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PARABOLIC GEOMETRIES, CR{TRACTORS, AND THEFEFFERMAN CONSTRUCTIONANDREAS �CAPAbstra
t. This is a survey on re
ent joint work with A.R. Gover on the ge-ometry of non{degenerate CR manifolds of hypersurfa
e type. Spe
i�
ally wedis
uss the relation between standard tra
tors on one side and the 
anoni
al Car-tan 
onne
tion, the 
onstru
tion of the Fe�erman spa
e and the ambient metri

onstru
tion on the other side. To put these results into perspe
tive, some partsof the general theory of paraboli
 geometries are dis
ussed.1. Introdu
tionThis paper surveys re
ent joint work (partly in progress) with A.R. Gover onthe standard tra
tor bundle and its 
anoni
al linear 
onne
tion in the geometry ofnon{degenerate CR stru
tures of hypersurfa
e type. Apart from general geometri
questions, this work spe
i�
ally aims at questions 
on
erning CR invariants and therelated question of CR invariant di�erential operators, i.e. di�erential operators thatare intrinsi
 to a CR stru
ture.Spe
i�
ally, I want to show that standard tra
tors tie in very ni
ely with three
lassi
al 
onstru
tions of CR geometry. First, the standard tra
tor bundle and itslinear 
onne
tion are equivalent to the 
anoni
al Cartan bundle and the 
anoni
alCartan 
onne
tion on a CR manifold. Se
ondly, a 
onstru
tion of Ch. Fe�ermanasso
iates to any CR manifoldM an inde�nite 
onformal stru
ture on the total spa
eof a 
ertain 
ir
le bundle overM . Using the standard tra
tor bundle and 
onne
tionleads to new ways to exploit this 
onstru
tion. Finally, there is the so{
alled ambientmetri
 
onstru
tion for embedded CR manifolds, whi
h is also due to Ch. Fe�erman.Starting from any de�ning fun
tion for an embedded CR manifold, a simple expli
italgorithm provides a de�ning fun
tion satisfying a 
ertain normalization 
ondition.This in turn gives rise to a Ri

i{
at K�ahler metri
 on an ambient spa
e. Theimportant point here is, that this metri
 as well as its Levi-Civita 
onne
tion 
an beeasily 
omputed expli
itly from the normalized de�ning fun
tion. We shall see howthis leads (in the spe
ial 
ase of embedded CR manifolds) to a 
ompletely expli
itdes
ription of the standard tra
tor bundle and the standard tra
tor 
onne
tion.On the other hand, the standard tra
tor bundle and 
onne
tion for CR stru
turesimmediately leads to a (CR invariant) 
al
ulus on any CR manifold. This a
tuallyDate: O
tober 11, 2001.2000 Mathemati
s Subje
t Classi�
ation. 32V05, 32V30, 53B15, 53C15.Key words and phrases. CR stru
ture, ambient metri
, Fe�erman spa
e, tra
tor bundle, para-boli
 geometry. 1



2 ANDREAS �CAPis a spe
ial 
ase of a mu
h more general 
on
ept of tra
tor bundles and 
onne
tionsfor so{
alled paraboli
 geometries. The general theory of these geometri
 stru
tures,whi
h has been substantially developed during the last few years, provides a numberof tools and 
onstru
tions, e.g. of invariant di�erential operators. To put things intoperspe
tive, I will also des
ribe some aspe
ts of this general theory here.2. The Cartan 
onne
tion, standard tra
tors, and paraboli
geometries2.1. CR manifolds. Let us start by re
alling the relevant de�nitions. An almostCR{manifold is a smooth manifold M of odd dimension, dim(M) = 2n + 1, to-gether with a rank n 
omplex subbundle HM � TM . Note that passing to the
omplexi�
ation TCM = TM 
 C of the tangent bundle, the subbundle HM 
 Csplits as H1;0M �H0;1M into a holomorphi
 and an anti-holomorphi
 part. We willdenote by J : HM ! HM the almost 
omplex stru
ture on the bundle HM , byQM := TM=HM the quotient bundle (whi
h by 
onstru
tion is a real line bundle),and by q : TM ! QM the natural proje
tion. The Lie bra
ket then indu
es atensorial map L : HM �HM ! QM via L(�; �) = q([�; �℄) for �; � 2 �(HM).The stru
ture (M;HM; J) is 
alled a CR stru
ture if L is non{degenerate (andhen
e HM de�nes a 
onta
t stru
ture on M) and the subbundle H1;0M � TCMis involutive. A weakening of this integrability 
ondition (assuming the L is non{degenerate) is the 
ondition of partial integrability whi
h just requires the Lie bra
ketof two se
tions of H1;0M to be a se
tion of H1;0M � H0;1M . Partial integrabilityturns out to be equivalent to 
ompatibility of L with the almost 
omplex stru
turein the sense that L(J�; J�) = L(�; �) and is the weakest 
ondition under whi
hexisten
e of a 
anoni
al normal Cartan 
onne
tion is guaranteed.If (M;HM; J) and (M 0; HM 0; J 0) are CR manifolds, then a smooth map f :M !M 0 is 
alled a CR map if for all x 2 M we have Txf(HxM) � Hf(x)M 0 and therestri
tion Txf : HxM ! Hf(x)M 0 is 
omplex linear (with respe
t to J and J 0). A(lo
al) CR di�eomorphism between two CR manifolds is a (lo
al) di�eomorphismwhi
h also is a CR map.If (M;HM; J) is a partially integrable almost CR manifold, the 
ompatibility ofL and J implies that, 
hoosing a lo
al trivialization of QM , we may view L as theimaginary part of a non{degenerate Hermitian form, the Levi{form. The signature(p; q) of this Hermitian form is unambiguously de�ned if we require p � q, and it is
alled the signature of (M;HM; J).The basi
 examples of CR manifolds are provided by the boundaries of stri
tlypseudo
onvex domains. If 
 � Cn+1 is a smoothly bounded stri
tly pseudo
onvexdomain with boundary M = �
, then for z 2 M we de�ne HzM := TzM \ iTzM .Thus, HzM � TzM is the maximal 
omplex subspa
e in the tangent spa
e, and amoment of thought shows that this has to be of 
omplex dimension n, so the spa
esHzM de�ne a rank n 
omplex subbundle of TM . Moreover, stri
t pseudo
onvexityis a
tually equivalent to the Levi form being de�nite (and hen
e a

ording to our
onventions being of signature (n; 0)). Finally, integrability of H1;0M in this 
aseeasily follows from integrability of the 
omplex stru
ture on C n+1 .



