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PARABOLIC GEOMETRIES, CR{TRACTORS, AND THEFEFFERMAN CONSTRUCTIONANDREAS �CAPAbstrat. This is a survey on reent joint work with A.R. Gover on the ge-ometry of non{degenerate CR manifolds of hypersurfae type. Spei�ally wedisuss the relation between standard trators on one side and the anonial Car-tan onnetion, the onstrution of the Fe�erman spae and the ambient metrionstrution on the other side. To put these results into perspetive, some partsof the general theory of paraboli geometries are disussed.1. IntrodutionThis paper surveys reent joint work (partly in progress) with A.R. Gover onthe standard trator bundle and its anonial linear onnetion in the geometry ofnon{degenerate CR strutures of hypersurfae type. Apart from general geometriquestions, this work spei�ally aims at questions onerning CR invariants and therelated question of CR invariant di�erential operators, i.e. di�erential operators thatare intrinsi to a CR struture.Spei�ally, I want to show that standard trators tie in very niely with threelassial onstrutions of CR geometry. First, the standard trator bundle and itslinear onnetion are equivalent to the anonial Cartan bundle and the anonialCartan onnetion on a CR manifold. Seondly, a onstrution of Ch. Fe�ermanassoiates to any CR manifoldM an inde�nite onformal struture on the total spaeof a ertain irle bundle overM . Using the standard trator bundle and onnetionleads to new ways to exploit this onstrution. Finally, there is the so{alled ambientmetri onstrution for embedded CR manifolds, whih is also due to Ch. Fe�erman.Starting from any de�ning funtion for an embedded CR manifold, a simple expliitalgorithm provides a de�ning funtion satisfying a ertain normalization ondition.This in turn gives rise to a Rii{at K�ahler metri on an ambient spae. Theimportant point here is, that this metri as well as its Levi-Civita onnetion an beeasily omputed expliitly from the normalized de�ning funtion. We shall see howthis leads (in the speial ase of embedded CR manifolds) to a ompletely expliitdesription of the standard trator bundle and the standard trator onnetion.On the other hand, the standard trator bundle and onnetion for CR struturesimmediately leads to a (CR invariant) alulus on any CR manifold. This atuallyDate: Otober 11, 2001.2000 Mathematis Subjet Classi�ation. 32V05, 32V30, 53B15, 53C15.Key words and phrases. CR struture, ambient metri, Fe�erman spae, trator bundle, para-boli geometry. 1



2 ANDREAS �CAPis a speial ase of a muh more general onept of trator bundles and onnetionsfor so{alled paraboli geometries. The general theory of these geometri strutures,whih has been substantially developed during the last few years, provides a numberof tools and onstrutions, e.g. of invariant di�erential operators. To put things intoperspetive, I will also desribe some aspets of this general theory here.2. The Cartan onnetion, standard trators, and paraboligeometries2.1. CR manifolds. Let us start by realling the relevant de�nitions. An almostCR{manifold is a smooth manifold M of odd dimension, dim(M) = 2n + 1, to-gether with a rank n omplex subbundle HM � TM . Note that passing to theomplexi�ation TCM = TM 
 C of the tangent bundle, the subbundle HM 
 Csplits as H1;0M �H0;1M into a holomorphi and an anti-holomorphi part. We willdenote by J : HM ! HM the almost omplex struture on the bundle HM , byQM := TM=HM the quotient bundle (whih by onstrution is a real line bundle),and by q : TM ! QM the natural projetion. The Lie braket then indues atensorial map L : HM �HM ! QM via L(�; �) = q([�; �℄) for �; � 2 �(HM).The struture (M;HM; J) is alled a CR struture if L is non{degenerate (andhene HM de�nes a ontat struture on M) and the subbundle H1;0M � TCMis involutive. A weakening of this integrability ondition (assuming the L is non{degenerate) is the ondition of partial integrability whih just requires the Lie braketof two setions of H1;0M to be a setion of H1;0M � H0;1M . Partial integrabilityturns out to be equivalent to ompatibility of L with the almost omplex struturein the sense that L(J�; J�) = L(�; �) and is the weakest ondition under whihexistene of a anonial normal Cartan onnetion is guaranteed.If (M;HM; J) and (M 0; HM 0; J 0) are CR manifolds, then a smooth map f :M !M 0 is alled a CR map if for all x 2 M we have Txf(HxM) � Hf(x)M 0 and therestrition Txf : HxM ! Hf(x)M 0 is omplex linear (with respet to J and J 0). A(loal) CR di�eomorphism between two CR manifolds is a (loal) di�eomorphismwhih also is a CR map.If (M;HM; J) is a partially integrable almost CR manifold, the ompatibility ofL and J implies that, hoosing a loal trivialization of QM , we may view L as theimaginary part of a non{degenerate Hermitian form, the Levi{form. The signature(p; q) of this Hermitian form is unambiguously de�ned if we require p � q, and it isalled the signature of (M;HM; J).The basi examples of CR manifolds are provided by the boundaries of stritlypseudoonvex domains. If 
 � Cn+1 is a smoothly bounded stritly pseudoonvexdomain with boundary M = �
, then for z 2 M we de�ne HzM := TzM \ iTzM .Thus, HzM � TzM is the maximal omplex subspae in the tangent spae, and amoment of thought shows that this has to be of omplex dimension n, so the spaesHzM de�ne a rank n omplex subbundle of TM . Moreover, strit pseudoonvexityis atually equivalent to the Levi form being de�nite (and hene aording to ouronventions being of signature (n; 0)). Finally, integrability of H1;0M in this aseeasily follows from integrability of the omplex struture on C n+1 .



