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Random Walks on Sierpi�nski Graphs:Hyperboliity and Stohasti HomogenizationVadim A. KaimanovihAbstrat. We introdue two new tehniques to the analysis on fratals. Oneis based on the presentation of the fratal as the boundary of a ountableGromov hyperboli graph, whereas the other one onsists in taking all possible\bakward" extensions of the above hyperboli graph and onsidering themas the lasses of a disrete equivalene relation on an appropriate ompatspae. Illustrating these tehniques on the example of the Sierpi�nski gasket(the assoiated hyperboli graph is alled the Sierpi�nski graph), we showthat the Sierpi�nski gasket an be identi�ed with the Martin and the Poissonboundaries for fairly general lasses of Markov hains on the Sierpi�nski graph.1. IntrodutionThe aim of this paper is to introdue two new tehniques to the analysis on fratals(whih, as testi�ed by the present volume, is a very ative and quikly developingarea).Our approah works for any fratal generated by an IFS (iterated funtionsystem) onsisting of similarities with the same saling fator. However, leaving outidle generalities, we introdue these tehniques just on the famous example of the(d-dimensional) Sierpi�nski gasket G determined by a simplex � in the Eulideanspae Rd, and apply them to the problem of the realization of the Sierpi�nski gasketas the boundary of an appropriate ountable Markov hain. The latter problem,�rst onsidered by Denker and his ollaborators Sato and Koh in a reent seriesof papers [15℄, [16℄, [17℄ (see Setion 4.3 for more details), was the starting pointof the present work.One tehnique relates fratals to the hyperboli geometry, and it is basedon the presentation of the fratal as the boundary of an appropriate ountableGromov hyperboli graph. For de�ning the graph assoiated with the Sierpi�nskigasket we begin with the \vertial" Cayley tree of the free semigroup generatedby the IFS from the de�nition of the gasket. We identify the tree verties withthe images of the base simplex � under the orresponding maps. In order to takeinto aount the spatial on�guration on eah horizontal level, this tree is furtheraugmented by \horizontal" edges joining simplies with non-empty intersetions.



2 Vadim A. KaimanovihWe all the resulting graph G the (d-dimensional) Sierpi�nski graph. [This termhad already been used in a somewhat di�erent ontext, see [23℄, [28℄, [53℄. Theobjet whih is alled \Sierpi�nski graph" in these papers is also known under thename of the \graphial Sierpi�nski gasket" [4℄ and is isomorphi to the horizontallayers of ertain extended Sierpi�nski graphs in the sense of our De�nition 2.9, seeSetion 2.7 below for more details.℄In the above onstrution one ould atually take an arbitrary subset K � Rdinstead of the simplex �. If the diameter of K is small, then it does not allowone to see the spatial interation between di�erent branhes of the IFS, and theorresponding graph is just a tree. However, for any ompat set K ontaining thesimplex � the arising graph is quasi-isometri to the Sierpi�nski graph.Yet another hyperboli metri on the Sierpi�nski graph (quasi-isometri tothe graph distane) an be obtained by using the fat that the group Sim(Rd) ofsimilarities of the Eulidean spae Rd ats simply transitively both on the set ofall simplies similar to � and on the hyperboli spae Hd+1, whih gives rise toan embedding of the Sierpi�nski graph into the hyperboli spae Hd+1.The other tehnique is brought forward in order to resolve the putative on-tradition between the highly symmetri appearane of the Sierpi�nski gasket andthe absene of a suÆiently big symmetry group (there is just a semigroup ationresponsible for the self-similar struture of the Sierpi�nski gasket). We replae theusual \homogeneity" synonymous to the presene of a symmetry group with thestohasti homogeneity haraterized by the presene of a disrete Borel equiva-lene relation with a �nite stationary measure.We make the de�nitions of the Sierpi�nski gasket and of the Sierpi�nski graph\bilateral" by extending them from the \mirosopi" to the \marosopi" sale.Namely, instead of just taking smaller and smaller subsimplies of the given simplex� one may also go \bakwards" by embedding � into bigger and bigger simplies.In terms of the theory of dynamial systems this proedure orresponds to passingto the natural extension of the assoiated unilateral full shift. The alphabet Aof this shift is the set of ontrations from the IFS used in the de�nition of theSierpi�nski gasket, so that in our setup it an also be identi�ed with the vertex setof the original simplex �.In this way, any string a from the ompat spae of left-in�nite stringsA0�1 =f(: : : ; a�2; a�1; a0) : ai 2 Ag determines a (non-ompat) extended Sierpi�nskigasket G(a) � G and the assoiated extended Sierpi�nski graph G(a) � G. Further,there is a Borel graph struture on the weak tail equivalene relation � on thespae A0�1 (� the orbit equivalene relation of the natural right ation of the freesemigroup generated by A on A0�1) suh that the lass [a℄� endowed with thisstruture is isomorphi to G(a) for all a 2 A0�1 exept for a ountable number ofvirtually periodi strings.By endowing the spae A0�1 with an appropriate probability measure m wemay now apply ergodi methods in order to obtain statements valid for almost all(with respet to the measure m) extended graphs G(a) and gaskets G(a), whih,



Random Walks on Sierpi�nski Graphs 3in turn, lead to statements about the original Sierpi�nski graph G and Sierpi�nskigasket G (provided the added parts of G(a) and G(a) do not interfere \too muh"with what happens on G andG). Note that this onstrution is quite di�erent fromwhat is usually meant by \random fratals" (e.g., see [26℄, [27℄ and the referenestherein).Due to the lak of spae (and time) we hose to onentrate on the detailedexplanation of the two aforementioned tehniques and on the redution of theproblems onerning the boundary behaviour of Markov hains on the Sierpi�nskigraph to the frameworks of the hyperboli geometry and of the theory of disreteequivalene relations. On the other hand, the �nal implementation of this redutionis often just skethed as it follows the same lines as already known results fromthese disiplines.The paper has the following struture.Setion 2 is auxiliary: we introdue the Sierpi�nski gasket (Setion 2.1), de�nethe Sierpi�nski graph (Setion 2.2), disuss various ations of the group of simi-larities (Setion 2.4) and a symboli oding of the Sierpi�nski gasket and graph(Setion 2.5). Further we de�ne the extended Sierpi�nski gaskets and graphs (Se-tion 2.7) and realize them in terms of strong and weak tail equivalene relationson the symboli spae A0�1 (Setions 2.8 and 2.9).Setion 3 is devoted to geometri properties of Sierpi�nski graphs. We beginwith a general disussion of trees and ertain related graphs. Both for rooted trees(i.e., ones with a �xed vertex) and remotely rooted trees (i.e., ones with a �xedboundary point) there is a well-de�ned notion of belonging to the same \genera-tion" (level) with respet to the root. In order to obtain an augmented tree oneadds to a rooted tree new \horizontal" edges satisfying a ertain natural on-dition. In Setion 3.4 we formulate a simple neessary and suÆient onditionfor Gromov hyperboliity of augmented rooted trees (Theorems 3.13 and 3.15)and give an expliit desription of their hyperboli boundary (Theorem 3.16). InSetion 3.5 we show that the Sierpi�nski graph (whih is an augmented tree) sat-is�es the above hyperboliity ondition and identify its hyperboli boundary withthe Sierpi�nski gasket (Theorem 3.21). In the same way, the hyperboli boundaryof an extended Sierpi�nski graph is the one-point ompati�ation of the assoi-ated extended Sierpi�nski gasket (Theorem 3.23). We also show that the Eulideanmetri on the Sierpi�nski gasket is uniformly H�older equivalent to a family of nat-ural metris of \hyperboli origin" (Theorem 3.25). In Setion 3.6 we disuss thequasi-isometri embedding of the Sierpi�nski graph into the hyperboli spae Hd+1determined by the group of similarities of Rd and related issues from the ombina-torial group theory and onformal dynamis. Finally, in Setion 3.7 we establishnon-amenability of the Sierpi�nski graph G and of the extended Sierpi�nski graphsG(a).In Setion 4 we apply general results from the theory of Markov hains onhyperboli spaes and on equivalene relations to the objets assoiated with the



4 Vadim A. KaimanovihSierpi�nski gasket whih were onstruted in Setions 2 and 3. By using the Anonatheory we identify in Theorem 4.6 the Martin boundary for a lass of boundedrange Markov operators on the Sierpi�nski graph (resp., on an extended Sierpi�nskigraph) with the Sierpi�nski gasket (resp., with the one-point ompati�ation of theassoiated extended Sierpi�nski gasket). In partiular, this lass ontains the simplerandom walks (Theorem 4.7). On the other hand, by using the entropy theory ofrandom walks on equivalene relations we also obtain a desription of the Poissonboundary for a family of Markov hains on \typial" extended Sierpi�nski graphsG(a) under the �nite �rst moment ondition (whih is muh weaker than thebounded range assumption used for the identi�ation of the Martin boundary). Thesituation here is similar to what happens with random walks on non-unimodulargroups [11℄, [40℄. Namely, everything is determined by the sign of the drift withrespet to the remote root. If the drift is zero or direted towards the root, thenthe Poisson boundary is trivial, whereas if the drift is direted from the root, thenthe Poisson boundary an be identi�ed with the extended Sierpi�nski gasket G(a)(Theorem 4.10). In Theorem 4.11 we prove that in the latter ase the Hausdor�dimension of the harmoni measure is expressed as the familiar ratio of the entropyand the exponent (� drift). Finally, in Setion 4.6 we ask the intriguing questionabout the singularity of the harmoni measure of the simple random walk onthe Sierpi�nski graph with respet to the Hausdor� (� uniform) measure on theSierpi�nski gasket (Problem 4.14) and disuss several related topis.I would like to thank Professors Peter Grabner and WolfgangWoess for invit-ing me to the exellent multi-faeted onferene \Fratals in Graz 2001" and fortheir ollaboration and invariable patiene during the editorial proess. Signi�antparts of the paper were written during the author's visits to Tehnishe Universit�atGraz, Universit�a di Roma \La Sapienza" (organized by the Gruppo Nazionale diAnalisi Matematia, Probabilit�a e Appliazioni { GNAMPA) and the Ben-GurionUniversity of the Negev at Beer-Sheva (organized by the Dozor Fellowship VisitingFund) whose support is gratefully aknowledged.2. The Sierpi�nski gasket and the Sierpi�nski graph2.1. The Sierpi�nski gasketThroughout the paper we shall �x a simplex� = �(fp�g) = (X� t�p� : t� � 0; X� t� = 1) � Rdspanned by its vertex set fp�g, where � runs through the alphabetA = f1; 2; : : : ; d+ 1g :Denote by Sim(Rd) = �g : x 7! ax+ b; a 2 R+; b 2 Rd	



