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BOUNDARIES AND HARMONIC FUNCTIONS FOR RANDOMWALKS WITH RANDOM TRANSITION PROBABILITIESVadim A. Kaimanovih, Yuri Kifer, Ben-Zion RubshteinAbstrat. The usual random walk on a group (homogeneous both in time and in spae)is determined by a probability measure on the group. In a random walk with randomtransition probabilities this single measure is replaed with a stationary sequene of mea-sures, so that the resulting (random) Markov hains are still spae homogeneous, but nolonger time homogeneous. We study various notions of measure theoretial boundariesassoiated with this model, establish an analogue of the Poisson formula for (random)bounded harmoni funtions, and identify these boundaries for several lasses of groups.0. IntrodutionRandom walks on groups were intensively studied during the last 40 years (see, forinstane, [Ka96℄ and the referenes therein). Their importane is due to numerousappliations, in partiular, to the desription of boundaries and spaes of harmonifuntions and to the study of ergodi properties of group ations. Suh random walksare Markov hains whih are homogeneous both in time and spae and an be alsorepresented as produts of independent identially distributed (i.i.d.) group elements.In the partiular important ase of produts of random matries additional tools suhas Lyapunov exponents an be employed.A random walk on a group G is determined by a Markov operator P = P (�) whihonsists in the (right) onvolution with a �xed probability measure � on G, so that theoperator P is invariant with respet to the ation of the group on itself by left trans-lations. There are two models for further \randomization" of these \ordinary" randomwalks. The �rst model is usually referred to as random walks in random environment(RWRE) and onsists in onsidering a probability measure � on the spae of all Markovoperators on G. In this model the individual operators (environments) are not groupinvariant, although the group struture is taken into aount by requiring the measure� to be quasi-invariant with respet to the ation of G on the spae of environments(more spei�ally, � is usually assumed to be either translation invariant or stationary2000 Mathematis Subjet Classi�ation. 60J50, 37A30, 60B99.Key words and phrases. Random walk, random transition probability, harmoni funtion, Poissonboundary. Typeset by AMS-TEX1



2 VADIM A. KAIMANOVICH, YURI KIFER, BEN-ZION RUBSHTEINwith respet to the \moving environment" hain, see, for instane, [Kal81℄, [KMo84℄,[KSi00℄). One hooses a random environment aording to the distribution �, and thenruns a time (but not spae!) homogeneous Markov hain in this environment.The other model whih we all random walks with random transition probabilities(RWRTP) is opposite to RWRE in the sense that here one keeps the spae homogeneitybut does not assume the time homogeneity. Namely, the additional randomness isintrodued in this model by taking a random sequene �0; �1; : : : of probabilitymeasureson G so that the (G-invariant!) transition probabilities of the arising hain on G at timen are given by the measure �n. The formal desription of this model onsists in �xing aninvertible ergodi transformation T of a probability spae (
; �) and a measurable map! 7! �!. One hooses ! 2 
 aording to the distribution � and then runs the arisingrandom walk with time dependent inrements RWTDI(!) determined by the sequene�!; �T!; �T2!; : : : . The transformation T is usually assumed to be measure preserving,so that the above random sequene of measures is stationary. In the same way one analso talk about random sequenes of Markov operators on a general state spae (whihdoes not have to be a group or to be endowed with any additional spatial struture).This model was �rst introdued more than 20 years ago in onnetion with a model ofrandom automata and various properties of suh Markov hains were investigated sinethen in a number of papers (see, for instane, [Or91℄, [Ki96℄ and the referenes therein).Random walks with random transition probabilities �rst appeared in [MR88℄ (see also[MR94℄, [LRW94℄, [Ru95℄), and produts of independent random matries with station-arily hanging distributions were studied in [Ki01℄. Ideologially and methodially thistopi is rather lose to random dynamial systems whih were intensively studied inreent years, and Markov hains with random transition probabilities have the samerelation to the lassial Markov hains as random dynamial systems to deterministiones. In both ases the guiding philosophy suggests that we have good hanes to ob-tain an additional non-trivial information about the system if it aquires nie propertiesafter onditioning by some ergodi stationary proess (whih we do not have muh in-formation about). Note that in the framework of random walks on groups one an alsomake one more step and to ombine the RWRE and RWRTP models (so that individualrandom hains will be neither spae nor time homogeneous).RWRTP an be onsidered as a generalization of yet another model of \randomiza-tion" of the ordinary random walks alled random walks with internal degrees of freedom(RWIDF) [KSz83℄ or overing Markov hains [Ka95℄. These are G-invariant Markovhains on the produt of the group G by another spae X. The transition probabilitiesof RWIDF are p�(g; x); (gh; y)� = p(x; y)�x;y(h) (assuming that X is ountable), where�x;y are probability measures on X, and p(x; y) are the transition probabilities of thequotient hain on X. If the quotient hain has a �nite stationary measure, then theassoiated RWRTP is determined by the spae 
 = XZendowed with the orrespondingshift-invariant Markov measure and the map (: : : ; x�1; x0; x1; : : : ) 7! �x0;x1 .The setup of RWRTP yields a natural notion of random harmoni funtions f! on Gwhih satisfy the relation f!(g) = R fT!(gh)d�!(h). These funtions an be onsidered



RANDOM WALKS WITH RANDOM TRANSITION PROBABILITIES 3as harmoni funtions of the global time homogeneous G-invariant Markov hain on theprodut 
�G with the transition probabilities p�(!; g); (T!; gh)� = �!(h). This globalhain is an immediate analogue of the usual \spae-time" hain (the role of \time" isplayed here by the spae 
 endowed with the transformation T ). Therefore, desriptionof all bounded random harmoni funtions amounts to desribing the Poisson boundary� of the global hain.In this paper we onsider only disrete groups G. We introdue the notion of therelative (or �ber) Avez type entropy of RWRTP whih is lose to the notion of therelative (�ber) entropy in the ergodi theory of random dynamial systems (this theoryis also known under the name of relative ergodi theory, see [Ki86℄). Similarly to thetheory of ordinary random walks (see [KV83℄, [Ka00℄) we give an entropy riterion fortriviality of the tail boundary of almost all RWTDI(!); ! 2 
, whih implies trivialityof the Poisson boundary of the global hain, i.e., absene of non-trivial bounded ran-dom harmoni funtions. As a orollary, we prove onvergene of random onvolutionsto an invariant mean for nilpotent groups (earlier it was established for ompat andabelian groups in the works of Mindlin and Rubshtein [MR94℄ and of Lin, Rubshteinand Wittman [LRW94℄ by ompletely di�erent methods).The relationship between the Poisson and the tail boundaries for RWRTP turns outto be more ompliated than for ordinary random walks (where the tail and the Poissonboundaries oinide with respet to any single point initial distribution). Indeed, in theRWRTP setup the Poisson boundary does not make sense for individual RWTDI(!)on G (beause they are not time homogeneous). As for the global hain on 
 � G,its projetion onto 
 is deterministi, so that the tail boundary E of the global hainadmits a natural projetion onto 
 whose �bers are the tail boundaries of RWTDI(!)(in partiular, triviality of the tail boundary of almost all RWTDI(!) is equivalentto oinidene of E and 
). On the other hand, the Poisson boundary of any timehomogeneous Markov hain is a quotient of its tail boundary. Therefore, there are twonatural projetions of the tail boundary E of the global hain: onto 
 and onto thePoisson boundary �. We say that RWRTP is stable if these two projetion separatepoint of E. If RWRTP is stable, then the tail boundaries of individual RWTDI(!)an be identi�ed with the Poisson boundary of the global hain, so that stability ofRWRTP is a property analogous to oinidene of the tail and the Poisson boundariesfor ordinary random walks.We do not know whether RWRTP on groups are always stable. However, in the �nalsetion under the �nite �rst moment ondition we (by using the entropy tehnique)expliitly identify the Poisson and the tail boundaries of RWRTP on disrete groupsof isometries of non-positively urved spaes with natural geometri boundaries (forexample, for a free group this natural boundary is the spae of ends). Therefore, theseRWRTP are stable.We do not study here random boundaries for ontinuous groups whih, we hope, willbe dealt with in another paper.Aknowledgment. A part of this work was done during the authors' partiipation



4 VADIM A. KAIMANOVICH, YURI KIFER, BEN-ZION RUBSHTEINin the \Random Walks 2001" program at the Shr�odinger International Institute forTheoretial Physis (ESI) in Vienna, whose support is gratefully aknowledged.1. Measure theoretial boundaries of Markov hainsIn this Setion we introdue the neessary notations and bakground from the generaltheory of Markov hains, see [Re84℄, [Ka92℄, [Ki01℄.1.1. Markov operators.De�nition 1.1. Let (X;m) be a Lebesgue measure spae with a �-�nite positive mea-sure m. A linear operator P : L1(X;m) - is alled Markov if(i) P preserves positivity, i.e., Pf � 0 for any funtion f � 0;(ii) P preserves onstants, i.e., P1 = 1 for the funtion 1(x) � 1;(iii) P is ontinuous in the sense that Pfn # 0 a.e. whenever fn # 0 a.e.The adjoint operator P � of a Markov operator P : L1(X;m) - ats on the spae ofintegrable funtions on the spae (X;m), or, in other words, on the spae of measures� on X absolutely ontinuous with respet to m (notation: � � m). We shall use thenotation �P for the measure on X with the density P �(d�=dm), so that h�P; fim =h�; Pfim for any funtion f 2 L1(X;m).A (�-�nite) initial distribution � � m gives rise in a standard way to a Markovmeasure P� in the path spae XZ+ = fx = (x0; x1; : : :)g of the assoiated Markovhain on X. The one-dimensional distributions of P� are �Pn, and the time shift(Sx)n = xn+1 ats on it as S(P�) = P�P . A measure � � m is alled a stationarymeasure of the Markov operator P if �P = �, or, equivalently, if the measure P� isS-invariant.By de�nition, the onditional expetations E� of the measure P� satisfy the relationE��f(xn+1)jxn = x� = Pf(x) for any n � 0. Sine the spae (X;m), and therefore allspaes (XZ+;P�); � � m are Lebesgue, these onditional expetations an be replaedby the integrals with respet to the orresponding onditional measures �x whih arealled one-step transition probabilities. Then the operator P and its adjoint operatortake the form(1.1) Pf(x) = Z f(y) d�x(y) ; �P = Z �x d�(x) :Remark 1.2. The measures �x are not neessarily absolutely ontinuous with respetto m. Still, for any funtion f 2 L1(X;m) the integrals above make sense for m-a.e. x 2 X by Rokhlin's theorem on onditional deomposition of measures in Lebesguespaes (e.g., see [CFS82℄). We shall use this theorem on several oasions below withoutfurther notie.1.2. The tail boundary and harmoni sequenes.