PARABOLIC GEOMETRIES, CR{TRACTORS, AND THE FEFFERMAN CONSTRUCTION 3Of 
ourse, one may 
onsider more general real hypersurfa
es M in C n+1 or ingeneral 
omplex manifolds, with the subbundle HM being given by the maximal
omplex subspa
es in the tangent spa
es. If this subbundle de�nes a 
onta
t stru
-ture onM , then the integrability 
ondition is automati
ally satis�ed, so (M;HM; J)is a CR manifold. CR stru
tures obtained in this way on hypersurfa
es in C n+1 are
alled embedded CR manifolds.2.2. The 
at model of CR stru
tures. The �rst step towards the 
onstru
tionof a 
anoni
al Cartan 
onne
tion on CR manifolds is to des
ribe the 
at model ofCR stru
tures of signature (p; q) (with p+ q = n and p � q) and thus indentify thegroups involved in the 
onstru
tion.Consider the spa
e V= C n+2 endowed with a Hermitian form h ; i of signature(p+1; q+1). Let C � Vbe the 
one of nonzero null{ve
tors and let M be the imageof C in the proje
tivization PV�= CPn+1 of V. Then M 
anoni
ally 
arries a CRstru
ture of signature (p; q). This may be dedu
ed from the fa
t thatM is a smoothreal hypersurfa
e in the 
omplex manifold PV. Alternatively, it is a ni
e exer
ise todedu
e the CR stru
ture on M dire
tly from its des
ription as a quotient of C andthe obvious des
ription of the tangent spa
es of the hypersurfa
e C � V.Next, 
onsider the group G := SU(V) �= SU(p + 1; q + 1). The 
one C 
learlyis invariant under the a
tion of G on V, and it is elementary to verify that Ga
ts transitively on C. Consequently, G a
ts transitively on M and from eitherof the two des
riptions of the CR stru
ture on M it is easy to see that G a
tsby CR di�eomorphisms. It is mu
h less elementary to see that a
tually any CRdi�eomorphism ofM 
omes from the a
tion of an element of G. Hen
e, we 
on
ludethat the group of CR automorphisms of M is G := PSU(C ), the quotient of G byits 
enter (whi
h is isomorphi
 to Zn+2).Fixing an element e 2 C, i.e. a nonzero null ve
tor, we denote by P � G and P � Gthe stabilizer subgroups of the 
omplex line C e, thus obtaining di�eomorphismsG=P �= G=P �= M . The subgroups P and P turn out to be so{
alled paraboli
subgroups of the semisimple groups G respe
tively G, i.e. the 
orresponding Liesubalgebra p � g (whi
h is the same for both groups) 
ontains a maximal solvablesubalgebra of the simple Lie algebra g = su(V)�= su(p+ 1; q + 1).2.3. The 
anoni
al Cartan 
onne
tion on CR manifolds. One of the basi
results in CR geometry is that CR manifolds 
an a
tually be viewed as \
urvedanalogs" of the homogeneous 
at model G=P from 2.2 above. This is an instan
e ofE. Cartan's 
on
ept of \espa
es g�eneralis�es" whi
h asso
iates to any homogeneousspa
e a geometri
 stru
ture, see [17℄. In modern terminology, these stru
tures are
alled Cartan geometries . Given a Lie group H and a 
losed subgroup Q � H , aCartan geometry of type (H;Q) on a smooth manifold M is de�ned as a prin
ipalQ{bundle p : H ! M (whi
h is an analog of the 
anoni
al bundle H ! H=Q)together with a Cartan 
onne
tion ! 2 
1(H; h), where h is the Lie algebra of H .This Cartan 
onne
tion should be thought of as an analog of the left Maurer{Cartanform on H , and its de�ning properties(i) !u : TuH ! h is a linear isomorphism for all u 2 H(ii) (rh)�! = Ad(h�1) Æ! for h 2 Q, with rh denoting the prin
ipal right a
tion of h



4 ANDREAS �CAP(iii) !(�A) = A for all A 2 q, with �A denoting the fundamental ve
tor �eld 
orre-sponding to Aare pre
isely the parts of the properties of the left Maurer Cartan form whi
h remainto make sense in the more general setting.A model 
ase for this 
on
ept is given by taking H the group of Eu
lidean mo-tions of Rn and Q = O(n), and hen
e H=Q the Eu
lidean spa
e Rn. In this 
ase, aCartan geometry of type (H;Q) on M is easily seen to be equivalent to a redu
tionof the frame bundle of M to the stru
ture group Q = O(n) together with a prin-
ipal 
onne
tion on this prin
ipal O(n){bundle. These data in turn are equivalentto a Riemannian metri
 on M together with a linear 
onne
tion on TM whi
h is
ompatible with the metri
. Hen
e, imposing a normalization 
ondition on the Car-tan 
onne
tion whi
h amounts to requiring the linear 
onne
tion to be torsion free,one sees that normal Cartan geometries of type (H;Q) are exa
tly n{dimensionalRiemannian manifolds. In the 
ase of Riemannian stru
tures, the point of view ofCartan geometries (while 
on
eptually very valuable) is not really ne
essary to eÆ-
iently deal with the geometry, sin
e the Cartan 
onne
tion is essentially equivalentto the Levi-Civita 
onne
tion. In more general situations, su
h a simple translationis not possible, and more sophisti
ated methods for using the Cartan 
onne
tion arerequired.In the general 
ase, interpreting a Cartan geometry of given type is rather diÆ-
ult, there are however 
ases in whi
h normal Cartan geometries 
an be 
anoni
ally
onstru
ted from underlying geometri
 stru
tures. With 
onformal and proje
tivestru
tures, CR stru
tures are one of the main examples of this situation: We 
on-tinue to use the notation for the groups G and G, P � G and P � G from 2.2above.Theorem. Let (M;HM; J) be a CR manifold of signature (p; q). Then there existsa 
anoni
al prin
ipal P{bundle p : G ! M endowed with a unique normal Cartan
onne
tion ! 2 
1(G; g).The normalization 
ondition on the Cartan 
onne
tion is a restri
tion on the 
ur-vature that 
an be either formulated in Lie theoreti
 terms (whi
h then generalizes toparaboli
 geometries, see below) or dire
tly as the vanishing of 
ertain tra
es of the
urvature. The prin
ipal bundle is then uniquely determined (up to isomorphism)by the fa
t that it admits a normal Cartan 
onne
tion. This result was proved byE. Cartan for n = 1 (i.e. 3{dimensional CR stru
tures), see [16℄. For general n, it isdue to N. Tanaka (see [35, 36℄) and to S.S. Chern and J. Moser (see [18℄). It shouldbe remarked here that Tanaka's 
onstru
tion a
tually works in the more generalsetting of partially integrable almost CR stru
tures.For later use, it is very important to slightly extend this 
onstru
tion, in order toget a Cartan geometry of type (G;P ) rather than (G;P ). It turns out that in orderto get a prin
ipal P{bundle p : G !M endowed with a 
anoni
al Cartan 
onne
tion! 2 
1(G; g) one in addition to the CR stru
ture has to 
hoose a 
omplex line bundleE(1; 0)!M su
h that E(1; 0)
n+2 �= �nCHM 
QM . While su
h a bundle need notexist globally, and if it does, it is not ne
essarily determined uniquely, existen
e anduniqueness are always 
lear lo
ally. Moreover, we shall see later on that in the 
ase
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an be des
ribed by a de�ning fun
tion, there isalways a 
anoni
al global 
hoi
e.2.4. Paraboli
 geometries. By de�nition, paraboli
 geometries are Cartan geome-tries of type (H;Q), where H is a semisimple Lie group and Q � H is a paraboli
subgroup, i.e. the Lie algebra q of Q 
ontains a maximal solvable subalgebra of thesemisimple Lie algebra h and Q is the normalizer of q in H . It is well know that for
omplex semisimple Lie algebras paraboli
 subalgebras are in bije
tive 
orrespon-den
e with sets of simple roots, while in the real 
ase there is an additional 
onditionwhi
h 
an be easily des
ribed in terms of the Satake diagram, so one has a 
omplete(and rather large) list of examples of su
h stru
tures. It turns out that all thesestru
tures, whi
h are very diverse from a geometri
al point of view, 
an be studiedin a surprisingly uniform way.For any paraboli
 geometry (p : H ! M;!) one 
an 
onstru
t an underlyingstru
ture, 
alled an in�nitesimal 
ag stru
ture. This 
onsists of a �ltration of thetangent bundle of M together with a redu
tion of stru
ture group of the asso
iatedgraded grTM of the tangent bundle to the redu
tive part Q0 of the paraboli
 sub-group Q. This underlying stru
ture is rather easy to understand geometri
ally. Ifone requires the �ltration to be 
ompatible with the Lie bra
ket of ve
tor �elds, thisLie bra
ket indu
es an algebrai
 bra
ket on grTM . On the other hand, from theredu
tion to the stru
ture group to the group Q0, one gets another algebrai
 bra
keton grTM , and requiring these two algebrai
 bra
kets to 
oin
ide, one obtains thenotion of a regular in�nitesimal 
ag stru
ture.In the CR 
ase, the �ltration is simply given by the subbundle HM � TM andthe redu
tion to the group P 0 amounts just to an almost 
omplex stru
ture on HMand a bra
ket HM �HM ! QM whi
h is the imaginary part of a Hermitian formof signature (p; q). From this des
ription, it is easy to see that a regular in�nitesimal
ag stru
ture in this 
ase is exa
tly a partially integrable almost CR stru
ture.Next, it turns out that regularity of the underlying in�nitesimal 
ag stru
ture 
anbe easily des
ribed in terms of the (
urvature of the) Cartan 
onne
tion, thus leadingto the notion of regular paraboli
 geometries. Moreover, the Kostant{
odi�erential(see [29℄) 
an be used as a normalization 
ondition for Cartan 
onne
tions of thetype in question. Now there exist prolongation pro
edures whi
h extend any reg-ular in�nitesimal 
ag stru
ture 
anoni
ally to a unique regular normal paraboli
geometry. Using these, one obtains an equivalen
e between the 
ategory of regularnormal paraboli
 geometries and the 
ategory of regular in�nitesimal 
ag stru
turesstru
tures. (In both 
ases there is an obvious notion of morphisms.)The �rst version of su
h a prolongation pro
edure (with some restri
tions onthe groups and a quite di�erent des
ription of the underlying stru
tures) is due toN. Tanaka (see [37℄). It 
an also be obtained (in full generality) as a spe
ial 
aseof a 
onstru
tion of T. Morimoto of Cartan 
onne
tions for geometri
 stru
tures on�ltered manifolds, see [32℄. Finally, a pro
edure tailored to paraboli
 geometries 
anbe found in [12℄.In this way, a large number of geometri
 stru
tures 
an be identi�ed as paraboli
geometries. First, there are several examples in whi
h the underlying �ltration is



