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STANDARD TRACTORS AND THE CONFORMALAMBIENT METRIC CONSTRUCTIONANDREAS �CAP AND A. ROD GOVERAbstra
t. In this paper we relate the Fe�erman{Graham ambientmetri
 
onstru
tion for 
onformal manifolds to the approa
h to 
onfor-mal geometry via the 
anoni
al Cartan 
onne
tion. We show that fromany ambient metri
 that satis�es a weakening of the usual normalisa-tion 
ondition, one 
an 
onstru
t the 
onformal standard tra
tor bundleand the normal standard tra
tor 
onne
tion, whi
h are equivalent tothe Cartan bundle and the Cartan 
onne
tion. This result is applied toobtain a pro
edure to get tra
tor formulae for all 
onformal invariantsthat 
an be obtained from the ambient metri
 
onstru
tion. We alsoget information on ambient metri
s whi
h are Ri

i 
at to higher orderthan guaranteed by the results of Fe�erman{Graham.1. Introdu
tionIt is an old result of E. Cartan that 
onformal manifolds of dimension � 3admit a 
anoni
al normal Cartan 
onne
tion. While this solves the equiva-len
e problem for 
onformal stru
tures, the problem of a 
omplete 
onformalinvariant theory and the related problem of 
onstru
ting 
onformally invari-ant di�erential operators remain very diÆ
ult. Based on similar ideas forCR{stru
tures, Ch. Fe�erman and C.R. Graham initiated a new approa
hto these problems in 1985, see [8℄. Viewing a pseudo{
onformal stru
tureof signature (p; q) on a manifold M as a ray bundle S2T �M � Q ! Mthe idea of this approa
h is to asso
iate to the given 
onformal stru
ture apseudo{Riemannian metri
 of signature (p + 1; q + 1) on Q � (�1; 1), theso{
alled ambient metri
. This metri
 is required to be homogeneous and
ompatible with the 
onformal stru
ture in a rather obvious sense, while themore subtle 
ondition is that it should be Ri

i 
at up to some order alongQ. In odd dimensions, ambient metri
s whi
h are Ri

i 
at to in�nite orderalong Q exist and are essentially unique, while in even dimensions there isan obstru
tion at �nite order, but up to that order the ambient metri
 isagain essentially unique.This immediately leads to a 
onstru
tion for 
onformal invariants, sin
eany Riemannian invariant of an ambient metri
 satisfying these Ri

i 
ondi-tions, whi
h is of low enough order in the even{dimensional 
ase, gives riseto a 
onformal invariant of the underlying 
onformal stru
ture. Moreover,the ambient metri
 
onstru
tion has been applied in [14℄ to 
onstru
t 
onfor-mally invariant powers of the Lapla
ian. This 
onstru
tions gives arbitrarilyDate: July 1, 2002.1991 Mathemati
s Subje
t Classi�
ation. primary: 53A30 se
ondary: 53B15.Key words and phrases. 
onformal ambient metri
, 
onformal invariants, standard tra
-tors, Fe�erman{Graham 
onstru
tion. 1



2 ANDREAS �CAP AND A. ROD GOVERhigh powers in odd dimensions and powers up to some 
riti
al order in evendimensions. This is 
omplemented by C.R. Graham's result in [13℄ thatthere is no 
onformally invariant third power of the Lapla
ian in dimensionfour, whi
h strongly suggests that the obstru
tion to the ambient metri

onstru
tion in even dimensions is of fundamental nature. It should also beremarked here that the ambient metri
 
onstru
tion has re
ently re
eivedrenewed interest be
ause of its relation to the so{
alled Poin
ar�e metri
 andvia that to s
attering theory and the AdS/CFT{
orresponden
e in physi
s,see [20, 16, 17, 15, 9℄ and referen
es therein.Over the past few years the Cartan approa
h to 
onformal geometry anda more general 
lass of geometri
 stru
tures 
alled paraboli
 geometries hasbeen signi�
antly developed. One development, whose origins 
an be tra
edba
k to the work of T. Thomas in the 1920's and 1930's [18, 19℄, is the 
on-
ept of tra
tor bundles, whi
h give an equivalent des
ription of the Cartanbundle and the Cartan 
onne
tion in terms of linear 
onne
tions on 
ertainve
tor bundles. These then lead to an eÆ
ient 
al
ulus, whi
h has beensu

essfully applied to the study of 
onformal invariants and 
onformallyinvariant di�erential operators, see e.g. [1, 7, 11℄.The purpose of this paper is to relate pre
isely the ambient metri
 
on-stru
tion to the 
onformal standard tra
tor bundle and its 
anoni
al linear
onne
tion. We �rst 
onstru
t a standard tra
tor bundle and a tra
tor 
on-ne
tion on that bundle from a very general 
lass of ambient metri
s. Thenwe prove that normality of this tra
tor 
onne
tion is equivalent to vanishingof the tangential 
omponents of the Ri

i 
urvature of the ambient metri
along Q. Hen
e, we obtain the normal standard tra
tor bundle and tra
tor
onne
tion from any metri
 produ
ed by the ambient metri
 
onstru
tion.This is done in se
tion 2.In se
tion 3, we express some basi
 elements of tra
tor 
al
ulus in termsof ambient data. This is then used to show that for any ambient metri
whi
h satis�es the Ri

i 
onditions of [8℄, there is an algorithm to 
om-pute all 
ovariant derivatives of the 
urvature (up to the 
riti
al order ineven dimensions) from the tra
tor 
urvature. Sin
e any lo
al s
alar 
onfor-mal invariant obtained from the ambient metri
 
onstru
tion is a 
omplete
ontra
tion of a tensor produ
t of su
h 
ovariant derivatives, we obtain analgorithm to 
ompute a tra
tor formula for any of these invariants. This isan important a
hievement, sin
e in 
ontrast to the situation of the ambientmetri
 
onstru
tion, 
onverting tra
tor formulae into formulae in terms ofmetri
s from the 
onformal 
lass is a purely me
hani
al pro
edure and inparti
ular does not involve solving any equations. In fa
t it is straightfor-ward to write software for these expansions, see [12℄.Our results also 
over the 
ase of metri
s whi
h are Ri

i 
at to higherorder than the ones that 
an be obtained from the ambient metri
 
on-stru
tion. While su
h metri
s do not exist on general 
onformal manifolds,studying the 
ases in whi
h they do exist is of 
onsiderable interest in 
on-formal geometry. What we 
an prove in this 
ase is that all higher 
ovariantderivatives of the 
urvature 
an be obtained from the tra
tor 
urvature andone \
riti
al" 
ovariant derivative.



TRACTORS AND CONFORMAL AMBIENT METRIC 3It should be pointed out that formally, our results are 
ompletely in-dependent from the results of [8℄ on the ambient metri
 
onstru
tion. Inparti
ular, Theorem 3.4 goes a long way towards an independent proof ofthe uniqueness of the ambient metri
. In fa
t, it 
ontains enough informa-tion on the uniqueness to show that the ambient metri
 
onstru
tion leadsto 
onformal invariants. We believe that our results 
an be extended toa 
omplete proof of uniqueness of the ambient metri
, whi
h is of entirelydi�erent nature than the one in [8℄. The reason why we do not go furtherin that dire
tion here is that we believe that the ideas we develop also 
anbe used for existen
e proofs for ambient metri
s and an analysis for the ob-stru
tion to the existen
e of an ambient metri
 whi
h is Ri

i 
at to in�niteorder in even dimensions, and we will take up this whole 
ir
le of problemselsewhere.The authors would like to thank C. Robin Graham for several helpful
onversations.2. The ambient 
onstru
tion of 
onformal standard tra
tors2.1. Conformal stru
tures. Let M be a smooth manifold of dimensionn � 3. A 
onformal stru
ture onM of signature (p; q) (with p+q = n) is anequivalen
e 
lass of smooth pseudo{Riemannian metri
s of signature (p; q)on M , with two metri
s being equivalent if and only if one is obtained fromthe other by multipli
ation with a positive smooth fun
tion.For a point x 2M , and twometri
s g and ĝ from the 
onformal 
lass, thereis an element s 2 R+ su
h that ĝx = sgx. Thus, we may equivalently viewthe 
onformal 
lass as being given by a smooth ray subbundle Q � S2T �M ,whose �bre at x is formed by the values of gx for all metri
s g in the 
onformal
lass. By 
onstru
tion, Q has �bre R+ and the metri
s in the 
onformal 
lassare in bije
tive 
orresponden
e with smooth se
tions of Q.Denoting by � : Q !M the restri
tion to Q of the 
anoni
al proje
tionS2T �M !M , we 
an view this as a prin
ipal bundle with stru
ture groupR+. The usual 
onvention is to res
ale a metri
 g to ĝ = f2g. This 
orre-sponds to a prin
ipal a
tion given by �s(gx) = s2gx for s 2 R+ and gx 2 Qx,the �bre of Q over x 2M .Having this, we immediately get a family of basi
 real line bundles E [w℄!M for w 2 R by de�ning E [w℄ to be the asso
iated bundle to Q with respe
tto the a
tion of R+ on R given by s�t := s�wt. The usual 
orresponden
ebetween se
tions of an asso
iated bundle and equivariant fun
tions on thetotal spa
e of a prin
ipal bundle then identi�es the spa
e �(E [w℄) of smoothse
tions of E [w℄ with the spa
e of all smooth fun
tions f : Q ! R su
h thatf(�s(gx)) = swf(gx) for all s 2 R+.Although the bundle E [w℄ as we de�ned it depends on the 
hoi
e of the
onformal stru
ture, it is naturally isomorphi
 to a density bundle (whi
his independent of the 
onformal stru
ture). Re
all that the bundle of �{densities is asso
iated to the full linear frame bundle of M with respe
t tothe 1{dimensional representation A 7! j det(A)j�� of the group GL(n;R).In parti
ular, 1{densities are exa
tly the geometri
 obje
ts that may beintegrated in a 
oordinate{independent way on non{orientable manifolds,while in the orientable 
ase they may be 
anoni
ally identi�ed with n{forms.