PARABOLIC GEOMETRIES, CR{TRACTORS, AND THE FEFFERMAN CONSTRUCTION 3Of ourse, one may onsider more general real hypersurfaes M in C n+1 or ingeneral omplex manifolds, with the subbundle HM being given by the maximalomplex subspaes in the tangent spaes. If this subbundle de�nes a ontat stru-ture onM , then the integrability ondition is automatially satis�ed, so (M;HM; J)is a CR manifold. CR strutures obtained in this way on hypersurfaes in C n+1 arealled embedded CR manifolds.2.2. The at model of CR strutures. The �rst step towards the onstrutionof a anonial Cartan onnetion on CR manifolds is to desribe the at model ofCR strutures of signature (p; q) (with p+ q = n and p � q) and thus indentify thegroups involved in the onstrution.Consider the spae V= C n+2 endowed with a Hermitian form h ; i of signature(p+1; q+1). Let C � Vbe the one of nonzero null{vetors and let M be the imageof C in the projetivization PV�= CPn+1 of V. Then M anonially arries a CRstruture of signature (p; q). This may be dedued from the fat thatM is a smoothreal hypersurfae in the omplex manifold PV. Alternatively, it is a nie exerise todedue the CR struture on M diretly from its desription as a quotient of C andthe obvious desription of the tangent spaes of the hypersurfae C � V.Next, onsider the group G := SU(V) �= SU(p + 1; q + 1). The one C learlyis invariant under the ation of G on V, and it is elementary to verify that Gats transitively on C. Consequently, G ats transitively on M and from eitherof the two desriptions of the CR struture on M it is easy to see that G atsby CR di�eomorphisms. It is muh less elementary to see that atually any CRdi�eomorphism ofM omes from the ation of an element of G. Hene, we onludethat the group of CR automorphisms of M is G := PSU(C ), the quotient of G byits enter (whih is isomorphi to Zn+2).Fixing an element e 2 C, i.e. a nonzero null vetor, we denote by P � G and P � Gthe stabilizer subgroups of the omplex line C e, thus obtaining di�eomorphismsG=P �= G=P �= M . The subgroups P and P turn out to be so{alled parabolisubgroups of the semisimple groups G respetively G, i.e. the orresponding Liesubalgebra p � g (whih is the same for both groups) ontains a maximal solvablesubalgebra of the simple Lie algebra g = su(V)�= su(p+ 1; q + 1).2.3. The anonial Cartan onnetion on CR manifolds. One of the basiresults in CR geometry is that CR manifolds an atually be viewed as \urvedanalogs" of the homogeneous at model G=P from 2.2 above. This is an instane ofE. Cartan's onept of \espaes g�eneralis�es" whih assoiates to any homogeneousspae a geometri struture, see [17℄. In modern terminology, these strutures arealled Cartan geometries . Given a Lie group H and a losed subgroup Q � H , aCartan geometry of type (H;Q) on a smooth manifold M is de�ned as a prinipalQ{bundle p : H ! M (whih is an analog of the anonial bundle H ! H=Q)together with a Cartan onnetion ! 2 
1(H; h), where h is the Lie algebra of H .This Cartan onnetion should be thought of as an analog of the left Maurer{Cartanform on H , and its de�ning properties(i) !u : TuH ! h is a linear isomorphism for all u 2 H(ii) (rh)�! = Ad(h�1) Æ! for h 2 Q, with rh denoting the prinipal right ation of h



4 ANDREAS �CAP(iii) !(�A) = A for all A 2 q, with �A denoting the fundamental vetor �eld orre-sponding to Aare preisely the parts of the properties of the left Maurer Cartan form whih remainto make sense in the more general setting.A model ase for this onept is given by taking H the group of Eulidean mo-tions of Rn and Q = O(n), and hene H=Q the Eulidean spae Rn. In this ase, aCartan geometry of type (H;Q) on M is easily seen to be equivalent to a redutionof the frame bundle of M to the struture group Q = O(n) together with a prin-ipal onnetion on this prinipal O(n){bundle. These data in turn are equivalentto a Riemannian metri on M together with a linear onnetion on TM whih isompatible with the metri. Hene, imposing a normalization ondition on the Car-tan onnetion whih amounts to requiring the linear onnetion to be torsion free,one sees that normal Cartan geometries of type (H;Q) are exatly n{dimensionalRiemannian manifolds. In the ase of Riemannian strutures, the point of view ofCartan geometries (while oneptually very valuable) is not really neessary to eÆ-iently deal with the geometry, sine the Cartan onnetion is essentially equivalentto the Levi-Civita onnetion. In more general situations, suh a simple translationis not possible, and more sophistiated methods for using the Cartan onnetion arerequired.In the general ase, interpreting a Cartan geometry of given type is rather diÆ-ult, there are however ases in whih normal Cartan geometries an be anoniallyonstruted from underlying geometri strutures. With onformal and projetivestrutures, CR strutures are one of the main examples of this situation: We on-tinue to use the notation for the groups G and G, P � G and P � G from 2.2above.Theorem. Let (M;HM; J) be a CR manifold of signature (p; q). Then there existsa anonial prinipal P{bundle p : G ! M endowed with a unique normal Cartanonnetion ! 2 
1(G; g).The normalization ondition on the Cartan onnetion is a restrition on the ur-vature that an be either formulated in Lie theoreti terms (whih then generalizes toparaboli geometries, see below) or diretly as the vanishing of ertain traes of theurvature. The prinipal bundle is then uniquely determined (up to isomorphism)by the fat that it admits a normal Cartan onnetion. This result was proved byE. Cartan for n = 1 (i.e. 3{dimensional CR strutures), see [16℄. For general n, it isdue to N. Tanaka (see [35, 36℄) and to S.S. Chern and J. Moser (see [18℄). It shouldbe remarked here that Tanaka's onstrution atually works in the more generalsetting of partially integrable almost CR strutures.For later use, it is very important to slightly extend this onstrution, in order toget a Cartan geometry of type (G;P ) rather than (G;P ). It turns out that in orderto get a prinipal P{bundle p : G !M endowed with a anonial Cartan onnetion! 2 
1(G; g) one in addition to the CR struture has to hoose a omplex line bundleE(1; 0)!M suh that E(1; 0)
n+2 �= �nCHM 
QM . While suh a bundle need notexist globally, and if it does, it is not neessarily determined uniquely, existene anduniqueness are always lear loally. Moreover, we shall see later on that in the ase



