
ESI The Erwin S
hr�odinger International Boltzmanngasse 9Institute for Mathemati
al Physi
s A-1090 Wien, Austria
Random Walks on Sierpi�nski Graphs:Hyperboli
ity and Sto
hasti
 HomogenizationVadim A. Kaimanovi
h

Vienna, Preprint ESI 1169 (2002) June 12, 2002Supported by the Austrian Federal Ministry of Edu
ation, S
ien
e and CultureAvailable via http://www.esi.a
.at



Random Walks on Sierpi�nski Graphs:Hyperboli
ity and Sto
hasti
 HomogenizationVadim A. Kaimanovi
hAbstra
t. We introdu
e two new te
hniques to the analysis on fra
tals. Oneis based on the presentation of the fra
tal as the boundary of a 
ountableGromov hyperboli
 graph, whereas the other one 
onsists in taking all possible\ba
kward" extensions of the above hyperboli
 graph and 
onsidering themas the 
lasses of a dis
rete equivalen
e relation on an appropriate 
ompa
tspa
e. Illustrating these te
hniques on the example of the Sierpi�nski gasket(the asso
iated hyperboli
 graph is 
alled the Sierpi�nski graph), we showthat the Sierpi�nski gasket 
an be identi�ed with the Martin and the Poissonboundaries for fairly general 
lasses of Markov 
hains on the Sierpi�nski graph.1. Introdu
tionThe aim of this paper is to introdu
e two new te
hniques to the analysis on fra
tals(whi
h, as testi�ed by the present volume, is a very a
tive and qui
kly developingarea).Our approa
h works for any fra
tal generated by an IFS (iterated fun
tionsystem) 
onsisting of similarities with the same s
aling fa
tor. However, leaving outidle generalities, we introdu
e these te
hniques just on the famous example of the(d-dimensional) Sierpi�nski gasket G determined by a simplex � in the Eu
lideanspa
e Rd, and apply them to the problem of the realization of the Sierpi�nski gasketas the boundary of an appropriate 
ountable Markov 
hain. The latter problem,�rst 
onsidered by Denker and his 
ollaborators Sato and Ko
h in a re
ent seriesof papers [15℄, [16℄, [17℄ (see Se
tion 4.3 for more details), was the starting pointof the present work.One te
hnique relates fra
tals to the hyperboli
 geometry, and it is basedon the presentation of the fra
tal as the boundary of an appropriate 
ountableGromov hyperboli
 graph. For de�ning the graph asso
iated with the Sierpi�nskigasket we begin with the \verti
al" Cayley tree of the free semigroup generatedby the IFS from the de�nition of the gasket. We identify the tree verti
es withthe images of the base simplex � under the 
orresponding maps. In order to takeinto a

ount the spatial 
on�guration on ea
h horizontal level, this tree is furtheraugmented by \horizontal" edges joining simpli
es with non-empty interse
tions.



2 Vadim A. Kaimanovi
hWe 
all the resulting graph G the (d-dimensional) Sierpi�nski graph. [This termhad already been used in a somewhat di�erent 
ontext, see [23℄, [28℄, [53℄. Theobje
t whi
h is 
alled \Sierpi�nski graph" in these papers is also known under thename of the \graphi
al Sierpi�nski gasket" [4℄ and is isomorphi
 to the horizontallayers of 
ertain extended Sierpi�nski graphs in the sense of our De�nition 2.9, seeSe
tion 2.7 below for more details.℄In the above 
onstru
tion one 
ould a
tually take an arbitrary subset K � Rdinstead of the simplex �. If the diameter of K is small, then it does not allowone to see the spatial intera
tion between di�erent bran
hes of the IFS, and the
orresponding graph is just a tree. However, for any 
ompa
t set K 
ontaining thesimplex � the arising graph is quasi-isometri
 to the Sierpi�nski graph.Yet another hyperboli
 metri
 on the Sierpi�nski graph (quasi-isometri
 tothe graph distan
e) 
an be obtained by using the fa
t that the group Sim(Rd) ofsimilarities of the Eu
lidean spa
e Rd a
ts simply transitively both on the set ofall simpli
es similar to � and on the hyperboli
 spa
e Hd+1, whi
h gives rise toan embedding of the Sierpi�nski graph into the hyperboli
 spa
e Hd+1.The other te
hnique is brought forward in order to resolve the putative 
on-tradi
tion between the highly symmetri
 appearan
e of the Sierpi�nski gasket andthe absen
e of a suÆ
iently big symmetry group (there is just a semigroup a
tionresponsible for the self-similar stru
ture of the Sierpi�nski gasket). We repla
e theusual \homogeneity" synonymous to the presen
e of a symmetry group with thesto
hasti
 homogeneity 
hara
terized by the presen
e of a dis
rete Borel equiva-len
e relation with a �nite stationary measure.We make the de�nitions of the Sierpi�nski gasket and of the Sierpi�nski graph\bilateral" by extending them from the \mi
ros
opi
" to the \ma
ros
opi
" s
ale.Namely, instead of just taking smaller and smaller subsimpli
es of the given simplex� one may also go \ba
kwards" by embedding � into bigger and bigger simpli
es.In terms of the theory of dynami
al systems this pro
edure 
orresponds to passingto the natural extension of the asso
iated unilateral full shift. The alphabet Aof this shift is the set of 
ontra
tions from the IFS used in the de�nition of theSierpi�nski gasket, so that in our setup it 
an also be identi�ed with the vertex setof the original simplex �.In this way, any string a from the 
ompa
t spa
e of left-in�nite stringsA0�1 =f(: : : ; a�2; a�1; a0) : ai 2 Ag determines a (non-
ompa
t) extended Sierpi�nskigasket G(a) � G and the asso
iated extended Sierpi�nski graph G(a) � G. Further,there is a Borel graph stru
ture on the weak tail equivalen
e relation � on thespa
e A0�1 (� the orbit equivalen
e relation of the natural right a
tion of the freesemigroup generated by A on A0�1) su
h that the 
lass [a℄� endowed with thisstru
ture is isomorphi
 to G(a) for all a 2 A0�1 ex
ept for a 
ountable number ofvirtually periodi
 strings.By endowing the spa
e A0�1 with an appropriate probability measure m wemay now apply ergodi
 methods in order to obtain statements valid for almost all(with respe
t to the measure m) extended graphs G(a) and gaskets G(a), whi
h,



Random Walks on Sierpi�nski Graphs 3in turn, lead to statements about the original Sierpi�nski graph G and Sierpi�nskigasket G (provided the added parts of G(a) and G(a) do not interfere \too mu
h"with what happens on G andG). Note that this 
onstru
tion is quite di�erent fromwhat is usually meant by \random fra
tals" (e.g., see [26℄, [27℄ and the referen
estherein).Due to the la
k of spa
e (and time) we 
hose to 
on
entrate on the detailedexplanation of the two aforementioned te
hniques and on the redu
tion of theproblems 
on
erning the boundary behaviour of Markov 
hains on the Sierpi�nskigraph to the frameworks of the hyperboli
 geometry and of the theory of dis
reteequivalen
e relations. On the other hand, the �nal implementation of this redu
tionis often just sket
hed as it follows the same lines as already known results fromthese dis
iplines.The paper has the following stru
ture.Se
tion 2 is auxiliary: we introdu
e the Sierpi�nski gasket (Se
tion 2.1), de�nethe Sierpi�nski graph (Se
tion 2.2), dis
uss various a
tions of the group of simi-larities (Se
tion 2.4) and a symboli
 
oding of the Sierpi�nski gasket and graph(Se
tion 2.5). Further we de�ne the extended Sierpi�nski gaskets and graphs (Se
-tion 2.7) and realize them in terms of strong and weak tail equivalen
e relationson the symboli
 spa
e A0�1 (Se
tions 2.8 and 2.9).Se
tion 3 is devoted to geometri
 properties of Sierpi�nski graphs. We beginwith a general dis
ussion of trees and 
ertain related graphs. Both for rooted trees(i.e., ones with a �xed vertex) and remotely rooted trees (i.e., ones with a �xedboundary point) there is a well-de�ned notion of belonging to the same \genera-tion" (level) with respe
t to the root. In order to obtain an augmented tree oneadds to a rooted tree new \horizontal" edges satisfying a 
ertain natural 
on-dition. In Se
tion 3.4 we formulate a simple ne
essary and suÆ
ient 
onditionfor Gromov hyperboli
ity of augmented rooted trees (Theorems 3.13 and 3.15)and give an expli
it des
ription of their hyperboli
 boundary (Theorem 3.16). InSe
tion 3.5 we show that the Sierpi�nski graph (whi
h is an augmented tree) sat-is�es the above hyperboli
ity 
ondition and identify its hyperboli
 boundary withthe Sierpi�nski gasket (Theorem 3.21). In the same way, the hyperboli
 boundaryof an extended Sierpi�nski graph is the one-point 
ompa
ti�
ation of the asso
i-ated extended Sierpi�nski gasket (Theorem 3.23). We also show that the Eu
lideanmetri
 on the Sierpi�nski gasket is uniformly H�older equivalent to a family of nat-ural metri
s of \hyperboli
 origin" (Theorem 3.25). In Se
tion 3.6 we dis
uss thequasi-isometri
 embedding of the Sierpi�nski graph into the hyperboli
 spa
e Hd+1determined by the group of similarities of Rd and related issues from the 
ombina-torial group theory and 
onformal dynami
s. Finally, in Se
tion 3.7 we establishnon-amenability of the Sierpi�nski graph G and of the extended Sierpi�nski graphsG(a).In Se
tion 4 we apply general results from the theory of Markov 
hains onhyperboli
 spa
es and on equivalen
e relations to the obje
ts asso
iated with the