4 ANDREAS �CAP AND A. ROD GOVERTo obtain the identi�
ation, re
all that any pseudo{Riemannian metri
 g onM determines a nowhere vanishing 1{density, the volume density vol(g). Inlo
al 
oordinates, this density is given by pj det(gij)j, whi
h immediatelyimplies that for a positive fun
tion f we get vol(f2g) = fn vol(g).Consequently, any 1{density ' determines a smooth fun
tion Q ! R bymapping gx to '(x)= vol(g)(x) and obviously this fun
tion is homogeneousof degree �n. This gives an identi�
ation of the basi
 density bundle withE [�n℄ and thus an identi�
ation of E [w℄ with the bundle of (�wn ){densitieson M . Hen
e if we have not �xed a 
onformal stru
ture in the sequel,we will swit
h the point of view and 
onsider E [w℄ as being de�ned as thebundle of (�wn ){densities and a 
hoi
e of a 
onformal stru
ture providing anidenti�
ation of this density bundle with an asso
iated bundle to � : Q !M .We will follow the 
onvention that adding the expression [w℄ to the nameof any bundle indi
ates the tensor produ
t of that bundle with E [w℄, so forexample TM [�1℄ = TM 
 E [�1℄. Clearly, se
tions of su
h weighted tensorbundles may be viewed as equivariant se
tions of pullba
k bundles. Forexample, smooth se
tions of TM [w℄ are in bije
tive 
orresponden
e withsmooth se
tions � of ��TM su
h that �(s2gx) = sw�(gx). (Re
all that the�bres of ��TM in gx and s2gx may be 
anoni
ally identi�ed, so this equationmakes sense.) In parti
ular, we may 
onsider the tautologi
al in
lusion of Qinto ��S2T �M as a 
anoni
al se
tion of S2T �M [2℄ des
ribing the 
onformal
lass, whi
h gives another equivalent des
ription of a 
onformal stru
ture.Of 
ourse, homogeneity along Q may as well be 
hara
terised in�nites-imally. For this, let X be the fundamental ve
tor �eld for the R+{a
tionon Q, i.e. X(gx) = ddt jt=0�et(gx) = ddt jt=0(e2tgx). For a fun
tion f : Q ! Rand w 2 R, the equation f(s2gx) = swf(x) is then 
learly equivalent toX�f = wf . Similarly, a tensor �eld t on Q is 
alled homogeneous of de-gree w 2 R if and only if (�s)�t = swt, whi
h is equivalent to LX t = wt,where L denotes the Lie derivative. Using this, we may for example in-terpret the spa
e of smooth se
tions of TM [w℄ as the quotient of the spa
ef� 2 X(Q) : [X; �℄ = w�g by the subspa
e 
onsisting of those elements whosevalues in ea
h point are proportional to X .2.2. Tra
tor des
ription of 
onformal stru
tures. It is a result thatgoes ba
k to E. Cartan that 
onformal stru
tures admit a 
anoni
al normalCartan 
onne
tion, see [3℄. More pre
isely, 
onsiderV= Rn+2 equipped witha non{degenerate inner produ
t h ; i of signature (p + 1; q + 1). Now putG := O(V), the orthogonal group of V, so G �= O(p+1; q+1). Furthermore,we de�ne P � G to be the stabiliser of a �xed null line in V. It then turnsout that P � G is a paraboli
 subgroup, whi
h may be ni
ely des
ribedexpli
itly, see e.g. [7℄. The relation of this pair to 
onformal geometry 
anbe des
ribed as follows: Let C be the 
one of nonzero null ve
tors in Vandlet N be its image in the proje
tivisation of P(V) �= RPn+1. Then it iseasy to see that h ; i indu
es a 
onformal stru
ture of signature (p; q) on Nand G a
ts transitively by 
onformal isometries. Moreover, it turns out thatthis 
onformal stru
ture is 
at and while G does not a
t e�e
tively on N(essentially sin
e id and � id both a
t as the identity on proje
tive spa
e) itis a two{fold 
overing of the group of 
onformal automorphisms of N . ThusN �= G=P is the homogeneous 
at model of 
onformal geometry.



TRACTORS AND CONFORMAL AMBIENT METRIC 5A slight generalisation of Cartan's result may be expressed as follows.A 
hoi
e of a 
onformal stru
ture on a smooth manifold M gives rise to a
anoni
al prin
ipal P{bundle G !M whi
h is endowed with a uniquely de-termined Cartan 
onne
tion ! 2 
1(G; g), where g = o(V) is the Lie algebraof G and ! satis�es a normalisation 
ondition to be dis
ussed below. To seethis in more detail (see e.g. [4, 2.2℄) note that the paraboli
 subgroup P � Gis a
tually related to a grading of the Lie algebra g of the form g�1�g0�g1.Denoting by G0 � P the subgroup of all elements whose adjoint a
tion pre-serves this grading, then it is elementary to verify (as outlined in [4, 2.3℄)that this group 
onsists of (1 + n + 1) � (1 + n + 1){blo
k matri
es of theform 0�
 0 00 C 00 0 
�11A with 0 6= 
 2 R and C 2 O(p; q). The a
tion of su
h anelement on g�1 �= Rn is given by the standard a
tion of 
�1C. Now one im-mediately veri�es that (
; C) 7! (
=j
j; 
�1C) indu
es an isomorphism G0 !Z2�CO(p; q), where CO(p; q) denotes the (pseudo{) 
onformal group. Theinverse isomorphism is given by ("; A) 7! ("j det(A)j�1=n; "j det(A)j�1=nA).This isomorphism intertwines the adjoint a
tion of G0 on g�1 with the prod-u
t of the trivial a
tion of Z2 and the standard a
tion of CO(p; q) on Rp+q.In parti
ular, this implies that a (�rst order) G0{stru
ture is the same thingas a CO(p; q){stru
ture and hen
e a 
onformal stru
ture on the manifold.Now the pro
edure of [6℄ applies to produ
e a normal Cartan 
onne
tion.(Of 
ourse in this spe
ial 
ase there are mu
h simpler dire
t 
onstru
tions ofthe Cartan bundle and the normal Cartan 
onne
tion.) The Cartan bundleand its normal Cartan 
onne
tion are uniquely determined by the underlying
onformal stru
ture up to isomorphism.While this Cartan 
onne
tion is 
onvenient from the point of view of theequivalen
e problem, it is rather diÆ
ult to use it for problems like �nd-ing invariants of 
onformal stru
tures or 
onformally invariant di�erentialoperators. To deal with su
h problems, it is often more eÆ
ient to swit
hto the des
ription of 
onformal stru
tures via the so{
alled standard tra
-tor bundle and its 
anoni
al linear 
onne
tion. Starting from the Cartanbundle and the Cartan 
onne
tion, the standard tra
tor bundle T ! M issimply the asso
iated bundle G �P V. By 
onstru
tion, this bundle 
arriesa 
anoni
al metri
 of signature (p + 1; q + 1). The distinguished null linein V used to de�ne P leads to a subbundle T 1 � T whose �bres are nulllines and whi
h is easily seen to be isomorphi
 to E [�1℄. Furthermore, itturns out that the Cartan 
onne
tion ! indu
es a linear 
onne
tion r onT , the so{
alled normal standard tra
tor 
onne
tion, see [5℄. Having thesedata at hand, one may then 
ompute the fundamental D{operator on T ,see [5, se
tion 3℄, whi
h in turn leads to the so 
alled tra
tor D{operator,see [10℄ or [4, se
tion 3℄. These operators have been su

essfully appliedto the 
onstru
tion of 
onformally invariant di�erential operators, 
onfor-mal invariants and other topi
s in 
onformal geometry, see e.g. [1, 2, 11℄.In summary, having an expli
it knowledge of the standard tra
tor bundle,the tra
tor metri
 and the normal standard tra
tor 
onne
tion, one imme-diately gets a large number of tools for dealing with problems in 
onformalgeometry.



6 ANDREAS �CAP AND A. ROD GOVERIt is an idea going ba
k to the work of T. Thomas in the 20's to usethe standard tra
tor bundle and its 
anoni
al 
onne
tion as an alternativeapproa
h to 
onformal geometry. The pre
ise relation between these dataand the Cartan bundle and Cartan 
onne
tion was 
ompletely 
lari�ed (ina mu
h more general setting) in [5℄. Spe
ialised to 
onformal standard tra
-tors, this goes as follows: Suppose that M is a smooth manifold, and thatT !M is a real rank n + 2 ve
tor bundle endowed with a bundle metri
 hof signature (p + 1; q + 1) and an inje
tive bundle map E [�1℄ ! T , whoseimage T 1 is null with respe
t to h. Suppose further that the T admits atra
tor 
onne
tion r in the sense of [5, 2.5℄. By de�nition, this means thatr is a non{degenerate o(V){
onne
tion. The 
ondition that r is a o(V)
onne
tion is easily seen to be equivalent to r preserving the bundle metri
h. On the other hand, T has a �ltration of the form T � T 0 � T 1, whereT 0 := (T 1)?. This immediately implies that for 
onne
tions preserving hthe non{degenera
y 
ondition from [5, 2.5℄ is equivalent to the 
onditionthat for any x 2 M and � 2 TxM there is a smooth se
tion � of T 1 su
hthat r��(x) =2 T 1x .Given the data (T ; h;r) as above, we 
an now re
over an underlying
onformal stru
ture of signature (p; q) on M : First, let �0 be a lo
ally non{vanishing se
tion of T 1. Then h(�0; �0) = 0 and thus 0 = ��h(�0; �0) =2h(r��0; �0) for all � 2 X(M). This immediately implies that for anysmooth fun
tion f we get h(r�(f�0); �0) = 0, and sin
e lo
ally any smoothse
tion of T 1 
an be written in the form f�0, we 
on
lude that r�� 2 �(T 0)for all � 2 X(M) and � 2 �(T 1). Now 
onsider the map whi
h maps (�; �)to the 
lass of r�� in �(T 0=T 1). This is obviously bilinear over smoothfun
tions, and thus indu
ed by a bundle map TM 
E [�1℄! T 0=T 1, whi
hby the non{degenera
y assumption is inje
tive on ea
h �bre, so sin
e bothbundles have rank n, we obtain a bundle isomorphism T 0=T 1 �= TM [�1℄.On the other hand, sin
e the restri
tion of h to T 0 is degenerate with nullspa
e T 1, h indu
es a non{degenerate bundle metri
 of signature (p; q) onT 0=T 1, and thus gives rise to a se
tion of S2T �M [2℄, i.e. a 
onformal stru
-ture on M . We say (T ; h;r) is a standard tra
tor bundle 
orresponding tothis 
onformal stru
ture. Conversely beginning with a 
onformal stru
tureon M there are ways (see e.g. [1, 4℄) to dire
tly 
onstru
t standard tra
torbundles for the given 
onformal stru
ture.Next, one may re
over the Cartan bundle from the standard tra
tor bun-dle: For x 2M de�ne Gx to be the set of all orthogonal maps V! Tx whi
hin addition map the distinguished null line to T 1x . By assumption, su
hmaps exist, and 
omposition from the right de�nes a transitive free righta
tion of P on Gx. Now the union G := [x2MGx may be naturally viewed asa subbundle of the frame bundle of T , when
e it obtains its smooth stru
-ture and the P{a
tion from above makes it into a P{prin
ipal bundle. By
onstru
tion, we have T = G �P Vand the metri
 h and the subbundle T 1are obtained by 
arrying over the respe
tive data from V. In the languageof [5, se
tion 2℄, this means that T ! M is a standard tra
tor bundle andG is an adapted frame bundle for T . (The adjoint tra
tor bundle lurkingin the ba
kground is the bundle o(T ) of skew symmetri
 endomorphisms ofT ).



