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BOUNDARIES AND HARMONIC FUNCTIONS FOR RANDOMWALKS WITH RANDOM TRANSITION PROBABILITIESVadim A. Kaimanovi
h, Yuri Kifer, Ben-Zion RubshteinAbstra
t. The usual random walk on a group (homogeneous both in time and in spa
e)is determined by a probability measure on the group. In a random walk with randomtransition probabilities this single measure is repla
ed with a stationary sequen
e of mea-sures, so that the resulting (random) Markov 
hains are still spa
e homogeneous, but nolonger time homogeneous. We study various notions of measure theoreti
al boundariesasso
iated with this model, establish an analogue of the Poisson formula for (random)bounded harmoni
 fun
tions, and identify these boundaries for several 
lasses of groups.0. Introdu
tionRandom walks on groups were intensively studied during the last 40 years (see, forinstan
e, [Ka96℄ and the referen
es therein). Their importan
e is due to numerousappli
ations, in parti
ular, to the des
ription of boundaries and spa
es of harmoni
fun
tions and to the study of ergodi
 properties of group a
tions. Su
h random walksare Markov 
hains whi
h are homogeneous both in time and spa
e and 
an be alsorepresented as produ
ts of independent identi
ally distributed (i.i.d.) group elements.In the parti
ular important 
ase of produ
ts of random matri
es additional tools su
has Lyapunov exponents 
an be employed.A random walk on a group G is determined by a Markov operator P = P (�) whi
h
onsists in the (right) 
onvolution with a �xed probability measure � on G, so that theoperator P is invariant with respe
t to the a
tion of the group on itself by left trans-lations. There are two models for further \randomization" of these \ordinary" randomwalks. The �rst model is usually referred to as random walks in random environment(RWRE) and 
onsists in 
onsidering a probability measure � on the spa
e of all Markovoperators on G. In this model the individual operators (environments) are not groupinvariant, although the group stru
ture is taken into a

ount by requiring the measure� to be quasi-invariant with respe
t to the a
tion of G on the spa
e of environments(more spe
i�
ally, � is usually assumed to be either translation invariant or stationary2000 Mathemati
s Subje
t Classi�
ation. 60J50, 37A30, 60B99.Key words and phrases. Random walk, random transition probability, harmoni
 fun
tion, Poissonboundary. Typeset by AMS-TEX1
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t to the \moving environment" 
hain, see, for instan
e, [Kal81℄, [KMo84℄,[KSi00℄). One 
hooses a random environment a

ording to the distribution �, and thenruns a time (but not spa
e!) homogeneous Markov 
hain in this environment.The other model whi
h we 
all random walks with random transition probabilities(RWRTP) is opposite to RWRE in the sense that here one keeps the spa
e homogeneitybut does not assume the time homogeneity. Namely, the additional randomness isintrodu
ed in this model by taking a random sequen
e �0; �1; : : : of probabilitymeasureson G so that the (G-invariant!) transition probabilities of the arising 
hain on G at timen are given by the measure �n. The formal des
ription of this model 
onsists in �xing aninvertible ergodi
 transformation T of a probability spa
e (
; �) and a measurable map! 7! �!. One 
hooses ! 2 
 a

ording to the distribution � and then runs the arisingrandom walk with time dependent in
rements RWTDI(!) determined by the sequen
e�!; �T!; �T2!; : : : . The transformation T is usually assumed to be measure preserving,so that the above random sequen
e of measures is stationary. In the same way one 
analso talk about random sequen
es of Markov operators on a general state spa
e (whi
hdoes not have to be a group or to be endowed with any additional spatial stru
ture).This model was �rst introdu
ed more than 20 years ago in 
onne
tion with a model ofrandom automata and various properties of su
h Markov 
hains were investigated sin
ethen in a number of papers (see, for instan
e, [Or91℄, [Ki96℄ and the referen
es therein).Random walks with random transition probabilities �rst appeared in [MR88℄ (see also[MR94℄, [LRW94℄, [Ru95℄), and produ
ts of independent random matri
es with station-arily 
hanging distributions were studied in [Ki01℄. Ideologi
ally and methodi
ally thistopi
 is rather 
lose to random dynami
al systems whi
h were intensively studied inre
ent years, and Markov 
hains with random transition probabilities have the samerelation to the 
lassi
al Markov 
hains as random dynami
al systems to deterministi
ones. In both 
ases the guiding philosophy suggests that we have good 
han
es to ob-tain an additional non-trivial information about the system if it a
quires ni
e propertiesafter 
onditioning by some ergodi
 stationary pro
ess (whi
h we do not have mu
h in-formation about). Note that in the framework of random walks on groups one 
an alsomake one more step and to 
ombine the RWRE and RWRTP models (so that individualrandom 
hains will be neither spa
e nor time homogeneous).RWRTP 
an be 
onsidered as a generalization of yet another model of \randomiza-tion" of the ordinary random walks 
alled random walks with internal degrees of freedom(RWIDF) [KSz83℄ or 
overing Markov 
hains [Ka95℄. These are G-invariant Markov
hains on the produ
t of the group G by another spa
e X. The transition probabilitiesof RWIDF are p�(g; x); (gh; y)� = p(x; y)�x;y(h) (assuming that X is 
ountable), where�x;y are probability measures on X, and p(x; y) are the transition probabilities of thequotient 
hain on X. If the quotient 
hain has a �nite stationary measure, then theasso
iated RWRTP is determined by the spa
e 
 = XZendowed with the 
orrespondingshift-invariant Markov measure and the map (: : : ; x�1; x0; x1; : : : ) 7! �x0;x1 .The setup of RWRTP yields a natural notion of random harmoni
 fun
tions f! on Gwhi
h satisfy the relation f!(g) = R fT!(gh)d�!(h). These fun
tions 
an be 
onsidered
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 fun
tions of the global time homogeneous G-invariant Markov 
hain on theprodu
t 
�G with the transition probabilities p�(!; g); (T!; gh)� = �!(h). This global
hain is an immediate analogue of the usual \spa
e-time" 
hain (the role of \time" isplayed here by the spa
e 
 endowed with the transformation T ). Therefore, des
riptionof all bounded random harmoni
 fun
tions amounts to des
ribing the Poisson boundary� of the global 
hain.In this paper we 
onsider only dis
rete groups G. We introdu
e the notion of therelative (or �ber) Avez type entropy of RWRTP whi
h is 
lose to the notion of therelative (�ber) entropy in the ergodi
 theory of random dynami
al systems (this theoryis also known under the name of relative ergodi
 theory, see [Ki86℄). Similarly to thetheory of ordinary random walks (see [KV83℄, [Ka00℄) we give an entropy 
riterion fortriviality of the tail boundary of almost all RWTDI(!); ! 2 
, whi
h implies trivialityof the Poisson boundary of the global 
hain, i.e., absen
e of non-trivial bounded ran-dom harmoni
 fun
tions. As a 
orollary, we prove 
onvergen
e of random 
onvolutionsto an invariant mean for nilpotent groups (earlier it was established for 
ompa
t andabelian groups in the works of Mindlin and Rubshtein [MR94℄ and of Lin, Rubshteinand Wittman [LRW94℄ by 
ompletely di�erent methods).The relationship between the Poisson and the tail boundaries for RWRTP turns outto be more 
ompli
ated than for ordinary random walks (where the tail and the Poissonboundaries 
oin
ide with respe
t to any single point initial distribution). Indeed, in theRWRTP setup the Poisson boundary does not make sense for individual RWTDI(!)on G (be
ause they are not time homogeneous). As for the global 
hain on 
 � G,its proje
tion onto 
 is deterministi
, so that the tail boundary E of the global 
hainadmits a natural proje
tion onto 
 whose �bers are the tail boundaries of RWTDI(!)(in parti
ular, triviality of the tail boundary of almost all RWTDI(!) is equivalentto 
oin
iden
e of E and 
). On the other hand, the Poisson boundary of any timehomogeneous Markov 
hain is a quotient of its tail boundary. Therefore, there are twonatural proje
tions of the tail boundary E of the global 
hain: onto 
 and onto thePoisson boundary �. We say that RWRTP is stable if these two proje
tion separatepoint of E. If RWRTP is stable, then the tail boundaries of individual RWTDI(!)
an be identi�ed with the Poisson boundary of the global 
hain, so that stability ofRWRTP is a property analogous to 
oin
iden
e of the tail and the Poisson boundariesfor ordinary random walks.We do not know whether RWRTP on groups are always stable. However, in the �nalse
tion under the �nite �rst moment 
ondition we (by using the entropy te
hnique)expli
itly identify the Poisson and the tail boundaries of RWRTP on dis
rete groupsof isometries of non-positively 
urved spa
es with natural geometri
 boundaries (forexample, for a free group this natural boundary is the spa
e of ends). Therefore, theseRWRTP are stable.We do not study here random boundaries for 
ontinuous groups whi
h, we hope, willbe dealt with in another paper.A
knowledgment. A part of this work was done during the authors' parti
ipation



