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PARABOLIC GEOMETRIES, CR-TRACTORS, AND THE
FEFFERMAN CONSTRUCTION

ANDREAS CAP

ABSTRACT. This is a survey on recent joint work with A.R. Gover on the ge-
ometry of non—-degenerate CR manifolds of hypersurface type. Specifically we
discuss the relation between standard tractors on one side and the canonical Car-
tan connection, the construction of the Fefferman space and the ambient metric
construction on the other side. To put these results into perspective, some parts
of the general theory of parabolic geometries are discussed.

1. INTRODUCTION

This paper surveys recent joint work (partly in progress) with A.R. Gover on
the standard tractor bundle and its canonical linear connection in the geometry of
non—degenerate CR structures of hypersurface type. Apart from general geometric
questions, this work specifically aims at questions concerning CR invariants and the
related question of CR invariant differential operators, i.e. differential operators that
are intrinsic to a CR structure.

Specifically, I want to show that standard tractors tie in very nicely with three
classical constructions of CR geometry. First, the standard tractor bundle and its
linear connection are equivalent to the canonical Cartan bundle and the canonical
Cartan connection on a CR manifold. Secondly, a construction of Ch. Fefferman
associates to any CR manifold M an indefinite conformal structure on the total space
of a certain circle bundle over M. Using the standard tractor bundle and connection
leads to new ways to exploit this construction. Finally, there is the so—called ambient
metric construction for embedded CR manifolds, which is also due to Ch. Fefferman.
Starting from any defining function for an embedded CR manifold, a simple explicit
algorithm provides a defining function satisfying a certain normalization condition.
This in turn gives rise to a Ricci—flat Kahler metric on an ambient space. The
important point here is, that this metric as well as its Levi-Civita connection can be
easily computed explicitly from the normalized defining function. We shall see how
this leads (in the special case of embedded CR manifolds) to a completely explicit
description of the standard tractor bundle and the standard tractor connection.

On the other hand, the standard tractor bundle and connection for CR, structures
immediately leads to a (CR invariant) calculus on any CR manifold. This actually
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is a special case of a much more general concept of tractor bundles and connections
for so—called parabolic geometries. The general theory of these geometric structures,
which has been substantially developed during the last few years, provides a number
of tools and constructions, e.g. of invariant differential operators. To put things into
perspective, I will also describe some aspects of this general theory here.

2. THE CARTAN CONNECTION, STANDARD TRACTORS, AND PARABOLIC
GEOMETRIES

2.1. CR manifolds. Let us start by recalling the relevant definitions. An almost
CR-manifold is a smooth manifold M of odd dimension, dim(M) = 2n + 1, to-
gether with a rank n complex subbundle HM C TM. Note that passing to the
complexification TeM = TM @ C of the tangent bundle, the subbundle HM @ C
splits as HYOM @ H%1 M into a holomorphic and an anti-holomorphic part. We will
denote by J : HM — HM the almost complex structure on the bundle HM, by
QM :=TM/HM the quotient bundle (which by construction is a real line bundle),
and by ¢ : TM — QM the natural projection. The Lie bracket then induces a
tensorial map £: HM x HM — QM via L(&,n) = q([§, n]) for &, € ['(HM).

The structure (M, HM,J) is called a CR structure if L is non—degenerate (and
hence HM defines a contact structure on M) and the subbundle H*°M C TcM
is involutive. A weakening of this integrability condition (assuming the £ is non—
degenerate) is the condition of partial integrability which just requires the Lie bracket
of two sections of HY'YM to be a section of H1OM ¢ H%1M. Partial integrability
turns out to be equivalent to compatibility of £ with the almost complex structure
in the sense that £(JE&, Jn) = L(&,n) and is the weakest condition under which
existence of a canonical normal Cartan connection is guaranteed.

If (M,HM,J)and (M', HM',J') are CR manifolds, then a smooth map f: M —
M' is called a CR map if for all 2 € M we have T, f(H,M) C HyM' and the
restriction T, f : H, M — Hf(l,)M’ is complex linear (with respect to J and J'). A
(local) CR diffeomorphism between two CR manifolds is a (local) diffeomorphism
which also is a CR map.

If (M, HM,J) is a partially integrable almost CR manifold, the compatibility of
L and J implies that, choosing a local trivialization of M, we may view L as the
imaginary part of a non—degenerate Hermitian form, the Levi—form. The signature
(p, q) of this Hermitian form is unambiguously defined if we require p > ¢, and it is
called the signature of (M,HM,J).

The basic examples of CR manifolds are provided by the boundaries of strictly
pseudoconvex domains. If @ C C**! is a smoothly bounded strictly pseudoconvex
domain with boundary M = 0%, then for 2 € M we define H. M =T, M N1, M.
Thus, H.M C T,M is the maximal complex subspace in the tangent space, and a
moment of thought shows that this has to be of complex dimension n, so the spaces
H.M define a rank n complex subbundle of TM. Moreover, strict pseudoconvexity
is actually equivalent to the Levi form being definite (and hence according to our
conventions being of signature (n,0)). Finally, integrability of H1°M in this case
easily follows from integrability of the complex structure on C**'.
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Of course, one may consider more general real hypersurfaces M in C**! or in
general complex manifolds, with the subbundle HM being given by the maximal
complex subspaces in the tangent spaces. If this subbundle defines a contact struc-
ture on M, then the integrability condition is automatically satisfied, so (M, HM, J)
is a CR manifold. CR structures obtained in this way on hypersurfaces in C**! are

called embedded C'R manifolds.

2.2. The flat model of CR structures. The first step towards the construction
of a canonical Cartan connection on CR manifolds is to describe the flat model of
CR structures of signature (p, ¢) (with p+ ¢ = n and p > ¢) and thus indentify the
groups involved in the construction.