6 ANDREAS �CAPtrivial, and thus one has a 
lassi
al �rst order stru
ture. In parti
ular, 
onformalstru
tures (of arbitrary signature) and almost quaternioni
 stru
tures fall into thisgroup. Next, there is the group of paraboli
 
onta
t stru
tures, in whi
h the �ltrationsimply amounts to a 
onta
t stru
ture. Apart from CR stru
tures and Lie{spherestru
tures, this 
lass also 
ontains a quaternioni
 version of CR stru
tures and a
onta
t version of proje
tive stru
tures. Among more general paraboli
 geometries,there are some higher 
odimension partially integrable almost CR stru
tures (see[33, 13℄) as well as stru
tures showing up in the geometry of di�erential equations,et
.There are a large number of general tools available for paraboli
 geometries. First,it is possible to extra
t from the 
urvature of the Cartan 
onne
tion (whi
h is ge-ometri
ally very 
ompli
ated to understand) a geometri
ally mu
h simpler part,whi
h still is a 
omplete obstru
tion to lo
al 
atness. Next, there is a general ver-sion of normal 
oordinates and distinguished 
urves (see [34℄ for a survey), as wellas a general theory of a distinguished 
lass of underlying linear 
onne
tions (gen-eralizing Weyl{stru
tures in 
onformal geometry and Webster{Tanaka 
onne
tionsin CR geometry), see [14℄. Finally, a general 
onstru
tion of so{
alled 
orrespon-den
e spa
es allows one to 
onstru
t on the total spa
es of 
ertain natural bundlesover a manifold endowed with a normal paraboli
 geometry of some type, a normalparaboli
 geometry of di�erent (more 
ompli
ated) type. Conversely, one obtains a
onstru
tion of twistor spa
es and one 
an 
ompletely 
hara
terize geometries whi
hare lo
ally isomorphi
 to a 
orresponden
e spa
e, see [6℄.2.5. Irredu
ible bundles and tra
tor bundles. We now turn to the question ofnatural ve
tor bundles on manifolds endowed with a paraboli
 geometry. If (p : H !M;!) is a paraboli
 geometry of type (H;Q), then the obvious natural ve
tor bundlesavailable in this situation are ve
tor bundles asso
iated to the prin
ipal bundlep : H !M . It is well known that these bundles are in bije
tive 
orresponden
e with(�nite dimensional) representations of the paraboli
 subgroup Q.The stru
ture of paraboli
 subgroups is well understood in general. It turns outthat Q always is a semidire
t produ
t of a redu
tive subgroup Q0 and a nilpotentnormal ve
tor subgroup Q+. On the Lie algebra level, this 
orresponds to theredu
tive Levi de
omposition of q into the redu
tive part q0 and the nilradi
al q+.In the CR 
ase, P0 is isomorphi
 to the 
onformal unitary group CU(p; q), while p+ istwo step nilpotent p+ �= C p+q�R, withRthe 
enter and the bra
ket C p+q�C p+q ! Rbeing given by the imaginary part of a non{degenerate Hermitian form of signature(p; q). (Noti
e that p+ looks like the asso
iated graded to any tangent spa
e ofa partially integrable almost CR manifold with the bra
ket indu
ed by the Liebra
ket.)In any 
ase, this shows that the representation theory of Q is very diÆ
ult, how-ever there are always two simple 
lasses of representations:Irredu
ible representations. On any irredu
ible representation of Q, the nilpo-tent group Q+ a
ts trivially. Thus representations of this type are obtained by takingirredu
ible representations of the redu
tive group Q0 (whi
h are well understood)and extending them trivially to Q. The 
orresponding natural ve
tor bundles are
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alled irredu
ible bundles . They are usually easy to des
ribe geometri
ally and theyare the bundles one is mainly interested in. In the CR 
ase, any irredu
ible bundle isa subbundle of a tensor produ
t of 
opies of HM and of density bundles. However,it is very diÆ
ult to �nd invariant di�erential operators a
ting on se
tions of su
hbundles.Restri
tions of representations of the semisimple group. Sin
e represen-tations of the semisimple group H are well understood, the se
ond simple way toobtain representations of Q is to use restri
tions of representations ofH . One shouldhowever be aware of the fa
t that as representations of Q these typi
ally are inde-
omposable but not irredu
ible. So usually there are many invariant subspa
es, butnone of these has an invariant 
omplement. The bundles 
orresponding to su
h rep-resentations are 
alled tra
tor bundles . They are hard to des
ribe geometri
ally, butthey have the ni
e feature that they admit 
anoni
al linear 
onne
tions. The pointabout this is that if W is a representation of H , then H �Q W �= (H �Q H)�H W.Now the Cartan 
onne
tion ! indu
es a prin
ipal 
onne
tion on the extended bundleH�QH and thus a linear 
onne
tion on the tra
tor bundle H�QW. This linear 
on-ne
tion is 
alled the normal tra
tor 
onne
tion. Alternatively, one may also des
ribethe passage from the Cartan 
onne
tion to the normal tra
tor 
onne
tion dire
tly(without using the extended bundle), see [7, se
tion 2℄.The fundamental example of a tra
tor bundle is the adjoint tra
tor bundle H�Qh.This has the ni
e property that it 
ontains the 
otangent bundle as a subbundle andhas the tangent bundle as a quotient. In the 
ase of 
lassi
al Lie algebras, and thusin parti
ular in the CR 
ase (after the 
hoi
e of a bundle E(1; 0)) one also has thestandard tra
tor bundle 
orresponding to the standard representation, whi
h willplay a main role in the rest of this paper.In [7℄ it has been shown how tra
tor bundles and tra
tor 
onne
tions 
an be usedas an independent equivalent des
ription of paraboli
 geometries. To do this, one�rst abstra
tly de�nes adjoint tra
tor bundles of type (H;Q) over a manifold M ,essentially as bundles of �ltered Lie algebras modeled on h with a 
anoni
al �ltrationindu
ed by the paraboli
 subalgebra q. Then using an abstra
t notion of tra
tor
onne
tions, one gets a bije
tive 
orresponden
e between adjoint tra
tor bundlesendowed with tra
tor 
onne
tions and prin
ipal Q{bundles endowed with Cartan
onne
tions. Finally, one 
an 
hara
terize normality of the Cartan 
onne
tion interms of the tra
tor 
onne
tion. For spe
i�
 stru
tures (su
h as 
onformal or CR)there is a simple variation using standard tra
tor bundles rather than adjoint tra
torbundles.Let us des
ribe the 
ase of the standard tra
tor bundle on CRmanifolds expli
itly.Let (M;HM; J) be a partially integrable almost CR manifold of signature (p; q), letE(1; 0) ! M be a 
omplex line bundle su
h that E(1; 0)
n+2 �= �nCHM 
 QMand put E(�1; 0) := E(1; 0)�. Then a standard tra
tor bundle over M is a rankn+ 2 
omplex ve
tor bundle T !M endowed with a Hermitian bundle metri
 h ofsignature (p+ 1; q + 1), a 
omplex line bundle T 1 � T and a global non{vanishingsmooth se
tion � of �n+2C T � whi
h is 
ompatible with h su
h that the followingproperties are satis�ed:



