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Maximal entropy random networkswith given degree distributionMi
hel Bauer1 and Denis Bernard2Servi
e de Physique Th�eorique,CEA/DSM/SPhT, Unit�e de re
her
he asso
i�ee au CNRSCEA-Sa
lay, 91191 Gif-sur-Yvette 
edex, Fran
eAbstra
tUsing a maximum entropy prin
iple to assign a statisti
al weightto any graph, we introdu
e a model of random graphs with arbitrarydegree distribution in the framework of standard statisti
al me
han-i
s. We 
ompute the free energy and the distribution of 
onne
ted
omponents. We determine the size of the per
olation 
luster abovethe per
olation threshold. The 
onditional degree distribution on theper
olation 
luster is also given. We brie
y present the analogousdis
ussion for oriented graphs, giving for example the per
olation 
ri-terion.1 Introdu
tionThe statisti
al properties of networks, either biologi
al, so
ial or te
hno-logi
al, have re
eived a lot of attention re
ently both experimentally andtheoreti
ally, See eg. refs.[2, 6℄. One of the most studied features of thosenetworks is the degree distribution, whi
h des
ribes the probability for theverti
es to have 0; 1; � � � neighbors. One striking observation is that, in manyexamples, the degree distribution is large so that the probability to have nneighbors de
reases slowly with n. Several models (stati
 or evolving) predi
t1Email: bauer�spht.sa
lay.
ea.fr2Member of the CNRS; Email : dbernard�spht.sa
lay.
ea.fr1



su
h a behavior. More generally, they 
ontain enough tunable parameters toreprodu
e almost any degree distribution.However, the stati
 models are in general not 
onveniently de�ned withinthe language of statisti
al me
hani
s (see ref.[2℄, whi
h motivated our interestin this question). This is for instan
e the 
ase with the most intuitive proposal[5℄: generate independently half edges for ea
h vertex, with the appropriatedistribution, and then join the half edges at random. This makes it rathereasy to generate random graphs, but does not assign in a simple way aprobability to any given simple graph : it is formally 
ompli
ated to eliminatemultiple edges. Another proposal made in [4℄ has some formal te
hni
alsimilarity with our work but really leads to a di�erent model.It is moreover obvious, if not always apparent in the literature, that theknowledge of the degree distribution leaves many statisti
al properties of thegraphs undetermined, even if one insists that all verti
es are equivalent. Thisarbitrariness is a problem, be
ause most of the time the models used to �t thebehavior of say a 
ommuni
ation network are just ingenious 
onstru
tions :they are not derived from 
lear basi
 prin
iples. Su
h prin
iples may be outof our rea
h at the moment, and so is a 
lassi�
ation of all random graphmodels with 
ertain apriori properties. Consequently, we propose to usemaximum entropy as a 
riterion to build a model that does not make any apriori bias, in
orporating what we know { in this 
ase the degree distribution{ but nothing else. Comparison with real networks is a way to get eviden
efor other striking features that might be overlooked today.The maximal entropy prin
iple is applied here to deal with 
onstraintson the degree distribution but it 
an 
learly be engineered to deal with other
onstraints.This paper is organized as follows :{ Se
tion 2 starts with the main de�nitions, goes on with a qui
k re-minder on the Molloy{Reed model [1℄ and 
ontinues with the de�nition ofthe maximum entropy model. We use it to reformulate the standard Erd�os-Renyi random graph model. Then we derive a few general identities valid forthe maximal entropy model, and study the distribution of 
onne
ted 
ompo-nents. Our model is a 
lose 
ousin of the Molloy{Reed model and we makethe 
onnexion pre
ise below. Finally we dis
uss the possibility of numeri
alsimulations.{ Se
tion 3 studies the thermodynami
al limit when the number N ofsites is large, but the number of edges s
ales like N , hen
e the name �nite
onne
tivity limit for this regime. We derive the equations that determine2



all physi
al quantities in this regime : free energy, distribution of the numberof edges in
ident at a vertex, ... We then study the 
onne
ted 
omponents,derive the 
riterion for the existen
e of a per
olation 
luster and the formulafor its size. Finally, we study the distribution of the number of edges in
identat a vertex in the per
olation 
luster.{ Se
tion 4 analyzes the generalization to oriented graphs, ending withthe 
riterion for the existen
e of a per
olation 
luster and the formula for itssize.2 The model2.1 General de�nitionsIn the following, we shall 
on
entrate on labeled simple unoriented graphs,or equivalently on symmetri
 0� 1 matri
es, with vanishing main diagonal :the matrix element (i; j) is 1 if verti
es i and j are 
onne
ted by an edge and0 else. So we use the same letter G to denote the graph and its adja
en
ymatrix with matrix elements Gi;j . In the sequel, unless otherwise stated, theterm graph refers to labeled simple unoriented graph. The number of edgesof a graph G is denoted by E(G) and the number of verti
es by V (G).The row-sum Ĝi = Pj Gi;j is the number of neighbors of site i. Thedegree distribution of G is the sequen
e ~Gk = #fi su
h that Ĝi = kg, sothat ~G0 is the number of isolated points of G, ~G1 is the number of verti
esof G with exa
tly one neighbor, and so on.Not every integer sequen
e 
an appear as the degree distribution of agraph on N verti
es : ~Gk = 0 for k � N , Pk ~Gk = N and Pk k ~Gk is evenbe
ause this number 
ounts twi
e the number of edges of G, i.e. Pi;j Gi;j.There are other less obvious 
onstraints. We 
all the sequen
es that appearas degree distribution of a graph on N verti
esN -admissible. There is a rela-tively simple family of inequalities that 
hara
terizesN -admissible sequen
es,but for instan
e the (asymptoti
) 
ounting of N -admissible sequen
es is stillunknown.2.2 The Molloy{Reed modelBefore we introdu
e our model, let us des
ribe the method of Molloy andReed [1℄ whi
h 
an be interpreted as a kind of mi
ro
anoni
al version of our3