4 Vadim A. Kaimanovi
hSierpi�nski gasket whi
h were 
onstru
ted in Se
tions 2 and 3. By using the An
onatheory we identify in Theorem 4.6 the Martin boundary for a 
lass of boundedrange Markov operators on the Sierpi�nski graph (resp., on an extended Sierpi�nskigraph) with the Sierpi�nski gasket (resp., with the one-point 
ompa
ti�
ation of theasso
iated extended Sierpi�nski gasket). In parti
ular, this 
lass 
ontains the simplerandom walks (Theorem 4.7). On the other hand, by using the entropy theory ofrandom walks on equivalen
e relations we also obtain a des
ription of the Poissonboundary for a family of Markov 
hains on \typi
al" extended Sierpi�nski graphsG(a) under the �nite �rst moment 
ondition (whi
h is mu
h weaker than thebounded range assumption used for the identi�
ation of the Martin boundary). Thesituation here is similar to what happens with random walks on non-unimodulargroups [11℄, [40℄. Namely, everything is determined by the sign of the drift withrespe
t to the remote root. If the drift is zero or dire
ted towards the root, thenthe Poisson boundary is trivial, whereas if the drift is dire
ted from the root, thenthe Poisson boundary 
an be identi�ed with the extended Sierpi�nski gasket G(a)(Theorem 4.10). In Theorem 4.11 we prove that in the latter 
ase the Hausdor�dimension of the harmoni
 measure is expressed as the familiar ratio of the entropyand the exponent (� drift). Finally, in Se
tion 4.6 we ask the intriguing questionabout the singularity of the harmoni
 measure of the simple random walk onthe Sierpi�nski graph with respe
t to the Hausdor� (� uniform) measure on theSierpi�nski gasket (Problem 4.14) and dis
uss several related topi
s.I would like to thank Professors Peter Grabner and WolfgangWoess for invit-ing me to the ex
ellent multi-fa
eted 
onferen
e \Fra
tals in Graz 2001" and fortheir 
ollaboration and invariable patien
e during the editorial pro
ess. Signi�
antparts of the paper were written during the author's visits to Te
hnis
he Universit�atGraz, Universit�a di Roma \La Sapienza" (organized by the Gruppo Nazionale diAnalisi Matemati
a, Probabilit�a e Appli
azioni { GNAMPA) and the Ben-GurionUniversity of the Negev at Beer-Sheva (organized by the Dozor Fellowship VisitingFund) whose support is gratefully a
knowledged.2. The Sierpi�nski gasket and the Sierpi�nski graph2.1. The Sierpi�nski gasketThroughout the paper we shall �x a simplex� = �(fp�g) = (X� t�p� : t� � 0; X� t� = 1) � Rdspanned by its vertex set fp�g, where � runs through the alphabetA = f1; 2; : : : ; d+ 1g :Denote by Sim(Rd) = �g : x 7! ax+ b; a 2 R+; b 2 Rd	



Random Walks on Sierpi�nski Graphs 5the group of similarities of the Eu
lidean spa
e Rd, whi
h a
ts simply transitivelyon the set S = �� = g� : g 2 Sim(Rd)	 (1)of all simpli
es similar to �. If the s
aling fa
tor a of a similarity g : x 7! ax + bis not equal to 1, then g has a unique �xed point x0 and satis�es the formulagx � x0 = a(x� x0) :By g� 2 Sim(Rd) : g�x� p� = 12(x� p�) ; x 2 Rd; � 2 A ; (2)denote the similarities with the s
aling fa
tor 12 and the �xed points p�, i.e., g�are uniquely determined by the 
onditionsg�p� = (p� ; � = � ;12 (p� + p�) ; � 6= � :Denote by S = sgr (fg�g) � G = gr (fg�g) � Sim(Rd) (3)the semigroup (resp., the group) generated by the similarities g�; g 2 A.Let us now de�ne indu
tively a sequen
e of subsets of the set of simpli
es S:�!�0 = f�g ; �!�n+1 = ng�� : � 2 A; � 2 �!�no ; n � 0 ;(the simpli
es from �!�n are 
alled level n simpli
es), and put�!� = [n�0�!�n � S : (4)De�nition 2.1. The 
ompa
t setG =\n Gn ; where Gn = [�2�!�n � ; n � 0 ;is 
alled the Sierpi�nski gasket determined by the simplex �.The �rst 3 iterations of the 
onstru
tion from De�nition 2.1 are presented inFig. 1; see Noti
es of Amer. Math. So
., 46 (1999), No. 10 for a full 
olour \frontpage 
overage" of the Sierpi�nski gasket.2.2. The Sierpi�nski graphRe
all that a graph X is determined by a vertex set V(X) and an edge set E(X) �V(X)�V(X). Slightly abusing the notation we shall often identify the graph withits vertex set. A graphX is non-oriented if the set E(X) is symmetri
, and 
ontainsno loops if E(X) does not interse
t the diagonal in V(X) � V(X). Two verti
esx; y 2 V(X) are 
alled neighbours if (x; y) 2 E(X). The degree deg(x) of a vertex xis the number of its neighbours. If any two verti
es x; y 2 V(X) 
an be joined witha 
hain of edges from E(X), then the graph X is 
alled 
onne
ted. The minimal
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h
PSfrag repla
ements G0 = �G1G2G3 Figure 1length of su
h a 
hain is 
alled the graph distan
e on V(X) and it is denoted bydist(x; y).Convention 2.2. Throughout the paper all graphs (unless otherwise spe
i�ed) areassumed to be 
ountably in�nite, non-oriented, with no loops, to have uniformlybounded vertex degrees, and to be 
onne
ted.De�nition 2.3. The Sierpi�nski graph G (of dimension d) is the graph whose vertexset V(G) = �!�is the set (4) of all simpli
es used in the 
onstru
tion of the Sierpi�nski gasket, andthe edge set E(G) = Ev(G) [ Eh(G)is a union of the sets of verti
al and horizontal edges, respe
tively, whereEv(G) = �(�;�0); (�0;�) : 9n � 0 with � 2 �!�n;�0 2 �!�n+1; and �0 � �� ;Eh(G) = n(�;�0) : 9n � 0 with �;�0 2 �!�n; and � \ �0 6= ;o :In other words, the verti
al edges of G are those of the natural partitiontree stru
ture on �!�, whereas the horizontal edges take into a

ount the spatial
on�guration of simpli
es from ea
h level �!�n by joining those simpli
es whoseinterse
tion is non-empty.



Random Walks on Sierpi�nski Graphs 72.3. Symboli
 spa
esDenote byAnm = nYk=mA ; A�m = [n:m�n<1Anm ; An� = [m:�1<m�nAnmvarious spa
es of strings a = (ak) of symbols from the alphabet A (the numbersm and n in these notations are allowed to take the values �1 as well). We shallalso use the following notations:� jaj = n�m + 1 | the length of a string a 2 Anm;� dae = n | the stret
h of a string a 2 An�1 � A��1;� an0m0 2 An0m0 | the trun
ation of a string a 2 Anm determined by theintegers m0; n0 with m � m0 � n0 � n;� �nm 2 Anm | the string whose entries are all equal to a symbol � 2 A;� ab | the 
on
atenation of two strings a 2 Amk and b 2 Anm+1;� T : Anm !An�1m�1 | the shift de�ned by the formula [Ta℄k = [a℄k+1;� U : A11 ! A11 | the (non-invertible) unilateral shift de�ned by theformula Ua = (Ta)11 .We shall refer to the strings from the spa
e A�1 as words and denote by ?the empty word (of length j?j = 0). Then the setA�? = f?g [ A�1endowed with the multipli
ationab = a(T�jajb) ; a; b 2 A�? ;be
omes the free semigroup on the alphabet A. This multipli
ation naturally ex-tends to the right a
tion of the semigroup A�? on the spa
e A��1 of left in�nitestrings by the formula(a;w) 7! aw = a(T�daew) ; a 2 A��1; w 2 A�? : (5)Below we shall also need the right a
tion of A�? on A0�1 by the formula(a;w) 7! a �w = T jwj(aw) ; a 2 A��1; w 2 A�? : (6)2.4. A
tions on the spa
e of simpli
esIt is 
lear (see Fig. 1) that the mapw 7! (gw1gw2 � � �gwn ; w = (w1w2 � � �wn); n � 1 ;Id ; w = ? :is an isomorphismbetween the free semigroupA�? and the semigroup S � Sim(Rd)(here Id denotes the identity of Sim(Rd)). Denote bywx = gw1gw2 � � �gwnx = 2�jwjx+ jwjXk=1 2�kpwk ; x 2 Rd ;



8 Vadim A. Kaimanovi
hthe resulting (left) a
tion of A�? �= S on Rd, and byw� = fwx : x 2 �gthe asso
iated (left) a
tion of A�? �= S on the spa
e of simpli
es S (1). Sin
e S isa subsemigroup of the group Sim(Rd), we shall also use (in the obvious sense) thenotations (w)�1x, et
., for w 2 A�?.Sin
e the group Sim(Rd) a
ts simply transitively on S, any simplex � 2 S
an be uniquely presented as� = g�� ; g� 2 Sim(Rd) :Therefore, the right a
tion of the group Sim(Rd) on itself determines by the formula�g = g�g� ; � 2 S ; (7)a right a
tion of the group Sim(Rd) on S. Obviously,�g = g� 8 g 2 Sim(Rd) :Remark 2.4. Unlike the left a
tion � 7! g�, the right a
tion (7) is de�ned on thespa
e of simpli
es S only and does not 
orrespond to any a
tion on the spa
e Rd.The resulting right a
tion�w = �gw1gw2 � � �gwnof the free semigroup A�? �= S on S admits the following natural interpretation.Let us denote by p�� = g�p� the vertex of a simplex � = g�� 2 S 
orrespondingto the vertex p� of the referen
e simplex �. By g�� 2 Sim(Rd) denote the similaritywith the s
aling fa
tor 12 and the �xed point p�� , so that g�� = g�g�(g�)�1, whereg� are the similarities (2) asso
iated with the verti
es of the referen
e simplex �,and let '�(�) = g��� : (8)Then '�(�) = g��� = g��g�� = g�g�(g�)�1g�� = g�g�� = �g� ;so that �w = �gw1gw2 � � �gwn = 'wn Æ � � � Æ 'w2 Æ 'w1 (�)By extending the notation (4), let us denote by�!� = ��w : w 2 A�?	 � Sthe set 
onsisting of the simplex � and all smaller simpli
es obtained from � byan iterative appli
ation of the transformations '� (8).