Random Walks on Sierpi�nski Graphs 5the group of similarities of the Eulidean spae Rd, whih ats simply transitivelyon the set S = �� = g� : g 2 Sim(Rd)	 (1)of all simplies similar to �. If the saling fator a of a similarity g : x 7! ax + bis not equal to 1, then g has a unique �xed point x0 and satis�es the formulagx � x0 = a(x� x0) :By g� 2 Sim(Rd) : g�x� p� = 12(x� p�) ; x 2 Rd; � 2 A ; (2)denote the similarities with the saling fator 12 and the �xed points p�, i.e., g�are uniquely determined by the onditionsg�p� = (p� ; � = � ;12 (p� + p�) ; � 6= � :Denote by S = sgr (fg�g) � G = gr (fg�g) � Sim(Rd) (3)the semigroup (resp., the group) generated by the similarities g�; g 2 A.Let us now de�ne indutively a sequene of subsets of the set of simplies S:�!�0 = f�g ; �!�n+1 = ng�� : � 2 A; � 2 �!�no ; n � 0 ;(the simplies from �!�n are alled level n simplies), and put�!� = [n�0�!�n � S : (4)De�nition 2.1. The ompat setG =\n Gn ; where Gn = [�2�!�n � ; n � 0 ;is alled the Sierpi�nski gasket determined by the simplex �.The �rst 3 iterations of the onstrution from De�nition 2.1 are presented inFig. 1; see Noties of Amer. Math. So., 46 (1999), No. 10 for a full olour \frontpage overage" of the Sierpi�nski gasket.2.2. The Sierpi�nski graphReall that a graph X is determined by a vertex set V(X) and an edge set E(X) �V(X)�V(X). Slightly abusing the notation we shall often identify the graph withits vertex set. A graphX is non-oriented if the set E(X) is symmetri, and ontainsno loops if E(X) does not interset the diagonal in V(X) � V(X). Two vertiesx; y 2 V(X) are alled neighbours if (x; y) 2 E(X). The degree deg(x) of a vertex xis the number of its neighbours. If any two verties x; y 2 V(X) an be joined witha hain of edges from E(X), then the graph X is alled onneted. The minimal



6 Vadim A. Kaimanovih
PSfrag replaements G0 = �G1G2G3 Figure 1length of suh a hain is alled the graph distane on V(X) and it is denoted bydist(x; y).Convention 2.2. Throughout the paper all graphs (unless otherwise spei�ed) areassumed to be ountably in�nite, non-oriented, with no loops, to have uniformlybounded vertex degrees, and to be onneted.De�nition 2.3. The Sierpi�nski graph G (of dimension d) is the graph whose vertexset V(G) = �!�is the set (4) of all simplies used in the onstrution of the Sierpi�nski gasket, andthe edge set E(G) = Ev(G) [ Eh(G)is a union of the sets of vertial and horizontal edges, respetively, whereEv(G) = �(�;�0); (�0;�) : 9n � 0 with � 2 �!�n;�0 2 �!�n+1; and �0 � �� ;Eh(G) = n(�;�0) : 9n � 0 with �;�0 2 �!�n; and � \ �0 6= ;o :In other words, the vertial edges of G are those of the natural partitiontree struture on �!�, whereas the horizontal edges take into aount the spatialon�guration of simplies from eah level �!�n by joining those simplies whoseintersetion is non-empty.



Random Walks on Sierpi�nski Graphs 72.3. Symboli spaesDenote byAnm = nYk=mA ; A�m = [n:m�n<1Anm ; An� = [m:�1<m�nAnmvarious spaes of strings a = (ak) of symbols from the alphabet A (the numbersm and n in these notations are allowed to take the values �1 as well). We shallalso use the following notations:� jaj = n�m + 1 | the length of a string a 2 Anm;� dae = n | the streth of a string a 2 An�1 � A��1;� an0m0 2 An0m0 | the trunation of a string a 2 Anm determined by theintegers m0; n0 with m � m0 � n0 � n;� �nm 2 Anm | the string whose entries are all equal to a symbol � 2 A;� ab | the onatenation of two strings a 2 Amk and b 2 Anm+1;� T : Anm !An�1m�1 | the shift de�ned by the formula [Ta℄k = [a℄k+1;� U : A11 ! A11 | the (non-invertible) unilateral shift de�ned by theformula Ua = (Ta)11 .We shall refer to the strings from the spae A�1 as words and denote by ?the empty word (of length j?j = 0). Then the setA�? = f?g [ A�1endowed with the multipliationab = a(T�jajb) ; a; b 2 A�? ;beomes the free semigroup on the alphabet A. This multipliation naturally ex-tends to the right ation of the semigroup A�? on the spae A��1 of left in�nitestrings by the formula(a;w) 7! aw = a(T�daew) ; a 2 A��1; w 2 A�? : (5)Below we shall also need the right ation of A�? on A0�1 by the formula(a;w) 7! a �w = T jwj(aw) ; a 2 A��1; w 2 A�? : (6)2.4. Ations on the spae of simpliesIt is lear (see Fig. 1) that the mapw 7! (gw1gw2 � � �gwn ; w = (w1w2 � � �wn); n � 1 ;Id ; w = ? :is an isomorphismbetween the free semigroupA�? and the semigroup S � Sim(Rd)(here Id denotes the identity of Sim(Rd)). Denote bywx = gw1gw2 � � �gwnx = 2�jwjx+ jwjXk=1 2�kpwk ; x 2 Rd ;



8 Vadim A. Kaimanovihthe resulting (left) ation of A�? �= S on Rd, and byw� = fwx : x 2 �gthe assoiated (left) ation of A�? �= S on the spae of simplies S (1). Sine S isa subsemigroup of the group Sim(Rd), we shall also use (in the obvious sense) thenotations (w)�1x, et., for w 2 A�?.Sine the group Sim(Rd) ats simply transitively on S, any simplex � 2 San be uniquely presented as� = g�� ; g� 2 Sim(Rd) :Therefore, the right ation of the group Sim(Rd) on itself determines by the formula�g = g�g� ; � 2 S ; (7)a right ation of the group Sim(Rd) on S. Obviously,�g = g� 8 g 2 Sim(Rd) :Remark 2.4. Unlike the left ation � 7! g�, the right ation (7) is de�ned on thespae of simplies S only and does not orrespond to any ation on the spae Rd.The resulting right ation�w = �gw1gw2 � � �gwnof the free semigroup A�? �= S on S admits the following natural interpretation.Let us denote by p�� = g�p� the vertex of a simplex � = g�� 2 S orrespondingto the vertex p� of the referene simplex �. By g�� 2 Sim(Rd) denote the similaritywith the saling fator 12 and the �xed point p�� , so that g�� = g�g�(g�)�1, whereg� are the similarities (2) assoiated with the verties of the referene simplex �,and let '�(�) = g��� : (8)Then '�(�) = g��� = g��g�� = g�g�(g�)�1g�� = g�g�� = �g� ;so that �w = �gw1gw2 � � �gwn = 'wn Æ � � � Æ 'w2 Æ 'w1 (�)By extending the notation (4), let us denote by�!� = ��w : w 2 A�?	 � Sthe set onsisting of the simplex � and all smaller simplies obtained from � byan iterative appliation of the transformations '� (8).