model. The idea is quite elegant : for any integer N �x an N -admissiblesequen
e fmN;kgk�0 and take as probability spa
e the set GfmN;kg of graphswith degree distribution fmN;kgk�0, endowed with the uniform (
ounting)probability. By 
onstru
tion, in GfmN;kg, the probability that vertex i 2 [1; N ℄has k neighbors is exa
tly mN;k=N .Molloy and Reed show that if the sequen
e fmN;k=Ng 
onverges (uni-formly) to a probability distribution f�kg,(Pk �k = 1), under one te
hni
alassumption, the spa
e GfmN;kg 
onverges in an appropriate sense to a randomgraph ensemble Gf�kg on whi
h standard questions 
an be formulated andanswered :{ the probability in Gf�kg that a given vertex has k neighbors is { notsurprisingly { �k,{ Molloy and Reed give a 
riterion for the presen
e or absen
e of a giant
omponent.Heuristi
 arguments [5℄ show that the `intuitive' model (whi
h does not ingeneral lead to simple graphs) namely \generate independently half edges forea
h vertex, with distribution f�kg and then join the half edges at random",has the same thermodynami
al { large N { properties as the Molloy{Reedmodel.2.3 The maximum entropy modelTo start with, we �x an integer N � 1, and a probability distribution f�N;kg(PN�1k=1 �N;k = 1). We want to look for a probability distribution fpGg on theset of graphs on N verti
es su
h that for any vertex i, PG; Ĝi=k pG = �N;kwhere, here and below, the notation means that the sum is restri
ted tographs su
h that Ĝi, the number of neighbors of vertex i in G, equals k.With words, we look for a probability distribution fpGg on the set of graphson N verti
es su
h that the probability that vertex i has k neighbors is�N;k. As explained in the introdu
tion, this requirement is far from �xingthe probability distribution.We also want this probability distribution to have no other bias. So welook for a distribution fpGg with maximal entropy 1.1Noti
e that, if no 
onstraint is imposed, the uniform 
ounting measure has maximalentropy. This measure 
an be des
ribed as follows: the probability of an edge betweenverti
es i and j is 1=2 independently of the presen
e or absen
e of any other edge.4



Hen
e we want to maximizePG pG log pG under the 
onstraintsXG; Ĝi=k pG = �N;kwhi
h we implement as Lagrange multipliers. The extremum 
onditions forXG pG(log pG + 1) � �(XG pG � 1)�Xi;k �i;k( XG; Ĝi=k pG � �N;k)are pG = e�+Pi �i;Ĝi , XG pG = 1 and XG; Ĝi=k pG = �N;k:It is not obvious to us that these equations always have a solution andthat this solution is unique and symmetri
 i.e. �i;k does not depend on i 2.But as usual in statisti
al me
hani
s, we 
an reverse the logi
 : we start froman arbitrary sequen
e of positive numbers tk = e�k and de�ne pG:pG � e�+Pi �Ĝi = e� Yk t ~Gkk (1)with suitably adjusted � so as to ensure PG pG = 1.We de�ne the weight wG of a graph aswG �Yk t ~Gkk =Yi tĜiand the partition fun
tion as the sum of weightsZN �XG wG =XG Yk t ~Gkk :Hen
e � = � logZN and pG = wG=ZN .By 
onstru
tion the probability distribution �N;k that vertex i has kneighbors is i-independent. Re
all that ~Gk is the number of verti
es withk neighbors in G so thatN �N;k =Xi XG; Ĝi=k pG =XG ~GkpG = 1ZN XG ~GkwG:But ~GkwG = �wG=��k so�N;k = 1N � logZN��k = 1N tk � logZN�tk :2In the large N limit, some spontaneous symmetry breaking might o

ur. We shall notpursue this questions here. 5



2.4 The Erd�os{Renyi model revisitedAs a �rst appli
ation, but also as a preparation to se
tion 3, let us rein-terpret the standard Erd�os-Renyi random graph model [7℄ in our frame-work. Re
all that in the Erd�os-Renyi model, the edges are des
ribed byindependent binomial variables, ea
h edge being drawn with probability p.Re
all that E(G) denotes the number of edges of a graph G. The probabil-ity of the graph G is simply pE(G)(1 � p)N(N�1)=2�E(G) whi
h we rewrite as(1 � p)N(N�1)=2 � p1�p�E(G). Now 2E(G) = Pk k ~Gk. So letting tk � � p1�p�k=2shows that the Erd�os-Renyi model is the maximal entropy model su
h thatthe probability that a vertex has k neighbors is �N�1k �pk(1 � p)N�1�k. Theaverage number of neighbors is (N �1)p. In the large N limit, an interestingregime o

