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PACS: 11.10.Hi; 04.62.+vOn the Renormalization Group in Curved SpaetimeStefan Hollands� and Robert M. WaldyEnrio Fermi Institute, Department of Physis,University of Chiago, 5640 Ellis Ave.,Chiago IL 60637, USASeptember 20, 2002AbstratWe de�ne the renormalization group ow for a renormalizable interating quan-tum �eld in urved spaetime via its behavior under saling of the spaetime metri,g ! �2g. We onsider expliitly the ase of a salar �eld, ', with a self-interationof the form �'4, although our results should generalize straightforwardly to otherrenormalizable theories. We onstrut the interating �eld|as well as its Wikpowers and their time-ordered-produts|as formal power series in the algebra gen-erated by the Wik powers and time-ordered-produts of the free �eld, and wedetermine the hanges in the interating �eld observables resulting from hangesin the renormalization presription. Our main result is the proof that, for any�xed renormalization presription, the interating �eld algebra for the spaetime(M;�2g) with oupling parameters p is isomorphi to the interating �eld algebrafor the spaetime (M; g) but with di�erent values, p(�), of the oupling parameters.The map p ! p(�) yields the renormalization group ow. The notion of essentialand inessential oupling parameters is de�ned, and we de�ne the notion of a �xedpoint as a point, p, in the parameter spae for whih there is no hange in essentialparameters under renormalization group ow.�Eletroni mail: stefan�bert.uhiago.eduyEletroni mail: rmwa�midway.uhiago.edu 1



1 IntrodutionTheories of a lassial �eld in Minkowski spaetime that are derived from an ation prin-iple will automatially possess an invariane under a saling of the global inertial oor-dinates of spaetime (or, equivalently, under saling of the �eld momenta) provided thata orresponding saling of the �eld amplitude and oupling onstants are also performedin suh a way that the ation remains unhanged. If the quantum theory of this �eld isrenormalizable, it turns out that in perturbation theory there also is a similar invarianeof quantities of interest|suh as the Green's funtions of the �elds|under saling of the�eld momenta, but the required saling of the �eld amplitudes and oupling onstantsdi�ers, in general, from the simple saling laws for the lassial theory. This hangeof the \�eld strength normalization" and oupling onstants under saling is alled the\renormalization group ow" of the theory. Important qualitative as well as quantita-tive information about quantum �eld theories an be gained from an analysis of theirrenormalization group ow.For quantum �eld theories in Minkowski spaetime, there exist well known proeduresfor alulating the renormalization group ow in perturbation theory. In many ases, thepiture obtained from low orders is believed to be at least in qualitative agreement withthe behavior that would hold in the full, nonperturbatively onstruted quantum �eldtheory. Consequently, perturbative alulations of the renormalization group ow haveplayed an important role in arguments onerning fundamental properties of quantum�eld theories. In partiular, they form the basis of the laim that ertain non-abeliangauge theories are \asymptotially free", i.e., that the gauge oupling ows towards zeroat small distanes (large momenta).It is therefore of interest to know whether a similar saling analysis an also be per-formed for perturbative interating quantum �eld theory on an arbitrary globally hyper-boli urved (Lorentzian) spaetime. As we shall briey review in setion 2 below, theonstrution of perturbative interating quantum �eld theory in urved spaetime hasreently been ahieved in [14℄, [15℄, based upon some earlier key results established in[3, 4℄ and other referenes. However, for at least the following two reasons, it does notseem possible to give a straightforward generalization to urved spaetime of the usualsaling analyses given for Minkowski spaetime. First, as already indiated above, therenormalization group ow in Minkowski spaetime is usually formulated in terms of be-havior under the saling of global inertial oordinates or, equivalently, saling of the �eldmomenta. However, in urved spaetime a formulation in terms of saling of oordinates(or momenta) would introdue a very awkward and undesired oordinate dependene intothe onstrutions. Also, sine the saling of oordinates no longer orresponds to a on-formal isometry of the spaetime metri, one would not expet a simple behavior to ourunder salings of any oordinates. Seond, the quantities whose saling behavior is usuallyonsidered in studying the renormalization group ow in Minkowski spae are the Green'sfuntions of the interating �eld or other quantities from whih these an be derived, suh2



as the \e�etive ation". However, the Green's funtions depend on a hoie of state. Forquantum �eld theories in Minkowski spaetime, this state would naturally be hosen tobe the (unique) Poinare invariant vauum state. However, even for a free quantum �eldin a general urved spaetime, there is no \preferred vauum state" nor any other statethat an be singled out for speial onsideration. Thus, even if a renormalization groupow ould be de�ned in terms of Green's funtions, there is no reason to expet it to beindependent of the hoie of state used to de�ne the Green's funtions.A solution to the seond diÆulty is ahieved by formulating the theory via the al-gebrai approah. In this approah, one views the observables as forming an abstratalgebra, and one views the quantum states as suitable linear funtionals on this algebra.This algebra is referred to as \abstrat", beause no representation of this algebra on apartiular Hilbert spae has been hosen from the outset, so that the (potentially prob-lemati) issue of hoosing states is ompletely disentagled from the issue of onstrutingthe observables of the theory. As we shall see, the renormalization group ow an thenbe de�ned at the level of the algebra of observables.The �rst diÆulty above is solved by de�ning the renormalization group ow in termsof the behavior of the algebra of the interating �eld under a saling of the spaetimemetri, g ! �2g, as has previously been suggested by other authors [21, 18, 19℄. InMinkowski spaetime, the di�eomorphism de�ned by the resaling of the global inertialoordinates, x� ! �x�, is a onformal isometry with onstant onformal fator �, soresaling the oordinates or momenta is equivalent to resaling the spaetime metri.However, in a general urved spaetime there will not exist any onformal isometries, soresaling the metri is not equivalent to any resaling of oordinates or momenta. As weshall see, in perturbation theory the interating �eld has a well de�ned behavior undersaling of the spaetime metri.The results we shall obtain in this paper are based primarily on our previous uniquenesstheorems [14℄ for Wik polynomials and their time-ordered produts for a free quantum�eld. As we shall explain further in setion 2 below, these results imply that the interating�eld algebra is well de�ned up to ertain renormalization ambiguities. In partiular,for the ase of a renormalizable theory, the ambiguities in the interating �eld algebraorrespond preisely to hanges in the (�nite number of) parameters appearing in theinteration Lagrangian1. This observation gives rise to the following means to de�ne1In other words, if one hanges the presription for de�ning Wik produts and their time orderedproduts for the free theory in a manner ompatible with the axioms of [14℄ and [15℄, the new interating�eld algebra one obtains via the onstrution given in setion 3 below will orrespond to the interating�eld algebra obtained with the original presription, but with the interation Lagrangian modi�ed bythe addition of terms of the same form as appearing in the original Lagrangian. The de�nition of theinterating �eld with the new presription will also orrespond up to a numerial fator to the de�nition ofthe interating �eld in the orresponding algebra obtained from the original presription with the modi�edLagrangian, i.e., the isomorphism of the interating �eld algebras for the two di�erent presriptions willmap the interating �eld to a multiple of the interating �eld. It should be noted, however, that thenew de�nition of higher Wik powers of the interating �eld (as well as time-ordered-produts of Wik3



