B N - AR AR FE AR st e AR R ARV RS AR e A
EJ b J. Institute for Mathematical Physics A-1090 Wien, Austria

Random Walks on Sierpinski Graphs:
Hyperbolicity and Stochastic Homogenization

Vadim A. Kaimanovich

Vienna, Preprint ESI 1169 (2002) June 12, 2002

Supported by the Austrian Federal Ministry of Education, Science and Culture
Available via http://www.esi.ac.at



Random Walks on Sierpinski Graphs:
Hyperbolicity and Stochastic Homogenization

Vadim A. Kaimanovich

Abstract. We introduce two new techniques to the analysis on fractals. One
is based on the presentation of the fractal as the boundary of a countable
Gromov hyperbolic graph, whereas the other one consists in taking all possible
“backward” extensions of the above hyperbolic graph and considering them
as the classes of a discrete equivalence relation on an appropriate compact
space. lllustrating these techniques on the example of the Sierpinski gasket
(the associated hyperbolic graph is called the Sierpinski graph), we show
that the Sierpinski gasket can be identified with the Martin and the Poisson
boundaries for fairly general classes of Markov chains on the Sierpinski graph.

1. Introduction

The aim of this paper is to introduce two new techniques to the analysis on fractals
(which, as testified by the present volume, is a very active and quickly developing
area).

Our approach works for any fractal generated by an IFS (iterated function
system) consisting of similarities with the same scaling factor. However, leaving out
idle generalities, we introduce these techniques just on the famous example of the
(d-dimensional) Sierpiniski gasket G determined by a simplex A in the Euclidean
space R? and apply them to the problem of the realization of the Sierpinski gasket
as the boundary of an appropriate countable Markov chain. The latter problem,
first considered by Denker and his collaborators Sato and Koch in a recent series
of papers [15], [16], [17] (see Section 4.3 for more details), was the starting point
of the present work.

One technique relates fractals to the hyperbolic geometry, and it is based
on the presentation of the fractal as the boundary of an appropriate countable
Gromouv hyperbolic graph. For defining the graph associated with the Sierpinski
gasket we begin with the “vertical” Cayley tree of the free semigroup generated
by the TFS from the definition of the gasket. We identify the tree vertices with
the images of the base simplex A under the corresponding maps. In order to take
into account the spatial configuration on each horizontal level, this tree is further
augmented by “horizontal” edges joining simplices with non-empty intersections.
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We call the resulting graph G the (d-dimensional) Sierpiviski graph. [This term
had already been used in a somewhat different context, see [23], [28], [53]. The
object which is called “Sierpiniski graph” in these papers is also known under the
name of the “graphical Sierpinski gasket” [4] and is isomorphic to the horizontal
layers of certain extended Sierpinski graphs in the sense of our Definition 2.9, see
Section 2.7 below for more details.]

In the above construction one could actually take an arbitrary subset X C R¢
instead of the simplex A. If the diameter of K 1s small, then it does not allow
one to see the spatial interaction between different branches of the TFS, and the
corresponding graph is just a tree. However, for any compact set K containing the
simplex A the arising graph is quasi-isometric to the Sierpiniski graph.

Yet another hyperbolic metric on the Sierpinski graph (quasi-isometric to
the graph distance) can be obtained by using the fact that the group Sim(R9) of
similarities of the Euclidean space R? acts simply transitively both on the set of
all simplices similar to A and on the hyperbolic space H%! which gives rise to
an embedding of the Sierpiniski graph into the hyperbolic space Ht!,

The other technique is brought forward in order to resolve the putative con-
tradiction between the highly symmetric appearance of the Sierpinski gasket and
the absence of a sufficiently big symmetry group (there is just a semigroup action
responsible for the self-similar structure of the Sierpiriski gasket). We replace the
usual “homogeneity” synonymous to the presence of a symmetry group with the
stochastic homogeneity characterized by the presence of a discrete Borel equiva-
lence relation with a finite stationary measure.

We make the definitions of the Sierpinski gasket and of the Sierpinski graph
“bilateral” by extending them from the “microscopic” to the “macroscopic” scale.
Namely, instead of just taking smaller and smaller subsimplices of the given simplex
A one may also go “backwards” by embedding A into bigger and bigger simplices.
In terms of the theory of dynamical systems this procedure corresponds to passing
to the natural extension of the associated unilateral full shift. The alphabet A
of this shift is the set of contractions from the IFS used in the definition of the
Sierpiniski gasket, so that in our setup it can also be identified with the vertex set
of the original simplex A.

In this way, any string a from the compact space of left-infinite strings A° =
{(..,a2,a_1,a0) : a; € A} determines a (non-compact) extended Sierpiriski
gasket G(a) D G and the associated extended Sierpiriski graph G(a) O G. Further,
there 1s a Borel graph structure on the weak tail equivalence relation ~ on the
space A" _ (= the orbit equivalence relation of the natural right action of the free
semigroup generated by A on A% ) such that the class [a]. endowed with this
structure is isomorphic to G(a) for all a € A” _ except for a countable number of
virtually periodic strings.

oQ

By endowing the space A°  with an appropriate probability measure m we
may now apply ergodic methods in order to obtain statements valid for almost all
(with respect to the measure m) extended graphs G(a) and gaskets G(a), which,
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in turn, lead to statements about the original Sierpiniski graph G and Sierpinski
gasket G (provided the added parts of G(a) and G(a) do not interfere “too much”
with what happens on G and G). Note that this construction is quite different from
what is usually meant by “random fractals” (e.g., see [26], [27] and the references
therein).

Due to the lack of space (and time) we chose to concentrate on the detailed
explanation of the two aforementioned techniques and on the reduction of the
problems concerning the boundary behaviour of Markov chains on the Sierpinski
graph to the frameworks of the hyperbolic geometry and of the theory of discrete
equivalence relations. On the other hand, the final implementation of this reduction
is often just sketched as it follows the same lines as already known results from
these disciplines.

The paper has the following structure.

Section 2 is auxiliary: we introduce the Sierpiriski gasket (Section 2.1), define
the Sierpiriski graph (Section 2.2), discuss various actions of the group of simi-
larities (Section 2.4) and a symbolic coding of the Sierpinski gasket and graph
(Section 2.5). Further we define the extended Sierpinski gaskets and graphs (Sec-
tion 2.7) and realize them in terms of strong and weak tail equivalence relations
on the symbolic space A% _ (Sections 2.8 and 2.9).

Section 3 is devoted to geometric properties of Sierpinski graphs. We begin
with a general discussion of trees and certain related graphs. Both for rooted trees
(i.e., ones with a fixed vertex) and remotely rooted trees (i.e., ones with a fixed
boundary point) there is a well-defined notion of belonging to the same “genera-
tion” (level) with respect to the root. In order to obtain an augmented tree one
adds to a rooted tree new “horizontal” edges satisfying a certain natural con-
dition. In Section 3.4 we formulate a simple necessary and sufficient condition
for Gromov hyperbolicity of augmented rooted trees (Theorems 3.13 and 3.15)
and give an explicit description of their hyperbolic boundary (Theorem 3.16). In
Section 3.5 we show that the Sierpiniski graph (which is an augmented tree) sat-
isfies the above hyperbolicity condition and identify its hyperbolic boundary with
the Sierpinski gasket (Theorem 3.21). In the same way, the hyperbolic boundary
of an extended Sierpiniski graph is the one-point compactification of the associ-
ated extended Sierpiriski gasket (Theorem 3.23). We also show that the Euclidean
metric on the Sierpinski gasket is uniformly Holder equivalent to a family of nat-
ural metrics of “hyperbolic origin” (Theorem 3.25). In Section 3.6 we discuss the
quasi-isometric embedding of the Sierpinski graph into the hyperbolic space H*+!
determined by the group of similarities of R? and related issues from the combina-
torial group theory and conformal dynamics. Finally, in Section 3.7 we establish
non-amenability of the Sierpinski graph G and of the extended Sierpinski graphs
G(a).

In Section 4 we apply general results from the theory of Markov chains on
hyperbolic spaces and on equivalence relations to the objects associated with the
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Sierpinski gasket which were constructed in Sections 2 and 3. By using the Ancona
theory we identify in Theorem 4.6 the Martin boundary for a class of bounded
range Markov operators on the Sierpiiiski graph (resp., on an extended Sierpiriski
graph) with the Sierpiniski gasket (resp., with the one-point compactification of the
associated extended Sierpinski gasket). In particular, this class contains the simple
random walks (Theorem 4.7). On the other hand, by using the entropy theory of
random walks on equivalence relations we also obtain a description of the Poisson
boundary for a family of Markov chains on “typical” extended Sierpinski graphs
G(a) under the finite first moment condition (which is much weaker than the
bounded range assumption used for the identification of the Martin boundary). The
situation here is similar to what happens with random walks on non-unimodular
groups [11], [40]. Namely, everything is determined by the sign of the drift with
respect to the remote root. If the drift is zero or directed towards the root, then
the Poisson boundary is trivial, whereas if the drift is directed from the root, then
the Poisson boundary can be identified with the extended Sierpiriski gasket G(a)
(Theorem 4.10). In Theorem 4.11 we prove that in the latter case the Hausdorff
dimension of the harmonic measure is expressed as the familiar ratio of the entropy
and the exponent (= drift). Finally, in Section 4.6 we ask the intriguing question
about the singularity of the harmonic measure of the simple random walk on
the Sierpiiiski graph with respect to the Hausdorff (= uniform) measure on the
Sierpiniski gasket (Problem 4.14) and discuss several related topics.