urs when this number is kept �xed, so that p � �=N and � is the
ontrol parameter. The important observation is that if p s
ales like N�1,the parameters tk s
ale like N�k=2. In se
tion 3, we shall see that indeedgeneri
ally these s
aling relations ensure that logZN s
ales like N , as any\good" free energy should.2.5 Useful relationsWe establish a few formul� whi
h will be 
entral in the following dis
ussion.The sequen
e fZNgN�1 satis�es a �rst order fun
tional re
ursion rela-tion that will prove useful in the subsequent analysis. We de�ne the formalLaurent series H(!; t0; � � � ; tk; � � �) = Pk tk!�k.Suppose N � 2. Then ZN is the 
onstant (i.e. of degree 0) term in the!-expansion of the produ
tH(!; t0; � � � ; tk; � � �)ZN�1(t0 + !t1; � � � ; tj + !tj+1; � � �):The !-expansion of the produ
t is well-de�ned be
ause both fa
tors involveat most a �nite number of terms of positive degree.The proof of this relation goes as follows. If G0 is a graph on N � 1verti
es 1; � � � ; N � 1, it 
an be 
ompleted to a graph G on N verti
es in thefollowing ways : add vertex N and k = 0; � � � ; N � 1 edges emerging fromN . Atta
h these edges to any k distin
t verti
es of G0. There is a simplerelation between the weights of G and G0 be
ause one vertex of degree k hasbeen added (this is taken 
are of by the term tk in H), and k verti
es in1; � � � ; N � 1 have seen their degree in
reased by 1 so, in wG0 = QN�11 tĜ0i , k6



of the fa
tors tj are repla
ed by tj+1 (this is taken 
are of by repla
ing all tj'sin ZN�1 by tj+!tj+1 and expanding to order k in !). Note that the relationis also true for N = 1 if we make the natural 
hoi
e Z0 = 1.We rewrite this result as a (formal) 
ontour integral 3 :ZN (t0; � � � ; tj; � � �) = I d!! Xk tk!�kZN�1(t0 + !t1; � � � ; tj + !tj+1; � � �):The same argument, based on enumerating the ways the point N 
an belinked to the remaining part of the graph under the 
ondition that ĜN = k,shows thatZN�N;k = tk I d!! !�kZN�1(t0 + !t1; � � � ; tj + !tj+1; � � �);to be 
ompared with the formula of Se
tion 2.3. These two formul� for �N;kare not so trivially equivalent be
ause they involve di�erent rearrangementsof the sum of weights.2.6 Component distributionWe study the distribution of sizes of 
onne
ted 
omponents.De�ne Wn by Wn = XG; V (G)=n
 wG;where P
 denotes the sum over 
onne
ted graphs. Observe that if G splitsas a disjoint union of two subgraphs G1 and G2 (G 
ontains no edge joininga vertex of G1 to a vertex of G2), the weight of G fa
torizes : wG = wG1wG2.So the total weight of graphs G of size N that are the disjoint union of k1
onne
ted 
omponents of size 1 (i.e. isolated points), k2 
onne
ted 
ompo-nents of size 2,� � �,kn 
onne
ted 
omponents of size n,� � � (so Pn�1 nkn = N)is N !Qn kn!n!kn Yn W knn :The 
ombinatorial fa
tor just 
ounts the number of ways to split the Nverti
es of G in pa
kets of the right size. Summing over all possible kn's3The symbol H denotes the 
ontour integral 12i� R along small 
ontour surrounding theorigin. 7



gives ba
k ZN : ZN = Xkn�0;Pn�1 nkn=N N !Qn kn!n!kn Yn W knn :This formula allows to view ZN not as a fun
tion of the tk's but as a fun
tionof the Wn's, and using this interpretation, we see that, denoting by Cm(G)the number of 
onne
ted 
omponents of size m in the graph G, the averagenumber of 
omponents of size m in the random graph model isXG pGCm(G) = Wm� logZN�Wm :So mWm� logZN�Wm is the average number of sites belonging to 
omponents ofsize m, and summing over m we should have PmmWm� logZN�Wm = N . This issimply the statement that ZN is a homogeneous fun
tion of degree N in theWn's if Wn is assigned degree n.This 
an be rephrased in 
ompa
t form. Introdu
e a (
omplex or formal)4variable z and de�ne Z � PN�0 zNN !ZN ; the z-generating fun
tion for theZN 's. Repla
ing Zn by its expression in terms of the Wn's, we get the (well-known) fa
t that Z = eW where W = Pn�1 znn!Wn: Conversely, one retrievesZN by ZN = N ! I dzz z�NePn�1 znn! Wn: (2)The average number of 
omponents of size n in the random graph is thusWn � logZN�Wn = N !n!(N � n)!Wn ZN�nZN :Similarly, the average number of times a given graph g of size n � Nappears as a 
onne
ted 
omponent in the random graph G of size N isN !n!(N � n)! wg ZN�nZN :4In this se
tion, some of the 
omputations we make require that the tk's satisfy someproperties so as to ensure that the series we write have a �nite domain of 
onvergen
e.For instan
e, we 
ould assume that only a �nite (though arbitrarily large) number of tk'sare non vanishing. Alternatively we 
ould work with formal power series.8



