B N - AR AR FE AR st e AR R ARV RS AR e A
EJ b J. Institute for Mathematical Physics A-1090 Wien, Austria

A Geometrical Version of Hardy’s Inequality

M. Hoffmann—Ostenhof
T. Hofmann—Ostenhof
A. Laptev

Vienna, Preprint ESI 1017 (2001) March 30, 2001

Supported by Federal Ministry of Science Education and Culture, Austria
Available via http://www.esi.ac.at



A GEOMETRICAL VERSION OF HARDY'S INEQUALITY
M. HOFFMANN-OSTENHOF, T. HOFFMANN-OSTENHOF3 AND A.LAPTEV*

ABSTRACT. We proof a version of Hardy’s type inequality in a domain
2 C R™ which involves the distance to the boundary and the volume of
. In partucular, we obtain a result which gives a positivensersto a
guestion asked by H.Brezis and M.Marcus.

0. INTRODUCTION

Let 2 be a domain iR™ with Lipschitz boundary. It is known that the
following extension of Hardy's inequality is valid

O [ 1Vufdrzp |

wherey is a positive constant ant{«) = dist(x, 912). The best constant
= () in (0.1) depends on the domdin Itis also known that for convex
domainsu(€2) = 1/4, but there are smooth domains such thd?) < 1/4
(see[5], [6]).

H.Brezis and M.Marcus [2], Theorem |, have shown that fomgo-
main(} of classC? there exists a constant= \(Q2) € R such that

2 1 Ju(x)]” 2
(0.2) /Q|Vu(:1;)| dx > 1), o) d:z;—l—)\/Q|u(:1;)| dx,

Yu € Hy(Q).

Note that there are examples ([5], [6]) which confirm that¢h&e smooth
domains withA < 0. However, ifQ) is convex then it is proved in [2] (see
Theorem Il) that

lu

(x)]” |
i)l Ve (),

1
0.3 Q) > ———.
©03) ) = 4 dianr ()
In this paper Brezis and Marcus have asked whether the desirokf, in
(0.3) can be replaced by an expression dependin@pn= vol {2, namely,
whether) > ¢|Q|~2/" with somec = ¢(n) > 0.
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The aim of this short article is to prove that this is the camkeed and that
for convex domains
_ /n
c(n) B n(n=2)/ng2m
(0.4) A > |Q|2/n c(n) = —
wheres,,_; := [S"~!|. In particular, ifn = 2 thenc(2) = /2.

The proof of this result is based on a one-dimensional versidiardy’s
inequality which is obtained in Section 1. In Section 2 weeext the
one-dimensional result to the many-dimensional case usmiggments of
E.B.Davies [3], Ch.5.3. In Section 3 we prove (0.4) and adeissome
other generalizations of this result.

1. ONE DIMENSIONAL RESULTS

We start with a simple statement which is just a corollaryhaf Cauchy-
Schwarz inequality and partial integration. Lébe a function defined on
(0,b), b > 0, and whose derivative is finite an, b). We say thaff belongs
to the classp(0, b) if f is real valued and there is a constaht C'( f) such
that

(1.2) SUR.,<, (LLF(1)] + 217 (1)]) < €.

Lemma 1.1. Letu € C'(0,b),b > 0,u(0) = 0 and letf € ®(0,b). Then
b 2 th

0 [l
0

BN (b))2|uf>dt
Proof. For any constant taking into account (1.1) we have

(06—t~ [ rompa) = ([ (- (upy )’

- (/ (f(t)—c)(uu—l—uu)dt>

0

< 4</Ob e dt> </Ob(f(t) _e)? |u|2dt>.

We complete the proof by substitutirg= f(b).

The next result shows that (1.2) is often sharp unlikely matiyer
Hardy’s type inequalities.
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Lemma 1.2. Let us assume thgte ¢(0,b) and

o ftb f(s)ds — +o0, ast — 0.
e There is a constant, ¢ > 0 such that

F(t)yem e 160 € 12(0,b).

Then Lemma 1.1 is sharp.

Proof. The Cauchy-Schwarz inequality which has been used in thef pro
of Lemma 1.1 is sharp if there exists a real valued functisach that./(t)
andu(t)(f(t) — f(b)) are linearly dependent

(1.3) W (1) = au(t)(f(t) — f(b)).
Solving (1.3) we obtain
U(t) —Ce —aft Yds—af(b )

If now ¢ > 0, then the first assumption implie$0) = 0. The second one
provides the inclusiodu/dt € L*(0,b).