the renormalization group ow: Fix a renormalization presription for de�ning the free�eld Wik polynomials and their time ordered produts. Now apply this renormalizationpresription to de�ne Wik polynomials and their time-ordered-produts for free quantum�elds on the spaetime (M;�2g), with all of the parameters of the theory also saledaording to their \engineering dimension" (i.e., saled in suh a way as to keep thelassial ation invariant). The free �eld algebra of observables W(M;g) (de�ned in [14℄and in setion 2 below) is naturally isomorphi toW(M;�2g) with saled parameters, andwe an use this isomorphism to de�ne a new (�-dependent) renormalization presriptionfor Wik polynomials and their time-ordered produts on the original spaetime (M;g).We thereby obtain a new (�-dependent) presription for de�ning the interating �eldalgebra. However, by our uniqueness results, this presription must be equivalent tothe original presription for de�ning the interating �eld algebra modulo a hange ofparameters appearing in the interation Lagrangian. Consequently, we get a �-dependent\ow" in the parameter spae of the interating theory2. This ow de�nes the ation ofthe renormalization group for a quantum �eld in urved spaetime.In order to implement the above ideas, we �rst must de�ne the interating quantum�eld algebra and therefore must address the following two diÆulties: (i) As in Minkowskispaetime, the interating quantum �eld is de�ned only perturbatively, and it is notexpeted that the perturbation series onverges. (ii) The usual formula for de�ning theinterating �eld expresses it in terms of a free \in"-�eld [12℄. Even if the theory underonsideration is suh that in Minkowski spaetime the interating �eld approahes a free\in"-�eld in the asymptoti past in a suitable sense, there is no reason to expet any suhbehavior to our in an arbitrary globally hyperboli urved spaetime.As disussed in setion 3.1, we shall, in essene, sidestep issue (i) by treating the inter-ating �eld algebra only at the level of a formal perturbation series. In other words, we donot attempt to de�ne the interating �eld algebra at a �nite value of a nonlinear ouplingparameter, �, but simply onsider the algebra generated by the formal perturbation seriesexpressions in �. In this respet, our analysis is neither better nor worse than the or-responding analyses for perturbative quantum �eld theory in Minkowski spaetime. Wenote, however, that at least some of the diÆulties enountered in making sense of per-turbative expansions for nonlinear quantum �eld theory may be due to the non-analytipowers of the interating �eld) will not orrespond to the de�nition of these quantities obtained from theoriginal presription with the modi�ed Lagrangian. Instead, under the isomorphism of the algebras, ahigher Wik power (or a time-ordered-produt of Wik powers) will, in general, be mapped into a �eldof the form spei�ed in eq. (52) below.2In other words, if we sale the spaetime metri and orrespondingly sale the parameters, p0, of thefree Lagrangian, L0, aording to their \engineering dimension", then the resulting theory is equivalentto a theory where the metri and parameters, p0, are not saled, but the interation Lagrangian, L1, ismodi�ed by �-dependent terms of the same form as appear in the (full) Lagrangian L = L0 + L1. Itshould be emphasized that it is far from obvious that, for a perturbatively onstruted interating theory,a hange in a parameter appearing in L1 as ours in the renormalization group ow is equivalent to aorresponding hange in that parameter in L0; see the end of setion 4.1 for further disussion.4



behavior of ground states and/or \in" and \out" states. It appears oneivable that atleast some of the diÆulties of perturbation theory ould be averted if one works stritlyat the algebrai level and uses perturbation formulas only to obtain algebrai relation-ships between interating �eld observables (thereby de�ning the interating �eld algebra)rather than using perturbation theory to alulate quantities involving, say, ground statesor \in" and \out" states. However, we shall not attempt to pursue these ideas in thispaper.On the other hand, diÆulty (ii) an be genuinely overome by properly taking limits asthe uto� on the interation is removed: The Bogoliubov formula de�ning the interating�eld (see eq. (35) below) is well de�ned if the nonlinear oupling parameter, �, is takento be a smooth funtion of ompat support, so that the nonlinear interation is \turnedo�" in the past and future. If one then attempts to take a limit where � approahes aonstant, diÆulties may arise if one demands that the interating �eld remain �xed in,say, the asymptoti past. However, no diÆulties arise if, following the ideas of [4℄, wedemand that the interating �eld remain �xed in the \interior" of the spaetime as �approahes a onstant. This onstrution is given in setion 3.1.The organization of this paper is as follows. In setion 2, we briey review the main in-gredients that we will need from free quantum �eld theory in urved spaetime, inludingthe de�nition and uniqueness properties of Wik powers and their time-ordered-produts.In setion 3.1 we give the onstrution of the interating �eld and in setion 3.2 we har-aterize its renormalization ambiguities. The saling behavior of the interating theoryis analyzed in setion 4.1, and the renormalization group ow is de�ned. The notions ofessential and inessential oupling parameters and the notion of \�xed points" under therenormalization group ow are de�ned in setion 4.2. In appendix B, we will relate ourrather abstrat formulation of renormalization theory and the renormalization group owat the algebrai level to more usual formulations in terms of Feynman diagrams.In this paper, we will onsider only a salar �eld with Lagrangian density of the formL = L0 +L1 � 12[(r')2 +m2'2 + �R'2 + �'4℄�; (1)where, R is the salar urvature and � is the volume element onstruted from the spae-time metri g = gab. The self-interation L1 = 12�'4� will be treated perturbatively.However, all of our analysis should generalize straightforwardly to other renormalizablequantum �eld theories.Our notation and onventions follow those of our previous papers [14℄, [15℄. All spae-times (M;g) onsidered in this paper will be assumed to be globally hyperboli and timeoriented. We will denote the free quantum salar �eld (de�ned by the Lagrangian (1) with� = 0) by ' and will use the generi notation � to denote other loal ovariant �elds inthe free theory. The interating �eld will be denoted 'L1 and other loal ovariant �eldsin the interating theory will be denoted �L1. In this paper, all �elds will be smeared withsalar densities (of unit weight); we will denote the spae of smooth unit weight salar5