Random Walks on Sierpi�nski Graphs 92.5. Symboli
 
odingWe shall identify the vertex set V(G) = �!� of the Sierpi�nski graph with the set ofwords A�? by the map A�? !�!� ; a 7! a� = �a :In these symboli
 terms the \verti
al" part (V(G); Ev(G)) of the Sierpi�nski graphG is isomorphi
 to the (right) Cayley tree of the free semigroup A�? �= S.For giving a symboli
 des
ription of the \horizontal" part of G noti
e that twodistin
t simpli
es a�; b� from the same level �!�n have a non-empty interse
tion(
onsisting of a single point) if and only if the words a and b have the form(a = 
��kb = 
��k with 
 2 A�?; � 6= � 2 A; k � 0 ; (9)in whi
h 
ase 
� is the minimal simplex from �!� 
ontaining both a� and b�, anda�\ b� = 8<: j
jXk=12�kp
k + 2�j
j�1(p� + p�)9=; = �
 �12 (p� + p�)�	 :Let Q = �
 �12 (p� + p�)� : 
 2 A�?; �; � 2 A	 � � : (10)Following [16℄, let us de�ne the 
onjugate of a word a 2 A�? asa? = (
��k ; a = 
��k ; 
 2 A�?; �; � 2 A; k � 1 ;a ; a = �k ; � 2 A; k � 0 : (11)Then, by (9), two words a 6= b 2 An1 are joined with a horizontal edge in theSierpi�nski graph if and only if either an�11 = bn�11 or a? = b. Therefore, theverti
es of the Sierpi�nski graph G are 
lassi�ed by their degrees in the followingway:(i) The \root" ?, for whi
h deg(?) = d + 1. The neighbours of ? are the1-letter words �; � 2 A.(ii) The \
orner verti
es" a = �n; � 2 A; n > 0, for whi
h deg(a) = 2d+ 2.Ea
h of these verti
es has 1 neighbour �n�1 from the pre
eding (n�1)-thlevel, d neighbours �n�1�; � 2 A r f�g, from the same n-th level, andd+ 1 neighbours �n�; � 2 A, from the next (n+ 1)-th level.(iii) For all other (\ordinary") verti
es deg(a) = 2d + 3. Ea
h of them has 1neighbour an�11 from the pre
eding (n� 1)-th level and d+ 1 neighboursa�; � 2 A, from the next (n+1)-th level, whereas among d+1 neighboursof a from the same n-th level d ones an�11 �; � 2 A r fang are the \sib-lings" of a (i.e., they have the same �rst n� 1 letters), and the remainingneighbour a? is a \distant relative".
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hPSfrag repla
ements p1 p2 p3�1�2�12�21�122�211� Figure 2For any a 2 A11 the simpli
es �n(a) = an1� de
rease on n, their interse
tion
onsists of the single point �(a) = 1Xk=1 2�kpak 2 G ; (12)and an1x �!n!1�(a) 8x 2 Rd :The 
oding map � : A11 !G is one-to-one on GrQ, whereas for any \rational"point from the set Q (10) its �-preimage 
onsists of two 
oding strings 
��1 and
��1 (
f. with analogous boundary expansions for Fu
hsian groups, see [52℄).Proposition 2.5 ([16, Proposition 4.2℄). The 
oding map � (12) establishes a home-omorphism between the Sierpi�nski gasket G and the quotient of the spa
e A11(endowed with the produ
t topology) by the equivalen
e relation 
onsisting of thepreimages of �.Remark 2.6. In the degenerate 
ase d = 1 if p1 = 0; p2 = 1, then G 
oin
ides withthe unit interval � = [0; 1℄, the 
oding � 
orresponds to the dyadi
 expansion, andthe subset Q 
onsists of dyadi
-rational numbers.2.6. Natural extensionThe 
onstru
tions of the Sierpi�nski gasket (De�nition 2.1) and the Sierpi�nski graph(De�nition 2.3) being \unilateral", it is natural (and useful for appli
ations) tomake them \bilateral" by extending from the \mi
ros
opi
" to the \ma
ros
opi
"
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ale. Namely, instead of just taking smaller and smaller subsimpli
es of the givensimplex � one may also go \ba
kwards" by embedding � into bigger and biggersimpli
es. In terms of the theory of dynami
al systems this pro
edure 
orrespondsto passing from the spa
e of unilateral strings A11 (endowed with the unilateralshift U ) to its natural extension A1�1 (endowed with the bilateral shift T ); see[14℄ for a general de�nition of the natural extension of a non-invertible dynami
alsystem.Let �n = �n(a) = an1� = �an1 ; n � 0 ; (13)be the simpli
es asso
iated with a string a 2 A11 (see Se
tion 2.5). Note that thesimpli
es asso
iated with a and its shift Ua are 
onne
ted with the formula�n(Ua) = g�1a1 �n+1(a) 8a 2 A11 ; n � 0 : (14)Then �n+1 = �an+11 = (�an1 )an+1 = �nan+1 = 'an+1 (�n) ; (15)or, in plain words, �n+1 is obtained by 
ontra
ting �n towards the vertex p�nan+1(
f. Fig. 2). By using formula (15), we may now extend the de�nition (13) frompositive indi
es n to all n 2Zby putting for any a 2 A1�1 and n < 0�n(a) = '�1an+1 Æ � � � Æ '�1a0 (�) = � �a0n+1��1 ;or, equivalently, �n(a) = g�1a0 � � �g�1an+1 (�) = �a0n+1��1� (16)(see Fig. 3 and Fig. 4). With this extended de�nition of the sequen
e �n(a) formula(14) (where the unilateral shift U is repla
ed with the bilateral shift T ) now holdsfor all a 2 A1�1 and n 2Z. If n < 0, we shall use the notation (16) for unilateralstrings a 2 A0�1 as well.PSfrag repla
ements a0 = 1 a0 = 2 a0 = 3Figure 3



12 Vadim A. Kaimanovi
h
xxxxxx
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xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxxPSfrag repla
ements a�2 = 3; a�1 = 2; a0 = 1 a�2 = 1; a�1 = 2; a0 = 3Figure 4Remark 2.7. Formula (16) is pre
isely analogous to the one arising in the theoryof random walks on groups when passing from unilateral to bilateral walks, see thedis
ussion in [33℄.Remark 2.8. If ea
h of the symbols from A o

urs in the string a0�1 in�nitelyoften, then the simpli
es �n(a) exhaust the spa
e Rd.2.7. Extended Sierpi�nski gaskets and graphsGiven a string a 2 A0�1 put Gn(a) = (a0n+1)�1G ;so that �n(a) � Gn(a) � Gn+1(a) 8n < 0 ;and Gm(a) \�n(a) = Gn(a) 8m � n :In the same way we de�ne the graphsGn(a) = (a0n+1)�1G ;so that the vertex set of Gn(a) is ����!�n(a). ThenGn(a) � Gn+1(a) 8n < 0 :De�nition 2.9. The set G�1(a) =[n Gn(a) � Rd :and the graph G�1(a) =[n Gn(a) :
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alled the extended Sierpi�nski gasket and the extended Sierpi�nski graph deter-mined by the string a 2 A1�1, respe
tively.The extended Sierpi�nski graphs G(a) (resp., the asso
iated gaskets G(a)) are\more homogeneous" than the original Sierpi�nski graph G (resp., the gasket G),as here the root ? is \moved to in�nity" and repla
ed with a \mythi
al an
estor"in the terminology of Cartier [10℄; 
f. [11℄. For this reason the graphs G(�0�1)and the gaskets G(�0�1) had already been 
onsidered, for example, in [5℄, [23℄.However, the graphs G(�0�1) still have \
orner verti
es" whose degree is smallerthan the degree of all other \ordinary verti
es" (
f. Se
tion 2.5). In order to dealwith this nuisan
e and to have a graph with a 
onstant degree of verti
es, in theabove papers a mirror 
opy of G(�0�1) was then atta
hed to G(�0�1). However,it is mu
h more natural to apply a \sto
hasti
 homogenization" instead and to
onsider a \random" graph (resp., gasket) pi
ked from the family of graphs G(a)(resp., of gaskets G(a)) a