2.7 Dis
ussionA 
ru
ial observation is that the weight of a graph depends only on its degreedistribution, as in the Molloy{Reed model. But whereas in the Molloy{Reedmodel the weight of a graph is 0 unless it has the 
orre
t degree distribution,the degree distribution 
u
tuates in our model. So our model is a 
anoni
aldes
ription of a random graph model with given \number of edges distribu-tion at a vertex", and the Molloy{Reed model a mi
ro
anoni
al one.That the two models turn out to be equivalent in some large N limit ismaybe not surprising. However, note that 
ontrary to standard statisti
alme
hani
s (when only a few quantities, for instan
e energy and number ofparti
les, 
u
tuate in the 
anoni
al des
ription but are �xed in the mi
ro-
anoni
al one) the 
onstraint hypersurfa
e of the mi
ro
anoni
al model hasa 
odimension that gets larger and larger as N grows.Finally, let us observe that the maximum entropy model is well suitedfor standard thermodynami
al simulations, namely heatbath algorithms ormetroplolis algorithms. This is be
ause 
ontrary to the `naive' model or theMolloy{Reed model the phase spa
e has a simple stru
ture.3 Finite 
onne
tivity limit3.1 General analysisAs suggested at the end of se
tion 2.3 by the spe
ial 
ase of the Erd�os{Renyimodel, we shall show that a thermodynami
 limit o

urs in the large N limitif tk s
ales like N�k=2. Note that in this 
ase wG, the weight of G s
ales likeN�E(G), where as before E(G) stands for the number of edges of G.The starting point of the analysis will be the fun
tional equation estab-lished in se
tion 2.5 :ZN (t0; � � � ; tj; � � �) = I d!! Xk tk!�kZN�1(t0 + !t1; � � � ; tj + !tj+1; � � �):We set tk = �kN�k=2 and de�ne FN(�:) � 1N logZN (t:). Substituting !N�1=2for ! leads after a few manipulations toeNFN(�:) = I d!! Xk �k!�ke(N�1)FN�1((�:+ !N �:+1)(1�1=N)k=2):9



This equation still involves no approximation. Now we make the usualthermodynami
al hypothesis, namely that NFN(�:) � (N � 1)FN�1(�:) hasa limit, say F (�:) when N ! 1. This implies in parti
ular that FN(�:)
onverges to F (�:). The above equation has then a large N limit. To see it
learly, we rewrite it aseNFN(�:)�(N�1)FN�1(�:) = I d!! Xk �k!�ke(N�1)[FN�1((�:+ !N �:+1)(1�1=N)k=2)�FN�1(�:)℄:In the large N limit, this leads to the equation1 = �yXk �k �xkk! ; (3)where we have de�ned�y � e�F� 12Pk k�k �F��k ; �x �Xk �k+1 �F��k :On 
an take an analogous limit of other relations in 2.5 to obtain the moredetailed equations for the degree distribution,�k = �k �F��k = �y�k �xkk! : (4)Eq.(3) ensures that this distribution is 
orre
tly normalized, Pk �k = 1.The parameter �x posseses a simple interpretation. We start from therelation �F��k = �y�k �xkk! ; multiply it by �x�k+1 and sum over k to get�x2 = �yXk �k+1 �xk+1k! =Xk k�k; (5)so that �x2 is the �rst moment of the distribution �k for the number of edgesin
ident at a vertex.We 
an summarize quite 
ompa
tly our results as follows:Let us introdu
e the fun
tion V (x) � Pk �k xkk! , whi
h we 
all the potentialfor reasons whi
h will be 
lear in a moment. If all our previous formulae areto make sense, this fun
tion should have a positive radius of 
onvergen
e.Let us also de�ne F(y; x) � �1� log y � x22 + yV (x): (6)10



Then (�y; �x) is a 
riti
al point for F , thanks to eqs.(3,5), and F is the 
orre-sponding 
riti
al value.It is not true that these equations for (�y; �x) always have a single solution.It is not diÆ
ult to �nd examples with no solution at all. We 
an interpretthis by saying that in that 
ase there is no thermodynami
 limit in oursense. More troublesome is the 
ase when there are several solutions. Themost naive requirement would be that the physi
al solution is to take the
ouple (�y; �x) that leads to the absolute maximum Fmax for F be
ause thefa
tor eNFmax will be the dominant 
ontribution to Z. We shall meet su
h abehaviour in one of the examples of Se
tion 3.6, and make a few 
ommentsthere.For most of the paper, we shall simply assume that if there is more thanone extremum, we have pi
ked the 
orre
t one.3.2 Conne
ted 
omponentsIn se
tion 2.6, we gave a formula for ZN in terms of 
onne
ted 
omponents.This formula has also an interesting limiting form in the thermodynami
limit, but we shall wait until the next se
tion to derive it. For the timebeing, re
all that Wn is the sum of the weights of 
onne
ted graphs on nverti
es. We have shown that the average number of 
omponents of size n inthe random graph is N !n!(N�n)!Wn ZN�nZN :Now, we splitWn =Pl�0Wn;l as a sum of 
ontributions 
orresponding to
onne
ted graphs with l = 0; 1; � � � (independent) loops5 . If G is a 
onne
tedgraph with L (independent) loops, E edges and V verti
es, an old theoremof Euler says that L = E � V + 1 (in parti
ular trees, i.e. 
onne
ted graphswithout loops, haveE = V �1) soWn;l is simply the homogeneous 
omponentof degree 2(n+ l�1) in the t0ks. If we set tk = �kN�k=2 we see that Wn;l(t:) =N1�n�lWn;l(�:). We de�ne Tn � Wn;0(�:).When N ! 1 for �xed n and �k's we �nd that N !n!(N�n)!Wn � N Tnn! ,meaning that trees dominate. In the thermodynami
 limit, we �nd as beforethat ZN�nZN (t:) � e�n(F+ 12Pk k�k �F��k ) � �yn:So in the thermodynami
 limit, the average number of 
omponents of sizen in the random graph is N Tnn! �yn: The number of points in 
omponents of5Or 
losed 
ir
uits in the mathemati
al literature.11