densities of ompat support on M by D1(M).2 The free quantum �eld in urved spaetimeThe perturbative onstrution of a self-interating quantum salar �eld in urved spae-time is based upon the onstrution of the free quantum �eld theory. In this setion,we onsider the quantum �eld theory of a free salar �eld ', desribed by the lassialLagrangian density L0 = 12[(r')2 +m2'2 + �R'2℄�: (2)Note that under a saling of metri, g! �2g with � a positive onstant, the Lagrangiandensity remains invariant provided that we also sale the �eld, ', mass, m, and ouplingparameter �, by ' ! ��1', m ! ��1m, � ! �. We refer to the power of � appearingin these saling rules as the engineering dimension of the quantity. More generally, anymonomial, �, onstruted out of ' and its derivatives, the urvature, and the ouplingonstants m and � will have a well de�ned engineering dimension, denoted d�.As is well known, in a general urved spaetime, there is no \preferred vauum state"nor even any preferred Hilbert spae onstrution of the quantum theory orrespondingto the lassial Lagrangian (2) (see, e.g., [22℄ for further disussion). Therefore, in ourview, it is essential to formulate the theory via the algebrai approah.As in [14℄, we shall take the algebra of observables of the free �eld to be the \extendedWik polynomial algebra"W(M;g). As desribed in [14℄, this algebra an be onstrutedby hoosing a quasifree Hadamard state, !, on the \anonial ommutation algebra",A(M;g), then onsidering the normal ordered �eld operators on the GNS representationof !, and showing [3℄ that one gets well de�ned operators by smearing these normalordered operators with suitable distributions rather than test funtions. The resultingalgebra of operators an then be shown [14℄ to be independent of the hoie of !.Following [8℄, we outline here a muh more diret onstrution of W(M;g). This on-strution is suÆiently di�erent in appearane from that given in [14℄ that it is worthwhileto explain the relationship between the onstrutions. First, reall the usual onstrutionof the anonial ommutation algebra, A(M;g): Start with the free *-algebra generatedby the identity, 11, and all expressions of the form '(f), where f is an element of D1(M),the spae of smooth salar densities on M with ompat support. (Thus, this algebraonsists of all �nite linear ombinations of 11 and terms ontaining �nitely many fatorsof the form '(fi) and '(fj)�.) Next, de�ne the two-sided ideal onsisting of all elementsof this algebra that ontain at least one fator of any of the following four types:(i) '(�1f1 + �2f2)� �1'(f1)� �2'(f2), with �1; �2 2 C ;(ii) '(f)� � '( �f); 6



(iii) '((rara �m2 � �R)f); and(iv) '(f1)'(f2)�'(f2)'(f1)�i�(f1; f2)11, where � denotes the advaned minus retardedGreen's funtion for the Klein-Gordon operator.Then A(M;g) is de�ned by fatoring the free algebra by this ideal.It is useful to make the following trivial hange in the onstrution of A(M;g): Insteadof starting with the free algebra generated by the identity, 11, and symbols of the form'(f), we start with the free tensor algebra of smooth ompatly supported salar testdensities on M , F(M) � C �Mn�1 
nD1(M): (3)with a *-operation de�ned by omplex onjugation. (Note that although the diret sumin eq. (3) is in�nite, by de�nition, eah element of F(M) has only �nitely many non-zeroentries.) The *-algebra F(M) already inorporates the identi�ations orresponding to(i) and (ii) above, and learly is isomorphi to the free algebra of the previous paragraphfatored by the ideal generated by (i) and (ii). Thus, we an equivalently de�ne A(M;g)by fatoring F(M) by the ideal generated by expressions (iii) and (iv) above. We willinorporate this viewpoint in our notation by denoting elements of A(M;g) by theirrepresentatives in F(M). Thus, for example, we will denote the element of A(M;g)orresponding to the �eld operator smeared with f 2 D1(M) by [f ℄ rather than '(f).Next, we note that given any t 2 F(M), the imposition of the ommutation relations(iv) above would allow us to hoose a unique representative of t in the totally symmetritensor algebra. Thus, rather than imposing these ommutation relations by fatorizationas above, we may instead work with the totally symmetri tensor algebra. Hene, wede�ne Fsym(M) � C �Mn�1 
nsymD1(M): (4)and we de�ne a produt, ?0, (whih depends upon g) in Fsym(M) that orresponds totaking the ordinary tensor produt in F(M). Namely, if tn 2 
nsymD1(M) and sm 2
msymD1(M), we de�ne(tn?0sm)n+m�2k(x1; : : : ; xn+m�2k) = n!m!k!(n� k)!(m� k)!SZM2k tn(y1; : : : ; yk; x1; : : : ; xn�k)sm(yk+1; : : : ; y2k; xn�k+1; : : : ; xn+m�2k) kYi=1 i2�(yi; yk+i); (5)where \S" denotes total symmetrization in the variables x1; : : : ; xn+m�2k and where theintegral is over the \y"-variables3. In other words, the right side of eq. (5) gives the3Sine tn and sm are densities, no volume element has to be spei�ed in the integral.7



totally symmetri representative of tn 
 sm in the tensor algebra F(M) under impositionof the ommutation relations (iv). Sine the algebra (4) with the produt (5) alreadyinorporates onditions (i), (ii), and (iv) above, we onsider the ideal onsisting of allelements of Fsym(M) that ontain at least one fator of the form (rara � m2 � �R)f .We again obtain A(M;g) by fatoring Fsym(M) by this ideal.We now make an important further modi�ation to the above onstrution by intro-duing a new (!-dependent) produt, ?, on Fsym(M) by replaing i2� in eq. (5) by !where ! is an arbitrary (\undensitized") distribution in two variables that satis�es theKlein-Gordon equation in eah variable and whose antisymmetri part is equal to i2�,(tn?sm)n+m�2k(x1; : : : ; xn+m�2k) = n!m!k!(n� k)!(m� k)!SZM2k tn(y1; : : : ; yk; x1; : : : ; xn�k)sm(yk+1; : : : ; y2k; xn�k+1; : : : ; xn+m�2k) kYi=1 !(yi; yk+i); (6)where the integral is again over the \y"-variables. Then, by the same argument as inLemma 2.1 of [14℄, it an be seen that Fsym(M) with the produt ? is naturally isomorphito Fsym(M) with the produt ?0. Therefore if we fator Fsym(M) with the produt ?by the ideal omprised by all elements of Fsym(M) that ontain at least one fator of(rara �m2 � �R)f , we again obtain an algebra isomorphi to A(M;g). It also shouldbe noted that for f1; f2 2 D1(M) we havef1 ? f2 � f2 ? f1 = i�(f1; f2)11: (7)Now, hoose ! to be the two-point funtion of a Hadamard state. Then the produt(6) orresponds to Wik's formula expressing the produt of a normal-ordered n-pointfuntion with a normal ordered m-point funtion in terms of normal ordered produts,where the normal ordering is done with respet to the quasi-free Hadamard state withtwo-point funtion !. It an thereby be seen that for any tn 2 
nsymD1(M) of the formtn = f1 
sym � � � 
sym fn with eah fi 2 D1(M), the algebrai element [tn℄ 2 A(M;g)orresponding to the equivalene lass of tn is represented by the normal ordered produt:'(f1) � � �'(fn) :! in the GNS-representation of the state !.The key observation needed to de�ne the algebraW(M;g) is to note that the wavefrontset properties of ! then imply that eq. (6) ontinues to make sense when the test funtionspae 
nsymD1(M) in (4) is replaed by the muh larger spae4E 0sym(M�n) = fompatly supp. symm. distr. tn jWF(tn) � T �Mn n (V �n+ [ V �n� )g; (8)4Sine the elements in E 0sym(M�n) are distributions, they automatially have the harater of densities.The spae 
nsymD1(M ) an therefore be naturally identi�ed with a subspae of E 0sym(M�n), without theneed to speify a volume element on M . 8