I would like to thank Professors Peter Grabner and Wolfgang Woess for invit-
ing me to the excellent multi-faceted conference “Fractals in Graz 2001” and for
their collaboration and invariable patience during the editorial process. Significant
parts of the paper were written during the author’s visits to Technische Universitat
Graz, Universitd di Roma “La Sapienza” (organized by the Gruppo Nazionale di
Analisi Matematica, Probabilita e Applicazioni — GNAMPA) and the Ben-Gurion
University of the Negev at Beer-Sheva (organized by the Dozor Fellowship Visiting
Fund) whose support is gratefully acknowledged.

2. The Sierpinski gasket and the Sierpinski graph

2.1. The Sierpiriski gasket
Throughout the paper we shall fir a simplex

A=A({pa}) = {Ztapa o >0, ta = 1} C R?

spanned by its vertex set {p,}, where o runs through the alphabet
A={1,2,...,d+1}.

Denote by
Sim(R%) = {g:am—)ax—l—b, a€ Ry, bE]Rd}
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the group of similarities of the Euclidean space IR¢ which acts simply transitively
on the set

S ={Y=ygA:gcSimR%} (1)
of all simplices similar to A. If the scaling factor a of a similarity g : # — az + b
i1s not equal to 1, then ¢ has a unique fixed point zg and satisfies the formula

gr —xg = a(x — xg) .

By
. 1
Jo € SIM(RY) : Jal — Po = 5(1‘ - Pa), reRY ac A, (2)

denote the similarities with the scaling factor % and the fixed points p,, i.e., gq
are uniquely determined by the conditions

Japp = Pa O‘:ﬁa
%(pa—i—pﬁ)’ O‘#ﬁ

Denote by
S =sgr ({ga}) C G =gr({ga}) C Sim(R?) (3)
the semigroup (resp., the group) generated by the similarities g, g € A.
Let us now define inductively a sequence of subsets of the set of simplices &:

0] n+1 n
X:{A}, Z) :{gaE:aEA,EEX}, n>0,
(the simplices from Z}n are called level n simplices), and put
A= U X'cs. (4)
n>0

Definition 2.1. The compact set
G:ﬂG", where G" = UE, n>0,

n -
YeA
15 called the Sierpinski gasket determined by the simplex A.

The first 3 iterations of the construction from Definition 2.1 are presented in
Fig. 1; see Notices of Amer. Math. Soc., 46 (1999), No. 10 for a full colour “front
page coverage” of the Sierpiiski gasket.

2.2. The Sierpiiiski graph

Recall that a graph X is determined by a vertexr set V(X) and an edge set £(X) C
V(X) x V(X). Slightly abusing the notation we shall often identify the graph with
its vertex set. A graph X is non-oriented if the set £(X) is symmetric, and contains
no loops if £(X) does not intersect the diagonal in V(X) x V(X). Two vertices
z,y € V(X) are called neighbours if (z,y) € E(X). The degree deg(x) of a vertex x
is the number of its neighbours. If any two vertices z,y € V(X) can be joined with
a chain of edges from £(X), then the graph X is called connected. The minimal
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length of such a chain is called the graph distance on V(X) and it is denoted by
dist(z, y).

Convention 2.2. Throughout the paper all graphs (unless otherwise specified) are
assumed to be countably infinite, non-oriented, with no loops, to have uniformly
bounded vertex degrees, and to be connected.

Definition 2.3. The Sierpinski graph G (of dimension d) is the graph whose vertex

set

Vg) = X

is the set (4) of all simplices used in the construction of the Sierpiviski gasket, and
the edge set

E(G)=&"(G)ueEng)
1s a unton of the sets of vertical and horizontal edges, respectively, where

n n+1
Sv(g):{(E,E’),(E’,E):EInZOwithEEX e X' andE'CE} ,

MG ={(=¥):3n > 0with, > € X", and £ # 0} .

In other words, the vertical edges of G are those of the natural partition
tree structure on A, whereas the horizontal edges take into account the spatial

configuration of simplices from each level A by joining those simplices whose
intersection i1s non-empty.
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2.3. Symbolic spaces
Denote by

An=114 A= U A4, A= U 4
k=m n:m<n<oo m:—oo<m<n

various spaces of strings @ = (ay) of symbols from the alphabet A (the numbers
m and n in these notations are allowed to take the values +oo as well). We shall
also use the following notations:

o |a| =n— m+ 1 — the length of a string a € A2 ;
e [a] = n — the stretch of a string a € A"  C A* __;
. a%, € AZ;, — the truncation of a string a € A}, determined by the

integers m/, n’ with m < m’ <n' <mn;
ay € A% — the string whose entries are all equal to a symbol « € A;
ab — the concatenation of two strings @ € A and b € Anats
T: A2, — AL — the shift defined by the formula [Tay = [a]k41;
U A7 — A — the (non-invertible) wunilateral shift defined by the
formula Ua = (T'a)$°.

We shall refer to the strings from the space A7 as words and denote by @
the empty word (of length |@| = 0). Then the set

Ay ={o}t U A
endowed with the multiplication

ab = a(T-lelp) | a, be A |

becomes the free semigroup on the alphabet A. This multiplication naturally ex-
tends to the right action of the semigroup A} on the space A* __ of left infinite
strings by the formula

(a,w) — aw = a(T-Telw) | ac A S we Al . (5)
Below we shall also need the right action of A% on AY __ by the formula

(a,w) — a.w=T"(aw) ac A" S we A, . (6)

2.4. Actions on the space of simplices

It is clear (see Fig. 1) that the map

w Jwi 9wy Jw,, w:(w1w2~~~wn),n21,
Id, w=9g.

is an isomorphism between the free semigroup A% and the semigroup S C Sim(R?)
(here Id denotes the identity of Sim(R%)). Denote by
|w]

wx:gwlgwg"'gwn$:2_|w|$+22_kpwk ) xERda
k=1
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the resulting (left) action of A% = S on R% and by
wY = {wz :z € X}

the associated (left) action of A} = S on the space of simplices & (1). Since S is
a subsemigroup of the group Sim(IR9), we shall also use (in the obvious sense) the
notations (w)~lz, etc., for w € Aj.

Since the group Sim(R9) acts simply transitively on &, any simplex © € &
can be uniquely presented as

Y=g¢"A, g% €SimRY.
Therefore, the right action of the group Sim(IR4) on itself determines by the formula
Yg =g gA Yeg, (7)
a right action of the group Sim(R%) on &. Obviously,
Ag =gA Vg € Sim(R9Y) .

Remark 2.4. Unlike the left action ¥ — gX, the right action (7) is defined on the
space of simplices & only and does not correspond to any action on the space R¢.

The resulting right action

Yw = nglgwg o Gwsy,

of the free semigroup A} =2 S on & admits the following natural interpretation.
Let us denote by p> = ¢g¥p, the vertex of a simplex ¥ = g¥*A € & corresponding
to the vertex p, of the reference simplex A. By ¢ € Sim(R?) denote the similarity
with the scaling factor % and the fixed point pZ, so that g2 = ¢¥g,(¢9™) ™!, where
g are the similarities (2) associated with the vertices of the reference simplex A,
and let

pa(X) =g5% . (8)
Then
0a(D) = 02X = 9297 A = 9794(97) 97 A = 97 9.A = Sga
so that
Yw = N, Gus  Gw, = Puy © 0 Pury © Puy ()

By extending the notation (4), let us denote by
gz{Ew:weATg}CG

the set consisting of the simplex ¥ and all smaller simplices obtained from ¥ by
an iterative application of the transformations ¢, (8).
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2.5. Symbolic coding

We shall identify the vertex set V(G) = X of the Sierpinski graph with the set of
words A}, by the map

AE—)X, a— alA=Aa.

In these symbolic terms the “vertical” part (V(G),EY(G)) of the Sierpinski graph
G is isomorphic to the (right) Cayley tree of the free semigroup A% = S.

For giving a symbolic description of the “horizontal” part of G notice that two
distinct simplices aA, bA from the same level A have a non-empty intersection
(consisting of a single point) if and only if the words @ and b have the form

_ k
{Z‘C;ﬂk with e € A5, a#BeA k>0, )
= Cp«

in which case ¢A is the minimal simplex from A containing both aA and bA | and

lel

aANbA =Y "2 p., + 27197 (po + pg) ¢ = {e (o +12))} -
k=1

Let
Q={c(i(pa+ps) ce Ay, a,peA} CA. (10)
Following [16], let us define the conjugate of a word a € A} as

(11)

a*_ Cﬁaka a:caﬁk,cE.A*g,oz,ﬁE.A,kZI,
a, a=a" acA k>0.

