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A GEOMETRICAL VERSION OF HARDY’S INEQUALITY

M. HOFFMANN-OSTENHOF1, T. HOFFMANN-OSTENHOF2;3 AND A.LAPTEV4
ABSTRACT. We proof a version of Hardy’s type inequality in a domain
 � Rn which involves the distance to the boundary and the volume of
. In partucular, we obtain a result which gives a positive answer to a
question asked by H.Brezis and M.Marcus.

0. INTRODUCTION

Let 
 be a domain inRn with Lipschitz boundary. It is known that the
following extension of Hardy’s inequality is valid

(0.1)
Z
 jru(x)j2 dx � �Z
 ju(x)j2Æ2(x) dx; 8u 2 H10 (
);

where� is a positive constant andÆ(x) = dist(x; �
). The best constant� = �(
) in (0.1) depends on the domain
. It is also known that for convex
domains�(
) = 1=4, but there are smooth domains such that�(
) < 1=4
(see[5], [6]).

H.Brezis and M.Marcus [2], Theorem I, have shown that for every do-
main
 of classC2 there exists a constant� = �(
) 2 R such thatZ
 jru(x)j2 dx � 14 Z
 ju(x)j2Æ2(x) dx+ �Z
 ju(x)j2 dx;(0.2) 8u 2 H10 (
):
Note that there are examples ([5], [6]) which confirm that there are smooth
domains with� � 0. However, if
 is convex then it is proved in [2] (see
Theorem II) that

(0.3) �(
) � 14diam2(
) :
In this paper Brezis and Marcus have asked whether the diameter of
, in
(0.3) can be replaced by an expression depending onj
j := vol
, namely,
whether� �  j
j�2=n with some = (n) > 0.
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The aim of this short article is to prove that this is the case indeed and that
for convex domains

(0.4) � � (n)j
j2=n ; (n) = n(n�2)=ns2=nn�14 ;
wheresn�1 := jSn�1j. In particular, ifn = 2 then(2) = �=2.

The proof of this result is based on a one-dimensional version of Hardy’s
inequality which is obtained in Section 1. In Section 2 we extend the
one-dimensional result to the many-dimensional case usingarguments of
E.B.Davies [3], Ch.5.3. In Section 3 we prove (0.4) and consider some
other generalizations of this result.

1. ONE DIMENSIONAL RESULTS

We start with a simple statement which is just a corollary of the Cauchy-
Schwarz inequality and partial integration. Letf be a function defined on(0; b), b > 0, and whose derivative is finite on(0; b). We say thatf belongs
to the class�(0; b) if f is real valued and there is a constantC = C(f) such
that

(1.1) sup0<t�b (tjf(t)j+ t2jf 0(t)j) � C:
Lemma 1.1. Letu 2 C1(0; b), b > 0, u(0) = 0 and letf 2 �(0; b). Then

(1.2)
Z b0 ���dudt ���2 dt � 14 (R b0 f 0(t)juj2 dt)2R b0 (f(t)� f(b))2juj2 dt:

Proof. For any constant taking into account (1.1) we have�(f(b)� )ju(b)j2 � Z b0 f 0(t) juj2 dt�2 = �Z b0 (f(t)� ) (juj2)0 dt�2= �Z b0 (f(t)� ) (u0�u+ u�u0) dt�2� 4�Z b0 ju0j2 dt��Z b0 (f(t)� )2 juj2 dt�:
We complete the proof by substituting = f(b).
The next result shows that (1.2) is often sharp unlikely manyother

Hardy’s type inequalities.
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Lemma 1.2. Let us assume thatf 2 �(0; b) and� R bt f(s)ds! +1, ast! 0.� There is a constanta, a > 0 such thatf(t)e�a R bt f(s)ds 2 L2(0; b):
Then Lemma 1.1 is sharp.

Proof. The Cauchy-Schwarz inequality which has been used in the proof
of Lemma 1.1 is sharp if there exists a real valued functionu such thatu0(t)
andu(t)(f(t)� f(b)) are linearly dependent

(1.3) u0(t) = au(t)(f(t)� f(b)):
Solving (1.3) we obtainu(t) = Ce�aR bt f(s) ds�af(b) t:
If now a > 0, then the first assumption impliesu(0) = 0. The second one
provides the inclusiondu=dt 2 L2(0; b).
Example.
If f(t) = 1=t anda > 1=2, then substituting in (1.2)u(t) = tae�at=b
we find that the left and the right hand sides of this inequality are the same.
Moreover,u(0) = 0, u 2 C1(0; b) and therefore the inequality (1.1) has an
extremizer.

Although in many cases Lemma 1.1 gives sharp results, the right hand
side in the inequality (1.2) is not linear with respect tou. We would now
like to give the following linearized version of this inequality.