Consider the space V = C"*? endowed with a Hermitian form ( , ) of signature
(p+1,¢+1). Let C C V be the cone of nonzero null-vectors and let M be the image
of C in the projectivization PV = CP"*! of V. Then M canonically carries a CR
structure of signature (p, ¢). This may be deduced from the fact that M is a smooth
real hypersurface in the complex manifold PV. Alternatively, it is a nice exercise to
deduce the CR structure on M directly from its description as a quotient of C and
the obvious description of the tangent spaces of the hypersurface C C V.

Next, consider the group GG := SU(V) =2 SU(p+ 1,¢+ 1). The cone C clearly
is invariant under the action of G on V, and it is elementary to verify that G
acts transitively on C. Consequently, GG acts transitively on M and from either
of the two descriptions of the CR structure on M it is easy to see that G acts
by CR diffeomorphisms. It is much less elementary to see that actually any CR
diffeomorphism of M comes from the action of an element of G. Hence, we conclude
that the group of CR automorphisms of M is G := PSU(C), the quotient of G by
its center (which is isomorphic to Z,42).

Fixing an element e € C, i.e. a nonzero null vector, we denote by P C G and P C G
the stabilizer subgroups of the complex line Ce, thus obtaining diffeomorphisms
G/P = G/P = M. The subgroups P and P turn out to be so—called parabolic
subgroups of the semisimple groups G respectively G, i.e. the corresponding Lie
subalgebra p C g (which is the same for both groups) contains a maximal solvable
subalgebra of the simple Lie algebra g = su(V) Z su(p+ 1,9+ 1).

2.3. The canonical Cartan connection on CR manifolds. One of the basic
results in CR geometry is that CR manifolds can actually be viewed as “curved
analogs” of the homogeneous flat model G/P from 2.2 above. This is an instance of
E. Cartan’s concept of “espaces géneralisés” which associates to any homogeneous
space a geometric structure, see [17]. In modern terminology, these structures are
called Cartan geometries. Given a Lie group H and a closed subgroup ) C H, a
Cartan geometry of type (H, () on a smooth manifold M is defined as a principal
Q-bundle p : X — M (which is an analog of the canonical bundle H — H/Q)
together with a Cartan connection w € Q'(#, ), where § is the Lie algebra of H.
This Cartan connection should be thought of as an analog of the left Maurer—Cartan
form on H, and its defining properties

(i) wy : TyH — b is a linear isomorphism for all u € H

(ii) (r*)*w = Ad(h™") ow for h € @, with r* denoting the principal right action of A
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(iii) w(C4) = A for all A € q, with (4 denoting the fundamental vector field corre-
sponding to A

are precisely the parts of the properties of the left Maurer Cartan form which remain
to make sense in the more general setting.

A model case for this concept is given by taking H the group of Euclidean mo-
tions of R” and @ = O(n), and hence H/Q the Euclidean space R”. In this case, a
Cartan geometry of type (H, Q) on M is easily seen to be equivalent to a reduction
of the frame bundle of M to the structure group @@ = O(n) together with a prin-
cipal connection on this principal O(n)-bundle. These data in turn are equivalent
to a Riemannian metric on M together with a linear connection on T'M which is
compatible with the metric. Hence, imposing a normalization condition on the Car-
tan connection which amounts to requiring the linear connection to be torsion free,
one sees that normal Cartan geometries of type (H, () are exactly n—dimensional
Riemannian manifolds. In the case of Riemannian structures, the point of view of
Cartan geometries (while conceptually very valuable) is not really necessary to effi-
ciently deal with the geometry, since the Cartan connection is essentially equivalent
to the Levi-Civita connection. In more general situations, such a simple translation
is not possible, and more sophisticated methods for using the Cartan connection are
required.

In the general case, interpreting a Cartan geometry of given type is rather diffi-
cult, there are however cases in which normal Cartan geometries can be canonically
constructed from underlying geometric structures. With conformal and projective
structures, CR structures are one of the main examples of this situation: We con-
tinue to use the notation for the groups G and G, P C G and P C G from 2.2
above.

Theorem. Let (M, HM,J) be a CR manifold of signature (p,q). Then there exists
a canonical principal P-bundle p : G — M endowed with a unique normal Cartan

connection w € Q1(G, g).

The normalization condition on the Cartan connection is a restriction on the cur-
vature that can be either formulated in Lie theoretic terms (which then generalizes to
parabolic geometries, see below) or directly as the vanishing of certain traces of the
curvature. The principal bundle is then uniquely determined (up to isomorphism)
by the fact that it admits a normal Cartan connection. This result was proved by
E. Cartan for n = 1 (i.e. 3-dimensional CR structures), see [16]. For general n, it is
due to N. Tanaka (see [35, 36]) and to S.S. Chern and J. Moser (see [18]). It should
be remarked here that Tanaka’s construction actually works in the more general
setting of partially integrable almost CR structures.

For later use, it is very important to slightly extend this construction, in order to
get a Cartan geometry of type (G, P) rather than (G, P). It turns out that in order
to get a principal P-bundle p : G — M endowed with a canonical Cartan connection
w € QY(G, g) onein addition to the CR structure has to choose a complex line bundle
£(1,0) — M such that £(1,0)"" = AZHM @ QM. While such a bundle need not
exist globally, and if it does, it is not necessarily determined uniquely, existence and
uniqueness are always clear locally. Moreover, we shall see later on that in the case
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of a boundary of a domain that can be described by a defining function, there is
always a canonical global choice.