ording to an appropriate probability measure on A0�1,see below Se
tion 4.5.2.8. Strong tail equivalen
e relationDe�nition 2.10. Let us denote the strong tail equivalen
e relation on A��1 bya � b () 9N 2Z: an = bn 8n � N ; a; b 2 A��1 ;and let R� = f(a; b) : a � bg � A��1 � A��1be the Borel set 
onsisting of all pairs of �-equivalent strings. By[a℄� = fb 2 A��1 : a � bgwe denote the strong equivalen
e 
lass of a string a 2 A��1.Remark 2.11. The strong equivalen
e relation 
oin
ides with the orbit equivalen
erelation of the a
tion (5) of the free semigroup A�? on A��1. Namely, for any twostrings a; b 2 A��1a � b () 9 
 2 A��1; w;w0 2 A�? : a = 
w; b = 
w0 :Let 
(a; b) = limn!�1�adaen ��1 bdben 2 G � Sim(Rd)be the G-valued Gibbs 
o
y
le on the strong tail equivalen
e relation � [38℄ (theexpression in the right-hand side of the above formula stabilizes on n by the de�-nition of the equivalen
e relation �). As in Se
tion 2.5, we shall identify the vertexset ����!�n(a) of the graph Gn(a) with the set of stringsfb 2 [a℄� : bk = ak for k � ngby the map b 7! 
(a; b)� 2 S : (17)The identi�
ation (17) respe
ts the embeddings Gn(a) � Gn+1(a), so that we have
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hProposition 2.12. For any string a 2 A0�1 the map (17) establishes a one-to-one
orresponden
e between the equivalen
e 
lass [a℄� � A��1 and the vertex set ofthe extended Sierpi�nski graph G(a).The extended Sierpi�nski graphs G(a) 
an be des
ribed in symboli
 terms inthe same way as it was done with the Sierpi�nski graph in Se
tion 2.5. Namely, letus extend the de�nition of the 
onjuga
y a 7! a? from A�? to A��1 by putting((b��n)? = b��n ; b 2 A��1; �; � 2 A; n > 0 ;��n�1�? = ��n�1� ; � 2 A :Then the set of edges of the Sierpi�nski graph G(a) (realized under the identi�
ation(17) on the equivalen
e 
lass [a℄�) is a unionE�(a) = Ev�(a) [ Eh�(a) � [a℄� � [a℄�of the set of verti
al edgesEv�(a) = f(b; b�); (b�; b) : b 2 [a℄�; � 2 Ag ; (18)and of the set of horizontal edgesEh�(a) = f(b�; b�) : b 2 [a℄�; �; � 2 Ag [ f(b; b?) : b 2 [a℄�; b 6= b?g : (19)Remark 2.13. In the same way as in Se
tion 2.5, one may also obtain a 
oding ofthe Sierpi�nski gasket G(a) by bilateral strings b 2 A1�1 with b0�1 � a whi
h isone-to-one on the 
omplement of a 
ountable subset of G(a) (where it is two-to-one).It is 
lear that E�(a) = E�(b) whenever a � b, so that a
tually we have awell-de�ned graph stru
ture on any equivalen
e 
lass [a℄� � A��1. Moreover, theunion E� = [a2A��1 E�(a) (20)is a Borel subset of R�. Thus, the triple (A��1;�; E�) is a graphed equivalen
e re-lation (see [1℄, [34℄ for a dis
ussion of this notion), whi
h allows one to 
onsider thegraphs G(a) not only individually, but also as members of a \
olle
tion" 
onsistingof all � equivalen
e 
lasses in A��1.2.9. Weak tail equivalen
e relationThe disadvantage of the spa
e A��1 is in its non-
ompa
tness. Therefore, it is
onvenient to modify the de�nitions from Se
tion 2.8 by repla
ing A��1 with the
ompa
t spa
e A0�1 and allowing in return for shifted strings to remain equivalent.De�nition 2.14. Let us denote the weak tail equivalen
e relation on A��1 bya � b () 9 t 2Z: a � T tb ; a; b 2 A��1 ;and let R� = f(a; b) : a � bg � A��1 � A��1
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onsisting of all pairs of �-equivalent strings. By[a℄� = fb 2 A��1 : a � bgwe denote the weak equivalen
e 
lass of a string a 2 A��1. We shall also use thenotations R0� = R� \A0�1 � A0�1and [a℄0� = [a℄� \A0�1for the restri
tion of the equivalen
e relation � to A0�1.Remark 2.15. The restri
tion of the weak equivalen
e relation onto A0�1 
oin
ideswith the orbit equivalen
e relation of the a
tion (6) of the free semigroup A�? onA0�1, 
f. Remark 2.11.Clearly, a string a 2 A�1 may be �-equivalent to its own shift T ta; t 2 Zif and only if it is �-equivalent to a periodi
 string. In this 
ase we say that thestring a is residually periodi
. Denote by � � A�1 the 
ountable set of all residuallyperiodi
 strings. Then the formulaT �(a;b)a � b (21)uniquely de�nes the Z-valued syn
hronization 
o
y
le on the restri
tion of theequivalen
e relation � onto A��1 r �. In parti
ular,�(a; T ta) = t 8a 2 A��1 r �; t 2Z:Proposition 2.16. For any a 2 A0�1 r� the map[a℄� ! [a℄0� ; b 7! 
 = T dbeb ; (22)and the inverse map[a℄0� ! [a℄� ; 
 7! b = T�dbe
 = T��(b;
)
 = T��(a;
)
 (23)establish a one-to-one 
orresponden
e between the equivalen
e 
lasses [a℄� � A��1and [a℄0� � A0�1.Given a 2 A0�1, let us now putE�(a) = Ev�(a) [ Eh�(a) � [a℄0� � [a℄0� ;whereEv�(a) = f(b; b � �); (b � �; b) : b 2 [a℄0�; � 2 Ag ;Eh�(a) = �(b � �; b � �) : b 2 [a℄0�; �; � 2 A	 [ �(b; b?) : b 2 [a℄0�; b 6= b?	 :The only di�eren
e between these de�nitions and formulas (18), (19) is that herethe a
tion (5) is repla
ed with the a
tion (6). Then the Borel setE� = [a2A0�1 E�(a) � R0� (24)determines a stru
ture of a graphed equivalen
e relation on (A0�1;�).
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hProposition 2.17. For any a 2 A0�1 r � the maps (22) and (23) establish anisomorphism of the graphs ([a℄�; E�(a)) and ([a℄0�; E�(a)).Remark 2.18. Let X be a Borel spa
e endowed with a right Borel a
tion of the freesemigroup A�?. The union of all (non-oriented) edges of the form (x�; x), (x�; x�)and (xa; xa?) (with x 2 X; �; � 2 A; a 2 A�?) determines then a graph stru
tureon the orbit equivalen
e relation of this a
tion. The \verti
al" part of this stru
ture(
onsisting of the edges (x�; x)) 
oin
ides with the S
hreier graph stru
ture of thea
tion with respe
t to the generating set A (
f. [6℄). The graph stru
tures (20) and(24) are the spe
ializations of this general 
onstru
tion to the a
tions (5) and (6),respe
tively.Remark 2.19. In geometri
 terms the syn
hronization 
o
y
le �(a; b) (21) is equalto the di�eren
e between the levels of b and a in the graph G(a) �= G(b), i.e.,
oin
ides with the Busemann 
o
y
le on G(a) (see below Se
tion 3.3 for moredetails).Remark 2.20. The syn
hronization 
o
y
le � (21) on the weak tail equivalen
erelation (A0�1r�;�) (i.e., in view of the previous Remark, the Busemann 
o
y
lewith respe
t to the graph stru
ture E� (24)) is 
ohomologi
ally non-trivial in theBorel 
ategory in 
ontrast to the trivial Busemann 
o
y
le (a; b) 7! dbe � dae onthe strong tail equivalen
e relation (A��1;�) with respe
t to the graph stru
tureE� (20).3. Geometri
 properties of Sierpi�nski graphs3.1. Rooted treesRe
all that a 
onne
ted graph is 
alled a tree if it 
ontains no 
y
les. By �T wedenote the spa
e of ends of a tree T , i.e., the totally dis
onne
ted spa
e whi
h isthe proje
tive limit of the (�nite dis
rete) spa
es of in�nite 
onne
ted 
omponentsof T rKn, where 
onne
ted �nite sets Kn exhaust T . The spa
e of ends �T servesas the boundary of the end 
ompa
ti�
ation of T .De�nition 3.1. Given a tree T and a vertex o 2 T , we shall 
all the 
ouple (T; o)a rooted tree.For a rooted tree (T; o) putjxj = jxjo = dist(o; x) (25)and denote by Tn = fx 2 T : jxj = ng ; n � 0 (26)the sphere in T of radius n 
entered at the root o. We shall refer to the set Tnas the n-th level of the rooted tree (T; o). For any point x 2 T and a number0 � k � jxj put x[�k℄ = [o; x℄\ Tjxj�k ; (27)



Random Walks on Sierpi�nski Graphs 17in other words, x[�k℄ (the k-th prede
essor of x) is the point on the geodesi
segment [o; x℄ at distan
e k from x (see Fig. 5, where jxj = 3).PSfrag repla
ements o = x[�3℄x[�1℄x[�2℄ T0T1T2T3x = x[0℄ Figure 5For a rooted tree (T; o) the spa
e of ends �T 
an be identi�ed with the spa
eof all in�nite geodesi
 rays (i.e., isometri
 embeddings of Z+ into T ) x = (xn)issued from o whose (totally dis
onne
ted) topology is determined by the pointwise
onvergen
e of geodesi
 rays. The end 
ompa
ti�
ation of T is homeomorphi
 toits visual 
ompa
ti�
ation, in whi
h a sequen
e of points xn 2 T 
onverges if andonly if the geodesi
 segments [o; xn℄ 
onverge pointwise.3.2. Augmented rooted treesDe�nition 3.2. Let (T; o) be a rooted tree, and letEh � V(T ) � V(T )be a symmetri
 set su
h that(x; y) 2 Eh =) jxj = jyj; (x[�k℄; y[�k℄) 2 Eh 8 k > 0 :Then the graph X with the vertex setV(X) = V(T )and the edge set E(X) = E(T ) [ (Eh r diag)is 
alled an augmented rooted tree. We shall 
all the edges from E(T ) verti
al andthe edges from Eh r diag horizontal (see Fig. 6).
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hPSfrag repla
ements ox yx[�1℄ y[�1℄Figure 6We shall extend the notations (25) { (27) from rooted trees to augmentedrooted trees.Denote by dist the graph distan
e in an augmented rooted tree X, andby distn the graph distan
e on its n-th level Xn (where, as usually, we putdistn(x; y) = 1 when x and y belong to di�erent 
onne
ted 
omponents of Xn).Obviously, dist(x[�1℄; y[�1℄) � dist(x; y) 8x; y 2 T : (28)De�nition 3.3. We shall say that a geodesi
 segmentx = z0; z1; : : : ; zd = y ; d = dist(x; y)joining two points x; y in an augmented rooted tree is 
anoni
al if it 
onsists of twoverti
al segments (one or both of whi
h may possibly be empty) with an intermediatehorizontal segment, i.e.,zi = (x[�i℄ ; i � m ;y[i�d℄ ; i � n and jzmj = jzm+1j = � � � = jzn�1j = jznj (29)for 
ertain integers m;n with 0 � m � n � d (see Fig. 7).Proposition 3.4. Any two points x; y in an augmented rooted tree 
an be joinedwith a 
anoni
al geodesi
.Proof. By (28) the \moves"((u; v; v[�1℄) 7! (u; u[�1℄; v[�1℄)(u[�1℄; u; v) 7! (u[�1℄; v[�1℄; v) ; juj = jvj ;
onsisting in \lifting" horizontal edges do not in
rease the distan
e. Applyingthem to an arbitrary geodesi
 segment joining x and y eventually gives a requiredgeodesi
 segment of the form (29). �
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ements ox = z0x[�m℄ = zm y = zdy[n�d℄ = znFigure 7Remark 3.5. De�nition 3.3 and Proposition 3.4 are appli
able to geodesi
 rays andto in�nite bilateral geodesi
s as well.De�nition 3.6. A geodesi
 square R in an augmented rooted tree X is a quadrupleof points x; y; x0; y0 2 X su
h that(i) jxj = jyj;(ii) x0 = x[�k℄; y0 = y[�k℄ for a 
ertain k > 0;(iii) dist(x; y) = dist(x0; y0) = dist(x; x0) = dist(y; y0) = k.The number k is 
alled the size of the re
tangle R.Inequality (28) and Proposition 3.4 implyProposition 3.7. If (x; y; x[�k℄; y[�k℄) is a geodesi
 square of size k in an augmentedrooted tree X, then distjxj�i(x[�i℄; y[�i℄) = k 8 0 � i � k ;and any geodesi
 segment in X joining the points x[�i℄ and y[�i℄ lies in the levelXjxj�i.Remark 3.8. An isometri
 embedding � of the square f0; 1; : : :; kg2 � Z2 into anaugmented rooted tree X su
h thatj�(0; 0)j = j�(k; 0)j ; j�(0; k)j = j�(k; k)j ; j�(0; 0)j � j�(0; k)j = k (30)
learly determines a geodesi
 square of size k in X in the sense of De�nition 3.6.Proposition 3.7 shows that, 
onversely, any geodesi
 square of size k gives rise toan isometri
 embedding � : f0; 1; : : :; kg2 ! X satisfying 
onditions (30).3.3. Remotely rooted treesDe�nition 3.9. Given a tree T and a point ! 2 �T , we shall 
all the 
ouple (T; !)a remotely rooted tree.Remark 3.10. In a less \botani
al" terminology \rooted trees" are 
alled pointed,and \remotely rooted trees" are 
alled pointed at in�nity.
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hDenote by � = �! the Busemann 
o
y
le on T de�ned as�(x; y) = limz!!�dist(y; z) � dist(x; z)� : (31)One may 
onsider the above formula as a regularization of the formal expression�(x; y) = \ dist(y; !) � dist(x; !) " ;i.e., the Busemann 
o
y
le is a \di�eren
e" between the \distan
es" from thepoints y and x to the point at in�nity !. We shall refer to the level setsTx = fy 2 T : �(x; y) = 0g (32)of the Busemann 
o
y
le as horizontal levels in a remotely rooted tree T , so that�(x; y) is the signed distan
e between the heights of the levels of the points x andy (see Fig. 8, where �(x; y) = �1).By extending the notation (27), we shall denote by x[�k℄; k � 0 the k-thprede
essor of a vertex x uniquely determined by the relation�(x; x[�k℄) = �k ; x[�k℄ 2 [x; !) ; (33)where [x; !) is the geodesi
 ray joining x and the remote root ! (see Fig. 8).Clearly, �(x; y) = �(x[�k℄; y[�k℄) 8x; y 2 T; k � 0 :
PSfrag repla
ements x yx[�1℄