TRACTORS AND CONFORMAL AMBIENT METRIC 7Now by [5, Theorem 2.7℄ there is a bije
tive 
orresponden
e between tra
-tor 
onne
tions on T and Cartan 
onne
tions on the adapted frame bundleG. To re
ognise the normal tra
tor 
onne
tion among all tra
tor 
onne
-tions, one notes that by [5, Proposition 2.9℄, the 
urvature R of a tra
tor
onne
tion r is given by the a
tion of the 
urvature of the 
orrespondingCartan 
onne
tion. Now in the spe
ial 
ase of 
onformal stru
tures, thegeneral Lie theoreti
 normalisation 
ondition on Cartan 
onne
tions usedin [5℄ 
an be simpli�ed 
onsiderably. First of all, any normal Cartan 
on-ne
tion in the 
onformal 
ase is torsion free, whi
h simply means that thea
tion of R(�; �) on the standard tra
tor bundle preserves the subbundleT 1 � T for all � and �. If this 
ondition is satis�ed, then R(�; �) indu
esan endomorphism W (�; �) of T 0=T 1 �= TM [�1℄, so we may as well view Was a se
tion of �2T �M 
 L(TM; TM). Using this and taking into a

ountthe des
ription of �� in the proof of [5, Proposition 4.3℄ and the formula forthe algebrai
 bra
ket in the 
onformal 
ase in [4, 2.3℄ one 
on
ludes that thenormalisation 
ondition on the 
urvature of a standard tra
tor 
onne
tionis equivalent to vanishing of the Ri

i{type 
ontra
tion of W . Of 
ourse,uniqueness of the Cartan bundle and Cartan 
onne
tion implies that T to-gether with the subbundle T 1, the metri
 h and the normal standard tra
tor
onne
tion r is uniquely determined by the underlying 
onformal stru
tureup to isomorphism. Summarising, we obtainTheorem. (1) Let M be a smooth manifold of dimension n � 3. Supposethat T !M is a rank n+2 real ve
tor bundle endowed with a bundle metri
h of signature (p+ 1; q + 1), an inje
tive bundle map E [�1℄ ! T with nullimage T 1 � T and a linear 
onne
tion r su
h that rh = 0 and, for anyx 2 M and any � 2 TxM , there is a smooth se
tion � 2 �(T 1) su
h thatr��(x) =2 T 1x . Then (T 1)?=T 1 �= TM [�1℄, and (T ; h;r) is a standardtra
tor bundle for the 
onformal stru
ture de�ned by the restri
tion of h to(T 1)?=T 1 � (T 1)?=T 1.(2) The tra
tor 
onne
tion r on T is normal if and only if its 
urvature Rhas the properties that R(�; �)(T 1) � T 1 and the Ri

i{type 
ontra
tion ofthe element W 2 �(�2T �M
L(TM; TM)), as des
ribed above, vanishes. Ifthis is the 
ase, then (T ; T 1; h;r) is uniquely determined by the underlying
onformal stru
ture up to isomorphism.2.3. Ambient manifolds and ambient metri
s. In [8℄, Ch. Fe�ermanand C.R. Graham have initiated a proje
t to study 
onformal stru
tures us-ing the so{
alled ambient metri
 
onstru
tion. The idea of that 
onstru
tionis to mimi
 the 
at metri
 on the ve
tor spa
e V in the 
ase of the homo-geneous model as des
ribed in 2.2 above. The null 
one C may be viewedas the image of the in
lusion E [�2℄! S2T �M provided by the 
onformally
at stru
ture, so half of this null 
one may be identi�ed with the bundle Qof metri
s in the 
onformal 
lass. Now one starts with the bundle Q !Mof metri
s de�ning an arbitrary 
onformal stru
ture. Then in [8℄ it is shownthat there is a Riemannian metri
 of signature (p+ 1; q+ 1) on Q� (�1; 1)(de�ned lo
ally around Q) whose Ri

i 
urvature vanishes to a 
ertain order(depending on the dimension) along Q. Moreover, the 
orresponding jet ofthis metri
 along Q is unique in a 
ertain sense. This 
onstru
tion has beenapplied in [14℄ to prove the existen
e of 
ertain 
onformally invariant powers



8 ANDREAS �CAP AND A. ROD GOVERof the Lapla
ian. Using Q� (�1; 1) is slightly misleading, one 
ould equally
onsider a germ along Q of an (unspe
i�ed) ambient manifold endowed witha free R+{a
tion. Moreover, as we shall see later on, a mu
h weaker normal-isation 
ondition on an ambient metri
 than the one used in [8℄ is suÆ
ientto get the relation to standard tra
tors. Thus, we will start our dis
ussionwith a general version of ambient manifolds and ambient metri
s.Note �rst, that on any manifold endowed with a free a
tion of R+, onehas the notion of homogeneity of tensor �elds as des
ribed in 2.2 above,whi
h 
an equivalently be 
hara
terised in�nitesimally.De�nition. Let � : Q !M be a 
onformal stru
ture. An ambient manifoldis a smooth (n+2)-manifold ~M endowed with a free R+{a
tion � on ~M anda R+{equivariant embedding � : Q ! ~M .If � : Q ! ~M is an ambient manifold, then an ambient metri
 is a pseudo{Riemannian metri
 h of signature (p+1; q+1) on ~M su
h that the following
ondition hold:(i) The metri
 h is homogeneous of degree 2 with respe
t to the R+{a
tion,i.e. if X 2 X( ~M) denotes the fundamental �eld generating the R+{a
tionand LX denotes the Lie derivative by X , then we have LXh = 2h.(ii) For u = gx 2 Q � ~M and �; � 2 TuQ, we have h(�; �) = gx(T���; T���).Sin
e the a
tion of R+ on ~M extends the a
tion on Q, we will denoteboth a
tions by the symbol � and we use X to denote the fundamental �eldfor both a
tions. Moreover, we will usually view Q as a submanifold of ~Mand suppress the embedding �.Sin
e we will frequently have to deal with the question of vanishing oftensor �elds along Q to some order, we 
olle
t some information on that. Atensor �eld t on ~M is said to vanish along Q to order ` � 1 if and only if tjQ =0 and for any integer k < ` and arbitrary ve
tor �elds �1; : : : ; �k 2 X( ~M) theiterated Lie derivative L�k � � �L�1 t vanishes along Q. Equivalently, one mayrequire all iterated 
ovariant derivativesr�k � � �r�1t to vanish alongQ. Thetensor �eld t is said to vanish to in�nite order along Q if it vanishes to order` for all ` 2 N. If we 
hoose any de�ning fun
tion r for Q, i.e. a smooth realvalued fun
tion de�ned lo
ally around Q su
h that Q = r�1(0) and dr doesnot vanish in any point of Q, then any tensor �eld t that vanishes alongQ may be written as t = rt0 for some tensor �eld t0 of the same type as t.Indu
tively, one sees that t vanishes to order ` along Q if and only if t = r`t0for some tensor �eld t0. Thus, we will use the notation t = O(r`) to indi
atethat t vanishes to order ` along Q.There are some points we should make that are parti
ular to the 
ase ofse
tions of 
sT �M . This is espe
ially relevant for the 
ase of di�erentialforms. On the one hand, in this 
ase vanishing to order ` along Q 
anbe equivalently expressed as vanishing of �k � � ��1�t(�1; : : : ; �s) for arbitraryk < ` and ve
tor �elds �i and �j. On the other hand, for tensor �elds tof that type there is the weaker 
ondition that tangential 
omponents of tvanish to some order along Q. One says that the tangential 
omponents oft vanish along Q if ��t = 0, where � : Q! ~M is the in
lusion. Equivalently,t(�1; : : : ; �s) has to vanish along Q if for any u 2 Q and any j one has�j(u) 2 TuQ � Tu ~M . We say that the tangential 
omponents of t vanish



TRACTORS AND CONFORMAL AMBIENT METRIC 9to order ` if and only if for k < `, arbitrary ve
tor �elds �1; : : : ; �k 2 X( ~M)and ve
tor �elds �1; : : : ; �s 2 X( ~M) su
h that ea
h �j jQ is tangent to Q,the fun
tion �k � � ��1�t(�1; : : : ; �s) vanishes along Q. In this 
ase, however,one may not repla
e this by a 
ondition on Lie derivatives or 
ovariantderivatives, sin
e a Lie derivative or 
ovariant derivative of a ve
tor �eldwhose restri
tion to Q is tangent to Q in general does not have the sameproperty.The normalisation 
onditions on ambient metri
s used in [8℄ are based onthe Ri

i 
urvature of the ambient metri
 h. However, to get the relationto standard tra
tors, we need a di�erent 
ondition. We shall show in 2.6that this 
ondition is a 
onsequen
e of the weakest possible 
ondition on theRi

i 
urvature. The 
ondition we need is based on the one{form � dual tothe generator X of the R+{a
tion, i.e. �(�) = h(X ; �). Noti
e that sin
eT��X = 0, 
ondition (ii) in the de�nition of an ambient metri
 implies that��� = 0. Thus, we also have 0 = d��� = ��d�, so the tangential 
omponentsof d� vanish along Q.Expanding the homogeneity 
ondition LXh = 2h, we get X�h(�; �) �h([X; �℄; �)�h(�; [X; �℄) = 2h(�; �), and rewriting the Lie bra
kets in termsof 
ovariant derivatives, we obtainh(r�X; �) + h(�;r�X) = 2h(�; �);whi
h says thatX is a 
onformal Killing �eld of dilation type. On the otherhand, by de�nition of the exterior derivative, we get d�(�; �) = ��h(X; �)���h(X; �)� h(X; [�; �℄), and expanding the right hand side of this in termsof 
ovariant derivatives givesh(r�X; �)� h(�;r�X) = d�(�; �);whi
h just expresses the fa
t that the exterior derivative of a di�erentialform is obtained by alternating the 
ovariant derivative. Putting these twoequations together, we obtain(1) h(r�X ; �) = h(�; �)+ 12d�(�; �):This equation shows that d� = O(r`) implies r�X = � + O(r`) for anyve
tor �eld �. On the other hand, if � is homogeneous of degree w, thenw� = [X ; �℄ = rX� �r�X , whi
h shows that rX� = (w + 1)� + O(r`)provided that d� = O(r`). Suppose next that iXd�jQ = 0, where i denotesthe insertion operator. Sin
e � is obviously homogeneous of degree two,this implies that 2�jQ = LX�jQ = diX�jQ. Thus we see that assumingiXd�jQ = 0, the fun
tion r := 12h(X;X) satis�es drjQ = �jQ, so we get a
anoni
al de�ning fun
tion in this 
ase.2.4. The standard tra
tor bundle and 
onne
tion indu
ed by anambient metri
. Let � : Q ! M be a 
onformal stru
ture, ~M � Qan ambient manifold and h and ambient metri
 on ~M . Throughout thissubse
tion we assume that h has the property that the one{form � dual toX satis�es d�jQ = 0.Consider the restri
tion T ~M jQ of the ambient tangent bundle to Q andde�ne an a
tion of R+ on this spa
e by s�� := s�1T�s��. This is 
ompatiblewith the R+ a
tion on Q, so de�ning T to be the quotient (T ~M jQ)=R+,