size n in the random graph is Cn � NnTnn! �yn;and the total fra
tion of sites o

upied by �nite 
omponents isQ �Xn nTnn! �yn:If this number is 1, we 
an 
onsistently interpret the random graph modelas a random forest model in the thermodynami
al limit. However, if thisnumber is < 1, this means that a �nite fra
tion of points is not in �nite
omponents, and there is a per
olation 
luster in the system.3.3 Tree distributionWe would like to �nd a 
losed formula for the generating fun
tionT (y) �Xn nTnn! yn:The �rst observation 
omes from an analogy with a baby quantum �eldtheory. The asymptoti
 expansion of the integralI = 1(2��h)1=2 Z +1�1 e(�x2=2+yV (x))=�hin powers of the �k's has a useful reinterpretation. NamelyI �XG 1A(G)�hL(G)�C(G)Yk (y�k) ~Gk ;where the sum is over Feynman graphs6 with an arbitrary number of verti
es,A(G) is the order of the automorphism group of G (for a pre
ise de�nitionsee e.g. [3℄) and C(G) the number of 
onne
ted 
omponents of G. Again bya fa
torization argument for the weights the 
onne
ted 
ontributions expo-nentiate, and �h log I �XG 
 1A(G)�hL(G)Yk (y�k) ~Gk :6Warning : Feynman graphs are essentially general graphs i.e. not ne
essarily simple !12



In the 
lassi
al (small �h) limit, on the one hand graphs with L(G) = 0 domi-nate. Though Feynman graphs are not ne
essarily simple, loopless Feynmangraphs are just ordinary trees. On the other hand, I 
an be 
al
ulated inthe limit �h small by the saddle point approximation, leading to the identitybetween formal power series:T (y) � XlooplessG
 1A(G)Yk (y�k) ~Gk = S(~x) (7)with S(x) = �x2=2+yV (x) = �x2=2+yPk �kxk=k! and ~x is the formal powerseries of y and the �k's for whi
h S is extremal, ~x = yPk �k+1~xk=k! = yV 0(~x).Hen
e, the expansion of �~x2=2 + yV (~x) in a formal power series of ywith ~x = yV 0(~x) yields Pn ynTn=n!. >From T (y) = �~x2=2 + yV (~x) and thestationnarity 
ondition, we also infer that T 0(y) = V (~x).The expansion of T (y) is 
onvergent for small y if V (x) has a non van-ishing radius of 
onvergen
e. Note that if �1 = 0, the solution ~x = 0 has tobe 
hosen, be
ause it leads to the 
orre
t T (y) = �0y (trees on two or moreverti
es have leaves, so they 
ount 0 if �1 = 0).We now make the general assumption that �1 6= 0, and V (x) has a non-vanishing radius of 
onvergen
e. Let us study the inversion of the relationy = x=V 0(x). This 
an be obtained via the Lagrange formula. By Cau
hy'sresidue formula ~x(y) = I x (x=V 0(x))0x=V 0(x)� ~x=V 0(~x)dxwhere the x 
ontour has index 1 with respe
t to ~x. Repla
ing ~x=V 0(~x) by y,the y-expansion yields~x(y) = Xn�0 yn I x (x=V 0(x))0(x=V 0(x))n+1dx:One 
an use integration by parts to get:~x(y) = Xn�1 ynn!  dn�1dxn�1  dVdx !n!jx=0 :This is 
learly a series with non-negative 
oeÆ
ients. As a 
onsequen
e, itsradius of 
onvergen
e is given by the �rst singularity on the positive real axis,at the point ym = xm=V 0(xm) 
orresponding to the unique maximal value ofthe 
on
ave fun
tion x=V 0(x). This maximummight have two origins : either13



xm is a singular point of V , or the derivative of x=V 0(x), whi
h is positivefor small x, vanishes at xm. This is equivalent to V 0(xm)� xmV 00(xm) = 0The expli
it form of Tn 
an similarly be obtained via the Lagrange for-mula: T (y) = �0y +Xn�1 ynn!  dn�2dxn�2  dVdx !n!jx=0 ;a 
lassi
al formula whi
h 
an also be proved by purely 
ombinatorial argu-ments, giving an independent argument for the fa
t that the 
lassi
al limitof quantum �eld theory is des
ribed by trees.3.4 Per
olationThe analysis of the previous se
tion shows that the seriesXn n(x=V 0(x))n�1 Tn=n!
onverges for any positive x in the domain of 
onvergen
e of V , and that, inthis domain, its sum is equal to V (x) for x < xm.For x > xm the series is still 
onvergent. However there is a (unique)number x� < xm su
h that x�=V 0(x�) = x=V 0(x) and, sin
e the series onlyinvolves the ratio x=V 0(x), we have:Xn n(x=V 0(x))n�1 Tn=n! = V (x�) < V (x); for x > xm:The per
olation question 
an be rephrased as follows. Is the relevant so-lution �x of the system �yV 0(�x) = �x, �yV (�x) = 1 su
h that �x � xm or not?Indeed, we know that the fra
tion of points in �nite 
lusters is Pn nTnn! �yn.Substituting �y = �x=V 0(�x), this series sums to �yV (�x) = 1 if �x � xm but to�yV (x�(�x)) < 1 if �x > xm. The 
ondition �x<> xm is equivalent to the 
onditionV 0(�x) � �xV 00(�x)<> 0. This 
an be trans
ribed in term of the probability dis-tribution f�kg : �y�xV 0(�x) = Pk k�k � hki and �y�x2V 00(�x) = Pk k(k � 1)�k �hk(k � 1)i (we use bra
kets to denote averages of the distribution f�kg).Thus, the per
olation 
riterion is that there is a per
olation 
luster in thesystem if and only if h2k � k2i < 0. This is pre
isely the 
riterion given inref.[1℄. The relative size of the giant 
omponent Q1 = 1�Pn nTnn! �yn is then:Q1 = 1� �yV (�x�) = 1�Xk �k(�x�=�x)k (8)14



