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Maximal entropy random networkswith given degree distributionMihel Bauer1 and Denis Bernard2Servie de Physique Th�eorique,CEA/DSM/SPhT, Unit�e de reherhe assoi�ee au CNRSCEA-Salay, 91191 Gif-sur-Yvette edex, FraneAbstratUsing a maximum entropy priniple to assign a statistial weightto any graph, we introdue a model of random graphs with arbitrarydegree distribution in the framework of standard statistial mehan-is. We ompute the free energy and the distribution of onnetedomponents. We determine the size of the perolation luster abovethe perolation threshold. The onditional degree distribution on theperolation luster is also given. We briey present the analogousdisussion for oriented graphs, giving for example the perolation ri-terion.1 IntrodutionThe statistial properties of networks, either biologial, soial or tehno-logial, have reeived a lot of attention reently both experimentally andtheoretially, See eg. refs.[2, 6℄. One of the most studied features of thosenetworks is the degree distribution, whih desribes the probability for theverties to have 0; 1; � � � neighbors. One striking observation is that, in manyexamples, the degree distribution is large so that the probability to have nneighbors dereases slowly with n. Several models (stati or evolving) predit1Email: bauer�spht.salay.ea.fr2Member of the CNRS; Email : dbernard�spht.salay.ea.fr1



suh a behavior. More generally, they ontain enough tunable parameters toreprodue almost any degree distribution.However, the stati models are in general not onveniently de�ned withinthe language of statistial mehanis (see ref.[2℄, whih motivated our interestin this question). This is for instane the ase with the most intuitive proposal[5℄: generate independently half edges for eah vertex, with the appropriatedistribution, and then join the half edges at random. This makes it rathereasy to generate random graphs, but does not assign in a simple way aprobability to any given simple graph : it is formally ompliated to eliminatemultiple edges. Another proposal made in [4℄ has some formal tehnialsimilarity with our work but really leads to a di�erent model.It is moreover obvious, if not always apparent in the literature, that theknowledge of the degree distribution leaves many statistial properties of thegraphs undetermined, even if one insists that all verties are equivalent. Thisarbitrariness is a problem, beause most of the time the models used to �t thebehavior of say a ommuniation network are just ingenious onstrutions :they are not derived from lear basi priniples. Suh priniples may be outof our reah at the moment, and so is a lassi�ation of all random graphmodels with ertain apriori properties. Consequently, we propose to usemaximum entropy as a riterion to build a model that does not make any apriori bias, inorporating what we know { in this ase the degree distribution{ but nothing else. Comparison with real networks is a way to get evidenefor other striking features that might be overlooked today.The maximal entropy priniple is applied here to deal with onstraintson the degree distribution but it an learly be engineered to deal with otheronstraints.This paper is organized as follows :{ Setion 2 starts with the main de�nitions, goes on with a quik re-minder on the Molloy{Reed model [1℄ and ontinues with the de�nition ofthe maximum entropy model. We use it to reformulate the standard Erd�os-Renyi random graph model. Then we derive a few general identities valid forthe maximal entropy model, and study the distribution of onneted ompo-nents. Our model is a lose ousin of the Molloy{Reed model and we makethe onnexion preise below. Finally we disuss the possibility of numerialsimulations.{ Setion 3 studies the thermodynamial limit when the number N ofsites is large, but the number of edges sales like N , hene the name �niteonnetivity limit for this regime. We derive the equations that determine2



all physial quantities in this regime : free energy, distribution of the numberof edges inident at a vertex, ... We then study the onneted omponents,derive the riterion for the existene of a perolation luster and the formulafor its size. Finally, we study the distribution of the number of edges inidentat a vertex in the perolation luster.{ Setion 4 analyzes the generalization to oriented graphs, ending withthe riterion for the existene of a perolation luster and the formula for itssize.2 The model2.1 General de�nitionsIn the following, we shall onentrate on labeled simple unoriented graphs,or equivalently on symmetri 0� 1 matries, with vanishing main diagonal :the matrix element (i; j) is 1 if verties i and j are onneted by an edge and0 else. So we use the same letter G to denote the graph and its adjaenymatrix with matrix elements Gi;j . In the sequel, unless otherwise stated, theterm graph refers to labeled simple unoriented graph. The number of edgesof a graph G is denoted by E(G) and the number of verties by V (G).The row-sum Ĝi = Pj Gi;j is the number of neighbors of site i. Thedegree distribution of G is the sequene ~Gk = #fi suh that Ĝi = kg, sothat ~G0 is the number of isolated points of G, ~G1 is the number of vertiesof G with exatly one neighbor, and so on.Not every integer sequene an appear as the degree distribution of agraph on N verties : ~Gk = 0 for k � N , Pk ~Gk = N and Pk k ~Gk is evenbeause this number ounts twie the number of edges of G, i.e. Pi;j Gi;j.There are other less obvious onstraints. We all the sequenes that appearas degree distribution of a graph on N vertiesN -admissible. There is a rela-tively simple family of inequalities that haraterizesN -admissible sequenes,but for instane the (asymptoti) ounting of N -admissible sequenes is stillunknown.2.2 The Molloy{Reed modelBefore we introdue our model, let us desribe the method of Molloy andReed [1℄ whih an be interpreted as a kind of miroanonial version of our3