4 VADIM A. KAIMANOVICH, YURI KIFER, BEN-ZION RUBSHTEINin the \Random Walks 2001" program at the S
hr�odinger International Institute forTheoreti
al Physi
s (ESI) in Vienna, whose support is gratefully a
knowledged.1. Measure theoreti
al boundaries of Markov 
hainsIn this Se
tion we introdu
e the ne
essary notations and ba
kground from the generaltheory of Markov 
hains, see [Re84℄, [Ka92℄, [Ki01℄.1.1. Markov operators.De�nition 1.1. Let (X;m) be a Lebesgue measure spa
e with a �-�nite positive mea-sure m. A linear operator P : L1(X;m) - is 
alled Markov if(i) P preserves positivity, i.e., Pf � 0 for any fun
tion f � 0;(ii) P preserves 
onstants, i.e., P1 = 1 for the fun
tion 1(x) � 1;(iii) P is 
ontinuous in the sense that Pfn # 0 a.e. whenever fn # 0 a.e.The adjoint operator P � of a Markov operator P : L1(X;m) - a
ts on the spa
e ofintegrable fun
tions on the spa
e (X;m), or, in other words, on the spa
e of measures� on X absolutely 
ontinuous with respe
t to m (notation: � � m). We shall use thenotation �P for the measure on X with the density P �(d�=dm), so that h�P; fim =h�; Pfim for any fun
tion f 2 L1(X;m).A (�-�nite) initial distribution � � m gives rise in a standard way to a Markovmeasure P� in the path spa
e XZ+ = fx = (x0; x1; : : :)g of the asso
iated Markov
hain on X. The one-dimensional distributions of P� are �Pn, and the time shift(Sx)n = xn+1 a
ts on it as S(P�) = P�P . A measure � � m is 
alled a stationarymeasure of the Markov operator P if �P = �, or, equivalently, if the measure P� isS-invariant.By de�nition, the 
onditional expe
tations E� of the measure P� satisfy the relationE��f(xn+1)jxn = x� = Pf(x) for any n � 0. Sin
e the spa
e (X;m), and therefore allspa
es (XZ+;P�); � � m are Lebesgue, these 
onditional expe
tations 
an be repla
edby the integrals with respe
t to the 
orresponding 
onditional measures �x whi
h are
alled one-step transition probabilities. Then the operator P and its adjoint operatortake the form(1.1) Pf(x) = Z f(y) d�x(y) ; �P = Z �x d�(x) :Remark 1.2. The measures �x are not ne
essarily absolutely 
ontinuous with respe
tto m. Still, for any fun
tion f 2 L1(X;m) the integrals above make sense for m-a.e. x 2 X by Rokhlin's theorem on 
onditional de
omposition of measures in Lebesguespa
es (e.g., see [CFS82℄). We shall use this theorem on several o

asions below withoutfurther noti
e.1.2. The tail boundary and harmoni
 sequen
es.



RANDOM WALKS WITH RANDOM TRANSITION PROBABILITIES 5Denote by �k; k 2 Z+ the k-th 
oordinate partition of the path spa
e (XZ+;Pm),and for 0 � k < l � 1 put �k;l = Wli=k �i, i.e., two paths x and x0 are �k;l-equivalenti� xi = x0i for all k � i � l. The partitions �k;1; k > 0 
oin
ide with the preimagepartitions of the powers Sk of the time shift S.Re
all that the measurable partitions of the same spa
e are ordered in su
h a waythat \the bigger are the elements, the smaller is the partition"; this order is denoted by4. Obviously, �k+1;1 4 �k;1 for any k 2 Z+. Let �1 = Vk �k;1 be the measurableinterse
tion of the sequen
e �k;1, i.e., the biggest measurable partition of the spa
e(XZ+;Pm) whi
h is smaller than any partition �k;1. The partition �1 is 
alled thetail partition of the path spa
e.De�nition 1.3. The quotient E of the path spa
e (XZ+;Pm) with respe
t to the tailpartition �1 is 
alled the tail boundary . Denote by tail : XZ+ ! E the 
orrespondingproje
tion.The spa
e E is endowed with the tail measure type ["m℄ whi
h is the image of the typeof the measure Pm. For any probability measure � � m the tail measure "� = tail(P�)is absolutely 
ontinuous with respe
t to ["m℄. We emphasize that the spa
e E and theproje
tion tail are de�ned in the measure theoreti
al 
ategory, so that they make sense\Pm-mod 0" (i.e., up to the sets of Pm-measure 0) only.The quotient of the path spa
e XZ+ with respe
t to the partition �n;1 is the spa
eX [n;1) of paths on X running from the time n only. Therefore, one 
an 
onsider thespa
e E as the indu
tive limit (in the measure theoreti
al 
ategory!) of the sequen
eof the spa
es X [n;1) endowed with the images of the measure Pm. Denote by Pn;�the measure on the spa
e X [n;1) 
orresponding to starting the Markov 
hain at time nwith the initial distribution �. Proje
ting the measure Pn;� onto E gives the asso
iatedtail measure "n;�. Denote by "n;x the tail measures on E 
orresponding to starting theMarkov 
hain at time n from a point x 2 X (
f. Remark 1.2). Then(1.2) "n;x = Z "n+1;y d�x(y) :Sin
e tail(x) = tail(x0) if and only if tail(Sx) = tail(Sx0), the a
tion of the timeshift S des
ends from XZ+ to an invertible transformation of E (also denoted S), and"n;� = S�n"�.De�nition 1.4. A sequen
e of fun
tions fn 2 L1(X;m); n 2Z+ is 
alled a harmoni
sequen
e if fn = Pfn+1 for any n 2 Z+. Denote by HS1(X;m;P ) the spa
e ofharmoni
 sequen
es endowed with the norm supn kfnk1.Theorem 1.5 ([Re84℄, [Ka92℄). The spa
es HS1(X;m;P ) and L1(E; ["m℄) are iso-metri
. This isometry is established by the formulas(1.3) limn!1 fn(xn) = bf (tail(x)) ; fn(x) = h bf ; "n;xi ;where ffng 2 HS1(X;m;P ) and bf 2 L1(E; ["m℄).



6 VADIM A. KAIMANOVICH, YURI KIFER, BEN-ZION RUBSHTEIN1.3. The Poisson boundary and harmoni
 fun
tions.De�nition 1.6. The spa
e � of ergodi
 
omponents of the shift S in the path spa
e(XZ+;Pm) is 
alled the Poisson boundary of the Markov operator P . Denote the
orresponding proje
tion by bnd : XZ+ ! �.The Poisson boundary 
an be also de�ned as the spa
e of ergodi
 
omponents ofthe transformation S (indu
ed by the shift in the path spa
e) of the tail boundary E.Therefore, the map bnd is the result of the 
omposition of the maps tail : XZ+ ! Eand p� : E ! �. Denote by [�m℄ = bnd([Pm℄) = p�(["m℄) the harmoni
 measuretype on �, and by �� = bnd(P�) = p�("�) the harmoni
 measure 
orresponding to aninitial probability distribution � � m, so that �� � [�m℄. By �x we shall denote theharmoni
 measures 
orresponding to individual points x 2 X (
f. Remark 1.2). Sin
e� is the spa
e of ergodi
 
omponents of the a
tion of S on E, for any n � 0 we havep�("n;�) = p�("�) = ��. Therefore, (1.2) implies that the harmoni
 measures on �satisfy the stationarity relation �x = Z �y d�x(y) :De�nition 1.7. A fun
tion f 2 L1(X;�) is 
alled harmoni
 with respe
t to a Markovoperator P : L1(X;m)  - if f = Pf . Denote by H1(X;m;P ) the subspa
e ofL1(X;m) 
onsisting of harmoni
 fun
tions.Any fun
tion f 2 H1(X;m;P ) determines the harmoni
 sequen
e fn � f , sothat H1(X;m;P ) is isometri
ally embedded into the spa
e HS1(X;m;P ). Sin
e thesubspa
e of S-invariant fun
tions in L1(E; ["m℄) is naturally isometri
 to the spa
eL1(�; [�m℄) of all bounded measurable fun
tions on the Poisson boundary (whi
h is thespa
e of S-ergodi
 
omponents in E), Theorem 1.5 impliesTheorem 1.8 ([Re84℄, [Ka92℄). The spa
es H1(X;m;P ) and L1(�; [�m℄) are isomet-ri
. The isometry is established by the formulas(1.4) limn!1 fn(xn) = bf (bnd(x)) ; f(x) = h bf ; �xi ;where f 2 H1(X;m;P ) and bf 2 L1(�; [�m℄).Formula (1.4) and its time dependent 
ounterpart (1.3) are 
alled the Poisson formu-las. See [Fu63℄, [Ka96℄ for a relationship with the 
lassi
al Poisson formula for boundedharmoni
 fun
tions on the unit disk (whi
h is the origin of this term). Criteria of trivial-ity and of 
oin
iden
e of the tail and the Poisson boundaries for general Markov 
hainsare given by the 0{2 laws [De76℄, [Ka92℄.1.4. Non-homogeneous Markov 
hains.The notions introdu
ed above also apply to Markov 
hains whi
h are not homoge-neous in time. In this situation instead of a single Markov operator P we have a sequen
e