PARABOLIC GEOMETRIES, CR{TRACTORS, AND THE FEFFERMAN CONSTRUCTION 5of a boundary of a domain that an be desribed by a de�ning funtion, there isalways a anonial global hoie.2.4. Paraboli geometries. By de�nition, paraboli geometries are Cartan geome-tries of type (H;Q), where H is a semisimple Lie group and Q � H is a parabolisubgroup, i.e. the Lie algebra q of Q ontains a maximal solvable subalgebra of thesemisimple Lie algebra h and Q is the normalizer of q in H . It is well know that foromplex semisimple Lie algebras paraboli subalgebras are in bijetive orrespon-dene with sets of simple roots, while in the real ase there is an additional onditionwhih an be easily desribed in terms of the Satake diagram, so one has a omplete(and rather large) list of examples of suh strutures. It turns out that all thesestrutures, whih are very diverse from a geometrial point of view, an be studiedin a surprisingly uniform way.For any paraboli geometry (p : H ! M;!) one an onstrut an underlyingstruture, alled an in�nitesimal ag struture. This onsists of a �ltration of thetangent bundle of M together with a redution of struture group of the assoiatedgraded grTM of the tangent bundle to the redutive part Q0 of the paraboli sub-group Q. This underlying struture is rather easy to understand geometrially. Ifone requires the �ltration to be ompatible with the Lie braket of vetor �elds, thisLie braket indues an algebrai braket on grTM . On the other hand, from theredution to the struture group to the group Q0, one gets another algebrai braketon grTM , and requiring these two algebrai brakets to oinide, one obtains thenotion of a regular in�nitesimal ag struture.In the CR ase, the �ltration is simply given by the subbundle HM � TM andthe redution to the group P 0 amounts just to an almost omplex struture on HMand a braket HM �HM ! QM whih is the imaginary part of a Hermitian formof signature (p; q). From this desription, it is easy to see that a regular in�nitesimalag struture in this ase is exatly a partially integrable almost CR struture.Next, it turns out that regularity of the underlying in�nitesimal ag struture anbe easily desribed in terms of the (urvature of the) Cartan onnetion, thus leadingto the notion of regular paraboli geometries. Moreover, the Kostant{odi�erential(see [29℄) an be used as a normalization ondition for Cartan onnetions of thetype in question. Now there exist prolongation proedures whih extend any reg-ular in�nitesimal ag struture anonially to a unique regular normal paraboligeometry. Using these, one obtains an equivalene between the ategory of regularnormal paraboli geometries and the ategory of regular in�nitesimal ag struturesstrutures. (In both ases there is an obvious notion of morphisms.)The �rst version of suh a prolongation proedure (with some restritions onthe groups and a quite di�erent desription of the underlying strutures) is due toN. Tanaka (see [37℄). It an also be obtained (in full generality) as a speial aseof a onstrution of T. Morimoto of Cartan onnetions for geometri strutures on�ltered manifolds, see [32℄. Finally, a proedure tailored to paraboli geometries anbe found in [12℄.In this way, a large number of geometri strutures an be identi�ed as paraboligeometries. First, there are several examples in whih the underlying �ltration is



6 ANDREAS �CAPtrivial, and thus one has a lassial �rst order struture. In partiular, onformalstrutures (of arbitrary signature) and almost quaternioni strutures fall into thisgroup. Next, there is the group of paraboli ontat strutures, in whih the �ltrationsimply amounts to a ontat struture. Apart from CR strutures and Lie{spherestrutures, this lass also ontains a quaternioni version of CR strutures and aontat version of projetive strutures. Among more general paraboli geometries,there are some higher odimension partially integrable almost CR strutures (see[33, 13℄) as well as strutures showing up in the geometry of di�erential equations,et.There are a large number of general tools available for paraboli geometries. First,it is possible to extrat from the urvature of the Cartan onnetion (whih is ge-ometrially very ompliated to understand) a geometrially muh simpler part,whih still is a omplete obstrution to loal atness. Next, there is a general ver-sion of normal oordinates and distinguished urves (see [34℄ for a survey), as wellas a general theory of a distinguished lass of underlying linear onnetions (gen-eralizing Weyl{strutures in onformal geometry and Webster{Tanaka onnetionsin CR geometry), see [14℄. Finally, a general onstrution of so{alled orrespon-dene spaes allows one to onstrut on the total spaes of ertain natural bundlesover a manifold endowed with a normal paraboli geometry of some type, a normalparaboli geometry of di�erent (more ompliated) type. Conversely, one obtains aonstrution of twistor spaes and one an ompletely haraterize geometries whihare loally isomorphi to a orrespondene spae, see [6℄.2.5. Irreduible bundles and trator bundles. We now turn to the question ofnatural vetor bundles on manifolds endowed with a paraboli geometry. If (p : H !M;!) is a paraboli geometry of type (H;Q), then the obvious natural vetor bundlesavailable in this situation are vetor bundles assoiated to the prinipal bundlep : H !M . It is well known that these bundles are in bijetive orrespondene with(�nite dimensional) representations of the paraboli subgroup Q.The struture of paraboli subgroups is well understood in general. It turns outthat Q always is a semidiret produt of a redutive subgroup Q0 and a nilpotentnormal vetor subgroup Q+. On the Lie algebra level, this orresponds to theredutive Levi deomposition of q into the redutive part q0 and the nilradial q+.In the CR ase, P0 is isomorphi to the onformal unitary group CU(p; q), while p+ istwo step nilpotent p+ �= C p+q�R, withRthe enter and the braket C p+q�C p+q ! Rbeing given by the imaginary part of a non{degenerate Hermitian form of signature(p; q). (Notie that p+ looks like the assoiated graded to any tangent spae ofa partially integrable almost CR manifold with the braket indued by the Liebraket.)In any ase, this shows that the representation theory of Q is very diÆult, how-ever there are always two simple lasses of representations:Irreduible representations. On any irreduible representation of Q, the nilpo-tent group Q+ ats trivially. Thus representations of this type are obtained by takingirreduible representations of the redutive group Q0 (whih are well understood)and extending them trivially to Q. The orresponding natural vetor bundles are