10 ANDREAS �CAP AND A. ROD GOVERwe immediately see that this is a ve
tor bundle over Q=R+ = M , and the�bre dimension of this bundle is n + 2. Moreover, by 
onstru
tion, thereis a bije
tive 
orresponden
e between the spa
e �(T ) of smooth se
tions ofp : T ! M and the spa
e of ambient ve
tor �elds along Q (i.e. se
tions ofT ~M jQ ! Q) whi
h are homogeneous of degree �1, or equivalently satisfy[X; �℄ = ��.The fa
t that the ambient metri
 h is homogeneous of degree 2 immedi-ately implies that for ve
tor �elds � and � on ~M whi
h are homogeneous ofdegree w and w0, respe
tively, the fun
tion h(�; �) is homogeneous of degreew + w0 + 2. In parti
ular, applying h to the ve
tor �elds 
orresponding totwo se
tions of T , the resulting fun
tion on Q is 
onstant on R+ orbits, andthus des
ends to a smooth fun
tion on M . Hen
e h des
ends to a smoothbundle metri
 h of signature (p+ 1; q + 1) on T .The bundle metri
 h immediately leads to a �ltration of the bundle T :Sin
e the verti
al tangent bundle of � : Q ! M is stable under the R+{a
tion, it gives rise to a distinguished line bundle T 1 � T . By 
onstru
tion,se
tions of this subbundle 
orrespond to ambient ve
tor �elds alongQ, whi
hare of the form fX for some smooth fun
tion f : Q ! R, and in order thatthis is a se
tion of T , the fun
tion f must be homogeneous of degree �1.Thus, mapping f to fX de�nes an isomorphism E [�1℄ �= T 1. On the otherhand, we have already observed that h(X;X) = 0 along Q. Hen
e, de�ningT 0 to be the orthogonal 
omplement of T 1 with respe
t to h, we see thatT 0 � T is a smooth subbundle of rank n + 1 and T 1 � T 0. To identify thequotient T =T 0, we observe that for any se
tion s 2 �(T ) with 
orrespondingve
tor �eld � along Q, we get a fun
tion h(�;X), whi
h is homogeneous ofdegree one. By 
onstru
tion, this vanishes if and only if s has values in T 0,so it indu
es an isomorphism T =T 0 �= E [1℄ of ve
tor bundles.Finally, assume that � is a ve
tor �eld on M and f 2 �(E [�1℄) is asmooth se
tion, i.e. a fun
tion Q ! R homogeneous of degree �1. Then wemay lift � to an ambient ve
tor �eld ~� along Q, whi
h is homogeneous ofdegree zero, and this lift is unique up to adding �elds of the form 'X with' : Q ! R homogeneous of degree zero. Then f ~� is a se
tion of T and byproperty (ii) of h we have h(f ~�;X) = 0, when
e f ~� 2 �(T 0). Moreover,the 
lass of f ~� in T 0=T 1 is independent of the 
hoi
e of the lift ~�. Hen
ewe obtain a bundle map TM [�1℄ ! T 0=T 1, whi
h is obviously inje
tivein ea
h �bre, so sin
e both bundles have the same rank, we 
on
lude thatT 0=T 1 �= TM [�1℄, whi
h implies that p : T ! M is a 
andidate for a
onformal standard tra
tor bundle. Noti
e that up to now we have not usedthe assumption that d� vanishes along Q.Next, letr be the Levi{Civita 
onne
tion of h. The fa
t thatr is torsionfree and rh = 0 imply the well know global formula2h(r��; �) =��h(�; �) + ��h(�; �)� ��h(�; �)+h([�; �℄; �)� h([�; �℄; �)� h([�; �℄; �)for all ve
tor �elds �; �; � 2 X( ~M). Observe that if � 2 X( ~M) is homo-geneous of degree w and f : ~M ! R is homogeneous of degree w0, thenthe equation X���f = [X; �℄�f + ��X�f shows that the fun
tion ��f is ho-mogeneous of degree w + w0. Hen
e 
hoosing the three ve
tor �elds in the



TRACTORS AND CONFORMAL AMBIENT METRIC 11above formula to be homogeneous of degrees w, w0, and w00, we see that anysummand on the right hand side is homogeneous of degree w+w0+w00+2,whi
h immediately implies that r�� is homogeneous of degree w + w0. Inparti
ular, if � is invariant, i.e. homogeneous of degree zero, then r�� hasthe same homogeneity as �.On the other hand, we have already observed in the end of 2.3 above,that d�jQ = 0, i.e. d� = O(r) implies that r�X = � + O(r), and rX� =(w+ 1)�+O(r) if � is homogeneous of degree w. In parti
ular, rX�jQ = 0for � homogeneous of degree �1. Using this, we 
an now show that rdes
ends to a linear 
onne
tion r on the bundle T . Suppose that s 2 �(T )is a se
tion 
orresponding to the ambient ve
tor �eld ~� along Q and that� 2 X(M) is a ve
tor �eld. As before, we may lift � to an ambient ve
tor�eld ~� along Q, whi
h is unique up to adding terms of the form 'X with' homogeneous of degree zero. Extend ~� to a homogeneous �eld on ~M andobserve that sin
e the 
ow lines of ~� are 
ontained in Q, it follows that, alongQ, the ambient ve
tor �eld r~� ~� is independent of the extension of ~�. Sin
erX ~�jQ = 0, we 
on
lude thatr~�~� depends only on � and not on the lift ~�.Moreover, from above we know that r~� ~� is homogeneous of degree �1, soit 
orresponds to a se
tion of T , whi
h we denote by r�s. One immediatelyveri�es that this de�nes a linear 
onne
tion r on T , whi
h by 
onstru
tionis 
ompatible with the bundle metri
 h.To verify that r is a tra
tor 
onne
tion on T , we thus only have toverify the non{degenera
y 
ondition from 2.2, whi
h is very easy: For ase
tion s 2 �(T 1), the 
orresponding ambient �eld is of the form fX withf : Q ! Rhomogeneous of degree �1. For a lift ~� of a ve
tor �eld � 2 X(M)as above, we getr~�fX = (~��f)X+fr~�X and the se
ond summand equalsf ~� along Q. In parti
ular, we see that r�s 2 �(T 0), and the image of thisse
tion in �(T 0=T 1) is simply the element f�, whi
h implies that r is atra
tor 
onne
tion on T . Thus we have proved:Proposition. Let � : Q ! M be a 
onformal stru
ture on a smoothmanifold M , ~M an ambient manifold and h an ambient metri
, and let� 2 
1( ~M) be the one{form dual to the in�nitesimal generator of the R+{a
tion on ~M . Then for the R+ a
tion on T ~M jQ de�ned above, h des
ends toa bundle metri
 h on T := (T ~M jQ)=R+. If d�jQ = 0, then the Levi{Civita
onne
tion of h des
ends to a tra
tor 
onne
tion on T whi
h preserves h.This together with the �ltration indu
ed by the verti
al subbundle means Tis a 
onformal standard tra
tor bundle.2.5. The normalisation 
ondition. Let us assume that h is an ambientmetri
 on an ambient manifold ~M for a given 
onformal stru
ture on Msu
h that the one{form � dual to the in�nitesimal generator X of the R+{a
tion on ~M has the property that d�jQ = 0. Then we have the indu
ed
onformal standard tra
tor bundle (T ; h;r). Now it is almost obvious thatthe 
urvature R of h des
ends to 
urvature R of the tra
tor 
onne
tion r.Indeed, 
hoosing invariant lifts ~� and ~� for ve
tor �elds �; � 2 X(M), and
onsidering the (homogeneous of degree �1) ambient ve
tor �eld � alongQ 
orresponding to a se
tion s 2 �(T ), the ambient ve
tor �eld r�r��
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orresponds to the se
tion r�r�s 2 �(T ). Moreover, [~�; ~�℄ is an invariantlift of [�; �℄, whi
h immediately implies that R(~�; ~�)� 
orresponds to these
tion R(�; �)s of T .Hen
e to understand the tra
tor 
urvature R, we have to analyse theambient 
urvature R. For later use, we work in a more general settingand prove more spe
i�
 results than are required for the veri�
ation of thenormalisation 
ondition.Proposition. Let h be an ambient metri
 on ~M , R the Riemann 
urvatureof h, X 2 X( ~M) the in�nitesimal generator of the R+{a
tion on ~M and� 2 
1( ~M) the one{form dual to X. Then we have:h(R(�; �)X; �) = �h(R(�; �)�;X) = h(R(X ; �)�; �) = �12(rd�)(�; �; �);for all ve
tor �elds �; �; � 2 X( ~M). In parti
ular, if d� = O(r`) for some` � 1, then this expression is O(r`�1) and it is O(r`) if either � or both �and � have the property that the restri
tion to Q is tangent to Q. Hen
e, ifd� = O(r`), then tangential 
omponents of d� vanish to order ` + 1 alongQ.Proof. The equality of the �rst three expressions follows from standard sym-metries of the 
urvature of a pseudo{Riemannian metri
. Now we 
omputeh(r�r�X; �) = ��h(r�X ; �)� h(r�X;r��);and inserting formula (1) from 2.3 in both summands, we obtainh(r��; �) + 12��d�(�; �)� 12d�(�;r��):Taking the alternation of this in � and � and subtra
ting h(r[�;�℄X; �) =h([�; �℄; �) + 12d�([�; �℄; �) we may expand the Lie bra
ket into 
ovariantderivatives whi
h implies that all terms involving h 
an
el, and we are leftwith the expression12���d�(�; �)� ��d�(�; �)� d�([�; �℄; �)� d�(�;r��) + d�(�;r��)�for h(R(�; �)X; �). Expanding the equation 0 = d(d�)(�; �; �) we mayrewrite ��d�(�; �)� ��d�(�; �)� d�([�; �℄; �) as ���d�(�; �)� d�([�; �℄; �) +d�([�; �℄; �), and expressing the Lie bra
kets as 
ommutators of 
ovariantderivatives, we arrive at the 
laimed formula for h(R(�; �)X; �).By de�nition, (rd�)(�; �; �) = ��d�(�; �)�d�(r��; �)�d�(�;r��), andif d� = O(r`), the the last two terms visibly are O(r`), while the �rst isO(r`�1). If in addition �jQ is tangent to Q, the equation � 0���d�(�; �) =��� 0�d�(�; �)+ [�0; �℄�d�(�; �) shows that the �rst summand is O(r`), too. Onthe other hand, if both �jQ and �jQ are tangent to Q, then by the Bian
hiidentity, we get h(R(�; �)�;X) = �h(R(�; �)�;X) � h(R(�; �)�;X), andfrom above we know that both terms of the right hand side are O(r`).Turning around the argument, we see now that if �jQ and �jQ are tangentto Q, then for any ve
tor �eld �, the fun
tion ��d�(�; �) is O(r`), when
etangential 
omponents of d� vanish to order `+ 1 along Q. �Using these results we 
an now prove:
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 su
h that the one{form � dual tothe in�nitesimal generator of the R+{a
tion satis�es d�jQ = 0. Then thestandard tra
tor bundle (T ; h;r) indu
ed by h is normal if and only if thetangential 
omponents of the Ri

i 
urvature Ri
(h) vanish along Q.Proof. From the above Proposition we see that d� = O(r) implies thatif ~�jQ and ~�jQ are tangent to Q, then h(R(~�; ~�)X ; �) and h(R(~�; ~�)�;X)vanish along Q. Applied to invariant lifts of ve
tor �elds �; � 2 X(M), the�rst equation exa
tly means that R(�; �) vanishes on T 1, while the se
ondequation says that R(�; �) maps T to T 0. In parti
ular, R(�; �) : T ! T is�ltration preserving for all �, �.Hen
e R(�; �) indu
es an endomorphism of T 0=T 1, whi
h we may as wellview as an endomorphism of TM . From 2.2 we know that normality of thetra
tor 
onne
tion is equivalent to vanishing of the Ri

i{type 
ontra
tionof the resulting operator W 2 �(�2T �M 
 L(TM; TM)). The value ofthis 
ontra
tion at a point x 2 M on tangent ve
tors �; � 2 TxM 
an be
omputed as Pni=1 'i(W (�i; �)�), for a basis f�1; : : : ; �ng of TxM with dualbasis f'1; : : : ; 'ng of T �xM .Choosing a point u in Q over x and lifts ~�i, ~� and ~� of the ve
tor�elds involved, we may 
ompute 'i as h( ; ~�i), where the tangent ve
tors~�1; : : : ; ~�n 2 TuQ � Tu ~M are de�ned by h(~�i; ~�j) = Æij . (Note that ~�i 2 TuQimplies h(~�i;X) = 0). Hen
e our 
ontra
tion applied to � and � 
orrespondsto nXi=1 h(R(~�i; ~�)~�; �i):Now let Y 2 TuQ be the unique null tangent ve
tor su
h that �h(X; Y ) = 1and h(~�i; Y ) = 0 for all i. Then 
learly fX ; ~�1; : : : ; ~�n; Y g is a basis of Tu ~Mwith dual basis (with respe
t to h) given by fY; ~�1; : : : ; ~�n;Xg. But from theabove proposition, we know that h(R(X ; ~�)~�; Y ) and h(R(Y; ~�)~�;X) vanishalong Q, sin
e the restri
tions of ~� and ~� to Q are tangent to Q. Addingthese two summands to the above sum, we by de�nition get Ri
(h)(~�; ~�)(u),where Ri
 denotes the Ri

i 
urvature of h, whi
h implies the result. �Note that it follows immediately from the theorem that the normal tra
tor
urvature R is indu
ed by the 
urvature of any ambient metri
 h whi
h hasthe property that d� and tangential 
omponents of Ri
(h) vanish along Q.2.6. We next want to show that an ambient metri
 h, su
h that the tangen-tial 
omponents of Ri
(h) vanish along Q, automati
ally satis�es d�jQ = 0,where � is the one{form dual to the in�nitesimal generator X of the R+{a
tion. In parti
ular, this implies that any ambient metri
 satisfying theRi

i 
ondition 
an be used to 
onstru
t the normal standard tra
tor bun-dle.Let us again start with an arbitrary ambient metri
 h on an ambientmanifold ~M for � : Q ! M . Let us �rst 
hoose appropriate dual framesde�ned lo
ally around a point in Q. Note that along Q, the tangent spa
esof Q are orthogonal to X . Thus, lo
ally around a point u0 2 Q, we may
hoose ambient ve
tor �elds �i 2 X( ~M) for i = 1; : : : ; n, whi
h are ho-mogeneous of degree �1, satisfy h(X; �i) = 0 and have the property that