2.4. Parabolic geometries. By definition, parabolic geometries are Cartan geome-
tries of type (H,Q), where H is a semisimple Lie group and @ C H is a parabolic
subgroup, i.e. the Lie algebra g of () contains a maximal solvable subalgebra of the
semisimple Lie algebra fj and @ is the normalizer of q in H. It is well know that for
complex semisimple Lie algebras parabolic subalgebras are in bijective correspon-
dence with sets of simple roots, while in the real case there is an additional condition
which can be easily described in terms of the Satake diagram, so one has a complete
(and rather large) list of examples of such structures. It turns out that all these
structures, which are very diverse from a geometrical point of view, can be studied
in a surprisingly uniform way.

For any parabolic geometry (p : H — M,w) one can construct an underlying
structure, called an infinitesimal flag structure. This consists of a filtration of the
tangent bundle of M together with a reduction of structure group of the associated
graded gr’'M of the tangent bundle to the reductive part Qo of the parabolic sub-
group (). This underlying structure is rather easy to understand geometrically. If
one requires the filtration to be compatible with the Lie bracket of vector fields, this
Lie bracket induces an algebraic bracket on gr7’M. On the other hand, from the
reduction to the structure group to the group Qo, one gets another algebraic bracket
on g'l'M, and requiring these two algebraic brackets to coincide, one obtains the
notion of a regular infinitesimal flag structure.

In the CR case, the filtration is simply given by the subbundle HM C TM and
the reduction to the group P, amounts just to an almost complex structure on H M
and a bracket HM x HM — QM which is the imaginary part of a Hermitian form
of signature (p, ¢). From this description, it is easy to see that a regular infinitesimal
flag structure in this case is exactly a partially integrable almost CR structure.

Next, it turns out that regularity of the underlying infinitesimal flag structure can
be easily described in terms of the (curvature of the) Cartan connection, thus leading
to the notion of regular parabolic geometries. Moreover, the Kostant—codifferential
(see [29]) can be used as a normalization condition for Cartan connections of the
type in question. Now there exist prolongation procedures which extend any reg-
ular infinitesimal flag structure canonically to a unique regular normal parabolic
geometry. Using these, one obtains an equivalence between the category of regular
normal parabolic geometries and the category of regular infinitesimal flag structures
structures. (In both cases there is an obvious notion of morphisms.)

The first version of such a prolongation procedure (with some restrictions on
the groups and a quite different description of the underlying structures) is due to
N. Tanaka (see [37]). It can also be obtained (in full generality) as a special case
of a construction of T. Morimoto of Cartan connections for geometric structures on
filtered manifolds, see [32]. Finally, a procedure tailored to parabolic geometries can
be found in [12].

In this way, a large number of geometric structures can be identified as parabolic
geometries. First, there are several examples in which the underlying filtration is
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trivial, and thus one has a classical first order structure. In particular, conformal
structures (of arbitrary signature) and almost quaternionic structures fall into this
group. Next, there is the group of parabolic contact structures, in which the filtration
simply amounts to a contact structure. Apart from CR structures and Lie—sphere
structures, this class also contains a quaternionic version of CR, structures and a
contact version of projective structures. Among more general parabolic geometries,
there are some higher codimension partially integrable almost CR structures (see
[33, 13]) as well as structures showing up in the geometry of differential equations,
etc.

There are a large number of general tools available for parabolic geometries. First,
it is possible to extract from the curvature of the Cartan connection (which is ge-
ometrically very complicated to understand) a geometrically much simpler part,
which still is a complete obstruction to local flatness. Next, there is a general ver-
sion of normal coordinates and distinguished curves (see [34] for a survey), as well
as a general theory of a distinguished class of underlying linear connections (gen-
eralizing Weyl-structures in conformal geometry and Webster—Tanaka connections
in CR geometry), see [14]. Finally, a general construction of so—called correspon-
dence spaces allows one to construct on the total spaces of certain natural bundles
over a manifold endowed with a normal parabolic geometry of some type, a normal
parabolic geometry of different (more complicated) type. Conversely, one obtains a
construction of twistor spaces and one can completely characterize geometries which
are locally isomorphic to a correspondence space, see [6].

2.5. Irreducible bundles and tractor bundles. We now turn to the question of
natural vector bundles on manifolds endowed with a parabolic geometry. If (p: H —
M, w) is a parabolic geometry of type (H, @), then the obvious natural vector bundles
available in this situation are vector bundles associated to the principal bundle
p:H — M. It is well known that these bundles are in bijective correspondence with
(finite dimensional) representations of the parabolic subgroup Q.

The structure of parabolic subgroups is well understood in general. It turns out
that @ always is a semidirect product of a reductive subgroup )y and a nilpotent
normal vector subgroup 4. On the Lie algebra level, this corresponds to the
reductive Levi decomposition of g into the reductive part qo and the nilradical q4.
In the CR case, Fy is isomorphic to the conformal unitary group CU(p, ¢), while p is
two step nilpotent p, = CPTY@R, with R the center and the bracket CPT¢xCPt? — R
being given by the imaginary part of a non-degenerate Hermitian form of signature
(p,q). (Notice that p; looks like the associated graded to any tangent space of
a partially integrable almost CR manifold with the bracket induced by the Lie
bracket.)

In any case, this shows that the representation theory of () is very difficult, how-
ever there are always two simple classes of representations:

Irreducible representations. On any irreducible representation of (), the nilpo-
tent group Q4 acts trivially. Thus representations of this type are obtained by taking
irreducible representations of the reductive group (¢ (which are well understood)
and extending them trivially to ¢). The corresponding natural vector bundles are
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called irreducible bundles. They are usually easy to describe geometrically and they
are the bundles one is mainly interested in. In the CR case, any irreducible bundle is
a subbundle of a tensor product of copies of HM and of density bundles. However,
it is very difficult to find invariant differential operators acting on sections of such

bundles.