RANDOM WALKS WITH RANDOM TRANSITION PROBABILITIES 5Denote by �k; k 2 Z+ the k-th oordinate partition of the path spae (XZ+;Pm),and for 0 � k < l � 1 put �k;l = Wli=k �i, i.e., two paths x and x0 are �k;l-equivalenti� xi = x0i for all k � i � l. The partitions �k;1; k > 0 oinide with the preimagepartitions of the powers Sk of the time shift S.Reall that the measurable partitions of the same spae are ordered in suh a waythat \the bigger are the elements, the smaller is the partition"; this order is denoted by4. Obviously, �k+1;1 4 �k;1 for any k 2 Z+. Let �1 = Vk �k;1 be the measurableintersetion of the sequene �k;1, i.e., the biggest measurable partition of the spae(XZ+;Pm) whih is smaller than any partition �k;1. The partition �1 is alled thetail partition of the path spae.De�nition 1.3. The quotient E of the path spae (XZ+;Pm) with respet to the tailpartition �1 is alled the tail boundary . Denote by tail : XZ+ ! E the orrespondingprojetion.The spae E is endowed with the tail measure type ["m℄ whih is the image of the typeof the measure Pm. For any probability measure � � m the tail measure "� = tail(P�)is absolutely ontinuous with respet to ["m℄. We emphasize that the spae E and theprojetion tail are de�ned in the measure theoretial ategory, so that they make sense\Pm-mod 0" (i.e., up to the sets of Pm-measure 0) only.The quotient of the path spae XZ+ with respet to the partition �n;1 is the spaeX [n;1) of paths on X running from the time n only. Therefore, one an onsider thespae E as the indutive limit (in the measure theoretial ategory!) of the sequeneof the spaes X [n;1) endowed with the images of the measure Pm. Denote by Pn;�the measure on the spae X [n;1) orresponding to starting the Markov hain at time nwith the initial distribution �. Projeting the measure Pn;� onto E gives the assoiatedtail measure "n;�. Denote by "n;x the tail measures on E orresponding to starting theMarkov hain at time n from a point x 2 X (f. Remark 1.2). Then(1.2) "n;x = Z "n+1;y d�x(y) :Sine tail(x) = tail(x0) if and only if tail(Sx) = tail(Sx0), the ation of the timeshift S desends from XZ+ to an invertible transformation of E (also denoted S), and"n;� = S�n"�.De�nition 1.4. A sequene of funtions fn 2 L1(X;m); n 2Z+ is alled a harmonisequene if fn = Pfn+1 for any n 2 Z+. Denote by HS1(X;m;P ) the spae ofharmoni sequenes endowed with the norm supn kfnk1.Theorem 1.5 ([Re84℄, [Ka92℄). The spaes HS1(X;m;P ) and L1(E; ["m℄) are iso-metri. This isometry is established by the formulas(1.3) limn!1 fn(xn) = bf (tail(x)) ; fn(x) = h bf ; "n;xi ;where ffng 2 HS1(X;m;P ) and bf 2 L1(E; ["m℄).



6 VADIM A. KAIMANOVICH, YURI KIFER, BEN-ZION RUBSHTEIN1.3. The Poisson boundary and harmoni funtions.De�nition 1.6. The spae � of ergodi omponents of the shift S in the path spae(XZ+;Pm) is alled the Poisson boundary of the Markov operator P . Denote theorresponding projetion by bnd : XZ+ ! �.The Poisson boundary an be also de�ned as the spae of ergodi omponents ofthe transformation S (indued by the shift in the path spae) of the tail boundary E.Therefore, the map bnd is the result of the omposition of the maps tail : XZ+ ! Eand p� : E ! �. Denote by [�m℄ = bnd([Pm℄) = p�(["m℄) the harmoni measuretype on �, and by �� = bnd(P�) = p�("�) the harmoni measure orresponding to aninitial probability distribution � � m, so that �� � [�m℄. By �x we shall denote theharmoni measures orresponding to individual points x 2 X (f. Remark 1.2). Sine� is the spae of ergodi omponents of the ation of S on E, for any n � 0 we havep�("n;�) = p�("�) = ��. Therefore, (1.2) implies that the harmoni measures on �satisfy the stationarity relation �x = Z �y d�x(y) :De�nition 1.7. A funtion f 2 L1(X;�) is alled harmoni with respet to a Markovoperator P : L1(X;m)  - if f = Pf . Denote by H1(X;m;P ) the subspae ofL1(X;m) onsisting of harmoni funtions.Any funtion f 2 H1(X;m;P ) determines the harmoni sequene fn � f , sothat H1(X;m;P ) is isometrially embedded into the spae HS1(X;m;P ). Sine thesubspae of S-invariant funtions in L1(E; ["m℄) is naturally isometri to the spaeL1(�; [�m℄) of all bounded measurable funtions on the Poisson boundary (whih is thespae of S-ergodi omponents in E), Theorem 1.5 impliesTheorem 1.8 ([Re84℄, [Ka92℄). The spaes H1(X;m;P ) and L1(�; [�m℄) are isomet-ri. The isometry is established by the formulas(1.4) limn!1 fn(xn) = bf (bnd(x)) ; f(x) = h bf ; �xi ;where f 2 H1(X;m;P ) and bf 2 L1(�; [�m℄).Formula (1.4) and its time dependent ounterpart (1.3) are alled the Poisson formu-las. See [Fu63℄, [Ka96℄ for a relationship with the lassial Poisson formula for boundedharmoni funtions on the unit disk (whih is the origin of this term). Criteria of trivial-ity and of oinidene of the tail and the Poisson boundaries for general Markov hainsare given by the 0{2 laws [De76℄, [Ka92℄.1.4. Non-homogeneous Markov hains.The notions introdued above also apply to Markov hains whih are not homoge-neous in time. In this situation instead of a single Markov operator P we have a sequene



RANDOM WALKS WITH RANDOM TRANSITION PROBABILITIES 7of Markov operators Pn : L1(X;m)  - on the same spae (X;m). The operator Pngoverns the transitions of the Markov hain at time n, so that the measure P� in thepath spae XZ+ orresponding to an initial distribution � on X satis�es the relationsE�(f(xn+1)jxn = x) = Pnf(x) :The one-dimensional distribution of P� at time n+ 1 is �P0;n, where(1.5) Pk;n = PkPk+1 � � �Pn ; 0 � k � nare the \time k to time n+ 1" transition operators. The standard way to \make" suhhains homogeneous onsists in extending the state spae by passing to the \spae-time"Z+ � X (or to Z� X when dealing with negative times as well). Then one an talkabout a single spae-time operator(1.6) Pf(n; �) = Pnf(n + 1; �)onZ+�X and about the orresponding time homogeneous Markov hain (whih is alledthe spae-time hain). The projetion of the spae-time hain ontoZ+ is deterministiand onsists in moving forward with unit speed.The notions of the tail boundary and of harmoni sequenes arry over to non-homogeneous Markov hains without any hanges, whereas the Poisson boundary andharmoni funtions do not make muh sense in this situation. For the spae-time hainthe tail boundary oinides with the Poisson boundary and is the produt of the tailboundary of the original non-homogeneous hain by Z, see [Ka92℄ for more details.1.5. Random Markov operators.De�nition 1.9. A random Markov operator on a spae (X;m) is determined by ameasure type preserving transformation T of a probability spae (
; �) and a measurablemap ! 7! P! from 
 to the spae of Markov operators on (X;m). We shall all (X;m)the state spae and (
; �) the base spae of the randomMarkov operator fP!g. Here bymeasurability of the map ! 7! P! we mean that the integral hP!f; gim is a measurablefuntion of ! for any two funtions f 2 L1(X;m); g 2 L1(X;m).For simpliity we shall always assume that the transformation T isergodi and invertible. In most appliations the measure � on 
 isin addition assumed �nite and T -invariant in order to guarantee the\stohasti homogeneity" of the sequene of operators PTn!.For any ! 2 
 we have a non-homogeneous Markov hain on X determined by thesequene of operators P!; PT!; PT2!; : : : . Denote by P!;� the measure in its path spaeXZ+ orresponding to an initial distribution � on X, and by E! its tail boundary.By "!;� = tail!P!;� we denote the tail measure on E! orresponding to the initial