model. The idea is quite elegant : for any integer N �x an N -admissiblesequene fmN;kgk�0 and take as probability spae the set GfmN;kg of graphswith degree distribution fmN;kgk�0, endowed with the uniform (ounting)probability. By onstrution, in GfmN;kg, the probability that vertex i 2 [1; N ℄has k neighbors is exatly mN;k=N .Molloy and Reed show that if the sequene fmN;k=Ng onverges (uni-formly) to a probability distribution f�kg,(Pk �k = 1), under one tehnialassumption, the spae GfmN;kg onverges in an appropriate sense to a randomgraph ensemble Gf�kg on whih standard questions an be formulated andanswered :{ the probability in Gf�kg that a given vertex has k neighbors is { notsurprisingly { �k,{ Molloy and Reed give a riterion for the presene or absene of a giantomponent.Heuristi arguments [5℄ show that the `intuitive' model (whih does not ingeneral lead to simple graphs) namely \generate independently half edges foreah vertex, with distribution f�kg and then join the half edges at random",has the same thermodynamial { large N { properties as the Molloy{Reedmodel.2.3 The maximum entropy modelTo start with, we �x an integer N � 1, and a probability distribution f�N;kg(PN�1k=1 �N;k = 1). We want to look for a probability distribution fpGg on theset of graphs on N verties suh that for any vertex i, PG; Ĝi=k pG = �N;kwhere, here and below, the notation means that the sum is restrited tographs suh that Ĝi, the number of neighbors of vertex i in G, equals k.With words, we look for a probability distribution fpGg on the set of graphson N verties suh that the probability that vertex i has k neighbors is�N;k. As explained in the introdution, this requirement is far from �xingthe probability distribution.We also want this probability distribution to have no other bias. So welook for a distribution fpGg with maximal entropy 1.1Notie that, if no onstraint is imposed, the uniform ounting measure has maximalentropy. This measure an be desribed as follows: the probability of an edge betweenverties i and j is 1=2 independently of the presene or absene of any other edge.4



Hene we want to maximizePG pG log pG under the onstraintsXG; Ĝi=k pG = �N;kwhih we implement as Lagrange multipliers. The extremum onditions forXG pG(log pG + 1) � �(XG pG � 1)�Xi;k �i;k( XG; Ĝi=k pG � �N;k)are pG = e�+Pi �i;Ĝi , XG pG = 1 and XG; Ĝi=k pG = �N;k:It is not obvious to us that these equations always have a solution andthat this solution is unique and symmetri i.e. �i;k does not depend on i 2.But as usual in statistial mehanis, we an reverse the logi : we start froman arbitrary sequene of positive numbers tk = e�k and de�ne pG:pG � e�+Pi �Ĝi = e� Yk t ~Gkk (1)with suitably adjusted � so as to ensure PG pG = 1.We de�ne the weight wG of a graph aswG �Yk t ~Gkk =Yi tĜiand the partition funtion as the sum of weightsZN �XG wG =XG Yk t ~Gkk :Hene � = � logZN and pG = wG=ZN .By onstrution the probability distribution �N;k that vertex i has kneighbors is i-independent. Reall that ~Gk is the number of verties withk neighbors in G so thatN �N;k =Xi XG; Ĝi=k pG =XG ~GkpG = 1ZN XG ~GkwG:But ~GkwG = �wG=��k so�N;k = 1N � logZN��k = 1N tk � logZN�tk :2In the large N limit, some spontaneous symmetry breaking might our. We shall notpursue this questions here. 5



2.4 The Erd�os{Renyi model revisitedAs a �rst appliation, but also as a preparation to setion 3, let us rein-terpret the standard Erd�os-Renyi random graph model [7℄ in our frame-work. Reall that in the Erd�os-Renyi model, the edges are desribed byindependent binomial variables, eah edge being drawn with probability p.Reall that E(G) denotes the number of edges of a graph G. The probabil-ity of the graph G is simply pE(G)(1 � p)N(N�1)=2�E(G) whih we rewrite as(1 � p)N(N�1)=2 � p1�p�E(G). Now 2E(G) = Pk k ~Gk. So letting tk � � p1�p�k=2shows that the Erd�os-Renyi model is the maximal entropy model suh thatthe probability that a vertex has k neighbors is �N�1k �pk(1 � p)N�1�k. Theaverage number of neighbors is (N �1)p. In the large N limit, an interestingregime ours when this number is kept �xed, so that p � �=N and � is theontrol parameter. The important observation is that if p sales like N�1,the parameters tk sale like N�k=2. In setion 3, we shall see that indeedgenerially these saling relations ensure that logZN sales like N , as any\good" free energy should.2.5 Useful relationsWe establish a few formul� whih will be entral in the following disussion.The sequene fZNgN�1 satis�es a �rst order funtional reursion rela-tion that will prove useful in the subsequent analysis. We de�ne the formalLaurent series H(!; t0; � � � ; tk; � � �) = Pk tk!�k.Suppose N � 2. Then ZN is the onstant (i.e. of degree 0) term in the!-expansion of the produtH(!; t0; � � � ; tk; � � �)ZN�1(t0 + !t1; � � � ; tj + !tj+1; � � �):The !-expansion of the produt is well-de�ned beause both fators involveat most a �nite number of terms of positive degree.The proof of this relation goes as follows. If G0 is a graph on N � 1verties 1; � � � ; N � 1, it an be ompleted to a graph G on N verties in thefollowing ways : add vertex N and k = 0; � � � ; N � 1 edges emerging fromN . Attah these edges to any k distint verties of G0. There is a simplerelation between the weights of G and G0 beause one vertex of degree k hasbeen added (this is taken are of by the term tk in H), and k verties in1; � � � ; N � 1 have seen their degree inreased by 1 so, in wG0 = QN�11 tĜ0i , k6