RANDOM WALKS WITH RANDOM TRANSITION PROBABILITIES 7of Markov operators Pn : L1(X;m)  - on the same spa
e (X;m). The operator Pngoverns the transitions of the Markov 
hain at time n, so that the measure P� in thepath spa
e XZ+ 
orresponding to an initial distribution � on X satis�es the relationsE�(f(xn+1)jxn = x) = Pnf(x) :The one-dimensional distribution of P� at time n+ 1 is �P0;n, where(1.5) Pk;n = PkPk+1 � � �Pn ; 0 � k � nare the \time k to time n+ 1" transition operators. The standard way to \make" su
h
hains homogeneous 
onsists in extending the state spa
e by passing to the \spa
e-time"Z+ � X (or to Z� X when dealing with negative times as well). Then one 
an talkabout a single spa
e-time operator(1.6) Pf(n; �) = Pnf(n + 1; �)onZ+�X and about the 
orresponding time homogeneous Markov 
hain (whi
h is 
alledthe spa
e-time 
hain). The proje
tion of the spa
e-time 
hain ontoZ+ is deterministi
and 
onsists in moving forward with unit speed.The notions of the tail boundary and of harmoni
 sequen
es 
arry over to non-homogeneous Markov 
hains without any 
hanges, whereas the Poisson boundary andharmoni
 fun
tions do not make mu
h sense in this situation. For the spa
e-time 
hainthe tail boundary 
oin
ides with the Poisson boundary and is the produ
t of the tailboundary of the original non-homogeneous 
hain by Z, see [Ka92℄ for more details.1.5. Random Markov operators.De�nition 1.9. A random Markov operator on a spa
e (X;m) is determined by ameasure type preserving transformation T of a probability spa
e (
; �) and a measurablemap ! 7! P! from 
 to the spa
e of Markov operators on (X;m). We shall 
all (X;m)the state spa
e and (
; �) the base spa
e of the randomMarkov operator fP!g. Here bymeasurability of the map ! 7! P! we mean that the integral hP!f; gim is a measurablefun
tion of ! for any two fun
tions f 2 L1(X;m); g 2 L1(X;m).For simpli
ity we shall always assume that the transformation T isergodi
 and invertible. In most appli
ations the measure � on 
 isin addition assumed �nite and T -invariant in order to guarantee the\sto
hasti
 homogeneity" of the sequen
e of operators PTn!.For any ! 2 
 we have a non-homogeneous Markov 
hain on X determined by thesequen
e of operators P!; PT!; PT2!; : : : . Denote by P!;� the measure in its path spa
eXZ+ 
orresponding to an initial distribution � on X, and by E! its tail boundary.By "!;� = tail!P!;� we denote the tail measure on E! 
orresponding to the initial
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ript ! indi
ates that the map tail! is de�ned on the pathspa
e of the 
hain determined by !).Simultaneously with the Markov operators P! : L1(X;m) - we shall also 
onsiderthe \global" Markov operator(1.7) Pf(!; �) = P!f(T!; �) :a
ting on the spa
e L1(
 � X;� 
 m). The operator P is an immediate analogue ofthe spa
e-time operator (1.6), the only di�eren
e being that the role of \time" here isplayed by the spa
e 
 endowed with the transformation T . The transition probabilitiesof the operator P are �!;x = ÆT! 
 �x(!) ;where �x(!) are the transition probabilities of the operator P!. The sample paths ofthe operator P have the formx = (x0; x1; : : : ) ; xn = (Tn!; xn) ;where x = (xn) is a sample path of the non-homogeneous Markov 
hain determined bythe sequen
e of operators (P!; PT!; : : : ). Therefore, the path spa
e of the operator P
an be identi�ed with 
�XZ+ by the map(1.8) � : x 7! (!;x) ; x = (x0; x1; : : : ) 2 XZ+ :As usually, denote by P� the measure on the path spa
e (
 �X)Z+ of the operator P
orresponding to an initial distribution � on 
�X. Then(1.9) �P� = Z Æ! 
P!;�! d�(!) ;where � is the image of � under the proje
tion from 
 �X onto 
, and �!; ! 2 
 arethe 
onditional measures of this proje
tion.Denote by E the tail boundary of the operator P (1.7). Let(1.10) �
 : x 7! ! ; x = �(!; x0); (T!; x1); : : :�be the 
omposition of the map � and the proje
tion from 
 �XZ+ onto 
. Sin
e thetransformation T is invertible, �
 is measurable with respe
t to the tail partition ofthe path spa
e (
�X)Z+. Therefore, �
 determines a natural proje
tion p
 : E ! 
.Formula (1.9) then impliesProposition 1.10. The �bers of the proje
tion p
 are the tail boundaries E! of thenon-homogeneous Markov 
hains on X asso
iated with the points ! 2 
. More pre
isely,for an arbitrary initial distribution � � � 
 m on 
 � X denote by �! ; ! 2 
 its
onditional measures on X. Then the 
onditional measures of the tail measure "� on E
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t to the proje
tion p
 
oin
ide with the tail measures "�! on the tail boundariesE!; ! 2 
.Denote by � the Poisson boundary of the operator P . By de�nition, there is aproje
tion p� : E ! �. Let �
 and �� be the preimage partitions of the tail boundaryE determined by the proje
tions p
 and p�, respe
tively.E
 �p
 p�............................................................................................................ ................................................................................................. ...........De�nition 1.11. A random Markov operator fP!g has a stable Poisson boundary ifthe 
ommon re�nement �
 _ �� of the partitions �
 and �� 
oin
ides with the pointpartition �E of the tail boundary E, i.e., if the proje
tions p
 : E ! 
 and p� : E ! �separate points of E.If fP!g has a stable Poisson boundary �, then the tail boundaries E and E!; ! 2 

an be identi�ed with the produ
t 
 � � and with �, respe
tively. Therefore, in thissituation the same spa
e � is responsible (via the Poisson formula) for an integralrepresentation both of P -harmoni
 fun
tions on 
�X and of (P!; PT!; : : :)-harmoni
sequen
es onX for a.e. ! 2 
. In other words, the boundary behaviour of the operatorsP! and the operator P (in the latter 
ase modulo dependen
e on the initial state) isdes
ribed by the same spa
e �. If the Poisson boundary � of the operator P is trivial,then stability of fP!g means that the tail boundary E of P 
oin
ides with 
. Thegeneral 
ase 
an be redu
ed to this situation by 
onditioning the operator P by pointsof �.One 
an easily give a simple (if somewhat degenerate) example of a random Markovoperator whose Poisson boundary is unstable in the sense of De�nition 1.11. Basi
ally, it
onsists just in taking an ergodi
 skew produ
t over an ergodi
 invertible transformation.Indeed, 
onsider on 
 � X the skew produ
t transformation eT (!; x) = (T!; '(!; x))with the base T , where ' : 
�X ! X is a measurable map su
h that '(!; �) : X ! Xis invertible, and let P!f(x) = f('(!; x)) be the asso
iated family of deterministi
Markov operators. Then the operator P is also deterministi
 and 
orresponds to thetransformation eT . Therefore, the tail boundary of P is E = 
 � X, whereas the tailboundaries of the operators P! are E! = X. If eT is ergodi
 (e.g., see [CFS82℄ forexamples), then the Poisson boundary � of P is trivial, whi
h gives an example we arelooking for.It would be interesting to �nd general suÆ
ient 
onditions for stability of the Poissonboundary of randomMarkov operators. In Se
tion 4 we shall prove it for group invariantrandom Markov operators on 
ertain 
lasses of groups.



10 VADIM A. KAIMANOVICH, YURI KIFER, BEN-ZION RUBSHTEIN2. Random walks with time dependent in
rementsIn this Se
tion we 
onsider random walks on groups whi
h are spa
e homogeneouswithout being time homogeneous.2.1. De�nitions and notations.Let G be a 
ountable group, and m = mG be the 
ounting measure on G. Denoteby PG the spa
e of probability measures on G. Any measure � 2 PG determines theMarkov operator P�f(g) =Xh �(h)f(gh)
ommuting with the a
tion of the group G on itself by left translations. The operatorP� a
ts on measures on G by (right) 
onvolution with �:�P� = �� :The asso
iated Markov 
hain on G with the transition probabilitiesProb(xn+1 = ghjxn = g) = �(h)whi
h is homogeneous both in time and in spa
e is 
alled the (right) random walk (RW)on G determined by the measure � and is denoted RW(�) (e.g., see [KV83℄).De�nition 2.1. For any sequen
e � = f�0; �1; : : :g 2 PGZ+ the asso
iated sequen
eof Markov operators Pn = P�n determines the Markov 
hain on G whose transitionprobabilities at time n areProb(xn+1 = ghjxn = g) = �n(h) :This 
hain is 
alled a random walk with time dependent in
rements (RWTDI) on G,and we denote it RWTDI(�).Random walks with time dependent in
rements are homogeneous in spa
e, but notin time unless the sequen
e � is 
onstant, in whi
h 
ase we have a usual random walkon the group G homogeneous both in time and spa
e. All obje
ts 
onne
ted withRWTDI(�) obviously depend on the sequen
e �. However, for the sake of keeping thenotations 
on
ise, we shall usually omit the argument �.The \time k to time n + 1" transition operators (1.5) of RWTDI(�) arePk;nf(g) = P�k � � �P�nf(g) =Xh �k;n(h)f(gh) = P�k;nf(g) ;where �k;n = �k�k+1 : : : �nis the 
onvolution of the measures �k; �k+1; : : : ; �n.