8 VADIM A. KAIMANOVICH, YURI KIFER, BEN-ZION RUBSHTEINdistribution � on X (the subsript ! indiates that the map tail! is de�ned on the pathspae of the hain determined by !).Simultaneously with the Markov operators P! : L1(X;m) - we shall also onsiderthe \global" Markov operator(1.7) Pf(!; �) = P!f(T!; �) :ating on the spae L1(
 � X;� 
 m). The operator P is an immediate analogue ofthe spae-time operator (1.6), the only di�erene being that the role of \time" here isplayed by the spae 
 endowed with the transformation T . The transition probabilitiesof the operator P are �!;x = ÆT! 
 �x(!) ;where �x(!) are the transition probabilities of the operator P!. The sample paths ofthe operator P have the formx = (x0; x1; : : : ) ; xn = (Tn!; xn) ;where x = (xn) is a sample path of the non-homogeneous Markov hain determined bythe sequene of operators (P!; PT!; : : : ). Therefore, the path spae of the operator Pan be identi�ed with 
�XZ+ by the map(1.8) � : x 7! (!;x) ; x = (x0; x1; : : : ) 2 XZ+ :As usually, denote by P� the measure on the path spae (
 �X)Z+ of the operator Porresponding to an initial distribution � on 
�X. Then(1.9) �P� = Z Æ! 
P!;�! d�(!) ;where � is the image of � under the projetion from 
 �X onto 
, and �!; ! 2 
 arethe onditional measures of this projetion.Denote by E the tail boundary of the operator P (1.7). Let(1.10) �
 : x 7! ! ; x = �(!; x0); (T!; x1); : : :�be the omposition of the map � and the projetion from 
 �XZ+ onto 
. Sine thetransformation T is invertible, �
 is measurable with respet to the tail partition ofthe path spae (
�X)Z+. Therefore, �
 determines a natural projetion p
 : E ! 
.Formula (1.9) then impliesProposition 1.10. The �bers of the projetion p
 are the tail boundaries E! of thenon-homogeneous Markov hains on X assoiated with the points ! 2 
. More preisely,for an arbitrary initial distribution � � � 
 m on 
 � X denote by �! ; ! 2 
 itsonditional measures on X. Then the onditional measures of the tail measure "� on E



RANDOM WALKS WITH RANDOM TRANSITION PROBABILITIES 9with respet to the projetion p
 oinide with the tail measures "�! on the tail boundariesE!; ! 2 
.Denote by � the Poisson boundary of the operator P . By de�nition, there is aprojetion p� : E ! �. Let �
 and �� be the preimage partitions of the tail boundaryE determined by the projetions p
 and p�, respetively.E
 �p
 p�............................................................................................................ ................................................................................................. ...........De�nition 1.11. A random Markov operator fP!g has a stable Poisson boundary ifthe ommon re�nement �
 _ �� of the partitions �
 and �� oinides with the pointpartition �E of the tail boundary E, i.e., if the projetions p
 : E ! 
 and p� : E ! �separate points of E.If fP!g has a stable Poisson boundary �, then the tail boundaries E and E!; ! 2 
an be identi�ed with the produt 
 � � and with �, respetively. Therefore, in thissituation the same spae � is responsible (via the Poisson formula) for an integralrepresentation both of P -harmoni funtions on 
�X and of (P!; PT!; : : :)-harmonisequenes onX for a.e. ! 2 
. In other words, the boundary behaviour of the operatorsP! and the operator P (in the latter ase modulo dependene on the initial state) isdesribed by the same spae �. If the Poisson boundary � of the operator P is trivial,then stability of fP!g means that the tail boundary E of P oinides with 
. Thegeneral ase an be redued to this situation by onditioning the operator P by pointsof �.One an easily give a simple (if somewhat degenerate) example of a random Markovoperator whose Poisson boundary is unstable in the sense of De�nition 1.11. Basially, itonsists just in taking an ergodi skew produt over an ergodi invertible transformation.Indeed, onsider on 
 � X the skew produt transformation eT (!; x) = (T!; '(!; x))with the base T , where ' : 
�X ! X is a measurable map suh that '(!; �) : X ! Xis invertible, and let P!f(x) = f('(!; x)) be the assoiated family of deterministiMarkov operators. Then the operator P is also deterministi and orresponds to thetransformation eT . Therefore, the tail boundary of P is E = 
 � X, whereas the tailboundaries of the operators P! are E! = X. If eT is ergodi (e.g., see [CFS82℄ forexamples), then the Poisson boundary � of P is trivial, whih gives an example we arelooking for.It would be interesting to �nd general suÆient onditions for stability of the Poissonboundary of randomMarkov operators. In Setion 4 we shall prove it for group invariantrandom Markov operators on ertain lasses of groups.



10 VADIM A. KAIMANOVICH, YURI KIFER, BEN-ZION RUBSHTEIN2. Random walks with time dependent inrementsIn this Setion we onsider random walks on groups whih are spae homogeneouswithout being time homogeneous.2.1. De�nitions and notations.Let G be a ountable group, and m = mG be the ounting measure on G. Denoteby PG the spae of probability measures on G. Any measure � 2 PG determines theMarkov operator P�f(g) =Xh �(h)f(gh)ommuting with the ation of the group G on itself by left translations. The operatorP� ats on measures on G by (right) onvolution with �:�P� = �� :The assoiated Markov hain on G with the transition probabilitiesProb(xn+1 = ghjxn = g) = �(h)whih is homogeneous both in time and in spae is alled the (right) random walk (RW)on G determined by the measure � and is denoted RW(�) (e.g., see [KV83℄).De�nition 2.1. For any sequene � = f�0; �1; : : :g 2 PGZ+ the assoiated sequeneof Markov operators Pn = P�n determines the Markov hain on G whose transitionprobabilities at time n areProb(xn+1 = ghjxn = g) = �n(h) :This hain is alled a random walk with time dependent inrements (RWTDI) on G,and we denote it RWTDI(�).Random walks with time dependent inrements are homogeneous in spae, but notin time unless the sequene � is onstant, in whih ase we have a usual random walkon the group G homogeneous both in time and spae. All objets onneted withRWTDI(�) obviously depend on the sequene �. However, for the sake of keeping thenotations onise, we shall usually omit the argument �.The \time k to time n + 1" transition operators (1.5) of RWTDI(�) arePk;nf(g) = P�k � � �P�nf(g) =Xh �k;n(h)f(gh) = P�k;nf(g) ;where �k;n = �k�k+1 : : : �nis the onvolution of the measures �k; �k+1; : : : ; �n.



RANDOM WALKS WITH RANDOM TRANSITION PROBABILITIES 11Denote by Pn;� the measure in the path spae G[n;1) orresponding to startingRWTDI(�) at time n 2 Z+ with an initial distribution �. If � = Æg ; g 2 G, then weuse the notation Pn;g. We shall omit the subsript n if n = 0 and the subsript g ifg = e. In partiular, we denote by P the probability measure on GZ+ orresponding tostarting RWTDI(�) from the group identity at time 0. Sine G ats on the path spaeGZ+ oordinate-wise as (gx)n = gxn, and the transition probabilities of RWTDI(�) areG-invariant, Pn;g = gPn; g 2 G, and Pn;� = �Pn for any initial distribution �.2.2. The tail boundary and onditional hains.Denote by E the tail boundary of RWTDI(�), and by "n;� = tail(Pn;�) (resp., "n;g,et.) the tail measures on E. There are two types of the tail behaviour of RWTDI(�):one (rather obvious) is onneted with the dependene on the starting point and anbe dealt with by passing to a smaller group (see Theorem 2.10 below); the other oneis more interesting and reets the \true" tail behaviour whih an not be reduedto a dependene on the initial state. Beause of the spae homogeneity of RWTDI,for the study of the latter we may always assume that the starting point is the groupidentity. Denote by " = tail(P) the assoiated tail measure. Below by the tail boundaryof RWTDI(�) we shall always mean the spae (E; ") (sometimes we shall also all itthe loal tail boundary), whereas the spae E endowed with measure type ["m℄ will bereferred to as the total tail boundary .The ation of G on the path spae GZ+ ommutes with the time shift, so that thisation desends to an ation on E whih preserves the tail measure type ["m℄, and"n;g� = g"n;� for any n 2Z+; g 2 G and any measure � on G. In partiular, "n;� = �"n.The stationarity relations (1.2) then imply that(2.1) "n =X�n(g)g"n+1 = �n"n+1 :Proposition 2.2. The family of measures P ;  2 E on GZ+ de�ned on ylinder setsCe;g1;:::;gn = fx 2 GZ+ : x0 = e; x1 = g1; : : : ; xn = gngas P(Ce;g1;:::;gn) = P(Ce;g1;:::;gn)dgn"nd" ()is the anonial system of onditional measures of the measure P with respet to the tailboundary.Proof. If A is a measurable subset of the tail boundary E with "(A) = P(tail�1A) > 0,then by the Markov propertyP(Ce;g1;:::;gn \ tail�1A) = P(Ce;g1;:::;gn )Pn;gn(tail�1A) = P(Ce;g1;:::;gn )gn"n(A)for any ylinder set Ce;g1;:::;gn , whene for the onditional measure PA(�) = P(�jtail�1A)we have PA(Ce;g1;:::;gn ) = P(Ce;g1;:::;gn )gn"n(A)P(tail�1A) = P(Ce;g1;:::;gn)gn"n(A)"(A) :