Restrictions of representations of the semisimple group. Since represen-
tations of the semisimple group H are well understood, the second simple way to
obtain representations of ) is to use restrictions of representations of H. One should
however be aware of the fact that as representations of ) these typically are inde-
composable but not irreducible. So usually there are many invariant subspaces, but
none of these has an invariant complement. The bundles corresponding to such rep-
resentations are called tractor bundles. They are hard to describe geometrically, but
they have the nice feature that they admit canonical linear connections. The point
about this is that if W is a representation of H, then % xg W= (H x¢g H) Xz W.
Now the Cartan connection w induces a principal connection on the extended bundle
H X H and thus a linear connection on the tractor bundle H xgo W. This linear con-
nection is called the normal tractor connection. Alternatively, one may also describe
the passage from the Cartan connection to the normal tractor connection directly
(without using the extended bundle), see [7, section 2].

The fundamental example of a tractor bundle is the adjoint tractor bundle Hxqgh.
This has the nice property that it contains the cotangent bundle as a subbundle and
has the tangent bundle as a quotient. In the case of classical Lie algebras, and thus
in particular in the CR case (after the choice of a bundle £(1,0)) one also has the
standard tractor bundle corresponding to the standard representation, which will
play a main role in the rest of this paper.

In [7] it has been shown how tractor bundles and tractor connections can be used
as an independent equivalent description of parabolic geometries. To do this, one
first abstractly defines adjoint tractor bundles of type (H, Q) over a manifold M,
essentially as bundles of filtered Lie algebras modeled on §j with a canonical filtration
induced by the parabolic subalgebra q. Then using an abstract notion of tractor
connections, one gets a bijective correspondence between adjoint tractor bundles
endowed with tractor connections and principal J—bundles endowed with Cartan
connections. Finally, one can characterize normality of the Cartan connection in
terms of the tractor connection. For specific structures (such as conformal or CR)
there is a simple variation using standard tractor bundles rather than adjoint tractor
bundles.

Let us describe the case of the standard tractor bundle on CR manifolds explicitly.
Let (M, HM,J) be a partially integrable almost CR manifold of signature (p, ¢), let
£(1,0) — M be a complex line bundle such that £(1,0)2"" = tHM @ QM
and put £(—1,0) := &£(1,0)*. Then a standard tractor bundle over M is a rank
n + 2 complex vector bundle 7 — M endowed with a Hermitian bundle metric h of
signature (p+ 1,¢+ 1), a complex line bundle 71 C 7 and a global non-vanishing
smooth section 7 of A%"'ZT* which is compatible with A such that the following
properties are satisfied:
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(i) 7' = £(—1,0) and the fibers of 7! are null for A.
(i) (THL/T' = HM @ £(—1,0), where the orthogonal complement is taken with
respect to h.

A tractor connection on this tractor bundle is then a linear connection V, which
is Hermitian and compatible with 7 and the complex structure .J on 7, i.e. Vi =0,
V7 =0, and V.J = 0 for the induced linear connections. Moreover, V has to satisfy
a non—degeneracy condition, namely that for any 2 € M and any tangent vector
& € T, M, there is a smooth section f € I'(T1), such that Ve f(z) ¢ 7.1

Having these data and fixing a nonzero element o € A%"'QV* compatible with
the Hermitian form ( , ), we define G, for @ € M to be the set of all unitary
isomorphisms V — 7T, which map the distinguished line Ce C V to 7,! and such
that the induced map on the highest exterior power maps « to 7(z). Then the
union G = UzecarG, is naturally a subspace in the linear frame bundle of 7, which
by construction admits smooth local sections. Moreover, composition from the right
defines a smooth right action of P on G which is immediately seen to be free and
transitive on each fiber, thus making G — M into a P—principal bundle. Moreover,
by construction 7 = G xp V. The Cartan connection w € Q'(G, g) corresponding to
the tractor connection V is then given as follows: For a section s € I'(T) consider
the corresponding function f : G — V given by f(v) = v=1(s(p(v))) for all v € G.
Then for a point u € G, and a tangent vector £ € T,G, the value w(§) € su(V) is
characterized by u™! (Vrp.es(z)) — (€- f)(u) = w(&)(f(u)), see [7, 2.5]. One can then
characterize the normalization condition on w in terms of V| see [7, 2.9-2.11].

Finally, it should be remarked that for several structures and some classes of
structures there are direct constructions of tractor bundles and tractor connections
from underlying structures, see [1, 8, 26] and [7, section 4].

2.6. Tractor calculus. The drawback of the normal tractor connection is that
while one may differentiate sections of a tractor bundle once, the cotangent bundle
T*M is not a tractor bundle, so there is no direct way to iterate the differentiation.
For specific structures this problem was solved by introducing specific invariant
differential operators that are now called tractor D-operators which act on sections
of tractor bundles twisted by density bundles and which may be iterated. The first
construction of such operators (for conformal structures) goes back to the work of
T. Thomas in the 1930’s, see [38]. They were rediscovered in [1] and a version for
almost Grassmannian structures was introduced in [26]. Apart from other problems,
these operators have in particular been applied to the description of projective and
conformal invariants, see [21, 23].

Later on, it was realized that these tractor D—operators can be recovered from
more basic invariant operators. Versions of these operators have been around in
the literature earlier, but seemingly the have not been related to the adjoint tractor
bundle and used systematically until the papers [23, 26, 7], where they are called
fundamental D—operators. Roughly speaking, they may be viewed as an analog of
the Levi-Civita connection in Riemannian geometry, but with the tangent bundle
replaced by the adjoint tractor bundle.
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For a parabolic geometry (p : H — M,w) of type (H,Q) with adjoint tractor
bundle A — M, and any vector bundle F — M that is associated to H, one obtains
an operator ['(A) @ I'(F) — ['(&) which we write as (s, ¢) — D, to emphasize the
similarity with a covariant derivative. To define this operator, one just has to note
that via the Cartan connection, sections of A are in bijective correspondence with
(—-invariant vector fields on the total space of the Cartan bundle, which can then
be used to differentiate the equivariant functions corresponding to sections of F.