where V� is the future/past lightone with respet to the metri g, and where \WF"denotes the wave-front set of a distribution [13℄. We de�ne W(M;g) to be the vetorspae E 0(M;g) � C �Mn�1 E 0sym(M�n): (9)with produt (6), fatored by the ideal omprised by all elements of the form (rara �m2� �R)xitn(x1; : : : ; xn). Thus, every element a 2 W orresponds to an equivalene lassa = [s℄ of an element s = s0 +Pnk=1 sk, where s0 2 C , and where sk 2 E 0sym(M�k). Theprodut of two elements in W is given by [s℄ ? [t℄ � [s ? t℄. If f is a smooth salar densityon M of ompat support, then the equivalene lass [f ℄ 2 W orresponds exatly to thesmeared free �eld '(f).The de�nition of the algebra W a priori depends on some hoie for !, but it wasshown in [14℄ that di�erent hoies for ! give rise to isomorphi algebras. Therefore, asan abstrat algebra, W is independent of this hoie. Sine A is naturally a subalgebraof W, we automatially know what elements of W orrespond to the smeared �eld '(f)and its smeared n-point funtions. However, it is not obvious what (if any) elements ofW orrespond to smeared Wik powers of the �eld and time-ordered produts of Wikpowers.This issue was addressed in [14℄ and [15℄, where an axiomati approah was taken. Akey ondition imposed in [14℄ and [15℄ on the de�nition of Wik powers and their time-ordered-produts was that they be loal, ovariant �elds [5℄. In order to de�ne this notion,it is neessary to think of the �elds as being de�ned not only for a given, �xed spaetime,but rather for all (globally hyperboli) spaetimes, and we inorporate this viewpointhere by indexing the �eld with the spaetime under onsideration, suh as �[M;g℄. If(M;g) and ( ~M; ~g) are two spaetimes suh that there is a ausality preserving isometriembedding, �, of ( ~M; ~g) into (M;g), then the algebra W( ~M; ~g) an be regarded as asubalgebra of W(M;g) via a homomorphism �� in a natural way [14℄, so that the free�eld theory with algebra W(M;g) is a loal, ovariant �eld theory [5℄. The requirementthat � be a loal ovariant �eld is then that��(�[ ~M; ~g℄(x)) = �[M;g℄(�(x)): (10)It was shown in [14℄ that this requirement together with a number of additional require-ments (suh as ommutation properties, ontinuity and analytiity onditions, miroloalspetral onditions, and ausal fatorization) uniquely determines the de�nition of Wikpowers and their time-ordered-produt up to ertain well de�ned renormalization ambi-guities. Existene of Wik powers satisfying these properties also was established in [14℄,and existene of their time-ordered-produts was proven in [15℄.The results of the present paper will rely heavily on the uniqueness theorem 5.2 of[14℄ for time-ordered-produts. The allowed ambiguity in the de�nition of time-ordered-produts as given in theorem 5.2 of [14℄ is rather awkward to state, so we �nd it useful9



to reformulate this theorem in the following manner (see [1, 8℄). First, we introdue anabstrat vetor spae, V, omprised by �nite linear ombinations of basis elements labeledby formal produts of ' and its ovariant derivatives,V = spanC n� =Yr(a1 � � �rai)'o : (11)We refer to the elements of V as \formal" beause we do not assume any relations betweenthe �elds at this stage. In partiular, we regard the �eld and its derivatives as independentquantities whih are not related by the �eld equation. LetD1(M;V) � fsmooth densities on M of ompat support with values in Vg (12)so that an element F 2 D1(M;V) an be uniquely expressed as a �nite sum F =Pfi�iwith eah �i a basis element of V and fi 2 D1(M). It is onvenient to think of a presrip-tion for de�ning Wik powers as a linear map from D1(M;V) into the algebra W(M;g).Thus, a presription for Wik powers assoiates to an element f(x)� 2 D1(M;V) an ele-ment �(f) 2 W(M;g). Similarly, it is useful to view the n-fold time ordered produt ofWik powers as an n-times multilinear mapT :�nD1(M;V) ! W(M;g) (13)(f1�1; : : : ; fn�n) ! T (Y�i(fi)): (14)The map de�ning Wik powers is, of ourse, the speial ase n = 1 of the map de�ningtime-ordered-produts.Let us now suppose that we have two presriptions for de�ning time-ordered-produts(and, in partiular, two presriptions for de�ning Wik powers). It is simplest and mostonvenient to express the formula for the di�erene between these presriptions in termsof the loal S-matrix, S(P fi�i), for the formal sumP fi�i, whih is formally de�ned byS(X fi�i) = 11 +Xn�1 inn!T ( nYX�i(fi)): (15)(Of ourse, as disussed further at the beginning of setion 3.1 below, the series on the rightside of eq. (15) is not expeted to onverge. It should be viewed as merely a bookeepingdevie that will allow us to write an in�nite sequene of ompliated equations|givenexpliitly in eq. (25) below|as a single equation.) Denote the image of the n-tuple(f1�1; : : : ; fn�n) 2 �nD1(M;V) under the �rst presription as T (Q�i(fi)) and denoteits image under the seond presription as ~T (Q ~�i(fi)). Then, if both presriptions satisfyall of the requirements stated in [14℄, [15℄, theorem 5.2 of [14℄ establishes that the followingrelation holds between the orresponding loal S-matries:~S(X fi�i) = S(X fi�i + Æ(X fi�i)); (16)10