!
TxTyFigure 8As it follows from the de�nition (31), remotely rooted trees 
an be 
onsideredas limits of rooted trees in the sense that the partitions of T into the spheri
al levels



Random Walks on Sierpi�nski Graphs 21(26) with respe
t to a sequen
e of roots on 
onverge pointwise to the partition ofT into the level sets (32) of the Busemann 
o
y
le �! if and only if the sequen
eon 
onverges to ! (
f. the dis
ussion at the end of Se
tion 2.7).De�nition 3.11. Let (T; !) be a remotely rooted tree, and let a symmetri
 setEh � V(T ) � V(T )be su
h that (x; y) 2 Eh =) �(x; y) = 0; (x[�k℄; y[�k℄) 2 Eh 8 k > 0 :Then the graph X with the vertex setV(X) = V(T )and the edge set E(X) = E(T ) [ (Eh r diag)is 
alled an augmented remotely rooted tree. Following De�nition 3.2, we shall
all the edges from E(T ) verti
al and the edges from Eh r diag horizontal.As in Se
tion 3.2, we shall extend the notations (31) { (33) from remotelyrooted trees to augmented remotely rooted trees.3.4. Hyperboli
ityThe Gromov produ
t on a graph X (with respe
t to a referen
e point o) is de�nedas (xjy)o = 12�dist(o; x) + dist(o; y) � dist(x; y)� : (34)A graph X is 
alled Gromov hyperboli
 if there exists a 
onstant Æ > 0 su
h thatthe Æ-ultrametri
 inequality(xjy)o � min�(xjz)o; (yjz)o	 � Æis satis�ed for all o; x; y; z 2 X. Equivalently,X is Gromov hyperboli
 if all geodesi
triangles in X are uniformly thin, i.e., one 
an always 
hoose a point on ea
h ofthe sides of a geodesi
 triangle in su
h a way that the pairwise distan
es betweenthese points are uniformly bounded.The hyperboli
 boundary �X of a hyperboli
 graph X is de�ned as the spa
eof equivalen
e 
lasses of asymptoti
 geodesi
 rays in X (i.e., those whi
h lie withina �nite distan
e one from another). For any two points x 2 X; � 2 �X there existsa geodesi
 ray (not ne
essarily unique!) issued from x and belonging to the 
lass� (i.e., joining x and �). In the same way, any two distin
t points �� 6= �+ 2 �X
an be joined by a bilateral geodesi
 (on
e again, not ne
essarily unique) whosepositive (resp., negative) geodesi
 ray belongs to the 
lass �+ (resp., ��). Thede�nition of the Gromov produ
t (34) 
an be extended to the 
ase when one ofthe arguments belong to �X by putting(xj�)o = sup�(xjyn)o : (yn) is a geodesi
 ray joining o and �	 :Analogously (by taking the supremum over all geodesi
 rays joining o with thepoints �; � 2 �X) one also de�nes the Gromov produ
t when both arguments
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hare boundary points. There exists an absolute 
onstant C > 0 (depending on thehyperboli
ity 
onstant Æ only) su
h that for any bilateral geodesi
 
 joining anytwo points � 6= � 2 �X and any referen
e point o 2 X��(�j�)o � dist(o; 
)�� � C : (35)Below we shall usually leave out the referen
e point o by assuming that it is �xedon
e and for all (in parti
ular, for augmented rooted trees we shall always take foro the root of the underlying tree).The hyperboli
 boundary �X is the boundary of the hyperboli
 
ompa
ti�-
ation of X: a sequen
e of points xn 2 X 
onverges in this 
ompa
ti�
ation if(xnjxm) !1, and the limit is a point � 2 �X if (xnj�)!1 (in parti
ular, anygeodesi
 ray 
onverges to the point of �X determined by its asymptoti
 equiva-len
e 
lass). For any suÆ
iently small " > 0 the topology of �X is metrizable by ametri
 �" uniformly equivalent to exp[�"(�j�)℄, i.e., su
h that for a 
ertain 
onstantC > 0 1C � e"(�j�) � �"(�; �) � C 8 � 6= � 2 �X : (36)The hyperboli
 
ompa
ti�
ation of a tree is homeomorphi
 to its end (� visual)
ompa
ti�
ation. See [24℄, [9℄, [22℄ for more details 
on
erning Gromov hyperboli
spa
es.De�nition 3.12. An augmented rooted tree X satis�es \no big squares" 
onditionif the size of geodesi
 squares in X is bounded (
f. De�nition 3.6)Theorem 3.13 ([35℄; 
f. [9, Theorems 11.11, 11.13℄). An augmented rooted tree Xis Gromov hyperboli
 if and only if it satis�es the \no big squares" 
ondition.Remark 3.14. The hyperboli
ity of an augmented rooted tree (X; o) implies that thelengths of horizontal segments in 
anoni
al geodesi
s on X (see De�nition 3.3) areuniformly bounded (the geodesi
 triangle whose base is su
h a horizontal segmentand the lateral sides are the geodesi
s joining its endpoints with the root is thin).This 
an be also dire
tly dedu
ed from the \no big squares" 
ondition.Sin
e the de�nition of the Gromov hyperboli
ity is lo
al in the sense thatit only involves geodesi
 triangles in the spa
e, Theorem 3.13 immediately 
arriesover to augmented remotely rooted trees.Theorem 3.15. An augmented remotely rooted tree X is Gromov hyperboli
 if andonly if it satis�es the \no big squares" 
ondition.One 
an expli
itly des
ribe the hyperboli
 boundary �X of an augmentedrooted tree (X; o). Indeed, geodesi
 rays issued from the root o are the same on Tand on X. The boundary �T of the tree T is the spa
e of all su
h rays, and it isproje
ted onto �X by the map whi
h assigns to any ray its asymptoti
 equivalen
e
lass with respe
t to the graph distan
e on X (this map is onto be
ause anyasymptoti
 equivalen
e 
lass 
ontains a ray issued from the root). More pre
isely,denote by G the asymptoti
 equivalen
e relation on �T :x G y () 9C > 0 su
h that dist(xn; yn) � C 8n � 0 ;
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h is the envelope of the set�(x; y) 2 �T � �T : (xn; yn) 2 Eh 8n � 0	 :Then the de�nition of the hyperboli
 boundary impliesTheorem 3.16. The hyperboli
 boundary �X of a Gromov hyperboli
 augmentedrooted tree (X; o) is homeomorphi
 to the quotient of the boundary �T of the un-derlying rooted tree (T; o) by the equivalen
e relation G.One 
an also give a more expli
it des
ription of the metri
s �" (36) on �X,or, equivalently, of the Gromov produ
t on �X. Leth(�; �) = min�dist(o; 
)	 ; � 6= � 2 �X ; (37)where the minimum is taken over all bilateral geodesi
s joining � and �. By Propo-sition 3.4 and Remark 3.5, su
h a geodesi
 
an be 
hosen to be 
anoni
al, so thath(�; �) is the minimal distan
e from the root to the horizontal segments of these
anoni
al geodesi
s. Then inequality (35) impliesProposition 3.17. There is a 
onstant C > 0 su
h that��h(�; �)� (�j�)�� � C 8 � 6= � 2 �X ;so that any metri
 �" is uniformly equivalent to exp[�"h(�; �)℄.3.5. Hyperboli
ity of the Sierpi�nski graphsWe shall now apply the above arguments to the Sierpi�nski graph G and the ex-tended graphs G(a); a 2 A0�1.Proposition 3.18. The Sierpi�nski graph G is an augmented rooted tree whose un-derlying tree is the Cayley graph of the free semigroup A�?. Any extended Sierpi�nskigraph G(a); a 2 A0�1 is an augmented remotely rooted tree.Any level �!�n �= An1 of the Sierpi�nski graph G 
an be embedded into Rd bythe map whi
h assigns to a simplex � 2 �!�n its bari
enter ��. Denote by dn themetri
 on �!�n indu
ed by the Eu
lidean metri
 on Rd under this embedding.Proposition 3.19. The metri
s 2ndn are uniformly quasi-isometri
 to the graphmetri
s distn on �!�n, i.e., there exists a 
onstant C > 1 su
h that1C � 2ndn(�1;�2)distn(�1;�2) � C 8�1 6= �2 2 �!�n; n > 0 : (38)Proof. If two simpli
es �;�0 2 �!�n are neighbours, then obviously1C � 2ndn(�;�0) � Cfor a 
onstant C whi
h depends on the original simplex � only, whi
h proves theright-hand inequality in (38).For proving the left-hand side inequality let us take a Eu
lidean geodesi
 `joining the bary
enters of two simpli
es �;�0 2 �!�n and endow ` with the length
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hparameterization. By slightly moving the endpoints of ` we may assume withoutloss of generality that ` does not interse
t the set Qn of verti
es of level n simpli
es.Therefore, the sequen
e of simpli
es� = �0;�1; : : : ;�N = �0 2 �!�n
onse
utively interse
ted by ` is well de�ned, and ea
h of the interse
tions[�2k; �2k+1℄ = ` \ �kis not a single point. We shall 
all the points �i marks on `. Then the distan
ebetween two 
onse
utive marks �i+1 � �i may be \small" (
ompared to the sizeof simpli
es from �!�n, i.e., to 2�n) only near a point from Qn, the length of any
onse
utive series of \small" di�eren
es is uniformly bounded, and ea
h su
h seriesis pre
eded and followed by a di�eren
e at least 
omparable with 2�n.We shall now build a path in the graph �!�n by joining the simpli
es � and�0 in the following way.� The segments [�2k; �2k+1℄ are assigned the simpli
es �k.� The segments [�2k�1; �2k℄ 
orrespond to interse
tions of ` with the 
on-ne
ted 
omponents 
� of the 
omplement � rGn (see De�nition 2.1).We shall assign to ea
h su
h segment the shortest possible 
hain of sim-pli
es from �!�n going \around" the asso
iated 
omponent 
�, see Fig. 9.The length of su
h a 
hain is uniformly 
omparable with 2n(�2k � �2k�1)unless the di�eren
e �2k � �2k�1 is \small".By using the above properties of the di�eren
es �i+1 � �i one 
an now seethat the length of the 
onstru
ted path is uniformly dominated by 2nj`j. �
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xxxxxxFigure 9Corollary 3.20. The Sierpi�nski graph G satis�es \no big squares" 
ondition.