14 ANDREAS �CAP AND A. ROD GOVERfX(u); �1(u); : : : ; �n(u)g is a basis for TuQ � Tu ~M for u 2 Q 
lose to u0.Further, 
hoose an ambient ve
tor �eld Y su
h that h(X; Y ) = 1 (whi
hfor
es Y to be homogeneous of degree �2) and h(Y; �i)jQ = 0 for all i.Adding an appropriate multiple of X , we may assume that h(Y; Y )jQ = 0.Clearly, the �elds X , �i and Y form a frame for T ~M in a neighbourhoodof u0 in Q, and thus lo
ally around u0. Let f ~Y ; �i; ~Xg be the lo
al framedual to fX; �i; Y g. Then by 
onstru
tion ~Y jQ = Y jQ and ~XjQ = X jQ, butthis is not true o� Q, sin
e as we shall see immediately the weakest possibleassumption on Ri

i 
atness implies that h(X;X) is nonzero o� Q.Theorem. Let h be an ambient metri
 and let � be the one{form dual tothe in�nitesimal generator X of the R+{a
tion. Then we have:(1) Ri
(h)(X;X)jQ = 0 if and only if iXd�jQ = 0. If this is the 
ase, thenr := 12h(X;X) is a de�ning fun
tion for Q su
h that Y �r = 1+ O(r).(2) The tangential 
omponents of Ri
(h)(X; ) vanish along Q if and only ifd�jQ = 0. In parti
ular, for any ambient metri
 h su
h that the tangential
omponents of Ri
(h) vanish along Q, the pro
edure from 2.4 
an be used toobtain a normal standard tra
tor bundle.Proof. From Proposition 2.5 we get h(R(X ; �)�; �) = �12(rd�)(�; �; �).Thus, we may 
ompute 2Ri
(h)(X; �) by taking the tra
e over � and �in (rd�)(�; �; �), i.e. by inserting the elements of dual frames and sum-ming up, and we use dual frames as introdu
ed above. We only have to
onsider the 
ase that �jQ is tangent to Q, and sin
e we are only inter-ested in the restri
tion of the result to Q, we may as well repla
e ~X by Xand ~Y by Y . The term with � = X and � = Y never 
ontributes sin
e(rd�)(X; �; Y ) = �2h(R(X;X)�; Y ) = 0 by Proposition 2.5.Let us next look at the terms with � = �i and � = �i. By de�nition tangen-tial 
omponents of � vanish along Q, so the same holds for d�. In parti
ular,d�(�; �i) vanishes along Q and sin
e �i is tangent to Q also �i�d�(�; �i) van-ishes along Q. Moreover, for any ve
tor �eld �, the restri
tion of � � �(�)Yto Q is tangent to Q, whi
h implies d�(�; �)jQ = �(�)d�(�; Y )jQ. Apply-ing the same argument with � repla
ed by �i, we see that d�(r�i�; �i)jQ =�(r�i�)d�(Y; �i)jQ. Sin
e �jQ is tangent to Q and thus h(�;X)jQ = 0, wesee that, along Q, we have �(r�i�) = h(r�i�;X) = �h(�;r�iX). Sin
eboth �jQ and �ijQ are tangent to Q and tangential 
omponents of d� vanish,formula (1) from 2.3 implies that this restri
ts to �h(�; �i) on Q, sod�(r�i�; �i)jQ = h(�; �i)d�(�i; Y ):Similarly, d�(�;r�i�i) = �(r�i�i)d�(�; Y ), and �(r�i�i)jQ = �h(�i; �i) =�1. Together with the above, this implies that for any ve
tor �eld � su
hthat �jQ is tangent to Q, we obtain2Ri
(h)(X; �)jQ = (rd�)(Y; �;X)jQ+nd�(�; Y )jQ�Xi h(�; �i)d�(�i; Y )jQ(1) Putting � = X in the above formula, we see that the �rst summandvanishes sin
e rd� is skew symmetri
 in the last two entries. On the otherhand, the last sum vanishes sin
e h(X ; �i) = 0 by 
onstru
tion. Thus,we are left with 2Ri
(h)(X;X)jQ = nd�(X ; Y )jQ, and sin
e tangential
omponents of d� vanish, the vanishing of d�(X ; Y )jQ is equivalent to



TRACTORS AND CONFORMAL AMBIENT METRIC 15iXd�jQ = 0. We have already veri�ed in 2.3 that the latter 
onditionimplies that r = 12h(X;X) is a de�ning fun
tion for Q sin
e drjQ = �jQ.The last statement obviously implies Y �r = 1 +O(r).(2) We may assume that the equivalent 
onditions of (1) are satis�ed andshow that vanishing of the rest of Ri
(h)(X; ) is equivalent to d� = O(r).Using the above formula for 2Ri
(h)(X; �), we �rst note that sin
e iXd�vanishes along Q, we get(rd�)(Y; �;X)jQ = Y �d�(�;X)jQ � d�(�;rYX)jQ:The �rst term in the right hand side may be written as �Y �(iXd�(�))jQ,and sin
e iXd�jQ = 0 and �jQ is tangent to Q, this equals diXd�(�; Y ) =LXd�(�; Y ). By 
onstru
tion, � is homogeneous of degree two, so the sameholds for d�, when
e this gives 2d�(�; Y ). For the se
ond summand, we getd�(�;rYX)jQ = �(rYX)d�(�; Y ) as above, and 
learly h(rYX;X) =12Y �h(X;X), whi
h restri
ts to 1 on Q by part (1).Finally, by 
onstru
tion Pih(�; �i)�i 
oin
ides with � up to addition ofa multiple of X, so sin
e iXd�jQ = 0 we obtain Pi h(�; �i)d�(�i; Y ) =d�(�; Y ).Colle
ting our results, we see that (assuming Ri
(h)(X;X)jQ = 0) we get2Ri
(h)(X; �) = nd�(�; Y ) for any � su
h that �jQ is tangent to Q, whi
himmediately implies the result. �3. An appli
ationIn this se
tion, we show how our results 
an be applied to the study of
onformal invariants obtained from the ambient metri
 
onstru
tion. Someof these ideas were sket
hed in [12℄ but here we generalise the setting 
onsid-erably. In parti
ular, we derive an algorithm that 
an be used to 
ompute atra
tor expression for any 
onformal invariant whi
h 
an be obtained fromthe ambient metri
 
onstru
tion. Our results are however more general thanthat, sin
e they also deal with the 
ase of ambient metri
s whi
h are Ri

i
at to higher order than those whose existen
e is proved by Fe�erman andGraham. While the existen
e of su
h metri
s is obstru
ted on general 
on-formal manifolds, we believe studying these \better" metri
s in the 
aseswhen they do exist is very interesting.It should be remarked at this point that another line of appli
ations ofthe results derived in this paper 
an be found in [12℄, where they are ap-plied to the study of 
onformally invariant powers of the Lapla
ian andQ{
urvatures.3.1. To 
arry out some 
omputations, we introdu
e abstra
t index nota-tion. Given an ambient manifold ~M and an ambient metri
 h for a 
onfor-mal stru
ture Q !M , we write ~E(w) for the spa
e smooth fun
tions on ~Mwhi
h are homogeneous of degree w, i.e. ~f 2 ~E(w) means X� ~f = w ~f . Wewill write ~EA = ~EA(0) ( ~EAQ = ~EAQ(0)) to denote the spa
e of se
tions of T ~M(T ~M jQ) whi
h are homogeneous of degree �1. (We adopt this 
onventionsin
e se
tions of ~EAQ 
orrespond to se
tions of the standard tra
tor bun-dle.) Then �nally we will write ~EAB(w) ( ~EABQ (w)) to mean ~EA 
 ~EB 
 ~E(w)
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 ~EBQ
 ~EQ(w) respe
tively) and so forth. For lower indi
es, the appropri-ate 
onvention is that ~EA = ~EA(0) denotes the spa
e of ambient one{forms,whi
h are homogeneous of degree 1, sin
e then hAB (whi
h is homogeneousof degree 2) indu
es an isomorphism ~EA ! ~EA. The extensions to multi-ple lower and mixed indi
es, as well as the notation for se
tions along Q isdone as above. In this 
ontext we will refer to w as the 
onformal weight(to distinguish it from the homogeneity degree). This means that for anambient tensor �eld, the 
onformal weight equals the homogeneous degreeplus the number of upper indi
es minus the number of lower indi
es. Weraise and lower indi
es using the ambient metri
 hAB and its inverse hAB .We also adopt the usual 
onventions that round bra
kets (square bra
k-ets) around indi
es indi
ate a symmetrisation (antisymmetrisation) of theen
losed indi
es, ex
ept indi
es between verti
al lines, and that the sameindex o

urring twi
e indi
ates a tra
e.We start with some general results for pseudo{Riemannian metri
s:Proposition. Let h be a pseudo{Riemannian metri
 with 
urvature R =RABCD and Ri

i 
urvature Ri
 = Ri
AB = RCACB. Then we have:(1) rEREABC = 2r[BRi
C℄A.(2) �RABCD = 2(rAr[CRi
D℄B �rBr[CRi
D℄A) + 	ABCD, where �denotes the ambient Lapla
ian and 	ABCD is a linear 
ombination of partial
ontra
tions of R
R.(3) Let �A:::B 2 EA:::B(w) be any se
tion. Then the 
ommutator of theLapla
ian � with a 
ovariant derivative r a
ts as[�;rC ℄�A:::B =� 2hEF ��E:::Br[FRi
A℄C + � � �+�A:::Er[FRi
B℄C�� 2 �RFCEArF�E:::B + � � �+RFCEBrF�A:::E�+Ri
CErE�A:::B ;where in the two sums there is one summand for ea
h index of �, and E is
ontra
ted into that index.Proof. (1) The algebrai
 Bian
hi identity 0 = R[EAjBjC℄ together with theusual symmetries of the Riemann 
urvature gives us REABC = �RABEC +RACEB . The di�erential Bian
hi identity 0 = r[FRAB℄EC together withthe symmetries of R leads to rFRABEC = �rBRFAEC + rARFBEC ,and similarly we getrFRACEB = �rCRFAEB+rARFCEB . Contra
tingwith hEF the 
laim now follows from symmetry of Ri
.(2) By de�nition (�R)ABCD = rErERABCD. Using the di�erentialBian
hi identity and 
urvature symmetries, we may write rERABCD as�rBREACD +rAREBCD. Now the 
ommutator of two 
ovariant deriva-tives is given by the algebrai
 a
tion of the 
urvature, so �rErBREACDmay be written as the sum of �rBrEREACD and a sum of partial 
ontra
-tions of R
R. Similarly, �rErAREBCD is the sum of �rArEREBCDand a sum of partial 
ontra
tions of R 
 R. Now the result immediatelyfollows from (1).(3) Let us 
ompute �rC�A:::B = hEFrErFrC�A:::B. The de�nition ofthe 
urvature reads as [rA;rB℄V C = RABCDV D, and thus [rA;rB ℄VC =



