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STANDARD TRACTORS AND THE CONFORMALAMBIENT METRIC CONSTRUCTIONANDREAS �CAP AND A. ROD GOVERAbstrat. In this paper we relate the Fe�erman{Graham ambientmetri onstrution for onformal manifolds to the approah to onfor-mal geometry via the anonial Cartan onnetion. We show that fromany ambient metri that satis�es a weakening of the usual normalisa-tion ondition, one an onstrut the onformal standard trator bundleand the normal standard trator onnetion, whih are equivalent tothe Cartan bundle and the Cartan onnetion. This result is applied toobtain a proedure to get trator formulae for all onformal invariantsthat an be obtained from the ambient metri onstrution. We alsoget information on ambient metris whih are Rii at to higher orderthan guaranteed by the results of Fe�erman{Graham.1. IntrodutionIt is an old result of E. Cartan that onformal manifolds of dimension � 3admit a anonial normal Cartan onnetion. While this solves the equiva-lene problem for onformal strutures, the problem of a omplete onformalinvariant theory and the related problem of onstruting onformally invari-ant di�erential operators remain very diÆult. Based on similar ideas forCR{strutures, Ch. Fe�erman and C.R. Graham initiated a new approahto these problems in 1985, see [8℄. Viewing a pseudo{onformal strutureof signature (p; q) on a manifold M as a ray bundle S2T �M � Q ! Mthe idea of this approah is to assoiate to the given onformal struture apseudo{Riemannian metri of signature (p + 1; q + 1) on Q � (�1; 1), theso{alled ambient metri. This metri is required to be homogeneous andompatible with the onformal struture in a rather obvious sense, while themore subtle ondition is that it should be Rii at up to some order alongQ. In odd dimensions, ambient metris whih are Rii at to in�nite orderalong Q exist and are essentially unique, while in even dimensions there isan obstrution at �nite order, but up to that order the ambient metri isagain essentially unique.This immediately leads to a onstrution for onformal invariants, sineany Riemannian invariant of an ambient metri satisfying these Rii ondi-tions, whih is of low enough order in the even{dimensional ase, gives riseto a onformal invariant of the underlying onformal struture. Moreover,the ambient metri onstrution has been applied in [14℄ to onstrut onfor-mally invariant powers of the Laplaian. This onstrutions gives arbitrarilyDate: July 1, 2002.1991 Mathematis Subjet Classi�ation. primary: 53A30 seondary: 53B15.Key words and phrases. onformal ambient metri, onformal invariants, standard tra-tors, Fe�erman{Graham onstrution. 1



2 ANDREAS �CAP AND A. ROD GOVERhigh powers in odd dimensions and powers up to some ritial order in evendimensions. This is omplemented by C.R. Graham's result in [13℄ thatthere is no onformally invariant third power of the Laplaian in dimensionfour, whih strongly suggests that the obstrution to the ambient metrionstrution in even dimensions is of fundamental nature. It should also beremarked here that the ambient metri onstrution has reently reeivedrenewed interest beause of its relation to the so{alled Poinar�e metri andvia that to sattering theory and the AdS/CFT{orrespondene in physis,see [20, 16, 17, 15, 9℄ and referenes therein.Over the past few years the Cartan approah to onformal geometry anda more general lass of geometri strutures alled paraboli geometries hasbeen signi�antly developed. One development, whose origins an be traedbak to the work of T. Thomas in the 1920's and 1930's [18, 19℄, is the on-ept of trator bundles, whih give an equivalent desription of the Cartanbundle and the Cartan onnetion in terms of linear onnetions on ertainvetor bundles. These then lead to an eÆient alulus, whih has beensuessfully applied to the study of onformal invariants and onformallyinvariant di�erential operators, see e.g. [1, 7, 11℄.The purpose of this paper is to relate preisely the ambient metri on-strution to the onformal standard trator bundle and its anonial linearonnetion. We �rst onstrut a standard trator bundle and a trator on-netion on that bundle from a very general lass of ambient metris. Thenwe prove that normality of this trator onnetion is equivalent to vanishingof the tangential omponents of the Rii urvature of the ambient metrialong Q. Hene, we obtain the normal standard trator bundle and tratoronnetion from any metri produed by the ambient metri onstrution.This is done in setion 2.In setion 3, we express some basi elements of trator alulus in termsof ambient data. This is then used to show that for any ambient metriwhih satis�es the Rii onditions of [8℄, there is an algorithm to om-pute all ovariant derivatives of the urvature (up to the ritial order ineven dimensions) from the trator urvature. Sine any loal salar onfor-mal invariant obtained from the ambient metri onstrution is a ompleteontration of a tensor produt of suh ovariant derivatives, we obtain analgorithm to ompute a trator formula for any of these invariants. This isan important ahievement, sine in ontrast to the situation of the ambientmetri onstrution, onverting trator formulae into formulae in terms ofmetris from the onformal lass is a purely mehanial proedure and inpartiular does not involve solving any equations. In fat it is straightfor-ward to write software for these expansions, see [12℄.Our results also over the ase of metris whih are Rii at to higherorder than the ones that an be obtained from the ambient metri on-strution. While suh metris do not exist on general onformal manifolds,studying the ases in whih they do exist is of onsiderable interest in on-formal geometry. What we an prove in this ase is that all higher ovariantderivatives of the urvature an be obtained from the trator urvature andone \ritial" ovariant derivative.



TRACTORS AND CONFORMAL AMBIENT METRIC 3It should be pointed out that formally, our results are ompletely in-dependent from the results of [8℄ on the ambient metri onstrution. Inpartiular, Theorem 3.4 goes a long way towards an independent proof ofthe uniqueness of the ambient metri. In fat, it ontains enough informa-tion on the uniqueness to show that the ambient metri onstrution leadsto onformal invariants. We believe that our results an be extended toa omplete proof of uniqueness of the ambient metri, whih is of entirelydi�erent nature than the one in [8℄. The reason why we do not go furtherin that diretion here is that we believe that the ideas we develop also anbe used for existene proofs for ambient metris and an analysis for the ob-strution to the existene of an ambient metri whih is Rii at to in�niteorder in even dimensions, and we will take up this whole irle of problemselsewhere.The authors would like to thank C. Robin Graham for several helpfulonversations.2. The ambient onstrution of onformal standard trators2.1. Conformal strutures. Let M be a smooth manifold of dimensionn � 3. A onformal struture onM of signature (p; q) (with p+q = n) is anequivalene lass of smooth pseudo{Riemannian metris of signature (p; q)on M , with two metris being equivalent if and only if one is obtained fromthe other by multipliation with a positive smooth funtion.For a point x 2M , and twometris g and ĝ from the onformal lass, thereis an element s 2 R+ suh that ĝx = sgx. Thus, we may equivalently viewthe onformal lass as being given by a smooth ray subbundle Q � S2T �M ,whose �bre at x is formed by the values of gx for all metris g in the onformallass. By onstrution, Q has �bre R+ and the metris in the onformal lassare in bijetive orrespondene with smooth setions of Q.Denoting by � : Q !M the restrition to Q of the anonial projetionS2T �M !M , we an view this as a prinipal bundle with struture groupR+. The usual onvention is to resale a metri g to ĝ = f2g. This orre-sponds to a prinipal ation given by �s(gx) = s2gx for s 2 R+ and gx 2 Qx,the �bre of Q over x 2M .Having this, we immediately get a family of basi real line bundles E [w℄!M for w 2 R by de�ning E [w℄ to be the assoiated bundle to Q with respetto the ation of R+ on R given by s�t := s�wt. The usual orrespondenebetween setions of an assoiated bundle and equivariant funtions on thetotal spae of a prinipal bundle then identi�es the spae �(E [w℄) of smoothsetions of E [w℄ with the spae of all smooth funtions f : Q ! R suh thatf(�s(gx)) = swf(gx) for all s 2 R+.Although the bundle E [w℄ as we de�ned it depends on the hoie of theonformal struture, it is naturally isomorphi to a density bundle (whihis independent of the onformal struture). Reall that the bundle of �{densities is assoiated to the full linear frame bundle of M with respet tothe 1{dimensional representation A 7! j det(A)j�� of the group GL(n;R).In partiular, 1{densities are exatly the geometri objets that may beintegrated in a oordinate{independent way on non{orientable manifolds,while in the orientable ase they may be anonially identi�ed with n{forms.



4 ANDREAS �CAP AND A. ROD GOVERTo obtain the identi�ation, reall that any pseudo{Riemannian metri g onM determines a nowhere vanishing 1{density, the volume density vol(g). Inloal oordinates, this density is given by pj det(gij)j, whih immediatelyimplies that for a positive funtion f we get vol(f2g) = fn vol(g).Consequently, any 1{density ' determines a smooth funtion Q ! R bymapping gx to '(x)= vol(g)(x) and obviously this funtion is homogeneousof degree �n. This gives an identi�ation of the basi density bundle withE [�n℄ and thus an identi�ation of E [w℄ with the bundle of (�wn ){densitieson M . Hene if we have not �xed a onformal struture in the sequel,we will swith the point of view and onsider E [w℄ as being de�ned as thebundle of (�wn ){densities and a hoie of a onformal struture providing anidenti�ation of this density bundle with an assoiated bundle to � : Q !M .We will follow the onvention that adding the expression [w℄ to the nameof any bundle indiates the tensor produt of that bundle with E [w℄, so forexample TM [�1℄ = TM 
 E [�1℄. Clearly, setions of suh weighted tensorbundles may be viewed as equivariant setions of pullbak bundles. Forexample, smooth setions of TM [w℄ are in bijetive orrespondene withsmooth setions � of ��TM suh that �(s2gx) = sw�(gx). (Reall that the�bres of ��TM in gx and s2gx may be anonially identi�ed, so this equationmakes sense.) In partiular, we may onsider the tautologial inlusion of Qinto ��S2T �M as a anonial setion of S2T �M [2℄ desribing the onformallass, whih gives another equivalent desription of a onformal struture.Of ourse, homogeneity along Q may as well be haraterised in�nites-imally. For this, let X be the fundamental vetor �eld for the R+{ationon Q, i.e. X(gx) = ddt jt=0�et(gx) = ddt jt=0(e2tgx). For a funtion f : Q ! Rand w 2 R, the equation f(s2gx) = swf(x) is then learly equivalent toX�f = wf . Similarly, a tensor �eld t on Q is alled homogeneous of de-gree w 2 R if and only if (�s)�t = swt, whih is equivalent to LX t = wt,where L denotes the Lie derivative. Using this, we may for example in-terpret the spae of smooth setions of TM [w℄ as the quotient of the spaef� 2 X(Q) : [X; �℄ = w�g by the subspae onsisting of those elements whosevalues in eah point are proportional to X .2.2. Trator desription of onformal strutures. It is a result thatgoes bak to E. Cartan that onformal strutures admit a anonial normalCartan onnetion, see [3℄. More preisely, onsiderV= Rn+2 equipped witha non{degenerate inner produt h ; i of signature (p + 1; q + 1). Now putG := O(V), the orthogonal group of V, so G �= O(p+1; q+1). Furthermore,we de�ne P � G to be the stabiliser of a �xed null line in V. It then turnsout that P � G is a paraboli subgroup, whih may be niely desribedexpliitly, see e.g. [7℄. The relation of this pair to onformal geometry anbe desribed as follows: Let C be the one of nonzero null vetors in Vandlet N be its image in the projetivisation of P(V) �= RPn+1. Then it iseasy to see that h ; i indues a onformal struture of signature (p; q) on Nand G ats transitively by onformal isometries. Moreover, it turns out thatthis onformal struture is at and while G does not at e�etively on N(essentially sine id and � id both at as the identity on projetive spae) itis a two{fold overing of the group of onformal automorphisms of N . ThusN �= G=P is the homogeneous at model of onformal geometry.