where Æ(Pfi�i) is given by the formal power series expressionÆ(X fi�i) =Xn�1 in�1n! On(�nX fi�i): (17)Equation (16) is to be interpreted as an in�nite sequene of equalities between termsontaining equal numbers of eah of the fi's under the formal substitutions (15) and (17).In eq. (17), the On's are multilinear mapsOn :�nD1(M;V)! D1(M;V) (18)of the form: On(�ni=1fi�i) = Xj Fj	j; (19)where 	j are basis �elds in V and the densities Fj are of the formFj(x) = �(x) X(a)=(a1):::(an)Cj(a)(x) nYi=1r(ai)fi(x): (20)In this formula, we have iden�ed the densities fi with test funtions on M using themetri volume element � and we have used the multi-index notation r(a) = r(a1 � � � ras).The quantities Cj (a) are tensors that are monomials in the Riemann tensor, its ovariantderivatives, and m2, with oeÆients that are analyti funtions of �. The quantities Onare further restrited by the requirement that[T (On(�ni=1fi�i)); '(fn+1)℄ = nXk=1 T (On(f1�1; : : : ; iX(a) (fn+1�(a)fk) ��k�r(a)'; : : : ; fn�n)):(21)Here, ��=�r(a)' is the element in V obtained by formally di�erentiating the expression� 2 V with respet to r(a)' (thereby viewing the latter as an \independent variable"),(a) is a spaetime multi-index as above, and(fn+1�(a)fi)(x) = ZM fn+1(x)�(x; y)r(a)fi(y); (22)where � is the advaned minus retarded Green's funtion, and where the integration isover the \y"-variables. In addition, if dj(a) is the engineering dimension of Cj(a), N(a)the number of ovariant derivatives appearing expliitly in equation (20), and dj is theengineering dimension of the �eld 	j, then eah of the terms in the sum (20) must satisfythe power ounting relation nXi=1 d�i = 4n+N(a) + dj(a) + dj (23)11



for all multi-indies (a) and all j. Furthermore, the quantities Æ(f�) de�ned in eq. (17)satisfy the reality ondition Æ(f�)� = Æ(f�) (24)for real valued f and hermitian �, whih orresponds to the unitarity requirement,S(f�)�1 = S(f�)�, for real valued f and hermitian �. Equation (24) is equivalentto the reality property On(�nf�)� = (�1)n�1On(�nf�).The relations between the two presriptions for time-ordered-produts given impliitlyin eq. (16) an be written out expliitly as~T  nYi=1 ~�i(fi)! = T  nYi=1 �i(fi)!+XP T  YI2P OjIj(�j2Ifj�j) Yi=2I 8I2P �i(fi)! : (25)where, P is a olletion of pairwise disjoint subsets I1; I2; : : : of the set f1; : : : ; ng, not allof whih an be empty, and jIj is the number of elements of suh a set. Equation (25)orresponds to our previous formulation of the uniqueness theorem given in theorem 5.2of [14℄, exept that, for simpliity, we asssumed in the statement of that theorem that the\untilded" presription for de�ning Wik produts was given by \loal normal ordering"with respet to a loal Hadamard parametrix. In Minkowski spaetime a proof thateq. (25) orresponds to the formal expansion of eq. (16) is given in [20, thm. 6.1℄; theombinatorial arguments given there an be generalized in a straightforward manner tothe present ase.If we takeP fi�i to be the interation Lagrangian density, then eq. (16) orrespondsto the familiar statement in perturbative quantum �eld theory in Minkowski spaetimethat the \renormalization ambiguities" in the S-matrix5 orrespond simply to adding\ounterterms" to the Lagrangian of the appropriate \power ounting" dimension. Theonly signi�ant di�erene ourring when one goes to urved spaetime is that additionalounterterms involving the spaetime urvature may our.We onlude this setion by reviewing the saling properties of Wik powers andtheir time-ordered-produts. Fix a Wik power �[M;g; p℄ and onsider the 1-parameterfamily of Wik powers �[M;�2g; p(�)℄ de�ned on the spaetimes (M;�2g), with ouplingonstants p(�) = (��2m2; �): (26)These quantities belong (when smeared with a test density) to di�erent algebras,�[M;�2g; p(�)℄(f) 2 W(M;�2g; p(�)) (27)5We should emphasize that our interest here is not in determining the renormalization ambiguitiesin a global sattering matrix (whih will, in general, not even be de�ned) but rather in determining therenormalization ambiguities in the interating �eld itself (as well as its Wik powers and the time-ordered-produts of its Wik powers). However, the formulas expressing these ambiguities are most onvenientlyexpressed in terms of the relative S-matrix, whih is de�ned in terms of the loal S-matrix (see setion3.2 below), so a knowledge of the ambiguities in the loal S-matrix will enable us to determine theambiguities in the interating �eld. 12



(where we now have indiated expliitly the dependene of this algebra and the �eld onthe oupling parameters p), and hene annot be ompared diretly. However, as observedin [14℄, one an de�ne a natural *-isomorphism�� :W(M;�2g; p(�))!W(M;g; p); ��([tn℄) � ��n[tn℄: (28)In other words, �� maps the elementofW(M;�2g; p(�)) orresponding to :'(f1) � � �'(fn) :!�in the GNS-representation of the quasi-free Hadamard state !� into the element ofW(M;g; p) orresponding to :'(f1) � � �'(fn) :! in the GNS-representation of the quasi-freeHadamard state !, where the two-point funtions of !� and ! are related by !�(x1; x2) =��2!(x1; x2). Using this isomorphism, we an then identify theWik produt �[M;�2g; p(�)℄with a loal ovariant �eld ��(�[M;�2g; p(�)℄) for the unsaled metri and unsaled ou-pling onstants g; p.The free �eld ' has the homogeneous saling behavior��('(f)) = ��1'(f); (29)where the �eld on the left side of this equation is de�ned in terms of the saled metri �2gand saled oupling onstants p(�), whereas the �eld on the right side of this equationis de�ned in terms of the unsaled metri g and unsaled oupling onstants p. Thehigher order Wik powers and their time-ordered-produts have an \almost" homogeneoussaling behavior in the sense that6�� T  nYi=1 �i(fi)!! = ��dT T  nYi=1 �i(fi)!+��dT XP T  YI2P OjIj(�;�j2Ifj�j) Yi=2I 8I2P �i(fi)! ; (30)where dT is the engineering dimension of the time-ordered-produt and the quantitiesOn(�;�ni=1fi�i) =Xj Fj(log �)	j (31)have the same properties as the quantities eq. (20) in our uniqueness theorem, withthe only di�erene that the salar densities Fj(log �) now have an additional polynomialdependene on log �.As we will see, the �elds in the interating quantum �eld theory will not have thisalmost homogeneous saling behavior in general.6The fat that the non-homogeneous terms on the right side of eq. (30) take the form of loal, ovariant�elds that depend polynomially on log�was taken as an axiom in [14℄, the onsisteny of whih was provenin [15℄. The spei� form of these terms follows from the uniqueness theorem of [14℄.13