8 ANDREAS �CAP(i) T 1 �= E(�1; 0) and the �bers of T 1 are null for h.(ii) (T 1)?=T 1 �= HM 
 E(�1; 0), where the orthogonal 
omplement is taken withrespe
t to h.A tra
tor 
onne
tion on this tra
tor bundle is then a linear 
onne
tion r, whi
his Hermitian and 
ompatible with � and the 
omplex stru
ture ~J on T , i.e. rh = 0,r� = 0, and r ~J = 0 for the indu
ed linear 
onne
tions. Moreover, r has to satisfya non{degenera
y 
ondition, namely that for any x 2 M and any tangent ve
tor� 2 TxM , there is a smooth se
tion f 2 �(T 1), su
h that r�f(x) =2 T 1x .Having these data and �xing a nonzero element � 2 �n+2C V� 
ompatible withthe Hermitian form h ; i, we de�ne Gx for x 2 M to be the set of all unitaryisomorphisms V! Tx, whi
h map the distinguished line C e � V to T 1x and su
hthat the indu
ed map on the highest exterior power maps � to �(x). Then theunion G = [x2MGx is naturally a subspa
e in the linear frame bundle of T , whi
hby 
onstru
tion admits smooth lo
al se
tions. Moreover, 
omposition from the rightde�nes a smooth right a
tion of P on G whi
h is immediately seen to be free andtransitive on ea
h �ber, thus making G !M into a P{prin
ipal bundle. Moreover,by 
onstru
tion T = G �P V. The Cartan 
onne
tion ! 2 
1(G; g) 
orresponding tothe tra
tor 
onne
tion r is then given as follows: For a se
tion s 2 �(T ) 
onsiderthe 
orresponding fun
tion f : G ! V given by f(v) = v�1(s(p(v))) for all v 2 G.Then for a point u 2 Gx and a tangent ve
tor � 2 TuG, the value !(�) 2 su(V) is
hara
terized by u�1(rTp��s(x))� (� �f)(u) = !(�)(f(u)), see [7, 2.5℄. One 
an then
hara
terize the normalization 
ondition on ! in terms of r, see [7, 2.9{2.11℄.Finally, it should be remarked that for several stru
tures and some 
lasses ofstru
tures there are dire
t 
onstru
tions of tra
tor bundles and tra
tor 
onne
tionsfrom underlying stru
tures, see [1, 8, 26℄ and [7, se
tion 4℄.2.6. Tra
tor 
al
ulus. The drawba
k of the normal tra
tor 
onne
tion is thatwhile one may di�erentiate se
tions of a tra
tor bundle on
e, the 
otangent bundleT �M is not a tra
tor bundle, so there is no dire
t way to iterate the di�erentiation.For spe
i�
 stru
tures this problem was solved by introdu
ing spe
i�
 invariantdi�erential operators that are now 
alled tra
tor D{operators whi
h a
t on se
tionsof tra
tor bundles twisted by density bundles and whi
h may be iterated. The �rst
onstru
tion of su
h operators (for 
onformal stru
tures) goes ba
k to the work ofT. Thomas in the 1930's, see [38℄. They were redis
overed in [1℄ and a version foralmost Grassmannian stru
tures was introdu
ed in [26℄. Apart from other problems,these operators have in parti
ular been applied to the des
ription of proje
tive and
onformal invariants, see [21, 23℄.Later on, it was realized that these tra
tor D{operators 
an be re
overed frommore basi
 invariant operators. Versions of these operators have been around inthe literature earlier, but seemingly the have not been related to the adjoint tra
torbundle and used systemati
ally until the papers [23, 26, 7℄, where they are 
alledfundamental D{operators. Roughly speaking, they may be viewed as an analog ofthe Levi-Civita 
onne
tion in Riemannian geometry, but with the tangent bundlerepla
ed by the adjoint tra
tor bundle.
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 geometry (p : H ! M;!) of type (H;Q) with adjoint tra
torbundle A !M , and any ve
tor bundle E !M that is asso
iated to H, one obtainsan operator �(A)
�(E)! �(E) whi
h we write as (s; ') 7! Ds' to emphasize thesimilarity with a 
ovariant derivative. To de�ne this operator, one just has to notethat via the Cartan 
onne
tion, se
tions of A are in bije
tive 
orresponden
e withQ{invariant ve
tor �elds on the total spa
e of the Cartan bundle, whi
h 
an thenbe used to di�erentiate the equivariant fun
tions 
orresponding to se
tions of E.From this 
onstru
tion, it is easy to see that the operators are algebrai
 in theA{slot and �rst order di�erential operators in the E{slot, and that they are naturalwith respe
t to all ve
tor bundle maps indu
ed by homomorphisms of Q{modules.Now we 
an view D as an operator from �(E) to �(A� 
 E), and sin
e there is norestri
tion on the bundle involved, we 
an obviously iterate fundamental D's. Theiterated fundamental D's then provide an invariant way to en
ode the in�nite jet ofa se
tion into a fairly manageable bundle, whi
h is a major step toward the generalproblem of invariants.An important point to note here is that on tra
tor bundles the fundamentalD{operators 
an be dire
tly 
omputed from the normal tra
tor 
onne
tion, so noknowledge of the Cartan bundle and the Cartan 
onne
tions is ne
essary in this
ase. Moreover, given the fundamental D's on a tra
tor bundle, by the naturalityone gets the fundamental D's on all its subquotients. For example, knowing thenormal tra
tor 
onne
tion on A, one not only gets the fundamental D on A but alsoon the tangent bundle TM and thus on all tensor bundles.2.7. Bernstein{Gelfand{Gelfand sequen
es. BGG{sequen
es o�er a general
onstru
tion of invariant di�erential operators a
ting on se
tions of irredu
ible bun-dles. On the 
at model H=Q, naturality of a di�erential operator is equivalentto equivarian
y under the natural a
tion of H on the spa
es of se
tions of homo-geneous ve
tor bundles. It turns out that invariant di�erential operators (in thatsense) a
ting between se
tions of irredu
ible bundles are via a dualization equiva-lent to homomorphisms of generalized Verma modules, so this problem redu
es torepresentation theory. In the Borel 
ase, su
h homomorphisms were 
ompletely 
las-si�ed by I.N. Bernstein, I.M. Gelfand, and S.I. Gelfand, see [2℄. In parti
ular mostof these homomorphisms show up in the so{
alled BGG{resolutions of irredu
iblerepresentations of H by homomorphisms of Verma modules. These resolutions weregeneralized to the 
ase of arbitrary paraboli
s by J. Lepowsky, see [31℄.To obtain 
urved analogs of these operators, one �rst noti
es that for a tra
-tor bundle T ! M , the normal tra
tor 
onne
tion indu
es the so{
alled 
ovariantexterior derivative on T {valued di�erential forms. If W is the H{representationindu
ing T , then from Kostant's harmoni
 theory (see [29℄) one 
on
ludes that theve
tor bundle 
orresponding to the 
ohomology module (Hk(q+;W))� is a naturalsubquotient of the bundle �kT �M 
T . The Q{representation Hk(q+;W) (and thusalso its dual) turns out to be 
ompletely redu
ible, and the irredu
ible 
omponentsare expli
itly 
omputable using Kostant's version of the Bott{Borel{Weil theorem.In the joint work [15℄ with J. Slovak and V. Sou�
ek, we introdu
ed di�erentialsplittings from se
tions of these subquotients to T {valued forms. Using these, one
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an 
ompress the twisted de{Rham sequen
e 
orresponding to T to a sequen
eof higher order di�erential operators on the subquotients, whose properties are
ontrolled by the twisted de{Rham sequen
e. This was signi�
antly improved byD. Calderbank and T. Diemer in [4℄ in whi
h di�erential proje
tions onto the sub-bundles in question were 
onstru
ted on the level of all T {valued forms. This leadsto an eÆ
ient 
al
ulus on T {valued forms and in parti
ular to an expli
it pro
edurefor 
onstru
ting the BGG operators in terms of the 
ovariant exterior derivativesand algebrai
 operations. In parti
ular, all these operators are (at least in prin
iple)expli
itly 
omputable from the fundamental D operator on T . It should also beremarked here that with these di�erential proje
tions at hand, one also obtains bi{and multilinear invariant di�erential operators, di�erential 
up produ
ts, tools totranslate invariant di�erential operators and so on.3. The ambient metri
 and the Fefferman spa
e3.1. The ambient metri
 