TRACTORS AND CONFORMAL AMBIENT METRIC 5A slight generalisation of Cartan's result may be expressed as follows.A hoie of a onformal struture on a smooth manifold M gives rise to aanonial prinipal P{bundle G !M whih is endowed with a uniquely de-termined Cartan onnetion ! 2 
1(G; g), where g = o(V) is the Lie algebraof G and ! satis�es a normalisation ondition to be disussed below. To seethis in more detail (see e.g. [4, 2.2℄) note that the paraboli subgroup P � Gis atually related to a grading of the Lie algebra g of the form g�1�g0�g1.Denoting by G0 � P the subgroup of all elements whose adjoint ation pre-serves this grading, then it is elementary to verify (as outlined in [4, 2.3℄)that this group onsists of (1 + n + 1) � (1 + n + 1){blok matries of theform 0� 0 00 C 00 0 �11A with 0 6=  2 R and C 2 O(p; q). The ation of suh anelement on g�1 �= Rn is given by the standard ation of �1C. Now one im-mediately veri�es that (; C) 7! (=jj; �1C) indues an isomorphism G0 !Z2�CO(p; q), where CO(p; q) denotes the (pseudo{) onformal group. Theinverse isomorphism is given by ("; A) 7! ("j det(A)j�1=n; "j det(A)j�1=nA).This isomorphism intertwines the adjoint ation of G0 on g�1 with the prod-ut of the trivial ation of Z2 and the standard ation of CO(p; q) on Rp+q.In partiular, this implies that a (�rst order) G0{struture is the same thingas a CO(p; q){struture and hene a onformal struture on the manifold.Now the proedure of [6℄ applies to produe a normal Cartan onnetion.(Of ourse in this speial ase there are muh simpler diret onstrutions ofthe Cartan bundle and the normal Cartan onnetion.) The Cartan bundleand its normal Cartan onnetion are uniquely determined by the underlyingonformal struture up to isomorphism.While this Cartan onnetion is onvenient from the point of view of theequivalene problem, it is rather diÆult to use it for problems like �nd-ing invariants of onformal strutures or onformally invariant di�erentialoperators. To deal with suh problems, it is often more eÆient to swithto the desription of onformal strutures via the so{alled standard tra-tor bundle and its anonial linear onnetion. Starting from the Cartanbundle and the Cartan onnetion, the standard trator bundle T ! M issimply the assoiated bundle G �P V. By onstrution, this bundle arriesa anonial metri of signature (p + 1; q + 1). The distinguished null linein V used to de�ne P leads to a subbundle T 1 � T whose �bres are nulllines and whih is easily seen to be isomorphi to E [�1℄. Furthermore, itturns out that the Cartan onnetion ! indues a linear onnetion r onT , the so{alled normal standard trator onnetion, see [5℄. Having thesedata at hand, one may then ompute the fundamental D{operator on T ,see [5, setion 3℄, whih in turn leads to the so alled trator D{operator,see [10℄ or [4, setion 3℄. These operators have been suessfully appliedto the onstrution of onformally invariant di�erential operators, onfor-mal invariants and other topis in onformal geometry, see e.g. [1, 2, 11℄.In summary, having an expliit knowledge of the standard trator bundle,the trator metri and the normal standard trator onnetion, one imme-diately gets a large number of tools for dealing with problems in onformalgeometry.



6 ANDREAS �CAP AND A. ROD GOVERIt is an idea going bak to the work of T. Thomas in the 20's to usethe standard trator bundle and its anonial onnetion as an alternativeapproah to onformal geometry. The preise relation between these dataand the Cartan bundle and Cartan onnetion was ompletely lari�ed (ina muh more general setting) in [5℄. Speialised to onformal standard tra-tors, this goes as follows: Suppose that M is a smooth manifold, and thatT !M is a real rank n + 2 vetor bundle endowed with a bundle metri hof signature (p + 1; q + 1) and an injetive bundle map E [�1℄ ! T , whoseimage T 1 is null with respet to h. Suppose further that the T admits atrator onnetion r in the sense of [5, 2.5℄. By de�nition, this means thatr is a non{degenerate o(V){onnetion. The ondition that r is a o(V)onnetion is easily seen to be equivalent to r preserving the bundle metrih. On the other hand, T has a �ltration of the form T � T 0 � T 1, whereT 0 := (T 1)?. This immediately implies that for onnetions preserving hthe non{degeneray ondition from [5, 2.5℄ is equivalent to the onditionthat for any x 2 M and � 2 TxM there is a smooth setion � of T 1 suhthat r��(x) =2 T 1x .Given the data (T ; h;r) as above, we an now reover an underlyingonformal struture of signature (p; q) on M : First, let �0 be a loally non{vanishing setion of T 1. Then h(�0; �0) = 0 and thus 0 = ��h(�0; �0) =2h(r��0; �0) for all � 2 X(M). This immediately implies that for anysmooth funtion f we get h(r�(f�0); �0) = 0, and sine loally any smoothsetion of T 1 an be written in the form f�0, we onlude that r�� 2 �(T 0)for all � 2 X(M) and � 2 �(T 1). Now onsider the map whih maps (�; �)to the lass of r�� in �(T 0=T 1). This is obviously bilinear over smoothfuntions, and thus indued by a bundle map TM 
E [�1℄! T 0=T 1, whihby the non{degeneray assumption is injetive on eah �bre, so sine bothbundles have rank n, we obtain a bundle isomorphism T 0=T 1 �= TM [�1℄.On the other hand, sine the restrition of h to T 0 is degenerate with nullspae T 1, h indues a non{degenerate bundle metri of signature (p; q) onT 0=T 1, and thus gives rise to a setion of S2T �M [2℄, i.e. a onformal stru-ture on M . We say (T ; h;r) is a standard trator bundle orresponding tothis onformal struture. Conversely beginning with a onformal strutureon M there are ways (see e.g. [1, 4℄) to diretly onstrut standard tratorbundles for the given onformal struture.Next, one may reover the Cartan bundle from the standard trator bun-dle: For x 2M de�ne Gx to be the set of all orthogonal maps V! Tx whihin addition map the distinguished null line to T 1x . By assumption, suhmaps exist, and omposition from the right de�nes a transitive free rightation of P on Gx. Now the union G := [x2MGx may be naturally viewed asa subbundle of the frame bundle of T , whene it obtains its smooth stru-ture and the P{ation from above makes it into a P{prinipal bundle. Byonstrution, we have T = G �P Vand the metri h and the subbundle T 1are obtained by arrying over the respetive data from V. In the languageof [5, setion 2℄, this means that T ! M is a standard trator bundle andG is an adapted frame bundle for T . (The adjoint trator bundle lurkingin the bakground is the bundle o(T ) of skew symmetri endomorphisms ofT ).