RANDOM WALKS WITH RANDOM TRANSITION PROBABILITIES 11Denote by Pn;� the measure in the path spa
e G[n;1) 
orresponding to startingRWTDI(�) at time n 2 Z+ with an initial distribution �. If � = Æg ; g 2 G, then weuse the notation Pn;g. We shall omit the subs
ript n if n = 0 and the subs
ript g ifg = e. In parti
ular, we denote by P the probability measure on GZ+ 
orresponding tostarting RWTDI(�) from the group identity at time 0. Sin
e G a
ts on the path spa
eGZ+ 
oordinate-wise as (gx)n = gxn, and the transition probabilities of RWTDI(�) areG-invariant, Pn;g = gPn; g 2 G, and Pn;� = �Pn for any initial distribution �.2.2. The tail boundary and 
onditional 
hains.Denote by E the tail boundary of RWTDI(�), and by "n;� = tail(Pn;�) (resp., "n;g,et
.) the tail measures on E. There are two types of the tail behaviour of RWTDI(�):one (rather obvious) is 
onne
ted with the dependen
e on the starting point and 
anbe dealt with by passing to a smaller group (see Theorem 2.10 below); the other oneis more interesting and re
e
ts the \true" tail behaviour whi
h 
an not be redu
edto a dependen
e on the initial state. Be
ause of the spa
e homogeneity of RWTDI,for the study of the latter we may always assume that the starting point is the groupidentity. Denote by " = tail(P) the asso
iated tail measure. Below by the tail boundaryof RWTDI(�) we shall always mean the spa
e (E; ") (sometimes we shall also 
all itthe lo
al tail boundary), whereas the spa
e E endowed with measure type ["m℄ will bereferred to as the total tail boundary .The a
tion of G on the path spa
e GZ+ 
ommutes with the time shift, so that thisa
tion des
ends to an a
tion on E whi
h preserves the tail measure type ["m℄, and"n;g� = g"n;� for any n 2Z+; g 2 G and any measure � on G. In parti
ular, "n;� = �"n.The stationarity relations (1.2) then imply that(2.1) "n =X�n(g)g"n+1 = �n"n+1 :Proposition 2.2. The family of measures P
 ; 
 2 E on GZ+ de�ned on 
ylinder setsCe;g1;:::;gn = fx 2 GZ+ : x0 = e; x1 = g1; : : : ; xn = gngas P
(Ce;g1;:::;gn) = P(Ce;g1;:::;gn)dgn"nd" (
)is the 
anoni
al system of 
onditional measures of the measure P with respe
t to the tailboundary.Proof. If A is a measurable subset of the tail boundary E with "(A) = P(tail�1A) > 0,then by the Markov propertyP(Ce;g1;:::;gn \ tail�1A) = P(Ce;g1;:::;gn )Pn;gn(tail�1A) = P(Ce;g1;:::;gn )gn"n(A)for any 
ylinder set Ce;g1;:::;gn , when
e for the 
onditional measure PA(�) = P(�jtail�1A)we have PA(Ce;g1;:::;gn ) = P(Ce;g1;:::;gn )gn"n(A)P(tail�1A) = P(Ce;g1;:::;gn)gn"n(A)"(A) :



12 VADIM A. KAIMANOVICH, YURI KIFER, BEN-ZION RUBSHTEINTherefore, PA(Ce;g1;:::;gn) = 1"(A) ZAP
(Ce;g1;:::;gn ) d"(
)for any measurable subset A � E, whi
h implies the 
laim. �Remark 2.3. The de�nition of 
onditional measures P
 ; 
 2 E 
an be rewritten asP
(Ce;g1;:::;gn) = P(Ce;g1;:::;gn )dgn"nd" (
)= P(Ce;g1;:::;gn )dg1"1d" (
)dg2"2dg1"1 (
) � � � dgn"ndgn�1"n�1 (
) :Thus, the measures P
 are the measures in the path spa
e of 
onditional Markov 
hainson G with the transition probabilities(2.2) Prob
(xn+1 = gn+1jxn = gn) = Prob(xn+1 = gn+1jxn = gn)dgn+1"n+1dgn"n (
)= �n(g�1n gn+1)dgn+1"n+1dgn"n (
) :These 
onditional 
hains are, generally speaking, inhomogeneous both in spa
e and intime. Note that (2.2) makes sense only when gn+1"n+1 � gn"n. However, as it followsfrom (2.1), this relation is satis�ed whenever �0;n�1(gn) and �n(g�1n gn+1) are both non-zero, i.e., the 
onditional 
hains are well-de�ned on the whole attainability spa
e-time
one inZ+� G with the origin (0; e)(2.3) C = C(0; e) = f(n+ 1; x) : n 2Z+; �0;n(x) > 0g :Given a measurable partition � of the total tail boundary (E; ["m℄) denote by E�the asso
iated quotient spa
e, and by "�n;�, et
. the images of the 
orresponding tailmeasures under the proje
tion 
 7! �(
) from E to E�. A partition � is 
alled G-invariant if the a
tion of G on E maps elements of � onto elements of � (althoughindividual elements of � do not have to be �xed by the a
tion). If � is a G-invariantpartition, then the a
tion of G des
ends from E to the 
orresponding quotient spa
eE�. Reprodu
ing the proof of Proposition 2.2 we getProposition 2.4. Let � be a G-invariant measurable partition of the tail boundary E.Then the family of measures P�(
); 
 2 E on GZ+ de�ned on 
ylinder sets asP�(
)(Ce;g1;:::;gn) = P(Ce;g1;:::;gn )dgn"�nd"� (�(
))is the 
anoni
al system of 
onditional measures of the measure P with respe
t to thequotient E� of the tail boundary by the partition �.



RANDOM WALKS WITH RANDOM TRANSITION PROBABILITIES 132.3. Triviality of the tail boundary.De�nition 2.5. If the tail boundary (E; ") of RWTDI(�) is a singleton, we shall saythat it is trivial . In this Se
tion we shall also use the term lo
al triviality in order todistinguish it from the total triviality of the tail boundary when the total tail boundary(E; ["m℄)) is a singleton.Theorem 2.6 ([De76℄,[Ka92℄). The tail boundary of RWTDI(�) is totally trivial i�kg�m;n � �0;nk �!n!1 0 8 g 2 G; m 2Z+ ;and it is lo
ally trivial i�kg�m;n � �0;nk �!n!1 0 8 g 2 supp�0;m�1; m 2Z+ ;where k�k denotes the total variation of a measure �.Corollary. If the tail boundary of RWTDI(�) is totally trivial, then for any m 2Z+ thesequen
e of measures �m;n strongly 
onverges (as n tends to in�nity) to a left-invariantmean on G, and therefore the group G must be amenable.Remark 2.7. Theorem 2.6 implies that the total triviality of the tail boundary ofRWTDI(�) is equivalent to the total triviality of the tail boundary of RWTDI(S�),where S� = (�1; �2; : : : ) is the shift of � = (�0; �1; : : :). It also implies that lo
altriviality of the tail boundary of RWTDI(S�) follows from lo
al triviality of the tailboundary of RWTDI(�). However, the 
onverse is not true in general. For the simplestexample take for �0 any measure whose support 
onsists of more than one point, andput �1 = �2 = � � � = Æe.Obviously, total triviality implies lo
al triviality. We shall show that the 
onverseis also true under natural irredu
ibility 
onditions. For any given g 2 G the sequen
ekg�0;n � �0;nk is 
learly non-de
reasing. Denote by �(g) = �(g;�) its limit.Proposition 2.8. If the tail boundary of RWTDI(�) is lo
ally trivial, then �(g) equalseither 0 or 2 for any g 2 G.Proof. Let A = fx 2 GZ+ : (n; xn) 2 C for a 
ertain n 2Z+g ;where C = C(0; e) is the attainability 
one (2.3) in Z+�G. Clearly, for Pm-a.e. pathx if (k; xk) 2 C then also (n; xn) 2 C for all n > k, so that the set A is measurable withrespe
t to the tail partition. Sin
e the tail boundary is lo
ally trivial, Pg(A) equals 0or 1 for any g 2 G.Suppose that �(g) < 2, i.e., for a 
ertain n � 0 the measures g�0;n and �0;n arenon-singular. Then Pg(A) > 0, and by the above Pg(A) = 1, so that Pg-a.e. patheventually hits the 
one C. Denote by� (x) = minfn 2Z+ : (n; xn) 2 Cg



14 VADIM A. KAIMANOVICH, YURI KIFER, BEN-ZION RUBSHTEINthe �rst hitting time, and by � the 
orresponding hitting distribution on C:�(n; x) = Pgfx 2 GZ+ : � (x) = n; xn = xg :By the Markov property for any n 2Z+ the measure g�0;n de
omposes asg�0;n = X(k;x)2C:k�n �(k; x)x�k;n+ �n ;where k�nk ! 0. On the other hand, by the lo
al triviality of the tail boundarykx�k;n� �0;nk ! 0for any (k; x) 2 C, and we are done. �Denote by G(�) the subgroup of G generated by all g 2 G su
h that the measures�0;n and g�0;n are non-singular for a 
ertain n. Proposition 2.8 impliesProposition 2.9. If the tail boundary of RWTDI(�) is lo
ally trivial, thenG(�) = fg 2 G : �(g) = 0g :Corollary. If the tail boundary of RWTDI(�) is lo
ally trivial, then the group G(�) isamenable.Theorem 2.10. If the tail boundary of RWTDI(�) is lo
ally trivial, then its total tailboundary is isomorphi
 to the 
oset spa
e G=G(�), and the boundary map tail has theform tail(x) = x0G(�) :Proof. As it follows fromProposition 2.9, sample paths of RWTDI(�) issued from di�er-ent 
osets of G(�) never interse
t, so that the map x 7! x0G(�) is indeed measurablewith respe
t to the tail partition. On the other hand, again by Proposition 2.9, thetail boundary is trivial with respe
t to any initial distribution 
on
entrated on a single
oset. �We shall say that RWTDI(�) is irredu
ible if G(�) = G. In parti
ular, if all points ofG are attainable with positive probability from the group identity (� from an arbitrarystarting point), i.e., if Sn2Z+ supp�0;n = G, then RWTDI(�) is irredu
ible. Thus,Theorem 2.10 impliesProposition 2.11. The tail boundary of an irredu
ible RWTDI with lo
ally trivial tailboundary is totally trivial.Remark 2.12. An immediate generalization of irredu
ible RWTDI is provided by peri-odi
 RWTDI. We shall say that RWTDI(�) has period d � 1 if there exists a homo-morphism ' : G !Zd su
h that all measures �n are 
on
entrated on '�1(1), and theRWTDI on G0 = ker' determined by the sequen
e of measures�0n = �nd�nd+1 � � ��(n+1)d�1is irredu
ible. In this 
ase G(�) = G0, and the total tail boundary is isomorphi
 toZd.