PARABOLIC GEOMETRIES, CR{TRACTORS, AND THE FEFFERMAN CONSTRUCTION 7alled irreduible bundles . They are usually easy to desribe geometrially and theyare the bundles one is mainly interested in. In the CR ase, any irreduible bundle isa subbundle of a tensor produt of opies of HM and of density bundles. However,it is very diÆult to �nd invariant di�erential operators ating on setions of suhbundles.Restritions of representations of the semisimple group. Sine represen-tations of the semisimple group H are well understood, the seond simple way toobtain representations of Q is to use restritions of representations ofH . One shouldhowever be aware of the fat that as representations of Q these typially are inde-omposable but not irreduible. So usually there are many invariant subspaes, butnone of these has an invariant omplement. The bundles orresponding to suh rep-resentations are alled trator bundles . They are hard to desribe geometrially, butthey have the nie feature that they admit anonial linear onnetions. The pointabout this is that if W is a representation of H , then H �Q W �= (H �Q H)�H W.Now the Cartan onnetion ! indues a prinipal onnetion on the extended bundleH�QH and thus a linear onnetion on the trator bundle H�QW. This linear on-netion is alled the normal trator onnetion. Alternatively, one may also desribethe passage from the Cartan onnetion to the normal trator onnetion diretly(without using the extended bundle), see [7, setion 2℄.The fundamental example of a trator bundle is the adjoint trator bundle H�Qh.This has the nie property that it ontains the otangent bundle as a subbundle andhas the tangent bundle as a quotient. In the ase of lassial Lie algebras, and thusin partiular in the CR ase (after the hoie of a bundle E(1; 0)) one also has thestandard trator bundle orresponding to the standard representation, whih willplay a main role in the rest of this paper.In [7℄ it has been shown how trator bundles and trator onnetions an be usedas an independent equivalent desription of paraboli geometries. To do this, one�rst abstratly de�nes adjoint trator bundles of type (H;Q) over a manifold M ,essentially as bundles of �ltered Lie algebras modeled on h with a anonial �ltrationindued by the paraboli subalgebra q. Then using an abstrat notion of tratoronnetions, one gets a bijetive orrespondene between adjoint trator bundlesendowed with trator onnetions and prinipal Q{bundles endowed with Cartanonnetions. Finally, one an haraterize normality of the Cartan onnetion interms of the trator onnetion. For spei� strutures (suh as onformal or CR)there is a simple variation using standard trator bundles rather than adjoint tratorbundles.Let us desribe the ase of the standard trator bundle on CRmanifolds expliitly.Let (M;HM; J) be a partially integrable almost CR manifold of signature (p; q), letE(1; 0) ! M be a omplex line bundle suh that E(1; 0)
n+2 �= �nCHM 
 QMand put E(�1; 0) := E(1; 0)�. Then a standard trator bundle over M is a rankn+ 2 omplex vetor bundle T !M endowed with a Hermitian bundle metri h ofsignature (p+ 1; q + 1), a omplex line bundle T 1 � T and a global non{vanishingsmooth setion � of �n+2C T � whih is ompatible with h suh that the followingproperties are satis�ed:



8 ANDREAS �CAP(i) T 1 �= E(�1; 0) and the �bers of T 1 are null for h.(ii) (T 1)?=T 1 �= HM 
 E(�1; 0), where the orthogonal omplement is taken withrespet to h.A trator onnetion on this trator bundle is then a linear onnetion r, whihis Hermitian and ompatible with � and the omplex struture ~J on T , i.e. rh = 0,r� = 0, and r ~J = 0 for the indued linear onnetions. Moreover, r has to satisfya non{degeneray ondition, namely that for any x 2 M and any tangent vetor� 2 TxM , there is a smooth setion f 2 �(T 1), suh that r�f(x) =2 T 1x .Having these data and �xing a nonzero element � 2 �n+2C V� ompatible withthe Hermitian form h ; i, we de�ne Gx for x 2 M to be the set of all unitaryisomorphisms V! Tx, whih map the distinguished line C e � V to T 1x and suhthat the indued map on the highest exterior power maps � to �(x). Then theunion G = [x2MGx is naturally a subspae in the linear frame bundle of T , whihby onstrution admits smooth loal setions. Moreover, omposition from the rightde�nes a smooth right ation of P on G whih is immediately seen to be free andtransitive on eah �ber, thus making G !M into a P{prinipal bundle. Moreover,by onstrution T = G �P V. The Cartan onnetion ! 2 
1(G; g) orresponding tothe trator onnetion r is then given as follows: For a setion s 2 �(T ) onsiderthe orresponding funtion f : G ! V given by f(v) = v�1(s(p(v))) for all v 2 G.Then for a point u 2 Gx and a tangent vetor � 2 TuG, the value !(�) 2 su(V) isharaterized by u�1(rTp��s(x))� (� �f)(u) = !(�)(f(u)), see [7, 2.5℄. One an thenharaterize the normalization ondition on ! in terms of r, see [7, 2.9{2.11℄.Finally, it should be remarked that for several strutures and some lasses ofstrutures there are diret onstrutions of trator bundles and trator onnetionsfrom underlying strutures, see [1, 8, 26℄ and [7, setion 4℄.2.6. Trator alulus. The drawbak of the normal trator onnetion is thatwhile one may di�erentiate setions of a trator bundle one, the otangent bundleT �M is not a trator bundle, so there is no diret way to iterate the di�erentiation.For spei� strutures this problem was solved by introduing spei� invariantdi�erential operators that are now alled trator D{operators whih at on setionsof trator bundles twisted by density bundles and whih may be iterated. The �rstonstrution of suh operators (for onformal strutures) goes bak to the work ofT. Thomas in the 1930's, see [38℄. They were redisovered in [1℄ and a version foralmost Grassmannian strutures was introdued in [26℄. Apart from other problems,these operators have in partiular been applied to the desription of projetive andonformal invariants, see [21, 23℄.Later on, it was realized that these trator D{operators an be reovered frommore basi invariant operators. Versions of these operators have been around inthe literature earlier, but seemingly the have not been related to the adjoint tratorbundle and used systematially until the papers [23, 26, 7℄, where they are alledfundamental D{operators. Roughly speaking, they may be viewed as an analog ofthe Levi-Civita onnetion in Riemannian geometry, but with the tangent bundlereplaed by the adjoint trator bundle.