Random Walks on Sierpi�nski Graphs 92.5. Symboli odingWe shall identify the vertex set V(G) = �!� of the Sierpi�nski graph with the set ofwords A�? by the map A�? !�!� ; a 7! a� = �a :In these symboli terms the \vertial" part (V(G); Ev(G)) of the Sierpi�nski graphG is isomorphi to the (right) Cayley tree of the free semigroup A�? �= S.For giving a symboli desription of the \horizontal" part of G notie that twodistint simplies a�; b� from the same level �!�n have a non-empty intersetion(onsisting of a single point) if and only if the words a and b have the form(a = ��kb = ��k with  2 A�?; � 6= � 2 A; k � 0 ; (9)in whih ase � is the minimal simplex from �!� ontaining both a� and b�, anda�\ b� = 8<: jjXk=12�kpk + 2�jj�1(p� + p�)9=; = � �12 (p� + p�)�	 :Let Q = � �12 (p� + p�)� :  2 A�?; �; � 2 A	 � � : (10)Following [16℄, let us de�ne the onjugate of a word a 2 A�? asa? = (��k ; a = ��k ;  2 A�?; �; � 2 A; k � 1 ;a ; a = �k ; � 2 A; k � 0 : (11)Then, by (9), two words a 6= b 2 An1 are joined with a horizontal edge in theSierpi�nski graph if and only if either an�11 = bn�11 or a? = b. Therefore, theverties of the Sierpi�nski graph G are lassi�ed by their degrees in the followingway:(i) The \root" ?, for whih deg(?) = d + 1. The neighbours of ? are the1-letter words �; � 2 A.(ii) The \orner verties" a = �n; � 2 A; n > 0, for whih deg(a) = 2d+ 2.Eah of these verties has 1 neighbour �n�1 from the preeding (n�1)-thlevel, d neighbours �n�1�; � 2 A r f�g, from the same n-th level, andd+ 1 neighbours �n�; � 2 A, from the next (n+ 1)-th level.(iii) For all other (\ordinary") verties deg(a) = 2d + 3. Eah of them has 1neighbour an�11 from the preeding (n� 1)-th level and d+ 1 neighboursa�; � 2 A, from the next (n+1)-th level, whereas among d+1 neighboursof a from the same n-th level d ones an�11 �; � 2 A r fang are the \sib-lings" of a (i.e., they have the same �rst n� 1 letters), and the remainingneighbour a? is a \distant relative".



10 Vadim A. KaimanovihPSfrag replaements p1 p2 p3�1�2�12�21�122�211� Figure 2For any a 2 A11 the simplies �n(a) = an1� derease on n, their intersetiononsists of the single point �(a) = 1Xk=1 2�kpak 2 G ; (12)and an1x �!n!1�(a) 8x 2 Rd :The oding map � : A11 !G is one-to-one on GrQ, whereas for any \rational"point from the set Q (10) its �-preimage onsists of two oding strings ��1 and��1 (f. with analogous boundary expansions for Fuhsian groups, see [52℄).Proposition 2.5 ([16, Proposition 4.2℄). The oding map � (12) establishes a home-omorphism between the Sierpi�nski gasket G and the quotient of the spae A11(endowed with the produt topology) by the equivalene relation onsisting of thepreimages of �.Remark 2.6. In the degenerate ase d = 1 if p1 = 0; p2 = 1, then G oinides withthe unit interval � = [0; 1℄, the oding � orresponds to the dyadi expansion, andthe subset Q onsists of dyadi-rational numbers.2.6. Natural extensionThe onstrutions of the Sierpi�nski gasket (De�nition 2.1) and the Sierpi�nski graph(De�nition 2.3) being \unilateral", it is natural (and useful for appliations) tomake them \bilateral" by extending from the \mirosopi" to the \marosopi"



Random Walks on Sierpi�nski Graphs 11sale. Namely, instead of just taking smaller and smaller subsimplies of the givensimplex � one may also go \bakwards" by embedding � into bigger and biggersimplies. In terms of the theory of dynamial systems this proedure orrespondsto passing from the spae of unilateral strings A11 (endowed with the unilateralshift U ) to its natural extension A1�1 (endowed with the bilateral shift T ); see[14℄ for a general de�nition of the natural extension of a non-invertible dynamialsystem.Let �n = �n(a) = an1� = �an1 ; n � 0 ; (13)be the simplies assoiated with a string a 2 A11 (see Setion 2.5). Note that thesimplies assoiated with a and its shift Ua are onneted with the formula�n(Ua) = g�1a1 �n+1(a) 8a 2 A11 ; n � 0 : (14)Then �n+1 = �an+11 = (�an1 )an+1 = �nan+1 = 'an+1 (�n) ; (15)or, in plain words, �n+1 is obtained by ontrating �n towards the vertex p�nan+1(f. Fig. 2). By using formula (15), we may now extend the de�nition (13) frompositive indies n to all n 2Zby putting for any a 2 A1�1 and n < 0�n(a) = '�1an+1 Æ � � � Æ '�1a0 (�) = � �a0n+1��1 ;or, equivalently, �n(a) = g�1a0 � � �g�1an+1 (�) = �a0n+1��1� (16)(see Fig. 3 and Fig. 4). With this extended de�nition of the sequene �n(a) formula(14) (where the unilateral shift U is replaed with the bilateral shift T ) now holdsfor all a 2 A1�1 and n 2Z. If n < 0, we shall use the notation (16) for unilateralstrings a 2 A0�1 as well.PSfrag replaements a0 = 1 a0 = 2 a0 = 3Figure 3
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xxxxxxPSfrag replaements a�2 = 3; a�1 = 2; a0 = 1 a�2 = 1; a�1 = 2; a0 = 3Figure 4Remark 2.7. Formula (16) is preisely analogous to the one arising in the theoryof random walks on groups when passing from unilateral to bilateral walks, see thedisussion in [33℄.Remark 2.8. If eah of the symbols from A ours in the string a0�1 in�nitelyoften, then the simplies �n(a) exhaust the spae Rd.2.7. Extended Sierpi�nski gaskets and graphsGiven a string a 2 A0�1 put Gn(a) = (a0n+1)�1G ;so that �n(a) � Gn(a) � Gn+1(a) 8n < 0 ;and Gm(a) \�n(a) = Gn(a) 8m � n :In the same way we de�ne the graphsGn(a) = (a0n+1)�1G ;so that the vertex set of Gn(a) is ����!�n(a). ThenGn(a) � Gn+1(a) 8n < 0 :De�nition 2.9. The set G�1(a) =[n Gn(a) � Rd :and the graph G�1(a) =[n Gn(a) :



Random Walks on Sierpi�nski Graphs 13are alled the extended Sierpi�nski gasket and the extended Sierpi�nski graph deter-mined by the string a 2 A1�1, respetively.The extended Sierpi�nski graphs G(a) (resp., the assoiated gaskets G(a)) are\more homogeneous" than the original Sierpi�nski graph G (resp., the gasket G),as here the root ? is \moved to in�nity" and replaed with a \mythial anestor"in the terminology of Cartier [10℄; f. [11℄. For this reason the graphs G(�0�1)and the gaskets G(�0�1) had already been onsidered, for example, in [5℄, [23℄.However, the graphs G(�0�1) still have \orner verties" whose degree is smallerthan the degree of all other \ordinary verties" (f. Setion 2.5). In order to dealwith this nuisane and to have a graph with a onstant degree of verties, in theabove papers a mirror opy of G(�0�1) was then attahed to G(�0�1). However,it is muh more natural to apply a \stohasti homogenization" instead and toonsider a \random" graph (resp., gasket) piked from the family of graphs G(a)(resp., of gaskets G(a)) aording to an appropriate probability measure on A0�1,see below Setion 4.5.2.8. Strong tail equivalene relationDe�nition 2.10. Let us denote the strong tail equivalene relation on A��1 bya � b () 9N 2Z: an = bn 8n � N ; a; b 2 A��1 ;and let R� = f(a; b) : a � bg � A��1 � A��1be the Borel set onsisting of all pairs of �-equivalent strings. By[a℄� = fb 2 A��1 : a � bgwe denote the strong equivalene lass of a string a 2 A��1.Remark 2.11. The strong equivalene relation oinides with the orbit equivalenerelation of the ation (5) of the free semigroup A�? on A��1. Namely, for any twostrings a; b 2 A��1a � b () 9  2 A��1; w;w0 2 A�? : a = w; b = w0 :Let (a; b) = limn!�1�adaen ��1 bdben 2 G � Sim(Rd)be the G-valued Gibbs oyle on the strong tail equivalene relation � [38℄ (theexpression in the right-hand side of the above formula stabilizes on n by the de�-nition of the equivalene relation �). As in Setion 2.5, we shall identify the vertexset ����!�n(a) of the graph Gn(a) with the set of stringsfb 2 [a℄� : bk = ak for k � ngby the map b 7! (a; b)� 2 S : (17)The identi�ation (17) respets the embeddings Gn(a) � Gn+1(a), so that we have



14 Vadim A. KaimanovihProposition 2.12. For any string a 2 A0�1 the map (17) establishes a one-to-oneorrespondene between the equivalene lass [a℄� � A��1 and the vertex set ofthe extended Sierpi�nski graph G(a).The extended Sierpi�nski graphs G(a) an be desribed in symboli terms inthe same way as it was done with the Sierpi�nski graph in Setion 2.5. Namely, letus extend the de�nition of the onjugay a 7! a? from A�? to A��1 by putting((b��n)? = b��n ; b 2 A��1; �; � 2 A; n > 0 ;��n�1�? = ��n�1� ; � 2 A :Then the set of edges of the Sierpi�nski graph G(a) (realized under the identi�ation(17) on the equivalene lass [a℄�) is a unionE�(a) = Ev�(a) [ Eh�(a) � [a℄� � [a℄�of the set of vertial edgesEv�(a) = f(b; b�); (b�; b) : b 2 [a℄�; � 2 Ag ; (18)and of the set of horizontal edgesEh�(a) = f(b�; b�) : b 2 [a℄�; �; � 2 Ag [ f(b; b?) : b 2 [a℄�; b 6= b?g : (19)Remark 2.13. In the same way as in Setion 2.5, one may also obtain a oding ofthe Sierpi�nski gasket G(a) by bilateral strings b 2 A1�1 with b0�1 � a whih isone-to-one on the omplement of a ountable subset of G(a) (where it is two-to-one).It is lear that E�(a) = E�(b) whenever a � b, so that atually we have awell-de�ned graph struture on any equivalene lass [a℄� � A��1. Moreover, theunion E� = [a2A��1 E�(a) (20)is a Borel subset of R�. Thus, the triple (A��1;�; E�) is a graphed equivalene re-lation (see [1℄, [34℄ for a disussion of this notion), whih allows one to onsider thegraphs G(a) not only individually, but also as members of a \olletion" onsistingof all � equivalene lasses in A��1.2.9. Weak tail equivalene relationThe disadvantage of the spae A��1 is in its non-ompatness. Therefore, it isonvenient to modify the de�nitions from Setion 2.8 by replaing A��1 with theompat spae A0�1 and allowing in return for shifted strings to remain equivalent.De�nition 2.14. Let us denote the weak tail equivalene relation on A��1 bya � b () 9 t 2Z: a � T tb ; a; b 2 A��1 ;and let R� = f(a; b) : a � bg � A��1 � A��1