Random Walks on Sierpi�nski Graphs 25Theorem 3.13, Theorem 3.16 and Proposition 2.5 now immediately implyTheorem 3.21. The Sierpi�nski graph G is Gromov hyperboli
, and its hyperboli
boundary �G is homeomorphi
 to the Sierpi�nski gasket G.Remark 3.22. Another example of Gromov hyperboli
 augmented trees is providedby the graphs CK asso
iated by Elek [19℄ to any 
ompa
t K 
ontained in the Eu-
lidean 
ube [0; 1℄d. Their verti
es are binary sub
ubes of [0; 1℄d, and the hyperboli
boundary �K is homeomorphi
 to K. See the re
ent survey [7℄ for a general dis-
ussion of boundaries of Gromov hyperboli
 spa
es.In the same way, Theorem 3.15 impliesTheorem 3.23. Any extended Sierpi�nski graph G(a); a 2 A0�1, is Gromov hyper-boli
, and its hyperboli
 boundary �G(a) is homeomorphi
 to the one-point 
om-pa
ti�
ation G(a) [ f!g of the extended Sierpi�nski gasket G(a).Moreover, it turns out that the Eu
lidean metri
 on the Sierpi�nski gasket Gis uniformly H�older equivalent to the metri
s �" (36).Theorem 3.24. There exists a 
onstant C > 0 su
h that1C � k� � �k � 2(�j�) � C 8 � 6= � 2G :Proof. Let us take a 
anoni
al bilateral geodesi
 
 joining the points � and � andrealizing h(�; �) = n (37), see De�nition 3.3, Remark 3.5 and Proposition 3.17.Denote by �n � �n+1 � : : :f�g ; �0n � �0n+1 � : : :f�g ;the verti
al rays of this geodesi
 going to the points � and �, respe
tively. Sin
e� 2 �n; � 2 �0n, Remark 3.14 implies thatk� � �k � C � 2�n :Conversely, the simpli
es �n+1 and �0n+1 are not neighbours in the Sierpi�nskigraph G (for otherwise one 
ould have shortened 
 by dire
tly 
onne
ting �n+1 and�0n+1), whi
h by the de�nition of the Sierpi�nski graph means that �n+1\�0n+1 = ;.Therefore, 1C � 2�n � k� � �k ;whi
h by Proposition 3.17 ends the proof. �Theorem 3.25. The Eu
lidean metri
 on the Sierpi�nski gasket G and the metri
�" on G �= �G are uniformly H�older equivalent in the sense that there exists a
onstant C > 0 su
h that1C � k� � �k(log 2)="�"(�; �) � C 8 � 6= � 2 G :
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h3.6. Embedding into the hyperboli
 spa
eThe group Sim(Rd) a
ts simply transitively by isometries on the hyperboli
 spa
eHd+1 realized in the upper half-spa
e model as Hd+1 �= Rd � R+ (see [37℄ for ageneral dis
ussion of the relationship between the hyperboli
 and similarity stru
-tures). Sin
e Sim(Rd) also a
ts simply transitively on the spa
e S of all simpli
essimilar to �, we may identify S with the hyperboli
 spa
e Hd+1 by the mapg� 7! gz ; g 2 Sim(Rd) ; (39)where z 2Hd+1 is a 
hosen referen
e point.Theorem 3.26 ([35℄; 
f. [19, Theorem 4℄). The embedding of the Sierpi�nski graphG into the hyperboli
 spa
e Hd+1 determined by formula (39) is a quasi-isometrywith respe
t to the graph metri
 on G and the hyperboli
 metri
 on Hd+1.Below are several 
omments on the relationship between the obje
ts asso
i-ated with the Sierpi�nski gasket and the hyperboli
 geometry.1. The Sierpi�nski gasket G is the limit set (in Hd+1) of the semigroup S �=A�? � Sim(Rd) (3).2. The \Sierpi�nski group" G � Sim(Rd) (3) is isomorphi
 to the similaritygroup of the dyadi
-rational spa
e Zd[12 ℄, in parti
ular, for d = 1 it 
oin
ides withthe group ha; bjab2 = bai, see Remark 2.6. Although G is not a dis
rete subgroupof Iso(Rd), it is a latti
e in the produ
t of the real and dyadi
 similarity groups.The group G has two natural boundaries whi
h are the real and the dyadi
 d-spa
es, see [39℄, [20℄ for the 
ase d = 1. The Sierpi�nski gasket belongs to the \real"boundary whi
h des
ribes the behaviour of our dynami
s (iteration of 
ontra
tionsg�) at +1, whereas the strings a 2 A0�1 whi
h des
ribe the dynami
s at �1
an be interpreted as points of the \dyadi
 boundary". It would be interesting tounderstand to what extent the ri
h geometry of the Sierpi�nski gaskets and graphs
ould be interpreted just in terms of the group G and its free semigroup S.3. The situation 
hara
terized by the presen
e of two di�erent stru
turesresponsible for the behaviour of the dynami
s at +1 and �1, respe
tively, o
-
urs also in the theory of iterations of rational maps. Lyubi
h and Minsky [45℄
onstru
ted a Riemann surfa
e lamination Af and a hyperboli
 3-lamination Hfasso
iated with an endomorphism f of the Riemann sphere C . The leaves of Afare planes endowed with a 
omplex aÆne (� real similarity) stru
ture, whereas theleaves of Hf are pointed at in�nity hyperboli
 3-spa
es whose boundary planes arethe leaves pf Af . Both laminations are endowed with an a
tion of the natural ex-tension bf of the rational map f whi
h is minimal on Af and properly dis
ontinuouson Hf , so that the latter a
tion gives rise to the quotient hyperboli
 laminationMf = Hf= bf . The \forward" dynami
s of f is des
ribed by the leafwise Juliasets, whereas the \ba
kward" dynami
s is des
ribed by the transversal stru
tureof these laminations (the transversals of these laminations are, roughly speaking,ba
kward traje
tories of f on C ). This pi
ture also bears 
lose resemblan
e to the
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s of the geodesi
 
ow on hyperboli
 manifolds and of asso
iated Kleiniangroups, see [37℄.In our 
ontext the produ
t of the boundaries of the group G at +1 and �1(see Comment 2 above) 
an be 
onsidered as a Rd-lamination L with a leafwisesimilarity stru
ture. The forward dynami
s is des
ribed by the leafwise Sierpi�nskigaskets G(a); a 2 A0�1, whereas the ba
kward dynami
s is des
ribed by thetransverse stru
ture of L. The group G a
ts minimally on L and properly dis
on-tinuously on the asso
iated Hd+1-laminationH. We shall return to a more detaileddes
ription of this 
onstru
tion elsewhere.3.7. AmenabilityFor a subset A of a graph X denote by�A = fx 2 A : 9 y 2 X rA with (x; y) 2 E(X)gits boundary. Re
all that a 
onne
ted graph X is 
alled amenable if it 
ontains�nite sets A � X with arbitrarily small isoperimetri
 ratio(
ard �A)=(
ardA) (40)(we remind the reader Convention 2.2 made in Se
tion 2.2). A

ording to a 
rite-rion of Gromov (see [12℄) a graph X is non-amenable if and only if there exists amap ' : X ! X and a 
onstant C > 0 su
h thatdist(x; '(x)) � C ; 
ard �'�1(x)	 � 2 8x 2 X ;In parti
ular, a tree is amenable if and only if it 
ontains arbitrarily long geodesi
segments without bran
hing.Sin
e adding new edges to the same vertex set may only make the graphdistan
e smaller, Gromov's 
riterion impliesTheorem 3.27. Under 
onditions of Convention 2.2, if a rooted tree (T; o) is non-amenable, then any its augmentation (X; o) is also non-amenable.The 
onverse is not true even under the assumption that the augmented tree(X; o) is hyperboli
. For an example let (T 0; o) be the rooted tree obtained byadding to a binary rooted tree (T; o) a new geodesi
 ray 
0 issued from o. Then T 0is amenable, whereas T is non-amenable. Choose a ray 
 in T , and add to T 0 allhorizontal edges joining 
 and 
0. Then the resulting augmented rooted tree (X0; o)is roughly isometri
 to the original binary tree (T; o), so that X0 is non-amenable.Theorem 3.28. The Sierpi�nski graph G and all the extended Sierpi�nski graphs G(a),a 2 A0�1, are non-amenable.Proof. The underlying binary trees of the Sierpi�nski graph G and of the extendedSierpi�nski graphs G(a) are non-amenable, so that the 
laim follows from Theo-rem 3.27. �
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h4. Random walks on Sierpi�nski graphsIn this Se
tion we apply general results from the theory of Markov 
hains on hy-perboli
 spa
es and on equivalen
e relations to the obje
ts asso
iated with theSierpi�nski gasket whi
h were 
onstru
ted in Se
tions 2 and 3. Therefore, the ex-position in this Se
tion is sket
hier, and detailed proofs are often repla
ed withreferen
es to analogous 
ases treated with the same general methods.4.1. Markov 
hains and Markov operatorsA Markov 
hain on a 
ountable state spa
e X is determined by the family oftransition probabilities �x = p(x; �) ; x 2 X ;or, equivalently, by the asso
iated Markov operatorPf(x) = Xy2X p(x; y)f(y)By �nx = pn(x; �) we denote the n-step transition probabilities of the Markov 
hain.There are several 
onditions 
onne
ting transition probabilities of a Markov
hain with a graph stru
ture on its state spa
e X. A Markov 
hain is said to be ofnearest neighbour type if p(x; y) > 0 only if x and y are neighbours, and is said tobe of bounded range if there is a 
onstant D > 0 su
h that p(x; y) = 0 wheneverdist(x; y) � D (where dist(�; �) denotes the graph metri
 on X). For the simplerandom walk on a graph X the transition probabilities �x are equidistributedamong the neighbours of x, i.e.,p(x; y) = ( 1deg(x) ; if (x; y) 2 E(X) ;0 ; otherwise.A Markov operator on a graph X is 
alled irredu
ible if any vertex y 2 X 
an beattained from any other vertex x 2 X with positive probability, i.e., if there existsn � 0 with pn(x; y) > 0, and it is 
alled uniformly irredu
ible if there exist aninteger N > 0 and a number " > 0 su
h that whenever two points x; y 2 X areneighbours there exists n � N with pn(x; y) � ". In parti
ular, the simple randomwalk on X is always uniformly irredu
ible.The spe
tral radius of an irredu
ible Markov operator is de�ned as�(P ) = lim supn!1 �pn(x; y)�1=n :By irredu
ibility the limit in the above formula does not depend on the 
hoi
e ofthe points x; y 2 X.Theorem 4.1 ([18℄). A graph X is amenable if and only the spe
tral radius of thesimple random walk on X is 1.Remark 4.2. This theorem is a
tually valid for a mu
h larger 
lass of reversiblerandom walks on X, see [30℄.