RANDOM WALKS WITH RANDOM TRANSITION PROBABILITIES 152.4. The entropy.Below we shall need several fa
ts from the entropy theory of measurable partitions ofLebesgue spa
es [Ro67℄. First re
all that the entropy of a dis
rete probability distributionp = (p1; p2; : : : ) is de�ned as H(p) = �Pi pi log pi. The entropy H(�) = Hm(�) of a
ountable partition � = fXig of a Lebesgue probability spa
e (X;m) is de�ned as theentropy of the probability distribution pi = m(Xi). In other words,H(�) = � Z logm(�(x)) dm(x) ;where �(x) is the element of the partition � 
ontaining x. Given another measurable(not ne
essarily 
ountable!) partition � of X, the 
onditional entropy of � with respe
tto � is de�ned asH(�j�) = Z H�(x)(�) dm(x) = � Z logm�(x)(�(x)) dm(x) :where x 7! �(x) � X is the proje
tion from the spa
e (X;m) onto its quotient by thepartition � (we identify the points of the quotient spa
e with the 
orresponding elementsof the partition �), the measures m�(x) are the 
onditional measures of this proje
tion,and H�(x)(�) is the entropy of � with respe
t to the measure m�(x).Proposition2.13 ([Ro67℄). Let �; � be measurable partitions of a Lebesgue spa
e (X;m).If � is 
ountable with H(�) <1, then(i) 0 � H(�j�) � H(�), and H(�j�) = 0 (resp., H(�j�) = H(�)) i� � is a re�nementof � (resp., � and � are independent).(ii) If � 0 is a re�nement of �, then H(�j�0) � H(�j�), and the equality holds i�m�0(x)(�(x)) = m�(x)(�(x)) for m-a.e. x 2 X.(iii) If � is the limit of a monotonously de
reasing sequen
e of measurable partitions�n, then H(�j�n)% H(�j�).Theorem 2.14. If a sequen
e � = (�0; �1; : : : ) 2 PGZ+ is su
h that H(�n) < 1 forall measures �n, then for any k 2Z+ there exists a limithk = hk(�) = limn!1�H(�0;n) �H(�k;n)� � 0 ;and the tail boundary of RWTDI(�) is (lo
ally) trivial i� hk(�) = 0 for all k.



16 VADIM A. KAIMANOVICH, YURI KIFER, BEN-ZION RUBSHTEINProof. For the 
oordinate partitions of the path spa
e (P; GZ+) the Markov propertyyields(2.4) H(�0;k) = k�1Xi=0 H(�i) ;and for k < n H(�0;kj�n;1) = k�1Xi=0H(�i) +H(�k;n�1) �H(�0;n�1)= H(�0;k) +H(�k;n�1)�H(�0;n�1) :The partitions �n;1 are de
reasing to the tail partition �1. Therefore by Proposition2.13 (i), (iii) the limits hk exist, and(2.5) H(�0;kj�1) = H(�0;k)� hk � H(�0;k) :Moreover, hk = 0 i� H(�0:k) = H(�0;kj�1) ;i.e., i� the partitions �0;k and �1 are independent, see Proposition 2.13 (i). This isobviously the 
ase if �1 is trivial, i.e., if the tail boundary is lo
ally trivial. Conversely,if all hk equal 0, then �1 is independent of all 
oordinate partitions �0;k, and thereforeof the point partition of the path spa
e, so that �1 must be trivial. �3. Random walks with random transitions probabilitiesRandomwalks with random transitions probabilities are a spe
ialization of the notionof random Markov operators dis
ussed in Se
tion 1.5.3.1. De�nitions and preliminaries.De�nition 3.1. Let (
; �) be a probability Lebesgue measure spa
e endowed with aninvertible ergodi
 measure preserving transformation T , and� : 
! PG ; ! 7! �!be a measurable map. Put�! = ��!; �T!; �T2!; : : :� 2 PGZ+ :The family of RWTDI(�!) parameterized by the points ! 2 
 is 
alled a randomwalk on G with random transition probabilities (RWRTP), for whi
h we shall use thenotation RWRTP(
; �; T; �). Below we shall usually write just RWTDI(!) instead ofRWTDI(�!).



RANDOM WALKS WITH RANDOM TRANSITION PROBABILITIES 17Simultaneously with the 
hains RWTDI(!) on G parameterized by the points ! 2 
we shall also 
onsider the \global 
hain" on the spa
e 
�G determined by the Markovoperator(3.1) P : L1(
� G; �
m) - ; P f(!; g) =X�!(h)f(T!; gh) ;with the transition probabilities �!;g = ÆT!
g�! (
f. (1.7)). This 
hain is homogeneousboth in time and spa
e (with respe
t to the dissipative a
tion of G on 
 � G by lefttranslations), and the �-�nite measure �
m is easily seen to be P -stationary, so that theoperator P is a 
overing Markov operator in the sense of [Ka95℄. The 
orrespondingquotient 
hain on the spa
e 
 is deterministi
 with the transitions ! ! T!. Theproje
tion of the \global 
hain" starting from a �xed point ! 2 
 onto G is the RWTDIdetermined by the sequen
e �! (
f. Se
tion 1.5).Let P� be the measure in the path spa
e (
 � G)Z+ of the operator P determinedby the initial distribution � = � 
 Æe on 
 � G. Then by formula (1.9) the map� : x 7! (!;x) (1.8) is an isomorphism between the spa
es �(
 � G)Z+;P�� and(
� GZ+;P), where(3.2) P = Z Æ! 
P! d�(!) ;andP! denotes the probabilitymeasure on the path spa
e GZ+ 
orresponding to startingRWTDI(!) from the identity of the group.One 
an also identify the spa
e of paths x 2 GZ+ starting from x0 = e with the spa
eH �= GZ+ of in
rements h = (h0; h1; : : : ) by the mapx 7! h ; xn = h0h1 � � �hn�1 ; n > 0 :[Although the path spa
e and the spa
e of in
rements in G both 
oin
ide with GZ+,their meaning for us is quite di�erent, whi
h is why we use a separate notation for thespa
e of in
rements.℄ Therefore, the spa
e (
�GZ+;P) �= �(
�G)Z+;P�� is isomorphi
to the spa
e (
 �H;Q), whereQ = Z Æ! 
 1Oi=0 �T i! d�(!) :Below we shall freely swit
h between the three des
riptions of the same measure spa
e(
 �GZ+;P) �= �(
� G)Z+;P�� �= (
�H;Q)using the 
orresponden
e(3.3) (!;x) = �!; (e; x1; x2; : : : )� ! x = (xn) = �(!; e); (T!; x1); (T 2!; x2); : : :� ! (!;h) = �!; (hn)� = �!; (x1; x�11 x2; x�12 x3; : : : )� :



18 VADIM A. KAIMANOVICH, YURI KIFER, BEN-ZION RUBSHTEINFor uniformity we shall usually refer to this measure spa
e as (
 � GZ+;P) \
hangingvariables" by formulas (3.3) if ne
essary.Denote by E (resp., �) the tail (resp., the Poisson) boundary of the operator P (3.1).Below we shall only be interested in the boundary behaviour of the operator P and ofRWTDI(!) whi
h is not redu
ible to a dependen
e on the starting point (
f. Se
tion2.3). Therefore, the tail boundary E will be always endowed with the tail measure" = tailP. By � = bndP = p�" (where p� is the proje
tion E ! �) we denote the
orresponding harmoni
 measure on the Poisson boundary.The �bers of the proje
tion p
 : (E; ") ! (
; �) are the tail boundaries (E!; "!) ofRWTDI(!), where "! is the tail measure on E! 
orresponding to starting RWTDI(!)from the group identity at time 0 (Proposition 1.10). More generally, by "n;! we denotethe tail measure on E! 
orresponding to starting RWTDI(!) from the group identity atan arbitrary time n � 0. In view of Proposition 1.10 we may also 
onsider the measures"!; "n;! as measures on E. By �! = p�"! = p�"n;! we denote the 
orrespondingharmoni
 measures on the Poisson boundary � of the operator P . In other words,"! = tail(P!) and �! = bnd(P!).The a
tion of G des
ends from the path spa
e to the tail boundary and to the Poissonboundary, and 
learly g"o = tail(gP!) and g�! = bnd(gP!) are the measures on E(resp., on �) 
orresponding to starting RWTDI(!) from the point g 2 G at time 0.Then formula (2.1) takes in this setup the form"n;! = �!"n+1;T! :Therefore, �! = �!�T! :The Poisson formulas for bounded harmoni
 sequen
es and fun
tions of the operator P(see Theorems 1.6 and 1.9) take the form, respe
tively,fn(!; g) = h bf ; g"n;!iand f(!; g) = h bf ; g�!i :Proposition 3.2. The tail boundaries of the RWTDI(!); ! 2 
 are all trivial ornon-trivial simultaneously.Proof. As it follows from Theorem 2.6 (see Remark 2.7), triviality of the tail boundaryof RWTDI(!) implies triviality of the tail boundary of RWTDI(T!). Therefore, the
laim follows from ergodi
ity of the transformation T . �We shall say that RWRTP(
; �; T; �) is irredu
ible if RWTDI(!) is irredu
ible for�-a.e. ! 2 
 (see De�nition 2.9). Proposition 1.10 then implies