of the fators tj are replaed by tj+1 (this is taken are of by replaing all tj'sin ZN�1 by tj+!tj+1 and expanding to order k in !). Note that the relationis also true for N = 1 if we make the natural hoie Z0 = 1.We rewrite this result as a (formal) ontour integral 3 :ZN (t0; � � � ; tj; � � �) = I d!! Xk tk!�kZN�1(t0 + !t1; � � � ; tj + !tj+1; � � �):The same argument, based on enumerating the ways the point N an belinked to the remaining part of the graph under the ondition that ĜN = k,shows thatZN�N;k = tk I d!! !�kZN�1(t0 + !t1; � � � ; tj + !tj+1; � � �);to be ompared with the formula of Setion 2.3. These two formul� for �N;kare not so trivially equivalent beause they involve di�erent rearrangementsof the sum of weights.2.6 Component distributionWe study the distribution of sizes of onneted omponents.De�ne Wn by Wn = XG; V (G)=n wG;where P denotes the sum over onneted graphs. Observe that if G splitsas a disjoint union of two subgraphs G1 and G2 (G ontains no edge joininga vertex of G1 to a vertex of G2), the weight of G fatorizes : wG = wG1wG2.So the total weight of graphs G of size N that are the disjoint union of k1onneted omponents of size 1 (i.e. isolated points), k2 onneted ompo-nents of size 2,� � �,kn onneted omponents of size n,� � � (so Pn�1 nkn = N)is N !Qn kn!n!kn Yn W knn :The ombinatorial fator just ounts the number of ways to split the Nverties of G in pakets of the right size. Summing over all possible kn's3The symbol H denotes the ontour integral 12i� R along small ontour surrounding theorigin. 7



gives bak ZN : ZN = Xkn�0;Pn�1 nkn=N N !Qn kn!n!kn Yn W knn :This formula allows to view ZN not as a funtion of the tk's but as a funtionof the Wn's, and using this interpretation, we see that, denoting by Cm(G)the number of onneted omponents of size m in the graph G, the averagenumber of omponents of size m in the random graph model isXG pGCm(G) = Wm� logZN�Wm :So mWm� logZN�Wm is the average number of sites belonging to omponents ofsize m, and summing over m we should have PmmWm� logZN�Wm = N . This issimply the statement that ZN is a homogeneous funtion of degree N in theWn's if Wn is assigned degree n.This an be rephrased in ompat form. Introdue a (omplex or formal)4variable z and de�ne Z � PN�0 zNN !ZN ; the z-generating funtion for theZN 's. Replaing Zn by its expression in terms of the Wn's, we get the (well-known) fat that Z = eW where W = Pn�1 znn!Wn: Conversely, one retrievesZN by ZN = N ! I dzz z�NePn�1 znn! Wn: (2)The average number of omponents of size n in the random graph is thusWn � logZN�Wn = N !n!(N � n)!Wn ZN�nZN :Similarly, the average number of times a given graph g of size n � Nappears as a onneted omponent in the random graph G of size N isN !n!(N � n)! wg ZN�nZN :4In this setion, some of the omputations we make require that the tk's satisfy someproperties so as to ensure that the series we write have a �nite domain of onvergene.For instane, we ould assume that only a �nite (though arbitrarily large) number of tk'sare non vanishing. Alternatively we ould work with formal power series.8