From this construction, it is easy to see that the operators are algebraic in the
A-slot and first order differential operators in the F—slot, and that they are natural
with respect to all vector bundle maps induced by homomorphisms of ()J—modules.
Now we can view D as an operator from ['(F) to ['(A* @ E'), and since there is no
restriction on the bundle involved, we can obviously iterate fundamental D’s. The
iterated fundamental D’s then provide an invariant way to encode the infinite jet of
a section into a fairly manageable bundle, which is a major step toward the general
problem of invariants.

An important point to note here is that on tractor bundles the fundamental
D—-operators can be directly computed from the normal tractor connection, so no
knowledge of the Cartan bundle and the Cartan connections is necessary in this
case. Moreover, given the fundamental D’s on a tractor bundle, by the naturality
one gets the fundamental D’s on all its subquotients. For example, knowing the
normal tractor connection on A, one not only gets the fundamental D on A but also
on the tangent bundle T'M and thus on all tensor bundles.

2.7. Bernstein—Gelfand—Gelfand sequences. BGG-sequences offer a general
construction of invariant differential operators acting on sections of irreducible bun-
dles. On the flat model H/Q, naturality of a differential operator is equivalent
to equivariancy under the natural action of H on the spaces of sections of homo-
geneous vector bundles. It turns out that invariant differential operators (in that
sense) acting between sections of irreducible bundles are via a dualization equiva-
lent to homomorphisms of generalized Verma modules, so this problem reduces to
representation theory. In the Borel case, such homomorphisms were completely clas-
sified by I.N. Bernstein, .M. Gelfand, and S.I. Gelfand, see [2]. In particular most
of these homomorphisms show up in the so—called BGG-resolutions of irreducible
representations of H by homomorphisms of Verma modules. These resolutions were
generalized to the case of arbitrary parabolics by J. Lepowsky, see [31].

To obtain curved analogs of these operators, one first notices that for a trac-
tor bundle 7 — M, the normal tractor connection induces the so—called covariant
exterior derivative on 7T—valued differential forms. If W is the H-representation
inducing 7, then from Kostant’s harmonic theory (see [29]) one concludes that the
vector bundle corresponding to the cohomology module (H*(gy, W))* is a natural
subquotient of the bundle A*T*M @7 . The Q-representation H*(q,, W) (and thus
also its dual) turns out to be completely reducible, and the irreducible components
are explicitly computable using Kostant’s version of the Bott—Borel-Weil theorem.

In the joint work [15] with J. Slovak and V. Souéek, we introduced differential
splittings from sections of these subquotients to 7—valued forms. Using these, one
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can compress the twisted de-Rham sequence corresponding to 7 to a sequence
of higher order differential operators on the subquotients, whose properties are
controlled by the twisted de-Rham sequence. This was significantly improved by
D. Calderbank and T. Diemer in [4] in which differential projections onto the sub-
bundles in question were constructed on the level of all 7—valued forms. This leads
to an efficient calculus on T—valued forms and in particular to an explicit procedure
for constructing the BGG operators in terms of the covariant exterior derivatives
and algebraic operations. In particular, all these operators are (at least in principle)
explicitly computable from the fundamental D operator on 7. It should also be
remarked here that with these differential projections at hand, one also obtains bi—
and multilinear invariant differential operators, differential cup products, tools to
translate invariant differential operators and so on.

3. THE AMBIENT METRIC AND THE FEFFERMAN SPACE

3.1. The ambient metric construction. The ambient metric construction works
in the realm of embedded CR manifolds. Originally, it was introduced in the setting
of smoothly bounded strictly pseudoconvex domains in C"*! using the Bergman
kernel. Since the Bergman kernel is only computable asymptotically at the boundary,
the interest moved to the local behavior of the ambient metric near the boundary.
Finally, in [19] Ch. Fefferman introduced a version of the ambient metric in which
the Bergman kernel was replaced by suitably normalized defining functions:

Suppose that M C C"*! is an embedded CR manifold of signature (p, ¢) (i.e. M is
a real hypersurface, such that the subbundle H M of maximal complex subspaces in
tangent spaces defines a CR structure of signature (p, q)). Suppose further that r is
a defining function for M, i.e. a smooth function defined locally around M such that
M = r~1(0) and dr is nonzero on M. Then one defines My := C* x M C C* x C**!.
Putting r4 (2, 2) := |2°|*r(2), one obtains a defining function for My and it turns
out that r4 can be used as the potential of a Kdhler metric ¢ of signature (p+1, ¢+1)
defined locally around M.