TRACTORS AND CONFORMAL AMBIENT METRIC 7Now by [5, Theorem 2.7℄ there is a bijetive orrespondene between tra-tor onnetions on T and Cartan onnetions on the adapted frame bundleG. To reognise the normal trator onnetion among all trator onne-tions, one notes that by [5, Proposition 2.9℄, the urvature R of a tratoronnetion r is given by the ation of the urvature of the orrespondingCartan onnetion. Now in the speial ase of onformal strutures, thegeneral Lie theoreti normalisation ondition on Cartan onnetions usedin [5℄ an be simpli�ed onsiderably. First of all, any normal Cartan on-netion in the onformal ase is torsion free, whih simply means that theation of R(�; �) on the standard trator bundle preserves the subbundleT 1 � T for all � and �. If this ondition is satis�ed, then R(�; �) induesan endomorphism W (�; �) of T 0=T 1 �= TM [�1℄, so we may as well view Was a setion of �2T �M 
 L(TM; TM). Using this and taking into aountthe desription of �� in the proof of [5, Proposition 4.3℄ and the formula forthe algebrai braket in the onformal ase in [4, 2.3℄ one onludes that thenormalisation ondition on the urvature of a standard trator onnetionis equivalent to vanishing of the Rii{type ontration of W . Of ourse,uniqueness of the Cartan bundle and Cartan onnetion implies that T to-gether with the subbundle T 1, the metri h and the normal standard tratoronnetion r is uniquely determined by the underlying onformal strutureup to isomorphism. Summarising, we obtainTheorem. (1) Let M be a smooth manifold of dimension n � 3. Supposethat T !M is a rank n+2 real vetor bundle endowed with a bundle metrih of signature (p+ 1; q + 1), an injetive bundle map E [�1℄ ! T with nullimage T 1 � T and a linear onnetion r suh that rh = 0 and, for anyx 2 M and any � 2 TxM , there is a smooth setion � 2 �(T 1) suh thatr��(x) =2 T 1x . Then (T 1)?=T 1 �= TM [�1℄, and (T ; h;r) is a standardtrator bundle for the onformal struture de�ned by the restrition of h to(T 1)?=T 1 � (T 1)?=T 1.(2) The trator onnetion r on T is normal if and only if its urvature Rhas the properties that R(�; �)(T 1) � T 1 and the Rii{type ontration ofthe element W 2 �(�2T �M
L(TM; TM)), as desribed above, vanishes. Ifthis is the ase, then (T ; T 1; h;r) is uniquely determined by the underlyingonformal struture up to isomorphism.2.3. Ambient manifolds and ambient metris. In [8℄, Ch. Fe�ermanand C.R. Graham have initiated a projet to study onformal strutures us-ing the so{alled ambient metri onstrution. The idea of that onstrutionis to mimi the at metri on the vetor spae V in the ase of the homo-geneous model as desribed in 2.2 above. The null one C may be viewedas the image of the inlusion E [�2℄! S2T �M provided by the onformallyat struture, so half of this null one may be identi�ed with the bundle Qof metris in the onformal lass. Now one starts with the bundle Q !Mof metris de�ning an arbitrary onformal struture. Then in [8℄ it is shownthat there is a Riemannian metri of signature (p+ 1; q+ 1) on Q� (�1; 1)(de�ned loally around Q) whose Rii urvature vanishes to a ertain order(depending on the dimension) along Q. Moreover, the orresponding jet ofthis metri along Q is unique in a ertain sense. This onstrution has beenapplied in [14℄ to prove the existene of ertain onformally invariant powers



8 ANDREAS �CAP AND A. ROD GOVERof the Laplaian. Using Q� (�1; 1) is slightly misleading, one ould equallyonsider a germ along Q of an (unspei�ed) ambient manifold endowed witha free R+{ation. Moreover, as we shall see later on, a muh weaker normal-isation ondition on an ambient metri than the one used in [8℄ is suÆientto get the relation to standard trators. Thus, we will start our disussionwith a general version of ambient manifolds and ambient metris.Note �rst, that on any manifold endowed with a free ation of R+, onehas the notion of homogeneity of tensor �elds as desribed in 2.2 above,whih an equivalently be haraterised in�nitesimally.De�nition. Let � : Q !M be a onformal struture. An ambient manifoldis a smooth (n+2)-manifold ~M endowed with a free R+{ation � on ~M anda R+{equivariant embedding � : Q ! ~M .If � : Q ! ~M is an ambient manifold, then an ambient metri is a pseudo{Riemannian metri h of signature (p+1; q+1) on ~M suh that the followingondition hold:(i) The metri h is homogeneous of degree 2 with respet to the R+{ation,i.e. if X 2 X( ~M) denotes the fundamental �eld generating the R+{ationand LX denotes the Lie derivative by X , then we have LXh = 2h.(ii) For u = gx 2 Q � ~M and �; � 2 TuQ, we have h(�; �) = gx(T���; T���).Sine the ation of R+ on ~M extends the ation on Q, we will denoteboth ations by the symbol � and we use X to denote the fundamental �eldfor both ations. Moreover, we will usually view Q as a submanifold of ~Mand suppress the embedding �.Sine we will frequently have to deal with the question of vanishing oftensor �elds along Q to some order, we ollet some information on that. Atensor �eld t on ~M is said to vanish along Q to order ` � 1 if and only if tjQ =0 and for any integer k < ` and arbitrary vetor �elds �1; : : : ; �k 2 X( ~M) theiterated Lie derivative L�k � � �L�1 t vanishes along Q. Equivalently, one mayrequire all iterated ovariant derivativesr�k � � �r�1t to vanish alongQ. Thetensor �eld t is said to vanish to in�nite order along Q if it vanishes to order` for all ` 2 N. If we hoose any de�ning funtion r for Q, i.e. a smooth realvalued funtion de�ned loally around Q suh that Q = r�1(0) and dr doesnot vanish in any point of Q, then any tensor �eld t that vanishes alongQ may be written as t = rt0 for some tensor �eld t0 of the same type as t.Indutively, one sees that t vanishes to order ` along Q if and only if t = r`t0for some tensor �eld t0. Thus, we will use the notation t = O(r`) to indiatethat t vanishes to order ` along Q.There are some points we should make that are partiular to the ase ofsetions of 
sT �M . This is espeially relevant for the ase of di�erentialforms. On the one hand, in this ase vanishing to order ` along Q anbe equivalently expressed as vanishing of �k � � ��1�t(�1; : : : ; �s) for arbitraryk < ` and vetor �elds �i and �j. On the other hand, for tensor �elds tof that type there is the weaker ondition that tangential omponents of tvanish to some order along Q. One says that the tangential omponents oft vanish along Q if ��t = 0, where � : Q! ~M is the inlusion. Equivalently,t(�1; : : : ; �s) has to vanish along Q if for any u 2 Q and any j one has�j(u) 2 TuQ � Tu ~M . We say that the tangential omponents of t vanish



TRACTORS AND CONFORMAL AMBIENT METRIC 9to order ` if and only if for k < `, arbitrary vetor �elds �1; : : : ; �k 2 X( ~M)and vetor �elds �1; : : : ; �s 2 X( ~M) suh that eah �j jQ is tangent to Q,the funtion �k � � ��1�t(�1; : : : ; �s) vanishes along Q. In this ase, however,one may not replae this by a ondition on Lie derivatives or ovariantderivatives, sine a Lie derivative or ovariant derivative of a vetor �eldwhose restrition to Q is tangent to Q in general does not have the sameproperty.The normalisation onditions on ambient metris used in [8℄ are based onthe Rii urvature of the ambient metri h. However, to get the relationto standard trators, we need a di�erent ondition. We shall show in 2.6that this ondition is a onsequene of the weakest possible ondition on theRii urvature. The ondition we need is based on the one{form � dual tothe generator X of the R+{ation, i.e. �(�) = h(X ; �). Notie that sineT��X = 0, ondition (ii) in the de�nition of an ambient metri implies that��� = 0. Thus, we also have 0 = d��� = ��d�, so the tangential omponentsof d� vanish along Q.Expanding the homogeneity ondition LXh = 2h, we get X�h(�; �) �h([X; �℄; �)�h(�; [X; �℄) = 2h(�; �), and rewriting the Lie brakets in termsof ovariant derivatives, we obtainh(r�X; �) + h(�;r�X) = 2h(�; �);whih says thatX is a onformal Killing �eld of dilation type. On the otherhand, by de�nition of the exterior derivative, we get d�(�; �) = ��h(X; �)���h(X; �)� h(X; [�; �℄), and expanding the right hand side of this in termsof ovariant derivatives givesh(r�X; �)� h(�;r�X) = d�(�; �);whih just expresses the fat that the exterior derivative of a di�erentialform is obtained by alternating the ovariant derivative. Putting these twoequations together, we obtain(1) h(r�X ; �) = h(�; �)+ 12d�(�; �):This equation shows that d� = O(r`) implies r�X = � + O(r`) for anyvetor �eld �. On the other hand, if � is homogeneous of degree w, thenw� = [X ; �℄ = rX� �r�X , whih shows that rX� = (w + 1)� + O(r`)provided that d� = O(r`). Suppose next that iXd�jQ = 0, where i denotesthe insertion operator. Sine � is obviously homogeneous of degree two,this implies that 2�jQ = LX�jQ = diX�jQ. Thus we see that assumingiXd�jQ = 0, the funtion r := 12h(X;X) satis�es drjQ = �jQ, so we get aanonial de�ning funtion in this ase.2.4. The standard trator bundle and onnetion indued by anambient metri. Let � : Q ! M be a onformal struture, ~M � Qan ambient manifold and h and ambient metri on ~M . Throughout thissubsetion we assume that h has the property that the one{form � dual toX satis�es d�jQ = 0.Consider the restrition T ~M jQ of the ambient tangent bundle to Q andde�ne an ation of R+ on this spae by s�� := s�1T�s��. This is ompatiblewith the R+ ation on Q, so de�ning T to be the quotient (T ~M jQ)=R+,