Random Walks on Sierpi�nski Graphs 15be the Borel set onsisting of all pairs of �-equivalent strings. By[a℄� = fb 2 A��1 : a � bgwe denote the weak equivalene lass of a string a 2 A��1. We shall also use thenotations R0� = R� \A0�1 � A0�1and [a℄0� = [a℄� \A0�1for the restrition of the equivalene relation � to A0�1.Remark 2.15. The restrition of the weak equivalene relation onto A0�1 oinideswith the orbit equivalene relation of the ation (6) of the free semigroup A�? onA0�1, f. Remark 2.11.Clearly, a string a 2 A�1 may be �-equivalent to its own shift T ta; t 2 Zif and only if it is �-equivalent to a periodi string. In this ase we say that thestring a is residually periodi. Denote by � � A�1 the ountable set of all residuallyperiodi strings. Then the formulaT �(a;b)a � b (21)uniquely de�nes the Z-valued synhronization oyle on the restrition of theequivalene relation � onto A��1 r �. In partiular,�(a; T ta) = t 8a 2 A��1 r �; t 2Z:Proposition 2.16. For any a 2 A0�1 r� the map[a℄� ! [a℄0� ; b 7!  = T dbeb ; (22)and the inverse map[a℄0� ! [a℄� ;  7! b = T�dbe = T��(b;) = T��(a;) (23)establish a one-to-one orrespondene between the equivalene lasses [a℄� � A��1and [a℄0� � A0�1.Given a 2 A0�1, let us now putE�(a) = Ev�(a) [ Eh�(a) � [a℄0� � [a℄0� ;whereEv�(a) = f(b; b � �); (b � �; b) : b 2 [a℄0�; � 2 Ag ;Eh�(a) = �(b � �; b � �) : b 2 [a℄0�; �; � 2 A	 [ �(b; b?) : b 2 [a℄0�; b 6= b?	 :The only di�erene between these de�nitions and formulas (18), (19) is that herethe ation (5) is replaed with the ation (6). Then the Borel setE� = [a2A0�1 E�(a) � R0� (24)determines a struture of a graphed equivalene relation on (A0�1;�).



16 Vadim A. KaimanovihProposition 2.17. For any a 2 A0�1 r � the maps (22) and (23) establish anisomorphism of the graphs ([a℄�; E�(a)) and ([a℄0�; E�(a)).Remark 2.18. Let X be a Borel spae endowed with a right Borel ation of the freesemigroup A�?. The union of all (non-oriented) edges of the form (x�; x), (x�; x�)and (xa; xa?) (with x 2 X; �; � 2 A; a 2 A�?) determines then a graph strutureon the orbit equivalene relation of this ation. The \vertial" part of this struture(onsisting of the edges (x�; x)) oinides with the Shreier graph struture of theation with respet to the generating set A (f. [6℄). The graph strutures (20) and(24) are the speializations of this general onstrution to the ations (5) and (6),respetively.Remark 2.19. In geometri terms the synhronization oyle �(a; b) (21) is equalto the di�erene between the levels of b and a in the graph G(a) �= G(b), i.e.,oinides with the Busemann oyle on G(a) (see below Setion 3.3 for moredetails).Remark 2.20. The synhronization oyle � (21) on the weak tail equivalenerelation (A0�1r�;�) (i.e., in view of the previous Remark, the Busemann oylewith respet to the graph struture E� (24)) is ohomologially non-trivial in theBorel ategory in ontrast to the trivial Busemann oyle (a; b) 7! dbe � dae onthe strong tail equivalene relation (A��1;�) with respet to the graph strutureE� (20).3. Geometri properties of Sierpi�nski graphs3.1. Rooted treesReall that a onneted graph is alled a tree if it ontains no yles. By �T wedenote the spae of ends of a tree T , i.e., the totally disonneted spae whih isthe projetive limit of the (�nite disrete) spaes of in�nite onneted omponentsof T rKn, where onneted �nite sets Kn exhaust T . The spae of ends �T servesas the boundary of the end ompati�ation of T .De�nition 3.1. Given a tree T and a vertex o 2 T , we shall all the ouple (T; o)a rooted tree.For a rooted tree (T; o) putjxj = jxjo = dist(o; x) (25)and denote by Tn = fx 2 T : jxj = ng ; n � 0 (26)the sphere in T of radius n entered at the root o. We shall refer to the set Tnas the n-th level of the rooted tree (T; o). For any point x 2 T and a number0 � k � jxj put x[�k℄ = [o; x℄\ Tjxj�k ; (27)



Random Walks on Sierpi�nski Graphs 17in other words, x[�k℄ (the k-th predeessor of x) is the point on the geodesisegment [o; x℄ at distane k from x (see Fig. 5, where jxj = 3).PSfrag replaements o = x[�3℄x[�1℄x[�2℄ T0T1T2T3x = x[0℄ Figure 5For a rooted tree (T; o) the spae of ends �T an be identi�ed with the spaeof all in�nite geodesi rays (i.e., isometri embeddings of Z+ into T ) x = (xn)issued from o whose (totally disonneted) topology is determined by the pointwiseonvergene of geodesi rays. The end ompati�ation of T is homeomorphi toits visual ompati�ation, in whih a sequene of points xn 2 T onverges if andonly if the geodesi segments [o; xn℄ onverge pointwise.3.2. Augmented rooted treesDe�nition 3.2. Let (T; o) be a rooted tree, and letEh � V(T ) � V(T )be a symmetri set suh that(x; y) 2 Eh =) jxj = jyj; (x[�k℄; y[�k℄) 2 Eh 8 k > 0 :Then the graph X with the vertex setV(X) = V(T )and the edge set E(X) = E(T ) [ (Eh r diag)is alled an augmented rooted tree. We shall all the edges from E(T ) vertial andthe edges from Eh r diag horizontal (see Fig. 6).



18 Vadim A. KaimanovihPSfrag replaements ox yx[�1℄ y[�1℄Figure 6We shall extend the notations (25) { (27) from rooted trees to augmentedrooted trees.Denote by dist the graph distane in an augmented rooted tree X, andby distn the graph distane on its n-th level Xn (where, as usually, we putdistn(x; y) = 1 when x and y belong to di�erent onneted omponents of Xn).Obviously, dist(x[�1℄; y[�1℄) � dist(x; y) 8x; y 2 T : (28)De�nition 3.3. We shall say that a geodesi segmentx = z0; z1; : : : ; zd = y ; d = dist(x; y)joining two points x; y in an augmented rooted tree is anonial if it onsists of twovertial segments (one or both of whih may possibly be empty) with an intermediatehorizontal segment, i.e.,zi = (x[�i℄ ; i � m ;y[i�d℄ ; i � n and jzmj = jzm+1j = � � � = jzn�1j = jznj (29)for ertain integers m;n with 0 � m � n � d (see Fig. 7).Proposition 3.4. Any two points x; y in an augmented rooted tree an be joinedwith a anonial geodesi.Proof. By (28) the \moves"((u; v; v[�1℄) 7! (u; u[�1℄; v[�1℄)(u[�1℄; u; v) 7! (u[�1℄; v[�1℄; v) ; juj = jvj ;onsisting in \lifting" horizontal edges do not inrease the distane. Applyingthem to an arbitrary geodesi segment joining x and y eventually gives a requiredgeodesi segment of the form (29). �



Random Walks on Sierpi�nski Graphs 19PSfrag replaements ox = z0x[�m℄ = zm y = zdy[n�d℄ = znFigure 7Remark 3.5. De�nition 3.3 and Proposition 3.4 are appliable to geodesi rays andto in�nite bilateral geodesis as well.De�nition 3.6. A geodesi square R in an augmented rooted tree X is a quadrupleof points x; y; x0; y0 2 X suh that(i) jxj = jyj;(ii) x0 = x[�k℄; y0 = y[�k℄ for a ertain k > 0;(iii) dist(x; y) = dist(x0; y0) = dist(x; x0) = dist(y; y0) = k.The number k is alled the size of the retangle R.Inequality (28) and Proposition 3.4 implyProposition 3.7. If (x; y; x[�k℄; y[�k℄) is a geodesi square of size k in an augmentedrooted tree X, then distjxj�i(x[�i℄; y[�i℄) = k 8 0 � i � k ;and any geodesi segment in X joining the points x[�i℄ and y[�i℄ lies in the levelXjxj�i.Remark 3.8. An isometri embedding � of the square f0; 1; : : :; kg2 � Z2 into anaugmented rooted tree X suh thatj�(0; 0)j = j�(k; 0)j ; j�(0; k)j = j�(k; k)j ; j�(0; 0)j � j�(0; k)j = k (30)learly determines a geodesi square of size k in X in the sense of De�nition 3.6.Proposition 3.7 shows that, onversely, any geodesi square of size k gives rise toan isometri embedding � : f0; 1; : : :; kg2 ! X satisfying onditions (30).3.3. Remotely rooted treesDe�nition 3.9. Given a tree T and a point ! 2 �T , we shall all the ouple (T; !)a remotely rooted tree.Remark 3.10. In a less \botanial" terminology \rooted trees" are alled pointed,and \remotely rooted trees" are alled pointed at in�nity.