onstru
tion. The ambient metri
 
onstru
tion worksin the realm of embedded CR manifolds. Originally, it was introdu
ed in the settingof smoothly bounded stri
tly pseudo
onvex domains in C n+1 using the Bergmankernel. Sin
e the Bergman kernel is only 
omputable asymptoti
ally at the boundary,the interest moved to the lo
al behavior of the ambient metri
 near the boundary.Finally, in [19℄ Ch. Fe�erman introdu
ed a version of the ambient metri
 in whi
hthe Bergman kernel was repla
ed by suitably normalized de�ning fun
tions:Suppose thatM � C n+1 is an embedded CR manifold of signature (p; q) (i.e.M isa real hypersurfa
e, su
h that the subbundle HM of maximal 
omplex subspa
es intangent spa
es de�nes a CR stru
ture of signature (p; q)). Suppose further that r isa de�ning fun
tion forM , i.e. a smooth fun
tion de�ned lo
ally aroundM su
h thatM = r�1(0) and dr is nonzero onM . Then one de�nesM# := C ��M � C ��C n+1 .Putting r#(z0; z) := jz0j2r(z), one obtains a de�ning fun
tion for M# and it turnsout that r# 
an be used as the potential of a K�ahler metri
 g of signature (p+1; q+1)de�ned lo
ally around M#.Now Fe�erman introdu
ed a normalization 
ondition on the de�ning fun
tion r,whi
h in parti
ular implies that the resulting metri
 g is Ri

i{
at. Namely, putJ(r) := (�1)q+1det r �r�zj�r��zi �2r��zi�zj! :The equation J(r) = 1 is known as the 
omplex Monge{Amp�ere equation. Whilethis is a very diÆ
ult nonlinear PDE, Fe�erman found a simple algorithm to modifyany de�ning fun
tion  for M to a de�ning fun
tion r su
h that J(r) = 1 + O(rs)along M for 1 � s � n + 2. For su
h a de�ning fun
tion, it turns out that theRi

i 
urvature of the ambient metri
 g vanishes to order s � 3 along M . For ourpurpose, solutions with s = 3 will always be suÆ
ient. Expli
itly, the algorithmgoes as follows: Starting with any de�ning fun
tion  , put  1 :=  J( )�1=(n+1)and  2 :=  1 �1 + 1�J( 1)n+1 �. Then r :=  2 �1 + 1�J( 2)2n � satis�es J(r) = 1 + O(r3)along M .