where �x� is the smallest x solution of �y = x=V 0(x). This is again in agreementwith the result of ref.[1℄. Close to the per
olation threshold, and for a generi
potential V , the size of the giant 
omponent in
reases linearly with hk2�2ki:Q1 ' h2ki hk2 � 2kihk(k � 1)(k � 2)iThis formula is not valid when the probability distribution �k has no thirdmoment. Then the grows of the giant 
omponent 
lose to the transition
an exhibit a di�erent 
riti
al behavior. We shall give an example of thissituation in the examples of se
tion 3.6.Let us analyse in more details what happens if �x = xm. We know thatthere is no per
olation 
luster. Now, if the radius of 
onvergen
e of V isstri
tly larger than xm, 
lose to ym = xm=V 0(xm), T 0(y) has a square rootbran
h point. This implies that the 
ontribution of points in 
omponentsof size n in the system de
reases algebrai
ally as Cn � Nn�3=2 for large n.In the physi
s language, this is interpreted as a 
riti
al point and 3=2 as a
riti
al exponent. Note that even in this 
ase, the distribution f�kg is stillde
reasing at least exponentially at large k.To observe other 
riti
al points, with di�erent 
riti
al exponents, theradius of 
onvergen
e of V has to be exa
tly �x = xm, whi
h requires some�ne tuning. In that 
ase, both Cn and �k de
rease algebrai
ally. Assumethat V has a leading singularity at �x = xm lo
ally of the form (�x � x)
,with 
 > 2 to ensure the existen
e of hki and hk2i. Generi
ally, y � ym islinear in x� xm so that yT 0(y) = V (x) has a leading singularity of the form(y � ym)
 and both �k and Ck=N = kTk�yk=k! de
rease as k�
�1. We shallgive an example below.If there is no per
olation 
luster, we 
an treat the large N limit fromanother point of view. We start from eq.(2) and in the 
ontour integralgiving ZN , we 
hange variables and repla
e z ! Nz, leading toZN = N !NN I dzz z�NeNPl�0N�lPn�1 znn! Wn;l(�:):For �xed n, the 
onne
ted graphs with loops (l � 1) are suppressed by inversepowers of N . However, in the sum over the size of 
onne
ted 
omponents,terms up to n = N make a 
ontribution to the 
ontour integral, and itmight happen that for large n and N related by some 
ondition 
onne
ted
omponents of size n of with loops make a �nite 
ontributions to 1N logZN .15



However, if there is no per
olation 
luster, we may safely negle
t l � 1 andget an a

urate approximation to the leading exponential behavior of ZN inthe large N limit.Under appropriate 
onditions, the 
ontour integral for ZN 
an be de-formed to pass through a dominant saddle point. Then the free energyis given by the saddle point approximation. We see that ZN � eNF (�:)with F (�:) = �1 � log �z + T (�z), �z being the the saddle point maximizing�1 � log z + T (z). This equation is what one gets from eq.(6) when �y = �zand �x is seen as a fun
tion of �y = �x=V 0(�x). This gives yet another proof ofthe dominan
e of trees and the Lagrange inversion formula.3.5 Conditional degree distributionsWe now present formulas for the degree distributions, denoted �(n)k , for ver-ti
es within 
lusters of size n. We are parti
ularly interested in the degreedistribution �(1)k in the giant 
omponent when it exists.From the last formula of Se
tion 2.6, the average number of verti
es ofdegree k belonging to a 
omponent of size n is:Cn(k) = N !n!(N � n)! (tk �Wn�tk ) ZN�nZNIn the thermodynami
 limit, tk = N�k=2�k, N !1, this be
omesCn(k)N = �ynn! (�k �Tn��k ):By de�nition, the degree distribution within 
omponents of size n is Cn(k)divided by the average number of points in 
omponents of size n so that �(n)k =Cn(k)=Cn, with Cn=N = nTn�yn=n! in the thermodynami
 limit. Hen
e:�(n)k = 1n �k � log Tn��k :Noti
e that these distributions are normalized,Pk �(n)k = 1, sin
e the Tn's arehomogeneous polynomials in the �i of degree n if ea
h �i is assigned degreeone.Assume now that the per
olation 
riterion is satis�ed so that a giant
omponent exists. The number of verti
es of degree k in the giant 
omponent16