2.7 DisussionA ruial observation is that the weight of a graph depends only on its degreedistribution, as in the Molloy{Reed model. But whereas in the Molloy{Reedmodel the weight of a graph is 0 unless it has the orret degree distribution,the degree distribution utuates in our model. So our model is a anonialdesription of a random graph model with given \number of edges distribu-tion at a vertex", and the Molloy{Reed model a miroanonial one.That the two models turn out to be equivalent in some large N limit ismaybe not surprising. However, note that ontrary to standard statistialmehanis (when only a few quantities, for instane energy and number ofpartiles, utuate in the anonial desription but are �xed in the miro-anonial one) the onstraint hypersurfae of the miroanonial model hasa odimension that gets larger and larger as N grows.Finally, let us observe that the maximum entropy model is well suitedfor standard thermodynamial simulations, namely heatbath algorithms ormetroplolis algorithms. This is beause ontrary to the `naive' model or theMolloy{Reed model the phase spae has a simple struture.3 Finite onnetivity limit3.1 General analysisAs suggested at the end of setion 2.3 by the speial ase of the Erd�os{Renyimodel, we shall show that a thermodynami limit ours in the large N limitif tk sales like N�k=2. Note that in this ase wG, the weight of G sales likeN�E(G), where as before E(G) stands for the number of edges of G.The starting point of the analysis will be the funtional equation estab-lished in setion 2.5 :ZN (t0; � � � ; tj; � � �) = I d!! Xk tk!�kZN�1(t0 + !t1; � � � ; tj + !tj+1; � � �):We set tk = �kN�k=2 and de�ne FN(�:) � 1N logZN (t:). Substituting !N�1=2for ! leads after a few manipulations toeNFN(�:) = I d!! Xk �k!�ke(N�1)FN�1((�:+ !N �:+1)(1�1=N)k=2):9



This equation still involves no approximation. Now we make the usualthermodynamial hypothesis, namely that NFN(�:) � (N � 1)FN�1(�:) hasa limit, say F (�:) when N ! 1. This implies in partiular that FN(�:)onverges to F (�:). The above equation has then a large N limit. To see itlearly, we rewrite it aseNFN(�:)�(N�1)FN�1(�:) = I d!! Xk �k!�ke(N�1)[FN�1((�:+ !N �:+1)(1�1=N)k=2)�FN�1(�:)℄:In the large N limit, this leads to the equation1 = �yXk �k �xkk! ; (3)where we have de�ned�y � e�F� 12Pk k�k �F��k ; �x �Xk �k+1 �F��k :On an take an analogous limit of other relations in 2.5 to obtain the moredetailed equations for the degree distribution,�k = �k �F��k = �y�k �xkk! : (4)Eq.(3) ensures that this distribution is orretly normalized, Pk �k = 1.The parameter �x posseses a simple interpretation. We start from therelation �F��k = �y�k �xkk! ; multiply it by �x�k+1 and sum over k to get�x2 = �yXk �k+1 �xk+1k! =Xk k�k; (5)so that �x2 is the �rst moment of the distribution �k for the number of edgesinident at a vertex.We an summarize quite ompatly our results as follows:Let us introdue the funtion V (x) � Pk �k xkk! , whih we all the potentialfor reasons whih will be lear in a moment. If all our previous formulae areto make sense, this funtion should have a positive radius of onvergene.Let us also de�ne F(y; x) � �1� log y � x22 + yV (x): (6)10



Then (�y; �x) is a ritial point for F , thanks to eqs.(3,5), and F is the orre-sponding ritial value.It is not true that these equations for (�y; �x) always have a single solution.It is not diÆult to �nd examples with no solution at all. We an interpretthis by saying that in that ase there is no thermodynami limit in oursense. More troublesome is the ase when there are several solutions. Themost naive requirement would be that the physial solution is to take theouple (�y; �x) that leads to the absolute maximum Fmax for F beause thefator eNFmax will be the dominant ontribution to Z. We shall meet suh abehaviour in one of the examples of Setion 3.6, and make a few ommentsthere.For most of the paper, we shall simply assume that if there is more thanone extremum, we have piked the orret one.3.2 Conneted omponentsIn setion 2.6, we gave a formula for ZN in terms of onneted omponents.This formula has also an interesting limiting form in the thermodynamilimit, but we shall wait until the next setion to derive it. For the timebeing, reall that Wn is the sum of the weights of onneted graphs on nverties. We have shown that the average number of omponents of size n inthe random graph is N !n!(N�n)!Wn ZN�nZN :Now, we splitWn =Pl�0Wn;l as a sum of ontributions orresponding toonneted graphs with l = 0; 1; � � � (independent) loops5 . If G is a onnetedgraph with L (independent) loops, E edges and V verties, an old theoremof Euler says that L = E � V + 1 (in partiular trees, i.e. onneted graphswithout loops, haveE = V �1) soWn;l is simply the homogeneous omponentof degree 2(n+ l�1) in the t0ks. If we set tk = �kN�k=2 we see that Wn;l(t:) =N1�n�lWn;l(�:). We de�ne Tn � Wn;0(�:).When N ! 1 for �xed n and �k's we �nd that N !n!(N�n)!Wn � N Tnn! ,meaning that trees dominate. In the thermodynami limit, we �nd as beforethat ZN�nZN (t:) � e�n(F+ 12Pk k�k �F��k ) � �yn:So in the thermodynami limit, the average number of omponents of sizen in the random graph is N Tnn! �yn: The number of points in omponents of5Or losed iruits in the mathematial literature.11