12 VADIM A. KAIMANOVICH, YURI KIFER, BEN-ZION RUBSHTEINTherefore, PA(Ce;g1;:::;gn) = 1"(A) ZAP(Ce;g1;:::;gn ) d"()for any measurable subset A � E, whih implies the laim. �Remark 2.3. The de�nition of onditional measures P ;  2 E an be rewritten asP(Ce;g1;:::;gn) = P(Ce;g1;:::;gn )dgn"nd" ()= P(Ce;g1;:::;gn )dg1"1d" ()dg2"2dg1"1 () � � � dgn"ndgn�1"n�1 () :Thus, the measures P are the measures in the path spae of onditional Markov hainson G with the transition probabilities(2.2) Prob(xn+1 = gn+1jxn = gn) = Prob(xn+1 = gn+1jxn = gn)dgn+1"n+1dgn"n ()= �n(g�1n gn+1)dgn+1"n+1dgn"n () :These onditional hains are, generally speaking, inhomogeneous both in spae and intime. Note that (2.2) makes sense only when gn+1"n+1 � gn"n. However, as it followsfrom (2.1), this relation is satis�ed whenever �0;n�1(gn) and �n(g�1n gn+1) are both non-zero, i.e., the onditional hains are well-de�ned on the whole attainability spae-timeone inZ+� G with the origin (0; e)(2.3) C = C(0; e) = f(n+ 1; x) : n 2Z+; �0;n(x) > 0g :Given a measurable partition � of the total tail boundary (E; ["m℄) denote by E�the assoiated quotient spae, and by "�n;�, et. the images of the orresponding tailmeasures under the projetion  7! �() from E to E�. A partition � is alled G-invariant if the ation of G on E maps elements of � onto elements of � (althoughindividual elements of � do not have to be �xed by the ation). If � is a G-invariantpartition, then the ation of G desends from E to the orresponding quotient spaeE�. Reproduing the proof of Proposition 2.2 we getProposition 2.4. Let � be a G-invariant measurable partition of the tail boundary E.Then the family of measures P�();  2 E on GZ+ de�ned on ylinder sets asP�()(Ce;g1;:::;gn) = P(Ce;g1;:::;gn )dgn"�nd"� (�())is the anonial system of onditional measures of the measure P with respet to thequotient E� of the tail boundary by the partition �.



RANDOM WALKS WITH RANDOM TRANSITION PROBABILITIES 132.3. Triviality of the tail boundary.De�nition 2.5. If the tail boundary (E; ") of RWTDI(�) is a singleton, we shall saythat it is trivial . In this Setion we shall also use the term loal triviality in order todistinguish it from the total triviality of the tail boundary when the total tail boundary(E; ["m℄)) is a singleton.Theorem 2.6 ([De76℄,[Ka92℄). The tail boundary of RWTDI(�) is totally trivial i�kg�m;n � �0;nk �!n!1 0 8 g 2 G; m 2Z+ ;and it is loally trivial i�kg�m;n � �0;nk �!n!1 0 8 g 2 supp�0;m�1; m 2Z+ ;where k�k denotes the total variation of a measure �.Corollary. If the tail boundary of RWTDI(�) is totally trivial, then for any m 2Z+ thesequene of measures �m;n strongly onverges (as n tends to in�nity) to a left-invariantmean on G, and therefore the group G must be amenable.Remark 2.7. Theorem 2.6 implies that the total triviality of the tail boundary ofRWTDI(�) is equivalent to the total triviality of the tail boundary of RWTDI(S�),where S� = (�1; �2; : : : ) is the shift of � = (�0; �1; : : :). It also implies that loaltriviality of the tail boundary of RWTDI(S�) follows from loal triviality of the tailboundary of RWTDI(�). However, the onverse is not true in general. For the simplestexample take for �0 any measure whose support onsists of more than one point, andput �1 = �2 = � � � = Æe.Obviously, total triviality implies loal triviality. We shall show that the onverseis also true under natural irreduibility onditions. For any given g 2 G the sequenekg�0;n � �0;nk is learly non-dereasing. Denote by �(g) = �(g;�) its limit.Proposition 2.8. If the tail boundary of RWTDI(�) is loally trivial, then �(g) equalseither 0 or 2 for any g 2 G.Proof. Let A = fx 2 GZ+ : (n; xn) 2 C for a ertain n 2Z+g ;where C = C(0; e) is the attainability one (2.3) in Z+�G. Clearly, for Pm-a.e. pathx if (k; xk) 2 C then also (n; xn) 2 C for all n > k, so that the set A is measurable withrespet to the tail partition. Sine the tail boundary is loally trivial, Pg(A) equals 0or 1 for any g 2 G.Suppose that �(g) < 2, i.e., for a ertain n � 0 the measures g�0;n and �0;n arenon-singular. Then Pg(A) > 0, and by the above Pg(A) = 1, so that Pg-a.e. patheventually hits the one C. Denote by� (x) = minfn 2Z+ : (n; xn) 2 Cg



14 VADIM A. KAIMANOVICH, YURI KIFER, BEN-ZION RUBSHTEINthe �rst hitting time, and by � the orresponding hitting distribution on C:�(n; x) = Pgfx 2 GZ+ : � (x) = n; xn = xg :By the Markov property for any n 2Z+ the measure g�0;n deomposes asg�0;n = X(k;x)2C:k�n �(k; x)x�k;n+ �n ;where k�nk ! 0. On the other hand, by the loal triviality of the tail boundarykx�k;n� �0;nk ! 0for any (k; x) 2 C, and we are done. �Denote by G(�) the subgroup of G generated by all g 2 G suh that the measures�0;n and g�0;n are non-singular for a ertain n. Proposition 2.8 impliesProposition 2.9. If the tail boundary of RWTDI(�) is loally trivial, thenG(�) = fg 2 G : �(g) = 0g :Corollary. If the tail boundary of RWTDI(�) is loally trivial, then the group G(�) isamenable.Theorem 2.10. If the tail boundary of RWTDI(�) is loally trivial, then its total tailboundary is isomorphi to the oset spae G=G(�), and the boundary map tail has theform tail(x) = x0G(�) :Proof. As it follows fromProposition 2.9, sample paths of RWTDI(�) issued from di�er-ent osets of G(�) never interset, so that the map x 7! x0G(�) is indeed measurablewith respet to the tail partition. On the other hand, again by Proposition 2.9, thetail boundary is trivial with respet to any initial distribution onentrated on a singleoset. �We shall say that RWTDI(�) is irreduible if G(�) = G. In partiular, if all points ofG are attainable with positive probability from the group identity (� from an arbitrarystarting point), i.e., if Sn2Z+ supp�0;n = G, then RWTDI(�) is irreduible. Thus,Theorem 2.10 impliesProposition 2.11. The tail boundary of an irreduible RWTDI with loally trivial tailboundary is totally trivial.Remark 2.12. An immediate generalization of irreduible RWTDI is provided by peri-odi RWTDI. We shall say that RWTDI(�) has period d � 1 if there exists a homo-morphism ' : G !Zd suh that all measures �n are onentrated on '�1(1), and theRWTDI on G0 = ker' determined by the sequene of measures�0n = �nd�nd+1 � � ��(n+1)d�1is irreduible. In this ase G(�) = G0, and the total tail boundary is isomorphi toZd.



RANDOM WALKS WITH RANDOM TRANSITION PROBABILITIES 152.4. The entropy.Below we shall need several fats from the entropy theory of measurable partitions ofLebesgue spaes [Ro67℄. First reall that the entropy of a disrete probability distributionp = (p1; p2; : : : ) is de�ned as H(p) = �Pi pi log pi. The entropy H(�) = Hm(�) of aountable partition � = fXig of a Lebesgue probability spae (X;m) is de�ned as theentropy of the probability distribution pi = m(Xi). In other words,H(�) = � Z logm(�(x)) dm(x) ;where �(x) is the element of the partition � ontaining x. Given another measurable(not neessarily ountable!) partition � of X, the onditional entropy of � with respetto � is de�ned asH(�j�) = Z H�(x)(�) dm(x) = � Z logm�(x)(�(x)) dm(x) :where x 7! �(x) � X is the projetion from the spae (X;m) onto its quotient by thepartition � (we identify the points of the quotient spae with the orresponding elementsof the partition �), the measures m�(x) are the onditional measures of this projetion,and H�(x)(�) is the entropy of � with respet to the measure m�(x).Proposition2.13 ([Ro67℄). Let �; � be measurable partitions of a Lebesgue spae (X;m).If � is ountable with H(�) <1, then(i) 0 � H(�j�) � H(�), and H(�j�) = 0 (resp., H(�j�) = H(�)) i� � is a re�nementof � (resp., � and � are independent).(ii) If � 0 is a re�nement of �, then H(�j�0) � H(�j�), and the equality holds i�m�0(x)(�(x)) = m�(x)(�(x)) for m-a.e. x 2 X.(iii) If � is the limit of a monotonously dereasing sequene of measurable partitions�n, then H(�j�n)% H(�j�).Theorem 2.14. If a sequene � = (�0; �1; : : : ) 2 PGZ+ is suh that H(�n) < 1 forall measures �n, then for any k 2Z+ there exists a limithk = hk(�) = limn!1�H(�0;n) �H(�k;n)� � 0 ;and the tail boundary of RWTDI(�) is (loally) trivial i� hk(�) = 0 for all k.