10 ANDREAS �CAP AND A. ROD GOVERwe immediately see that this is a vetor bundle over Q=R+ = M , and the�bre dimension of this bundle is n + 2. Moreover, by onstrution, thereis a bijetive orrespondene between the spae �(T ) of smooth setions ofp : T ! M and the spae of ambient vetor �elds along Q (i.e. setions ofT ~M jQ ! Q) whih are homogeneous of degree �1, or equivalently satisfy[X; �℄ = ��.The fat that the ambient metri h is homogeneous of degree 2 immedi-ately implies that for vetor �elds � and � on ~M whih are homogeneous ofdegree w and w0, respetively, the funtion h(�; �) is homogeneous of degreew + w0 + 2. In partiular, applying h to the vetor �elds orresponding totwo setions of T , the resulting funtion on Q is onstant on R+ orbits, andthus desends to a smooth funtion on M . Hene h desends to a smoothbundle metri h of signature (p+ 1; q + 1) on T .The bundle metri h immediately leads to a �ltration of the bundle T :Sine the vertial tangent bundle of � : Q ! M is stable under the R+{ation, it gives rise to a distinguished line bundle T 1 � T . By onstrution,setions of this subbundle orrespond to ambient vetor �elds alongQ, whihare of the form fX for some smooth funtion f : Q ! R, and in order thatthis is a setion of T , the funtion f must be homogeneous of degree �1.Thus, mapping f to fX de�nes an isomorphism E [�1℄ �= T 1. On the otherhand, we have already observed that h(X;X) = 0 along Q. Hene, de�ningT 0 to be the orthogonal omplement of T 1 with respet to h, we see thatT 0 � T is a smooth subbundle of rank n + 1 and T 1 � T 0. To identify thequotient T =T 0, we observe that for any setion s 2 �(T ) with orrespondingvetor �eld � along Q, we get a funtion h(�;X), whih is homogeneous ofdegree one. By onstrution, this vanishes if and only if s has values in T 0,so it indues an isomorphism T =T 0 �= E [1℄ of vetor bundles.Finally, assume that � is a vetor �eld on M and f 2 �(E [�1℄) is asmooth setion, i.e. a funtion Q ! R homogeneous of degree �1. Then wemay lift � to an ambient vetor �eld ~� along Q, whih is homogeneous ofdegree zero, and this lift is unique up to adding �elds of the form 'X with' : Q ! R homogeneous of degree zero. Then f ~� is a setion of T and byproperty (ii) of h we have h(f ~�;X) = 0, whene f ~� 2 �(T 0). Moreover,the lass of f ~� in T 0=T 1 is independent of the hoie of the lift ~�. Henewe obtain a bundle map TM [�1℄ ! T 0=T 1, whih is obviously injetivein eah �bre, so sine both bundles have the same rank, we onlude thatT 0=T 1 �= TM [�1℄, whih implies that p : T ! M is a andidate for aonformal standard trator bundle. Notie that up to now we have not usedthe assumption that d� vanishes along Q.Next, letr be the Levi{Civita onnetion of h. The fat thatr is torsionfree and rh = 0 imply the well know global formula2h(r��; �) =��h(�; �) + ��h(�; �)� ��h(�; �)+h([�; �℄; �)� h([�; �℄; �)� h([�; �℄; �)for all vetor �elds �; �; � 2 X( ~M). Observe that if � 2 X( ~M) is homo-geneous of degree w and f : ~M ! R is homogeneous of degree w0, thenthe equation X���f = [X; �℄�f + ��X�f shows that the funtion ��f is ho-mogeneous of degree w + w0. Hene hoosing the three vetor �elds in the



TRACTORS AND CONFORMAL AMBIENT METRIC 11above formula to be homogeneous of degrees w, w0, and w00, we see that anysummand on the right hand side is homogeneous of degree w+w0+w00+2,whih immediately implies that r�� is homogeneous of degree w + w0. Inpartiular, if � is invariant, i.e. homogeneous of degree zero, then r�� hasthe same homogeneity as �.On the other hand, we have already observed in the end of 2.3 above,that d�jQ = 0, i.e. d� = O(r) implies that r�X = � + O(r), and rX� =(w+ 1)�+O(r) if � is homogeneous of degree w. In partiular, rX�jQ = 0for � homogeneous of degree �1. Using this, we an now show that rdesends to a linear onnetion r on the bundle T . Suppose that s 2 �(T )is a setion orresponding to the ambient vetor �eld ~� along Q and that� 2 X(M) is a vetor �eld. As before, we may lift � to an ambient vetor�eld ~� along Q, whih is unique up to adding terms of the form 'X with' homogeneous of degree zero. Extend ~� to a homogeneous �eld on ~M andobserve that sine the ow lines of ~� are ontained in Q, it follows that, alongQ, the ambient vetor �eld r~� ~� is independent of the extension of ~�. SinerX ~�jQ = 0, we onlude thatr~�~� depends only on � and not on the lift ~�.Moreover, from above we know that r~� ~� is homogeneous of degree �1, soit orresponds to a setion of T , whih we denote by r�s. One immediatelyveri�es that this de�nes a linear onnetion r on T , whih by onstrutionis ompatible with the bundle metri h.To verify that r is a trator onnetion on T , we thus only have toverify the non{degeneray ondition from 2.2, whih is very easy: For asetion s 2 �(T 1), the orresponding ambient �eld is of the form fX withf : Q ! Rhomogeneous of degree �1. For a lift ~� of a vetor �eld � 2 X(M)as above, we getr~�fX = (~��f)X+fr~�X and the seond summand equalsf ~� along Q. In partiular, we see that r�s 2 �(T 0), and the image of thissetion in �(T 0=T 1) is simply the element f�, whih implies that r is atrator onnetion on T . Thus we have proved:Proposition. Let � : Q ! M be a onformal struture on a smoothmanifold M , ~M an ambient manifold and h an ambient metri, and let� 2 
1( ~M) be the one{form dual to the in�nitesimal generator of the R+{ation on ~M . Then for the R+ ation on T ~M jQ de�ned above, h desends toa bundle metri h on T := (T ~M jQ)=R+. If d�jQ = 0, then the Levi{Civitaonnetion of h desends to a trator onnetion on T whih preserves h.This together with the �ltration indued by the vertial subbundle means Tis a onformal standard trator bundle.2.5. The normalisation ondition. Let us assume that h is an ambientmetri on an ambient manifold ~M for a given onformal struture on Msuh that the one{form � dual to the in�nitesimal generator X of the R+{ation on ~M has the property that d�jQ = 0. Then we have the induedonformal standard trator bundle (T ; h;r). Now it is almost obvious thatthe urvature R of h desends to urvature R of the trator onnetion r.Indeed, hoosing invariant lifts ~� and ~� for vetor �elds �; � 2 X(M), andonsidering the (homogeneous of degree �1) ambient vetor �eld � alongQ orresponding to a setion s 2 �(T ), the ambient vetor �eld r�r��



12 ANDREAS �CAP AND A. ROD GOVERorresponds to the setion r�r�s 2 �(T ). Moreover, [~�; ~�℄ is an invariantlift of [�; �℄, whih immediately implies that R(~�; ~�)� orresponds to thesetion R(�; �)s of T .Hene to understand the trator urvature R, we have to analyse theambient urvature R. For later use, we work in a more general settingand prove more spei� results than are required for the veri�ation of thenormalisation ondition.Proposition. Let h be an ambient metri on ~M , R the Riemann urvatureof h, X 2 X( ~M) the in�nitesimal generator of the R+{ation on ~M and� 2 
1( ~M) the one{form dual to X. Then we have:h(R(�; �)X; �) = �h(R(�; �)�;X) = h(R(X ; �)�; �) = �12(rd�)(�; �; �);for all vetor �elds �; �; � 2 X( ~M). In partiular, if d� = O(r`) for some` � 1, then this expression is O(r`�1) and it is O(r`) if either � or both �and � have the property that the restrition to Q is tangent to Q. Hene, ifd� = O(r`), then tangential omponents of d� vanish to order ` + 1 alongQ.Proof. The equality of the �rst three expressions follows from standard sym-metries of the urvature of a pseudo{Riemannian metri. Now we omputeh(r�r�X; �) = ��h(r�X ; �)� h(r�X;r��);and inserting formula (1) from 2.3 in both summands, we obtainh(r��; �) + 12��d�(�; �)� 12d�(�;r��):Taking the alternation of this in � and � and subtrating h(r[�;�℄X; �) =h([�; �℄; �) + 12d�([�; �℄; �) we may expand the Lie braket into ovariantderivatives whih implies that all terms involving h anel, and we are leftwith the expression12���d�(�; �)� ��d�(�; �)� d�([�; �℄; �)� d�(�;r��) + d�(�;r��)�for h(R(�; �)X; �). Expanding the equation 0 = d(d�)(�; �; �) we mayrewrite ��d�(�; �)� ��d�(�; �)� d�([�; �℄; �) as ���d�(�; �)� d�([�; �℄; �) +d�([�; �℄; �), and expressing the Lie brakets as ommutators of ovariantderivatives, we arrive at the laimed formula for h(R(�; �)X; �).By de�nition, (rd�)(�; �; �) = ��d�(�; �)�d�(r��; �)�d�(�;r��), andif d� = O(r`), the the last two terms visibly are O(r`), while the �rst isO(r`�1). If in addition �jQ is tangent to Q, the equation � 0���d�(�; �) =��� 0�d�(�; �)+ [�0; �℄�d�(�; �) shows that the �rst summand is O(r`), too. Onthe other hand, if both �jQ and �jQ are tangent to Q, then by the Bianhiidentity, we get h(R(�; �)�;X) = �h(R(�; �)�;X) � h(R(�; �)�;X), andfrom above we know that both terms of the right hand side are O(r`).Turning around the argument, we see now that if �jQ and �jQ are tangentto Q, then for any vetor �eld �, the funtion ��d�(�; �) is O(r`), whenetangential omponents of d� vanish to order `+ 1 along Q. �Using these results we an now prove:



TRACTORS AND CONFORMAL AMBIENT METRIC 13Theorem. Let h be an ambient metri suh that the one{form � dual tothe in�nitesimal generator of the R+{ation satis�es d�jQ = 0. Then thestandard trator bundle (T ; h;r) indued by h is normal if and only if thetangential omponents of the Rii urvature Ri(h) vanish along Q.Proof. From the above Proposition we see that d� = O(r) implies thatif ~�jQ and ~�jQ are tangent to Q, then h(R(~�; ~�)X ; �) and h(R(~�; ~�)�;X)vanish along Q. Applied to invariant lifts of vetor �elds �; � 2 X(M), the�rst equation exatly means that R(�; �) vanishes on T 1, while the seondequation says that R(�; �) maps T to T 0. In partiular, R(�; �) : T ! T is�ltration preserving for all �, �.Hene R(�; �) indues an endomorphism of T 0=T 1, whih we may as wellview as an endomorphism of TM . From 2.2 we know that normality of thetrator onnetion is equivalent to vanishing of the Rii{type ontrationof the resulting operator W 2 �(�2T �M 
 L(TM; TM)). The value ofthis ontration at a point x 2 M on tangent vetors �; � 2 TxM an beomputed as Pni=1 'i(W (�i; �)�), for a basis f�1; : : : ; �ng of TxM with dualbasis f'1; : : : ; 'ng of T �xM .Choosing a point u in Q over x and lifts ~�i, ~� and ~� of the vetor�elds involved, we may ompute 'i as h( ; ~�i), where the tangent vetors~�1; : : : ; ~�n 2 TuQ � Tu ~M are de�ned by h(~�i; ~�j) = Æij . (Note that ~�i 2 TuQimplies h(~�i;X) = 0). Hene our ontration applied to � and � orrespondsto nXi=1 h(R(~�i; ~�)~�; �i):Now let Y 2 TuQ be the unique null tangent vetor suh that �h(X; Y ) = 1and h(~�i; Y ) = 0 for all i. Then learly fX ; ~�1; : : : ; ~�n; Y g is a basis of Tu ~Mwith dual basis (with respet to h) given by fY; ~�1; : : : ; ~�n;Xg. But from theabove proposition, we know that h(R(X ; ~�)~�; Y ) and h(R(Y; ~�)~�;X) vanishalong Q, sine the restritions of ~� and ~� to Q are tangent to Q. Addingthese two summands to the above sum, we by de�nition get Ri(h)(~�; ~�)(u),where Ri denotes the Rii urvature of h, whih implies the result. �Note that it follows immediately from the theorem that the normal tratorurvature R is indued by the urvature of any ambient metri h whih hasthe property that d� and tangential omponents of Ri(h) vanish along Q.2.6. We next want to show that an ambient metri h, suh that the tangen-tial omponents of Ri(h) vanish along Q, automatially satis�es d�jQ = 0,where � is the one{form dual to the in�nitesimal generator X of the R+{ation. In partiular, this implies that any ambient metri satisfying theRii ondition an be used to onstrut the normal standard trator bun-dle.Let us again start with an arbitrary ambient metri h on an ambientmanifold ~M for � : Q ! M . Let us �rst hoose appropriate dual framesde�ned loally around a point in Q. Note that along Q, the tangent spaesof Q are orthogonal to X . Thus, loally around a point u0 2 Q, we mayhoose ambient vetor �elds �i 2 X( ~M) for i = 1; : : : ; n, whih are ho-mogeneous of degree �1, satisfy h(X; �i) = 0 and have the property that