Then, by (9), two words a # b € A} are joined with a horizontal edge in the
Sierpinski graph if and only if either a’f_l = brf_l or a* = b. Therefore, the
vertices of the Sierpinski graph G are classified by their degrees in the following
way:

(i) The “root” @, for which deg(@) = d 4+ 1. The neighbours of @ are the
1-letter words «, a € A.

(i1) The “corner vertices” a = o”, o € A, n > 0, for which deg(a) = 2d + 2.
Each of these vertices has 1 neighbour a”~! from the preceding (n — 1)-th
level, d neighbours a”~13, 8 € A~ {a}, from the same n-th level, and
d + 1 neighbours o3, 8 € A, from the next (n+ 1)-th level.

(iii) For all other (“ordinary”) vertices deg(a) = 2d 4+ 3. Each of them has 1
neighbour a'~! from the preceding (n — 1)-th level and d 4 1 neighbours
af, B € A, from the next (n+1)-th level, whereas among d+ 1 neighbours
of a from the same n-th level d ones a}™'3, B € A~ {a,} are the “sib-
lings” of a (i.e., they have the same first n — 1 letters), and the remaining
neighbour a* is a “distant relative”.
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FIGURE 2

For any a € AJ° the simplices A, (a) = a} A decrease on n, their intersection
consists of the single point

m(a)=> 27"p,, € G, (12)
k=1

and
alr — w(a) VreR?.
n—od

The coding map 7 : A — G is one-to-one on G \ @, whereas for any “rational”
point from the set @ (10) its m-preimage consists of two coding strings caf* and
cfa® (cf. with analogous boundary expansions for Fuchsian groups, see [52]).

Proposition 2.5 ([16, Proposition 4.2]). The coding map n (12) establishes a home-
omorphism between the Sierpiriski gasket G and the quotient of the space AJ°
(endowed with the product topology) by the equivalence relation consisting of the
pretmages of .

Remark 2.6. In the degenerate case d =1 if p1 = 0,p2 = 1, then G coincides with
the unit interval A = [0, 1], the coding 7 corresponds to the dyadic expansion, and
the subset Q) consists of dyadic-rational numbers.

2.6. Natural extension

The constructions of the Sierpinski gasket (Definition 2.1) and the Sierpinski graph
(Definition 2.3) being “unilateral”, it is natural (and useful for applications) to
make them “bilateral” by extending from the “microscopic” to the “macroscopic”
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scale. Namely, instead of just taking smaller and smaller subsimplices of the given
simplex A one may also go “backwards” by embedding A into bigger and bigger
simplices. In terms of the theory of dynamical systems this procedure corresponds
to passing from the space of unilateral strings A$° (endowed with the unilateral
shift U) to its natural extension A, (endowed with the bilateral shift T); see
[14] for a general definition of the natural extension of a non-invertible dynamical
system.
Let

A, =Ay(a) =alA = Aa? n>0, (13)
be the simplices associated with a string @ € AJ (see Section 2.5). Note that the
simplices associated with a and its shift Ua are connected with the formula

An(Ua) = g Apyifa)  Va€AP, n>0. (14
Then
Apgr = Aarll-l—l = (Aaf)apt1 = Apapyr = Pt (An) (15)

or, in plain words, A, 41 is obtained by contracting A,, towards the vertex paAn"Jr1
(cf. Fig. 2). By using formula (15), we may now extend the definition (13) from
positive indices n to all n € Z by putting for any a € A*°__ and n <0

_ — -1
An(a) = gpanl_'_l ©---0 gpaul (A) =A <a2+1) )

or, equivalently,
1

An(a) =gz} g2l (D) = (angy) A (16)
(see Fig. 3 and Fig. 4). With this extended definition of the sequence A, (a) formula
(14) (where the unilateral shift U is replaced with the bilateral shift 7') now holds
for all a € A% and n € Z.If n < 0, we shall use the notation (16) for unilateral
strings @ € A _ as well.

oQ

A A Al

Clo:l 00:2 00:3

FIGURE 3
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a_2:3,a_1:2,a0:1 a_2:1,0_1:2,00:3

FIGURE 4

Remark 2.7. Formula (16) is precisely analogous to the one arising in the theory
of random walks on groups when passing from unilateral to bilateral walks, see the
discussion in [33].

Remark 2.8. If cach of the symbols from A occurs in the string a’ . infinitely
often, then the simplices A, (a) exhaust the space R4
2.7. Extended Sierpiriski gaskets and graphs
Given a string @ € A%  put
Gn(a) = (any) ™' G,
so that
An(a) ) Gn(a) ) Gn-l—l(a) Vn<0 ’

and
Gp(a)NAy(a) = Gyla) Yym<n.

In the same way we define the graphs
Gn(a) = (an4)7'G,
so that the vertex set of G, (a) is m. Then
Gn(a) D Guyi(a)  VYn<O0.
Definition 2.9. The set
G_c(a) = JGu(a) CR?.

and the graph

G-co(a) = | JGula) .
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are called the extended Sierpinski gasket and the extended Sierpinski graph deter-
mined by the string a € A%, respectively.

[e ol

The extended Sierpiniski graphs G(a) (resp., the associated gaskets G(a)) are
“more homogeneous” than the original Sierpiriski graph G (resp., the gasket G),
as here the root @ is “moved to infinity” and replaced with a “mythical ancestor”
in the terminology of Cartier [10]; cf. [11]. For this reason the graphs G(a? )
and the gaskets G(a” ) had already been considered, for example, in [5], [23].
However, the graphs G(a2 ) still have “corner vertices” whose degree is smaller
than the degree of all other “ordinary vertices” (cf. Section 2.5). In order to deal
with this nuisance and to have a graph with a constant degree of vertices, in the
above papers a mirror copy of G(a ) was then attached to G(a” ). However,
it 18 much more natural to apply a “stochastic homogenization” instead and to
consider a “random” graph (resp., gasket) picked from the family of graphs G(a)
(resp., of gaskets G(a)) according to an appropriate probability measure on A" __,
see below Section 4.5.

2.8. Strong tail equivalence relation
Definition 2.10. Let us denote the strong tail equivalence relation on A* by
axnb < INEZ :ap,=b,Y¥n<N, a,be A” __ |
and let
Ry ={(a,b) :am b} C A" x A"

— 00

be the Borel set consisting of all pairs of ~-equivalent strings. By
laly ={be A’ :a~ b}
we denote the strong equivalence class of a string a € A* .
Remark 2.11. The strong equivalence relation coincides with the orbit equivalence

relation of the action (5) of the free semigroup A% on A* . Namely, for any two
strings a,b e A*

acb < Jee A*, ww €Ay :a=cw, b=cw .

Let
-1
¥(a,b) = lim (a,rla]) bl e G c Sim(R9)

n——od
be the G-valued Gibbs cocycle on the strong tail equivalence relation & [38] (the
expression in the right-hand side of the above formula stabilizes on n by the defi-
nition of the equivalence relation &). As in Section 2.5, we shall identify the vertex

set Ay (a) of the graph G, (a) with the set of strings
{b € [a]y : by = ag for k < n}
by the map
b—v(a,b)Ae 6. (17)
The identification (17) respects the embeddings G,,(a) D G,41(a), so that we have
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Proposition 2.12. For any string a € A% __ the map (17) establishes a one-to-one
correspondence between the equivalence class [aly C AL and the vertex set of
the extended Sierpiriski graph G(a).

The extended Sierpiniski graphs G(a) can be described in symbolic terms in
the same way as 1t was done with the Sierpinski graph in Section 2.5. Namely, let
us extend the definition of the conjugacy a — a* from A% to A* _ by putting

(bap™) =bBa” ,  bEA ., a,BEA n>0,
(O/ioo>* = (O/ioo) ) a€ A.

Then the set of edges of the Sierpiriski graph G(a) (realized under the identification
(17) on the equivalence class [a]y) is a union

Ex(a) = £ (a) U EL(a) C [alx x [aly
of the set of vertical edges
Ex(a) = {(b,ba), (ba,b) : b€ [a]ly, a € A}, (18)
and of the set of horizontal edges
El(a) = {(ba,b3) b€ [ala, 0,0 € AYUL(b,b7) b e [ale, b b} . (19)

Remark 2.13. In the same way as wn Section 2.5, one may also obtain a coding of
the Sierpinski gasket G(a) by bilateral strings b € A= with b’ ~ a which is
one-to-one on the complement of a countable subset of G(a) (where it is two-to-
one).

It is clear that £y (a) = Ex(b) whenever a & b, so that actually we have a
well-defined graph structure on any equivalence class [a]y C A* . Moreover, the
union

t&x= | &la) (20)
acA*
is a Borel subset of Ry. Thus, the triple (A* o, &, Ex) is a graphed equivalence re-
lation (see [1], [34] for a discussion of this notion), which allows one to consider the
graphs G(a) not only individually, but also as members of a “collection” consisting
of all & equivalence classes in A* .