size n in the random graph is Cn � NnTnn! �yn;and the total fration of sites oupied by �nite omponents isQ �Xn nTnn! �yn:If this number is 1, we an onsistently interpret the random graph modelas a random forest model in the thermodynamial limit. However, if thisnumber is < 1, this means that a �nite fration of points is not in �niteomponents, and there is a perolation luster in the system.3.3 Tree distributionWe would like to �nd a losed formula for the generating funtionT (y) �Xn nTnn! yn:The �rst observation omes from an analogy with a baby quantum �eldtheory. The asymptoti expansion of the integralI = 1(2��h)1=2 Z +1�1 e(�x2=2+yV (x))=�hin powers of the �k's has a useful reinterpretation. NamelyI �XG 1A(G)�hL(G)�C(G)Yk (y�k) ~Gk ;where the sum is over Feynman graphs6 with an arbitrary number of verties,A(G) is the order of the automorphism group of G (for a preise de�nitionsee e.g. [3℄) and C(G) the number of onneted omponents of G. Again bya fatorization argument for the weights the onneted ontributions expo-nentiate, and �h log I �XG  1A(G)�hL(G)Yk (y�k) ~Gk :6Warning : Feynman graphs are essentially general graphs i.e. not neessarily simple !12



In the lassial (small �h) limit, on the one hand graphs with L(G) = 0 domi-nate. Though Feynman graphs are not neessarily simple, loopless Feynmangraphs are just ordinary trees. On the other hand, I an be alulated inthe limit �h small by the saddle point approximation, leading to the identitybetween formal power series:T (y) � XlooplessG 1A(G)Yk (y�k) ~Gk = S(~x) (7)with S(x) = �x2=2+yV (x) = �x2=2+yPk �kxk=k! and ~x is the formal powerseries of y and the �k's for whih S is extremal, ~x = yPk �k+1~xk=k! = yV 0(~x).Hene, the expansion of �~x2=2 + yV (~x) in a formal power series of ywith ~x = yV 0(~x) yields Pn ynTn=n!. >From T (y) = �~x2=2 + yV (~x) and thestationnarity ondition, we also infer that T 0(y) = V (~x).The expansion of T (y) is onvergent for small y if V (x) has a non van-ishing radius of onvergene. Note that if �1 = 0, the solution ~x = 0 has tobe hosen, beause it leads to the orret T (y) = �0y (trees on two or moreverties have leaves, so they ount 0 if �1 = 0).We now make the general assumption that �1 6= 0, and V (x) has a non-vanishing radius of onvergene. Let us study the inversion of the relationy = x=V 0(x). This an be obtained via the Lagrange formula. By Cauhy'sresidue formula ~x(y) = I x (x=V 0(x))0x=V 0(x)� ~x=V 0(~x)dxwhere the x ontour has index 1 with respet to ~x. Replaing ~x=V 0(~x) by y,the y-expansion yields~x(y) = Xn�0 yn I x (x=V 0(x))0(x=V 0(x))n+1dx:One an use integration by parts to get:~x(y) = Xn�1 ynn!  dn�1dxn�1  dVdx !n!jx=0 :This is learly a series with non-negative oeÆients. As a onsequene, itsradius of onvergene is given by the �rst singularity on the positive real axis,at the point ym = xm=V 0(xm) orresponding to the unique maximal value ofthe onave funtion x=V 0(x). This maximummight have two origins : either13



xm is a singular point of V , or the derivative of x=V 0(x), whih is positivefor small x, vanishes at xm. This is equivalent to V 0(xm)� xmV 00(xm) = 0The expliit form of Tn an similarly be obtained via the Lagrange for-mula: T (y) = �0y +Xn�1 ynn!  dn�2dxn�2  dVdx !n!jx=0 ;a lassial formula whih an also be proved by purely ombinatorial argu-ments, giving an independent argument for the fat that the lassial limitof quantum �eld theory is desribed by trees.3.4 PerolationThe analysis of the previous setion shows that the seriesXn n(x=V 0(x))n�1 Tn=n!onverges for any positive x in the domain of onvergene of V , and that, inthis domain, its sum is equal to V (x) for x < xm.For x > xm the series is still onvergent. However there is a (unique)number x� < xm suh that x�=V 0(x�) = x=V 0(x) and, sine the series onlyinvolves the ratio x=V 0(x), we have:Xn n(x=V 0(x))n�1 Tn=n! = V (x�) < V (x); for x > xm:The perolation question an be rephrased as follows. Is the relevant so-lution �x of the system �yV 0(�x) = �x, �yV (�x) = 1 suh that �x � xm or not?Indeed, we know that the fration of points in �nite lusters is Pn nTnn! �yn.Substituting �y = �x=V 0(�x), this series sums to �yV (�x) = 1 if �x � xm but to�yV (x�(�x)) < 1 if �x > xm. The ondition �x<> xm is equivalent to the onditionV 0(�x) � �xV 00(�x)<> 0. This an be transribed in term of the probability dis-tribution f�kg : �y�xV 0(�x) = Pk k�k � hki and �y�x2V 00(�x) = Pk k(k � 1)�k �hk(k � 1)i (we use brakets to denote averages of the distribution f�kg).Thus, the perolation riterion is that there is a perolation luster in thesystem if and only if h2k � k2i < 0. This is preisely the riterion given inref.[1℄. The relative size of the giant omponent Q1 = 1�Pn nTnn! �yn is then:Q1 = 1� �yV (�x�) = 1�Xk �k(�x�=�x)k (8)14