RANDOM WALKS WITH RANDOM TRANSITION PROBABILITIES 19Proposition 3.3. If RWRTP(
; �; T; �) is irredu
ible and the tail boundary of �-a.e.RWTDI(!); ! 2 
 is lo
ally trivial, then the Poisson boundary � of the operator P istrivial.Remark 3.4. Proposition 3.3 remains true if RWRTP(
; �; T; �) is periodi
, i.e., if a.e.RWTDI(!) is periodi
 with the same period d.Problem 3.5. Give general 
onditions whi
h would ensure stability (in the sense ofDe�nition 1.11) of RWRTP(
; �; T; �).3.2. The asymptoti
 entropy.De�nition 3.6. We shall say that RWRTP(
; �; T; �) has �nite entropy ifH = H(
; �; T; �) = Z H(�!) d�(!) <1 :Theorem 3.7. If RWRTP(
; �; T; �) has �nite entropy, then the limit(3.4) h = h(
; �; T; �) = limn!1 H(�!0;n�1)nexists a.e. and in the spa
e L1(
; �) and is independent of !.De�nition 3.8. The limit (3.4) is 
alled the asymptoti
 entropy of RWRTP(
; �; T; �).Proof of Theorem 3.7. The measure �!0;k+n�1 is the 
onvolution of the measures �!0;k�1and �!k;k+n�1 = �Tk!0;n�1. Therefore,H(�!0;k+n�1) � H(�!0;k�1) +H(�Tk!0;n�1)so that the sequen
e of fun
tions 'n(!) = H(�!0;n�1) on 
 satis�es 
onditions of theKingman subadditive ergodi
 theorem (e.g., see [De80℄), whi
h implies the 
laim. �Theorem 3.9. If H(
; �; T; �) < 1, then h(
; �; T; �) = 0 i� the tail boundary of�-a.e. RWTDI(!) is trivial.Corollary. If h(
; �; T; �) = 0, then the Poisson boundary of RWRTP(
; �; T; �) istrivial.Remark 3.10. Contrary to the situation with the \ordinary" random walks we do notknow whether triviality of the Poisson boundary of RWRTP(
; �; T; �) implies thath(
; �; T; �) = 0. The reason for this di�eren
e is that for ordinary random walks thetail and the Poisson boundary 
oin
ide with respe
t to any single point initial distri-bution (e.g., see [Ka92℄), so that the entropy 
riterion of triviality of the tail boundaryautomati
ally be
omes the entropy 
riterion of triviality of the Poisson boundary. How-ever, for RWRTP the relation between the tail and the Poisson boundaries is more
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ompli
ated, see De�nition 1.11 (together with the dis
ussion there) and Problem 3.5.Of 
ourse, if the Poisson boundary is stable in the sense of De�nition 1.11, then it istrivial i� the tail boundary � 
oin
ides with 
, i.e., i� h(
; �; T; �) = 0.Proof of Theorem 3.9. By Theorem 2.14 for �-a.e. ! 2 
 and any k > 0 there existsthe limit(3.5) h(!) = limn!1�H(�!0;n)�H(�!1;n)� = limn!1�H(�!0;n)�H(�T!0;n�1)� ;and the tail boundary of �-a.e. RWTDI(!) is lo
ally trivial i� h(!) = 0 for �-a.e.! 2 
. Sin
e h(!) � H(�!), the fun
tion h is integrable, and the 
onvergen
e in (3.5)also holds in the spa
e L1(
; !), when
eZ h(!) d�(!) = limn!1 �Z H(�!0;n) d�(!) � Z H(�!0;n�1) d�(!)� :Therefore, by (3.4)(3.6) Z h(!) d�(!) = h(
; �; T; �) :In parti
ular, h(
; �; T; �) = 0 i� h � 0. �De�nition 3.11 [Ka98℄. A probabilitymeasure � on GZ+ has asymptoti
 entropy h(�)if the following Shannon{Breiman{M
Millan type equidistribution 
ondition is satis�ed:� 1n log �n(xn)! h(�)for �-a.e. sequen
e x = fxng 2 GZ+ and in the spa
e L1(GZ+;�), where �n are theone-dimensional distributions of the measure �.The following result shows that for RWRTP the asymptoti
 entropies in the sense ofDe�nitions 3.8 and 3.11 
oin
ide.Theorem 3.12. If H(
; �; T; �) <1, thenh(P!) = h(
; �; T; �)for �-a.e. ! 2 
.In 
ombination with Theorem 3.9 it immediately impliesCorollary. If H(
; �; T; �) <1 and for �-a.e. ! 2 
 there exists a sequen
e of �nitesubsets An � G su
h that log jAnj = o(n) and �!0;n(An) > " for a 
ertain �xed number" > 0, then the tail boundary of RWTDI(!) is trivial for �-a.e. ! 2 
.



RANDOM WALKS WITH RANDOM TRANSITION PROBABILITIES 21Lemma 3.13. Let (Sh)n = hn+1 be the shift in the spa
e of in
rements H. Then thetransformation T (!;h) = (T!; Sh)of the spa
e (
� GZ+;P) �= (
�H;Q) (see (3.3)) is measure preserving and ergodi
.Proof. The map �!; (h0; h1; : : : )� 7! �(!; h0); (T!; h1); : : :�identi�es the spa
e (
�H;Q) with the path spa
e of the Markov 
hain on 
�G withthe transition probabilities(3.7) Prob�(T!; h0)j(!; h)� = �T!(h0)and the initial distribution d�(!; h) = d�(!)�!(h). This identi�
ation 
onjugates Twith the shift in (
 � G)Z+. By T -invarian
e of � the measure � is stationary withrespe
t to the transition probabilities (3.7), so that the measure Q is T -invariant (thisfa
t 
an be also easily 
he
ked dire
tly).Further, sin
e the measure � is �nite, ergodi
ity of Q with respe
t to T is equivalentto absen
e of non-
onstant bounded harmoni
 fun
tions of the 
hain (3.7), e.g., see[Ka92℄. The transition probabilities (3.7) from a point (!; h) do not depend on h, sothat any su
h fun
tion depends on ! only, i.e., is a non-
onstant T -invariant fun
tionon 
, whi
h is impossible by ergodi
ity of T . �Remark 3.14. In terms of the path spa
e (
 � G)Z+ the transformation T takes theform�(!; e); (T!; x1); (T 2!; x2); : : :� 7! �(T!; e); (T 2!; x�11 x2); (T 3!; x�11 x3); : : :� ;i.e., it is the 
ombination of the shift in the path spa
e with the subsequent grouptranslation 
onsisting in moving the origin of the shifted path to the identity of G.Proof of Theorem 3.12. Put'n(!;h) = � log�!0;n�1(xn) = � log�!0;n�1(h0h1 � � �hn�1) :Sin
e�!0;k+n�1(h0h1 � � �hk+n�1) � �!0;k�1(h0h1 � � �hk�1)�!k;k+n�1(hkhk+1 � � �hk+n�1) ;we have 'k+n(!;h) � 'k(!;h) + 'n(T k!; Skh) :Finiteness of entropy of RWRTP(
; �; T; �) means that(3.8) Z '1(!;h) dQ(!;h) = � Z log�!(h0) dQ(!;h)= � Z Xg log�!(g)�!(g) d�(!)= Z H(�!) d�(!) = H(
; �; T; �) <1 ;