16 VADIM A. KAIMANOVICH, YURI KIFER, BEN-ZION RUBSHTEINProof. For the oordinate partitions of the path spae (P; GZ+) the Markov propertyyields(2.4) H(�0;k) = k�1Xi=0 H(�i) ;and for k < n H(�0;kj�n;1) = k�1Xi=0H(�i) +H(�k;n�1) �H(�0;n�1)= H(�0;k) +H(�k;n�1)�H(�0;n�1) :The partitions �n;1 are dereasing to the tail partition �1. Therefore by Proposition2.13 (i), (iii) the limits hk exist, and(2.5) H(�0;kj�1) = H(�0;k)� hk � H(�0;k) :Moreover, hk = 0 i� H(�0:k) = H(�0;kj�1) ;i.e., i� the partitions �0;k and �1 are independent, see Proposition 2.13 (i). This isobviously the ase if �1 is trivial, i.e., if the tail boundary is loally trivial. Conversely,if all hk equal 0, then �1 is independent of all oordinate partitions �0;k, and thereforeof the point partition of the path spae, so that �1 must be trivial. �3. Random walks with random transitions probabilitiesRandomwalks with random transitions probabilities are a speialization of the notionof random Markov operators disussed in Setion 1.5.3.1. De�nitions and preliminaries.De�nition 3.1. Let (
; �) be a probability Lebesgue measure spae endowed with aninvertible ergodi measure preserving transformation T , and� : 
! PG ; ! 7! �!be a measurable map. Put�! = ��!; �T!; �T2!; : : :� 2 PGZ+ :The family of RWTDI(�!) parameterized by the points ! 2 
 is alled a randomwalk on G with random transition probabilities (RWRTP), for whih we shall use thenotation RWRTP(
; �; T; �). Below we shall usually write just RWTDI(!) instead ofRWTDI(�!).



RANDOM WALKS WITH RANDOM TRANSITION PROBABILITIES 17Simultaneously with the hains RWTDI(!) on G parameterized by the points ! 2 
we shall also onsider the \global hain" on the spae 
�G determined by the Markovoperator(3.1) P : L1(
� G; �
m) - ; P f(!; g) =X�!(h)f(T!; gh) ;with the transition probabilities �!;g = ÆT!
g�! (f. (1.7)). This hain is homogeneousboth in time and spae (with respet to the dissipative ation of G on 
 � G by lefttranslations), and the �-�nite measure �
m is easily seen to be P -stationary, so that theoperator P is a overing Markov operator in the sense of [Ka95℄. The orrespondingquotient hain on the spae 
 is deterministi with the transitions ! ! T!. Theprojetion of the \global hain" starting from a �xed point ! 2 
 onto G is the RWTDIdetermined by the sequene �! (f. Setion 1.5).Let P� be the measure in the path spae (
 � G)Z+ of the operator P determinedby the initial distribution � = � 
 Æe on 
 � G. Then by formula (1.9) the map� : x 7! (!;x) (1.8) is an isomorphism between the spaes �(
 � G)Z+;P�� and(
� GZ+;P), where(3.2) P = Z Æ! 
P! d�(!) ;andP! denotes the probabilitymeasure on the path spae GZ+ orresponding to startingRWTDI(!) from the identity of the group.One an also identify the spae of paths x 2 GZ+ starting from x0 = e with the spaeH �= GZ+ of inrements h = (h0; h1; : : : ) by the mapx 7! h ; xn = h0h1 � � �hn�1 ; n > 0 :[Although the path spae and the spae of inrements in G both oinide with GZ+,their meaning for us is quite di�erent, whih is why we use a separate notation for thespae of inrements.℄ Therefore, the spae (
�GZ+;P) �= �(
�G)Z+;P�� is isomorphito the spae (
 �H;Q), whereQ = Z Æ! 
 1Oi=0 �T i! d�(!) :Below we shall freely swith between the three desriptions of the same measure spae(
 �GZ+;P) �= �(
� G)Z+;P�� �= (
�H;Q)using the orrespondene(3.3) (!;x) = �!; (e; x1; x2; : : : )� ! x = (xn) = �(!; e); (T!; x1); (T 2!; x2); : : :� ! (!;h) = �!; (hn)� = �!; (x1; x�11 x2; x�12 x3; : : : )� :



18 VADIM A. KAIMANOVICH, YURI KIFER, BEN-ZION RUBSHTEINFor uniformity we shall usually refer to this measure spae as (
 � GZ+;P) \hangingvariables" by formulas (3.3) if neessary.Denote by E (resp., �) the tail (resp., the Poisson) boundary of the operator P (3.1).Below we shall only be interested in the boundary behaviour of the operator P and ofRWTDI(!) whih is not reduible to a dependene on the starting point (f. Setion2.3). Therefore, the tail boundary E will be always endowed with the tail measure" = tailP. By � = bndP = p�" (where p� is the projetion E ! �) we denote theorresponding harmoni measure on the Poisson boundary.The �bers of the projetion p
 : (E; ") ! (
; �) are the tail boundaries (E!; "!) ofRWTDI(!), where "! is the tail measure on E! orresponding to starting RWTDI(!)from the group identity at time 0 (Proposition 1.10). More generally, by "n;! we denotethe tail measure on E! orresponding to starting RWTDI(!) from the group identity atan arbitrary time n � 0. In view of Proposition 1.10 we may also onsider the measures"!; "n;! as measures on E. By �! = p�"! = p�"n;! we denote the orrespondingharmoni measures on the Poisson boundary � of the operator P . In other words,"! = tail(P!) and �! = bnd(P!).The ation of G desends from the path spae to the tail boundary and to the Poissonboundary, and learly g"o = tail(gP!) and g�! = bnd(gP!) are the measures on E(resp., on �) orresponding to starting RWTDI(!) from the point g 2 G at time 0.Then formula (2.1) takes in this setup the form"n;! = �!"n+1;T! :Therefore, �! = �!�T! :The Poisson formulas for bounded harmoni sequenes and funtions of the operator P(see Theorems 1.6 and 1.9) take the form, respetively,fn(!; g) = h bf ; g"n;!iand f(!; g) = h bf ; g�!i :Proposition 3.2. The tail boundaries of the RWTDI(!); ! 2 
 are all trivial ornon-trivial simultaneously.Proof. As it follows from Theorem 2.6 (see Remark 2.7), triviality of the tail boundaryof RWTDI(!) implies triviality of the tail boundary of RWTDI(T!). Therefore, thelaim follows from ergodiity of the transformation T . �We shall say that RWRTP(
; �; T; �) is irreduible if RWTDI(!) is irreduible for�-a.e. ! 2 
 (see De�nition 2.9). Proposition 1.10 then implies



RANDOM WALKS WITH RANDOM TRANSITION PROBABILITIES 19Proposition 3.3. If RWRTP(
; �; T; �) is irreduible and the tail boundary of �-a.e.RWTDI(!); ! 2 
 is loally trivial, then the Poisson boundary � of the operator P istrivial.Remark 3.4. Proposition 3.3 remains true if RWRTP(
; �; T; �) is periodi, i.e., if a.e.RWTDI(!) is periodi with the same period d.Problem 3.5. Give general onditions whih would ensure stability (in the sense ofDe�nition 1.11) of RWRTP(
; �; T; �).3.2. The asymptoti entropy.De�nition 3.6. We shall say that RWRTP(
; �; T; �) has �nite entropy ifH = H(
; �; T; �) = Z H(�!) d�(!) <1 :Theorem 3.7. If RWRTP(
; �; T; �) has �nite entropy, then the limit(3.4) h = h(
; �; T; �) = limn!1 H(�!0;n�1)nexists a.e. and in the spae L1(
; �) and is independent of !.De�nition 3.8. The limit (3.4) is alled the asymptoti entropy of RWRTP(
; �; T; �).Proof of Theorem 3.7. The measure �!0;k+n�1 is the onvolution of the measures �!0;k�1and �!k;k+n�1 = �Tk!0;n�1. Therefore,H(�!0;k+n�1) � H(�!0;k�1) +H(�Tk!0;n�1)so that the sequene of funtions 'n(!) = H(�!0;n�1) on 
 satis�es onditions of theKingman subadditive ergodi theorem (e.g., see [De80℄), whih implies the laim. �Theorem 3.9. If H(
; �; T; �) < 1, then h(
; �; T; �) = 0 i� the tail boundary of�-a.e. RWTDI(!) is trivial.Corollary. If h(
; �; T; �) = 0, then the Poisson boundary of RWRTP(
; �; T; �) istrivial.Remark 3.10. Contrary to the situation with the \ordinary" random walks we do notknow whether triviality of the Poisson boundary of RWRTP(
; �; T; �) implies thath(
; �; T; �) = 0. The reason for this di�erene is that for ordinary random walks thetail and the Poisson boundary oinide with respet to any single point initial distri-bution (e.g., see [Ka92℄), so that the entropy riterion of triviality of the tail boundaryautomatially beomes the entropy riterion of triviality of the Poisson boundary. How-ever, for RWRTP the relation between the tail and the Poisson boundaries is more