14 ANDREAS �CAP AND A. ROD GOVERfX(u); �1(u); : : : ; �n(u)g is a basis for TuQ � Tu ~M for u 2 Q lose to u0.Further, hoose an ambient vetor �eld Y suh that h(X; Y ) = 1 (whihfores Y to be homogeneous of degree �2) and h(Y; �i)jQ = 0 for all i.Adding an appropriate multiple of X , we may assume that h(Y; Y )jQ = 0.Clearly, the �elds X , �i and Y form a frame for T ~M in a neighbourhoodof u0 in Q, and thus loally around u0. Let f ~Y ; �i; ~Xg be the loal framedual to fX; �i; Y g. Then by onstrution ~Y jQ = Y jQ and ~XjQ = X jQ, butthis is not true o� Q, sine as we shall see immediately the weakest possibleassumption on Rii atness implies that h(X;X) is nonzero o� Q.Theorem. Let h be an ambient metri and let � be the one{form dual tothe in�nitesimal generator X of the R+{ation. Then we have:(1) Ri(h)(X;X)jQ = 0 if and only if iXd�jQ = 0. If this is the ase, thenr := 12h(X;X) is a de�ning funtion for Q suh that Y �r = 1+ O(r).(2) The tangential omponents of Ri(h)(X; ) vanish along Q if and only ifd�jQ = 0. In partiular, for any ambient metri h suh that the tangentialomponents of Ri(h) vanish along Q, the proedure from 2.4 an be used toobtain a normal standard trator bundle.Proof. From Proposition 2.5 we get h(R(X ; �)�; �) = �12(rd�)(�; �; �).Thus, we may ompute 2Ri(h)(X; �) by taking the trae over � and �in (rd�)(�; �; �), i.e. by inserting the elements of dual frames and sum-ming up, and we use dual frames as introdued above. We only have toonsider the ase that �jQ is tangent to Q, and sine we are only inter-ested in the restrition of the result to Q, we may as well replae ~X by Xand ~Y by Y . The term with � = X and � = Y never ontributes sine(rd�)(X; �; Y ) = �2h(R(X;X)�; Y ) = 0 by Proposition 2.5.Let us next look at the terms with � = �i and � = �i. By de�nition tangen-tial omponents of � vanish along Q, so the same holds for d�. In partiular,d�(�; �i) vanishes along Q and sine �i is tangent to Q also �i�d�(�; �i) van-ishes along Q. Moreover, for any vetor �eld �, the restrition of � � �(�)Yto Q is tangent to Q, whih implies d�(�; �)jQ = �(�)d�(�; Y )jQ. Apply-ing the same argument with � replaed by �i, we see that d�(r�i�; �i)jQ =�(r�i�)d�(Y; �i)jQ. Sine �jQ is tangent to Q and thus h(�;X)jQ = 0, wesee that, along Q, we have �(r�i�) = h(r�i�;X) = �h(�;r�iX). Sineboth �jQ and �ijQ are tangent to Q and tangential omponents of d� vanish,formula (1) from 2.3 implies that this restrits to �h(�; �i) on Q, sod�(r�i�; �i)jQ = h(�; �i)d�(�i; Y ):Similarly, d�(�;r�i�i) = �(r�i�i)d�(�; Y ), and �(r�i�i)jQ = �h(�i; �i) =�1. Together with the above, this implies that for any vetor �eld � suhthat �jQ is tangent to Q, we obtain2Ri(h)(X; �)jQ = (rd�)(Y; �;X)jQ+nd�(�; Y )jQ�Xi h(�; �i)d�(�i; Y )jQ(1) Putting � = X in the above formula, we see that the �rst summandvanishes sine rd� is skew symmetri in the last two entries. On the otherhand, the last sum vanishes sine h(X ; �i) = 0 by onstrution. Thus,we are left with 2Ri(h)(X;X)jQ = nd�(X ; Y )jQ, and sine tangentialomponents of d� vanish, the vanishing of d�(X ; Y )jQ is equivalent to



TRACTORS AND CONFORMAL AMBIENT METRIC 15iXd�jQ = 0. We have already veri�ed in 2.3 that the latter onditionimplies that r = 12h(X;X) is a de�ning funtion for Q sine drjQ = �jQ.The last statement obviously implies Y �r = 1 +O(r).(2) We may assume that the equivalent onditions of (1) are satis�ed andshow that vanishing of the rest of Ri(h)(X; ) is equivalent to d� = O(r).Using the above formula for 2Ri(h)(X; �), we �rst note that sine iXd�vanishes along Q, we get(rd�)(Y; �;X)jQ = Y �d�(�;X)jQ � d�(�;rYX)jQ:The �rst term in the right hand side may be written as �Y �(iXd�(�))jQ,and sine iXd�jQ = 0 and �jQ is tangent to Q, this equals diXd�(�; Y ) =LXd�(�; Y ). By onstrution, � is homogeneous of degree two, so the sameholds for d�, whene this gives 2d�(�; Y ). For the seond summand, we getd�(�;rYX)jQ = �(rYX)d�(�; Y ) as above, and learly h(rYX;X) =12Y �h(X;X), whih restrits to 1 on Q by part (1).Finally, by onstrution Pih(�; �i)�i oinides with � up to addition ofa multiple of X, so sine iXd�jQ = 0 we obtain Pi h(�; �i)d�(�i; Y ) =d�(�; Y ).Colleting our results, we see that (assuming Ri(h)(X;X)jQ = 0) we get2Ri(h)(X; �) = nd�(�; Y ) for any � suh that �jQ is tangent to Q, whihimmediately implies the result. �3. An appliationIn this setion, we show how our results an be applied to the study ofonformal invariants obtained from the ambient metri onstrution. Someof these ideas were skethed in [12℄ but here we generalise the setting onsid-erably. In partiular, we derive an algorithm that an be used to ompute atrator expression for any onformal invariant whih an be obtained fromthe ambient metri onstrution. Our results are however more general thanthat, sine they also deal with the ase of ambient metris whih are Riiat to higher order than those whose existene is proved by Fe�erman andGraham. While the existene of suh metris is obstruted on general on-formal manifolds, we believe studying these \better" metris in the aseswhen they do exist is very interesting.It should be remarked at this point that another line of appliations ofthe results derived in this paper an be found in [12℄, where they are ap-plied to the study of onformally invariant powers of the Laplaian andQ{urvatures.3.1. To arry out some omputations, we introdue abstrat index nota-tion. Given an ambient manifold ~M and an ambient metri h for a onfor-mal struture Q !M , we write ~E(w) for the spae smooth funtions on ~Mwhih are homogeneous of degree w, i.e. ~f 2 ~E(w) means X� ~f = w ~f . Wewill write ~EA = ~EA(0) ( ~EAQ = ~EAQ(0)) to denote the spae of setions of T ~M(T ~M jQ) whih are homogeneous of degree �1. (We adopt this onventionsine setions of ~EAQ orrespond to setions of the standard trator bun-dle.) Then �nally we will write ~EAB(w) ( ~EABQ (w)) to mean ~EA 
 ~EB 
 ~E(w)



