es thehypothesis of Proposition C, page 192 of [S5℄. It is also possible to argue as in theproof of Theorem 3 of [S6℄. To see that � is weak� upper semi
ontinuous supposethat zn ! z0, F is a weak� 
losed subset of Z� and �(zn) \ F 6= ;. To show that�(z0) \ F 6= ;, we need only show that �(z0) \ (F + BZ� (0; �)) 6= ; for any � > 0.Observe, that sin
e (�0(z0))� is weak� 
ontinuous, the mapping (�0(z0))���(�(z))is upper semi
ontinuous. Sin
e �0 is 
ontinuous at z0, k�0(zn) � �0(z)k ! 0 whi
hmeans that for large n,(�0(z0))���(�(zn)) \ (F + BZ� (0; �)) 6= ;:Sin
e �(zn)! �(z0) and (�0(z0))���(�(z)) is upper semi
ontinuous, we have that(�0(z0))���(�(z0)) \ (F + BZ�(0; �)) = �(z0) \ (F +BZ� (0; �)) 6= ;:and, by 
ompa
tness, �(z0) \ F 6= ;. Let w 2 H and � > 0. Sin
e ��(x) is lo
allybounded there exist � > 0 and � > 0 so that if kx � �(w)k < � then ��(x) �BX� (0; �). Let v 2 H su
h that k�(v) � �(w)k < � and k�0(w) � �0(v)k < �=4�.Then, (�0(v))���(�(v)) � (�0(w))�BX� (0; �) +BZ� (0; �)



FR�ECHET DERIVATIVE : : : 7and sin
e (�0(w))�BX� (0; �) is a weak� 
ompa
t set with the Radon-Nikod�ymprop-erty, the hypothesis of [S5℄ lo
. 
it. is satis�ed; there exists a dense GÆ subset G ofH (hen
e, G is a dense GÆ subset W ) and � : G! Z� as required.The 
ase that � is an operator and X or Z is an Asplund spa
e appears in [S2℄,for arbitrary � and X an Asplund spa
e in [S3℄ and [S4℄, and another nonlinearversion appears in [MS℄. It is rather surprising that it is true in the followinggenerality.Theorem 8. Suppose that X is a Bana
h spa
e, W is an open subset of the Bana
hspa
e Z, and � : W ! Z is a 
ontinuous fun
tion that is Fr�e
het di�erentiable atevery point. The set fw 2W : �0(w) is fa
torizablegis a dense subset of W if and only if for any 
ontinuous and 
onvex fun
tion � :X ! < the 
omposed fun
tion �� is Fr�e
het di�erentiable on a dense GÆ subset ofW .Proof. The 
ase that fw 2 W : �0(w) is fa
torizableg is not dense is essentiallytreated above. Choose w where �0 is 
ontinuous at w and �0(u) is not fa
torizablefor u in some neighborhood of w. Pro
eed as above. Suppose that fw 2 W :�0(w) is fa
torizableg is dense. Let � : G! Z� where � and G are de�ned as in theproposition above. Choose arbitrarily  (z) 2 ���(z) so that (�0(z))�( (z)) = �(z).Fix any w0 2 G and any sequen
e fwng � G su
h that wn ! w0. We need to showthat k(�0(w0))� ( (wn)�  (w0)) k ! 0:We may assume that f��(�(wn)) : n � 0g is a bounded subset of Z�. We have thefollowing inequalitiesk(�0(w0))� ( (wn)�  (w0)) k� k (�0(w0)� �0(wn))� ( (wn)�  (w0)) k+ k(�0(wn))� ( (wn) �  (w0)) k� k (�0(w0)� �0(wn))� ( (wn)�  (w0)) k+ k�(wn)� �(w0)k + k�(w0)� (�0(wn))�( (w0))k:(17)We know that �(wn)! �(w0),�(w0) � (�0(wn))�( (w0)) = (�0(w0) � �0(wn))� ( (w0)) and(�0(w0)� �0(wn))� 
onverges uniformly to the origin on the bounded setf (w0);  (w1); : : :g:By the proposition above, �� is Fr�e
het di�erentiable at ea
h point of G.Corollary 9. With the same hypothesis as above on W , Z and � let � : X ! <be a 
ontinuous and 
onvex fun
tion. Suppose that U � W is an open set and ��is not di�erentiable at any point of U . Then there exists an open set V � U and aweak� 
ompa
t K � X� su
h that �K� is not di�erentiable at any point of V .Proof. >From the theorem above,(18) F = fz 2 U : �0(z) fa
torizableg
annot be dense in U . Choose w 2 U n F so that �0 is 
ontinuous at w. Choose aweak� 
ompa
t K � BX� (0; �) and � > 0 