By using (1.2) we obviously haveZ b0 ju0j2 dt� 14 (R b0 f 0(t) juj2 dt)2�R b0 f 0(t)juj2 dt� R b0 (f 0(t)� f2(t) + 2f(t)f(b)� f2(b))juj2 dt�� 14 Z b0 �2f 0(t)� f2(t) + 2f(t)f(b) � f2(b)�juj2 dt:(1.4)
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If we rewrite this inequality for the interval[b; 2b℄ with u 2 C1(b; 2b),u(2b) = 0, thenZ 2bb ju0j2 dt � 14 Z 2bb �2f 0(2b� t)� f2(2b� t) + 2f(2b � t)f(b)� f2(b)�juj2 dx:(1.5)

Adding up (1.4) and (1.5) and by using standard density arguments we can
finally state our main one-dimensional result.
Lemma 1.3. Letu 2 H10 (0; 2b), b > 0 and letf 2 �(0; b). ThenZ 2b0 ju0(t)j2 dt � 14 Z 2b0 �2f 0(�(t))� f2(�(t)) + 2f(�(t))f(b)� f2(b)�ju(t)j2 dt;(1.6)

where �(t) = min(t; 2b� t):
2. A RESULT FOR HIGHER DIMENSIONS

Let 
 be a domain inRn. In order to formulate the main result of this
section we need some notations. Denote by��(x) the distance betweenx 2 
 and its nearest point belonging to the boundary�
 in the direction� 2 Sn�1,
(2.1) ��(x) = minfs > 0 : x+ s� 62 
g:
Let us also introduce the “distance” to the boundary�� and the “diameter”D� along the line defined by� via:

(2.2) ��(x) = min(��(x); ���(x))
(2.3) D�(x) = ��(x) + ���(x):
By d!(�) we denote the normalized measure on the unit sphereSn�1,RSn�1 d!(�) = 1.

Theorem 2.1. Let 
 be a domain inRn, D 2 (0;1℄ be its diameter andf 2 �(0;D=2). Then for anyu 2 H10 (
) we haveZ
 jruj2 dx � n4 Z
�ZSn�1(2f 0(��(x))� f2(��(x)) + 2f(��(x))f(D�(x)=2)� f2(D�(x)=2)) d!(�)� ju(x)j2 dx;(2.4)
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Proof. We proceed by using E.B.Davies’ arguments (see [3]). Let�� denote
partial differentiation in the direction� 2 Sn�1. Then Lemma 1.3 impliesZ
 j��uj2 dx � 14 Z
�2f 0(��(x))� f2(��(x)) + 2f(��(x))f(D�(x)=2)� f2(D�(x)=2)�juj2 dx;
where the function�� andD� are defined in (2.2) and (2.3). Let us introduce
an orthonormal basisf�ejgnj=1 in Rn. ThenZ
 jruj2 dx � 14 nXj=1 Z
(2f 0(��ej (x))� f2(��ej (x))+ 2f(��ej (x))f(D�ej=2) � f2(D�ej=2))juj2 dx:
Averaging both sides of the last inequality over orthonormal bases using the
groupO(n) we complete the proof.

3. APLICATIONS OFTHEOREM 2.1

3.1. On a question of Brezis and Marcus.Let

(3.1) f(t) = �1=t; t > 0:
Then the integral overSn�1 in the right hand side of (2.4) becomes equal toZSn�1�2f 0(��)� f2(��) + 2f(��)f(D�=2) � f2(D�=2)� d!(�)= ZSn�1� 1�2� + 4��D� � 4D2� � d!(�):(3.2)

Let us consider the last two terms. It is clear that��(x) � ��(x), x 2 
,
where the functions� and� are defined in (2.2) and (2.1). SinceD� =�� + ��� (see (2.3)) we obtain1��D� � 1D2� � 1��(�� + ���) � 1(�� + ���)2= �����(�� + ���)2 :
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This impliesZSn�1� 1��(x)D�(x) � 1D2�(x)� d!(�) � ZSn�1 �����(�� + ���)2 d!(�)= 12 ZSn�1� �����(�� + ���)2 + �����(�� + ���)2� d!(�)� 14 ZSn�1 1����� d!(�):
In order to estimate the latter integral we apply the Cauchy-Schwarz in-
equality twice and obtain1 � ZSn�1 ����� d!(�)ZSn�1 1����� d!(�)� ZSn�1 � 2� d!(�)ZSn�1 1����� d!(�);
where we have used that

RSn�1 � 2� d!(�) = RSn�1 � 2�� d!(�).
When now applying Hölder’s inequality we recall that

RSn�1 d!(�) = 1.
ThereforeZSn�1 1��(x)���(x) d!(�) � �ZSn�1 � 2� (x) d!(�)��1� �ZSn�1 �n� (x) d!(�)��2=n:
Let us introduce the domain
x � 
 defined as a part of
 which can be
“seen” from pointx
(3.3) 
x := fy 2 
 : x+ t(x� y)jx� yj�1 2 
; 8t 2 [0; 1℄g:
Then ZSn�1 �n� (x) d!(�) = nsn�1 j
xj;
which finally gives us

(3.4)
ZSn�1� 4��(x)D�(x) � 4D2�(x)� d!(�) � �sn�1n �2=n 1j
xj2=n :

Now (2.4), (3.2) and (3.4) imply the following reformulation of Theorem
2.1 in the case when the functionf is defined by (3.1).