PARABOLIC GEOMETRIES, CR{TRACTORS, AND THE FEFFERMAN CONSTRUCTION 9For a paraboli geometry (p : H ! M;!) of type (H;Q) with adjoint tratorbundle A !M , and any vetor bundle E !M that is assoiated to H, one obtainsan operator �(A)
�(E)! �(E) whih we write as (s; ') 7! Ds' to emphasize thesimilarity with a ovariant derivative. To de�ne this operator, one just has to notethat via the Cartan onnetion, setions of A are in bijetive orrespondene withQ{invariant vetor �elds on the total spae of the Cartan bundle, whih an thenbe used to di�erentiate the equivariant funtions orresponding to setions of E.From this onstrution, it is easy to see that the operators are algebrai in theA{slot and �rst order di�erential operators in the E{slot, and that they are naturalwith respet to all vetor bundle maps indued by homomorphisms of Q{modules.Now we an view D as an operator from �(E) to �(A� 
 E), and sine there is norestrition on the bundle involved, we an obviously iterate fundamental D's. Theiterated fundamental D's then provide an invariant way to enode the in�nite jet ofa setion into a fairly manageable bundle, whih is a major step toward the generalproblem of invariants.An important point to note here is that on trator bundles the fundamentalD{operators an be diretly omputed from the normal trator onnetion, so noknowledge of the Cartan bundle and the Cartan onnetions is neessary in thisase. Moreover, given the fundamental D's on a trator bundle, by the naturalityone gets the fundamental D's on all its subquotients. For example, knowing thenormal trator onnetion on A, one not only gets the fundamental D on A but alsoon the tangent bundle TM and thus on all tensor bundles.2.7. Bernstein{Gelfand{Gelfand sequenes. BGG{sequenes o�er a generalonstrution of invariant di�erential operators ating on setions of irreduible bun-dles. On the at model H=Q, naturality of a di�erential operator is equivalentto equivariany under the natural ation of H on the spaes of setions of homo-geneous vetor bundles. It turns out that invariant di�erential operators (in thatsense) ating between setions of irreduible bundles are via a dualization equiva-lent to homomorphisms of generalized Verma modules, so this problem redues torepresentation theory. In the Borel ase, suh homomorphisms were ompletely las-si�ed by I.N. Bernstein, I.M. Gelfand, and S.I. Gelfand, see [2℄. In partiular mostof these homomorphisms show up in the so{alled BGG{resolutions of irreduiblerepresentations of H by homomorphisms of Verma modules. These resolutions weregeneralized to the ase of arbitrary parabolis by J. Lepowsky, see [31℄.To obtain urved analogs of these operators, one �rst noties that for a tra-tor bundle T ! M , the normal trator onnetion indues the so{alled ovariantexterior derivative on T {valued di�erential forms. If W is the H{representationinduing T , then from Kostant's harmoni theory (see [29℄) one onludes that thevetor bundle orresponding to the ohomology module (Hk(q+;W))� is a naturalsubquotient of the bundle �kT �M 
T . The Q{representation Hk(q+;W) (and thusalso its dual) turns out to be ompletely reduible, and the irreduible omponentsare expliitly omputable using Kostant's version of the Bott{Borel{Weil theorem.In the joint work [15℄ with J. Slovak and V. Sou�ek, we introdued di�erentialsplittings from setions of these subquotients to T {valued forms. Using these, one



10 ANDREAS �CAPan ompress the twisted de{Rham sequene orresponding to T to a sequeneof higher order di�erential operators on the subquotients, whose properties areontrolled by the twisted de{Rham sequene. This was signi�antly improved byD. Calderbank and T. Diemer in [4℄ in whih di�erential projetions onto the sub-bundles in question were onstruted on the level of all T {valued forms. This leadsto an eÆient alulus on T {valued forms and in partiular to an expliit proedurefor onstruting the BGG operators in terms of the ovariant exterior derivativesand algebrai operations. In partiular, all these operators are (at least in priniple)expliitly omputable from the fundamental D operator on T . It should also beremarked here that with these di�erential projetions at hand, one also obtains bi{and multilinear invariant di�erential operators, di�erential up produts, tools totranslate invariant di�erential operators and so on.3. The ambient metri and the Fefferman spae3.1. The ambient metri onstrution. The ambient metri onstrution worksin the realm of embedded CR manifolds. Originally, it was introdued in the settingof smoothly bounded stritly pseudoonvex domains in C n+1 using the Bergmankernel. Sine the Bergman kernel is only omputable asymptotially at the boundary,the interest moved to the loal behavior of the ambient metri near the boundary.Finally, in [19℄ Ch. Fe�erman introdued a version of the ambient metri in whihthe Bergman kernel was replaed by suitably normalized de�ning funtions:Suppose thatM � C n+1 is an embedded CR manifold of signature (p; q) (i.e.M isa real hypersurfae, suh that the subbundle HM of maximal omplex subspaes intangent spaes de�nes a CR struture of signature (p; q)). Suppose further that r isa de�ning funtion forM , i.e. a smooth funtion de�ned loally aroundM suh thatM = r�1(0) and dr is nonzero onM . Then one de�nesM# := C ��M � C ��C n+1 .Putting r#(z0; z) := jz0j2r(z), one obtains a de�ning funtion for M# and it turnsout that r# an be used as the potential of a K�ahler metri g of signature (p+1; q+1)de�ned loally around M#.Now Fe�erman introdued a normalization ondition on the de�ning funtion r,whih in partiular implies that the resulting metri g is Rii{at. Namely, putJ(r) := (�1)q+1det r �r�zj�r��zi �2r��zi�zj! :The equation J(r) = 1 is known as the omplex Monge{Amp�ere equation. Whilethis is a very diÆult nonlinear PDE, Fe�erman found a simple algorithm to modifyany de�ning funtion  for M to a de�ning funtion r suh that J(r) = 1 + O(rs)along M for 1 � s � n + 2. For suh a de�ning funtion, it turns out that theRii urvature of the ambient metri g vanishes to order s � 3 along M . For ourpurpose, solutions with s = 3 will always be suÆient. Expliitly, the algorithmgoes as follows: Starting with any de�ning funtion  , put  1 :=  J( )�1=(n+1)and  2 :=  1 �1 + 1�J( 1)n+1 �. Then r :=  2 �1 + 1�J( 2)2n � satis�es J(r) = 1 + O(r3)along M .