where �x� is the smallest x solution of �y = x=V 0(x). This is again in agreementwith the result of ref.[1℄. Close to the perolation threshold, and for a generipotential V , the size of the giant omponent inreases linearly with hk2�2ki:Q1 ' h2ki hk2 � 2kihk(k � 1)(k � 2)iThis formula is not valid when the probability distribution �k has no thirdmoment. Then the grows of the giant omponent lose to the transitionan exhibit a di�erent ritial behavior. We shall give an example of thissituation in the examples of setion 3.6.Let us analyse in more details what happens if �x = xm. We know thatthere is no perolation luster. Now, if the radius of onvergene of V isstritly larger than xm, lose to ym = xm=V 0(xm), T 0(y) has a square rootbranh point. This implies that the ontribution of points in omponentsof size n in the system dereases algebraially as Cn � Nn�3=2 for large n.In the physis language, this is interpreted as a ritial point and 3=2 as aritial exponent. Note that even in this ase, the distribution f�kg is stilldereasing at least exponentially at large k.To observe other ritial points, with di�erent ritial exponents, theradius of onvergene of V has to be exatly �x = xm, whih requires some�ne tuning. In that ase, both Cn and �k derease algebraially. Assumethat V has a leading singularity at �x = xm loally of the form (�x � x),with  > 2 to ensure the existene of hki and hk2i. Generially, y � ym islinear in x� xm so that yT 0(y) = V (x) has a leading singularity of the form(y � ym) and both �k and Ck=N = kTk�yk=k! derease as k��1. We shallgive an example below.If there is no perolation luster, we an treat the large N limit fromanother point of view. We start from eq.(2) and in the ontour integralgiving ZN , we hange variables and replae z ! Nz, leading toZN = N !NN I dzz z�NeNPl�0N�lPn�1 znn! Wn;l(�:):For �xed n, the onneted graphs with loops (l � 1) are suppressed by inversepowers of N . However, in the sum over the size of onneted omponents,terms up to n = N make a ontribution to the ontour integral, and itmight happen that for large n and N related by some ondition onnetedomponents of size n of with loops make a �nite ontributions to 1N logZN .15



However, if there is no perolation luster, we may safely neglet l � 1 andget an aurate approximation to the leading exponential behavior of ZN inthe large N limit.Under appropriate onditions, the ontour integral for ZN an be de-formed to pass through a dominant saddle point. Then the free energyis given by the saddle point approximation. We see that ZN � eNF (�:)with F (�:) = �1 � log �z + T (�z), �z being the the saddle point maximizing�1 � log z + T (z). This equation is what one gets from eq.(6) when �y = �zand �x is seen as a funtion of �y = �x=V 0(�x). This gives yet another proof ofthe dominane of trees and the Lagrange inversion formula.3.5 Conditional degree distributionsWe now present formulas for the degree distributions, denoted �(n)k , for ver-ties within lusters of size n. We are partiularly interested in the degreedistribution �(1)k in the giant omponent when it exists.From the last formula of Setion 2.6, the average number of verties ofdegree k belonging to a omponent of size n is:Cn(k) = N !n!(N � n)! (tk �Wn�tk ) ZN�nZNIn the thermodynami limit, tk = N�k=2�k, N !1, this beomesCn(k)N = �ynn! (�k �Tn��k ):By de�nition, the degree distribution within omponents of size n is Cn(k)divided by the average number of points in omponents of size n so that �(n)k =Cn(k)=Cn, with Cn=N = nTn�yn=n! in the thermodynami limit. Hene:�(n)k = 1n �k � log Tn��k :Notie that these distributions are normalized,Pk �(n)k = 1, sine the Tn's arehomogeneous polynomials in the �i of degree n if eah �i is assigned degreeone.Assume now that the perolation riterion is satis�ed so that a giantomponent exists. The number of verties of degree k in the giant omponent16