20 VADIM A. KAIMANOVICH, YURI KIFER, BEN-ZION RUBSHTEINompliated, see De�nition 1.11 (together with the disussion there) and Problem 3.5.Of ourse, if the Poisson boundary is stable in the sense of De�nition 1.11, then it istrivial i� the tail boundary � oinides with 
, i.e., i� h(
; �; T; �) = 0.Proof of Theorem 3.9. By Theorem 2.14 for �-a.e. ! 2 
 and any k > 0 there existsthe limit(3.5) h(!) = limn!1�H(�!0;n)�H(�!1;n)� = limn!1�H(�!0;n)�H(�T!0;n�1)� ;and the tail boundary of �-a.e. RWTDI(!) is loally trivial i� h(!) = 0 for �-a.e.! 2 
. Sine h(!) � H(�!), the funtion h is integrable, and the onvergene in (3.5)also holds in the spae L1(
; !), wheneZ h(!) d�(!) = limn!1 �Z H(�!0;n) d�(!) � Z H(�!0;n�1) d�(!)� :Therefore, by (3.4)(3.6) Z h(!) d�(!) = h(
; �; T; �) :In partiular, h(
; �; T; �) = 0 i� h � 0. �De�nition 3.11 [Ka98℄. A probabilitymeasure � on GZ+ has asymptoti entropy h(�)if the following Shannon{Breiman{MMillan type equidistribution ondition is satis�ed:� 1n log �n(xn)! h(�)for �-a.e. sequene x = fxng 2 GZ+ and in the spae L1(GZ+;�), where �n are theone-dimensional distributions of the measure �.The following result shows that for RWRTP the asymptoti entropies in the sense ofDe�nitions 3.8 and 3.11 oinide.Theorem 3.12. If H(
; �; T; �) <1, thenh(P!) = h(
; �; T; �)for �-a.e. ! 2 
.In ombination with Theorem 3.9 it immediately impliesCorollary. If H(
; �; T; �) <1 and for �-a.e. ! 2 
 there exists a sequene of �nitesubsets An � G suh that log jAnj = o(n) and �!0;n(An) > " for a ertain �xed number" > 0, then the tail boundary of RWTDI(!) is trivial for �-a.e. ! 2 
.



RANDOM WALKS WITH RANDOM TRANSITION PROBABILITIES 21Lemma 3.13. Let (Sh)n = hn+1 be the shift in the spae of inrements H. Then thetransformation T (!;h) = (T!; Sh)of the spae (
� GZ+;P) �= (
�H;Q) (see (3.3)) is measure preserving and ergodi.Proof. The map �!; (h0; h1; : : : )� 7! �(!; h0); (T!; h1); : : :�identi�es the spae (
�H;Q) with the path spae of the Markov hain on 
�G withthe transition probabilities(3.7) Prob�(T!; h0)j(!; h)� = �T!(h0)and the initial distribution d�(!; h) = d�(!)�!(h). This identi�ation onjugates Twith the shift in (
 � G)Z+. By T -invariane of � the measure � is stationary withrespet to the transition probabilities (3.7), so that the measure Q is T -invariant (thisfat an be also easily heked diretly).Further, sine the measure � is �nite, ergodiity of Q with respet to T is equivalentto absene of non-onstant bounded harmoni funtions of the hain (3.7), e.g., see[Ka92℄. The transition probabilities (3.7) from a point (!; h) do not depend on h, sothat any suh funtion depends on ! only, i.e., is a non-onstant T -invariant funtionon 
, whih is impossible by ergodiity of T . �Remark 3.14. In terms of the path spae (
 � G)Z+ the transformation T takes theform�(!; e); (T!; x1); (T 2!; x2); : : :� 7! �(T!; e); (T 2!; x�11 x2); (T 3!; x�11 x3); : : :� ;i.e., it is the ombination of the shift in the path spae with the subsequent grouptranslation onsisting in moving the origin of the shifted path to the identity of G.Proof of Theorem 3.12. Put'n(!;h) = � log�!0;n�1(xn) = � log�!0;n�1(h0h1 � � �hn�1) :Sine�!0;k+n�1(h0h1 � � �hk+n�1) � �!0;k�1(h0h1 � � �hk�1)�!k;k+n�1(hkhk+1 � � �hk+n�1) ;we have 'k+n(!;h) � 'k(!;h) + 'n(T k!; Skh) :Finiteness of entropy of RWRTP(
; �; T; �) means that(3.8) Z '1(!;h) dQ(!;h) = � Z log�!(h0) dQ(!;h)= � Z Xg log�!(g)�!(g) d�(!)= Z H(�!) d�(!) = H(
; �; T; �) <1 ;



22 VADIM A. KAIMANOVICH, YURI KIFER, BEN-ZION RUBSHTEINso that the onditions of the Kingman subadditive ergodi theorem are satis�ed, andtherefore there exists a limit(3.9) limn!1� 1n log�!0;n�1(h0h1 � � �hn�1)for Q-a.e. pair (!;h) 2 
�H and in the spae L1(
 �H;Q). SineZ 'n(!;h) dQ(!;h) = Z H(�!0;n�1) d�(!)(f. (3.8)), and 1n Z H(�!0;n�1) d�(!)! h(
; �; T; �)by Theorem 3.7, the limit (3.9) oinides with h(
; �; T; �). �3.3. The asymptoti entropy of onditional hains.We shall apply to the partitions of the path spae of the operator P (3.1) the notations�k; �k;l, et. introdued in Setion 1.2 (sometimes we overline the objets onnetedwith the operator P on the state spae 
 � G in order to distinguish them from theobjets assoiated with the individual RWRTP(!) on G). We ontinue to use theidenti�ations (3.3). In the model (
 � H;Q) of the path spae ((
 � G)Z+;P�) �=(
 � GZ+;P) the partition �0;n oinides with the ommon re�nement of the pointpartition of the spae 
 and the partition of H determined by the �rst n oordinatesh0; h1; : : : ; hn�1. In partiular, �0 oinides P-mod 0 with the preimage partition of theprojetion �
 : x 7! ! (1.10). By �1 = lim�n;1 we denote the tail partition. Notethat �1 is a re�nement of �0, see Proposition 1.10.Below all the entropies and the onditional entropies of partitions of the spae 
 �GZ+ are alulated with respet to the measure P. We begin with expressing theasymptoti entropy h(
; �; T; �) in terms of the onditional entropies of oordinatepartitions. Integrating formula (2.5) with respet to the measure � and using (2.4),(3.5) and (3.6), we obtainLemma 3.15. If H(
; �; T; �) <1, then for any k � 0H(�0;kj�1) = khH(
; �; T; �)� h(
; �; T; �)iBy �E (resp., �
) we denote the point partition of the tail boundary (E; ") (resp.,the partition generated by the projetion p
 : E ! 
, see Proposition 1.10). Let � bea G-invariant partition of E whih is a re�nement of �
. Denote by �� = tail�1� thepartition of the path spae ((
 � G)Z+;P�) �= (
 � GZ+;P) whih is the preimage of� under the map tail. Sine tail�1�E is the tail partition �1, and tail�1�
 = �0, wehave �0 4 �� 4 �1 :



RANDOM WALKS WITH RANDOM TRANSITION PROBABILITIES 23The quotient (E� ; "�) of the tail boundary (E; ") by the partition � an be also onsideredas the quotient of the path spae by the partition ��. Denote bytail� : (
� GZ+;P)! (E� ; "�)the assoiated quotient map. The spaes (E�; "�) are \random analogues" of the �-boundaries in the ase of usual time homogeneous random walks on groups, see [Fu71℄,[Ka00℄. If � = �E, then tail� = tail, and if � = �
, then tail� oinides with theprojetion �
 (1.10). Denote by "�! = "�0;! (resp., "�n;!) the images of the tail measures"! (resp., "n;!) under the projetion E ! E�.Lemma 3.16. If H(
; �; T; �) <1, then for any k � 0H(�0;kj��) = kH(�0;1j��)= k "H(
; �; T; �)� Z log dx1"�1;T!d"�! (tail�(!;x)) dP(!;x)# :Proof. Sine �
 4 �, onditioning by � uniquely determines the starting point ! of thesample path x ! (!;x). The traes of � on the elements of the partition �
 (i.e., onthe tail boundaries E!, see Proposition 1.10) are G-invariant partitions, so that we mayapply Proposition 2.4, aording to whih the onditional probability of the element ofthe partition �0;k ontaining given (!;x) ! (!;h) with respet to the partition �� is�!(h1)�T!(h2) : : : �Tk�1!(hk)dxk"�k;Tk!d"�! (tail�(!;x)) ;whene integrating we obtainH(�0;kj��) = kH(
; �; T; �)� Z log dxk"�k;Tk!d"�! (tail�(!;x)) dP(!;x) :The integrand in the last term in the right hand side telesopes aslog dxk"�k;Tk!d"�! (tail�(!;x)) = k�1Xi=0 '(T i(!;x)) ;where '(!; x) = log dx1"�1;T!d"�! (tail�(!;x)) ;and T is the transformation of the path spae 
�GZ+ introdued in Lemma 3.13. SineT preserves the measure P, we get the laim. �



24 VADIM A. KAIMANOVICH, YURI KIFER, BEN-ZION RUBSHTEINCorollary. If H(
; �; T; �) <1, thenh(
; �; T; �) = Z log dx1"1;T!d"! (tail(!;x)) :Lemma 3.17. Let � and �0 be two G-invariant measurable partitions of the tail bound-ary E suh that �
 4 � 4 �0. If H(
; �; T; �) <1, thenH(�0;1j��) � H(�0;1j��0) ;and the equality holds i� � = �0.Proof. Obviously, if �0 is a re�nement of �, then ��0 is a re�nement of �� , so thatthe inequality follows from Proposition 2.13 (ii). If H(�0;1j��) = H(�0;1j��0), then byLemma 3.16, H(�0;kj��) = H(�0:kj��0) for any k � 1, whih by Proposition 2.13 (ii)means that for "-a.e. point  2 E the k-dimensional distributions of the onditionalmeasures P�() and P�0() are the same. Therefore, for "-a.e.  2 E the onditionalmeasures P�() and P�0() oinide, whih is only possible if � = �0. �Corollary. Let � be a G-invariant measurable partitions of the tail boundary E suhthat �
 4 �. Then � = �E i� H(�0;1j��) = H(�0;1j�1) ;Theorem 3.18. Let � be a G-invariant measurable partition of the tail boundary Esuh that �
 4 �. If H(
; �; T; �) <1, then for "�-a.e. point �() 2 E� the asymptotientropy (in the sense of De�nition 3.11) of the onditional measure P�() exists and isequal to(3.10) h(P�()) = h(
; �; T; �)� Z log dx1"�1;T!d"�! (tail�(!;x)) dP(!;x) :Proof. Sine �
 4 �, by Proposition 2.4 the one-dimensional distributions ��()n of theonditional measure P�() are��()n (g) = �!0;n�1(g)dg"�n;Tn!d"�! (�()) ;where the point ! = !() 2 
 is determined by the projetion E� ! 
. Theorem 3.12implies the onvergene (P-a.e. and in the spae L1(
� GZ+;P))(3.11) � 1n log�!0;n�1(xn)! h(
; �; T; �) ;



RANDOM WALKS WITH RANDOM TRANSITION PROBABILITIES 25and the telesoping at the end of the proof of Lemma 3.16 in ombination with theBirkho� ergodi theorem for the transformation T yields the onvergene (also a.e. andin the L1-spae),(3.12) 1n log dxn"�n;Tn!d"�! (tail�(!;x))! Z log dx1"�1;T!d"�! (tail�(!;x)) dP(!;x) :Combining (3.11) and (3.12), we obtain the onvergene (P-a.e. and in the L1-spae)of � 1n log�tail�(!;x)n (xn)to the limit (3.10), whih implies the laim, beause the measures P�() are the ondi-tional measures of the measure P with respet to the partition ��. �Now, ombining Theorem 3.18 with Lemmas 3.15, 3.16 and 3.17, we get the followinggeneralization of Theorem 3.9Theorem 3.19. Let � be a G-invariant measurable partition of the tail boundary Esuh that �
 4 �. If H(
; �; T; �) <1, then � = �E i� the asymptoti entropies of theonditional measures P�() vanish.Corollary. The partition � oinides with �E i� for "�-a.e. point �() 2 E� thereexist " > 0 and a sequene of sets An = An(�()) � G suh that log jAnj = o(n) and��()n (An) > " for all suÆiently large n.4. Triviality and desription of the tail and the Poisson boundariesIn this setion we onsider several onrete lasses of groups and desribe the bound-aries of RWRTP on these groups.4.1. Boundary triviality.The entropy theory developed in Setion 3 allows one to extend to RWRTP almostall results on triviality and identi�ation of the boundaries earlier obtained for usualrandom walks, see [KV83℄, [Ka00℄.Throughout this setion we assume that the group G ats by isometries on a ompletemetri spae (X; d). Fix one and forever a referene point o 2 X (its hoie is irrelevantfor what follows) and put jgj = jgjX = d(o; go) ; g 2 G :Suppose that the group G has bounded exponential growth with respet to the spae X,i.e.,(4.1) v(G;X) = lim supt!1 1t log ardfg 2 G : jgjX � tg <1 :



26 VADIM A. KAIMANOVICH, YURI KIFER, BEN-ZION RUBSHTEINIf G is a �nitely generated group, and X �= G is its Cayley graph determined by a �nitegenerating set and endowed with the assoiated word metri d, then ondition (4.1) isobviously satis�ed. Another example is provided by a disrete subgroup G of isometriesof a Riemannian manifold of bounded geometry X. If v(G;X) = 0 we shall say thatthe group G has subexponential growth.For a measure � 2 PG denote byj�j =Xg d(o; go)�(g)its �rst moment . We shall say that RWRTP(
; �; T �) has a �nite �rst moment (withrespet to the spae X) if Z j�!j d�(!) <1 :Using the triangle inequality and the Kingman subadditive ergodi theorem, we deriveTheorem 4.1. If RWRTP(
; �; T; �) on the group G has a �nite �rst moment withrespet to the spae X then there exists a number l = l(
; �; T; �;X) alled the linearrate of esape suh that for P-a.e. (!;x) 2 
�GZ+,limn!1 jxnjXn = l :The onvergene also holds in the spae L1(
�GZ+;P), where P is the measure (3.2).Lemma 4.2 ([De86℄). There exists a onstant C = C(G;X) suh that for any measure� 2 PG, H(�) � C(j�jK + 1) :Now, using Theorem 3.12 we obtain in the same way as for ordinary random walkson groups (see [Gu80℄) the following resultTheorem 4.3. If RWRTP(
; �; T; �) on G has a �nite �rst moment, then its entropyh(
; �; T; �), the rate of esape l(
; �; T; �;X) and the rate of growth v(G;X) satisfythe inequality h � lv :Corollary (f. Proposition 2.9). If RWRTP(
; �; T; �) is irreduible and the group Gis non-amenable, then l > 0.Theorem 4.3 in ombination with Theorem 3.9 implies triviality of the tail boundariesof �-a.e. RWTDI(!) and of the Poisson boundary of RWRTP(
; �; T; �) when eitherl(
; �; T; �;X) or v(G;X) vanish. Sine any �nitely generated nilpotent group haspolynomial growth (with respet to the word metri determined by any �nite generatingset), we obtain



RANDOM WALKS WITH RANDOM TRANSITION PROBABILITIES 27Theorem 4.4. The Poisson boundary of any RWRTP with a �nite �rst moment on a�nitely generated nilpotent group is trivial.Combining Theorem 4.4 with Proposition 2.9 we now obtainTheorem 4.5. Let (
; �; T; �) be an irreduible RWRTP with a �nite �rst moment ona �nitely generated nilpotent group G. Then for any g 2 G and �-a.e. ! 2 
kg�!0;n � �!0;nk �!n!1 0 ;i.e., a.e. sequene �!0;n strongly onverges to a left-invariant mean on G.Remark 4.6. By ompletely di�erent methods Theorem 4.5 was proved in [MR94℄,[LRW94℄, and [Ru95℄ for ompat and abelian groups without any additional momentassumptions.Returning to Theorem 4.3, reall that another way of proving boundary trivialityonsists in showing that the rate of esape l(
; �; T; �;X) vanishes. The methods usedin [Ka91℄ allow one to do it for \entered" RWRTP on several lasses of solvable groupsin the same way as for usual time homogeneous random walks. For the sake of brevitywe shall onsider just the lass of polyyli groups. Without loss of generality we mayassume that the polyyli group G = A i N is the semi-diret produt of an abeliangroup A �=Zd and a normal �nitely generated nilpotent subgroup N (see [Ka91℄). Fora measure � on G denote by �A its projetion onto A, and by�A = Xa2A �A(a)a 2 Rdthe baryenter of �A (this de�nition requires �niteness of the �rst moment of themeasure �A). If �A = 0, then the measure � is alled entered . We shall say thatRWRTP(
; �; T; �) on G with a �nite �rst moment is entered ifZ �!A d�(!) <1 :Theorem 4.7. The Poisson boundary of any entered RWRTP with a �nite �rst mo-ment on a polyyli group is trivial.Theorem 4.8. For any entered irreduible RWRTP with a �nite �rst moment on apolyyli group G a.e. sequene �!0;n strongly onverges to a left-invariant mean on G.4.2. Boundary identi�ation.We shall now look at the problem of identifying the tail and the Poisson boundariesof RWRTP on groups. Suppose, for the sake of argument, that our group G admitsan invariant ompati�ation G with the boundary �G (i.e., the ation of G on itselfby left translations extends to a ontinuous ation on G), and that P!-a.e. samplepath x = (xn) onverges in this ompati�ation to a limit point x1 = x1(x) 2 �G



28 VADIM A. KAIMANOVICH, YURI KIFER, BEN-ZION RUBSHTEINfor �-a.e. ! 2 
. Obviously, the map x 7! x1 is measurable with respet to the tail�-algebra of the global operator P on 
� G (atually, the topologial nature of �G isompletely irrelevant for what follows). Therefore, the map (!;x) 7! (!; x1) gives riseto a measurable partition � of the Poisson boundary E of the operator P . The partition� is G-invariant, and it is a re�nement of the partition �
 determined by the projetionE ! 
. Coinidene of the partition � with the point partition �E of E means thatthe tail boundary E atually an be identi�ed with the produt 
� �G. Therefore, inthe latter ase the Poisson boundary of the RWRTP is stable (in the sense of De�nition1.11), i.e., the Poisson boundary of the operator P and the tail boundaries E! an beboth identi�ed with �G.The main method of proving boundary onvergene for \groups with hyperboliproperties" goes bak to Furstenberg [Fu71℄ and onsists in using the martingale on-vergene theorem in ombination with ontrating (proximality) properties of the ationof G on the boundary �G, see [CS89℄, [Wo93℄, [Ka00℄. This method does not impose anymoment onditions on the random walk and may be ombined with the \strip approxi-mation" riteria [Ka00℄ to give a full boundary identi�ation. However, its appliationto RWRTP is rather tedious and we ould not get rid of rather awkward onditionson the measures �! (like existene of a single non-degenerate measure on G dominatedby a.e. �!) following this way. Instead of this we shall use the \ray approximation"approah (see [Ka00℄) and its reent generalization obtained in [KMa99℄ whih will saveus from a good deal of tehnial details.Reall that a metri spae (X; d) is alled onvex if for any two points x; y 2 X thereexists a midpoint z 2 X suh thatd(x; z) = d(y; z) = 12d(x; y) :In a omplete onvex spae any two points an be joined by a geodesi (see the relatedde�nitions in [BH99℄).A metri spae (X; d) is alled uniformly onvex if it is onvex and in addition thereexists a stritly dereasing ontinuous funtion ' on [0; 1℄ with '(0) = 1 suh that forany x; y; w 2 X and a midpoint z of x and yd(z; w)R � '�d(x; y)2R � ;where R = maxfd(x;w); d(y; w)g. The midpoints (and therefore geodesis with givenendpoints) in a uniformly onvex spae are unique.A onvex metri spae (X; d) is alled non-positively urved (in the sense of Buse-mann) if for any x; y; z 2 X and any midpoints mxz (resp., myz) of x and y (resp., of yand z) d(mxz:myz) � 12d(x; y) :From now on we shall assume that(4.2) The metri spae X on whih the group G ats is uniformly onvex andsatis�es the Busemann non-positive urvature ondition.