Now Fefferman introduced a normalization condition on the defining function r,
which in particular implies that the resulting metric g is Ricci—flat. Namely, put

r ar.
J(r) = (1)1 det (87’ 9% ) :

ozt 9z'0z
The equation J(r) = 1 is known as the complex Monge-Ampére equation. While
this is a very difficult nonlinear PDE, Fefferman found a simple algorithm to modify
any defining function ¢ for M to a defining function r such that J(r) =14 O(r?®)
along M for 1 < s < n+ 2. For such a defining function, it turns out that the
Ricci curvature of the ambient metric g vanishes to order s — 3 along M. For our
purpose, solutions with s = 3 will always be sufficient. Explicitly, the algorithm
goes as follows: Starting with any defining function %, put 1 = ¢J(¢)_1/(n+1)

and s 1= 1, (1 4 1—njﬁl)), Then 7 := 1), (1 i %) satisfies J(r) = 1+ O(r?)

along M.
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Fefferman showed that extending local biholomorphisms appropriately (which es-
sentially amounts to viewing My as the frame bundle of a fixed choice of a complex
line bundle £(1,0)*), a certain jet along M of the ambient metric obtained from a
normalized defining function is biholomorphism invariant. For our purposes, this
invariance is not really important, since we shall later use the ambient metric to
construct the standard tractor bundle and its canonical linear connection, which are
known to be CR invariant. What is however of central importance for us is that
everything related to the ambient metric is explicitly computable: Starting with
any defining function 1, we have the explicit algorithm to compute the normalized
defining function r, and thus also r4. Since this is the potential for g, the compo-
nents of the metric (in the coordinates (2, 27)) are simply the mixed second partial
derivatives of ry. The Christoffel symbols of the Levi-Civita connection of g are
then partial derivatives of this components, i.e. higher partials of r4. From these,
the curvature of g can be obtained as partial derivatives of r4, and so on.

3.2. The Fefferman space. Having the ambient metric ¢ at hand, the construction
of the Fefferman space in the embedded setting is now a very natural idea. Since the
well-defined part of the ambient metric is some jet along My, one tries to restrict
g to My. This restriction turns out to be degenerate, but in a very weak sense.
Namely, the degenerate directions are exactly the real directions up the cone. Hence
it is natural to consider the quotient M := My /R*, which by construction is a bundle
over M with fiber C*/R* = U(1). Compressing the real part of g to this quotient,
one gets a non-degenerate metric of signature (2p+1,2¢+ 1), which however is only
well defined up to a positive real factor, so we get a conformal structure of that
signature on M. If one starts with a defining function r such that J(r) = 1 4+O(r?)
along M, then this conformal structure turns out to be CR invariant.

In particular, this implies that conformal invariants of the Fefferman space M are
CR invariants of the original CR manifold M, (which is an important source of inter-
est in conformal invariants). Since the ambient metric is completely computable, also
the conformal structure on the Fefferman space can be computed explicitly starting
from any defining function for M. A second main application of the Fefferman space
is the description of chains on M. For any CR manifold, the chains form a family of
distinguished curves. For any point « € M and any tangent vector £ € T, M which
does not lie in the subspace H, M, there is a unique such curve with initial point x
and initial direction & up to parametrization. Now it turns out that the chains on M
are exactly the projections of light-like geodesics on M, ie. geodesics corresponding
to null directions. In [19], Fefferman uses this to compute chains on embedded CR
manifolds as trajectories of a Hamiltonian system.

The Fefferman space can also be constructed for abstract CR manifolds. This was
first done by D. Burns, K. Diederich, and S. Shnider in [3], see also [30] for a version
stressing the point of view of Cartan connections. These constructions are similar in
spirit to the one in terms of tractors that will be described below, but working on the
level of the Cartan bundle and the Cartan connection. Starting from an abstract CR
manifold (M, HM, J), one directly defines the Fefferman space M and its conformal
structure via a certain natural complex line bundle on M. Then one proves that
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the CR Cartan bundle of M naturally includes into the conformal Cartan bundle
of M, and this inclusion is compatible with the normal Cartan connection on both
bundles, which means that the normal conformal Cartan connection can be obtained
from the normal CR Cartan connection by equivariant extension. In particular, the
conformal Cartan curvature of the Fefferman space is essentially the same object as
the CR Cartan curvature of the original manifold.

3.3. Fefferman space and standard tractors. We next describe a construction
of the Fefferman space using standard tractors which adds a lot of power to this
construction. Details and applications can be found in [9]. As in 2.2 consider
V = C"*? endowed with a Hermitian inner product { , ) of signature (p+1,¢+ 1),
put G = SU(V) =2 SU(p+ 1,9 + 1), choose a fixed nonzero null vector e and
define P C G to be the stabilizer of the complex line Ce. For a CR manifold
(M, HM,J) of signature (p,¢) and a fixed choice of a complex line bundle £(1,0)
such that &£(1, 0)®n+2 = AZHM @ QM, we get from 2.3 a canonical principal P-
bundle p : G — M endowed with a canonical normal Cartan connection w € Q1(G, g).
Now we put £(—1,0) := £(1,0)*, and we define M to be the quotient of the frame
bundle of £(—1,0) (which is a principal C*~bundle) by the action of the subgroup
R* C C*. Thus, there is a natural projection M — M, which is a principal bundle
with structure group C*/R* 2 U(1), i.e. M is a circle bundle over M.

Now we may as well consider V as a real vector space and the real part of the
Hermitian form as a real inner product. Define G := OV)=ZO02p+2,2q+2), the
orthogonal group of this inner product, and let P C G be the stabilizer subgroup of
the real null line Re. Then normal parabolic geometries of type (G, ]5) are exactly
conformal structures of signature (2p+ 1,2¢+ 1). By construction, we have GG C G,
G'N P C P and one easily verifies that P/(G' N P) = C*/R*.

Next, one easily shows that M is canonically isomorphic to the quotient G/(GNP),
which implies that there is a natural projection G — M which defines a principal
bundle with structure group GNP. Using this, we define a vector bundle 7 — M by
T:=¢ Xenp V- The real inner product on V induces a bundle metric of signature
(2p+2,2q+2) on 7. Moreover, the real line through the chosen vector e gives rise to
a real line bundle sitting inside 7 which is null and can be shown to be isomorphic
to a certain density bundle over M. These two data make 7 — M into a conformal
standard tractor bundle.