2.9. Weak tail equivalence relation

*

The disadvantage of the space A*
convenient to modify the definitions from Section 2.8 by replacing A~ with the
compact space A® __ and allowing in return for shifted strings to remain equivalent.

i1s 1n its non-compactness. Therefore, 1t is

Definition 2.14. Let us denote the weak tail equivalence relation on A* by
a~b<<— 3tcZ:a~T', a,be AT |

and let
Ro={(a,b)ra~b} CA, x AT,
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be the Borel set consisting of all pairs of ~-equivalent strings. By
l[al. ={be A _ :a~ Db}

we denote the weak equivalence class of a string a € A* . We shall also use the
notations
RC=R.NA"_ xA"__
and
[a]ll = [a]l. N AL,

~

for the restriction of the equivalence relation ~ to A° .

Remark 2.15. The restriction of the weak equivalence relation onto A° _ coincides

with the orbit equivalence relation of the action (6) of the free semigroup A}y on

A%, ¢f. Remark 2.11.

Clearly, a string @ € A* may be ~-equivalent to its own shift T%a, t € Z
if and only if it is ~-equivalent to a periodic string. In this case we say that the
string a is residually periodic. Denote by I1 C A%, the countable set of all residually
periodic strings. Then the formula

7@ g~ b (21)
uniquely defines the Z-valued synchronization cocycle on the restriction of the
equivalence relation ~ onto A* _ ~ II. In particular,

oc(a,T'a)=t VaecA* NI, teZ.

Proposition 2.16. For any a € A% __ ~II the map

[alx = [a]’, bee=TMb, (22)

and the inverse map

[a’ = [aly, c—b=T"Tle=T"®c=T1"7ac), (23)

establish a one-to-one correspondence between the equivalence classes [a]y C A*
and [a]®, C A° .
Given a € A° | let us now put
Eula) = EL(a) U EL(a) C [a]2 x [a]2
where
E(a)={(b,b.a),(b.a,b) :be[al’, ac A},
Ea)y={(b.a,b.p):be[al’, a,8 € A} U{(b,b"):bE[a]’,b#b"} .

The only difference between these definitions and formulas (18), (19) is that here
the action (5) is replaced with the action (6). Then the Borel set

= |J éula)c R (24)
acA’

determines a structure of a graphed equivalence relation on (A% __,~).
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Proposition 2.17. For any a € A% __ ~ 11 the maps (22) and (23) establish an
isomorphism of the graphs ([alx, Ex(a)) and ([a]Y,, E(a)).

Remark 2.18. Let X be a Borel space endowed with a right Borel action of the free
semigroup Aly. The union of all (non-oriented) edges of the form (zo, x), (zo, 23)
and (za,za”) (with x € X, o, 8 € A, a € A} ) determines then a graph structure
on the orbit equivalence relation of this action. The “vertical” part of this structure
(consisting of the edges (za, x)) coincides with the Schreier graph structure of the
action with respect to the generating set A (cf. [6]). The graph structures (20) and
(24) are the specializations of this general construction to the actions (5) and (6),
respectively.

Remark 2.19. In geometric terms the synchronization cocyele o(a,b) (21) is equal
to the difference between the levels of b and a in the graph G(a) = G(b), i.e.,
coincides with the Busemann cocycle on G(a) (see below Section 3.3 for more

details).

Remark 2.20. The synchronization cocyele o (21) on the weak tail equivalence
relation (A% _\11,~) (i.e., in view of the previous Remark, the Busemann cocycle
with respect to the graph structure E. (24)) is cohomologically non-trivial in the
Borel category in contrast to the trivial Busemann cocycle (a,b) — [b] — [a] on
the strong tail equivalence relation (A* ., =) with respect to the graph structure

Ex (20).

3. Geometric properties of Sierpinski graphs

3.1. Rooted trees

Recall that a connected graph is called a tree if it contains no cycles. By 0T we
denote the space of ends of a tree T, i.e., the totally disconnected space which is
the projective limit of the (finite discrete) spaces of infinite connected components
of T'\\ K,,, where connected finite sets K,, exhaust T'. The space of ends 0T serves
as the boundary of the end compactification of T

Definition 3.1. Given a tree T and a vertexr o € T, we shall call the couple (T 0)
a rooted tree.

For a rooted tree (T, 0) put
|z| = |z|, = dist(o, x) (25)
and denote by
T, ={xeT:|z]=n}, n>0 (26)
the sphere in T' of radius n centered at the root o. We shall refer to the set T,
as the n-th level of the rooted tree (T,0). For any point # € T and a number
0 <k <z put
2K =10, 2] N L=k 5 (27)
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in other words, z[=*] (the k-th predecessor of x) is the point on the geodesic
segment [o, ] at distance k from = (see Fig. 5, where |z]| = 3).

FIGURE b

For a rooted tree (T, 0) the space of ends 7T can be identified with the space
of all infinite geodesic rays (i.e., isometric embeddings of Z into T) T = (x4,)
issued from o whose (totally disconnected) topology is determined by the pointwise
convergence of geodesic rays. The end compactification of 7" is homeomorphic to
its wvisual compactification; in which a sequence of points z,, € T converges if and
only if the geodesic segments [0, z,,] converge pointwise.

3.2. Augmented rooted trees
Definition 3.2. Let (T, 0) be a rooted tree, and let
EM CV(T) x V(T)
be a symmetric set such that
(r,y) €E" = |x|=y|, My e eV >0.
Then the graph X with the vertex set

and the edge set
E(X) = &(T) U (E" \ diag)

is called an angmented rooted tree. We shall call the edges from E(T') vertical and
the edges from " \ diag horizontal (see Fig. 6).
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FIGURE 6

We shall extend the notations (25) — (27) from rooted trees to augmented
rooted trees.

Denote by dist the graph distance in an augmented rooted tree X, and
by dist,, the graph distance on its n-th level X,, (where, as usually, we put
disty, (z,y) = oo when # and y belong to different connected components of X,,).
Obviously,

dist(x[_l], y[_l]) < dist(z, y) VYae,yeT . (28)
Definition 3.3. We shall say that a geodesic segment
T = 20,21, .,24 =1, d = dist(x, y)

Joining two points x,y in an augmented rooted tree is canonical if it consists of two
vertical segments (one or both of which may possibly be empty) with an intermediate
horizontal segment, 1.e.,

1—d]

[-1] ;<

x , 1< m,

Zi:{['_ ST and Jzl = gl == ol =zl (29)
y ,ot>zn

for certain integers m,n with 0 < m < n < d (see Fig. 7).

Proposition 3.4. Any two points x,y in an augmented rooted tree can be joined
with a canonical geodesic.

Proof. By (28) the “moves”

{(u, v, v[_l]) — (u, ul=1l, v[_l])

(1w, v) e (w1 71 )7 |ul = vf,

consisting in “lifting” horizontal edges do not increase the distance. Applying
them to an arbitrary geodesic segment joining # and y eventually gives a required
geodesic segment of the form (29). O
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[0}
°
4 ~
4 -~
x[_m] = Zm ’ M y[n—d] Zn
r = Zp
Y=zd
FIGURE 7

Remark 3.5. Definition 3.3 and Proposition 3.4 are applicable to geodesic rays and
to infinite bilateral geodesics as well.

Definition 3.6. A geodesic square R in an augmented rooted tree X is a quadruple
of points x,y, ',y € X such that

(1) |l = lyl;
(ii) ' = al=% y = o= for a certain k > 0;
(iil) dist(x,y) = dist(«',¢') = dist(x, 2) = dist(y,¢') = k.
The number k s called the size of the rectangle R.
Inequality (28) and Proposition 3.4 imply

Proposition 3.7. If (¢, y, zl=k y[_k]) 15 a geodesic square of size k in an augmented
rooted tree X, then

distjp_; (2T gy =k VO<i<k,

and any geodesic segment in X joining the points zI=" and yl="! lies in the level
X|x|_i.
Remark 3.8. An isometric embedding @ of the square {0,1,...,k}? C Z? into an
augmented rooted tree X such that

[7(0,0) = |=(k,0)[,  [x(0,k)|=|x(k, k)|, |=(0,0)|=|=(0, k)| =k (30)
clearly determines a geodesic square of size k in X in the sense of Definition 3.6.
Proposition 3.7 shows that, conversely, any geodesic square of size k gives rise to
an isometric embedding m:{0,1,...,k}? — X satisfying conditions (30).
3.3. Remotely rooted trees
Definition 3.9. Given a tree T and a point w € 9T, we shall call the couple (T,w)

a remotely rooted tree.

Remark 3.10. In a less “botanical” terminology “rooted trees” are called pointed,
and “remotely rooted trees” are called pointed at infinity.
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Denote by 8 = 8, the Busemann cocycle on T defined as
Blx,y) = Zlg% [dist(y, z) — dist(z, z)] . (31)
One may consider the above formula as a regularization of the formal expression
Bz, y) = “ dist(y,w) — dist(z,w)”,

i.e., the Busemann cocycle is a “difference” between the “distances” from the
points y and x to the point at infinity w. We shall refer to the level sets

T, ={yeT:px,y) =0} (32)
of the Busemann cocycle as horizontal levels in a remotely rooted tree T, so that
B(x,y) is the signed distance between the heights of the levels of the points « and
y (see Fig. 8, where f(z,y) = —1).