16 ANDREAS �CAP AND A. ROD GOVER( ~EAQ
 ~EBQ
 ~EQ(w) respetively) and so forth. For lower indies, the appropri-ate onvention is that ~EA = ~EA(0) denotes the spae of ambient one{forms,whih are homogeneous of degree 1, sine then hAB (whih is homogeneousof degree 2) indues an isomorphism ~EA ! ~EA. The extensions to multi-ple lower and mixed indies, as well as the notation for setions along Q isdone as above. In this ontext we will refer to w as the onformal weight(to distinguish it from the homogeneity degree). This means that for anambient tensor �eld, the onformal weight equals the homogeneous degreeplus the number of upper indies minus the number of lower indies. Weraise and lower indies using the ambient metri hAB and its inverse hAB .We also adopt the usual onventions that round brakets (square brak-ets) around indies indiate a symmetrisation (antisymmetrisation) of theenlosed indies, exept indies between vertial lines, and that the sameindex ourring twie indiates a trae.We start with some general results for pseudo{Riemannian metris:Proposition. Let h be a pseudo{Riemannian metri with urvature R =RABCD and Rii urvature Ri = RiAB = RCACB. Then we have:(1) rEREABC = 2r[BRiC℄A.(2) �RABCD = 2(rAr[CRiD℄B �rBr[CRiD℄A) + 	ABCD, where �denotes the ambient Laplaian and 	ABCD is a linear ombination of partialontrations of R
R.(3) Let �A:::B 2 EA:::B(w) be any setion. Then the ommutator of theLaplaian � with a ovariant derivative r ats as[�;rC ℄�A:::B =� 2hEF ��E:::Br[FRiA℄C + � � �+�A:::Er[FRiB℄C�� 2 �RFCEArF�E:::B + � � �+RFCEBrF�A:::E�+RiCErE�A:::B ;where in the two sums there is one summand for eah index of �, and E isontrated into that index.Proof. (1) The algebrai Bianhi identity 0 = R[EAjBjC℄ together with theusual symmetries of the Riemann urvature gives us REABC = �RABEC +RACEB . The di�erential Bianhi identity 0 = r[FRAB℄EC together withthe symmetries of R leads to rFRABEC = �rBRFAEC + rARFBEC ,and similarly we getrFRACEB = �rCRFAEB+rARFCEB . Contratingwith hEF the laim now follows from symmetry of Ri.(2) By de�nition (�R)ABCD = rErERABCD. Using the di�erentialBianhi identity and urvature symmetries, we may write rERABCD as�rBREACD +rAREBCD. Now the ommutator of two ovariant deriva-tives is given by the algebrai ation of the urvature, so �rErBREACDmay be written as the sum of �rBrEREACD and a sum of partial ontra-tions of R
R. Similarly, �rErAREBCD is the sum of �rArEREBCDand a sum of partial ontrations of R 
 R. Now the result immediatelyfollows from (1).(3) Let us ompute �rC�A:::B = hEFrErFrC�A:::B. The de�nition ofthe urvature reads as [rA;rB℄V C = RABCDV D, and thus [rA;rB ℄VC =



TRACTORS AND CONFORMAL AMBIENT METRIC 17�RABDCVD. Using this, we getrFrC�A:::B =rCrF�A:::B � (RFCIA�I:::B + � � �+RFCIB�A:::I);with one summand for eah index of � in the sum in brakets. Hitting thatsum with rF , eah summand splits into a sum of two terms, one in whihrF ats on R and one in whih rF ats on �. Using (1) we see that theterms in whih rF ats on R exatly give the terms in the �rst sum of thelaimed formula for [�;rC ℄�A:::B. On the other hand, the terms in whihrF ats on � exatly give half of the seond sum in the laimed formula.Again swapping ovariant derivatives, we may write rErCrF�A:::Bas the sum of rCrErF�A:::B (whih after ontration with hEF givesrC��A:::B) and�RECIFrI�A:::B � (RECIArF�I:::B + � � �+RECIBrF�A:::I);again with one summand for eah index of � in the sum in brakets. Con-trating with hEF , the the sum in brakets gives the seond half of theseond sum in our laimed formula, while the other summand gives the lastterm in the laimed formula. �Remark. Of ourse, in the proof of part (2), it is no problem to omputean expliit formula for the sum of partial ontrations 	ABCD of R
R (see[12℄).3.2. To proeed, we next speialise to an ambient metri h suh that tan-gential omponents of the ambient Rii urvature Ri vanish along Q. Bypart (2) of Theorem 2.6 the one form � dual to the in�nitesimal generatorX of the R+{ation then satis�es d� = O(r) and the proedure of 2.4 anbe applied to onstrut a normal standard trator bundle (T ; h;r) from( ~M;h).We may regard the ambient urvature R as 2-form taking values inEnd(T ~M). We have observed in 2.5 above that if ~� and ~� are invariant lifts ofvetor �elds �; � 2 X(M), thenR(~�; ~�) is preisely the homogeneous degree 0setion of End(T ~M jQ) orresponding to the setion R(�; �) of End T . Thusthe homogeneous End(T ~M){valued three form � ^R is, along Q, uniquelydetermined by the trator urvature. Similarly, the Levi-Civita onnetionr is determined by its ation on vetor �elds homogeneous of degree �1,so along Q ovariant derivatives in tangential diretions are determined bythe underlying trator onnetion.Sine d�jQ = 0, we know from 2.3 that r := 12h(X;X) satis�es � =dr+O(r), and hene r is a smooth de�ning funtion for Q. Notie that theambient vetor �eld X = XA has onformal weight 1 and sine the ambientovariant derivative is ompatible with homogeneities, the ambient di�er-ential operator rA has onformal weight �1. By de�nition, the ambientone{form �A is given by hABXB, so we will also denote this form by XA.(So X will mean either a 1-form or a vetor �eld aording to index plae-ment and/or ontext.) For example �^R is 3X [ARBC℄DE 2 ~E[ABC℄DE(�1).Note that by de�nition XAXA = hABXAXB = 2r.



18 ANDREAS �CAP AND A. ROD GOVERTo ompute eÆiently in the sequel, we have to determine the ommuta-tors of ovariant derivatives with r and XA, viewed as multipliation oper-ators. Sine d� = O(r), we get iXd� = 2(�� dr) = O(r), so � = dr + r�for some ambient one{form �. Moreover, d� = dr ^ � + rd� and this beingO(r) implies vanishing of the tangential omponents of � along Q, whene� = '� + r~ for some ambient smooth funtion ' and one{form ~, andhene � = dr+'r�+ r2~. In partiular, dr = (1�'r)�+O(r2), and view-ing r as a multipliation operator, this implies the ommutation formula[rA; r℄ = (1 � 'r)XA + O(r2). Further, the above equations immediatelyimply dr ^ � = O(r2) and d� = r ^ �+O(r2), where  := d'� 2~, whihin index notaiton reads asr[AXB℄ = r[AXB℄+O(r2). On the other hand,equation (1) from 2.3 gives us rAXB = hAB + r[AXB℄ + O(r2). View-ing XB as a multipliation operator, we thus get the ommutator formula[rA;XB ℄ = hAB + r[AXB℄ + O(r2).The next step is to ompute two basi trator operators in ambientterms. The �rst obvious operator to onsider is � ^r, whih, along Q,obviously only needs derivatives in tangential diretions, and may be writ-ten as ~D AB := 2X [ArB℄. Sine [rA; r℄ = (1 � 'r)XA + O(r2), oneimmediately onludes that [~D AB ; r℄ = O(r2), whih in partiular meansthat for any ambient tensor �eld V , the restrition (~D ABV )jQ dependsonly on V jQ. Hene for arbitrary indies, we get a well de�ned operator~D AB : ( ~EQ)C:::DE:::F (w) ! ( ~EQ)C:::D[AB℄E:::F (w), that learly an be omputed interms of the underlying standard trator bundle. It is easy to identify thisoperator: By de�nition, the adjoint trator bundle of M is the bundle ofskew symmetri endomorphisms of the standard trator bundle T . Sine se-tions of T may be identi�ed with setions in ~EAQ, we obtain, using the inversehAB of the ambient metri, an identi�tion of smooth setions of the adjointtrator bundle A and setions in ~E [AB℄Q . Thus ~D AB determines a onformallyinvariant operator D on M whih goes between A
F 
E [w℄ and F 
E [w℄,where F is any tensor power of T . There is a natural projetion A ! TM .Under the identi�ation of �(A) with ~E [AB℄Q this is expliitly given by map-ping �AB to XA�AB �XA�BA modulo multiples of XB. Using this, oneimmediately veri�es that on the standard trator bundle, D oinides withthe omposition of the trator onnetion with this projetion. On densitybundles one obtains a similar omposition of Levi-Civita onnetion withthe projetion invariantly ombined with the anonial ation of an adjointtrator on the density bundle; in total the fundamental D{operator, see [4,setion 3℄. The obvious ompatibility of ~D AB with tensor produts thenimplies that it is exatly the operator obtained by twisting the fundamentalD on the density bundle with the trator onnetion on the trator bundle.This is preisely the \double-D" operator of [10, 11℄ (and see also [4, setion3℄).Now we an follow these soures to obtain the trator D{operator: Con-sider the operator hAB ~D A(Q ~D jBjP )0, whih by onstrution ats tangentiallyon tensor �elds along Q. Here (� � � )0 indiates the trae-free symmetrisationover enlosed indies (exluding any in the j � � � j). Using the ommutator



TRACTORS AND CONFORMAL AMBIENT METRIC 19formulae from above, one immediately veri�es diretly that4hABX [ArQ℄X[BrP ℄ =� nXQrP � hPQXArA +XQXP��XQXArArP �XPXArQrA + O(r):The de�nition of the Riemann urvature implies that on any tensor bundlewe may rewrite rQrA as rArQ �RAQ#, where RAQ# denotes the ten-sorial ation of RAQEF (via the indies E and F ) on the given tensor �eld.Thus we onlude that hAB ~D A(Q ~D jBjP )0 = �X(QDP )0 +O(r), whereDA := nrA + 2XBrBrA �XA��XBRBA#;where the # as above indiates a tensorial ation. Sine the map �P 7!X(Q�P )0 is an injetion of T � ~M jQ into 
2T � ~M jQ we see that this onstru-tion determines DA as a well de�ned operator between ~EAQ 
 ~E	Q(w) and~E	Q(w � 1), where ~E	Q is any tensor power of ~EBQ . Thus D determines anoperator D between weighted trator bundles on M . By its onstrutionfrom ~D it is lear that this ation of DA is determined by the underlyingstandard trator bundle and its onnetion. In fat this onstrution ofD isexatly the interpretation on Q of the onstrution of the standard tratorD operator from D as in [10℄ and [4, 3.2℄. For whih it follows immediatelythat D is the standard trator D operator.We an easily verify expliitly that DA ats tangentially on homogeneousambient tensor �elds along Q. For an ambient tensor T of onformal weightw, the ovariant derivative rT has onformal weight w� 1. Whene we getDA = (n + 2w � 2)rA �XA� �XBRBA# on tensor �elds of onformalweight w. Moreover, from above we know thatrAr = (1�'r)XA+O(r2).Hitting this with rA, we immediately onlude that �r = (n + 2) + O(r).More generally, if V is any ambient tensor �eld of onformal weight w, then�(rV ) = (�r)V +2hAB(rAr)rBV +r�V = (n+2w+2)V +O(r). SinerV has onformal weight w + 2, together with the above formula for theation of DA on tensor �elds of �xed onformal weight this implies thatDArV = O(r), so DA indeed ats tangentially along Q.3.3. The simple relation between the operator DA and the ambient o-variant derivative together with the fat that DA ats tangentially leads tovery remarkable onsequenes. The point here is that, along Q, DA de-pends only on the underlying standard trator bundle, and for any ambienttensor �eld � the restrition of DA� to Q depends only on the restri-tion of � to Q. In partiular, we have noted in 3.2 that X [ARBC℄EF is asetion of ~E[ABC℄[EF ℄(�1) whose restrition to Q depends only on the tan-gential omponents of the ambient urvature. These tangential omponentsare determined by the urvature of the normal standard trator onnetion.Consequently, 3DAX [ARBC℄EF is a setion of ~E[BC℄[EF ℄(�2) whose restri-tion to Q an be omputed from the trator urvature (and thus dependsonly on the underlying onformal struture).To ompute this expliitly, we need the ommutator of the Laplaian withXA. From setion 3.2 above, we haverBXA = hBA+r[BXA℄+XArB+O(r2). Hitting this with rB, we obtain �XA = 2rA + 12XBBXA +XA�+O(r). Sine XBB and the urvature RBCEF both have onformal