orresponding to �0(w). Choose Æ > 0 so



8 EVA MATOU�SKOV�A AND CHARLES STEGALLthat if kv � wk < Æ then k�0(v) � �0(w)k < �=4(� + 1). Then, as in the argumentsabove, �K� is not di�erentiable at any point of BZ(w; Æ).Corollary 10. With the same hypothesis as above on W , Z and � let � : X ! <be a 
ontinuous and 
onvex fun
tion. Assume that X = C(K0), the Bana
h spa
eof 
ontinuous fun
tions on the 
ompa
t Hausdor� spa
e K0. Suppose that U � Wis an open set and �� is not di�erentiable at any point of U . Then there exists anopen set V � U and a 
ompa
t K � K0 su
h that �K� is not di�erentiable at anypoint of V .Proof. A linear operator T : Z ! C(K0) is not fa
torizable if and only we may �ndK � K0 and � > 0 so that the norm variation of T � over any open subset of K isgreater than �; this is proved in [S2℄. We may now follow the 
orollary above.A 
onsequen
e of the Bishop{Phelps theorem is that if X has a Fre
h�et di�er-entiable norm, then X is an Asplund spa
e. More generally, if �(x) = kxk, andthere is a sele
tion �(x) 2 ��(x) that is in some (
ountable) Baire 
lass (in thenorm topology) then X is an Asplund spa
e. A separable Bana
h spa
e X has anequivalent norm so that the dual norm is stri
tly 
onvex, hen
e this norm on X isGâteaux di�erentiable everywhere (ex
ept the origin). See [D℄ for an introdu
tionto renorming theorems. Thus, there 
annot be an analogous result for Gâteauxsmooth fun
tions, even for norms.Preiss [P2℄ has shown that a Lips
hitz fun
tion that is Gâteaux di�erentiableeverywhere on an Asplund spa
e is Fr�e
het di�erentiable on a dense set and he hasan example [P1℄ of a 
ontinuous fun
tion on the separable Hilbert spa
e that isGâteaux di�erentiable everywhere but the set of points of Fr�e
het di�erentiabilityis of the �rst 
ategory.If a fun
tion is Gâteaux di�erentiable on a neighborhood of a point, and theGâteaux derivative is 
ontinuous at that point, then the fun
tion is Fr�e
het dif-ferentiable at that point (an easy 
onsequen
e of the \ve
tor valued mean valuetheorem" [Di℄). If a 
ontinuous fun
tion is Gâteaux di�erentiable everywhere thenit is lo
ally Lips
hitz on a dense open set [BS℄; in fa
t, the fun
tion need only bemeasurable with respe
t to the Baire property sets (inverse images of Borel setshave the Baire property) [Ska℄. Without measurability, the fun
tion 
an be evendis
ontinuous everywhere. Shkarin shows in [Ska℄ that on every weakly 
ompa
tlygenerated Bana
h spa
e X (in parti
ular, on any separable Bana
h spa
e) there isan everywhere Gâteaux di�erentiable fun
tion � whi
h is 
ontinuous at no point ofX. He does not know if this is the 
ase for an arbitrary Bana
h spa
e.Boga
hev and Shkarin [BS℄ show that if a fun
tion is Gâteaux di�erentiableeverywhere and Fr�e
het di�erentiable on a dense GÆ set then the derivative is
ontinuous on a dense (ne
essarily GÆ) set; the 
onverse follows from the ve
tormean value theorem. In parti
ular, this implies that if a 
ontinuous fun
tion isFr�e
het di�erentiable everywhere then its derivative is 
ontinuous at ea
h point ofa dense (ne
essarily GÆ) set. Our argument above shows dire
tly that the derivative(of a 
ontinuous fun
tion that is Fr�e
het di�erentiable everywhere) is in the �rstBaire 
lass, a stronger statement than that it has many points of 
ontinuity.It should also be mentioned, in 
onne
tion with the 
lassi
al theory [Br℄, theresult of Mal�y [Ma℄ that the Fre
het derivative has the Darboux property.