PARABOLIC GEOMETRIES, CR{TRACTORS, AND THE FEFFERMAN CONSTRUCTION 11Fe�erman showed that extending lo
al biholomorphisms appropriately (whi
h es-sentially amounts to viewing M# as the frame bundle of a �xed 
hoi
e of a 
omplexline bundle E(1; 0)�), a 
ertain jet along M of the ambient metri
 obtained from anormalized de�ning fun
tion is biholomorphism invariant. For our purposes, thisinvarian
e is not really important, sin
e we shall later use the ambient metri
 to
onstru
t the standard tra
tor bundle and its 
anoni
al linear 
onne
tion, whi
h areknown to be CR invariant. What is however of 
entral importan
e for us is thateverything related to the ambient metri
 is expli
itly 
omputable: Starting withany de�ning fun
tion  , we have the expli
it algorithm to 
ompute the normalizedde�ning fun
tion r, and thus also r#. Sin
e this is the potential for g, the 
ompo-nents of the metri
 (in the 
oordinates (z0; zj)) are simply the mixed se
ond partialderivatives of r#. The Christo�el symbols of the Levi-Civita 
onne
tion of g arethen partial derivatives of this 
omponents, i.e. higher partials of r#. From these,the 
urvature of g 
an be obtained as partial derivatives of r#, and so on.3.2. The Fe�erman spa
e. Having the ambient metri
 g at hand, the 
onstru
tionof the Fe�erman spa
e in the embedded setting is now a very natural idea. Sin
e thewell{de�ned part of the ambient metri
 is some jet along M#, one tries to restri
tg to M#. This restri
tion turns out to be degenerate, but in a very weak sense.Namely, the degenerate dire
tions are exa
tly the real dire
tions up the 
one. Hen
eit is natural to 
onsider the quotient ~M :=M#=R�, whi
h by 
onstru
tion is a bundleover M with �ber C �=R� �= U(1). Compressing the real part of g to this quotient,one gets a non{degenerate metri
 of signature (2p+1; 2q+1), whi
h however is onlywell de�ned up to a positive real fa
tor, so we get a 
onformal stru
ture of thatsignature on ~M . If one starts with a de�ning fun
tion r su
h that J(r) = 1 +O(r2)along M , then this 
onformal stru
ture turns out to be CR invariant.In parti
ular, this implies that 
onformal invariants of the Fe�erman spa
e ~M areCR invariants of the original CR manifoldM , (whi
h is an important sour
e of inter-est in 
onformal invariants). Sin
e the ambient metri
 is 
ompletely 
omputable, alsothe 
onformal stru
ture on the Fe�erman spa
e 
an be 
omputed expli
itly startingfrom any de�ning fun
tion forM . A se
ond main appli
ation of the Fe�erman spa
eis the des
ription of 
hains on M . For any CR manifold, the 
hains form a family ofdistinguished 
urves. For any point x 2M and any tangent ve
tor � 2 TxM whi
hdoes not lie in the subspa
e HxM , there is a unique su
h 
urve with initial point xand initial dire
tion � up to parametrization. Now it turns out that the 
hains onMare exa
tly the proje
tions of light-like geodesi
s on ~M , i.e. geodesi
s 
orrespondingto null dire
tions. In [19℄, Fe�erman uses this to 
ompute 
hains on embedded CRmanifolds as traje
tories of a Hamiltonian system.The Fe�erman spa
e 
an also be 
onstru
ted for abstra
t CR manifolds. This was�rst done by D. Burns, K. Diederi
h, and S. Shnider in [3℄, see also [30℄ for a versionstressing the point of view of Cartan 
onne
tions. These 
onstru
tions are similar inspirit to the one in terms of tra
tors that will be des
ribed below, but working on thelevel of the Cartan bundle and the Cartan 
onne
tion. Starting from an abstra
t CRmanifold (M;HM; J), one dire
tly de�nes the Fe�erman spa
e ~M and its 
onformalstru
ture via a 
ertain natural 
omplex line bundle on M . Then one proves that



12 ANDREAS �CAPthe CR Cartan bundle of M naturally in
ludes into the 
onformal Cartan bundleof ~M , and this in
lusion is 
ompatible with the normal Cartan 
onne
tion on bothbundles, whi
h means that the normal 
onformal Cartan 
onne
tion 
an be obtainedfrom the normal CR Cartan 
onne
tion by equivariant extension. In parti
ular, the
onformal Cartan 
urvature of the Fe�erman spa
e is essentially the same obje
t asthe CR Cartan 
urvature of the original manifold.3.3. Fe�erman spa
e and standard tra
tors. We next des
ribe a 
onstru
tionof the Fe�erman spa
e using standard tra
tors whi
h adds a lot of power to this
onstru
tion. Details and appli
ations 
an be found in [9℄. As in 2.2 
onsiderV= C n+2 endowed with a Hermitian inner produ
t h ; i of signature (p+ 1; q+ 1),put G = SU(V) �= SU(p + 1; q + 1), 
hoose a �xed nonzero null ve
tor e andde�ne P � G to be the stabilizer of the 
omplex line C e. For a CR manifold(M;HM; J) of signature (p; q) and a �xed 
hoi
e of a 
omplex line bundle E(1; 0)su
h that E(1; 0)
n+2 �= �nCHM 
 QM , we get from 2.3 a 
anoni
al prin
ipal P{bundle p : G !M endowed with a 
anoni
al normal Cartan 
onne
tion ! 2 
1(G; g).Now we put E(�1; 0) := E(1; 0)�, and we de�ne ~M to be the quotient of the framebundle of E(�1; 0) (whi
h is a prin
ipal C �{bundle) by the a
tion of the subgroupR� � C � . Thus, there is a natural proje
tion ~M ! M , whi
h is a prin
ipal bundlewith stru
ture group C �=R� �= U(1), i.e. ~M is a 
ir
le bundle over M .Now we may as well 
onsider V as a real ve
tor spa
e and the real part of theHermitian form as a real inner produ
t. De�ne ~G := O(V)�= O(2p+ 2; 2q + 2), theorthogonal group of this inner produ
t, and let ~P � ~G be the stabilizer subgroup ofthe real null line Re. Then normal paraboli
 geometries of type ( ~G; ~P) are exa
tly
onformal stru
tures of signature (2p+ 1; 2q+1). By 
onstru
tion, we have G � ~G,G \ ~P � P and one easily veri�es that P=(G\ ~P ) �= C �=R�.Next, one easily shows that ~M is 
anoni
ally isomorphi
 to the quotient G=(G\ ~P ),whi
h implies that there is a natural proje
tion G ! ~M whi
h de�nes a prin
ipalbundle with stru
ture group G\ ~P . Using this, we de�ne a ve
tor bundle ~T ! ~M by~T := G �G\ ~P V. The real inner produ
t on V indu
es a bundle metri
 of signature(2p+2; 2q+2) on T . Moreover, the real line through the 
hosen ve
tor e gives rise toa real line bundle sitting inside T whi
h is null and 
an be shown to be isomorphi
to a 
ertain density bundle over ~M . These two data make T !M into a 
onformalstandard tra
tor bundle.The me
hanism introdu
ed in [7℄ to 
onstru
t tra
tor 
onne
tions from Cartan
onne
tions 
an then be applied to 
onstru
t a linear 
onne
tion r ~T on the bundle~T , whi
h 
an be easily shown to be a tra
tor 
onne
tion. The most diÆ
ult part ofthe 
onstru
tion is then to analyze the relation between the normalization 
onditionsfor 
onformal and CR Cartan 
onne
tions to prove that the tra
tor 
onne
tion r ~Tis normal. It is worth noti
ing that this is not a purely algebrai
 game, and inparti
ular it does not work for partially integrable almost CR stru
tures. Ratherone has to show that for CR manifolds, the 
urvature of the Cartan 
onne
tiona
tually satis�es a stronger version of the normalization 
ondition.
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onformal stru
ture on ~M (whi
h 
an beeasily des
ribed expli
itly) but more importantly, we see that the Cartan 
urvaturesof the 
onformal stru
ture on ~M and of the CR stru
ture on M are essentiallythe same obje
t, thus re
overing all fa
ts known from earlier 
onstru
tions of theFe�erman spa
e. But this 
onstru
tion has important new features: By de�nition,the CR standard tra
tor bundle T !M is the asso
iated bundle G�P V. From thisdes
ription it follows immediately that the U(1){a
tion on ~M whi
h has M as itsorbit spa
e lifts to an a
tion by ve
tor bundle homomorphisms on ~T and the orbitspa
e of this a
tion is exa
tly T . This in turn means that one gets a U(1){a
tionon the spa
e �( ~T ) of smooth se
tions of ~T ! ~M su
h that the invariant elementsare exa
tly the smooth se
tions of T ! M . Moreover, in this pro
ess the normaltra
tor 
onne
tion r ~T des
ends to the normal tra
tor 
onne
tion on T .A similar relation 
an be built up for a large 
lass of bundles (essentially all thosewhi
h 
ome from a representation of ~P whose restri
tion toG\ ~P admits an extensionto P ), and in all 
ases one gets a U(1){a
tion on the se
tions of the 
onformal bundlewhose invariant elements are exa
tly the se
tions of the 
orresponding CR bundle.In parti
ular, this works for all density bundles and all 
onformal tra
tor bundles.Next, one may 
ompare the adjoint tra
tor bundles on ~M and on M , whi
h 
anbe des
ribed as ~A = so( ~T ) and A = su(T ), respe
tively. In parti
ular, there isa 
anoni
al U(1){a
tion on ~A. On the other hand, the 
omplex stru
ture on Vindu
es an almost 
omplex stru
ture on ~T , whi
h is parallel for the normal tra
tor
onne
tion on ~A (whi
h is indu
ed by r ~T ). One shows that se
tions of A areexa
tly those se
tions of ~A whi
h are U(1){invariant and 
ommute with this almost
omplex stru
ture. Using this, one then shows that for arbitrary 
ompatible bundlesas above, the 
onformal fundamental D{operator is U(1){equivariant and des
endsto the CR fundamental D{operator.In this way, one obtains a ma
hinery to des
end 
onformally invariant di�eren-tial operators that 
an be des
ribed in terms of fundamental D's to CR invariantdi�erential operators, whi
h then are automati
ally des
ribed in tra
tor terms. Inparti
ular, as we shall see below there is a way to des
ribe these operators expli
itlyin the 
ase of embedded CR manifolds.3.4. Ambient metri
 and standard tra
tors. As a �nal topi
, I want to des
ribehow the ambient metri
 