PARABOLIC GEOMETRIES, CR{TRACTORS, AND THE FEFFERMAN CONSTRUCTION 11Fe�erman showed that extending loal biholomorphisms appropriately (whih es-sentially amounts to viewing M# as the frame bundle of a �xed hoie of a omplexline bundle E(1; 0)�), a ertain jet along M of the ambient metri obtained from anormalized de�ning funtion is biholomorphism invariant. For our purposes, thisinvariane is not really important, sine we shall later use the ambient metri toonstrut the standard trator bundle and its anonial linear onnetion, whih areknown to be CR invariant. What is however of entral importane for us is thateverything related to the ambient metri is expliitly omputable: Starting withany de�ning funtion  , we have the expliit algorithm to ompute the normalizedde�ning funtion r, and thus also r#. Sine this is the potential for g, the ompo-nents of the metri (in the oordinates (z0; zj)) are simply the mixed seond partialderivatives of r#. The Christo�el symbols of the Levi-Civita onnetion of g arethen partial derivatives of this omponents, i.e. higher partials of r#. From these,the urvature of g an be obtained as partial derivatives of r#, and so on.3.2. The Fe�erman spae. Having the ambient metri g at hand, the onstrutionof the Fe�erman spae in the embedded setting is now a very natural idea. Sine thewell{de�ned part of the ambient metri is some jet along M#, one tries to restritg to M#. This restrition turns out to be degenerate, but in a very weak sense.Namely, the degenerate diretions are exatly the real diretions up the one. Heneit is natural to onsider the quotient ~M :=M#=R�, whih by onstrution is a bundleover M with �ber C �=R� �= U(1). Compressing the real part of g to this quotient,one gets a non{degenerate metri of signature (2p+1; 2q+1), whih however is onlywell de�ned up to a positive real fator, so we get a onformal struture of thatsignature on ~M . If one starts with a de�ning funtion r suh that J(r) = 1 +O(r2)along M , then this onformal struture turns out to be CR invariant.In partiular, this implies that onformal invariants of the Fe�erman spae ~M areCR invariants of the original CR manifoldM , (whih is an important soure of inter-est in onformal invariants). Sine the ambient metri is ompletely omputable, alsothe onformal struture on the Fe�erman spae an be omputed expliitly startingfrom any de�ning funtion forM . A seond main appliation of the Fe�erman spaeis the desription of hains on M . For any CR manifold, the hains form a family ofdistinguished urves. For any point x 2M and any tangent vetor � 2 TxM whihdoes not lie in the subspae HxM , there is a unique suh urve with initial point xand initial diretion � up to parametrization. Now it turns out that the hains onMare exatly the projetions of light-like geodesis on ~M , i.e. geodesis orrespondingto null diretions. In [19℄, Fe�erman uses this to ompute hains on embedded CRmanifolds as trajetories of a Hamiltonian system.The Fe�erman spae an also be onstruted for abstrat CR manifolds. This was�rst done by D. Burns, K. Diederih, and S. Shnider in [3℄, see also [30℄ for a versionstressing the point of view of Cartan onnetions. These onstrutions are similar inspirit to the one in terms of trators that will be desribed below, but working on thelevel of the Cartan bundle and the Cartan onnetion. Starting from an abstrat CRmanifold (M;HM; J), one diretly de�nes the Fe�erman spae ~M and its onformalstruture via a ertain natural omplex line bundle on M . Then one proves that



12 ANDREAS �CAPthe CR Cartan bundle of M naturally inludes into the onformal Cartan bundleof ~M , and this inlusion is ompatible with the normal Cartan onnetion on bothbundles, whih means that the normal onformal Cartan onnetion an be obtainedfrom the normal CR Cartan onnetion by equivariant extension. In partiular, theonformal Cartan urvature of the Fe�erman spae is essentially the same objet asthe CR Cartan urvature of the original manifold.3.3. Fe�erman spae and standard trators. We next desribe a onstrutionof the Fe�erman spae using standard trators whih adds a lot of power to thisonstrution. Details and appliations an be found in [9℄. As in 2.2 onsiderV= C n+2 endowed with a Hermitian inner produt h ; i of signature (p+ 1; q+ 1),put G = SU(V) �= SU(p + 1; q + 1), hoose a �xed nonzero null vetor e andde�ne P � G to be the stabilizer of the omplex line C e. For a CR manifold(M;HM; J) of signature (p; q) and a �xed hoie of a omplex line bundle E(1; 0)suh that E(1; 0)
n+2 �= �nCHM 
 QM , we get from 2.3 a anonial prinipal P{bundle p : G !M endowed with a anonial normal Cartan onnetion ! 2 
1(G; g).Now we put E(�1; 0) := E(1; 0)�, and we de�ne ~M to be the quotient of the framebundle of E(�1; 0) (whih is a prinipal C �{bundle) by the ation of the subgroupR� � C � . Thus, there is a natural projetion ~M ! M , whih is a prinipal bundlewith struture group C �=R� �= U(1), i.e. ~M is a irle bundle over M .Now we may as well onsider V as a real vetor spae and the real part of theHermitian form as a real inner produt. De�ne ~G := O(V)�= O(2p+ 2; 2q + 2), theorthogonal group of this inner produt, and let ~P � ~G be the stabilizer subgroup ofthe real null line Re. Then normal paraboli geometries of type ( ~G; ~P) are exatlyonformal strutures of signature (2p+ 1; 2q+1). By onstrution, we have G � ~G,G \ ~P � P and one easily veri�es that P=(G\ ~P ) �= C �=R�.Next, one easily shows that ~M is anonially isomorphi to the quotient G=(G\ ~P ),whih implies that there is a natural projetion G ! ~M whih de�nes a prinipalbundle with struture group G\ ~P . Using this, we de�ne a vetor bundle ~T ! ~M by~T := G �G\ ~P V. The real inner produt on V indues a bundle metri of signature(2p+2; 2q+2) on T . Moreover, the real line through the hosen vetor e gives rise toa real line bundle sitting inside T whih is null and an be shown to be isomorphito a ertain density bundle over ~M . These two data make T !M into a onformalstandard trator bundle.The mehanism introdued in [7℄ to onstrut trator onnetions from Cartanonnetions an then be applied to onstrut a linear onnetion r ~T on the bundle~T , whih an be easily shown to be a trator onnetion. The most diÆult part ofthe onstrution is then to analyze the relation between the normalization onditionsfor onformal and CR Cartan onnetions to prove that the trator onnetion r ~Tis normal. It is worth notiing that this is not a purely algebrai game, and inpartiular it does not work for partially integrable almost CR strutures. Ratherone has to show that for CR manifolds, the urvature of the Cartan onnetionatually satis�es a stronger version of the normalization ondition.