Random Walks on Sierpi�nski Graphs 294.2. Boundaries of Markov operatorsThere are two prin
ipal notions of a boundary of a Markov 
hain. The Poissonboundary is de�ned in the measure theoreti
al 
ategory, and the Martin boundaryis de�ned in the topologi
al 
ategory.More pre
isely, the Poisson boundary G of a Markov 
hain is de�ned as thespa
e of ergodi
 
omponents of the time shift in its path spa
e and is endowedwith a natural harmoni
 measure 
lass [�℄. For any starting point x 2 X the image�x of the measure Px in the path spa
e (
orresponding to starting the 
hain attime 0 from the point x) under the proje
tion onto the Poisson boundary is 
alledthe harmoni
 measure of the point x. The harmoni
 measures �x are absolutely
ontinuous with respe
t to the 
lass [�℄ and satisfy the stationarity 
ondition�x =Xy p(x; y)�y ;so that any fun
tion bf 2 L1(G; [�℄) determines by the Poisson formulaf(x) = h bf ; �xia bounded P -invariant fun
tion on X (su
h fun
tions are 
alled harmoni
). In fa
t,the Poisson formula establishes an isometry between the spa
e L1(G; [�℄) and thespa
e of bounded P -harmoni
 fun
tions on X.The Martin boundary is de�ned in terms of the Green kernelG(x; y) = 1Xn=0pn(x; y)of the Markov operator P . Namely, one �rst embeds the spa
e X into the spa
eof positive fun
tions on itself by the map y 7! G(�; y). The proje
tivization ofthe latter spa
e by the multipli
ative a
tion of R+ (whi
h amounts to repla
ingthe Green kernel with the Martin kernel K(x; y) = G(x; y)=G(o; y), where o isa �xed referen
e point), gives an embedding of X into a 
ompa
t spa
e, afterwhi
h it only remains to take the 
losure of X in this 
ompa
t spa
e (in this
ursory des
ription we assume for simpli
ity that the operator P is irredu
ible).The resulting 
ompa
ti�
ation is 
alled the Martin 
ompa
ti�
ation of the statespa
e X determined by the operator P , and its boundary is 
alled the Martinboundary.By the 
onstru
tion, the points of the Martin boundary 
an be identi�ed withthe (proje
tive 
lasses) of positive superharmoni
 fun
tions f on X (i.e., su
h thatPf � f). The Martin boundary 
ontains (the proje
tive 
lasses of) all minimalpositive harmoni
 fun
tions (� the extremal rays in the 
one of positive harmoni
fun
tions). For any point x 2 X the 
ondition f(x) = 1 allows one to 
hoose arepresentative in ea
h ray of the 
one of positive harmoni
 fun
tions (i.e., this
ondition determines a base Bx of the 
one). Then any positive harmoni
 fun
tion' has a unique representing measure �fx 
on
entrated on the extremal points of the
onvex set Bx. The Martin boundary endowed with the family of the representingmeasures �1x of the 
onstant fun
tion 1 is isomorphi
 to the Poisson boundary.
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hMoreover, almost all sample paths of the Markov 
hain 
onverge in the Martin
ompa
ti�
ation, and for any x 2 X the measure �1x is the hitting measure on theMartin boundary 
orresponding to the starting point xFor a more detailed dis
ussion of the theory of boundaries of Markov 
hainson graphs see the author's arti
les [31℄, [33℄, the book by Woess [56℄ and thereferen
es therein.4.3. The Martin boundary of Sierpi�nski gasketThe fundamental results of An
ona give a des
ription of the Martin boundary onhyperboli
 graphs and general Gromov hyperboli
 spa
es [2℄ (see also the exposi-tion in the book [56℄).Theorem 4.3. Let P be a uniformly irredu
ible bounded range Markov operator ona hyperboli
 graph X with �(P ) < 1. Then the Martin 
ompa
ti�
ation of P ishomeomorphi
 to the hyperboli
 
ompa
ti�
ation of X, in parti
ular, the Martinboundary of P is homeomorphi
 to the hyperboli
 boundary �X.Remark 4.4. Under the 
onditions of Theorem 4.3 the harmoni
 measure 
lass onthe hyperboli
 boundary �X is purely non-atomi
, and the operator P satis�es theboundary Harna
k prin
iple, whi
h implies that the Radon{Nikodym derivativesof the harmoni
 (� hitting) measuresd�xd�y (�) ; x; y 2 X; � 2 �X ;extend to H�older 
ontinuous fun
tions on �X with respe
t to the metri
s �" (36),see [2℄, [3℄.In view of Theorem 4.1 we haveTheorem 4.5. If X is a non-amenable hyperboli
 graph, then the Martin boundaryof the simple random walk on X is homeomorphi
 to the hyperboli
 boundary �X.Theorems 3.21 and 3.23 implyTheorem 4.6. Let P be a uniformly irredu
ible bounded range Markov operator onthe Sierpi�nski graph G (resp., on the augmented Sierpi�nski graph G(a); aA0�1). If�(P ) < 1, then the Martin boundary of P is homeomorphi
 to the Sierpi�nski gasketG (resp., to the one-point 
ompa
ti�
ation G(a) [ f!g of the extended Sierpi�nskigasket G(a)).In parti
ular, in view of Theorems 3.28 and 4.5 we haveTheorem 4.7. The Martin boundary of the simple random walk on the Sierpi�nskigraph G (resp., on the augmented Sierpi�nski graph G(a); aA0�1) is homeomorphi
to the Sierpi�nski gasket G (resp., to the one-point 
ompa
ti�
ation G(a)[f!g ofthe extended Sierpi�nski gasket G(a)).
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ontinuity of the Radon{Nikodym derivatives of harmoni
measures (see Remark 4.4) 
an be used to show that the harmoni
 measure 
lassof the simple random walk on the Sierpi�nski graph determines a Gibbs measureon the symboli
 spa
e A11 (whi
h provides a 
oding of the Sierpi�nski gasket G asexplained in Se
tion 2.5), 
f. [48℄, [55℄, [51℄, [44℄.Denker and his 
ollaborators Sato and Ko
h [16℄, [17℄, [15℄ 
onsidered therandom walk on the Sierpi�nski graph G for whi
h the transition probabilities froma point a 2 A�? are equidistributed among the o�springs of a and of its 
onjugatea? (11), i.e., p(a; b) = 8><>: 1d+1 ; a = a? ; b = a� ; � 2 A ;12d+2 ; a 6= a? ; b = a�;a?� ; � 2 A ;0 ; otherwise : (41)In parti
ular, they proved (by a dire
t 
omputation of the Green and Martinkernels) that the Martin boundary of this 
hain is homeomorphi
 to the Sierpi�nskigasket. This random walk always moves from the n-th level in the Sierpi�nski graphto the next (n+1)-th level, so that it is not irredu
ible in the sense of Se
tion 4.1,and the results of Theorem 4.3 are not appli
able in this situation. However, dueto the absen
e of returns for this random walk, its Green kernel is given justby the n-step transition probabilities. Therefore, the Green kernel is obviouslymultipli
ative along geodesi
s issued from the root of the Sierpi�nski graph. Sin
ethe almost multipli
ativity of the Green kernel along geodesi
s in a hyperboli
spa
e is the main ingredient of An
ona's approa
h, his methods 
ould be a
tuallyadapted to this situation as well.4.4. Random walks on equivalen
e relationsRe
all that a dis
rete equivalen
e relation R on a Borel set X is an equivalen
erelation whi
h is Borel as a subset of X � X and whose 
lasses [x℄ are at most
ountable. The transition probabilities �x = p(x; �); x 2 X of a Markov 
hain onequivalen
e relation R are required to be 
on
entrated on the 
lass [x℄ for anyx 2 X and to be Borel (as fun
tions on R). These transition probabilities give riseto the global Markov 
hain with the state spa
e X and to lo
al Markov 
hains onea
h equivalen
e 
lass [x℄.If the global state spa
e X is 
ompa
t, and the transition probabilities �x de-pend on x 
ontinuously in the weak� topology, then by 
ompa
tness 
onsiderationsthere exists a probability measure m on X whi
h is stationary with respe
t to theglobal 
hain. If no lo
al 
hain has a �nite stationary measure, then the measurem is ne
essarily purely non-atomi
. Standard results from the ergodi
 theory ofstationary Markov 
hains imply that the measure m 
an be always 
hosen to beergodi
, i.e., not de
omposable into a 
onvex 
ombination of two di�erent station-ary measures. This de�nition of ergodi
ity is equivalent to saying that the timeshift in the path spa
e of the global 
hain is ergodi
 with respe
t to the invariantmeasure Pm (whose one-dimensional distributions are m), or, that the state spa
e
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hX does not 
ontain any non-trivial absorbing subsets with respe
t to the global
hain, see [50℄, [29℄.Suppose now that the equivalen
e relation R is in addition endowed witha graph stru
ture (determined by a Borel subset E � R, see the dis
ussion atthe end of Se
tion 2.8), and let dist(�; �) be the asso
iated graph distan
e on theequivalen
e 
lasses. We shall say that the global Markov 
hain on the graphedequivalen
e relation (R; E) determined by a family of transition probabilities �xhas a �nite �rst moment with respe
t to a stationary measure m ifZ Xy dist(x; y)p(x; y) dm(x) <1 : (42)Clearly, if the �rst momentsPy dist(x; y)p(x; y) of the transition probabililties �xare uniformly bounded on x (in parti
ular, if all the lo
al 
hains on the equivalen
e
lasses have uniformly bounded range), then 
ondition (42) is satis�ed for anystationary measure m.An additive 
o
y
le of the equivalen
e relation R is a fun
tion 
 : R ! Rwhi
h satis�es the 
hain rule
(x; y) + 
(y; z) = 
(x; z)for all triples of equivalent points x; y; z 2 X. A 
o
y
le is Lips
hitz with respe
tto the graph stru
ture E if there exists a 
onstant C > 0 su
h that
(x; y) � C � dist(x; y) 8 (x; y) 2 R :If the transition probabilities �x have a �nite �rst moment with respe
t to astationary measure m, then the drift of a Lips
hitz 
o
y
le is de�ned asÆ = Æ(X;R; f�xg;m; 
) = Z Xy 
(x; y)p(x; y) dm(x) ;so that if the measure m is ergodi
 then1n
(x0; xn)! Æfor Pm-a.e. sample path (xn) of the global 
hain on X and in the spa
e L1(Pm).The methods of the entropy theory of random walks on groups (see [39℄, [33℄and the referen
es therein) 
an be 
arried over to the Markov 
hains on equivalen
erelations and give 
riteria of triviality and of identi�
ation of the Poisson bound-aries of lo
al Markov 
hains on the 
lasses of the equivalen
e relation analogousto those for random walks on groups, see [32℄, [36℄.4.5. The Poisson boundary of extended Sierpi�nski gasketsWe shall now apply the 
onsiderations from the previous Se
tion to the weak tailequivalen
e relation � on the 
ompa
t set A0�1 (see De�nition 2.14) endowedwith the graph stru
ture E� (24). In parti
ular, for any weak� 
ontinuous familyof transition probabilities on �-
lasses there is a stationary measure on A0�1.
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onditions on the transition probabilities �a; a 2 A0�1 (for ex-ample, for the simple random walk with respe
t to the graph stru
ture E�). To takethe simplest example, it is well-known to be the 
ase if the transition probabilities�a are determined by a random walk on the free semigroup A�? via the a
tion (6),i.e., p(a;a �w) = �(a) for a 
ertain non-degenerate probability measure � on A�?,see [33℄ and the referen
es therein (
f. also an analogous uniqueness result for theBrownian motion on foliations in [21℄).The syn
hronization 
o
y
le � (21) is obviously Lips
hitz with respe
t to thegraph stru
ture E� with the 
onstant C = 1.Theorem 4.10 (
f. [11℄, [40℄). Let f�ag be the family of transition probabilities ofa Markov 
hain on the weak tail equivalen
e relation (A0�1;�) with a �nite �rstmoment with respe
t to the graph stru
ture E�, and let m be a purely non-atomi
ergodi
 stationary measure on A0�1. Depending on the sign of the drift Æ of thesyn
hronization 
o
y
le � the following three 
ases o