onstru
tion from 3.1 
an be used to get a 
ompletely expli
itdes
ription of the CR standard tra
tor bundle and its normal tra
tor 
onne
tion inthe 
ase of embedded CR manifolds. Details and appli
ations are presented in [10℄.As in 3.1 letM � C n+1 be an embedded CR manifold of signature (p; q) and let rbe a (not ne
essarily normalized) de�ning fun
tion for M . De�ne M# := C � �M �C � � C n+1 , 
onsider the de�ning fun
tion r# for M# given by r#(z0; z) = jz0j2r(z)and let g be the 
orresponding ambient metri
, i.e. the K�ahler metri
 (de�ned lo
allyaround M#) with potential r#. For � 2 C � let �� denote the 
anoni
al a
tion of �on M# and C � � C n+1 , i.e. ��(z0; z) = (�z0; z).First it is easy to show dire
tly that the asso
iated bundle M#�C� C with respe
tto the a
tion given by multipli
ation by ��1 is an appropriate 
hoi
e for E(1; 0) in this
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tions of E(1; 0) 
orrespond to smooth fun
tions M# !C whi
h are homogeneous of degree (1; 0), i.e. whi
h satisfy f(�z0; z) = �f(z0; z).In this way,M# is exa
tly the frame bundle of the dual E(�1; 0) of E(1; 0). Similarlyone 
an then des
ribe se
tions of the density bundles E(k; `) for k; ` 2Z(whi
h arede�ned as appropriate tensor produ
ts of 
opies of E(1; 0), or E(�1; 0) and their
onjugate bundles) as fun
tions f : M# ! C whi
h are homogeneous of degree(k; `), i.e. f(�z0; z) = �k ��`f(z0; z).Next, 
onsider the restri
tion of the ambient tangent bundle T (C ��C n+1) toM#and de�ne a C �{a
tion on this bundle by � � � := ��1T�� � �. Then this is an a
tionby ve
tor bundle homomorphisms lifting the a
tion on M#, and thus the quotientT := (T (C � � C n+1)jM#)=U(1) is a smooth rank n + 2 
omplex ve
tor bundle overM . Moreover, se
tions of T are in bije
tive 
orresponden
e with ambient ve
tor�elds along M# whi
h are homogeneous of degree �1, i.e. whi
h satisfy �(�z0; z) =��1T�� � �(z0; z).From the 
onstru
tion it follows easily that the ambient K�ahler metri
 g is ho-mogeneous of degree (2; 0), so inserting two �elds homogeneous of degree (�1; 0)one gets a fun
tion whi
h is 
onstant along the �bers, and hen
e g des
ends to aHermitian metri
 h of signature (p+ 1; q+ 1) on the bundle T . On the other hand,the fundamental �eld X generating the C �{a
tion is homogeneous of degree (0; 0),so for a smooth fun
tion f : M# ! C homogeneous of degree (�1; 0) the �eld fXis a se
tion of T . Thus one gets a subbundle T 1 � T whi
h by 
onstru
tion isisomorphi
 to E(�1; 0). It is easy to verify that for x 2M the line T 1x is null for h,and proje
ting ve
tor �elds indu
es an isomorphism (T 1)?=T 1 �= HM 
 E(�1; 0).Next, one veri�es that the Levi-Civita 
onne
tion of the ambient metri
 is 
om-patible with homogeneities and that for �elds homogeneous of degree (�1; 0) the
ovariant derivative in verti
al dire
tions vanishes. Thus, taking a ve
tor �eld onMand lifting it to a �eld onM# homogeneous of degree (0; 0), the 
ovariant derivativewith respe
t to that lift maps se
tions of T to se
tions of T and is independent ofthe 
hoi
e of the lift. In that way, the Levi-Civita 
onne
tion of g des
ends to alinear 
onne
tion rT on T , whi
h by 
onstru
tion is Hermitian with respe
t to thebundle metri
 h.This is not yet enough to make T into a standard tra
tor bundle and rT intoa tra
tor 
onne
tion on that bundle, sin
e that would also require a trivializationof �n+2C T su
h that the 
orresponding (
onstant) global se
tions are parallel withrespe
t to rT , see 2.5, and su
h se
tions 
annot exist in general. However, we may
onsider the bundle A = su(T ) (whi
h makes sense with the data de�ned up to now)and the indu
ed 
onne
tion rA, and one obtains:Theorem. (1) The bundle A = su(T ) is an adjoint tra
tor bundle on M , and rAis a tra
tor 
onne
tion on A.(2) The tra
tor 
onne
tion rA is normal if and only if the ambient metri
 g isRi