Example.
If f(t) =1/t anda > 1/2, then substituting in (1.2)

u(t) = {@emat/b

we find that the left and the right hand sides of this inequalie the same.
Moreover,u(0) = 0, « € C*'(0,b) and therefore the inequality (1.1) has an
extremizer.

Although in many cases Lemma 1.1 gives sharp results, thm Inignd
side in the inequality (1.2) is not linear with respectitoWe would now
like to give the following linearized version of this inediia

By using (1.2) we obviously have

b
/ ' |? dt
ff f’ ) [ul? dt)*

!
" <f Olufzdt— [(f 2(t) + 2f (1) f(b) —fQ(b))|u|2dt>
(1.4)

> / (2£(6) = F(0) + 20 (D () — £2(B))ful .
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If we rewrite this inequality for the intervdb, 2b] with v € C'(b,20b),
u(2b) = 0, then

2b ' l 2b ) B o B B
/b |u|dt24/b <2f(26 1) — FH(2b— 1) + 2f(2b — ) £(b)

(1.5) — f?(b)>|u|2dx.

Adding up (1.4) and (1.5) and by using standard density aggiswe can
finally state our main one-dimensional result.

Lemma 1.3. Letu € H;(0,2b),b > 0 and letf € ®(0,b). Then
| wwra = [ (e - o)+ 2o
(1.6) — 120 Ju()[ dt,

where
p(t) = min(¢,2b—1).

2. A RESULT FOR HIGHER DIMENSIONS

Let ©2 be a domain iR”. In order to formulate the main result of this
section we need some notations. Denoterpy:) the distance between
x € Q and its nearest point belonging to the boundayin the direction
v e Sn—l,

(2.1) (z) =min{s > 0: 2+ sv ¢ Q}.

Let us also introduce the “distance” to the boundarand the “diameter”
D, along the line defined by via:

(22) pul(x) = min(r (), 7, (x))

(2.3) D,(x) = 7,(x) + 7, (x).
By dw(r) we denote the normalized measure on the unit spBére,
fS"_l dw(v) = 1.

Theorem 2.1.Let) be a domain imR”, D € (0, oc] be its diameter and
f € ®(0,D/2). Then for any. € H;(Q) we have

[ivupae =5 [([ - @roua) = Foda) + 200 rDu)2)
(2.9) = PA(Du()/2)) deo(v) ) Ju() | d,
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Proof. We proceed by using E.B.Davies’ arguments (see [3]) J.elenote
partial differentiation in the direction € S"~1. Then Lemma 1.3 implies

[ 10 de = [ (2 (puta) = Ploufe)) + 20D FD)2)
~ [HDA2)/2)) Jul? de.

where the functiop, and D, are defined in (2.2) and (2.3). Let us introduce
an orthonormal basige; }7_; in R”. Then

vtz 332 [ @@= P )
+2f (e, (2))F(Dey 2) = F2(Dey 2))luf? e

Averaging both sides of the last inequality over orthondrbases using the
groupO(n) we complete the proof.

3. APLICATIONS OFTHEOREM 2.1

3.1. On a question of Brezis and Marcus. Let
(3.1) ft)y=-1/t, t>0.

Then the integral ove®3”~! in the right hand side of (2.4) becomes equal to
[ 100 = P+ 200D 12) = (D [2) dtr)

1 4 4
(3.2) - /S<p—2 top D—3> dwo(v).

Let us consider the last two terms. Itis clear thatz) < 7,(z), z € Q,
where the functiong andr are defined in (2.2) and (2.1). Sindg, =
7, + 7, (see (2.3)) we obtain

1 1 S 1 1
puDu DZ - Tu(Ty + 7——1/) (Tu + T—u)2
T_y
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This implies

1 1 .

fo G~ w4002 [ s
1 T—v Ty

- §/Sn—1<7'u(7'y +7,)2 + o (r + T_y)z) dw(v)

1 1
> —/ dw(v).
4 §n—1 Tl/T—l/

In order to estimate the latter integral we apply the CauShiiwarz in-
equality twice and obtain

1
1§/ T T—y dw(l/)/ dw(v)
§n—1 §n—1 Tl/T—l/

1
< / 2 dw(l/)/ dw(v),
§n—1 gn—1 Ty T—V

where we have used th#t,_, 72 dw(v) = [q,_, 72, dw(v).
When now applying Holder’s mequallty we recall that,_, dw(v) = 1.
Therefore

| e = ([ eaew)”

> </Sn_1 " (x) dw(l/)> _Z/n.