3 Interating �elds in urved spaetime3.1 De�nition of the interating �eldIn this setion, we onsider the interating �eld theory desribed by the Lagrangian density(1). Our main aim is to de�ne the interating �eld, 'L1, as well as its Wik powers andthe time-ordered-produts of its Wik powers. We use the generi notation �L1 to denoteany Wik power and TL1(Q�i) to denote any time-ordered-produt of Wik powers ofthe interating �eld.The �rst step is to de�ne a suitable algebra, X (M;g), of whih these interating �eldswill be elements. The interating �eld algebra will then be de�ned to be a suitable sub-algebra, BL1(M;g), of X (M;g) (see eq. (46) below). Unfortunately, even in Minkowskispaetime, if � 6= 0 there is no known way to onstrut the �elds for this theory other thanon the level of perturbation theory. Furthermore, the perturbative formulae for the quan-tities that are normally alulated|suh as Green's funtions and S-matrix elements|arenot expeted to onverge. In this regard, however, we note that quantities suh as Green'sfuntions and S-matrix elements do not depend solely on the algebrai properties of the�elds themselves, but also involve properties of the vauum state or ground state and, inmany instanes, also \in" and \out" states. However, even if, in some suitable sense, thealgebra of �elds were to vary analytially under hanges of the parameter �, there is noreason that ertain states of the theory, suh as the ground state, need vary analytially.This suggests the possibility that if perturbation theory were used solely for the purposeof alulating algebrai relations involving the interating �eld|rather than propertiesinvolving states|then perhaps at least some of the diÆulties with the onvergene ofperturbative expansions would not arise. In other words, rather than using perturbationtheory to alulate Green's funtions, S-matrix elements, or other quantities that dependupon states, we suggest that it may be more fruitful to use perturbation theory to at-tempt to �nd analyti relations between the �eld observables that hold to all orders inperturbation theory.However, we shall not attempt to pursue any suh program here, but rather will onlyattempt to onstrut the interating theory at the level of formal power series in theoupling onstant �. Thus, we shall take X (M;g) to beX (M;g) =�1n=0W(M;g) (32)where an element A 2 X (M;g) of the form A = (A0; A1; A2; : : : ) should be interpretedas orresponding to the formal power seriesA = 1Xn=0 An�n: (33)The multipliation law in X (M;g) is then de�ned to be that orresponding to the mul-tipliation of the formal power series expressions (33), i.e., if A = (A0; A1; A2; : : : ) and14



B = (B0; B1; B2; : : : ), then A ? B = (A0 ? B0; A1 ? B0 + A0 ? B1; : : : ). Note that theinterating �eld algebra BL1(M;g) � X (M;g) that we will de�ne in eq. (46) below willthen formally orrespond to the entire one parameter family of interating �eld algebrasfor all values of �, rather than the interating �eld algebra for a spei� value of �.To de�ne the interating �eld, we �rst onsider a situation in whih the interationis turned on only in some �nite spaetime region, i.e., we hoose a uto� funtion, �, ofompat support on M whih is equal to 1 on an open neighborhood of the losure, �V , ofsome globally hyperboli open region V with the property that �\V is a Cauhy surfaefor V for some Cauhy surfae � in M . This uto� will be removed in a later step (seebelow). We de�ne the relative S-matrix for f� with respet to the interation Lagrangiandensity �L1 by S�L1(f�) = S(�L1)�1 ? S(�L1 + f�) (34)where the loal S-matrix, S(f�), was de�ned in eq. (15) above. Then the Wik power,��L1 , for the interating theory with Lagrangian density �L1 orresponding to the Wikpower � of the free theory is de�ned by [2℄��L1(f) � �i��S�L1(�f�)�����=0: (35)Here the right side of eq. (35) should be viewed as (rigorously) de�ning an element ofX (M;g), whih is obtained by formally expanding S(�L1)�1 and S(�L1 + f�) in powersof the oupling onstant � and then olleting all of the (�nite number of) terms thatmultiply �n for eah n (see eq. (33) above and eq. (37) below). Similarly, the time-ordered-produt of Wik powers of the interating �eld with Lagrangian density �L1 is de�nedby T�L1( nYi=1 �i(fi)) � �nin��1 : : : ��nS�L1(Xi �ifi�i)�����1=���=�n=0: (36)Note that the de�nition of ��L1 (as well as that of T�L1(Q�i)) has been adjusted sothat ��L1 oinides with the orresponding free �eld � before the interation is \swithedon". This an be seen expliitly by expressing ��L1(f) in terms of the \totally retardedproduts"7 ��L1(f) = �(f) +Xn�1 inn!R(f�; �L1; : : : ; �L1| {z }n fators ); (37)Sine the R-produts have supportsuppR � f(y; x1; : : : ; xn) j xi 2 J�(y) 8ig; (38)7This formula is known as \Haag's series," sine an expansion of this kind was �rst derived in [12℄ forMinkowski spaetime; see also [11℄. 15



it follows that all terms in the above sum will vanish if the support of f does not intersetthe ausal future of the support of �.Below, we will need to know how the �elds (36) hange under a hange of the uto�funtion �. Now if � and �0 are two uto� funtions, eah of whih are 1 in an openneighborhood of �V as above, then there exists a smooth funtion h� of ompat supporton M whih is equal to �� �0 on the ausal past of the region V , and whose support doesnot interset the ausal future of V . The unitary U(�; �0) de�ned byU(�; �0) = S�L1(h�L1) (39)is then independent of the partiular hoie for h�, and one has [4, thm. 8.6℄U(�; �0) ? T�L1(Y�i(fi)) ? U(�; �0)�1 = T�0L1(Y�i(fi)); (40)for all �elds �i and all smooth salar densities fi of ompat support in V .We now remove the uto� �. Formulas (35) and (36) will not, in general, makesense if we straightforwardly attempt to take the limit � ! 1. Indeed if � ould beset equal to 1 throughout the spaetime in eq. (35), then the resulting formula for �L1would de�ne an interating �eld in the sense of Bogoliubov [2℄, with the property thatthe interating �eld approahes the free �eld in the asymptoti past. However, even inMinkowski spaetime, it is far from lear that suh an asymptoti limit of the interating�eld will exist (partiularly for massless �elds), and it is muh less likely that any suhlimit would exist in generi globally hyperboli urved spaetimes that are not at in theasymptoti past.In order to remove the uto� in a manner in whih the limit will exist, we will not tryto take a limit where the �eld remains �xed in the asymptoti past but rather|followingthe ideas of [4℄|we will take a limit where the �eld remains �xed in regions of inreasingsize in the interior of the spaetime. To make this onstrution preise, it is useful to havethe following lemma:Lemma 3.1. Let (M;g) be a globally hyperboli spaetime. Then there exists a sequeneof ompat sets, fKng, with the properties that (i) for eah n, Kn � Vn+1, where Vn+1 �int(Kn+1) (ii) [nKn = M , and (iii) for eah n, Vn is globally hyperboli and � \ Vn is aCauhy surfae for Vn, where � is a Cauhy surfae for M .Proof. Let t be a time funtion on (M;g) with range �1 < t <1 whose level surfaesare Cauhy surfaes, �t, that foliate M [10℄, [7℄. Let � = �0. Choose any ompleteRiemannian metri, qab, on �, hoose x0 2 �, and let Bn be the losed ball (on �) ofradius n about x0 with respet to qab. De�neKn = D(Bn) \ J�(�n) \ J+(��n) (41)where D denotes the domain of dependene and J� and J+ denote the ausal past andfuture, respetively. Then Kn is losed. Furthermore, sine Bn is ompat it follows that16