ur:(i) If Æ < 0, then Pm-a.e. sample path (a0;a1; : : :) 
onverges to the remoteroot of the equivalen
e 
lass [a0℄, and the Poisson boundary of m-a.e. lo
alMarkov 
hain is trivial.(ii) If Æ = 0, then the Poisson boundary of m-a.e. lo
al Markov 
hain is trivial.(iii) If Æ > 0, then Pm-a.e. sample path (a0;a1; : : : ) 
onverges to a point of theSierpi�nski gasket G(a0) (
onsidered as a subset of the hyperboli
 boundaryof the Sierpi�nski graph G(a0)). For m-a.e. string a 2 A0�1 the Poissonboundary of the lo
al Markov 
hain on the equivalen
e 
lass [a℄ is isomor-phi
 to the Sierpi�nski gasket G(a) endowed with the asso
iated family ofhitting probabilities.In the 
ase (iii) the harmoni
measure 
lass [�a℄ on a.e. Sierpi�nski gasketG(a)is purely non-atomi
 [36℄. By removing a 
ountable set of points (
f. Remark 2.13)we obtain an in
reasing sequen
e of partitions �n of G(a) whose elements arethe interiors of the n-th level simpli
es of the Sierpi�nski graph G(a). Then theapproa
h from [32℄ in 
ombination with Theorem 3.24 impliesTheorem 4.11. Under 
onditions of Theorem 4.10, if Æ > 0 then for m-a.e. a 2A0�1 the Hausdor� dimension of the harmoni
 measure 
lass [�a℄ on the Sierpi�nskigasket G(a) is HD[�a℄ = 1log 2 � hÆ ; (43)where the asymptoti
 entropy h is the number de�ned ash = � limn!1 1n logpn(a0;an)(this limit exists Pm-a.e. and the spa
e L1(Pm)).The Sierpi�nski graph G (resp., the gasket G) is 
ontained in all the extendedSierpi�nski graphs G(a) (resp., the gaskets G(a). For a random walk on the 
lasses
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hof the weak tail equivalen
e relation, a priory, the restri
tions of transition proba-bilities from G(a) to G are all di�erent and the restri
tions of the harmoni
measure
lasses [�a℄; a 2 A0�1 to G are pairwise singular for the strings a from di�erentweak tail equivalen
e 
lasses. However, if the restri
tions of the transition proba-bilities from the extended Sierpi�nski graphs G(a) to the Sierpi�nski graph G are allthe same, then under relatively mild 
onditions one 
an show that the behaviouron G does not depend \too mu
h" on what happens on the 
omplement G(a)r G.This allows one to apply the results obtained for a.e. random graph G(a) to the
on
rete Sierpi�nski graph G. For example,Proposition 4.12. For a string a 2 A0�1 
onsider the simple random walk on theextended Sierpi�nski graph G(a), and denote by [�a℄ the arising harmoni
 measure
lass on the extended Sierpi�nski gasket G(a). Then the restri
tion [�a℄G of the
lass [�a℄ to the Sierpi�nski gasket G � G(a) is equivalent to the harmoni
 measure
lass [�℄ on G determined by the simple random walk on the Sierpi�nski graph G.Sket
h of the proof. The simple random walk on G is obtained by re
e
ting thesimple random walk on G(a) on the boundary of G in G(a). Thus, [�℄ is absolutely
ontinuous with respe
t to [�a℄G. Conversely, the boundary of G in G(a) 
onsistsof at most 3 points, so that it is negligible with respe
t to [�a℄G. Therefore, a.e.sample path of the simple random walk on G(a) whi
h 
onverges to a point inG � G(a) eventually 
oin
ides with a 
ertain sample path of the simple randomwalk on G. �Corollary 4.13. The Hausdor� dimension of the harmoni
 measure 
lass on theSierpi�nski gasket G determined by the simple random walk on the Sierpi�nski graphis given by formula (43), where h and Æ are the asymptoti
 entropy and the drift ofthe syn
hronization 
o
y
le, respe
tively, determined by any stationary measure ofthe simple random along the 
lasses of the weak tail equivalen
e relation � endowedwith the graph stru
ture E� (
f. Remark 4.9).4.6. The singularity problemThe problem of 
omparing the harmoni
 measure with other natural measures onthe boundary arises in numerous situations: negatively 
urved Riemannian mani-folds, random walks on groups, produ
ts of random matri
es, 
onformal dynami
s,see the referen
es below. In all known 
ases 
oin
iden
e of the harmoni
 measuretype with other natural measure types inevitably implies that the 
onsidered sys-tem must belong to a 
ertain very spe
ial sub
lass. However, the results of thistype are notoriously diÆ
ult and heavily exploit the spe
i�
s of the 
onsidered
lass of systems (
f. the entirely di�erent approa
hes used in [25℄, [13℄, [43℄, [49℄,[41℄, [46℄, [47℄). The problem remains open in many interesting situations. Let usjust mention the following problem. Let G = �1(M ) be the fundamental group ofa 
ompa
t negatively 
urved manifoldM . Is it true that the harmoni
 measure ofany �nitely supported random walk on G is singular with respe
t to the Hausdor�measure on the sphere at in�nity of the universal 
overing manifold? Yet another
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losely 
onne
ted problem is that of des
ribing �nitely generated groups admittinga \maximal entropy" random walk, i.e., su
h that h = lv, where h is the entropy,l is the linear rate of es
ape, and v is the growth of the group (e.g., see the re
entpaper [54℄ and the referen
es therein).The Sierpi�nski gasket G 
arries a natural uniformly distributed measure �,whi
h is the image of the uniform Bernoulli measure on A11 under the map � (12)and 
oin
ides with the log(d+ 1)= log 2-dimensional Hausdor� measure on G.Problem 4.14. Is the harmoni
 measure 
lass [�℄ on the Sierpi�nski gasket G deter-mined by the simple random walk on the Sierpi�nski graph G singular with respe
tto the Hausdor� measure �?Below are several 
omments to this problem.1. For the randomwalk on the Sierpi�nski graph G with the transition probabil-ities (41) 
onsidered by Denker and 
ollaborators the harmoni
 measure 
oin
ideswith the Hausdor� measure due to the very spe
ial 
hoi
e of the transition prob-abilities (a
tually, the time n transition probability from the root ? is pre
iselythe uniform measure on the n-th level of the Sierpi�nski graph). However, for thesimple random walk on G the situation be
omes non-trivial due to the presen
e ofthe horizontal transitions, so that there is no a priori reason for the equivalen
e(let alone 
oin
iden
e) of the harmoni
 and the Hausdor� measures. For example,let us look at Fig. 10 where a fragment of a horizontal level of the Sierpi�nski graphis shown (on the left-hand side of the pi
ture are the triangles represented as graphverti
es on the right-hand side). This fragment is the 3-neighbourhood of a set Z
onsisting of 3 \siblings" (represented as bla
k triangles on the left-hand side ofthe pi
ture and as bla
k dots on the right-hand side). If the initial distribution isequidistributed on the set Z, then after 5 steps of the simple random walk its re-stri
tion onto Z is no longer uniformly distributed (be
ause of an additional 
y
lethe two points to the right will have higher probabilities than the point on theleft).
Figure 10
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h2. Sin
e � is the maximal entropy measure of the Bernoulli shift on A11 ,Remark 4.8 in 
ombination with the uniqueness of the measure of the maximalentropy for the Bernoulli shift implies that the singularity of [�℄ and � is a
tuallyequivalent to the Hausdor� dimension of � being stri
tly smaller than the Hausdor�dimension of G (
f. Corollary 4.13).3. An example of a \natural" measure on the Sierpi�nski gasket singular withrespe
t to the Hausdor� measure is provided by Kusuoka's energy measure [42℄,[8℄. A
tually, the arguments in these papers shows that its Hausdor� dimensionis stri
tly less than the Hausdor� dimension of the Sierpi�nski gasket. It would beinteresting to better understand the dynami
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