22 VADIM A. KAIMANOVICH, YURI KIFER, BEN-ZION RUBSHTEINso that the 
onditions of the Kingman subadditive ergodi
 theorem are satis�ed, andtherefore there exists a limit(3.9) limn!1� 1n log�!0;n�1(h0h1 � � �hn�1)for Q-a.e. pair (!;h) 2 
�H and in the spa
e L1(
 �H;Q). Sin
eZ 'n(!;h) dQ(!;h) = Z H(�!0;n�1) d�(!)(
f. (3.8)), and 1n Z H(�!0;n�1) d�(!)! h(
; �; T; �)by Theorem 3.7, the limit (3.9) 
oin
ides with h(
; �; T; �). �3.3. The asymptoti
 entropy of 
onditional 
hains.We shall apply to the partitions of the path spa
e of the operator P (3.1) the notations�k; �k;l, et
. introdu
ed in Se
tion 1.2 (sometimes we overline the obje
ts 
onne
tedwith the operator P on the state spa
e 
 � G in order to distinguish them from theobje
ts asso
iated with the individual RWRTP(!) on G). We 
ontinue to use theidenti�
ations (3.3). In the model (
 � H;Q) of the path spa
e ((
 � G)Z+;P�) �=(
 � GZ+;P) the partition �0;n 
oin
ides with the 
ommon re�nement of the pointpartition of the spa
e 
 and the partition of H determined by the �rst n 
oordinatesh0; h1; : : : ; hn�1. In parti
ular, �0 
oin
ides P-mod 0 with the preimage partition of theproje
tion �
 : x 7! ! (1.10). By �1 = lim�n;1 we denote the tail partition. Notethat �1 is a re�nement of �0, see Proposition 1.10.Below all the entropies and the 
onditional entropies of partitions of the spa
e 
 �GZ+ are 
al
ulated with respe
t to the measure P. We begin with expressing theasymptoti
 entropy h(
; �; T; �) in terms of the 
onditional entropies of 
oordinatepartitions. Integrating formula (2.5) with respe
t to the measure � and using (2.4),(3.5) and (3.6), we obtainLemma 3.15. If H(
; �; T; �) <1, then for any k � 0H(�0;kj�1) = khH(
; �; T; �)� h(
; �; T; �)iBy �E (resp., �
) we denote the point partition of the tail boundary (E; ") (resp.,the partition generated by the proje
tion p
 : E ! 
, see Proposition 1.10). Let � bea G-invariant partition of E whi
h is a re�nement of �
. Denote by �� = tail�1� thepartition of the path spa
e ((
 � G)Z+;P�) �= (
 � GZ+;P) whi
h is the preimage of� under the map tail. Sin
e tail�1�E is the tail partition �1, and tail�1�
 = �0, wehave �0 4 �� 4 �1 :



RANDOM WALKS WITH RANDOM TRANSITION PROBABILITIES 23The quotient (E� ; "�) of the tail boundary (E; ") by the partition � 
an be also 
onsideredas the quotient of the path spa
e by the partition ��. Denote bytail� : (
� GZ+;P)! (E� ; "�)the asso
iated quotient map. The spa
es (E�; "�) are \random analogues" of the �-boundaries in the 
ase of usual time homogeneous random walks on groups, see [Fu71℄,[Ka00℄. If � = �E, then tail� = tail, and if � = �
, then tail� 
oin
ides with theproje
tion �
 (1.10). Denote by "�! = "�0;! (resp., "�n;!) the images of the tail measures"! (resp., "n;!) under the proje
tion E ! E�.Lemma 3.16. If H(
; �; T; �) <1, then for any k � 0H(�0;kj��) = kH(�0;1j��)= k "H(
; �; T; �)� Z log dx1"�1;T!d"�! (tail�(!;x)) dP(!;x)# :Proof. Sin
e �
 4 �, 
onditioning by � uniquely determines the starting point ! of thesample path x ! (!;x). The tra
es of � on the elements of the partition �
 (i.e., onthe tail boundaries E!, see Proposition 1.10) are G-invariant partitions, so that we mayapply Proposition 2.4, a

ording to whi
h the 
onditional probability of the element ofthe partition �0;k 
ontaining given (!;x) ! (!;h) with respe
t to the partition �� is�!(h1)�T!(h2) : : : �Tk�1!(hk)dxk"�k;Tk!d"�! (tail�(!;x)) ;when
e integrating we obtainH(�0;kj��) = kH(
; �; T; �)� Z log dxk"�k;Tk!d"�! (tail�(!;x)) dP(!;x) :The integrand in the last term in the right hand side teles
opes aslog dxk"�k;Tk!d"�! (tail�(!;x)) = k�1Xi=0 '(T i(!;x)) ;where '(!; x) = log dx1"�1;T!d"�! (tail�(!;x)) ;and T is the transformation of the path spa
e 
�GZ+ introdu
ed in Lemma 3.13. Sin
eT preserves the measure P, we get the 
laim. �
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; �; T; �) <1, thenh(
; �; T; �) = Z log dx1"1;T!d"! (tail(!;x)) :Lemma 3.17. Let � and �0 be two G-invariant measurable partitions of the tail bound-ary E su
h that �
 4 � 4 �0. If H(
; �; T; �) <1, thenH(�0;1j��) � H(�0;1j��0) ;and the equality holds i� � = �0.Proof. Obviously, if �0 is a re�nement of �, then ��0 is a re�nement of �� , so thatthe inequality follows from Proposition 2.13 (ii). If H(�0;1j��) = H(�0;1j��0), then byLemma 3.16, H(�0;kj��) = H(�0:kj��0) for any k � 1, whi
h by Proposition 2.13 (ii)means that for "-a.e. point 
 2 E the k-dimensional distributions of the 
onditionalmeasures P�(
) and P�0(
) are the same. Therefore, for "-a.e. 
 2 E the 
onditionalmeasures P�(
) and P�0(
) 
oin
ide, whi
h is only possible if � = �0. �Corollary. Let � be a G-invariant measurable partitions of the tail boundary E su
hthat �
 4 �. Then � = �E i� H(�0;1j��) = H(�0;1j�1) ;Theorem 3.18. Let � be a G-invariant measurable partition of the tail boundary Esu
h that �
 4 �. If H(
; �; T; �) <1, then for "�-a.e. point �(
) 2 E� the asymptoti
entropy (in the sense of De�nition 3.11) of the 
onditional measure P�(
) exists and isequal to(3.10) h(P�(
)) = h(
; �; T; �)� Z log dx1"�1;T!d"�! (tail�(!;x)) dP(!;x) :Proof. Sin
e �
 4 �, by Proposition 2.4 the one-dimensional distributions ��(
)n of the
onditional measure P�(
) are��(
)n (g) = �!0;n�1(g)dg"�n;Tn!d"�! (�(
)) ;where the point ! = !(
) 2 
 is determined by the proje
tion E� ! 
. Theorem 3.12implies the 
onvergen
e (P-a.e. and in the spa
e L1(
� GZ+;P))(3.11) � 1n log�!0;n�1(xn)! h(
; �; T; �) ;



RANDOM WALKS WITH RANDOM TRANSITION PROBABILITIES 25and the teles
oping at the end of the proof of Lemma 3.16 in 
ombination with theBirkho� ergodi
 theorem for the transformation T yields the 
onvergen
e (also a.e. andin the L1-spa
e),(3.12) 1n log dxn"�n;Tn!d"�! (tail�(!;x))! Z log dx1"�1;T!d"�! (tail�(!;x)) dP(!;x) :Combining (3.11) and (3.12), we obtain the 
onvergen
e (P-a.e. and in the L1-spa
e)of � 1n log�tail�(!;x)n (xn)to the limit (3.10), whi
h implies the 
laim, be
ause the measures P�(
) are the 
ondi-tional measures of the measure P with respe
t to the partition ��. �Now, 
ombining Theorem 3.18 with Lemmas 3.15, 3.16 and 3.17, we get the followinggeneralization of Theorem 3.9Theorem 3.19. Let � be a G-invariant measurable partition of the tail boundary Esu
h that �
 4 �. If H(
; �; T; �) <1, then � = �E i� the asymptoti
 entropies of the
onditional measures P�(
) vanish.Corollary. The partition � 
oin
ides with �E i� for "�-a.e. point �(
) 2 E� thereexist " > 0 and a sequen
e of sets An = An(�(
)) � G su
h that log jAnj = o(n) and��(
)n (An) > " for all suÆ
iently large n.4. Triviality and des
ription of the tail and the Poisson boundariesIn this se
tion we 
onsider several 
on
rete 
lasses of groups and des
ribe the bound-aries of RWRTP on these groups.4.1. Boundary triviality.The entropy theory developed in Se
tion 3 allows one to extend to RWRTP almostall results on triviality and identi�
ation of the boundaries earlier obtained for usualrandom walks, see [KV83℄, [Ka00℄.Throughout this se
tion we assume that the group G a
ts by isometries on a 
ompletemetri
 spa
e (X; d). Fix on
e and forever a referen
e point o 2 X (its 
hoi
e is irrelevantfor what follows) and put jgj = jgjX = d(o; go) ; g 2 G :Suppose that the group G has bounded exponential growth with respe
t to the spa
e X,i.e.,(4.1) v(G;X) = lim supt!1 1t log 
ardfg 2 G : jgjX � tg <1 :