J+(Bn)\ J�(�n) and J�(Bn)\ J+(��n) are ompat. Sine Kn is a subset of the unionof these two sets, it follows that Kn is ompat. Clearly, we have Vn � Vn+1. However,if x lies on the boundary of Kn, then it must lie on the boundary of D(Bn) and/or lieon �n or ��n; in all ases, it follows immediately that x 2 Vn+1. Thus, Kn � Vn+1. Toprove property (ii), let y 2M with, say, y 2 J+(�). Sine J�(y) \ � is ompat, it mustbe ontained in some ball of radius r about x0 (with respet to the metri qab on �).Then y 2 D(Br), so y 2 Kn for any n suh that n > r and n > t(y), as we desired toshow. Finally, the fat that Vn is globally hyperboli with Cauhy surfae Vn \ � followsimmediately from the fat that Vn is the interior of the domain of dependene of Bn forthe spaetime I�(�n) \ I+(��n).Let fKng, n = 1; 2; : : : , be a sequene of ompat sets with the properties stated inlemma 3.1. For eah n, let �n be a smooth funtion with support ontained in Kn+1 suhthat �n = 1 on an open neighborhood of Kn. Let U1 = 11 and let Un = U(�n; �n�1) for alln > 1, where U(�n; �n�1) was de�ned in eq. (39) above. Write un = U1 ?U2 ? � � � ?Un. Ourde�nition of the interating �eld, its Wik powers, and their time-ordered-produts is:TL1(Y�i(fi)) � limn!1Ad(un)T�nL1(Y�i(fi)); (42)where we use the notation Ad(un)A = un ? A ? u�1n for any A 2 X (M;g). The existeneof the limit is a diret onsequene of the following proposition:Proposition 3.1. Suppose that N is suh that the support of eah fi is ontained in KN .Then for all n;m � N we haveAd(un)T�nL1(Y�i(fi)) = Ad(um)T�mL1(Y�i(fi)) (43)Proof. It suÆes to show that for any n � N we haveun+1 ? T�n+1L1(Y�i(fi)) ? u�1n+1 = un ? T�nL1(Y�i(fi)) ? u�1n (44)But by eq. (40) we haveUn+1 ? T�n+1L1(Y�i(fi)) ? U�1n+1 = T�nL1(Y�i(fi)) (45)from whih the desired result follows immediately by applying Ad(un) to both sides.Now, given any ompat set K � M and any family of ompat sets Kn satisfyingproperties (i) and (ii) of the above lemma, then there always exists8 an N suh that8Proof: Otherwise, one ould �nd a sequene fxng 2 K suh that xn =2 Kn for all n. However, thissequene would have an aumulation point, x, whih must lie in the interior of some KN , resulting in aontradition. 17



K � KN . Given any smeared time-ordered-produt of Wik powers, we hoose K to bethe union of the supports of all of the (�nite number of) test funtions appearing in thetime-ordered produt. By the above proposition, there exists an N suh that the sequeneappearing on the right side of eq. (42) is onstant for all n > N . Therefore, the limitexists.The meaning of the sequene Ad(un)T�nL1(Q�i(fi)); n = 1; 2; : : : , is easily understoodas follows. Sine u1 = 11, the �rst element of this sequene is just the Bogoluibov formulafor this interating �eld quantity with uto� funtion �1. The seond element of thissequene modi�es the Bogoliubov formula with uto� funtion �2 in suh a way that,aording to eq. (40) above, the modi�ed Bogoliubov formula with uto� funtion �2agrees with the unmodi�ed Bogoliubov formula with uto� funtion �1 when the supportsof all of the fi are ontained within K1. For the third element of the sequene, the unitarymap U3 �rst modi�es the Bogoliubov formula with uto� funtion �3 so that it agrees inregion K2 with the Bogoliubov formula with uto� funtion �2. The ation of the unitaryU2 then further modi�es this expression so that it agrees in region K2 with the modi�edBogoliubov formula of the previous step. In this way, we have implemented the ideaof \keeping the interating �eld �xed in the interior of the spaetime" as the uto� isremoved.We de�ne the interating �eld algebra BL1(M;g) to be the subalgebra of X (M;g)generated by the interating �eld, its Wik powers, and their time-ordered-produts, i.e.,BL1(M;g) � falgebra generated by TL1(Y�i(fi)) j fi 2 D1(M);�i 2 Vg: (46)This de�nition of BL1(M;g) as a subalgebra of X (M;g) depends on a hoie of a familyof ompat sets Kn satisfying the properties of lemma 3.1 as well as a hoie of uto�funtions �n. If we were to hoose a di�erent family, ~Kn, of ompat sets and a orre-sponding di�erent family, ~�n, of uto� funtions, we will obtain a di�erent subalgebra~BL1(M;g) � X (M;g) of interating �elds. However, the algebra ~BL1(M;g) is isomorphito BL1(M;g). To see this, fous attention on the subalgebras ~BL1(K;g) and BL1(K;g)generated by �elds that are smeared with test funtions with support in a �xed ompatset K. Let n be suh that K � Kn and K � ~Kn. LetXn = un ? U(~�n; �n) ? ~u�1n : (47)Then Xn is a unitary element of X (M;g). However, for any ~F 2 ~BL1(K;g), it followsfrom eqs. (40) and (42) together with proposition 3.1 that Ad(Xn) ~F is the orrespondinginterating �eld quantity F 2 BL1(K;g). This shows that the map K : ~BL1(K;g) !BL1(K;g) whih assoiates to any element of ~BL1(K;g) the orresponding interating�eld quantity in BL1(K;g) is well de�ned and is a *-isomorphism. However, sine K isarbitrary, this argument atually shows that the map  : ~BL1(M;g) ! BL1(M;g) whihassoiates to any element of ~BL1(M;g) the orresponding element of BL1(M;g) also is18