By extending the notation (27), we shall denote by 2z[=¥ %k > 0 the k-th
predecessor of a vertex x uniquely determined by the relation

B, 27F) = —k | el e [z,w) | (33)

where [z,w) is the geodesic ray joining « and the remote root w (see Fig. 8).

Clearly,
Bla,y) = Bl y7H) Ve yeT, k>0,

FIGURE 8

As it follows from the definition (31), remotely rooted trees can be considered
as limits of rooted trees in the sense that the partitions of 7" into the spherical levels
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(26) with respect to a sequence of roots o, converge pointwise to the partition of
T into the level sets (32) of the Busemann cocycle g, if and only if the sequence
o, converges to w (cf. the discussion at the end of Section 2.7).

Definition 3.11. Let (T,w) be a remotely rooted tree, and let a symmetric set
EM CV(T) x V(T)
be such that
(2,y) € E" = B(x,y) =0, @ Yy e vk >0.
Then the graph X with the vertex set
V(X) =WT)
and the edge set
E(X) = &(T) U (E" \ diag)
15 called an augmented remotely rooted tree. Following Definition 3.2, we shall
call the edges from E(T) vertical and the edges from " \ diag horizontal.

As in Section 3.2, we shall extend the notations (31) — (33) from remotely
rooted trees to augmented remotely rooted trees.

3.4. Hyperbolicity

The Gromov product on a graph X (with respect to a reference point o) is defined
as

(z]y)o = %[dist(o, z) + dist(o, y) — dist(z, y)] . (34)

A graph X is called Gromov hyperbolic if there exists a constant § > 0 such that
the d-ultrametric inequality

(zly)o > min{ (|2)o, (yl2)o} — 0
is satisfied for all 0, z, y, z € X. Equivalently, X is Gromov hyperbolic if all geodesic
triangles in X are uniformly then, i.e., one can always choose a point on each of
the sides of a geodesic triangle in such a way that the pairwise distances between
these points are uniformly bounded.

The hyperbolic boundary 0X of a hyperbolic graph X is defined as the space
of equivalence classes of asymptotic geodesic rays in X (i.e., those which lie within
a finite distance one from another). For any two points € X, & € X there exists
a geodesic ray (not necessarily unique!) issued from # and belonging to the class
¢ (i.e., joining x and £). In the same way, any two distinct points £_ # &4 € 90X
can be joined by a bilateral geodesic (once again, not necessarily unique) whose
positive (resp., negative) geodesic ray belongs to the class &4 (resp., £_). The
definition of the Gromov product (34) can be extended to the case when one of
the arguments belong to 0X by putting

(&), = sup{(x|yn)o : (yn) is a geodesic ray joining o and 5} :
Analogously (by taking the supremum over all geodesic rays joining o with the
points 1, € 9X) one also defines the Gromov product when both arguments
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are boundary points. There exists an absolute constant C' > 0 (depending on the
hyperbolicity constant ¢ only) such that for any bilateral geodesic ¥ joining any
two points 7 £ & € 0X and any reference point 0 € X

|(nl€)o — dist(0,7)| < C. (35)
Below we shall usually leave out the reference point o by assuming that it is fixed
once and for all (in particular, for augmented rooted trees we shall always take for
o the root of the underlying tree).

The hyperbolic boundary 90X is the boundary of the hyperbolic compactifi-
cation of X: a sequence of points z, € X converges in this compactification if
(Zn|2m) = o0, and the limit is a point & € X if (x,]) — oo (in particular, any
geodesic ray converges to the point of 90X determined by its asymptotic equiva-
lence class). For any sufficiently small € > 0 the topology of 0X is metrizable by a
metric p, uniformly equivalent to exp[—e(-|-)], i.e., such that for a certain constant

C>0 )
<M <O WnFLedx. (36)

The hyperbolic compactification of a tree is homeomorphic to its end (= visual)
compactification. See [24], [9], [22] for more details concerning Gromov hyperbolic
spaces.

Definition 3.12. An augmented rooted tree X satisfies “no big squares” condition
if the size of geodesic squares in X is bounded (ef. Definition 3.6)

Theorem 3.13 ([35]; cf. [9, Theorems 11.11, 11.13]). An augmented rooted tree X
1s Gromou hyperbolic if and only if it satisfies the “no big squares” condition.

Remark 3.14. The hyperbolicity of an augmented rooted tree (X, 0) implies that the
lengths of horizontal segments in canonical geodesics on X (see Definition 3.3) are
uniformly bounded (the geodesic triangle whose base is such a horizontal segment
and the lateral sides are the geodesics joining its endpoints with the root is thin).
This can be also directly deduced from the “no big squares” condition.

Since the definition of the Gromov hyperbolicity is local in the sense that
it only involves geodesic triangles in the space, Theorem 3.13 immediately carries
over to augmented remotely rooted trees.

Theorem 3.15. An augmented remotely rooted tree X is Gromov hyperbolic if and
only if it satisfies the “no big squares” condition.

One can explicitly describe the hyperbolic boundary 0X of an augmented
rooted tree (X, 0). Indeed, geodesic rays issued from the root o are the same on T
and on X. The boundary 0T of the tree T' is the space of all such rays, and it is
projected onto dX by the map which assigns to any ray its asymptotic equivalence
class with respect to the graph distance on X (this map is onto because any
asymptotic equivalence class contains a ray issued from the root). More precisely,
denote by (§ the asymptotic equivalence relation on 0T

Z0y <= 3C >0 suchthat dist(zp,y,) <C Vn>0,
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which is the envelope of the set
{(Z,9) €T x 0T : (2, y) €E" ¥n >0} .
Then the definition of the hyperbolic boundary implies

Theorem 3.16. The hyperbolic boundary 0X of a Gromov hyperbolic augmented
rooted tree (X, 0) s homeomorphic to the quotient of the boundary 0T of the un-
derlying rooted tree (T,0) by the equivalence relation ().

One can also give a more explicit description of the metrics p. (36) on 9X,
or, equivalently, of the Gromov product on 9X. Let

h(n, &) = min{dist(o,'y)} , n#&EENX, (37)

where the minimum is taken over all bilateral geodesics joining 1 and &. By Propo-
sition 3.4 and Remark 3.5, such a geodesic can be chosen to be canonical, so that
h(n,&) is the minimal distance from the root to the horizontal segments of these
canonical geodesics. Then inequality (35) implies

Proposition 3.17. There is a constant C > 0 such that
(. &) =l <C Vn#EedX,

so that any metric p. is uniformly equivalent to exp[—eh(-,-)].

3.5. Hyperbolicity of the Sierpinski graphs
We shall now apply the above arguments to the Sierpinski graph G and the ex-
tended graphs G(a), a € A° .

Proposition 3.18. The Sierpiniski graph G s an augmented rooted tree whose un-
derlying tree is the Cayley graph of the free semigroup A%,. Any extended Sierpiriski
graph G(a), a € A% is an augmented remotely rooted tree.

Any level A = A7 of the Sierpifiski graph G can be embedded into R¢ by
—n E
the map which assigns to a simplex ¥ € A its baricenter X. Denote by d,, the

metric on A induced by the Euclidean metric on R under this embedding.

Proposition 3.19. The metrics 2™d, are uniformly quasi-isometric to the graph
metrics dist,, on A | i.e., there exists a constant C' > 1 such that

1 2ndn(21,22) —n
L2l 2e) S £, A .
CS Tty (Tr,5g) = VHF=Es n>0 (38)

—n

Proof. If two simplices ¥, ¥ € A are neighbours, then obviously
1
—<2d,(E,¥)<C
5 <P (5Y) <

for a constant C which depends on the original simplex A only, which proves the
right-hand inequality in (38).

For proving the left-hand side inequality let us take a Euclidean geodesic ¢
joining the barycenters of two simplices X, ¥/ € Xn and endow ¢ with the length
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parameterization. By slightly moving the endpoints of ¢ we may assume without
loss of generality that £ does not intersect the set @), of vertices of level n simplices.
Therefore, the sequence of simplices
Pl
X =%p,2,..., uy =X € A
consecutively intersected by £ is well defined, and each of the intersections
[Tak, Tak41] = €N Xy,

is not a single point. We shall call the points 7; marks on £. Then the distance
between two consecutive marks 7;41 — 7; may be “small” (compared to the size

of simplices from Xn, i.e., to 27") only near a point from @,, the length of any
consecutive series of “small” differences 1s uniformly bounded, and each such series
1s preceded and followed by a difference at least comparable with 277.
We shall now build a path in the graph Z)n by joining the simplices ¥ and
Y/ in the following way.
o The segments [rog, Tor 1] are assigned the simplices Xg.
e The segments [ro5_1, Toi] correspond to intersections of £ with the con-
nected components Qg of the complement A ~~ G" (see Definition 2.1).
We shall assign to each such segment the shortest possible chain of sim-
plices from Z)n going “around” the associated component €, see Fig. 9.
The length of such a chain is uniformly comparable with 2" (72, — To5_1)
unless the difference mp — 7951 1s “small”.
By using the above properties of the differences 7,41 — 7; one can now see
that the length of the constructed path is uniformly dominated by 27|¢|. a

FIGURE 9

Corollary 3.20. The Sierpuiski graph G satisfies “no big squares” condition.
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Theorem 3.13, Theorem 3.16 and Proposition 2.5 now immediately imply

Theorem 3.21. The Sierpuiski graph G s Gromov hyperbolic, and its hyperbolic
boundary 0G is homeomorphic to the Sierpiiski gasket G.