are: C1(k) = N�k �Pn Cn(k). In the thermodynami
 limit,C1(k)=N = �k �Xn (�k��kTn) �ynn! = �k � (�k��kT )(�y)But T (y) = �~x=2 + yV (~x) with the extremum 
ondition ~x = yV 0(~x) so that(��kT )(y) = y(~x)k=k!. Using �k = �y�k �xkk! , we get, with �x� de�ned as in Se
tion3.4: C1(k)N = �k�1 � � �x��x �k�or equivalently, �(1)k = �kQ1 �1� � �x��x �k� (9)sin
e �(1)k is the ratio between C1(k) and the number of points in the giant
luster, whi
h is NQ1. As it should, �(1)k is 
orre
tly normalized: Pk �(1)k =1, and vanishes at k = 0 (there is no isolated vertex in the giant 
omponent).There is a 
rossover value k
 = log(�x=�x�)�1 above whi
h �(1)k is exponentially
lose to �k=Q1. Close to the transition the ratio �(1)k =�k goes to k=hki.The formula for �(1)k has a simple probabilisti
 interpretation : as it is the
onditional probability that a vertex has k neighbors given that it is in thegiant 
omponent, it 
an be written as the quotient of �k;1, the probabilityto have k neighbors and be in the per
olation 
luster, by Q1. We read fromeq.(9) that �k;1 = �k � �k� �x��x �k. Hen
e �k� �x��x �k is the probability for avertex to have k neighbors and to be in a �nite 
omponent. This suggeststhat when a new point is added to the graph, the probability that it 
onne
tsto k other verti
es none of them in the giant 
omponent is �k� �x��x �k: for ea
hnew edge, the penalty for avoiding the giant 
omponent is �x��x3.6 Re
onstru
tion, with examplesThe maximal entropy graph distribution 
an be re
onstru
ted form the dataof the degree distribution �k, Pk �k = 1. We set H(s) =Pk �ksk.Given �k, �x is de�ned as the positive square root of hki = Pk k�k, and�y�k as �k k!=�xk. This yields �yV (x) = Pk �k(x=�x)k = H(x=�x). The 
oeÆ
ient�y appears then as a normalization fa
tor whi
h may be 
hoosen at will, eg.we 
ould set �y = 1. 17



The tree distribution T (y) = Pn Tnyn=n! is then re
onstru
ted, as a for-mal series, from T 0(y) = V (~x) with ~x = yV 0(~x). It is 
lear that Tn�yn isindependent of the 
hoosen normalization for �y.The fra
tion of site o

upied by the �nite size 
omponents is Q = �yT 0(�y).By 
onstru
tion, �x is solution to �x=V 0(�x) = �y. The giant 
omponent existswhen there are two solutions to the above equation in the interval [0; �x℄.We denote by �x� the smallest of them. The fra
tion of site o

upied bythe giant 
omponent is Q1 = 1 � �yV (�x�). Equivalently, one 
an look fora solution 0 < s� < 1 to the equation H 0(s) = sH 0(1), and if there is one,Q1 = 1 �H(s�).Let us illustrate this re
onstru
tion on a few simple examples.1. Poissonian degree distribution: �k = e�� �k=k!. This is the Erd�os{Renyi model. We have �x = �1=2, and V (x) = expx�x, 
hoosing �y =e��. The tree distribution is T 0(y) = exp ~x with ~xe�~x = �y. Thegiant 
omponent exists for � > 1 when the equation ~xe�~x = �e��admits two solutions �� and � with �� < 1 < �. Its relative size isQ1 = 1 � e��T 0(e��) = 1� ��=�.2. Geometri
 degree distribution: �k = (1 � p)pk . Then �x2 = p=(1 � p)and �yV (x) = 1=(1 + �x2 � x�x). The extremum relation x = yV 0(x) is a
ubi
 equation: �yx(1 + �x2 � x�x)2 = y�x. The per
olation transition isat �x2 = 1=2 (p = 1=3) and the relative size of the giant 
omponent isQ1 = 1 � (�x�=�x)1=2 with �x�x� = 12(�x2 + 2 � �xp4 + �x2).This example 
onfronts us with the ambiguity problem alluded to along time ago.Changing p into 1�p leads to repla
e �x by 1=�x. This 
hanges �yV (x) =1=(1 + �x2 � x�x) into itself up to an irrelevant multipli
ative fa
tor.To state things in a slightly di�erent way, the extremum 
onditionsyV 0(x) = x and yV (x) = 1 have two solutions, and one leads to thegeometri
 distribution with parameter p and the other one to the geo-metri
 distribution with parameter 1 � p. Of 
ourse, the real result ofthe 
omputation of ZN will make a de�nite 
hoi
e. The 
riterion of themaximum for F leads to 
hoose inf(p; 1�p), and this is also 
onsistentwith 
ontinuity starting from p = 0, a random graph made of isolatedpoints.However, the formulas obtained before for, say, the size of the giant18