are: C1(k) = N�k �Pn Cn(k). In the thermodynami limit,C1(k)=N = �k �Xn (�k��kTn) �ynn! = �k � (�k��kT )(�y)But T (y) = �~x=2 + yV (~x) with the extremum ondition ~x = yV 0(~x) so that(��kT )(y) = y(~x)k=k!. Using �k = �y�k �xkk! , we get, with �x� de�ned as in Setion3.4: C1(k)N = �k�1 � � �x��x �k�or equivalently, �(1)k = �kQ1 �1� � �x��x �k� (9)sine �(1)k is the ratio between C1(k) and the number of points in the giantluster, whih is NQ1. As it should, �(1)k is orretly normalized: Pk �(1)k =1, and vanishes at k = 0 (there is no isolated vertex in the giant omponent).There is a rossover value k = log(�x=�x�)�1 above whih �(1)k is exponentiallylose to �k=Q1. Close to the transition the ratio �(1)k =�k goes to k=hki.The formula for �(1)k has a simple probabilisti interpretation : as it is theonditional probability that a vertex has k neighbors given that it is in thegiant omponent, it an be written as the quotient of �k;1, the probabilityto have k neighbors and be in the perolation luster, by Q1. We read fromeq.(9) that �k;1 = �k � �k� �x��x �k. Hene �k� �x��x �k is the probability for avertex to have k neighbors and to be in a �nite omponent. This suggeststhat when a new point is added to the graph, the probability that it onnetsto k other verties none of them in the giant omponent is �k� �x��x �k: for eahnew edge, the penalty for avoiding the giant omponent is �x��x3.6 Reonstrution, with examplesThe maximal entropy graph distribution an be reonstruted form the dataof the degree distribution �k, Pk �k = 1. We set H(s) =Pk �ksk.Given �k, �x is de�ned as the positive square root of hki = Pk k�k, and�y�k as �k k!=�xk. This yields �yV (x) = Pk �k(x=�x)k = H(x=�x). The oeÆient�y appears then as a normalization fator whih may be hoosen at will, eg.we ould set �y = 1. 17



The tree distribution T (y) = Pn Tnyn=n! is then reonstruted, as a for-mal series, from T 0(y) = V (~x) with ~x = yV 0(~x). It is lear that Tn�yn isindependent of the hoosen normalization for �y.The fration of site oupied by the �nite size omponents is Q = �yT 0(�y).By onstrution, �x is solution to �x=V 0(�x) = �y. The giant omponent existswhen there are two solutions to the above equation in the interval [0; �x℄.We denote by �x� the smallest of them. The fration of site oupied bythe giant omponent is Q1 = 1 � �yV (�x�). Equivalently, one an look fora solution 0 < s� < 1 to the equation H 0(s) = sH 0(1), and if there is one,Q1 = 1 �H(s�).Let us illustrate this reonstrution on a few simple examples.1. Poissonian degree distribution: �k = e�� �k=k!. This is the Erd�os{Renyi model. We have �x = �1=2, and V (x) = expx�x, hoosing �y =e��. The tree distribution is T 0(y) = exp ~x with ~xe�~x = �y. Thegiant omponent exists for � > 1 when the equation ~xe�~x = �e��admits two solutions �� and � with �� < 1 < �. Its relative size isQ1 = 1 � e��T 0(e��) = 1� ��=�.2. Geometri degree distribution: �k = (1 � p)pk . Then �x2 = p=(1 � p)and �yV (x) = 1=(1 + �x2 � x�x). The extremum relation x = yV 0(x) is aubi equation: �yx(1 + �x2 � x�x)2 = y�x. The perolation transition isat �x2 = 1=2 (p = 1=3) and the relative size of the giant omponent isQ1 = 1 � (�x�=�x)1=2 with �x�x� = 12(�x2 + 2 � �xp4 + �x2).This example onfronts us with the ambiguity problem alluded to along time ago.Changing p into 1�p leads to replae �x by 1=�x. This hanges �yV (x) =1=(1 + �x2 � x�x) into itself up to an irrelevant multipliative fator.To state things in a slightly di�erent way, the extremum onditionsyV 0(x) = x and yV (x) = 1 have two solutions, and one leads to thegeometri distribution with parameter p and the other one to the geo-metri distribution with parameter 1 � p. Of ourse, the real result ofthe omputation of ZN will make a de�nite hoie. The riterion of themaximum for F leads to hoose inf(p; 1�p), and this is also onsistentwith ontinuity starting from p = 0, a random graph made of isolatedpoints.However, the formulas obtained before for, say, the size of the giant18



omponent, oinide with the ones from ref.[1℄ even for p > 1=2. Thissituation requires lari�ation. Maybe this is the point when the anon-ial and the miroanonial approahes �nally diverge and stop beingequivalent.3. An example of a sale free distribution: H(s) = P�ksk � �0 + �1s +�2s2=2 + � (1 � �s + �(� � 1)s2=2 � (1 � s)�), where 2 < � < 3 and�0; �1; �2 and � are nonnegative parameters subjet to the ondition�0 + �1s + �2s2=2 + � (� � 1)(� � 2)=2 = 1 to ensure that the �k's areorretly normalized. The �k's derease like �k � ���(��)k���1.Then �x2 = H 0(s = 1) = �1 + �2 + ��(� � 2) from whih the potential�yV (x) is reovered as usual.There is a perolation luster if and only if the equationH 0(s) = sH 0(1)has a solution s� < 1. So, we look for the solutions of (1�s)(����1) =��(1� s)��1. If hk2� 2ki = ��� �1 is negative, there is no perolationluster, but if it is positive, 1 � s� = (1 � �1�� )1=(��2). The size of thegiant omponent is 1 �H(s�) � (1� s�)H 0(1), andQ1 � hk2 � 2ki1=(��2)lose to the threshold. This is an example when the growth of the giantomponent lose to the threshold is nonlinear as a funtion of hk2�2ki.The number of points in omponents of size k is reonstruted fromT 0(y) = V (x) with x = yV 0(x). Below the threshold, this leads to asingularity T 0sing � (�y�y)�, whih implies that Cn � n���1. Above thethreshold, the radius of onvergene r of T is larger than �y, leading toCn's that derease exponentially as Cn � n�3=2(�y=r)n.4 The ase of oriented graphsIt is not diÆult to modify the previous arguments to deal with maximumentropy oriented graphs with given \in-out" degree distributions. We givethe perolation riterion, omitting all details.The �rst result is that for suh models, eah vertex with k outgoing andl inoming verties ontributes a �xed multipliative fator, say tk;l, to the19