Remark 3.22. Another example of Gromov hyperbolic augmented trees is provided
by the graphs Ck associated by Elek [19] to any compact K contained in the Eu-
clidean cube [0,1]¢. Their vertices are binary subcubes of [0,1]%, and the hyperbolic
boundary 0K is homeomorphic to K. See the recent survey [7] for a general dis-
cussion of boundaries of Gromov hyperbolic spaces.

In the same way, Theorem 3.15 implies

Theorem 3.23. Any extended Sierpiniski graph G(a), a € A%, is Gromov hyper-
bolic, and its hyperbolic boundary 0G(a) is homeomorphic to the one-point com-
pactification G(a) U {w} of the extended Sierpiviski gasket G(a).

Moreover, it turns out that the Euclidean metric on the Sierpinski gasket G
is uniformly Holder equivalent to the metrics p, (36).

Theorem 3.24. There exists a constant C > 0 such that
1
c<ll—gl-2"9<c vn#EeG,

Proof. Let us take a canonical bilateral geodesic v joining the points i and £ and
realizing h(n,£) = n (37), see Definition 3.3, Remark 3.5 and Proposition 3.17.
Denote by

D VS T D VA B A e IR {J

the vertical rays of this geodesic going to the points 1 and &, respectively. Since
n € X,, £ €Y Remark 3.14 implies that

In—¢ll<C-27".

Conversely, the simplices ¥, ;; and X, are not neighbours in the Sierpinski
graph G (for otherwise one could have shortened 5 by directly connecting ¥,, 41 and
¥, 1), which by the definition of the Sierpinski graph means that X, 10X/ | = 0.
Therefore,

1
— .97 < lp—
G <ln—el,
which by Proposition 3.17 ends the proof. |

Theorem 3.25. The Euclidean metric on the Sierpuiski gasket G and the metric
pe on G = 0G are uniformly Holder equivalent in the sense that there exists a
constant C' > 0 such that

_ g][(og2)/e
1 lln=gl

c v G.
C = p(n&) = n#ie
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3.6. Embedding into the hyperbolic space

The group Sim(R?) acts simply transitively by isometries on the hyperbolic space
H?*! realized in the upper half-space model as H¥t! = R4 x R (see [37] for a
general discussion of the relationship between the hyperbolic and similarity struc-
tures). Since Sim(IR9) also acts simply transitively on the space & of all simplices
similar to A, we may identify & with the hyperbolic space H*! by the map

gA — gz | g € Sim(RY) | (39)
where z € H**! is a chosen reference point.

Theorem 3.26 ([35]; cf. [19, Theorem 4]). The embedding of the Sierpiriski graph
G into the hyperbolic space Ht! determined by formula (39) is a quasi-isometry
with respect to the graph metric on G and the hyperbolic metric on H*t!,

Below are several comments on the relationship between the objects associ-
ated with the Sierpiniski gasket and the hyperbolic geometry.

1. The Sierpiniski gasket G is the limit set (in H*!) of the semigroup S =
Az C Sim(R9) (3).

2. The “Sierpifiski group” G C Sim(R9) (3) is isomorphic to the similarity
group of the dyadic-rational space Zd[%], in particular, for d = 1 it coincides with
the group (a, blab® = ba), see Remark 2.6. Although (i is not a discrete subgroup
of Iso(Rd), it is a lattice in the product of the real and dyadic similarity groups.
The group G has two natural boundaries which are the real and the dyadic d-
spaces, see [39], [20] for the case d = 1. The Sierpiriski gasket belongs to the “real”
boundary which describes the behaviour of our dynamics (iteration of contractions
ga) at +oo, whereas the strings a € A _ which describe the dynamics at —oo
can be interpreted as points of the “dyadic boundary”. It would be interesting to
understand to what extent the rich geometry of the Sierpinski gaskets and graphs
could be interpreted just in terms of the group G and its free semigroup 5.

3. The situation characterized by the presence of two different structures
responsible for the behaviour of the dynamics at +oo and —oo, respectively, oc-
curs also in the theory of iterations of rational maps. Lyubich and Minsky [45]
constructed a Riemann surface lamination Ay and a hyperbolic 3-lamination # ;
associated with an endomorphism f of the Riemann sphere C. The leaves of Ay
are planes endowed with a complex affine (= real similarity) structure, whereas the
leaves of H ; are pointed at infinity hyperbolic 3-spaces whose boundary planes are
the leaves pf .A;. Both laminations are endowed with an action of the natural ex-
tension fof the rational map f which is minimal on A and properly discontinuous
on H;, so that the latter action gives rise to the quotient hyperbolic lamination
M; = "Hf/f The “forward” dynamics of f is described by the leafwise Julia
sets, whereas the “backward” dynamics is described by the transversal structure
of these laminations (the transversals of these laminations are, roughly speaking,
backward trajectories of f on @) This picture also bears close resemblance to the
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dynamics of the geodesic flow on hyperbolic manifolds and of associated Kleinian
groups, see [37].

In our context the product of the boundaries of the group GG at +00 and —oo
(see Comment 2 above) can be considered as a R%lamination £ with a leafwise
similarity structure. The forward dynamics is described by the leafwise Sierpinski
gaskets G(a), a € AY_ | whereas the backward dynamics is described by the
transverse structure of £. The group G acts minimally on £ and properly discon-
tinuously on the associated H% ! -lamination 7. We shall return to a more detailed
description of this construction elsewhere.

3.7. Amenability
For a subset A of a graph X denote by

JA={r e A:Jy e X ~ Awith (z,y) € £(X)}

its boundary. Recall that a connected graph X is called amenable if it contains
finite sets A C X with arbitrarily small isoperimetric ratio

(card 9A)/(card A) (40)

(we remind the reader Convention 2.2 made in Section 2.2). According to a crite-
rion of Gromov (see [12]) a graph X is non-amenable if and only if there exists a
map ¢ : X — X and a constant C' > 0 such that

dist(z, p(x)) < C, card {¢~ ' ()} > 2 Vee X,

In particular, a tree is amenable if and only if it contains arbitrarily long geodesic
segments without branching.

Since adding new edges to the same vertex set may only make the graph
distance smaller, Gromov’s criterion implies

Theorem 3.27. Under conditions of Convention 2.2, if a rooted tree (T, 0) is non-
amenable, then any its augmentation (X, 0) is also non-amenable.

The converse is not true even under the assumption that the augmented tree
(X, 0) is hyperbolic. For an example let (7",0) be the rooted tree obtained by
adding to a binary rooted tree (T, 0) a new geodesic ray 4 issued from o. Then T’
is amenable, whereas T is non-amenable. Choose a ray v in T, and add to 7" all
horizontal edges joining v and 4. Then the resulting augmented rooted tree (X', 0)
is roughly isometric to the original binary tree (7' 0), so that X’ is non-amenable.

Theorem 3.28. The Sierpiriski graph G and all the extended Sierpiriski graphs G(a),
ac A, are non-amenable.

Proof. The underlying binary trees of the Sierpiniski graph G and of the extended
Sierpiniski graphs G(a) are non-amenable, so that the claim follows from Theo-
rem 3.27. |
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4. Random walks on Sierpinski graphs

In this Section we apply general results from the theory of Markov chains on hy-
perbolic spaces and on equivalence relations to the objects associated with the
Sierpinski gasket which were constructed in Sections 2 and 3. Therefore, the ex-
position in this Section is sketchier; and detailed proofs are often replaced with
references to analogous cases treated with the same general methods.

4.1. Markov chains and Markov operators

A Markov chain on a countable state space X is determined by the family of
transition probabilities

Fx:p($a')a $6Xa

or, equivalently, by the associated Markov operator

Pf(x) =" plx,y)f()

yeXx

By 7' = pn (%, ) we denote the n-step transition probabilities of the Markov chain.

There are several conditions connecting transition probabilities of a Markov
chain with a graph structure on its state space X. A Markov chain is said to be of
nearest neighbour type if p(x,y) > 0 only if # and y are neighbours, and is said to
be of bounded range if there is a constant D > 0 such that p(z,y) = 0 whenever
dist(z,y) > D (where dist(-,-) denotes the graph metric on X). For the simple
random walk on a graph X the transition probabilities 7, are equidistributed
among the neighbours of z, i.e.,

L if(x,y) € EX);
B s

0, otherwise.