20 Vadim A. KaimanovihDenote by � = �! the Busemann oyle on T de�ned as�(x; y) = limz!!�dist(y; z) � dist(x; z)� : (31)One may onsider the above formula as a regularization of the formal expression�(x; y) = \ dist(y; !) � dist(x; !) " ;i.e., the Busemann oyle is a \di�erene" between the \distanes" from thepoints y and x to the point at in�nity !. We shall refer to the level setsTx = fy 2 T : �(x; y) = 0g (32)of the Busemann oyle as horizontal levels in a remotely rooted tree T , so that�(x; y) is the signed distane between the heights of the levels of the points x andy (see Fig. 8, where �(x; y) = �1).By extending the notation (27), we shall denote by x[�k℄; k � 0 the k-thpredeessor of a vertex x uniquely determined by the relation�(x; x[�k℄) = �k ; x[�k℄ 2 [x; !) ; (33)where [x; !) is the geodesi ray joining x and the remote root ! (see Fig. 8).Clearly, �(x; y) = �(x[�k℄; y[�k℄) 8x; y 2 T; k � 0 :
PSfrag replaements x yx[�1℄

!
TxTyFigure 8As it follows from the de�nition (31), remotely rooted trees an be onsideredas limits of rooted trees in the sense that the partitions of T into the spherial levels



Random Walks on Sierpi�nski Graphs 21(26) with respet to a sequene of roots on onverge pointwise to the partition ofT into the level sets (32) of the Busemann oyle �! if and only if the sequeneon onverges to ! (f. the disussion at the end of Setion 2.7).De�nition 3.11. Let (T; !) be a remotely rooted tree, and let a symmetri setEh � V(T ) � V(T )be suh that (x; y) 2 Eh =) �(x; y) = 0; (x[�k℄; y[�k℄) 2 Eh 8 k > 0 :Then the graph X with the vertex setV(X) = V(T )and the edge set E(X) = E(T ) [ (Eh r diag)is alled an augmented remotely rooted tree. Following De�nition 3.2, we shallall the edges from E(T ) vertial and the edges from Eh r diag horizontal.As in Setion 3.2, we shall extend the notations (31) { (33) from remotelyrooted trees to augmented remotely rooted trees.3.4. HyperboliityThe Gromov produt on a graph X (with respet to a referene point o) is de�nedas (xjy)o = 12�dist(o; x) + dist(o; y) � dist(x; y)� : (34)A graph X is alled Gromov hyperboli if there exists a onstant Æ > 0 suh thatthe Æ-ultrametri inequality(xjy)o � min�(xjz)o; (yjz)o	 � Æis satis�ed for all o; x; y; z 2 X. Equivalently,X is Gromov hyperboli if all geodesitriangles in X are uniformly thin, i.e., one an always hoose a point on eah ofthe sides of a geodesi triangle in suh a way that the pairwise distanes betweenthese points are uniformly bounded.The hyperboli boundary �X of a hyperboli graph X is de�ned as the spaeof equivalene lasses of asymptoti geodesi rays in X (i.e., those whih lie withina �nite distane one from another). For any two points x 2 X; � 2 �X there existsa geodesi ray (not neessarily unique!) issued from x and belonging to the lass� (i.e., joining x and �). In the same way, any two distint points �� 6= �+ 2 �Xan be joined by a bilateral geodesi (one again, not neessarily unique) whosepositive (resp., negative) geodesi ray belongs to the lass �+ (resp., ��). Thede�nition of the Gromov produt (34) an be extended to the ase when one ofthe arguments belong to �X by putting(xj�)o = sup�(xjyn)o : (yn) is a geodesi ray joining o and �	 :Analogously (by taking the supremum over all geodesi rays joining o with thepoints �; � 2 �X) one also de�nes the Gromov produt when both arguments



22 Vadim A. Kaimanovihare boundary points. There exists an absolute onstant C > 0 (depending on thehyperboliity onstant Æ only) suh that for any bilateral geodesi  joining anytwo points � 6= � 2 �X and any referene point o 2 X��(�j�)o � dist(o; )�� � C : (35)Below we shall usually leave out the referene point o by assuming that it is �xedone and for all (in partiular, for augmented rooted trees we shall always take foro the root of the underlying tree).The hyperboli boundary �X is the boundary of the hyperboli ompati�-ation of X: a sequene of points xn 2 X onverges in this ompati�ation if(xnjxm) !1, and the limit is a point � 2 �X if (xnj�)!1 (in partiular, anygeodesi ray onverges to the point of �X determined by its asymptoti equiva-lene lass). For any suÆiently small " > 0 the topology of �X is metrizable by ametri �" uniformly equivalent to exp[�"(�j�)℄, i.e., suh that for a ertain onstantC > 0 1C � e"(�j�) � �"(�; �) � C 8 � 6= � 2 �X : (36)The hyperboli ompati�ation of a tree is homeomorphi to its end (� visual)ompati�ation. See [24℄, [9℄, [22℄ for more details onerning Gromov hyperbolispaes.De�nition 3.12. An augmented rooted tree X satis�es \no big squares" onditionif the size of geodesi squares in X is bounded (f. De�nition 3.6)Theorem 3.13 ([35℄; f. [9, Theorems 11.11, 11.13℄). An augmented rooted tree Xis Gromov hyperboli if and only if it satis�es the \no big squares" ondition.Remark 3.14. The hyperboliity of an augmented rooted tree (X; o) implies that thelengths of horizontal segments in anonial geodesis on X (see De�nition 3.3) areuniformly bounded (the geodesi triangle whose base is suh a horizontal segmentand the lateral sides are the geodesis joining its endpoints with the root is thin).This an be also diretly dedued from the \no big squares" ondition.Sine the de�nition of the Gromov hyperboliity is loal in the sense thatit only involves geodesi triangles in the spae, Theorem 3.13 immediately arriesover to augmented remotely rooted trees.Theorem 3.15. An augmented remotely rooted tree X is Gromov hyperboli if andonly if it satis�es the \no big squares" ondition.One an expliitly desribe the hyperboli boundary �X of an augmentedrooted tree (X; o). Indeed, geodesi rays issued from the root o are the same on Tand on X. The boundary �T of the tree T is the spae of all suh rays, and it isprojeted onto �X by the map whih assigns to any ray its asymptoti equivalenelass with respet to the graph distane on X (this map is onto beause anyasymptoti equivalene lass ontains a ray issued from the root). More preisely,denote by G the asymptoti equivalene relation on �T :x G y () 9C > 0 suh that dist(xn; yn) � C 8n � 0 ;



Random Walks on Sierpi�nski Graphs 23whih is the envelope of the set�(x; y) 2 �T � �T : (xn; yn) 2 Eh 8n � 0	 :Then the de�nition of the hyperboli boundary impliesTheorem 3.16. The hyperboli boundary �X of a Gromov hyperboli augmentedrooted tree (X; o) is homeomorphi to the quotient of the boundary �T of the un-derlying rooted tree (T; o) by the equivalene relation G.One an also give a more expliit desription of the metris �" (36) on �X,or, equivalently, of the Gromov produt on �X. Leth(�; �) = min�dist(o; )	 ; � 6= � 2 �X ; (37)where the minimum is taken over all bilateral geodesis joining � and �. By Propo-sition 3.4 and Remark 3.5, suh a geodesi an be hosen to be anonial, so thath(�; �) is the minimal distane from the root to the horizontal segments of theseanonial geodesis. Then inequality (35) impliesProposition 3.17. There is a onstant C > 0 suh that��h(�; �)� (�j�)�� � C 8 � 6= � 2 �X ;so that any metri �" is uniformly equivalent to exp[�"h(�; �)℄.3.5. Hyperboliity of the Sierpi�nski graphsWe shall now apply the above arguments to the Sierpi�nski graph G and the ex-tended graphs G(a); a 2 A0�1.Proposition 3.18. The Sierpi�nski graph G is an augmented rooted tree whose un-derlying tree is the Cayley graph of the free semigroup A�?. Any extended Sierpi�nskigraph G(a); a 2 A0�1 is an augmented remotely rooted tree.Any level �!�n �= An1 of the Sierpi�nski graph G an be embedded into Rd bythe map whih assigns to a simplex � 2 �!�n its barienter ��. Denote by dn themetri on �!�n indued by the Eulidean metri on Rd under this embedding.Proposition 3.19. The metris 2ndn are uniformly quasi-isometri to the graphmetris distn on �!�n, i.e., there exists a onstant C > 1 suh that1C � 2ndn(�1;�2)distn(�1;�2) � C 8�1 6= �2 2 �!�n; n > 0 : (38)Proof. If two simplies �;�0 2 �!�n are neighbours, then obviously1C � 2ndn(�;�0) � Cfor a onstant C whih depends on the original simplex � only, whih proves theright-hand inequality in (38).For proving the left-hand side inequality let us take a Eulidean geodesi `joining the baryenters of two simplies �;�0 2 �!�n and endow ` with the length



24 Vadim A. Kaimanovihparameterization. By slightly moving the endpoints of ` we may assume withoutloss of generality that ` does not interset the set Qn of verties of level n simplies.Therefore, the sequene of simplies� = �0;�1; : : : ;�N = �0 2 �!�nonseutively interseted by ` is well de�ned, and eah of the intersetions[�2k; �2k+1℄ = ` \ �kis not a single point. We shall all the points �i marks on `. Then the distanebetween two onseutive marks �i+1 � �i may be \small" (ompared to the sizeof simplies from �!�n, i.e., to 2�n) only near a point from Qn, the length of anyonseutive series of \small" di�erenes is uniformly bounded, and eah suh seriesis preeded and followed by a di�erene at least omparable with 2�n.We shall now build a path in the graph �!�n by joining the simplies � and�0 in the following way.� The segments [�2k; �2k+1℄ are assigned the simplies �k.� The segments [�2k�1; �2k℄ orrespond to intersetions of ` with the on-neted omponents 
� of the omplement � rGn (see De�nition 2.1).We shall assign to eah suh segment the shortest possible hain of sim-plies from �!�n going \around" the assoiated omponent 
�, see Fig. 9.The length of suh a hain is uniformly omparable with 2n(�2k � �2k�1)unless the di�erene �2k � �2k�1 is \small".By using the above properties of the di�erenes �i+1 � �i one an now seethat the length of the onstruted path is uniformly dominated by 2nj`j. �
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xxxxxxFigure 9Corollary 3.20. The Sierpi�nski graph G satis�es \no big squares" ondition.