omponent, 
oin
ide with the ones from ref.[1℄ even for p > 1=2. Thissituation requires 
lari�
ation. Maybe this is the point when the 
anon-i
al and the mi
ro
anoni
al approa
hes �nally diverge and stop beingequivalent.3. An example of a s
ale free distribution: H(s) = P�ksk � �0 + �1s +�2s2=2 + � (1 � �s + �(� � 1)s2=2 � (1 � s)�), where 2 < � < 3 and�0; �1; �2 and � are nonnegative parameters subje
t to the 
ondition�0 + �1s + �2s2=2 + � (� � 1)(� � 2)=2 = 1 to ensure that the �k's are
orre
tly normalized. The �k's de
rease like �k � ���(��)k���1.Then �x2 = H 0(s = 1) = �1 + �2 + ��(� � 2) from whi
h the potential�yV (x) is re
overed as usual.There is a per
olation 
luster if and only if the equationH 0(s) = sH 0(1)has a solution s� < 1. So, we look for the solutions of (1�s)(����1) =��(1� s)��1. If hk2� 2ki = ��� �1 is negative, there is no per
olation
luster, but if it is positive, 1 � s� = (1 � �1�� )1=(��2). The size of thegiant 
omponent is 1 �H(s�) � (1� s�)H 0(1), andQ1 � hk2 � 2ki1=(��2)
lose to the threshold. This is an example when the growth of the giant
omponent 
lose to the threshold is nonlinear as a fun
tion of hk2�2ki.The number of points in 
omponents of size k is re
onstru
ted fromT 0(y) = V (x) with x = yV 0(x). Below the threshold, this leads to asingularity T 0sing � (�y�y)�, whi
h implies that Cn � n���1. Above thethreshold, the radius of 
onvergen
e r of T is larger than �y, leading toCn's that de
rease exponentially as Cn � n�3=2(�y=r)n.4 The 
ase of oriented graphsIt is not diÆ
ult to modify the previous arguments to deal with maximumentropy oriented graphs with given \in-out" degree distributions. We givethe per
olation 
riterion, omitting all details.The �rst result is that for su
h models, ea
h vertex with k outgoing andl in
oming verti
es 
ontributes a �xed multipli
ative fa
tor, say tk;l, to the19



weight of a graph. The generalization of the re
ursion formula for ZN readsZN (ti;j) = I d!+!+ d!�!� Xk;l tk;l!�k+ !�l� ZN�1(ti;j + !+ti;j+1 + !�ti+1;j):The large N �nite 
onne
tivity limit is obtained by letting N ! 1 whilekeeping �k;l = tk;lN (k+l)=2 �xed. De�ningV (x+; x�) �Xk;l �k;lxk+k! xl�l! ;a straightforward adaptation of the argument in se
tion 3.1 leads to the fa
tthat the free energy F is the value ofF(y; x) � �1� log y � x+x� + yV (x+; x�):at the point (�y; �x+; �x�) where it is maximum :�x+ = �y(�x�V )(�x+; �x�); �x� = �y(�x+V )(�x+; �x�); 1 = �yV (�x+�x�): (10)The analysis of the �rst two equations is a bit more involved than theanalysis of the single impli
it equation for the oriented 
ase. We 
an viewthe pair of equations x+ = y�x�V and x� = y�x+V in the following way. Itde�nes a fun
tion y over the 
urve C in the positive quadrant of the (x+; x�)plane given by x��x�V = x+�x+V . This 
urve is smooth as long as V is well-de�ned. For instan
e, one 
an take x � x+�x+V = x��x�V as an analyti
parameter on it. Then y is a smooth 
onvex fun
tion of x, and all propertiesof the non-oriented 
ase are true for y(x) : y is a good analyti
 parameteron C for small y, but there is a singularity if the 
onvex fun
tion y(x) has amaximum. To be more expli
it, taking di�erentials we see that dx=xdx=x ! =  1 + x+�2x+V=�x+V x��x+�x�V=�x+Vx+�x��x+V=�x�V 1 + x��2x�V=�x�V ! dx+=x+dx�=x� ! ;and dy=ydy=y ! =  1 � x+�x��x+V=�x�V �x��2x�V=�x�V�x+�2x+V=�x+V 1 � x��x+�x�V=�x+V ! dx+=x+dx�=x� ! :A simple 
omputation shows that the determinant of the 2 by 2 matrix inthe �rst relation is always stri
tly positive, but that the determinant of the 220



by 2 matrix in the se
ond relation is positive for small y but 
an 
hange sign.This happens if y0(x) vanishes. So the dis
ussion of the non-oriented 
ase
arries over word for word. It is 
onsistent to write �y = y(�x); �x� = x�(�x)and �x�(�x) for the smallest x su
h that y(�x) = y(x). We set �x�� � x�(�x�).There is a per
olation 
luster if and only if the se
ond determinant is < 0 at(�y; �x+; �x�). This is equivalent to(�x�V � x+�x��x+V )(�x+V � x��x+�x�V )� x+x��2x�V �2x+Vbeing < 0 at that point. Then the fra
tion of sites in the per
olation 
lusteris Q1 = 1 � �yV (�x�+; �x��):To get the per
olation 
riterion, we just have to rephrase the vanishing ofthe determinant in terms of the probability distribution �k+;k� that a vertexof the random graph has k+ outgoing and k� in
oming verti
es. The expli
itformula is �k+;k� = �y�k+;k� �xk++k+! �xk��k�! : (11)By 
onstru
tion Pk;l k�k;l = Pk;l l�k;l � hki sin
e any graph has the samenumber of outgoing and in
oming edges. The parameters �x+ and �x� are
onstrained by the relation �x+�x� = hkiThe per
olation 
riterion reads:(hki � hk+k�i)2 � hk2+ � k+ihk2� � k�i < 0: (12)Given the distribution �k;l, the potential V 
an be re
onstru
ted viaeq.(11). As in the oriented 
ase, the parameter �y is an arbitrary normal-ization fa
tor. The produ
t of the parameters �x� is determined by �x+�x� =hki. The ratio �x+=�x� 
an be 
hoosen at will sin
e there is a natural in-varian
e in eq.(10). Namely if �x� solves the extremum 
ondition for thepotential V (x+; x�), so does x̂� = ��1�x� for the potential W (x+; x�) =V (�x+; ��1x�) and leaves �k;l invariant. Again this �nds its origin in thefa
t that any graph has the same number of outgoing and in
oming edges.A
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