i{
at along M .The proof of part (1) is a rather straightforward veri�
ation, while for (2) one�rst relates the 
urvature of rA to the 
urvature of g (whi
h is rather easy) andthen has to analyze in detail the normalization 
ondition for tra
tor 
onne
tions.
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ase of a normalized de�ning fun
tion. Let us now suppose that westart with a de�ning fun
tion r whi
h satis�es J(r) = 1 + O(r3) along M . Thenit is easy to see that the 
orresponding ambient metri
 g is Ri

i{
at along M , sothe 
onstru
tion of 3.4 leads to the normal adjoint tra
tor bundles and its normaltra
tor 
onne
tion. But in this 
ase, one may a
tually 
onstru
t a non{vanishingsmooth se
tion of �n+2C T whi
h is parallel for rT , thus making T into a standardtra
tor bundle over M and rT into a tra
tor 
onne
tion on this tra
tor bundle.The general theory of tra
tor 
onne
tions then implies that the 
urvature of rT isessentially the same obje
t as the 
urvature of rA, and one obtainsTheorem. If the de�ning fun
tion r satis�es J(r) = 1 + O(r3) along M , then thebundle T and the 
onne
tion rT 
onstru
ted in 3.4 are the normal standard tra
torbundle and the normal standard tra
tor 
onne
tion for the CR stru
ture on M .As we noted in 3.1 the ambient metri
 and its Levi-Civita 
onne
tion are expli
itly
omputable from the de�ning fun
tion r, so this result gives a 
ompletely expli
itdes
ription of the standard tra
tor bundle T , the tra
tor metri
 h and the normaltra
tor 
onne
tion rT , so all ingredients needed for tra
tor 
al
ulus are expli
itly
omputable. The general theory then implies that the 
urvature of rT 
oin
ideswith the 
urvature of the normal Cartan 
onne
tion, so we get an expli
it algorithmfor 
omputing the Cartan 
urvature of an embedded CR manifold starting froma normalized de�ning fun
tion (whi
h in turn 
an be 
omputed expli
itly startingfrom any de�ning fun
tion). Already this simple 
onsequen
e is rather remarkablein view of the re
ent paper [39℄. In that paper, S.M. Webster 
omputes the Cartan
urvature for a simple 
lass of embedded CR manifolds (using methods tailored tothis 
lass) and 
laims that this is the �rst 
ase in whi
h the Cartan 
urvature of anon{
at CR manifold of dimension bigger than 3 is 
omputed 
ompletely.It should also be pointed out that the relation to the Fe�erman spa
e 
an be easilyexploited in that pi
ture. In parti
ular, going through the 
onstru
tion presentedin 3.3, one sees that in the embedded 
ase this 
onstru
tion really 
oin
ides withFe�erman's original 
onstru
tion. The ambient metri
 
an in this situation alsobe used to des
ribe the 
onformal standard tra
tor bundle and its normal tra
tor
onne
tion, see also 3.6 below.Noti
e further that any irredu
ible representation of the group SU(p+ 1; q + 1)is a subrepresentation of a tensor produ
t of 
opies of the standard representationand its dual. Thus any tra
tor bundle is a subbundle of a tensor produ
t of 
opiesof T and T �, and sin
e all normal tra
tor 
onne
tions are indu
ed from the normalCartan 
onne
tion, the normal tra
tor 
onne
tion on su
h a subbundle is just therestri
tion of the 
onne
tion on the tensor produ
t indu
ed by rT . Thus, we get anexpli
it des
ription of any tra
tor bundle and its normal tra
tor 
onne
tion, whi
h
an then be used to 
ompute BGG operators as outlined in 2.7.There is yet another way to pro
eed further, whi
h ties in standard tra
tors withfurther 
lassi
al te
hniques used in CR geometry. Starting with the de�ning fun
tionr, the (real valued) one form �i�rjM a
tually de�nes a 
onta
t form for the 
onta
tstru
ture de�ned by the subbundle HM � TM . On one hand, this may be viewedas a pseudo{Hermitian stru
ture on the CR manifold (M;HM; J), thus giving rise
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alled Webster{Tanaka 
onne
tion on TM . On the other hand, in theterminology of [14℄, this 
onta
t form de�nes a se
tion of a bundle of s
ales andthus an exa
t Weyl stru
ture on (M;HM; J). Hen
e we get the 
orresponding Weyl
onne
tion whi
h gives a linear 
onne
tion on any irredu
ible bundle as well as theasso
iated rho{tensor. Now it turns out that from the expli
it des
ription of T andrT one may expli
itly 
ompute this rho{tensor as well as the Weyl 
onne
tions ondensity bundles and on the bundle HM , whi
h then 
an be used to 
ompute theWeyl 
onne
tion on any irredu
ible bundle. This gives a

ess to a general ma
hinery(see [5℄) for expli
itly 
omputing a large 
lass of BGG{operators. On the other hand,one may also 
ompute in general the relation between the Weyl 
onne
tions on HMand QM and the Webster{Tanaka 
onne
tion asso
iated to the pseudo{Hermitianstru
ture de�ned by �i�r, thus obtaining an expli
it formula for this Webster{Tanaka 
onne
tion. This also makes 
onta
t to the CR tra
tor 
al
ulus developedin [24℄, see also [22℄.3.6. Remark on the 
onformal ambient metri
. There is also an ambient met-ri
 
onstru
tion for 
onformal stru
tures, whi
h was introdu
ed in [20℄ and appliedto the 
onstru
tion of invariant powers of the Lapla
ian in [27℄. This ambient metri

onstru
tion is 
losely related to Poin
ar�e metri
s and the theory of 
onformal in-�nities whi
h has been re
ently related to string theory, see [28℄. This 
onstru
tionstarts with an embedding of the frame bundle of a 
ertain density bundle into anambient manifold and produ
es a 
onformally invariant jet of a Ri

i{
at pseudo{Riemannian metri
 along the frame bundle. A 
onstru
tion analogous to the onedis
ussed in 3.4 above 
an be used to obtain a standard tra
tor bundle and a tra
tor
onne
tion on that bundle from any ambient metri
, and this tra
tor 
onne
tion isnormal if and only if the ambient metri
 is Ri

i{
at along the frame bundle, see[11℄. In fa
t, this result is signi�
antly simpler to prove than Theorems 3.4 and 3.5,sin
e on one hand in the 
onformal 
ase the relation between adjoint tra
tor bundlesand standard tra
tor bundles is simpler, and on the other hand the normalization
ondition for 
onformal tra
tor 
onne
tions is mu
h easier to analyze than the 
or-responding 
ondition in the CR 
ase. These results have already found appli
ationsto the study of invariant powers of the Lapla
ian and of the so{
alled Q{
urvatures,see [25℄. Referen
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