Random Walks on Sierpi�nski Graphs 25Theorem 3.13, Theorem 3.16 and Proposition 2.5 now immediately implyTheorem 3.21. The Sierpi�nski graph G is Gromov hyperboli, and its hyperboliboundary �G is homeomorphi to the Sierpi�nski gasket G.Remark 3.22. Another example of Gromov hyperboli augmented trees is providedby the graphs CK assoiated by Elek [19℄ to any ompat K ontained in the Eu-lidean ube [0; 1℄d. Their verties are binary sububes of [0; 1℄d, and the hyperboliboundary �K is homeomorphi to K. See the reent survey [7℄ for a general dis-ussion of boundaries of Gromov hyperboli spaes.In the same way, Theorem 3.15 impliesTheorem 3.23. Any extended Sierpi�nski graph G(a); a 2 A0�1, is Gromov hyper-boli, and its hyperboli boundary �G(a) is homeomorphi to the one-point om-pati�ation G(a) [ f!g of the extended Sierpi�nski gasket G(a).Moreover, it turns out that the Eulidean metri on the Sierpi�nski gasket Gis uniformly H�older equivalent to the metris �" (36).Theorem 3.24. There exists a onstant C > 0 suh that1C � k� � �k � 2(�j�) � C 8 � 6= � 2G :Proof. Let us take a anonial bilateral geodesi  joining the points � and � andrealizing h(�; �) = n (37), see De�nition 3.3, Remark 3.5 and Proposition 3.17.Denote by �n � �n+1 � : : :f�g ; �0n � �0n+1 � : : :f�g ;the vertial rays of this geodesi going to the points � and �, respetively. Sine� 2 �n; � 2 �0n, Remark 3.14 implies thatk� � �k � C � 2�n :Conversely, the simplies �n+1 and �0n+1 are not neighbours in the Sierpi�nskigraph G (for otherwise one ould have shortened  by diretly onneting �n+1 and�0n+1), whih by the de�nition of the Sierpi�nski graph means that �n+1\�0n+1 = ;.Therefore, 1C � 2�n � k� � �k ;whih by Proposition 3.17 ends the proof. �Theorem 3.25. The Eulidean metri on the Sierpi�nski gasket G and the metri�" on G �= �G are uniformly H�older equivalent in the sense that there exists aonstant C > 0 suh that1C � k� � �k(log 2)="�"(�; �) � C 8 � 6= � 2 G :



26 Vadim A. Kaimanovih3.6. Embedding into the hyperboli spaeThe group Sim(Rd) ats simply transitively by isometries on the hyperboli spaeHd+1 realized in the upper half-spae model as Hd+1 �= Rd � R+ (see [37℄ for ageneral disussion of the relationship between the hyperboli and similarity stru-tures). Sine Sim(Rd) also ats simply transitively on the spae S of all simpliessimilar to �, we may identify S with the hyperboli spae Hd+1 by the mapg� 7! gz ; g 2 Sim(Rd) ; (39)where z 2Hd+1 is a hosen referene point.Theorem 3.26 ([35℄; f. [19, Theorem 4℄). The embedding of the Sierpi�nski graphG into the hyperboli spae Hd+1 determined by formula (39) is a quasi-isometrywith respet to the graph metri on G and the hyperboli metri on Hd+1.Below are several omments on the relationship between the objets assoi-ated with the Sierpi�nski gasket and the hyperboli geometry.1. The Sierpi�nski gasket G is the limit set (in Hd+1) of the semigroup S �=A�? � Sim(Rd) (3).2. The \Sierpi�nski group" G � Sim(Rd) (3) is isomorphi to the similaritygroup of the dyadi-rational spae Zd[12 ℄, in partiular, for d = 1 it oinides withthe group ha; bjab2 = bai, see Remark 2.6. Although G is not a disrete subgroupof Iso(Rd), it is a lattie in the produt of the real and dyadi similarity groups.The group G has two natural boundaries whih are the real and the dyadi d-spaes, see [39℄, [20℄ for the ase d = 1. The Sierpi�nski gasket belongs to the \real"boundary whih desribes the behaviour of our dynamis (iteration of ontrationsg�) at +1, whereas the strings a 2 A0�1 whih desribe the dynamis at �1an be interpreted as points of the \dyadi boundary". It would be interesting tounderstand to what extent the rih geometry of the Sierpi�nski gaskets and graphsould be interpreted just in terms of the group G and its free semigroup S.3. The situation haraterized by the presene of two di�erent struturesresponsible for the behaviour of the dynamis at +1 and �1, respetively, o-urs also in the theory of iterations of rational maps. Lyubih and Minsky [45℄onstruted a Riemann surfae lamination Af and a hyperboli 3-lamination Hfassoiated with an endomorphism f of the Riemann sphere C . The leaves of Afare planes endowed with a omplex aÆne (� real similarity) struture, whereas theleaves of Hf are pointed at in�nity hyperboli 3-spaes whose boundary planes arethe leaves pf Af . Both laminations are endowed with an ation of the natural ex-tension bf of the rational map f whih is minimal on Af and properly disontinuouson Hf , so that the latter ation gives rise to the quotient hyperboli laminationMf = Hf= bf . The \forward" dynamis of f is desribed by the leafwise Juliasets, whereas the \bakward" dynamis is desribed by the transversal strutureof these laminations (the transversals of these laminations are, roughly speaking,bakward trajetories of f on C ). This piture also bears lose resemblane to the



Random Walks on Sierpi�nski Graphs 27dynamis of the geodesi ow on hyperboli manifolds and of assoiated Kleiniangroups, see [37℄.In our ontext the produt of the boundaries of the group G at +1 and �1(see Comment 2 above) an be onsidered as a Rd-lamination L with a leafwisesimilarity struture. The forward dynamis is desribed by the leafwise Sierpi�nskigaskets G(a); a 2 A0�1, whereas the bakward dynamis is desribed by thetransverse struture of L. The group G ats minimally on L and properly dison-tinuously on the assoiated Hd+1-laminationH. We shall return to a more detaileddesription of this onstrution elsewhere.3.7. AmenabilityFor a subset A of a graph X denote by�A = fx 2 A : 9 y 2 X rA with (x; y) 2 E(X)gits boundary. Reall that a onneted graph X is alled amenable if it ontains�nite sets A � X with arbitrarily small isoperimetri ratio(ard �A)=(ardA) (40)(we remind the reader Convention 2.2 made in Setion 2.2). Aording to a rite-rion of Gromov (see [12℄) a graph X is non-amenable if and only if there exists amap ' : X ! X and a onstant C > 0 suh thatdist(x; '(x)) � C ; ard �'�1(x)	 � 2 8x 2 X ;In partiular, a tree is amenable if and only if it ontains arbitrarily long geodesisegments without branhing.Sine adding new edges to the same vertex set may only make the graphdistane smaller, Gromov's riterion impliesTheorem 3.27. Under onditions of Convention 2.2, if a rooted tree (T; o) is non-amenable, then any its augmentation (X; o) is also non-amenable.The onverse is not true even under the assumption that the augmented tree(X; o) is hyperboli. For an example let (T 0; o) be the rooted tree obtained byadding to a binary rooted tree (T; o) a new geodesi ray 0 issued from o. Then T 0is amenable, whereas T is non-amenable. Choose a ray  in T , and add to T 0 allhorizontal edges joining  and 0. Then the resulting augmented rooted tree (X0; o)is roughly isometri to the original binary tree (T; o), so that X0 is non-amenable.Theorem 3.28. The Sierpi�nski graph G and all the extended Sierpi�nski graphs G(a),a 2 A0�1, are non-amenable.Proof. The underlying binary trees of the Sierpi�nski graph G and of the extendedSierpi�nski graphs G(a) are non-amenable, so that the laim follows from Theo-rem 3.27. �



28 Vadim A. Kaimanovih4. Random walks on Sierpi�nski graphsIn this Setion we apply general results from the theory of Markov hains on hy-perboli spaes and on equivalene relations to the objets assoiated with theSierpi�nski gasket whih were onstruted in Setions 2 and 3. Therefore, the ex-position in this Setion is skethier, and detailed proofs are often replaed withreferenes to analogous ases treated with the same general methods.4.1. Markov hains and Markov operatorsA Markov hain on a ountable state spae X is determined by the family oftransition probabilities �x = p(x; �) ; x 2 X ;or, equivalently, by the assoiated Markov operatorPf(x) = Xy2X p(x; y)f(y)By �nx = pn(x; �) we denote the n-step transition probabilities of the Markov hain.There are several onditions onneting transition probabilities of a Markovhain with a graph struture on its state spae X. A Markov hain is said to be ofnearest neighbour type if p(x; y) > 0 only if x and y are neighbours, and is said tobe of bounded range if there is a onstant D > 0 suh that p(x; y) = 0 wheneverdist(x; y) � D (where dist(�; �) denotes the graph metri on X). For the simplerandom walk on a graph X the transition probabilities �x are equidistributedamong the neighbours of x, i.e.,p(x; y) = ( 1deg(x) ; if (x; y) 2 E(X) ;0 ; otherwise.A Markov operator on a graph X is alled irreduible if any vertex y 2 X an beattained from any other vertex x 2 X with positive probability, i.e., if there existsn � 0 with pn(x; y) > 0, and it is alled uniformly irreduible if there exist aninteger N > 0 and a number " > 0 suh that whenever two points x; y 2 X areneighbours there exists n � N with pn(x; y) � ". In partiular, the simple randomwalk on X is always uniformly irreduible.The spetral radius of an irreduible Markov operator is de�ned as�(P ) = lim supn!1 �pn(x; y)�1=n :By irreduibility the limit in the above formula does not depend on the hoie ofthe points x; y 2 X.Theorem 4.1 ([18℄). A graph X is amenable if and only the spetral radius of thesimple random walk on X is 1.Remark 4.2. This theorem is atually valid for a muh larger lass of reversiblerandom walks on X, see [30℄.



Random Walks on Sierpi�nski Graphs 294.2. Boundaries of Markov operatorsThere are two prinipal notions of a boundary of a Markov hain. The Poissonboundary is de�ned in the measure theoretial ategory, and the Martin boundaryis de�ned in the topologial ategory.More preisely, the Poisson boundary G of a Markov hain is de�ned as thespae of ergodi omponents of the time shift in its path spae and is endowedwith a natural harmoni measure lass [�℄. For any starting point x 2 X the image�x of the measure Px in the path spae (orresponding to starting the hain attime 0 from the point x) under the projetion onto the Poisson boundary is alledthe harmoni measure of the point x. The harmoni measures �x are absolutelyontinuous with respet to the lass [�℄ and satisfy the stationarity ondition�x =Xy p(x; y)�y ;so that any funtion bf 2 L1(G; [�℄) determines by the Poisson formulaf(x) = h bf ; �xia bounded P -invariant funtion on X (suh funtions are alled harmoni). In fat,the Poisson formula establishes an isometry between the spae L1(G; [�℄) and thespae of bounded P -harmoni funtions on X.The Martin boundary is de�ned in terms of the Green kernelG(x; y) = 1Xn=0pn(x; y)of the Markov operator P . Namely, one �rst embeds the spae X into the spaeof positive funtions on itself by the map y 7! G(�; y). The projetivization ofthe latter spae by the multipliative ation of R+ (whih amounts to replaingthe Green kernel with the Martin kernel K(x; y) = G(x; y)=G(o; y), where o isa �xed referene point), gives an embedding of X into a ompat spae, afterwhih it only remains to take the losure of X in this ompat spae (in thisursory desription we assume for simpliity that the operator P is irreduible).The resulting ompati�ation is alled the Martin ompati�ation of the statespae X determined by the operator P , and its boundary is alled the Martinboundary.By the onstrution, the points of the Martin boundary an be identi�ed withthe (projetive lasses) of positive superharmoni funtions f on X (i.e., suh thatPf � f). The Martin boundary ontains (the projetive lasses of) all minimalpositive harmoni funtions (� the extremal rays in the one of positive harmonifuntions). For any point x 2 X the ondition f(x) = 1 allows one to hoose arepresentative in eah ray of the one of positive harmoni funtions (i.e., thisondition determines a base Bx of the one). Then any positive harmoni funtion' has a unique representing measure �fx onentrated on the extremal points of theonvex set Bx. The Martin boundary endowed with the family of the representingmeasures �1x of the onstant funtion 1 is isomorphi to the Poisson boundary.



30 Vadim A. KaimanovihMoreover, almost all sample paths of the Markov hain onverge in the Martinompati�ation, and for any x 2 X the measure �1x is the hitting measure on theMartin boundary orresponding to the starting point xFor a more detailed disussion of the theory of boundaries of Markov hainson graphs see the author's artiles [31℄, [33℄, the book by Woess [56℄ and thereferenes therein.4.3. The Martin boundary of Sierpi�nski gasketThe fundamental results of Anona give a desription of the Martin boundary onhyperboli graphs and general Gromov hyperboli spaes [2℄ (see also the exposi-tion in the book [56℄).Theorem 4.3. Let P be a uniformly irreduible bounded range Markov operator ona hyperboli graph X with �(P ) < 1. Then the Martin ompati�ation of P ishomeomorphi to the hyperboli ompati�ation of X, in partiular, the Martinboundary of P is homeomorphi to the hyperboli boundary �X.Remark 4.4. Under the onditions of Theorem 4.3 the harmoni measure lass onthe hyperboli boundary �X is purely non-atomi, and the operator P satis�es theboundary Harnak priniple, whih implies that the Radon{Nikodym derivativesof the harmoni (� hitting) measuresd�xd�y (�) ; x; y 2 X; � 2 �X ;extend to H�older ontinuous funtions on �X with respet to the metris �" (36),see [2℄, [3℄.In view of Theorem 4.1 we haveTheorem 4.5. If X is a non-amenable hyperboli graph, then the Martin boundaryof the simple random walk on X is homeomorphi to the hyperboli boundary �X.Theorems 3.21 and 3.23 implyTheorem 4.6. Let P be a uniformly irreduible bounded range Markov operator onthe Sierpi�nski graph G (resp., on the augmented Sierpi�nski graph G(a); aA0�1). If�(P ) < 1, then the Martin boundary of P is homeomorphi to the Sierpi�nski gasketG (resp., to the one-point ompati�ation G(a) [ f!g of the extended Sierpi�nskigasket G(a)).In partiular, in view of Theorems 3.28 and 4.5 we haveTheorem 4.7. The Martin boundary of the simple random walk on the Sierpi�nskigraph G (resp., on the augmented Sierpi�nski graph G(a); aA0�1) is homeomorphito the Sierpi�nski gasket G (resp., to the one-point ompati�ation G(a)[f!g ofthe extended Sierpi�nski gasket G(a)).



Random Walks on Sierpi�nski Graphs 31Remark 4.8. The H�older ontinuity of the Radon{Nikodym derivatives of harmonimeasures (see Remark 4.4) an be used to show that the harmoni measure lassof the simple random walk on the Sierpi�nski graph determines a Gibbs measureon the symboli spae A11 (whih provides a oding of the Sierpi�nski gasket G asexplained in Setion 2.5), f. [48℄, [55℄, [51℄, [44℄.Denker and his ollaborators Sato and Koh [16℄, [17℄, [15℄ onsidered therandom walk on the Sierpi�nski graph G for whih the transition probabilities froma point a 2 A�? are equidistributed among the o�springs of a and of its onjugatea? (11), i.e., p(a; b) = 8><>: 1d+1 ; a = a? ; b = a� ; � 2 A ;12d+2 ; a 6= a? ; b = a�;a?� ; � 2 A ;0 ; otherwise : (41)In partiular, they proved (by a diret omputation of the Green and Martinkernels) that the Martin boundary of this hain is homeomorphi to the Sierpi�nskigasket. This random walk always moves from the n-th level in the Sierpi�nski graphto the next (n+1)-th level, so that it is not irreduible in the sense of Setion 4.1,and the results of Theorem 4.3 are not appliable in this situation. However, dueto the absene of returns for this random walk, its Green kernel is given justby the n-step transition probabilities. Therefore, the Green kernel is obviouslymultipliative along geodesis issued from the root of the Sierpi�nski graph. Sinethe almost multipliativity of the Green kernel along geodesis in a hyperbolispae is the main ingredient of Anona's approah, his methods ould be atuallyadapted to this situation as well.4.4. Random walks on equivalene relationsReall that a disrete equivalene relation R on a Borel set X is an equivalenerelation whih is Borel as a subset of X � X and whose lasses [x℄ are at mostountable. The transition probabilities �x = p(x; �); x 2 X of a Markov hain onequivalene relation R are required to be onentrated on the lass [x℄ for anyx 2 X and to be Borel (as funtions on R). These transition probabilities give riseto the global Markov hain with the state spae X and to loal Markov hains oneah equivalene lass [x℄.If the global state spae X is ompat, and the transition probabilities �x de-pend on x ontinuously in the weak� topology, then by ompatness onsiderationsthere exists a probability measure m on X whih is stationary with respet to theglobal hain. If no loal hain has a �nite stationary measure, then the measurem is neessarily purely non-atomi. Standard results from the ergodi theory ofstationary Markov hains imply that the measure m an be always hosen to beergodi, i.e., not deomposable into a onvex ombination of two di�erent station-ary measures. This de�nition of ergodiity is equivalent to saying that the timeshift in the path spae of the global hain is ergodi with respet to the invariantmeasure Pm (whose one-dimensional distributions are m), or, that the state spae