Let us introduce the domaid, C ) defined as a part d@ which can be
“seen” from pointz

(3.3) QO ={ycQiattlz—y)lr—y|"' €9, Vtc[0,1]}.

Then
| @ dee) = o),
§n—1 Sp—1
which finally gives us

(3.4) /Sn_1<py(:1;)i)y(:1j) - D;(x)> do(v) = <ST>W |Q;|z/n'

Now (2.4), (3.2) and (3.4) imply the following reformulatimf Theorem
2.1 in the case when the functigns defined by (3.1).

Theorem 3.1. For anyQ? C R™ and anyu € H}(Q) we have

/|Vu|2d:1;> // dw ) u(z)|? de
Sn—1 pl/

n(n=2)/ng 2/n |u( )|2d

(3.5) +
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Clearly in (3.5) the valué(,.| can always be replaced Bh9|. If Q is
convex then it is known (see for example [3] Exercise 5.7 djgthat

(36) génl () duo() > ipﬁ)

Moreover, in this cas@, = (2, x € (2, and we obtain
Theorem 3.2. For any convex domaift C R" and anyu € [}(12)

u |2 (n— 2/n 2/”
/|V 1 dx > |52(()) dx + 4|Q|2/n /|u )P d.

Note that the domaif? in Theorem 3.1 can be unbounded and it is valid
for a variety of domains with fractal boundaries, for examuch as the
Koch snowflake ifR% So often the inequality (3.6) might hold true with a
constanf. < 1/4 instead ofl /4 in the right hand side, whereas the second
integral of the inequality (3.5) is very stable.

In particular, following E.B.Davies, Lemma 3 from [4] we cahtain:

Corollary 3.1. Suppose that there is a constarguch that for eacly € 9%
and each: > 0 there exists a disjoint frof ball B with centrez and radius
£ > ak, where|z — y| = a. Then there exists a constant< 1/4 such that

n 1

1 /Sn_1 p, () dw(v) > p —52(:1;)
and hence

2 (n—=2)/n4 2/n |u( )|2
IS G = da.
vtz [ S [ o

3.2. Some refined inequalities. The next application of Theorem 2.1 con-
cerns the function
1 1
. t) = —— t< D/2
whereD = diam() and0 < « < 2. In this case the expression appearing
in the right hand side of (2.4) is equal to

21 (p) — [*(pv) +2f(pu) F(D,[2) — f*(D,/2)

1 1
=2 (0 Tnfap, /D))
| < In(ap, /D) In(aD, [2D) B In*(aD, /2D) >
pu D, (1 —In(ap,/D))(1 —1In(aD,/2D))  D2(1 —In(aD,/2D))?
1 1 In*(a/2)

> i+ e G~ ) T e
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Theorem 2.1 therefore gives

/Q|Vu|2d:1;
=5 /S (i +pz<1—1n1apy/0>>2>d“(”> ()P de
[ By

Application of (3.4) leads to a more refined version of Theof1.

Theorem 3.3.Let0 < o < 2. Then for any? C R" and anyu € (1)
we have

/|Vu|2d:1;

il 1n <a/2> ju(z)?
T in(a/2)? Jo [P

_|_

Remark. Theorem 3.3 is a stronger result than Theorem 3.1. Indeed, we
obtain Theorem 3.1 from Theorem 3.3 if we tet— 0.

For 2 convex we obtain via (3.6) that
n 1 1
= dw(v
T O i) )

>1;<1+ L ).
= 152(z) (1 —In(ad(x)/D))?

The latter inequality and Theorem 3.3 implies a version cédrem 3.2:
Theorem 3.4.Let0 < o < 2. For any convex domaift C R" and any
u € Hy ()

2 Ju(z)?
fivurae =5 [ 550 <1+<1—1n<ais< o)

n— 2)/n 2/”

ln 2
d
(1—mmm mwy/w I de.

m

(3.8) +
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Remark. The last statement is an improvment of Theorem 5.1 from [2],

where for convex domain® andu € Hj(f2) the authors obtain the in-

equality

@9 [ IVuwfar =] ol )
' 9 4 Jq 8 (x) (1 —=In(4(x)/D))?

Indeed, if we choose = 1 in Theorem 3.4, then the first integral in the

right hand side of (3.8) coincides with the right hand sid€30®). However,

« = 1 still allows to have an additional non-zero term in (3.8).

dz.
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