20 ANDREAS �CAP AND A. ROD GOVERweight�2, this allows us to writeDGX [ARBC℄EF as (n�2)rGX [ARBC℄EF+(12XJJ��)XGX [ARBC℄EF �XQRQG#X[ARBC℄EF +O(r). Taking intoaount the onformal weights and using the formulae derived above, we annow expand this expression expliitly and ontrating with hGA we obtain(2) 3DAX [ARBC℄EF =(n� 2)[(n� 4)RBCEF + 2X [BrARC℄AEF ℄+(XJJ � 2�)(XAX [BRC℄AEF )�3hAG(XQRQG#X [ARBC℄EF ) +O(r):In partiular, in dimensions 6= 4, the urvature of the ambient metrishows up in this formula. In these dimensions, existene of an ambientmetri h suh that Ri(h) = O(r) and suh that the tangential omponentsof Ri(h) vanish to seond order along Q has been proved in [8℄. Assumingthat we deal with suh a metri we may simplify the formula onsiderably.We �rst laim that the Rii ondition implies d� = O(r2). We know thatd� = O(r), so d� = r� for some two{form �, whih is homogeneous ofdegree 0, and thus has onformal weight �2. From 3.2 we onlude that�(d�) = �(r�) = (n � 2)� + O(r), so it suÆes to prove �(d�) = O(r)in order to onlude d� = O(r2). In index notation, proposition 2.5 readsas rA(d�)BC = 2XEREABC . Consequently, we may ompute �(d�) as12rAXEREABC . From 3.2 we know that up to an O(r) we may replaerAXE by hAE + XErA, so the fat that the urvature is skew in the�rst two indies implies �(d�) = 12XErAREABC + O(r). By part (1)of proposition 3.1, this may be rewritten as �XEr[BRiC℄E . Sine weassume Ri(h) = O(r) and that the tangential omponents of Ri(h) vanishto seond order, we may write RiCE = r(XCKE +XEKC)+O(r2) for anappropriate K. Hitting this withrB, we obtain XBXCKE+XBXEKC+O(r), and skewing in B and C the �rst summand vanishes. Thus we seethat r[BRiC℄E = XEK[CXB℄ + O(r). Contrating this with XE , we getan O(r) term, whih ompletes the proof that d� = O(r2).In partiular, vanishing of the Rii and vanishing of its tangential om-ponents to seond order implies that XEREABC = O(r), so the last linein formula (2) beomes an O(r). Next, XARCAEF = �12rC(d�)EF imme-diately implies XAX [BRC℄AEF = �14 ~DBC(d�)EF . Sine d� = O(r2), thesame is true for ~D (d�), and from 3.2 we know that applying � to an O(r2)term we get an O(r) term, so the last but one line in (2) also ontributes anO(r) only. On the other hand, using part (1) of Proposition 3.1 we getX[BrARC℄AEF = (�XBr[ERiF ℄C +XCr[ERiF ℄B)WritingRiFC = r(XFKC+XCKF )+O(r2) as above, we getr[ERiF ℄C =XCK[FXE℄ + O(r), whih immediately implies X [BrARC℄AEF = O(r).Colleting our results, we see that for metris with Ri(h) = O(r) and withtangential omponents of Ri(h) vanishing to seond order along Q, formula(2) boils down to 3DAX [ARBC℄EF jQ = (n� 2)(n� 4)RBCEF jQ. In parti-ular, the urvature of suh metris is intrinsi to the onformal struture,provided that n 6= 4.



TRACTORS AND CONFORMAL AMBIENT METRIC 213.4. Assuming higher order vanishing of the Rii urvature, we an obtaina similar result for ertain ovariant derivatives of the ambient urvature,exept for a single ritial order in even dimensions. As we have noted above,the restrition of R to Q may be viewed as a setion of ( ~EABCD)Q(�2), andsimilarly for any ` > 0 the restrition ofr`R = (rÆ : : :Ær)R to Q de�nesa setion of ( ~EA1:::A`+4)Q(�2� `).Lemma. Let ~M be an ambient manifold for a onformal struture Q !Mon an n{dimensional manifold M , and let h be an ambient metri on ~Mwith urvature R and Rii urvature Ri. If for some k > 0 we haveRiAB = O(rk+1) and tangential omponents of Ri vanish to order k + 2along Q, and if n 6= 2k+ 4, then there is a universal formula that omputesrkRjQ from RjQ and r`RjQ for ` < k.Proof. By assumption, we always have Ri(h) = O(r) and tangential om-ponents of Ri(h) vanish to seond order along Q, so from 3.3 and 3.2 weonlude that DA = (n + 2w � 2)rA �XA� on ambient tensor �elds ofonformal weight w. The setion rk�1R has onformal weight �k � 1, soDArk�1R = (n � 2k � 4)rArk�1R �XA�rk�1R, and by assumptionn� 2k� 4 6= 0. Sine DArk�1RjQ depends only on rk�1RjQ it suÆes toompute �rk�1R from the restritions of the setions r`R for ` < k toQ. Now one immediately veri�es indutively that[�;rk�1℄ = k�2X̀=0r`[�;r℄rk�2�`:Our assumptions on Ri together with part (3) of proposition 3.1 implythat for any ambient tensor �eld �A:::B, we an write [�;rC ℄�A:::B as�2 �RECFArE�F :::B + � � �+RECFBrE�A:::F �+O(rk):Inserting � = rk�2�`R for some ` = 0; : : : ; k � 2, we get an expression for[�;r℄rk�2�`R in terms of R and rk�1�`R up to some O(rk). Applyingr` and restriting to Q, the O(rk) annot ontribute, and we only getovariant derivatives of order at most k�1 ofR. Thus we obtain a universalformula whih expresses [�;rk�1℄RjQ in terms of RjQ and r`RjQ for` < k.To omplete the proof it hene suÆes to analyse rk�1�R, and wehave omputed �R in part (2) of Proposition 3.1. Now we laim that thetermrAr[CRiD℄B�rBr[CRiD℄A showing up in that formula is O(rk).Indeed, by assumption Ri = O(rk+1) and tangential omponents of Rivanish to order k + 2 along Q, whih implies that RiAB = rk+1(XAKB +XBKA)+O(rk+2) for some ambient one{formKB. As in 3.3, we then obtainr[CRiD℄B = (k + 1)rkXBK[DXC℄ + O(rk+1). Hitting this with rA weget k(k + 1)rk�1XAXBK[DXC℄ + O(rk), and skewing over A and B thelaim follows.But then it follows from part (2) of Proposition 3.1 that rk�1�RjQ =rk�1	ABCDjQ, and sine 	ABCD is a partial ontration of R 
 R weonlude that rk�1	ABCD jQ an be expressed by a universal formula interms of RjQ and r`RjQ for ` � k � 1. �



22 ANDREAS �CAP AND A. ROD GOVERTogether with the trator formula omputing the ambient urvature, thisnow leads toTheorem. Let ~M be an ambient manifold for a onformal struture Q !Mon an n{dimensional manifold M , and let h be an ambient metri on ~Mwith urvature R and Rii urvature Ri. Assume that Ri(h) = O(rk+1)and tangential omponents of Ri(h) vanish to order k+2 along Q for somek � 0. Then using the onvention that r0R = R we have:(1) If n is odd or n is even and k < n�42 , then for eah 0 � ` � k there is auniversal trator formula that omputes r`R from the trator urvature ofthe underlying standard trator bundle.(2) If n is even and n�42 < ` � k, then there is a universal trator formulathat omputes r`R from the trator urvature of the underlying standardtrator bundle and (rn�42 R)jQ.Proof. Sine our assumptions on Ri(h) imply that at least Ri(h) = O(r)and tangential omponents of Ri(h) vanish to seond order, we may anompute R via RBCEF jQ = 3(n�2)(n�4)DAX [ARBC℄EF jQ provided that n 6=4. Thus we get (1) for ` = 0. Iterated appliation of the lemma then leadsto a universal formula for r`R in terms of R provided that in no step weget n = 2`+ 4, and so (1) follows.For (2), we �rst note that by (1) we get a universal formula for riR interms of the trator urvature for i < n�42 . But using this, the result againfollows from iterated appliation of the lemma. �Remarks. Part (1) of this theorem ties in niely with the results on exis-tene and uniqueness of ambient metris in [8℄. It is shown in that paperthat in odd dimensions there exists an in�nite order power series solutionalong Q for an ambient metri h suh that Ri(h) vanishes to in�nite orderalong Q and this solution is unique up to the ation of an equivariant di�eo-morphism �xing Q. On the other hand, in the ase of even dimensions theFe�erman-Graham onstrution is obstruted at �nite order. More preisely,if n is even then there exist an ambient metri h suh that Ri(h) = O(r n�42 )and tangential omponents of Ri(h) vanish to order n�22 . Moreover, thissolution is unique up to the ation of an equivariant di�eomorphism �xingQ and addition of terms whih vanish to order n2 along Q. In fat it is ele-mentary to show that adding terms vanishing to order n2 along Q one mayeven obtain an ambient metri suh that Ri(h) = O(r n�22 ). The unique-ness stetement for suh metris is slightly more ompliated. There is anobstrution to the existene of an ambient metri h suh that, in additionto these onditions, the tangential omponents of Ri(h) vanish to order n2along Q.The uniqueness result on the ambient metri in partiular implies that forn 6= 4 the urvature of suh an ambient metri as well as those of its ovariantderivatives that are overed in part (1) of the theorem are intrinsi to theunderlying onformal struture. Sine the trator urvature is intrinsi tothe underlying onformal struture, part (1) of the theorem provides analternative proof for this fat, whih learly omes lose to an alternativeproof for uniqueness of Fe�erman{Graham metris. It seems to us, however,