A Markov operator on a graph X is called irreducible if any vertex y € X can be
attained from any other vertex # € X with positive probability, i.e., if there exists
n > 0 with py(z,y) > 0, and it is called uniformly irreducible if there exist an
integer N > 0 and a number € > 0 such that whenever two points z,y € X are
neighbours there exists n < N with p,(x,y) > . In particular, the simple random
walk on X 1s always uniformly irreducible.

The spectral radius of an irreducible Markov operator is defined as
. 1/n
p(P) =lim sup(pn(x, y)) /n

n—od

By irreducibility the limit in the above formula does not depend on the choice of
the points z,y € X.

Theorem 4.1 ([18]). A graph X is amenable if and only the spectral radius of the
simple random walk on X s 1.

Remark 4.2. This theorem 1s actually valid for a much larger class of reversible
random walks on X, see [30].
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4.2. Boundaries of Markov operators

There are two principal notions of a boundary of a Markov chain. The Poisson
boundary is defined in the measure theoretical category, and the Martin boundary
is defined in the topological category.

More precisely, the Poisson boundary G of a Markov chain is defined as the
space of ergodic components of the time shift in its path space and is endowed
with a natural harmonic measure class [v]. For any starting point € X the image
vy of the measure P, in the path space (corresponding to starting the chain at
time 0 from the point ) under the projection onto the Poisson boundary is called
the harmonic measure of the point x. The harmonic measures v, are absolutely
continuous with respect to the class [v] and satisfy the stationarity condition

ve =Y pl, vy,
Yy

so that any function fE L (G, [v]) determines by the Poisson formula
f@) = (F.ve)

a bounded P-invariant function on X (such functions are called harmonic). In fact,
the Poisson formula establishes an isometry between the space L*(G, [v]) and the
space of bounded P-harmonic functions on X.

The Martin boundary is defined in terms of the Green kernel

G(z,y) =D pal2,y)

of the Markov operator P. Namely, one first embeds the space X into the space
of positive functions on itself by the map y — G(-,y). The projectivization of
the latter space by the multiplicative action of Ry (which amounts to replacing
the Green kernel with the Martin kernel K(x,y) = G(z,y)/G(o,y), where o is
a fixed reference point), gives an embedding of X into a compact space, after
which it only remains to take the closure of X in this compact space (in this
cursory description we assume for simplicity that the operator P is irreducible).
The resulting compactification is called the Martin compactification of the state
space X determined by the operator P, and its boundary is called the Martin
boundary.

By the construction, the points of the Martin boundary can be identified with
the (projective classes) of positive superharmonic functions f on X (i.e., such that
Pf < f). The Martin boundary contains (the projective classes of) all minimal
positive harmonic functions (= the extremal rays in the cone of positive harmonic
functions). For any point # € X the condition f(z) = 1 allows one to choose a
representative in each ray of the cone of positive harmonic functions (i.e., this
condition determines a base By of the cone). Then any positive harmonic function
¢ has a unique representing measure v; concentrated on the extremal points of the
convex set B, . The Martin boundary endowed with the family of the representing
measures v} of the constant function 1 is isomorphic to the Poisson boundary.
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Moreover, almost all sample paths of the Markov chain converge in the Martin
compactification, and for any x € X the measure v} is the hitting measure on the
Martin boundary corresponding to the starting point z

For a more detailed discussion of the theory of boundaries of Markov chains
on graphs see the author’s articles [31], [33], the book by Woess [56] and the
references therein.

4.3. The Martin boundary of Sierpinski gasket

The fundamental results of Ancona give a description of the Martin boundary on
hyperbolic graphs and general Gromov hyperbolic spaces [2] (see also the exposi-
tion in the book [56]).

Theorem 4.3. Let P be a uniformly irreducible bounded range Markov operator on
a hyperbolic graph X with p(P) < 1. Then the Martin compactification of P is
homeomorphic to the hyperbolic compactification of X, in particular, the Martin
boundary of P is homeomorphic to the hyperbolic boundary X .

Remark 4.4. Under the conditions of Theorem 4.3 the harmonic measure class on
the hyperbolic boundary 0X s purely non-atomic, and the operator P satisfies the
boundary Harnack principle, which implies that the Radon-Nikodym derivatives
of the harmonic (= hitting) measures

dv,
dvy

€, r,y€ X, £ €0X,

extend to Holder continuous functions on 90X with respect to the metrics p. (36),

see [2], [3].
In view of Theorem 4.1 we have

Theorem 4.5. If X is a non-amenable hyperbolic graph, then the Martin boundary
of the simple random walk on X is homeomorphic to the hyperbolic boundary 90X .

Theorems 3.21 and 3.23 imply

Theorem 4.6. Let P be a uniformly irreducible bounded range Markov operator on
the Sierpiiski graph G (resp., on the augmented Sierpiriski graph G(a), aA° ). If
p(P) < 1, then the Martin boundary of P is homeomorphic to the Sierpiriski gasket
G (resp., to the one-point compactification G(a) U {w} of the extended Sierpiriski
gasket G(a)).

In particular, in view of Theorems 3.28 and 4.5 we have

Theorem 4.7. The Martin boundary of the simple random walk on the Sierpiniski
graph G (resp., on the augmented Sierpiiski graph G(a), aA® ) is homeomorphic
to the Sierpiriski gasket G (resp., to the one-point compactification G(a) U{w} of
the extended Sierpinski gasket G(a)).
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Remark 4.8. The Holder continuity of the Radon—Nikodym derivatives of harmonic
measures (see Remark {.4) can be used to show that the harmonic measure class
of the simple random walk on the Sierpuiski graph determines a Gibbs measure
on the symbolic space AS° (which provides a coding of the Sierpiriski gasket G as
explained in Section 2.5), cf. [48], [55], [61], [44].

Denker and his collaborators Sato and Koch [16], [17], [15] considered the
random walk on the Sierpinski graph G for which the transition probabilities from

a point a € A}, are equidistributed among the offsprings of @ and of its conjugate
a* (11), i.e.,

a=a* ,b=aa,ac A,
pla,b) =< 7=, a#a ,b=aa,a*a,a €A, (41)

7
0, otherwise .

In particular, they proved (by a direct computation of the Green and Martin
kernels) that the Martin boundary of this chain is homeomorphic to the Sierpiriski
gasket. This random walk always moves from the n-th level in the Sierpinski graph
to the next (n+ 1)-th level, so that it is not irreducible in the sense of Section 4.1,
and the results of Theorem 4.3 are not applicable in this situation. However, due
to the absence of returns for this random walk, its Green kernel is given just
by the n-step transition probabilities. Therefore, the Green kernel is obviously
multiplicative along geodesics issued from the root of the Sierpinski graph. Since
the almost multiplicativity of the Green kernel along geodesics in a hyperbolic
space 1s the main ingredient of Ancona’s approach, his methods could be actually
adapted to this situation as well.

4.4. Random walks on equivalence relations

Recall that a discrete equivalence relation R on a Borel set X is an equivalence
relation which is Borel as a subset of X x X and whose classes [¢] are at most
countable. The transition probabilities m, = p(x,-), ¢ € X of a Markov chain on
equivalence relation R are required to be concentrated on the class [z] for any
z € X and to be Borel (as functions on R). These transition probabilities give rise
to the global Markov chain with the state space X and to local Markov chains on
each equivalence class [z].

If the global state space X is compact, and the transition probabilities 7, de-
pend on z continuously in the weak™ topology, then by compactness considerations
there exists a probability measure m on X which is stationary with respect to the
global chain. If no local chain has a finite stationary measure, then the measure
m 18 necessarily purely non-atomic. Standard results from the ergodic theory of
stationary Markov chains imply that the measure m can be always chosen to be
ergodic, 1.e., not decomposable into a convex combination of two different station-
ary measures. This definition of ergodicity is equivalent to saying that the time
shift in the path space of the global chain is ergodic with respect to the invariant
measure P,,, (whose one-dimensional distributions are m), or, that the state space
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X does not contain any non-trivial absorbing subsets with respect to the global
chain, see [50], [29].

Suppose now that the equivalence relation R is in addition endowed with
a graph structure (determined by a Borel subset & C R, see the discussion at
the end of Section 2.8), and let dist(-, ) be the associated graph distance on the
equivalence classes. We shall say that the global Markov chain on the graphed
equivalence relation (R, &) determined by a family of transition probabilities m;
has a finite first moment with respect to a stationary measure m if

/Z dist(z, y)p(z, y) dm(z) < oo . (42)
y
Clearly, if the first moments Zy dist(z, y)p(x,y) of the transition probabililties m
are uniformly bounded on # (in particular, if all the local chains on the equivalence
classes have uniformly bounded range), then condition (42) is satisfied for any
stationary measure m.
An additive cocycle of the equivalence relation R is a function ¢ : R — R
which satisfies the chain rule

c(z,y) +c(y, z) =c(x, 2)

for all triples of equivalent points x,y, z € X. A cocycle is Lipschitz with respect
to the graph structure & if there exists a constant C' > 0 such that

c(z,y) < C-dist(z, y) V(x,y) e R.