RANDOM WALKS WITH RANDOM TRANSITION PROBABILITIES 29Denote by �X the spae of asymptoti lasses of geodesi rays in X. We shall identify�X with the spae of geodesi rays issued from the point o. Examples of spaes (X; d)satisfying ondition (4.2) inlude all Cartan{Hadamard manifolds (in partiular, non-ompat Riemannian symmetri spaes without ompat fators) and all metri trees.In the �rst ase �X is the visibility sphere of X, and in the seond ase it is the spaeof ends of X.An appliation of [KMa99℄ to the transformation T of the spae (
� GZ+;P) givesTheorem 4.9. Suppose that RWRTP(
; �; T; �) on the group G has a �nite �rst mo-ment, its rate of esape l = l(
; �; T; �;X) is positive, and the spae X satis�es ondi-tions (4.1) and (4.2). Then for P-a.e. (!;x) 2 
� GZ+ there exists a unique geodesiray  = (!;x) 2 �X suh that d(xn; (nl)) = o(n) :Note that in view of the Corollary of Theorem 4.3 the ondition l > 0 in Theorem 4.9is not really restritive as disrete groups of isometries of non-positively urved spaesare usually non-amenable. Theorem 4.9 in ombination with Theorem 3.19 immediatelyimpliesTheorem 4.10. Under onditions of Theorem 4.9 the Poisson boundary of RWRTP isstable and is isomorphi to the spae �X with the resulting hitting measure.Therefore, the Poisson boundary identi�es with the natural geometri boundaries forRWRTP with a �nite �rst moment on free groups and on disrete groups of isometriesof Cartan{Hadamard manifolds (in partiular, in disrete subgroups of semi-simple Liegroups), see [Ka00℄ for a more detailed desription of these boundaries in the ase ofusual time homogeneous random walks. Note that Theorem 3.19 allows one to extendidenti�ation of the Poisson boundary with the \natural" boundaries from usual timehomogeneous random walks to RWRTP for several other lasses of groups, inludingthe polyyli groups and the groups with in�nitely many ends, f. [Ka91℄ and [Ka00℄.Referenes[BH99℄ M. R. Bridson and A. Haeiger, Metri spaes of non-positive urvature, Springer-Verlag,New York, 1999.[CFS82℄ I. P. Cornfeld, S. V. Fomin, Ya. G. Sinai, Ergodi theory, Springer-Verlag, New York, 1982.[CS89℄ D. I. Cartwright, P. M. Soardi, Convergene to ends for random walks on the automorphismgroup of a tree, Pro. Amer. Math. So. 107 (1989), 817{823.[De76℄ Y. Derrienni, Lois \z�ero ou deux" pour les proessus de Markov, appliations aux marhesal�eatoires, Ann. Inst. H. Poinar�e, Set. B 12 (1976), 111{129.[De80℄ Y. Derrienni,Quelques appliations du th�eor�eme ergodique sous-additif, Ast�erisque 74 (1980),183{201.[De86℄ Y. Derrienni, Entropie, th�eor�emes limites et marhes al�eatoires, Springer Leture Notes inMath. 1210 (1986), 241{284.[Fu63℄ H. Furstenberg, A Poisson formula for semi-simple Lie groups, Ann. of Math. 77 (1963),335{386.



30 VADIM A. KAIMANOVICH, YURI KIFER, BEN-ZION RUBSHTEIN[Fu71℄ H. Furstenberg,Random walks and disrete subgroups of Lie groups, Advanes in Probabilityand Related Topis, vol. 1, Dekker, New York, 1971, pp. 3{63.[Gu80℄ Y. Guivar'h, Sur la loi des grands nombres et le rayon spetral d'une marhe al�eatoire,Ast�erisque 74 (1980), 47{98.[Ka91℄ V. A. Kaimanovih, Poisson boundaries of random walks on disrete solvable groups, Pro-eedings of Conferene on Probability Measures on Groups X (Oberwolfah, 1990) (H. Heyer,ed.), Plenum, New York, 1991, pp. 205{238.[Ka92℄ V. A. Kaimanovih, Measure-theoreti boundaries of Markov hains, 0{2 laws and entropy,Proeedings of the Conferene on Harmoni Analysis and Disrete Potential Theory (Frasati,1991) (M. A. Piardello, ed.), Plenum, New York, 1992, pp. 145{180.[Ka95℄ V. A. Kaimanovih, The Poisson boundary of overing Markov operators, Israel J. Math 89(1995), 77{134.[Ka96℄ V. A. Kaimanovih, Boundaries of invariant Markov operators: the identi�ation problem,Ergodi Theory ofZd-Ations (Proeedings of the Warwik Symposium 1993-4, M. Polliott,K. Shmidt, eds.), London Math. So. Leture Note Series, vol. 228, Cambridge Univ. Press,Cambridge, 1996, pp. 127{176.[Ka00℄ V. A. Kaimanovih, The Poisson formula for groups with hyperboli properties, Ann. Math.152 (2000), 659{692.[Kal81℄ S. Kalikow, Generalized random walk in a random environment, Ann. Probab. 9 (1981),753{768.[Ki86℄ Y. Kifer, Ergodi theory of random transformations, Birkh�auser, Boston, 1986.[Ki96℄ Y. Kifer, Perron-Frobenius theorem, large deviations, and random perturbations in randomenvironments, Math. Zeit. 222 (1996), 677{698.[Ki01℄ Y. Kifer, \Random" random matrix produts, J. D'Analise Math. 83 (2001).[KMo84℄ S. M. Kozlov, S. A. Molhanov, Conditions for the appliability of the entral limit theoremto randomk walks on a lattie, Soviet Math. Dokl. 30 (1984), 410{413.[KMa99℄ A. Karlsson, G. A. Margulis,A multipliative ergodi theorem and nonpositively urved spaes,Comm. Math. Phys. 208 (1999), 107{123.[Kr85℄ U. Krengel, Ergodi Theorems, de Gruyter, Berlin, 1985.[KSz83℄ A. Kramli, D. Szasz, Random walks with internal degrees of freedom. I. Loal limit theorems,Z. Wahrsh. Verw. Gebiete 63 (1983), 85{95.[KSi00℄ V. Yu. Kaloshin, Ya. G. Sinai, Simple random walks along orbits of Anosov di�eomorphisms,Tr. Mat. Inst. Steklova 228 (2000), 236{245.[KV83℄ V. A. Kaimanovih, A. M. Vershik, Random walks on disrete groups: boundary and entropy,Ann. Prob. 11 (1983), 457{490.[LRW94℄M. Lin, B.-Z. Rubshtein, R. Wittmann, Limit theorems for random walks with dynamialrandom transitions, Probab. Th. Rel. Fields 100 (1994), 285{300.[MR88℄ D. S. Mindlin, B.-Z. Rubshtein, Convolution of random measures on a ompat group, Th.Probab. Appl. 33 (1988), 355{357.[MR94℄ D. S. Mindlin, B.-Z. Rubshtein, Convolutional attrators of stationary sequenes of randommeasures on ompat groups, Ann. Inst. H.Poinar�e 30 (1994), 213{233.[Or91℄ S. Orey, Markov hains with stohastially stationary transition probabilities, Ann. Probab.19 (1991), 907{928.[Re84℄ D. Revuz, Markov Chains, 2nd revised ed., North-Holland, Amsterdam, 1984.[Ro67℄ V. A. Rokhlin, Letures on the entropy theory of measure preserving transformations, RussianMath. Surveys 22:5 (1967), 1{52.[Ru95℄ B.-Z. Rubshtein, Convolutions of random measures on ompat groups, J. Theor. Probab. 8(1995), 523{538.[Wo93℄ W. Woess, Fixed sets and free subgroups of groups ating on metri spaes, Math. Zeit. 214(1993), 425{440.CNRSUMR 6625, IRMAR, Universit�e Rennes-1, Campus Beaulieu, 35042 Rennes, Frane



RANDOM WALKS WITH RANDOM TRANSITION PROBABILITIES 31E-mail address : kaimanov�univ-rennes1.frInstitute of Mathematis, Hebrew University, Jerusalem 96261, IsraelE-mail address : kifer�math.huji.a.il,Shool of Mathematis, Ben Gurion University, Beer Sheva, IsraelE-mail address : benzion�s.bgu.a.il