26 VADIM A. KAIMANOVICH, YURI KIFER, BEN-ZION RUBSHTEINIf G is a �nitely generated group, and X �= G is its Cayley graph determined by a �nitegenerating set and endowed with the asso
iated word metri
 d, then 
ondition (4.1) isobviously satis�ed. Another example is provided by a dis
rete subgroup G of isometriesof a Riemannian manifold of bounded geometry X. If v(G;X) = 0 we shall say thatthe group G has subexponential growth.For a measure � 2 PG denote byj�j =Xg d(o; go)�(g)its �rst moment . We shall say that RWRTP(
; �; T �) has a �nite �rst moment (withrespe
t to the spa
e X) if Z j�!j d�(!) <1 :Using the triangle inequality and the Kingman subadditive ergodi
 theorem, we deriveTheorem 4.1. If RWRTP(
; �; T; �) on the group G has a �nite �rst moment withrespe
t to the spa
e X then there exists a number l = l(
; �; T; �;X) 
alled the linearrate of es
ape su
h that for P-a.e. (!;x) 2 
�GZ+,limn!1 jxnjXn = l :The 
onvergen
e also holds in the spa
e L1(
�GZ+;P), where P is the measure (3.2).Lemma 4.2 ([De86℄). There exists a 
onstant C = C(G;X) su
h that for any measure� 2 PG, H(�) � C(j�jK + 1) :Now, using Theorem 3.12 we obtain in the same way as for ordinary random walkson groups (see [Gu80℄) the following resultTheorem 4.3. If RWRTP(
; �; T; �) on G has a �nite �rst moment, then its entropyh(
; �; T; �), the rate of es
ape l(
; �; T; �;X) and the rate of growth v(G;X) satisfythe inequality h � lv :Corollary (
f. Proposition 2.9). If RWRTP(
; �; T; �) is irredu
ible and the group Gis non-amenable, then l > 0.Theorem 4.3 in 
ombination with Theorem 3.9 implies triviality of the tail boundariesof �-a.e. RWTDI(!) and of the Poisson boundary of RWRTP(
; �; T; �) when eitherl(
; �; T; �;X) or v(G;X) vanish. Sin
e any �nitely generated nilpotent group haspolynomial growth (with respe
t to the word metri
 determined by any �nite generatingset), we obtain



RANDOM WALKS WITH RANDOM TRANSITION PROBABILITIES 27Theorem 4.4. The Poisson boundary of any RWRTP with a �nite �rst moment on a�nitely generated nilpotent group is trivial.Combining Theorem 4.4 with Proposition 2.9 we now obtainTheorem 4.5. Let (
; �; T; �) be an irredu
ible RWRTP with a �nite �rst moment ona �nitely generated nilpotent group G. Then for any g 2 G and �-a.e. ! 2 
kg�!0;n � �!0;nk �!n!1 0 ;i.e., a.e. sequen
e �!0;n strongly 
onverges to a left-invariant mean on G.Remark 4.6. By 
ompletely di�erent methods Theorem 4.5 was proved in [MR94℄,[LRW94℄, and [Ru95℄ for 
ompa
t and abelian groups without any additional momentassumptions.Returning to Theorem 4.3, re
all that another way of proving boundary triviality
onsists in showing that the rate of es
ape l(
; �; T; �;X) vanishes. The methods usedin [Ka91℄ allow one to do it for \
entered" RWRTP on several 
lasses of solvable groupsin the same way as for usual time homogeneous random walks. For the sake of brevitywe shall 
onsider just the 
lass of poly
y
li
 groups. Without loss of generality we mayassume that the poly
y
li
 group G = A i N is the semi-dire
t produ
t of an abeliangroup A �=Zd and a normal �nitely generated nilpotent subgroup N (see [Ka91℄). Fora measure � on G denote by �A its proje
tion onto A, and by�A = Xa2A �A(a)a 2 Rdthe bary
enter of �A (this de�nition requires �niteness of the �rst moment of themeasure �A). If �A = 0, then the measure � is 
alled 
entered . We shall say thatRWRTP(
; �; T; �) on G with a �nite �rst moment is 
entered ifZ �!A d�(!) <1 :Theorem 4.7. The Poisson boundary of any 
entered RWRTP with a �nite �rst mo-ment on a poly
y
li
 group is trivial.Theorem 4.8. For any 
entered irredu
ible RWRTP with a �nite �rst moment on apoly
y
li
 group G a.e. sequen
e �!0;n strongly 
onverges to a left-invariant mean on G.4.2. Boundary identi�
ation.We shall now look at the problem of identifying the tail and the Poisson boundariesof RWRTP on groups. Suppose, for the sake of argument, that our group G admitsan invariant 
ompa
ti�
ation G with the boundary �G (i.e., the a
tion of G on itselfby left translations extends to a 
ontinuous a
tion on G), and that P!-a.e. samplepath x = (xn) 
onverges in this 
ompa
ti�
ation to a limit point x1 = x1(x) 2 �G



28 VADIM A. KAIMANOVICH, YURI KIFER, BEN-ZION RUBSHTEINfor �-a.e. ! 2 
. Obviously, the map x 7! x1 is measurable with respe
t to the tail�-algebra of the global operator P on 
� G (a
tually, the topologi
al nature of �G is
ompletely irrelevant for what follows). Therefore, the map (!;x) 7! (!; x1) gives riseto a measurable partition � of the Poisson boundary E of the operator P . The partition� is G-invariant, and it is a re�nement of the partition �
 determined by the proje
tionE ! 
. Coin
iden
e of the partition � with the point partition �E of E means thatthe tail boundary E a
tually 
an be identi�ed with the produ
t 
� �G. Therefore, inthe latter 
ase the Poisson boundary of the RWRTP is stable (in the sense of De�nition1.11), i.e., the Poisson boundary of the operator P and the tail boundaries E! 
an beboth identi�ed with �G.The main method of proving boundary 
onvergen
e for \groups with hyperboli
properties" goes ba
k to Furstenberg [Fu71℄ and 
onsists in using the martingale 
on-vergen
e theorem in 
ombination with 
ontra
ting (proximality) properties of the a
tionof G on the boundary �G, see [CS89℄, [Wo93℄, [Ka00℄. This method does not impose anymoment 
onditions on the random walk and may be 
ombined with the \strip approxi-mation" 
riteria [Ka00℄ to give a full boundary identi�
ation. However, its appli
ationto RWRTP is rather tedious and we 
ould not get rid of rather awkward 
onditionson the measures �! (like existen
e of a single non-degenerate measure on G dominatedby a.e. �!) following this way. Instead of this we shall use the \ray approximation"approa
h (see [Ka00℄) and its re
ent generalization obtained in [KMa99℄ whi
h will saveus from a good deal of te
hni
al details.Re
all that a metri
 spa
e (X; d) is 
alled 
onvex if for any two points x; y 2 X thereexists a midpoint z 2 X su
h thatd(x; z) = d(y; z) = 12d(x; y) :In a 
omplete 
onvex spa
e any two points 
an be joined by a geodesi
 (see the relatedde�nitions in [BH99℄).A metri
 spa
e (X; d) is 
alled uniformly 
onvex if it is 
onvex and in addition thereexists a stri
tly de
reasing 
ontinuous fun
tion ' on [0; 1℄ with '(0) = 1 su
h that forany x; y; w 2 X and a midpoint z of x and yd(z; w)R � '�d(x; y)2R � ;where R = maxfd(x;w); d(y; w)g. The midpoints (and therefore geodesi
s with givenendpoints) in a uniformly 
onvex spa
e are unique.A 
onvex metri
 spa
e (X; d) is 
alled non-positively 
urved (in the sense of Buse-mann) if for any x; y; z 2 X and any midpoints mxz (resp., myz) of x and y (resp., of yand z) d(mxz:myz) � 12d(x; y) :From now on we shall assume that(4.2) The metri
 spa
e X on whi
h the group G a
ts is uniformly 
onvex andsatis�es the Busemann non-positive 
urvature 
ondition.
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e of asymptoti
 
lasses of geodesi
 rays in X. We shall identify�X with the spa
e of geodesi
 rays issued from the point o. Examples of spa
es (X; d)satisfying 
ondition (4.2) in
lude all Cartan{Hadamard manifolds (in parti
ular, non-
ompa
t Riemannian symmetri
 spa
es without 
ompa
t fa
tors) and all metri
 trees.In the �rst 
ase �X is the visibility sphere of X, and in the se
ond 
ase it is the spa
eof ends of X.An appli
ation of [KMa99℄ to the transformation T of the spa
e (
� GZ+;P) givesTheorem 4.9. Suppose that RWRTP(
; �; T; �) on the group G has a �nite �rst mo-ment, its rate of es
ape l = l(
; �; T; �;X) is positive, and the spa
e X satis�es 
ondi-tions (4.1) and (4.2). Then for P-a.e. (!;x) 2 
� GZ+ there exists a unique geodesi
ray 
 = 
(!;x) 2 �X su
h that d(xn; 
(nl)) = o(n) :Note that in view of the Corollary of Theorem 4.3 the 
ondition l > 0 in Theorem 4.9is not really restri
tive as dis
rete groups of isometries of non-positively 
urved spa
esare usually non-amenable. Theorem 4.9 in 
ombination with Theorem 3.19 immediatelyimpliesTheorem 4.10. Under 
onditions of Theorem 4.9 the Poisson boundary of RWRTP isstable and is isomorphi
 to the spa
e �X with the resulting hitting measure.Therefore, the Poisson boundary identi�es with the natural geometri
 boundaries forRWRTP with a �nite �rst moment on free groups and on dis
rete groups of isometriesof Cartan{Hadamard manifolds (in parti
ular, in dis
rete subgroups of semi-simple Liegroups), see [Ka00℄ for a more detailed des
ription of these boundaries in the 
ase ofusual time homogeneous random walks. Note that Theorem 3.19 allows one to extendidenti�
ation of the Poisson boundary with the \natural" boundaries from usual timehomogeneous random walks to RWRTP for several other 
lasses of groups, in
ludingthe poly
y
li
 groups and the groups with in�nitely many ends, 
f. [Ka91℄ and [Ka00℄.Referen
es[BH99℄ M. R. Bridson and A. Hae
iger, Metri
 spa
es of non-positive 
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