FR�ECHET DERIVATIVE : : : 9Let F be a bounded subset ofX and x 2 X. We say that � is uniformly Gâteauxdi�erentiable in dire
tions F if there exists a u� 2 X� su
h thatlimt!0 supy2F �����(x+ ty) � �(x)t � u�(y)���� = 0:Lemma 11. Let T : Z ! X be an operator, � : X ! < a 
ontinuous and 
onvexfun
tion and x 2 X. Then � is uniformly Gâteaux di�erentiable in dire
tionsfT (z) : kzk � 1g at x if and only if there exists a fun
tion  : Z ! X� su
h that (z) 2 ��(x + T (z)) for all z and T � is norm to norm 
ontinuous at 0.Proof. Suppose that � is uniformlyGâteaux di�erentiable in dire
tions F = fT (z) :kzk � 1g and let u� be the derivative. Make any sele
tion  (z) 2 ��(x + T (z)).We shall show that T � (0) = T �(u�) and T � is norm to norm 
ontinuous at 0.Let t < 0, then (tz)(�tT z)jtj � u�(Tz) � � (�(x+ tT z) � �(x))jtj � u�(Tz)! 0we have that kT � (tz)�T � (0)k ! 0. This 
onvergen
e is uniform in fz : kzk � 1gas t! 0� but sin
e fT (z) : kzk � 1g is symmetri
 we have 
onvergen
e as t ! 0.Also, for t > 0, ( (0)� u�) (Tz) � �(x+ tT z)� �(x)t � u�(Tz)whi
h proves that T � (0) = T �(u�). Conversely, suppose that we have a sele
tion : Z ! X� su
h that  (z) 2 ��(x+ T (z)) for all z 2 Z and T � is norm to norm
ontinuous at 0. Then, for t > 0,(19)0 � �(x+ tT z) � �(x)t �  (0)(Tz) � ( (tz) �  (0)) (Tz) � kT � (tz) � T � (0)k:Theorem 12. A bounded subset E of a Bana
h spa
e X is equimeasurable if andonly if: given any 
ontinuous and 
onvex fun
tion � : X ! < there exists atleast one point in X where � is uniformly Gâteaux di�erentiable in dire
tions E(equivalently, there exists a dense GÆ subset of su
h points).Proof. Let E be a bounded subset of X and let T : `1(E) ! X be the 
anoni
aloperator. The E is equimeasurable if and only if T is fa
torizable [S2℄. The resultfollows from the elementary dis
ussions at the beginning.There exist bounded subsets of Bana
h spa
es that have the property that anysequen
e in the set has a pointwise Cau
hy sequen
e (\weakly pre
ompa
t sets", bywhi
h is meant that for any sequen
e fxng in the set there exist y�� 2 X�� and asequen
e fymg � fxng su
h that limm x�(ym) = x��(x�) for all x� 2 X�) but neednot be equimeasurable; the 
anoni
al example is the Haar system in the 
ontinuousfun
tions on the Cantor spa
e. It is quite easy to see that equimeasurable setsare weakly pre
ompa
t (see [S2℄). A pointwise Cau
hy sequen
e is equimeasurable.Suppose that F � X is bounded and weakly pre
ompa
t; then any sequen
e fxng �F has a pointwise Cau
hy subsequen
e, say fymg, whi
h is equimeasurable. Thus,for any 
ontinuous and 
onvex � : X ! <, � is uniformly Gâteaux di�erentiablein the dire
tions fymg at ea
h point of a dense GÆ subset of X. Our results are
onsiderable generalizations of the results of the type in, for example, [M℄ and [BL℄
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