PARABOLIC GEOMETRIES, CR{TRACTORS, AND THE FEFFERMAN CONSTRUCTION 13Having this result at hand, we obtain a onformal struture on ~M (whih an beeasily desribed expliitly) but more importantly, we see that the Cartan urvaturesof the onformal struture on ~M and of the CR struture on M are essentiallythe same objet, thus reovering all fats known from earlier onstrutions of theFe�erman spae. But this onstrution has important new features: By de�nition,the CR standard trator bundle T !M is the assoiated bundle G�P V. From thisdesription it follows immediately that the U(1){ation on ~M whih has M as itsorbit spae lifts to an ation by vetor bundle homomorphisms on ~T and the orbitspae of this ation is exatly T . This in turn means that one gets a U(1){ationon the spae �( ~T ) of smooth setions of ~T ! ~M suh that the invariant elementsare exatly the smooth setions of T ! M . Moreover, in this proess the normaltrator onnetion r ~T desends to the normal trator onnetion on T .A similar relation an be built up for a large lass of bundles (essentially all thosewhih ome from a representation of ~P whose restrition toG\ ~P admits an extensionto P ), and in all ases one gets a U(1){ation on the setions of the onformal bundlewhose invariant elements are exatly the setions of the orresponding CR bundle.In partiular, this works for all density bundles and all onformal trator bundles.Next, one may ompare the adjoint trator bundles on ~M and on M , whih anbe desribed as ~A = so( ~T ) and A = su(T ), respetively. In partiular, there isa anonial U(1){ation on ~A. On the other hand, the omplex struture on Vindues an almost omplex struture on ~T , whih is parallel for the normal tratoronnetion on ~A (whih is indued by r ~T ). One shows that setions of A areexatly those setions of ~A whih are U(1){invariant and ommute with this almostomplex struture. Using this, one then shows that for arbitrary ompatible bundlesas above, the onformal fundamental D{operator is U(1){equivariant and desendsto the CR fundamental D{operator.In this way, one obtains a mahinery to desend onformally invariant di�eren-tial operators that an be desribed in terms of fundamental D's to CR invariantdi�erential operators, whih then are automatially desribed in trator terms. Inpartiular, as we shall see below there is a way to desribe these operators expliitlyin the ase of embedded CR manifolds.3.4. Ambient metri and standard trators. As a �nal topi, I want to desribehow the ambient metri onstrution from 3.1 an be used to get a ompletely expliitdesription of the CR standard trator bundle and its normal trator onnetion inthe ase of embedded CR manifolds. Details and appliations are presented in [10℄.As in 3.1 letM � C n+1 be an embedded CR manifold of signature (p; q) and let rbe a (not neessarily normalized) de�ning funtion for M . De�ne M# := C � �M �C � � C n+1 , onsider the de�ning funtion r# for M# given by r#(z0; z) = jz0j2r(z)and let g be the orresponding ambient metri, i.e. the K�ahler metri (de�ned loallyaround M#) with potential r#. For � 2 C � let �� denote the anonial ation of �on M# and C � � C n+1 , i.e. ��(z0; z) = (�z0; z).First it is easy to show diretly that the assoiated bundle M#�C� C with respetto the ation given by multipliation by ��1 is an appropriate hoie for E(1; 0) in this



14 ANDREAS �CAPsituation. Otherwise put, setions of E(1; 0) orrespond to smooth funtions M# !C whih are homogeneous of degree (1; 0), i.e. whih satisfy f(�z0; z) = �f(z0; z).In this way,M# is exatly the frame bundle of the dual E(�1; 0) of E(1; 0). Similarlyone an then desribe setions of the density bundles E(k; `) for k; ` 2Z(whih arede�ned as appropriate tensor produts of opies of E(1; 0), or E(�1; 0) and theironjugate bundles) as funtions f : M# ! C whih are homogeneous of degree(k; `), i.e. f(�z0; z) = �k ��`f(z0; z).Next, onsider the restrition of the ambient tangent bundle T (C ��C n+1) toM#and de�ne a C �{ation on this bundle by � � � := ��1T�� � �. Then this is an ationby vetor bundle homomorphisms lifting the ation on M#, and thus the quotientT := (T (C � � C n+1)jM#)=U(1) is a smooth rank n + 2 omplex vetor bundle overM . Moreover, setions of T are in bijetive orrespondene with ambient vetor�elds along M# whih are homogeneous of degree �1, i.e. whih satisfy �(�z0; z) =��1T�� � �(z0; z).From the onstrution it follows easily that the ambient K�ahler metri g is ho-mogeneous of degree (2; 0), so inserting two �elds homogeneous of degree (�1; 0)one gets a funtion whih is onstant along the �bers, and hene g desends to aHermitian metri h of signature (p+ 1; q+ 1) on the bundle T . On the other hand,the fundamental �eld X generating the C �{ation is homogeneous of degree (0; 0),so for a smooth funtion f : M# ! C homogeneous of degree (�1; 0) the �eld fXis a setion of T . Thus one gets a subbundle T 1 � T whih by onstrution isisomorphi to E(�1; 0). It is easy to verify that for x 2M the line T 1x is null for h,and projeting vetor �elds indues an isomorphism (T 1)?=T 1 �= HM 
 E(�1; 0).Next, one veri�es that the Levi-Civita onnetion of the ambient metri is om-patible with homogeneities and that for �elds homogeneous of degree (�1; 0) theovariant derivative in vertial diretions vanishes. Thus, taking a vetor �eld onMand lifting it to a �eld onM# homogeneous of degree (0; 0), the ovariant derivativewith respet to that lift maps setions of T to setions of T and is independent ofthe hoie of the lift. In that way, the Levi-Civita onnetion of g desends to alinear onnetion rT on T , whih by onstrution is Hermitian with respet to thebundle metri h.This is not yet enough to make T into a standard trator bundle and rT intoa trator onnetion on that bundle, sine that would also require a trivializationof �n+2C T suh that the orresponding (onstant) global setions are parallel withrespet to rT , see 2.5, and suh setions annot exist in general. However, we mayonsider the bundle A = su(T ) (whih makes sense with the data de�ned up to now)and the indued onnetion rA, and one obtains:Theorem. (1) The bundle A = su(T ) is an adjoint trator bundle on M , and rAis a trator onnetion on A.(2) The trator onnetion rA is normal if and only if the ambient metri g isRii{at along M .The proof of part (1) is a rather straightforward veri�ation, while for (2) one�rst relates the urvature of rA to the urvature of g (whih is rather easy) andthen has to analyze in detail the normalization ondition for trator onnetions.