Theorem 3.1. For any
 � Rn and anyu 2 H10 (
) we haveZ
 jruj2 dx � n4 Z
 ZSn�1 1�2�(x) d!(�) ju(x)j2 dx+ n(n�2)=ns2=nn�14 Z
 ju(x)j2j
xj2=n dx:(3.5)
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Clearly in (3.5) the valuej
xj can always be replaced byj
j. If 
 is
convex then it is known (see for example [3] Exercise 5.7 and [4]) that

(3.6)
n4 ZSn�1 ��2� (x) d!(�) � 14 1Æ2(x) ;

Moreover, in this case
x = 
, x 2 
, and we obtain
Theorem 3.2. For any convex domain
 � Rn and anyu 2 H10 (
)Z
 jruj2 dx � 14 Z
 ju(x)j2Æ2(x) dx + n(n�2)=ns2=nn�14 j
j2=n Z
 ju(x)j2 dx:

Note that the domain
 in Theorem 3.1 can be unbounded and it is valid
for a variety of domains with fractal boundaries, for example, such as the
Koch snowflake inR2. So often the inequality (3.6) might hold true with a
constant� < 1=4 instead of1=4 in the right hand side, whereas the second
integral of the inequality (3.5) is very stable.

In particular, following E.B.Davies, Lemma 3 from [4] we canobtain:
Corollary 3.1. Suppose that there is a constant� such that for eachy 2 �

and eacha > 0 there exists a disjoint from
 ballB with centrez and radius� � a�, wherejz � yj = a. Then there exists a constant� � 1=4 such thatn4 ZSn�1 ��2� (x) d!(�) � � 1Æ2(x)
and henceZ
 jruj2 dx � � Z
 ju(x)j2Æ2(x) dx+ n(n�2)=ns2=nn�14 Z
 ju(x)j2j
xj2=n dx:
3.2. Some refined inequalities.The next application of Theorem 2.1 con-
cerns the function

(3.7) f(t) = �1t + 1t(1� ln(�t=D)) ; 0 < t < D=2;
whereD = diam
 and0 < � � 2. In this case the expression appearing
in the right hand side of (2.4) is equal to2f 0(��)� f2(��) + 2f(��)f(D�=2) � f2(D�=2)= 1�2� + 1�2� (1� ln(���=D))2+ 4� ln(���=D) ln(�D�=2D)��D� (1� ln(���=D))(1 � ln(�D�=2D)) � ln2(�D�=2D)D2�(1 � ln(�D�=2D))2�� 1�2� + 1�2� (1 � ln(���=D))2 + 4� 1��D� � 1D2� � ln2(�=2)(1 � ln(�=2))2 :
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Theorem 2.1 therefore givesZ
jruj2 dx� n4 Z
 ZSn�1� 1�2�(x) + 1�2� (1� ln(���=D))2� d!(�) ju(x)j2 dx+ n ln2(�=2)(1 � ln(�=2))2 Z
 ZSn�1� 1��D� � 1D2� � d!(�) ju(x)j2 dx:
Application of (3.4) leads to a more refined version of Theorem 3.1.

Theorem 3.3. Let 0 < � � 2. Then for any
 � Rn and anyu 2 H10 (
)
we haveZ
jruj2 dx� n4 Z
 ZSn�1� 1�2�(x) + 1�2� (1� ln(���=D))2� d!(�) ju(x)j2 dx+ n(n�2)=ns2=nn�1 ln2(�=2)4 (1 � ln(�=2))2 Z
 ju(x)j2j
xj2=n dx:
Remark. Theorem 3.3 is a stronger result than Theorem 3.1. Indeed, we
obtain Theorem 3.1 from Theorem 3.3 if we let�! 0.

For
 convex we obtain via (3.6) thatn4 ZSn�1 1�2�(x)�1 + 1(1 � ln(���(x)=D))2� d!(�)� 14 1Æ2(x)�1 + 1(1� ln(�Æ(x)=D))2�:
The latter inequality and Theorem 3.3 implies a version of Theorem 3.2:

Theorem 3.4. Let 0 < � � 2. For any convex domain
 � Rn and anyu 2 H10 (
)Z
 jruj2 dx � 14 Z
 ju(x)j2Æ2(x) �1 + 1(1� ln(�Æ(x)=D))2� dx+ n(n�2)=ns2=nn�1 ln2(�=2)4 (1 � ln(�=2))2 1j
j2=n Z
 ju(x)j2 dx:(3.8)
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Remark. The last statement is an improvment of Theorem 5.1 from [2],
where for convex domains
 andu 2 H10 (
) the authors obtain the in-
equality

(3.9)
Z
 jru(x)j2 dx � 14 Z
 ju(x)j2Æ2(x) �1 + 1(1 � ln(Æ(x)=D))2� dx:

Indeed, if we choose� = 1 in Theorem 3.4, then the first integral in the
right hand side of (3.8) coincides with the right hand side of(3.9). However,� = 1 still allows to have an additional non-zero term in (3.8).
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