weight of a graph. The generalization of the reursion formula for ZN readsZN (ti;j) = I d!+!+ d!�!� Xk;l tk;l!�k+ !�l� ZN�1(ti;j + !+ti;j+1 + !�ti+1;j):The large N �nite onnetivity limit is obtained by letting N ! 1 whilekeeping �k;l = tk;lN (k+l)=2 �xed. De�ningV (x+; x�) �Xk;l �k;lxk+k! xl�l! ;a straightforward adaptation of the argument in setion 3.1 leads to the fatthat the free energy F is the value ofF(y; x) � �1� log y � x+x� + yV (x+; x�):at the point (�y; �x+; �x�) where it is maximum :�x+ = �y(�x�V )(�x+; �x�); �x� = �y(�x+V )(�x+; �x�); 1 = �yV (�x+�x�): (10)The analysis of the �rst two equations is a bit more involved than theanalysis of the single impliit equation for the oriented ase. We an viewthe pair of equations x+ = y�x�V and x� = y�x+V in the following way. Itde�nes a funtion y over the urve C in the positive quadrant of the (x+; x�)plane given by x��x�V = x+�x+V . This urve is smooth as long as V is well-de�ned. For instane, one an take x � x+�x+V = x��x�V as an analytiparameter on it. Then y is a smooth onvex funtion of x, and all propertiesof the non-oriented ase are true for y(x) : y is a good analyti parameteron C for small y, but there is a singularity if the onvex funtion y(x) has amaximum. To be more expliit, taking di�erentials we see that dx=xdx=x ! =  1 + x+�2x+V=�x+V x��x+�x�V=�x+Vx+�x��x+V=�x�V 1 + x��2x�V=�x�V ! dx+=x+dx�=x� ! ;and dy=ydy=y ! =  1 � x+�x��x+V=�x�V �x��2x�V=�x�V�x+�2x+V=�x+V 1 � x��x+�x�V=�x+V ! dx+=x+dx�=x� ! :A simple omputation shows that the determinant of the 2 by 2 matrix inthe �rst relation is always stritly positive, but that the determinant of the 220



by 2 matrix in the seond relation is positive for small y but an hange sign.This happens if y0(x) vanishes. So the disussion of the non-oriented asearries over word for word. It is onsistent to write �y = y(�x); �x� = x�(�x)and �x�(�x) for the smallest x suh that y(�x) = y(x). We set �x�� � x�(�x�).There is a perolation luster if and only if the seond determinant is < 0 at(�y; �x+; �x�). This is equivalent to(�x�V � x+�x��x+V )(�x+V � x��x+�x�V )� x+x��2x�V �2x+Vbeing < 0 at that point. Then the fration of sites in the perolation lusteris Q1 = 1 � �yV (�x�+; �x��):To get the perolation riterion, we just have to rephrase the vanishing ofthe determinant in terms of the probability distribution �k+;k� that a vertexof the random graph has k+ outgoing and k� inoming verties. The expliitformula is �k+;k� = �y�k+;k� �xk++k+! �xk��k�! : (11)By onstrution Pk;l k�k;l = Pk;l l�k;l � hki sine any graph has the samenumber of outgoing and inoming edges. The parameters �x+ and �x� areonstrained by the relation �x+�x� = hkiThe perolation riterion reads:(hki � hk+k�i)2 � hk2+ � k+ihk2� � k�i < 0: (12)Given the distribution �k;l, the potential V an be reonstruted viaeq.(11). As in the oriented ase, the parameter �y is an arbitrary normal-ization fator. The produt of the parameters �x� is determined by �x+�x� =hki. The ratio �x+=�x� an be hoosen at will sine there is a natural in-variane in eq.(10). Namely if �x� solves the extremum ondition for thepotential V (x+; x�), so does x̂� = ��1�x� for the potential W (x+; x�) =V (�x+; ��1x�) and leaves �k;l invariant. Again this �nds its origin in thefat that any graph has the same number of outgoing and inoming edges.Aknowledgments: We thank the E. Shr�odinger Institut in Vienna forhospitality during the ompletion of this work.21
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