TRACTORS AND CONFORMAL AMBIENT METRIC 17�RABDCVD. Using this, we getrFrC�A:::B =rCrF�A:::B � (RFCIA�I:::B + � � �+RFCIB�A:::I);with one summand for ea
h index of � in the sum in bra
kets. Hitting thatsum with rF , ea
h summand splits into a sum of two terms, one in whi
hrF a
ts on R and one in whi
h rF a
ts on �. Using (1) we see that theterms in whi
h rF a
ts on R exa
tly give the terms in the �rst sum of the
laimed formula for [�;rC ℄�A:::B. On the other hand, the terms in whi
hrF a
ts on � exa
tly give half of the se
ond sum in the 
laimed formula.Again swapping 
ovariant derivatives, we may write rErCrF�A:::Bas the sum of rCrErF�A:::B (whi
h after 
ontra
tion with hEF givesrC��A:::B) and�RECIFrI�A:::B � (RECIArF�I:::B + � � �+RECIBrF�A:::I);again with one summand for ea
h index of � in the sum in bra
kets. Con-tra
ting with hEF , the the sum in bra
kets gives the se
ond half of these
ond sum in our 
laimed formula, while the other summand gives the lastterm in the 
laimed formula. �Remark. Of 
ourse, in the proof of part (2), it is no problem to 
omputean expli
it formula for the sum of partial 
ontra
tions 	ABCD of R
R (see[12℄).3.2. To pro
eed, we next spe
ialise to an ambient metri
 h su
h that tan-gential 
omponents of the ambient Ri

i 
urvature Ri
 vanish along Q. Bypart (2) of Theorem 2.6 the one form � dual to the in�nitesimal generatorX of the R+{a
tion then satis�es d� = O(r) and the pro
edure of 2.4 
anbe applied to 
onstru
t a normal standard tra
tor bundle (T ; h;r) from( ~M;h).We may regard the ambient 
urvature R as 2-form taking values inEnd(T ~M). We have observed in 2.5 above that if ~� and ~� are invariant lifts ofve
tor �elds �; � 2 X(M), thenR(~�; ~�) is pre
isely the homogeneous degree 0se
tion of End(T ~M jQ) 
orresponding to the se
tion R(�; �) of End T . Thusthe homogeneous End(T ~M){valued three form � ^R is, along Q, uniquelydetermined by the tra
tor 
urvature. Similarly, the Levi-Civita 
onne
tionr is determined by its a
tion on ve
tor �elds homogeneous of degree �1,so along Q 
ovariant derivatives in tangential dire
tions are determined bythe underlying tra
tor 
onne
tion.Sin
e d�jQ = 0, we know from 2.3 that r := 12h(X;X) satis�es � =dr+O(r), and hen
e r is a smooth de�ning fun
tion for Q. Noti
e that theambient ve
tor �eld X = XA has 
onformal weight 1 and sin
e the ambient
ovariant derivative is 
ompatible with homogeneities, the ambient di�er-ential operator rA has 
onformal weight �1. By de�nition, the ambientone{form �A is given by hABXB, so we will also denote this form by XA.(So X will mean either a 1-form or a ve
tor �eld a

ording to index pla
e-ment and/or 
ontext.) For example �^R is 3X [ARBC℄DE 2 ~E[ABC℄DE(�1).Note that by de�nition XAXA = hABXAXB = 2r.
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ompute eÆ
iently in the sequel, we have to determine the 
ommuta-tors of 
ovariant derivatives with r and XA, viewed as multipli
ation oper-ators. Sin
e d� = O(r), we get iXd� = 2(�� dr) = O(r), so � = dr + r�for some ambient one{form �. Moreover, d� = dr ^ � + rd� and this beingO(r) implies vanishing of the tangential 
omponents of � along Q, when
e� = '� + r~
 for some ambient smooth fun
tion ' and one{form ~
, andhen
e � = dr+'r�+ r2~
. In parti
ular, dr = (1�'r)�+O(r2), and view-ing r as a multipli
ation operator, this implies the 
ommutation formula[rA; r℄ = (1 � 'r)XA + O(r2). Further, the above equations immediatelyimply dr ^ � = O(r2) and d� = r
 ^ �+O(r2), where 
 := d'� 2~
, whi
hin index notaiton reads asr[AXB℄ = r
[AXB℄+O(r2). On the other hand,equation (1) from 2.3 gives us rAXB = hAB + r
[AXB℄ + O(r2). View-ing XB as a multipli
ation operator, we thus get the 
ommutator formula[rA;XB ℄ = hAB + r
[AXB℄ + O(r2).The next step is to 
ompute two basi
 tra
tor operators in ambientterms. The �rst obvious operator to 
onsider is � ^r, whi
h, along Q,obviously only needs derivatives in tangential dire
tions, and may be writ-ten as ~D AB := 2X [ArB℄. Sin
e [rA; r℄ = (1 � 'r)XA + O(r2), oneimmediately 
on
ludes that [~D AB ; r℄ = O(r2), whi
h in parti
ular meansthat for any ambient tensor �eld V , the restri
tion (~D ABV )jQ dependsonly on V jQ. Hen
e for arbitrary indi
es, we get a well de�ned operator~D AB : ( ~EQ)C:::DE:::F (w) ! ( ~EQ)C:::D[AB℄E:::F (w), that 
learly 
an be 
omputed interms of the underlying standard tra
tor bundle. It is easy to identify thisoperator: By de�nition, the adjoint tra
tor bundle of M is the bundle ofskew symmetri
 endomorphisms of the standard tra
tor bundle T . Sin
e se
-tions of T may be identi�ed with se
tions in ~EAQ, we obtain, using the inversehAB of the ambient metri
, an identi�
tion of smooth se
tions of the adjointtra
tor bundle A and se
tions in ~E [AB℄Q . Thus ~D AB determines a 
onformallyinvariant operator D on M whi
h goes between A
F 
E [w℄ and F 
E [w℄,where F is any tensor power of T . There is a natural proje
tion A ! TM .Under the identi�
ation of �(A) with ~E [AB℄Q this is expli
itly given by map-ping �AB to XA�AB �XA�BA modulo multiples of XB. Using this, oneimmediately veri�es that on the standard tra
tor bundle, D 
oin
ides withthe 
omposition of the tra
tor 
onne
tion with this proje
tion. On densitybundles one obtains a similar 
omposition of Levi-Civita 
onne
tion withthe proje
tion invariantly 
ombined with the 
anoni
al a
tion of an adjointtra
tor on the density bundle; in total the fundamental D{operator, see [4,se
tion 3℄. The obvious 
ompatibility of ~D AB with tensor produ
ts thenimplies that it is exa
tly the operator obtained by twisting the fundamentalD on the density bundle with the tra
tor 
onne
tion on the tra
tor bundle.This is pre
isely the \double-D" operator of [10, 11℄ (and see also [4, se
tion3℄).Now we 
an follow these sour
es to obtain the tra
tor D{operator: Con-sider the operator hAB ~D A(Q ~D jBjP )0, whi
h by 
onstru
tion a
ts tangentiallyon tensor �elds along Q. Here (� � � )0 indi
ates the tra
e-free symmetrisationover en
losed indi
es (ex
luding any in the j � � � j). Using the 
ommutator



TRACTORS AND CONFORMAL AMBIENT METRIC 19formulae from above, one immediately veri�es dire
tly that4hABX [ArQ℄X[BrP ℄ =� nXQrP � hPQXArA +XQXP��XQXArArP �XPXArQrA + O(r):The de�nition of the Riemann 
urvature implies that on any tensor bundlewe may rewrite rQrA as rArQ �RAQ#, where RAQ# denotes the ten-sorial a
tion of RAQEF (via the indi
es E and F ) on the given tensor �eld.Thus we 
on
lude that hAB ~D A(Q ~D jBjP )0 = �X(QDP )0 +O(r), whereDA := nrA + 2XBrBrA �XA��XBRBA#;where the # as above indi
ates a tensorial a
tion. Sin
e the map �P 7!X(Q�P )0 is an inje
tion of T � ~M jQ into 
2T � ~M jQ we see that this 
onstru
-tion determines DA as a well de�ned operator between ~EAQ 
 ~E	Q(w) and~E	Q(w � 1), where ~E	Q is any tensor power of ~EBQ . Thus D determines anoperator D between weighted tra
tor bundles on M . By its 
onstru
tionfrom ~D it is 
lear that this a
tion of DA is determined by the underlyingstandard tra
tor bundle and its 
onne
tion. In fa
t this 
onstru
tion ofD isexa
tly the interpretation on Q of the 
onstru
tion of the standard tra
torD operator from D as in [10℄ and [4, 3.2℄. For whi
h it follows immediatelythat D is the standard tra
tor D operator.We 
an easily verify expli
itly that DA a
ts tangentially on homogeneousambient tensor �elds along Q. For an ambient tensor T of 
onformal weightw, the 
ovariant derivative rT has 
onformal weight w� 1. When
e we getDA = (n + 2w � 2)rA �XA� �XBRBA# on tensor �elds of 
onformalweight w. Moreover, from above we know thatrAr = (1�'r)XA+O(r2).Hitting this with rA, we immediately 
on
lude that �r = (n + 2) + O(r).More generally, if V is any ambient tensor �eld of 
onformal weight w, then�(rV ) = (�r)V +2hAB(rAr)rBV +r�V = (n+2w+2)V +O(r). Sin
erV has 
onformal weight w + 2, together with the above formula for thea
tion of DA on tensor �elds of �xed 
onformal weight this implies thatDArV = O(r), so DA indeed a
ts tangentially along Q.3.3. The simple relation between the operator DA and the ambient 
o-variant derivative together with the fa
t that DA a
ts tangentially leads tovery remarkable 
onsequen
es. The point here is that, along Q, DA de-pends only on the underlying standard tra
tor bundle, and for any ambienttensor �eld � the restri
tion of DA� to Q depends only on the restri
-tion of � to Q. In parti
ular, we have noted in 3.2 that X [ARBC℄EF is ase
tion of ~E[ABC℄[EF ℄(�1) whose restri
tion to Q depends only on the tan-gential 
omponents of the ambient 
urvature. These tangential 
omponentsare determined by the 
urvature of the normal standard tra
tor 
onne
tion.Consequently, 3DAX [ARBC℄EF is a se
tion of ~E[BC℄[EF ℄(�2) whose restri
-tion to Q 
an be 
omputed from the tra
tor 
urvature (and thus dependsonly on the underlying 
onformal stru
ture).To 
ompute this expli
itly, we need the 
ommutator of the Lapla
ian withXA. From se
tion 3.2 above, we haverBXA = hBA+r
[BXA℄+XArB+O(r2). Hitting this with rB, we obtain �XA = 2rA + 12XB
BXA +XA�+O(r). Sin
e XB
B and the 
urvature RBCEF both have 
onformal