If the transition probabilities 7, have a finite first moment with respect to a
stationary measure m, then the drift of a Lipschitz cocycle is defined as

d=0(X,R,{ns},m,c) = /Zc(r,y)p(r,y) dm(z) |

so that if the measure m 1s ergodic then
1
—c(xg,2n) =6
n

for P,,-a.e. sample path (z,,) of the global chain on X and in the space L'(P,,).

The methods of the entropy theory of random walks on groups (see [39], [33]
and the references therein) can be carried over to the Markov chains on equivalence
relations and give criteria of triviality and of identification of the Poisson bound-
aries of local Markov chains on the classes of the equivalence relation analogous
to those for random walks on groups, see [32], [36].

4.5. The Poisson boundary of extended Sierpinski gaskets

We shall now apply the considerations from the previous Section to the weak tail
equivalence relation ~ on the compact set A% __ (see Definition 2.14) endowed
with the graph structure £. (24). In particular, for any weak* continuous family
of transition probabilities on ~-classes there is a stationary measure on A% .
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Remark 4.9. Apparently, in our situation the stationary measure should be unique
under reasonable conditions on the transition probabilities mq, a € A% (for ex-
ample, for the simple random walk with respect to the graph structure £ ). To take
the stmplest example, it is well-known to be the case if the transition probabilities
Tq are determined by a random walk on the free semigroup A}, via the action (6),
i.e., p(a,a.w) = p(a) for a certain non-degenerate probability measure p on A%,
see [33] and the references therein (cf. also an analogous uniqueness result for the
Brownian motion on foliations in [21]).

The synchronization cocycle ¢ (21) is obviously Lipschitz with respect to the
graph structure £, with the constant C' = 1.

Theorem 4.10 (cf. [11], [40]). Let {mqa} be the family of transition probabilities of
a Markov chain on the weak tail equivalence relation (A° _,~) with a finite first
moment with respect to the graph structure ., and let m be a purely non-atomic
ergodic stationary measure on A% _ . Depending on the sign of the drift § of the

synchronization cocycle o the following three cases occur:

(i) If § < 0, then Py -a.e. sample path (ag,aq1,...) converges to the remote
root of the equivalence class [ag], and the Potsson boundary of m-a.e. local
Markov chain s trivial.

(i1) Ifd = 0, then the Poisson boundary of m-a.e. local Markov chain is trivial.

(i) If6 > 0, then Py, -a.e. sample path (ag,ay,...) converges to a point of the
Sierpiriski gasket G(aq) (considered as a subset of the hyperbolic boundary
of the Sierpinski graph G(ag)). For m-a.e. string a € A%
boundary of the local Markov chain on the equivalence class [a] is isomor-
phic to the Sierpiniski gasket G(a) endowed with the associated family of
hitting probabilities.

the Poisson

In the case (iii) the harmonic measure class [1%] on a.e. Sierpinski gasket G(a)
is purely non-atomic [36]. By removing a countable set of points (cf. Remark 2.13)
we obtain an increasing sequence of partitions {, of G(a) whose elements are
the interiors of the n-th level simplices of the Sierpinski graph G(a). Then the
approach from [32] in combination with Theorem 3.24 implies

Theorem 4.11. Under conditions of Theorem 4.10, if § > 0 then for m-a.e. a €
A° __ the Hausdorff dimension of the harmonic measure class [v*] on the Sierpiriski
gasket G(a) is

1 h
T log2 6

where the asymptotic entropy h is the number defined as

HD[v% (43)
. 1
h=— lim —logp, (aOa an)
n—00 N
(this limit exists Pp-a.e. and the space L'(Py,)).

The Sierpinski graph G (resp., the gasket G) is contained in all the extended
Sierpiniski graphs G(a) (resp., the gaskets G(a). For a random walk on the classes
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of the weak tail equivalence relation, a priory, the restrictions of transition proba-
bilities from G(a) to G are all different and the restrictions of the harmonic measure
classes [v9], a € A° _ to G are pairwise singular for the strings a from different
weak tail equivalence classes. However, if the restrictions of the transition proba-
bilities from the extended Sierpinski graphs G(a) to the Sierpinski graph G are all
the same, then under relatively mild conditions one can show that the behaviour
on G does not depend “too much” on what happens on the complement G(a) \ G.
This allows one to apply the results obtained for a.e. random graph G(a) to the
concrete Sierpinski graph (. For example,

Proposition 4.12. For a string a € A% __ consider the simple random walk on the
extended Sierpiniski graph G(a), and denote by [v?] the arising harmonic measure
class on the extended Sierpiniski gasket G(a). Then the restriction [v*]g of the
class [v*] to the Sierpiniski gasket G C G(a) is equivalent to the harmonic measure
class [V] on G determined by the simple random walk on the Sierpiriski graph G.

Sketch of the proof. The simple random walk on G is obtained by reflecting the
simple random walk on G(a) on the boundary of G in G(a). Thus, [v] is absolutely
continuous with respect to [v%]g. Conversely, the boundary of G in G(a) consists
of at most 3 points, so that it is negligible with respect to [¥*]q. Therefore, a.e.
sample path of the simple random walk on G(a) which converges to a point in
G C G(a) eventually coincides with a certain sample path of the simple random

walk on G. O

Corollary 4.13. The Hausdorff dimension of the harmonic measure class on the
Sierpinski gasket G determined by the simple random walk on the Sierpuiski graph
is given by formula (43), where h and § are the asymptotic entropy and the drift of
the synchronization cocycle, respectively, determined by any stationary measure of
the simple random along the classes of the weak tail equivalence relation ~ endowed
with the graph structure £ (cf. Remark 4.9).

4.6. The singularity problem

The problem of comparing the harmonic measure with other natural measures on
the boundary arises in numerous situations: negatively curved Riemannian mani-
folds, random walks on groups, products of random matrices, conformal dynamics,
see the references below. In all known cases coincidence of the harmonic measure
type with other natural measure types inevitably implies that the considered sys-
tem must belong to a certain very special subclass. However, the results of this
type are notoriously difficult and heavily exploit the specifics of the considered
class of systems (cf. the entirely different approaches used in [25], [13], [43], [49],
[41], [46], [47]). The problem remains open in many interesting situations. Let us
just mention the following problem. Let GG = 71 (M) be the fundamental group of
a compact negatively curved manifold M. Is it true that the harmonic measure of
any finitely supported random walk on ( is singular with respect to the Hausdorff
measure on the sphere at infinity of the universal covering manifold? Yet another
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closely connected problem is that of describing finitely generated groups admitting
a “maximal entropy” random walk, 1.e., such that A = lv, where h is the entropy,
[ is the linear rate of escape, and v is the growth of the group (e.g., see the recent
paper [54] and the references therein).

The Sierpinski gasket G carries a natural uniformly distributed measure A,
which is the image of the uniform Bernoulli measure on A$° under the map 7 (12)
and coincides with the log(d 4+ 1)/ log 2-dimensional Hausdorff measure on G.

Problem 4.14. Is the harmonic measure class [v] on the Sierpiriski gasket G deter-
mined by the simple random walk on the Sierpiniski graph G singular with respect
to the Hausdorff measure \?

Below are several comments to this problem.

1. For the random walk on the Sierpiniski graph G with the transition probabil-
ities (41) considered by Denker and collaborators the harmonic measure coincides
with the Hausdorff measure due to the very special choice of the transition prob-
abilities (actually, the time n transition probability from the root @ is precisely
the uniform measure on the n-th level of the Sierpinski graph). However, for the
simple random walk on G the situation becomes non-trivial due to the presence of
the horizontal transitions, so that there is no a prior: reason for the equivalence
(let alone coincidence) of the harmonic and the Hausdorff measures. For example,
let us look at Fig. 10 where a fragment of a horizontal level of the Sierpiniski graph
is shown (on the left-hand side of the picture are the triangles represented as graph
vertices on the right-hand side). This fragment is the 3-neighbourhood of a set 7
consisting of 3 “siblings” (represented as black triangles on the left-hand side of
the picture and as black dots on the right-hand side). If the initial distribution is
equidistributed on the set 7 then after 5 steps of the simple random walk its re-
striction onto 7 is no longer uniformly distributed (because of an additional cycle
the two points to the right will have higher probabilities than the point on the

left).
/
\ ﬁ

FIiGure 10
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2. Since A is the maximal entropy measure of the Bernoulli shift on A7°,
Remark 4.8 in combination with the uniqueness of the measure of the maximal
entropy for the Bernoulli shift implies that the singularity of [v] and A is actually
equivalent to the Hausdorff dimension of v being strictly smaller than the Hausdorff
dimension of G (cf. Corollary 4.13).

3. An example of a “natural” measure on the Sierpinski gasket singular with
respect to the Hausdorff measure is provided by Kusuoka’s energy measure [42],
[8]. Actually, the arguments in these papers shows that its Hausdorfl dimension
is strictly less than the Hausdorff dimension of the Sierpiniski gasket. It would be
interesting to better understand the dynamical properties of the energy measure
(for example, is it a Gibbs measure?).
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