The mechanism introduced in [7] to construct tractor connections from Cartan

connections can then be applied to construct a linear connection V7 on the bundle
T, which can be easily shown to be a tractor connection. The most difficult part of
the construction is then to analyze the relation between the normalization conditions
for conformal and CR Cartan connections to prove that the tractor connection V7
is normal. It is worth noticing that this is not a purely algebraic game, and in
particular it does not work for partially integrable almost CR structures. Rather
one has to show that for CR manifolds, the curvature of the Cartan connection
actually satisfies a stronger version of the normalization condition.
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Having this result at hand, we obtain a conformal structure on M (which can be
easily described explicitly) but more importantly, we see that the Cartan curvatures
of the conformal structure on M and of the CR structure on M are essentially
the same object, thus recovering all facts known from earlier constructions of the
Fefferman space. But this construction has important new features: By definition,
the CR standard tractor bundle 7 — M is the associated bundle G xp V. From this
description it follows immediately that the U(1)-action on M which has M as its
orbit space lifts to an action by vector bundle homomorphisms on 7 and the orbit
space of this action is exactly 7. This in turn means that one gets a U(1)-action
on the space I'(T) of smooth sections of 7 — M such that the invariant elements
are exactly the smooth sections of 7" — M. Moreover, in this process the normal
tractor connection V7 descends to the normal tractor connection on 7.

A similar relation can be built up for a large class of bundles (essentially all those
which come from a representation of P whose restriction to GNP admits an extension
to P), and in all cases one gets a U(1)—action on the sections of the conformal bundle
whose invariant elements are exactly the sections of the corresponding CR bundle.
In particular, this works for all density bundles and all conformal tractor bundles.

Next, one may compare the adjoint tractor bundles on M and on M, which can
be described as A = s0(T) and A = su(7), respectively. In particular, there is
a canonical U(1)-action on A. On the other hand, the complex structure on V
induces an almost complex structure on 7, which is parallel for the normal tractor
connection on A (which is induced by V7). One shows that sections of A are
exactly those sections of A which are U(1)-invariant and commute with this almost
complex structure. Using this, one then shows that for arbitrary compatible bundles
as above, the conformal fundamental D—operator is U(1)-equivariant and descends
to the CR fundamental D-operator.

In this way, one obtains a machinery to descend conformally invariant differen-
tial operators that can be described in terms of fundamental D’s to CR invariant
differential operators, which then are automatically described in tractor terms. In
particular, as we shall see below there is a way to describe these operators explicitly

in the case of embedded CR manifolds.

3.4. Ambient metric and standard tractors. As a final topic, | want to describe
how the ambient metric construction from 3.1 can be used to get a completely explicit
description of the CR standard tractor bundle and its normal tractor connection in
the case of embedded CR manifolds. Details and applications are presented in [10].

Asin 3.1let M C C**! be an embedded CR manifold of signature (p, ¢) and let r
be a (not necessarily normalized) defining function for M. Define My :=C* x M C
C* x C"*! consider the defining function rg for My given by ry (2%, 2) = [2°)%r(2)
and let g be the corresponding ambient metric, i.e. the K&hler metric (defined locally
around My) with potential r4. For o € C* let p* denote the canonical action of «
on My and C* x C**1 je. p2(29 2) = (a2?, 2).

First it is easy to show directly that the associated bundle My xcx C with respect
to the action given by multiplication by a~! is an appropriate choice for £(1,0) in this
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situation. Otherwise put, sections of £(1,0) correspond to smooth functions My —
C which are homogeneous of degree (1,0), i.e. which satisfy f(az?, 2) = af(z°,2).
In this way, My is exactly the frame bundle of the dual £(—1,0) of £(1,0). Similarly
one can then describe sections of the density bundles £(k, () for k, ¢ € Z (which are
defined as appropriate tensor products of copies of £(1,0), or £(—1,0) and their
conjugate bundles) as functions f : My — C which are homogeneous of degree
(k,0),ie. flaz® 2) =aFaf(2°,2).

Next, consider the restriction of the ambient tangent bundle 7(C* x C"*!) to My
and define a C*—action on this bundle by a - ¢ := a=!Tp®-£. Then this is an action
by vector bundle homomorphisms lifting the action on My, and thus the quotient
T = (T(C* x C"*')|n,)/U(1) is a smooth rank n + 2 complex vector bundle over
M. Moreover, sections of T are in bijective correspondence with ambient vector
fields along My which are homogeneous of degree —1, i.e. which satisfy ¢(az%, 2) =
aITpo - (29, 2).

From the construction it follows easily that the ambient Kdhler metric ¢ is ho-
mogeneous of degree (2,0), so inserting two fields homogeneous of degree (—1,0)
one gets a function which is constant along the fibers, and hence g descends to a
Hermitian metric h of signature (p+1,¢+ 1) on the bundle 7. On the other hand,
the fundamental field X generating the C*-action is homogeneous of degree (0,0),
so for a smooth function f: My — C homogeneous of degree (—1,0) the field fX
is a section of 7. Thus one gets a subbundle 7' C 7 which by construction is
isomorphic to £(—1,0). It is easy to verify that for € M the line 7.! is null for A,
and projecting vector fields induces an isomorphism (71)4/7' > HM @ £(-1,0).

Next, one verifies that the Levi-Civita connection of the ambient metric is com-
patible with homogeneities and that for fields homogeneous of degree (—1,0) the
covariant derivative in vertical directions vanishes. Thus, taking a vector field on M
and lifting it to a field on My homogeneous of degree (0,0), the covariant derivative
with respect to that lift maps sections of 7 to sections of 7 and is independent of
the choice of the lift. In that way, the Levi-Civita connection of g descends to a
linear connection V7 on 7, which by construction is Hermitian with respect to the
bundle metric h.