20 ANDREAS �CAP AND A. ROD GOVERweight�2, this allows us to writeDGX [ARBC℄EF as (n�2)rGX [ARBC℄EF+(12XJ
J��)XGX [ARBC℄EF �XQRQG#X[ARBC℄EF +O(r). Taking intoa

ount the 
onformal weights and using the formulae derived above, we 
annow expand this expression expli
itly and 
ontra
ting with hGA we obtain(2) 3DAX [ARBC℄EF =(n� 2)[(n� 4)RBCEF + 2X [BrARC℄AEF ℄+(XJ
J � 2�)(XAX [BRC℄AEF )�3hAG(XQRQG#X [ARBC℄EF ) +O(r):In parti
ular, in dimensions 6= 4, the 
urvature of the ambient metri
shows up in this formula. In these dimensions, existen
e of an ambientmetri
 h su
h that Ri
(h) = O(r) and su
h that the tangential 
omponentsof Ri
(h) vanish to se
ond order along Q has been proved in [8℄. Assumingthat we deal with su
h a metri
 we may simplify the formula 
onsiderably.We �rst 
laim that the Ri

i 
ondition implies d� = O(r2). We know thatd� = O(r), so d� = r� for some two{form �, whi
h is homogeneous ofdegree 0, and thus has 
onformal weight �2. From 3.2 we 
on
lude that�(d�) = �(r�) = (n � 2)� + O(r), so it suÆ
es to prove �(d�) = O(r)in order to 
on
lude d� = O(r2). In index notation, proposition 2.5 readsas rA(d�)BC = 2XEREABC . Consequently, we may 
ompute �(d�) as12rAXEREABC . From 3.2 we know that up to an O(r) we may repla
erAXE by hAE + XErA, so the fa
t that the 
urvature is skew in the�rst two indi
es implies �(d�) = 12XErAREABC + O(r). By part (1)of proposition 3.1, this may be rewritten as �XEr[BRi
C℄E . Sin
e weassume Ri
(h) = O(r) and that the tangential 
omponents of Ri
(h) vanishto se
ond order, we may write Ri
CE = r(XCKE +XEKC)+O(r2) for anappropriate K. Hitting this withrB, we obtain XBXCKE+XBXEKC+O(r), and skewing in B and C the �rst summand vanishes. Thus we seethat r[BRi
C℄E = XEK[CXB℄ + O(r). Contra
ting this with XE , we getan O(r) term, whi
h 
ompletes the proof that d� = O(r2).In parti
ular, vanishing of the Ri

i and vanishing of its tangential 
om-ponents to se
ond order implies that XEREABC = O(r), so the last linein formula (2) be
omes an O(r). Next, XARCAEF = �12rC(d�)EF imme-diately implies XAX [BRC℄AEF = �14 ~DBC(d�)EF . Sin
e d� = O(r2), thesame is true for ~D (d�), and from 3.2 we know that applying � to an O(r2)term we get an O(r) term, so the last but one line in (2) also 
ontributes anO(r) only. On the other hand, using part (1) of Proposition 3.1 we getX[BrARC℄AEF = (�XBr[ERi
F ℄C +XCr[ERi
F ℄B)WritingRi
FC = r(XFKC+XCKF )+O(r2) as above, we getr[ERi
F ℄C =XCK[FXE℄ + O(r), whi
h immediately implies X [BrARC℄AEF = O(r).Colle
ting our results, we see that for metri
s with Ri
(h) = O(r) and withtangential 
omponents of Ri
(h) vanishing to se
ond order along Q, formula(2) boils down to 3DAX [ARBC℄EF jQ = (n� 2)(n� 4)RBCEF jQ. In parti
-ular, the 
urvature of su
h metri
s is intrinsi
 to the 
onformal stru
ture,provided that n 6= 4.



TRACTORS AND CONFORMAL AMBIENT METRIC 213.4. Assuming higher order vanishing of the Ri

i 
urvature, we 
an obtaina similar result for 
ertain 
ovariant derivatives of the ambient 
urvature,ex
ept for a single 
riti
al order in even dimensions. As we have noted above,the restri
tion of R to Q may be viewed as a se
tion of ( ~EABCD)Q(�2), andsimilarly for any ` > 0 the restri
tion ofr`R = (rÆ : : :Ær)R to Q de�nesa se
tion of ( ~EA1:::A`+4)Q(�2� `).Lemma. Let ~M be an ambient manifold for a 
onformal stru
ture Q !Mon an n{dimensional manifold M , and let h be an ambient metri
 on ~Mwith 
urvature R and Ri

i 
urvature Ri
. If for some k > 0 we haveRi
AB = O(rk+1) and tangential 
omponents of Ri
 vanish to order k + 2along Q, and if n 6= 2k+ 4, then there is a universal formula that 
omputesrkRjQ from RjQ and r`RjQ for ` < k.Proof. By assumption, we always have Ri
(h) = O(r) and tangential 
om-ponents of Ri
(h) vanish to se
ond order along Q, so from 3.3 and 3.2 we
on
lude that DA = (n + 2w � 2)rA �XA� on ambient tensor �elds of
onformal weight w. The se
tion rk�1R has 
onformal weight �k � 1, soDArk�1R = (n � 2k � 4)rArk�1R �XA�rk�1R, and by assumptionn� 2k� 4 6= 0. Sin
e DArk�1RjQ depends only on rk�1RjQ it suÆ
es to
ompute �rk�1R from the restri
tions of the se
tions r`R for ` < k toQ. Now one immediately veri�es indu
tively that[�;rk�1℄ = k�2X̀=0r`[�;r℄rk�2�`:Our assumptions on Ri
 together with part (3) of proposition 3.1 implythat for any ambient tensor �eld �A:::B, we 
an write [�;rC ℄�A:::B as�2 �RECFArE�F :::B + � � �+RECFBrE�A:::F �+O(rk):Inserting � = rk�2�`R for some ` = 0; : : : ; k � 2, we get an expression for[�;r℄rk�2�`R in terms of R and rk�1�`R up to some O(rk). Applyingr` and restri
ting to Q, the O(rk) 
annot 
ontribute, and we only get
ovariant derivatives of order at most k�1 ofR. Thus we obtain a universalformula whi
h expresses [�;rk�1℄RjQ in terms of RjQ and r`RjQ for` < k.To 
omplete the proof it hen
e suÆ
es to analyse rk�1�R, and wehave 
omputed �R in part (2) of Proposition 3.1. Now we 
laim that thetermrAr[CRi
D℄B�rBr[CRi
D℄A showing up in that formula is O(rk).Indeed, by assumption Ri
 = O(rk+1) and tangential 
omponents of Ri
vanish to order k + 2 along Q, whi
h implies that Ri
AB = rk+1(XAKB +XBKA)+O(rk+2) for some ambient one{formKB. As in 3.3, we then obtainr[CRi
D℄B = (k + 1)rkXBK[DXC℄ + O(rk+1). Hitting this with rA weget k(k + 1)rk�1XAXBK[DXC℄ + O(rk), and skewing over A and B the
laim follows.But then it follows from part (2) of Proposition 3.1 that rk�1�RjQ =rk�1	ABCDjQ, and sin
e 	ABCD is a partial 
ontra
tion of R 
 R we
on
lude that rk�1	ABCD jQ 
an be expressed by a universal formula interms of RjQ and r`RjQ for ` � k � 1. �



22 ANDREAS �CAP AND A. ROD GOVERTogether with the tra
tor formula 
omputing the ambient 
urvature, thisnow leads toTheorem. Let ~M be an ambient manifold for a 
onformal stru
ture Q !Mon an n{dimensional manifold M , and let h be an ambient metri
 on ~Mwith 
urvature R and Ri

i 
urvature Ri
. Assume that Ri
(h) = O(rk+1)and tangential 
omponents of Ri
(h) vanish to order k+2 along Q for somek � 0. Then using the 
onvention that r0R = R we have:(1) If n is odd or n is even and k < n�42 , then for ea
h 0 � ` � k there is auniversal tra
tor formula that 
omputes r`R from the tra
tor 
urvature ofthe underlying standard tra
tor bundle.(2) If n is even and n�42 < ` � k, then there is a universal tra
tor formulathat 
omputes r`R from the tra
tor 
urvature of the underlying standardtra
tor bundle and (rn�42 R)jQ.Proof. Sin
e our assumptions on Ri
(h) imply that at least Ri
(h) = O(r)and tangential 
omponents of Ri
(h) vanish to se
ond order, we may 
an
ompute R via RBCEF jQ = 3(n�2)(n�4)DAX [ARBC℄EF jQ provided that n 6=4. Thus we get (1) for ` = 0. Iterated appli
ation of the lemma then leadsto a universal formula for r`R in terms of R provided that in no step weget n = 2`+ 4, and so (1) follows.For (2), we �rst note that by (1) we get a universal formula for riR interms of the tra
tor 
urvature for i < n�42 . But using this, the result againfollows from iterated appli
ation of the lemma. �Remarks. Part (1) of this theorem ties in ni
ely with the results on exis-ten
e and uniqueness of ambient metri
s in [8℄. It is shown in that paperthat in odd dimensions there exists an in�nite order power series solutionalong Q for an ambient metri
 h su
h that Ri
(h) vanishes to in�nite orderalong Q and this solution is unique up to the a
tion of an equivariant di�eo-morphism �xing Q. On the other hand, in the 
ase of even dimensions theFe�erman-Graham 
onstru
tion is obstru
ted at �nite order. More pre
isely,if n is even then there exist an ambient metri
 h su
h that Ri
(h) = O(r n�42 )and tangential 
omponents of Ri
(h) vanish to order n�22 . Moreover, thissolution is unique up to the a
tion of an equivariant di�eomorphism �xingQ and addition of terms whi
h vanish to order n2 along Q. In fa
t it is ele-mentary to show that adding terms vanishing to order n2 along Q one mayeven obtain an ambient metri
 su
h that Ri
(h) = O(r n�22 ). The unique-ness stetement for su
h metri
s is slightly more 
ompli
ated. There is anobstru
tion to the existen
e of an ambient metri
 h su
h that, in additionto these 
onditions, the tangential 
omponents of Ri
(h) vanish to order n2along Q.The uniqueness result on the ambient metri
 in parti
ular implies that forn 6= 4 the 
urvature of su
h an ambient metri
 as well as those of its 
ovariantderivatives that are 
overed in part (1) of the theorem are intrinsi
 to theunderlying 
onformal stru
ture. Sin
e the tra
tor 
urvature is intrinsi
 tothe underlying 
onformal stru
ture, part (1) of the theorem provides analternative proof for this fa
t, whi
h 
learly 
omes 
lose to an alternativeproof for uniqueness of Fe�erman{Graham metri
s. It seems to us, however,