PARABOLIC GEOMETRIES, CR{TRACTORS, AND THE FEFFERMAN CONSTRUCTION 153.5. The ase of a normalized de�ning funtion. Let us now suppose that westart with a de�ning funtion r whih satis�es J(r) = 1 + O(r3) along M . Thenit is easy to see that the orresponding ambient metri g is Rii{at along M , sothe onstrution of 3.4 leads to the normal adjoint trator bundles and its normaltrator onnetion. But in this ase, one may atually onstrut a non{vanishingsmooth setion of �n+2C T whih is parallel for rT , thus making T into a standardtrator bundle over M and rT into a trator onnetion on this trator bundle.The general theory of trator onnetions then implies that the urvature of rT isessentially the same objet as the urvature of rA, and one obtainsTheorem. If the de�ning funtion r satis�es J(r) = 1 + O(r3) along M , then thebundle T and the onnetion rT onstruted in 3.4 are the normal standard tratorbundle and the normal standard trator onnetion for the CR struture on M .As we noted in 3.1 the ambient metri and its Levi-Civita onnetion are expliitlyomputable from the de�ning funtion r, so this result gives a ompletely expliitdesription of the standard trator bundle T , the trator metri h and the normaltrator onnetion rT , so all ingredients needed for trator alulus are expliitlyomputable. The general theory then implies that the urvature of rT oinideswith the urvature of the normal Cartan onnetion, so we get an expliit algorithmfor omputing the Cartan urvature of an embedded CR manifold starting froma normalized de�ning funtion (whih in turn an be omputed expliitly startingfrom any de�ning funtion). Already this simple onsequene is rather remarkablein view of the reent paper [39℄. In that paper, S.M. Webster omputes the Cartanurvature for a simple lass of embedded CR manifolds (using methods tailored tothis lass) and laims that this is the �rst ase in whih the Cartan urvature of anon{at CR manifold of dimension bigger than 3 is omputed ompletely.It should also be pointed out that the relation to the Fe�erman spae an be easilyexploited in that piture. In partiular, going through the onstrution presentedin 3.3, one sees that in the embedded ase this onstrution really oinides withFe�erman's original onstrution. The ambient metri an in this situation alsobe used to desribe the onformal standard trator bundle and its normal tratoronnetion, see also 3.6 below.Notie further that any irreduible representation of the group SU(p+ 1; q + 1)is a subrepresentation of a tensor produt of opies of the standard representationand its dual. Thus any trator bundle is a subbundle of a tensor produt of opiesof T and T �, and sine all normal trator onnetions are indued from the normalCartan onnetion, the normal trator onnetion on suh a subbundle is just therestrition of the onnetion on the tensor produt indued by rT . Thus, we get anexpliit desription of any trator bundle and its normal trator onnetion, whihan then be used to ompute BGG operators as outlined in 2.7.There is yet another way to proeed further, whih ties in standard trators withfurther lassial tehniques used in CR geometry. Starting with the de�ning funtionr, the (real valued) one form �i�rjM atually de�nes a ontat form for the ontatstruture de�ned by the subbundle HM � TM . On one hand, this may be viewedas a pseudo{Hermitian struture on the CR manifold (M;HM; J), thus giving rise



16 ANDREAS �CAPto the so{alled Webster{Tanaka onnetion on TM . On the other hand, in theterminology of [14℄, this ontat form de�nes a setion of a bundle of sales andthus an exat Weyl struture on (M;HM; J). Hene we get the orresponding Weylonnetion whih gives a linear onnetion on any irreduible bundle as well as theassoiated rho{tensor. Now it turns out that from the expliit desription of T andrT one may expliitly ompute this rho{tensor as well as the Weyl onnetions ondensity bundles and on the bundle HM , whih then an be used to ompute theWeyl onnetion on any irreduible bundle. This gives aess to a general mahinery(see [5℄) for expliitly omputing a large lass of BGG{operators. On the other hand,one may also ompute in general the relation between the Weyl onnetions on HMand QM and the Webster{Tanaka onnetion assoiated to the pseudo{Hermitianstruture de�ned by �i�r, thus obtaining an expliit formula for this Webster{Tanaka onnetion. This also makes ontat to the CR trator alulus developedin [24℄, see also [22℄.3.6. Remark on the onformal ambient metri. There is also an ambient met-ri onstrution for onformal strutures, whih was introdued in [20℄ and appliedto the onstrution of invariant powers of the Laplaian in [27℄. This ambient metrionstrution is losely related to Poinar�e metris and the theory of onformal in-�nities whih has been reently related to string theory, see [28℄. This onstrutionstarts with an embedding of the frame bundle of a ertain density bundle into anambient manifold and produes a onformally invariant jet of a Rii{at pseudo{Riemannian metri along the frame bundle. A onstrution analogous to the onedisussed in 3.4 above an be used to obtain a standard trator bundle and a tratoronnetion on that bundle from any ambient metri, and this trator onnetion isnormal if and only if the ambient metri is Rii{at along the frame bundle, see[11℄. In fat, this result is signi�antly simpler to prove than Theorems 3.4 and 3.5,sine on one hand in the onformal ase the relation between adjoint trator bundlesand standard trator bundles is simpler, and on the other hand the normalizationondition for onformal trator onnetions is muh easier to analyze than the or-responding ondition in the CR ase. These results have already found appliationsto the study of invariant powers of the Laplaian and of the so{alled Q{urvatures,see [25℄. Referenes[1℄ T.N. Bailey, M.G. Eastwood, A.R. Gover, Thomas's struture bundle for onformal, projetiveand related strutures, Roky Mountain J. Math. 24 (1994) 1191{1217[2℄ I.N. Bernstein, I.M. Gelfand, S.I. Gelfand, Di�erential operators on the base aÆne spae and astudy of g{modules, in Lie Groups and their Representations (ed. I.M. Gelfand) Adam Hilger(1975) 21{64[3℄ D. Burns, K. Diederih, S. Shnider, Distinguished urves in pseudoonvex boundaries, DukeMath. J. 44 No. 2 (1977) 407{431[4℄ D.M.J. Calderbank, T. Diemer, Di�erential invariants and urved Bernstein-Gelfand-Gelfandsequenes, to appear in J. Reine Angew. Math., eletronially available as math.DG/0001158at http://arXiv.org[5℄ D.M.J. Calderbank, T. Diemer, V. Sou�ek, Rii orreted derivatives and invariant di�eren-tial operators, Edinburgh Preprint MS-00-021 (2000)
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