TRACTORS AND CONFORMAL AMBIENT METRIC 23that the ideas developed in this paper should also have appliations to thequestion of existene of ambient metris and the nature of the obstrutionin the Fe�erman{Graham onstrution, so we will take up this whole irleof problems elsewhere. Below we will show how our results an be appliedto obtain expliit desriptions of ambient Weyl invariants.On the other hand, part (2) of the theorem goes signi�antly beyond theresults in [8℄, sine it analyses the ases in whih the obstrution in theFe�erman{Graham onstrution vanishes. It shows that in these ases theonly essential new ingredient is the ritial ovariant derivative rn�42 R ofthe ambient urvature, whih then determines all higher ovariant deriva-tives by universal trator formulae. It should also be remarked here thatlarge parts of this ritial ovariant derivative are again determined by theunderlying onformal struture, sine ovariant derivatives in tangential di-retions are determined by the trator onnetion.3.5. Appliations to the study of ambient Weyl invariants. One ofthe main appliations of the onformal ambient metri onstrution is thatit allows a systemati onstrution of onformal invariants. It is well knownthat by Weyl's lassial invariant theory any salar valued polynomial Rie-mannian invariant an be written as a linear ombination of omplete on-trations of tensor powers of iterated ovariant derivatives of the Riemannurvature tensor. Consider an arbitrary Riemannian invariant in odd dimen-sions or an invariant depending only on ovariant derivatives up to order lessthan n�42 in even dimensions n 6= 4. Applied to a Fe�erman{Grahammetri,one an onsider the restrition of the resulting funtion to Q. Sine partsof di�erent homogeneity of this funtion must be individually invariant, wemay without loss of generality assume that our funtion is homogeneous ofsome degree and hene may be interpreted as a density on M . Now thefat that we deal with a Riemannian invariant exatly eliminates the dif-feomorphism freedom in the ambient metri, while the freedom of addingterms that vanish along Q to the appropriate order has already been takenare of. Consequently, the resulting density on M is onformally invariant.Invariants obtained in that way are alled ambient Weyl{invariants.Theorem 3.4 not only provides an alternative proof for the fat the theonstrution outlined above leads to onformal invariants, but also providesa way to ompute expliit formulae for ambient Weyl invariants, whih oth-erwise is a diÆult problem. On the one hand, one diretly obtains an iter-ative way to ompute trator expressions for ambient Weyl invariants. Formany purposes this is already suÆient, sine one obtains genuine formulaefor the given invariant and many qualitative features of the invariant anbe appreiated in this ompat form. On the other hand, onverting tratorexpressions into formulae in terms of a metri representing the onformallass, its Levi-Civita onnetion and urvature is a ompletely mehanialproedure whih even may be left to a omputer. Sine we do not want tointrodue too muh trator alulus here, we only roughly analyse a simplease below. More involved appliations in a similar diretion an be foundin [12℄.



24 ANDREAS �CAP AND A. ROD GOVERFor the �rst step in this analysis, we assume n 6= 4, and we are dealingwith an ambient metri h suh that Ri(h) = O(r) and tangential ompo-nents of Ri(h) vanish to seond order. Then we have observed above that3DAX [ARBC℄EF jQ = (n� 2)(n� 4)RBCEF jQ. Further, X [ARBC℄EF jQ de-pends only on the tangential omponents (in the indies B and C) of theambient urvature whih are given by the trator onnetion. Otherwise put,extending the trator urvature �bEF in any way to a trator �eld 
BCEFand forming X [A
BC℄EF , one will obtain the same result. In the generalsetting of trator alulus, the expression WBCEF := 3n�2DAX[A
BC℄EFhas been known for some time (see [10, 11℄) as a natural onformally invari-ant trator extension of the trator urvature (whih itself is an extensionof the Weyl urvature or the Cotton{York tensor in dimension 3). Thus wesee that WBCEF is the trator �eld equivalent to (n� 4)RBCEF jQ.To desribe a formula for WBCEF we have to introdue some basi ele-ments of trator alulus, see [1, 10, 11, 12℄. We use lower ase letter fortensor indies and upper ase letters for standard trator indies and alsoambient indies. We use the trator metri and its inverse to raise and lowertrator indies. Choosing a metri g from the onformal lass, we may raiseand lower tensor indies using g (but taking into aount that this hangesthe weight), and the standard trator bundle EA splits as E [1℄�Ea[1℄�E [�1℄.This an be onveniently enoded by adding to the natural setion XA 2EA[1℄ (whih represents the natural inlusion E [�1℄! EA) trator setionsY A 2 EA[�1℄ and ZaA 2 EaA[�1℄ whih represent the other two inlusionsthat depend on the hoie of the metri g. Basi properties of the tratormetri imply that Y AXA = 1, XAXA = Y AYA = XAZaA = Y AZaA = 0 andZaAZbA = gab. Further, we denote by Wabd the Weyl{urvature, by S thesalar urvature of g, by Pab = 1n�2(Riab� 12(n�1)Sgab) the rho{tensor of gand by Beb := rqrpWpeqb + (n � 3)PqpWpeqb the Bah tensor. Using theformulae in [10, 11℄ one veri�es that WABCE is given by(n� 4)ZAaZBbZCZEeWabe � 4(n� 4)ZAaZBbX[CZE℄er[aPb℄e�4(n� 4)X[AZB℄bZCZEer[Pe℄b + 4n � 3X[AZB℄bX[CZE℄eBebThis is a general trator formula not related to the ambient metri inany way, so in partiular, it also holds in dimension n = 4. In that ase,only the last term survives, whih shows that Bab is a onformal invariantin dimension 4. However, our interest here is in the ase n 6= 4, and themain fat that we need from the above formula is that sine XAZaA = 0 andZaAZbA = gab one immediately onludes that any omplete ontration ofWABCD
� � �
WIJKL gives the omplete ontration of Wabd
� � �
Wijklwith the same pairing of indies. Applying this to the ase of ambientWeyl invariants, we obtain an alternative proof of [8, Proposition 3.2℄ thatany omplete ontration of a tensor power of the ambient urvature givesthe \same" omplete ontration of the orresponding tensor power of theWeyl{urvature. Of ourse, these are exatly the invariants one knew aboutin advane, so to get more interesting invariants one has to onsider ovariantderivatives of the ambient urvature.



TRACTORS AND CONFORMAL AMBIENT METRIC 25The simplest ambient Weyl invariant involving ovariant derivatives iskrRk2 := (rARBCEF )rARBCEF . In order that this is well de�ned, wehave to assume that n 6= 4; 6 and that we are dealing with an ambient metrih suh that Ri(h) = O(r2) and tangential omponents of Ri(h) vanish tothird order along Q. To apply our method, we �rst note following the proofof Lemma 3.4 that R has onformal weight �2, and thusDARBCEF = (n� 6)rARBCEF �XA�RBCEF :From part (2) of Proposition 3.1 we next onlude that our assumptions onRi(h) imply that the restrition to Q of �RBCEF oinides with a partialontration of R 
 R. Thus we see that up to a nonzero fator and theaddition of omplete ontrations of tensor powers of the Weyl urvature,the ambient Weyl invariant krRk2 oinides with (DAWBCEF )DAWBCEF .Using the standard formulae for the trator D{operator and the formulaefor WBCEF above, this an be expanded into formula in terms a hosenrepresentative of the onformal lass. While this is straightforward, it isquite tedious sine there are many omponents in DAWBCEF and most ofthem do not ontribute to the �nal invariant.A more eÆient way to proeed is to rewrite the original invariant as fol-lows: Applying the di�erential Bianhi identity to the �rst term, we see that(rARBCEF )rARBCEF may be written as 2(rBRACEF )rARBCEF . Onthe other hand, onsiderrArBRACEF . Swithing the ovariant derivativesan be ompensated by adding partial ontrations ofR
R, and using part(1) of Proposition 3.1 and the proof of Lemma 3.4, we see that rARACEFan be written as 4rXCK[EXF ℄+O(r2) for an appropriate trator �eld KE .Hitting this with rB, we obtain 4XBXCK[EXF ℄ + O(r), whih vanishesupon ontration into RBCEF . The upshot of this is that, along Q andup to adding omplete ontrations of tensor powers of R, we may rewritekrRk2 as 2rArBRACDERBCDE .Following the same idea as for the single ovariant derivative above, onenext shows thatDADBRACDERBCDE = (n� 6)(n� 8)rArBRACDERBCDE ;up to omplete ontrations of tensor powers of R. Thus the onformalinvariant given by jjrRjj2 is, up to the addition of omplete ontrations oftensor powers of the Weyl urvature, exatly2(n� 4)2(n� 6)(n� 8)DADBWACDEWBCDE :in dimensions other than 4; 6. Note that we know in advane that the expres-sion DADBWACDEWBCDE will yield (n � 8) times a onformal invariantbeause jjrRjj2 is well de�ned in dimension 8. This is then easily expandedout using formulae for the trator onnetion as in [4℄ or [12℄ to yield (oneagain modulo omplete ontrations of tensor powers of W ),2n � 6�kWk2 + n � 10(n� 6)[krWk2 + 8h(W;U)� 4(n� 6)kCk2℄;where � is the trator Laplaian, Cabd = 2r[aPb℄d is the Cotton{York tensorand Uabd := raCdb + PaeWebd. This shows expliitly how the invariant
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