TRACTORS AND CONFORMAL AMBIENT METRIC 23that the ideas developed in this paper should also have appli
ations to thequestion of existen
e of ambient metri
s and the nature of the obstru
tionin the Fe�erman{Graham 
onstru
tion, so we will take up this whole 
ir
leof problems elsewhere. Below we will show how our results 
an be appliedto obtain expli
it des
riptions of ambient Weyl invariants.On the other hand, part (2) of the theorem goes signi�
antly beyond theresults in [8℄, sin
e it analyses the 
ases in whi
h the obstru
tion in theFe�erman{Graham 
onstru
tion vanishes. It shows that in these 
ases theonly essential new ingredient is the 
riti
al 
ovariant derivative rn�42 R ofthe ambient 
urvature, whi
h then determines all higher 
ovariant deriva-tives by universal tra
tor formulae. It should also be remarked here thatlarge parts of this 
riti
al 
ovariant derivative are again determined by theunderlying 
onformal stru
ture, sin
e 
ovariant derivatives in tangential di-re
tions are determined by the tra
tor 
onne
tion.3.5. Appli
ations to the study of ambient Weyl invariants. One ofthe main appli
ations of the 
onformal ambient metri
 
onstru
tion is thatit allows a systemati
 
onstru
tion of 
onformal invariants. It is well knownthat by Weyl's 
lassi
al invariant theory any s
alar valued polynomial Rie-mannian invariant 
an be written as a linear 
ombination of 
omplete 
on-tra
tions of tensor powers of iterated 
ovariant derivatives of the Riemann
urvature tensor. Consider an arbitrary Riemannian invariant in odd dimen-sions or an invariant depending only on 
ovariant derivatives up to order lessthan n�42 in even dimensions n 6= 4. Applied to a Fe�erman{Grahammetri
,one 
an 
onsider the restri
tion of the resulting fun
tion to Q. Sin
e partsof di�erent homogeneity of this fun
tion must be individually invariant, wemay without loss of generality assume that our fun
tion is homogeneous ofsome degree and hen
e may be interpreted as a density on M . Now thefa
t that we deal with a Riemannian invariant exa
tly eliminates the dif-feomorphism freedom in the ambient metri
, while the freedom of addingterms that vanish along Q to the appropriate order has already been taken
are of. Consequently, the resulting density on M is 
onformally invariant.Invariants obtained in that way are 
alled ambient Weyl{invariants.Theorem 3.4 not only provides an alternative proof for the fa
t the the
onstru
tion outlined above leads to 
onformal invariants, but also providesa way to 
ompute expli
it formulae for ambient Weyl invariants, whi
h oth-erwise is a diÆ
ult problem. On the one hand, one dire
tly obtains an iter-ative way to 
ompute tra
tor expressions for ambient Weyl invariants. Formany purposes this is already suÆ
ient, sin
e one obtains genuine formulaefor the given invariant and many qualitative features of the invariant 
anbe appre
iated in this 
ompa
t form. On the other hand, 
onverting tra
torexpressions into formulae in terms of a metri
 representing the 
onformal
lass, its Levi-Civita 
onne
tion and 
urvature is a 
ompletely me
hani
alpro
edure whi
h even may be left to a 
omputer. Sin
e we do not want tointrodu
e too mu
h tra
tor 
al
ulus here, we only roughly analyse a simple
ase below. More involved appli
ations in a similar dire
tion 
an be foundin [12℄.



24 ANDREAS �CAP AND A. ROD GOVERFor the �rst step in this analysis, we assume n 6= 4, and we are dealingwith an ambient metri
 h su
h that Ri
(h) = O(r) and tangential 
ompo-nents of Ri
(h) vanish to se
ond order. Then we have observed above that3DAX [ARBC℄EF jQ = (n� 2)(n� 4)RBCEF jQ. Further, X [ARBC℄EF jQ de-pends only on the tangential 
omponents (in the indi
es B and C) of theambient 
urvature whi
h are given by the tra
tor 
onne
tion. Otherwise put,extending the tra
tor 
urvature �b
EF in any way to a tra
tor �eld 
BCEFand forming X [A
BC℄EF , one will obtain the same result. In the generalsetting of tra
tor 
al
ulus, the expression WBCEF := 3n�2DAX[A
BC℄EFhas been known for some time (see [10, 11℄) as a natural 
onformally invari-ant tra
tor extension of the tra
tor 
urvature (whi
h itself is an extensionof the Weyl 
urvature or the Cotton{York tensor in dimension 3). Thus wesee that WBCEF is the tra
tor �eld equivalent to (n� 4)RBCEF jQ.To des
ribe a formula for WBCEF we have to introdu
e some basi
 ele-ments of tra
tor 
al
ulus, see [1, 10, 11, 12℄. We use lower 
ase letter fortensor indi
es and upper 
ase letters for standard tra
tor indi
es and alsoambient indi
es. We use the tra
tor metri
 and its inverse to raise and lowertra
tor indi
es. Choosing a metri
 g from the 
onformal 
lass, we may raiseand lower tensor indi
es using g (but taking into a

ount that this 
hangesthe weight), and the standard tra
tor bundle EA splits as E [1℄�Ea[1℄�E [�1℄.This 
an be 
onveniently en
oded by adding to the natural se
tion XA 2EA[1℄ (whi
h represents the natural in
lusion E [�1℄! EA) tra
tor se
tionsY A 2 EA[�1℄ and ZaA 2 EaA[�1℄ whi
h represent the other two in
lusionsthat depend on the 
hoi
e of the metri
 g. Basi
 properties of the tra
tormetri
 imply that Y AXA = 1, XAXA = Y AYA = XAZaA = Y AZaA = 0 andZaAZbA = gab. Further, we denote by Wab
d the Weyl{
urvature, by S thes
alar 
urvature of g, by Pab = 1n�2(Ri
ab� 12(n�1)Sgab) the rho{tensor of gand by Beb := rqrpWpeqb + (n � 3)PqpWpeqb the Ba
h tensor. Using theformulae in [10, 11℄ one veri�es that WABCE is given by(n� 4)ZAaZBbZC
ZEeWab
e � 4(n� 4)ZAaZBbX[CZE℄er[aPb℄e�4(n� 4)X[AZB℄bZC
ZEer[
Pe℄b + 4n � 3X[AZB℄bX[CZE℄eBebThis is a general tra
tor formula not related to the ambient metri
 inany way, so in parti
ular, it also holds in dimension n = 4. In that 
ase,only the last term survives, whi
h shows that Bab is a 
onformal invariantin dimension 4. However, our interest here is in the 
ase n 6= 4, and themain fa
t that we need from the above formula is that sin
e XAZaA = 0 andZaAZbA = gab one immediately 
on
ludes that any 
omplete 
ontra
tion ofWABCD
� � �
WIJKL gives the 
omplete 
ontra
tion of Wab
d
� � �
Wijklwith the same pairing of indi
es. Applying this to the 
ase of ambientWeyl invariants, we obtain an alternative proof of [8, Proposition 3.2℄ thatany 
omplete 
ontra
tion of a tensor power of the ambient 
urvature givesthe \same" 
omplete 
ontra
tion of the 
orresponding tensor power of theWeyl{
urvature. Of 
ourse, these are exa
tly the invariants one knew aboutin advan
e, so to get more interesting invariants one has to 
onsider 
ovariantderivatives of the ambient 
urvature.



TRACTORS AND CONFORMAL AMBIENT METRIC 25The simplest ambient Weyl invariant involving 
ovariant derivatives iskrRk2 := (rARBCEF )rARBCEF . In order that this is well de�ned, wehave to assume that n 6= 4; 6 and that we are dealing with an ambient metri
h su
h that Ri
(h) = O(r2) and tangential 
omponents of Ri
(h) vanish tothird order along Q. To apply our method, we �rst note following the proofof Lemma 3.4 that R has 
onformal weight �2, and thusDARBCEF = (n� 6)rARBCEF �XA�RBCEF :From part (2) of Proposition 3.1 we next 
on
lude that our assumptions onRi
(h) imply that the restri
tion to Q of �RBCEF 
oin
ides with a partial
ontra
tion of R 
 R. Thus we see that up to a nonzero fa
tor and theaddition of 
omplete 
ontra
tions of tensor powers of the Weyl 
urvature,the ambient Weyl invariant krRk2 
oin
ides with (DAWBCEF )DAWBCEF .Using the standard formulae for the tra
tor D{operator and the formulaefor WBCEF above, this 
an be expanded into formula in terms a 
hosenrepresentative of the 
onformal 
lass. While this is straightforward, it isquite tedious sin
e there are many 
omponents in DAWBCEF and most ofthem do not 
ontribute to the �nal invariant.A more eÆ
ient way to pro
eed is to rewrite the original invariant as fol-lows: Applying the di�erential Bian
hi identity to the �rst term, we see that(rARBCEF )rARBCEF may be written as 2(rBRACEF )rARBCEF . Onthe other hand, 
onsiderrArBRACEF . Swit
hing the 
ovariant derivatives
an be 
ompensated by adding partial 
ontra
tions ofR
R, and using part(1) of Proposition 3.1 and the proof of Lemma 3.4, we see that rARACEF
an be written as 4rXCK[EXF ℄+O(r2) for an appropriate tra
tor �eld KE .Hitting this with rB, we obtain 4XBXCK[EXF ℄ + O(r), whi
h vanishesupon 
ontra
tion into RBCEF . The upshot of this is that, along Q andup to adding 
omplete 
ontra
tions of tensor powers of R, we may rewritekrRk2 as 2rArBRACDERBCDE .Following the same idea as for the single 
ovariant derivative above, onenext shows thatDADBRACDERBCDE = (n� 6)(n� 8)rArBRACDERBCDE ;up to 
omplete 
ontra
tions of tensor powers of R. Thus the 
onformalinvariant given by jjrRjj2 is, up to the addition of 
omplete 
ontra
tions oftensor powers of the Weyl 
urvature, exa
tly2(n� 4)2(n� 6)(n� 8)DADBWACDEWBCDE :in dimensions other than 4; 6. Note that we know in advan
e that the expres-sion DADBWACDEWBCDE will yield (n � 8) times a 
onformal invariantbe
ause jjrRjj2 is well de�ned in dimension 8. This is then easily expandedout using formulae for the tra
tor 
onne
tion as in [4℄ or [12℄ to yield (on
eagain modulo 
omplete 
ontra
tions of tensor powers of W ),2n � 6�kWk2 + n � 10(n� 6)[krWk2 + 8h(W;U)� 4(n� 6)kCk2℄;where � is the tra
tor Lapla
ian, Cabd = 2r[aPb℄d is the Cotton{York tensorand Uab
d := raC
db + PaeWeb
d. This shows expli
itly how the invariant



26 ANDREAS �CAP AND A. ROD GOVERsimpli�es in dimension 10. Alternatively we 
an re-express in the more
ompa
t form krWk2 + 16(W;U)� 4(n� 10)kCk2:It is readily veri�ed that this pre
isely agrees with the result obtained byFe�erman-Graham in [8℄. (In fa
t we have borrowed some notation fromthat sour
e to simplify the 
omparison.) Note that although krRk2 isnot well de�ned in dimensions 4 and 6, the last display does give an in-variant in these dimensions. This is immediate from the fa
t that in arbi-trary dimension n, DADBWACDEWBCDE may be written as the sum of(n�4)2(n�6)(n�8)2 (jjrW jj2 + 16h(W;U)� 4(n� 10)jjCjj2) and 
omplete 
on-tra
tions of tensor powers of W , and that the transformation formulae forthe s
alars krWk2, h(W;U) and kCk2, under a 
hange of metri
 from the
onformal 
lass, is of polynomial type.Referen
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