32 Vadim A. KaimanovihX does not ontain any non-trivial absorbing subsets with respet to the globalhain, see [50℄, [29℄.Suppose now that the equivalene relation R is in addition endowed witha graph struture (determined by a Borel subset E � R, see the disussion atthe end of Setion 2.8), and let dist(�; �) be the assoiated graph distane on theequivalene lasses. We shall say that the global Markov hain on the graphedequivalene relation (R; E) determined by a family of transition probabilities �xhas a �nite �rst moment with respet to a stationary measure m ifZ Xy dist(x; y)p(x; y) dm(x) <1 : (42)Clearly, if the �rst momentsPy dist(x; y)p(x; y) of the transition probabililties �xare uniformly bounded on x (in partiular, if all the loal hains on the equivalenelasses have uniformly bounded range), then ondition (42) is satis�ed for anystationary measure m.An additive oyle of the equivalene relation R is a funtion  : R ! Rwhih satis�es the hain rule(x; y) + (y; z) = (x; z)for all triples of equivalent points x; y; z 2 X. A oyle is Lipshitz with respetto the graph struture E if there exists a onstant C > 0 suh that(x; y) � C � dist(x; y) 8 (x; y) 2 R :If the transition probabilities �x have a �nite �rst moment with respet to astationary measure m, then the drift of a Lipshitz oyle is de�ned asÆ = Æ(X;R; f�xg;m; ) = Z Xy (x; y)p(x; y) dm(x) ;so that if the measure m is ergodi then1n(x0; xn)! Æfor Pm-a.e. sample path (xn) of the global hain on X and in the spae L1(Pm).The methods of the entropy theory of random walks on groups (see [39℄, [33℄and the referenes therein) an be arried over to the Markov hains on equivalenerelations and give riteria of triviality and of identi�ation of the Poisson bound-aries of loal Markov hains on the lasses of the equivalene relation analogousto those for random walks on groups, see [32℄, [36℄.4.5. The Poisson boundary of extended Sierpi�nski gasketsWe shall now apply the onsiderations from the previous Setion to the weak tailequivalene relation � on the ompat set A0�1 (see De�nition 2.14) endowedwith the graph struture E� (24). In partiular, for any weak� ontinuous familyof transition probabilities on �-lasses there is a stationary measure on A0�1.



Random Walks on Sierpi�nski Graphs 33Remark 4.9. Apparently, in our situation the stationary measure should be uniqueunder reasonable onditions on the transition probabilities �a; a 2 A0�1 (for ex-ample, for the simple random walk with respet to the graph struture E�). To takethe simplest example, it is well-known to be the ase if the transition probabilities�a are determined by a random walk on the free semigroup A�? via the ation (6),i.e., p(a;a �w) = �(a) for a ertain non-degenerate probability measure � on A�?,see [33℄ and the referenes therein (f. also an analogous uniqueness result for theBrownian motion on foliations in [21℄).The synhronization oyle � (21) is obviously Lipshitz with respet to thegraph struture E� with the onstant C = 1.Theorem 4.10 (f. [11℄, [40℄). Let f�ag be the family of transition probabilities ofa Markov hain on the weak tail equivalene relation (A0�1;�) with a �nite �rstmoment with respet to the graph struture E�, and let m be a purely non-atomiergodi stationary measure on A0�1. Depending on the sign of the drift Æ of thesynhronization oyle � the following three ases our:(i) If Æ < 0, then Pm-a.e. sample path (a0;a1; : : :) onverges to the remoteroot of the equivalene lass [a0℄, and the Poisson boundary of m-a.e. loalMarkov hain is trivial.(ii) If Æ = 0, then the Poisson boundary of m-a.e. loal Markov hain is trivial.(iii) If Æ > 0, then Pm-a.e. sample path (a0;a1; : : : ) onverges to a point of theSierpi�nski gasket G(a0) (onsidered as a subset of the hyperboli boundaryof the Sierpi�nski graph G(a0)). For m-a.e. string a 2 A0�1 the Poissonboundary of the loal Markov hain on the equivalene lass [a℄ is isomor-phi to the Sierpi�nski gasket G(a) endowed with the assoiated family ofhitting probabilities.In the ase (iii) the harmonimeasure lass [�a℄ on a.e. Sierpi�nski gasketG(a)is purely non-atomi [36℄. By removing a ountable set of points (f. Remark 2.13)we obtain an inreasing sequene of partitions �n of G(a) whose elements arethe interiors of the n-th level simplies of the Sierpi�nski graph G(a). Then theapproah from [32℄ in ombination with Theorem 3.24 impliesTheorem 4.11. Under onditions of Theorem 4.10, if Æ > 0 then for m-a.e. a 2A0�1 the Hausdor� dimension of the harmoni measure lass [�a℄ on the Sierpi�nskigasket G(a) is HD[�a℄ = 1log 2 � hÆ ; (43)where the asymptoti entropy h is the number de�ned ash = � limn!1 1n logpn(a0;an)(this limit exists Pm-a.e. and the spae L1(Pm)).The Sierpi�nski graph G (resp., the gasket G) is ontained in all the extendedSierpi�nski graphs G(a) (resp., the gaskets G(a). For a random walk on the lasses



34 Vadim A. Kaimanovihof the weak tail equivalene relation, a priory, the restritions of transition proba-bilities from G(a) to G are all di�erent and the restritions of the harmonimeasurelasses [�a℄; a 2 A0�1 to G are pairwise singular for the strings a from di�erentweak tail equivalene lasses. However, if the restritions of the transition proba-bilities from the extended Sierpi�nski graphs G(a) to the Sierpi�nski graph G are allthe same, then under relatively mild onditions one an show that the behaviouron G does not depend \too muh" on what happens on the omplement G(a)r G.This allows one to apply the results obtained for a.e. random graph G(a) to theonrete Sierpi�nski graph G. For example,Proposition 4.12. For a string a 2 A0�1 onsider the simple random walk on theextended Sierpi�nski graph G(a), and denote by [�a℄ the arising harmoni measurelass on the extended Sierpi�nski gasket G(a). Then the restrition [�a℄G of thelass [�a℄ to the Sierpi�nski gasket G � G(a) is equivalent to the harmoni measurelass [�℄ on G determined by the simple random walk on the Sierpi�nski graph G.Sketh of the proof. The simple random walk on G is obtained by reeting thesimple random walk on G(a) on the boundary of G in G(a). Thus, [�℄ is absolutelyontinuous with respet to [�a℄G. Conversely, the boundary of G in G(a) onsistsof at most 3 points, so that it is negligible with respet to [�a℄G. Therefore, a.e.sample path of the simple random walk on G(a) whih onverges to a point inG � G(a) eventually oinides with a ertain sample path of the simple randomwalk on G. �Corollary 4.13. The Hausdor� dimension of the harmoni measure lass on theSierpi�nski gasket G determined by the simple random walk on the Sierpi�nski graphis given by formula (43), where h and Æ are the asymptoti entropy and the drift ofthe synhronization oyle, respetively, determined by any stationary measure ofthe simple random along the lasses of the weak tail equivalene relation � endowedwith the graph struture E� (f. Remark 4.9).4.6. The singularity problemThe problem of omparing the harmoni measure with other natural measures onthe boundary arises in numerous situations: negatively urved Riemannian mani-folds, random walks on groups, produts of random matries, onformal dynamis,see the referenes below. In all known ases oinidene of the harmoni measuretype with other natural measure types inevitably implies that the onsidered sys-tem must belong to a ertain very speial sublass. However, the results of thistype are notoriously diÆult and heavily exploit the spei�s of the onsideredlass of systems (f. the entirely di�erent approahes used in [25℄, [13℄, [43℄, [49℄,[41℄, [46℄, [47℄). The problem remains open in many interesting situations. Let usjust mention the following problem. Let G = �1(M ) be the fundamental group ofa ompat negatively urved manifoldM . Is it true that the harmoni measure ofany �nitely supported random walk on G is singular with respet to the Hausdor�measure on the sphere at in�nity of the universal overing manifold? Yet another



Random Walks on Sierpi�nski Graphs 35losely onneted problem is that of desribing �nitely generated groups admittinga \maximal entropy" random walk, i.e., suh that h = lv, where h is the entropy,l is the linear rate of esape, and v is the growth of the group (e.g., see the reentpaper [54℄ and the referenes therein).The Sierpi�nski gasket G arries a natural uniformly distributed measure �,whih is the image of the uniform Bernoulli measure on A11 under the map � (12)and oinides with the log(d+ 1)= log 2-dimensional Hausdor� measure on G.Problem 4.14. Is the harmoni measure lass [�℄ on the Sierpi�nski gasket G deter-mined by the simple random walk on the Sierpi�nski graph G singular with respetto the Hausdor� measure �?Below are several omments to this problem.1. For the randomwalk on the Sierpi�nski graph G with the transition probabil-ities (41) onsidered by Denker and ollaborators the harmoni measure oinideswith the Hausdor� measure due to the very speial hoie of the transition prob-abilities (atually, the time n transition probability from the root ? is preiselythe uniform measure on the n-th level of the Sierpi�nski graph). However, for thesimple random walk on G the situation beomes non-trivial due to the presene ofthe horizontal transitions, so that there is no a priori reason for the equivalene(let alone oinidene) of the harmoni and the Hausdor� measures. For example,let us look at Fig. 10 where a fragment of a horizontal level of the Sierpi�nski graphis shown (on the left-hand side of the piture are the triangles represented as graphverties on the right-hand side). This fragment is the 3-neighbourhood of a set Zonsisting of 3 \siblings" (represented as blak triangles on the left-hand side ofthe piture and as blak dots on the right-hand side). If the initial distribution isequidistributed on the set Z, then after 5 steps of the simple random walk its re-strition onto Z is no longer uniformly distributed (beause of an additional ylethe two points to the right will have higher probabilities than the point on theleft).
Figure 10
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