This is not yet enough to make 7 into a standard tractor bundle and V7 into
a tractor connection on that bundle, since that would also require a trivialization
of AZT*T such that the corresponding (constant) global sections are parallel with
respect to V7, see 2.5, and such sections cannot exist in general. However, we may
consider the bundle A = su(7) (which makes sense with the data defined up to now)
and the induced connection VA, and one obtains:

Theorem. (1) The bundle A = su(T) is an adjoint tractor bundle on M, and V4
is a tractor connection on A.

(2) The tractor connection VA is normal if and only if the ambient metric g is
Ricci-flat along M.

The proof of part (1) is a rather straightforward verification, while for (2) one
first relates the curvature of V4 to the curvature of g (which is rather easy) and
then has to analyze in detail the normalization condition for tractor connections.
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3.5. The case of a normalized defining function. Let us now suppose that we
start with a defining function r which satisfies J(r) = 1 4+ O(r®) along M. Then
it is easy to see that the corresponding ambient metric ¢ is Ricci—flat along M, so
the construction of 3.4 leads to the normal adjoint tractor bundles and its normal
tractor connection. But in this case, one may actually construct a non—vanishing
smooth section of A%"'Q’T which is parallel for V7, thus making 7 into a standard
tractor bundle over M and V7 into a tractor connection on this tractor bundle.
The general theory of tractor connections then implies that the curvature of V7 is
essentially the same object as the curvature of V4, and one obtains

Theorem. If the defining function r satisfies J(r) = 1+ O(r®) along M, then the
bundle T and the connection V7 constructed in 3. are the normal standard tractor
bundle and the normal standard tractor connection for the CR structure on M.

As we noted in 3.1 the ambient metric and its Levi-Civita connection are explicitly
computable from the defining function r, so this result gives a completely explicit
description of the standard tractor bundle 7, the tractor metric & and the normal
tractor connection V7, so all ingredients needed for tractor calculus are explicitly
computable. The general theory then implies that the curvature of V7 coincides
with the curvature of the normal Cartan connection, so we get an explicit algorithm
for computing the Cartan curvature of an embedded CR manifold starting from
a normalized defining function (which in turn can be computed explicitly starting
from any defining function). Already this simple consequence is rather remarkable
in view of the recent paper [39]. In that paper, S.M. Webster computes the Cartan
curvature for a simple class of embedded CR manifolds (using methods tailored to
this class) and claims that this is the first case in which the Cartan curvature of a
non—flat CR manifold of dimension bigger than 3 is computed completely.

It should also be pointed out that the relation to the Fefferman space can be easily
exploited in that picture. In particular, going through the construction presented
in 3.3, one sees that in the embedded case this construction really coincides with
Fefferman’s original construction. The ambient metric can in this situation also
be used to describe the conformal standard tractor bundle and its normal tractor
connection, see also 3.6 below.

Notice further that any irreducible representation of the group SU(p+1,¢+ 1)
is a subrepresentation of a tensor product of copies of the standard representation
and its dual. Thus any tractor bundle is a subbundle of a tensor product of copies
of T and T*, and since all normal tractor connections are induced from the normal
Cartan connection, the normal tractor connection on such a subbundle is just the
restriction of the connection on the tensor product induced by V7. Thus, we get an
explicit description of any tractor bundle and its normal tractor connection, which
can then be used to compute BGG operators as outlined in 2.7.

There is yet another way to proceed further, which ties in standard tractors with
further classical techniques used in CR geometry. Starting with the defining function
r, the (real valued) one form —idr|ps actually defines a contact form for the contact
structure defined by the subbundle HM C TM. On one hand, this may be viewed
as a pseudo-Hermitian structure on the CR manifold (M, HM,J), thus giving rise
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to the so—called Webster—Tanaka connection on TM. On the other hand, in the
terminology of [14], this contact form defines a section of a bundle of scales and
thus an exact Weyl structure on (M, HM,J). Hence we get the corresponding Weyl
connection which gives a linear connection on any irreducible bundle as well as the
associated rho—tensor. Now it turns out that from the explicit description of 7 and
V7 one may explicitly compute this rho-tensor as well as the Weyl connections on
density bundles and on the bundle HM, which then can be used to compute the
Weyl connection on any irreducible bundle. This gives access to a general machinery
(see [5]) for explicitly computing a large class of BGG-operators. On the other hand,
one may also compute in general the relation between the Weyl connections on HM
and QM and the Webster—Tanaka connection associated to the pseudo—Hermitian
structure defined by —idr, thus obtaining an explicit formula for this Webster—
Tanaka connection. This also makes contact to the CR tractor calculus developed
in [24], see also [22].

3.6. Remark on the conformal ambient metric. There is also an ambient met-
ric construction for conformal structures, which was introduced in [20] and applied
to the construction of invariant powers of the Laplacian in [27]. This ambient metric
construction is closely related to Poincaré metrics and the theory of conformal in-
finities which has been recently related to string theory, see [28]. This construction
starts with an embedding of the frame bundle of a certain density bundle into an
ambient manifold and produces a conformally invariant jet of a Ricci—flat pseudo—
Riemannian metric along the frame bundle. A construction analogous to the one
discussed in 3.4 above can be used to obtain a standard tractor bundle and a tractor
connection on that bundle from any ambient metric, and this tractor connection is
normal if and only if the ambient metric is Ricci—flat along the frame bundle, see
[11]. In fact, this result is significantly simpler to prove than Theorems 3.4 and 3.5,
since on one hand in the conformal case the relation between adjoint tractor bundles
and standard tractor bundles is simpler, and on the other hand the normalization
condition for conformal tractor connections is much easier to analyze than the cor-
responding condition in the CR case. These results have already found applications
to the study of invariant powers of the Laplacian and of the so—called ()—curvatures,
see [25].
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