well de�ned and is a *-isomorphism of these algebras9. Thus, as an abstrat algebra,BL1(M;g) is independent of the hoies of Kn and �n that entered in its onstrution. Inthe following we assume that we have made an arbitrary, but �xed, hoie for Kn and �nin every spaetime.In the free theory, the notion of a loal and ovariant �eld was de�ned relative to anatural injetive *-homomorphism �� : W( ~M; ~g) ! W(M;g) assoiated with ausalitypreserving isometri embeddings � of a spaetime ( ~M; ~g) into another spaetime (M;g).The Wik produts of the free �eld and their time-ordered-produts were then seen to beloal, ovariant �elds in the sense that eq. (10) holds. In order to get a orrespondingnatural injetive *-homomorphism, �� : BL1( ~M; ~g) ! BL1(M;g), for the interating�eld algebra, we must ompose the natural ation of �� on BL1( ~M; ~g) with the map onstruted above in order to ompensate for the fat that the hoies for Kn and �n on(M;g) may not orrespond to the hoies of ~Kn and ~�n on ( ~M; ~g). It then follows thatthe interating �eld, its Wik powers and their time-ordered-produts as de�ned aboveare loal and ovariant �elds in the sense that for any ausality preserving isometriembedding, �, we have ��(�L1 [ ~M; ~g℄(x)) = �L1 [M;g℄(�(x)); (48)with an analogous equation holding for the interating time-ordered-produts.Finally, we omment upon how the theory we have just de�ned is to be interpreted, i.e.,how the mathematial formulas derived above for the interating �eld relate to preditionsof physially observable phenomena. In many disussions of quantum �eld theory inMinkowski spaetime, the interpretation of the theory is made entirely via the (global)S-matrix. Here it is assumed that in the asymptoti past and future, states of the �eld anbe identi�ed with states of a free �eld theory, whih have a natural partile interpretation.It is also assumed that one an prepare states orresponding to desired inoming partilestates and that one an measure the properties of the state of outgoing partiles, so thatthe S-matrix an be determined. A wide lass of preditions of the theory|inludingessentially all of the ones that an be measured in pratie|an thereby be formulated interms of measurements of the S-matrix for partile sattering, without the need to evenmention loal �elds. Indeed, when this viewpoint on quantum �eld theory is taken to theextreme, the loal quantum �elds, in e�et, play the role of merely being tools used foralulating the S-matrix.An alternative, but losely related, viewpoint on interpreting the theory in Minkowskispaetimemakes ruial use of the existene of a preferred vauum state. Here, one fousesattention on the orrelation funtions of the �eld in this state, whih are assumed to bemeasureable|at least in the asymptoti past and future and for suÆiently large spatialseparation of the points. The interpretation of the theory an be formulated in terms of9Note, however, that there need not exist a unitary element X 2 X (M;g) whose ation on ~BL1(M;g)oinides with . 19



its preditions for these orrelation funtions. This viewpoint on the interpretation of thetheory is losely related to the �rst one, sine the partile measurements in the S-matrixinterpretation an be viewed as really orresponding to measuring ertain properties ofthese orrelation funtions.However, for quantum �elds in a general, globally hyperboli urved spaetime, wedo not expet to have asymptoti, free partile states or any globally preferred states.It therefore would not appear fruitful to attempt to interpret the theory in a manneranalogous to the above ways in whih the theory is normally interpreted in Minkowskispaetime. Rather, it would seem muh more fruitful to view the interating �eld itself|together with its Wik powers and other loal ovariant �elds in BL1(M;g)|as the fun-damental observables in the theory. To make \measurements", we assume that we haveaess to some external systems that ouple to the �eld observables of interest via knowninteration Lagrangians, and that we an then measure the state of the external systemsat di�erent times. It is lear that by making suÆiently many measurements of this sort,we an test any aspet of the theory and|if the theory is valid|we also an determineany unknown oupling parameters in the theory. However, it is not straightforward togive a simple, universal algorithm for doing so, sine the properties of the states will de-pend upon the spaetime under onsideration, and a type of experiment that would mostusefully probe the theory for a partiular spaetime may not be as useful for anotherspaetime.To make the remarks of the previous paragraph more expliit, onsider a typial ex-periment in Minkowski spaetime wherein one prepares a system of partiles in a giveninoming state and measures the partile ontent of the outgoing partiles. Both the\state preparation" and the \measurement" of the \partiles" in their �nal state reallyonsist of introduing ertain external systems that have desired ouplings to the quantum�eld, preparing the initial state of these external systems suitably, and measuring their�nal state. In a urved spaetime, one ould presumably introdue external systems withouplings to the �eld that are similar to those of systems used in Minkowski spaetime,although it should be noted that there is not any obvious, general notion of what it meansto have \the same" system in a urved spaetime as one had in Minkowski spaetime,unless one goes to a limit where the size of the system is muh smaller than any urvaturesales. However, even if one onsiders an external system in urved spaetime that orre-sponds to a system of \partile detetors" in Minkowski spaetime, it may not be possibleto give any onsistent interpretation of the outome of the urved spaetime measure-ments in terms of \partiles". Nevertheless, suh measurements still provide informationabout the states of the quantum �eld, and it is lear that all aspets of the quantum �eldtheory an be probed by oupling the �eld to suitable external systems and measuringthe state of these external systems.In should be noted that the above situation is not signi�antly di�erent from thease of lassial �eld theory. Suppose that a lassial �eld ' with Lagrangian (1) an bemeasured via its e�et on the motion of salar test harges, whih feel a fore proportional20



to ra'. In Minkowski spaetime, one ould set up an experiment where a global familyof inertial observers release test partiles at some time in the distant past. By studyingthe test partile motion for a brief interval of time, they ould reonstrut ' (up to aonstant) in that region of spaetime and assoiate a noninterating solution with thestate of the �eld in the distant past. By repeating this proedure in the distant futurethey ould obtain a orresponding non-interating solution there, and they ould therebydetermine the lassial S-matrix. A great deal of information about the interating theoryis enoded in the lassial S-matrix. However, it does not seem straightforward to givea simple algorithm for making measurements with a similar interpretative ontent in ageneral urved spaetime, where there are no asymptoti regions and no globally preferredfamilies of observers. Nevertheless, it is lear that the lassial �eld theory in urvedspaetime is as meaningful and interpretable as in Minkowski spaetime, and that all ofthe preditions of the urved spaetime theory an be probed by doing experiments thatstudy the motion of a suÆiently wide lass of test partiles.3.2 Renormalization ambiguities for the interating �eldIn the previous subsetion we explained the onstrution of the interating Wik produtsand their time-ordered-produts in the interating �eld theory lassially desribed by theLagrangian L given by (1). These onstrutions were based on a presription for de�ningthe Wik produts and their time-ordered-produts in the orresponding free �eld theory.As we disussed in setion 2, the de�nition of these quantities is subjet to some well-spei�ed ambiguities. Therefore, the quantities in the interating �eld theory also will besubjet to ambiguities.The purpose of this setion is to give a preise spei�ation of these ambiguities. Weshall show is that a hange in the presription for the Wik produts and their time-ordered-produts (within the lass of \allowed presriptions" spei�ed by our uniquenesstheorem) orresponds to a shift of oupling parameters of the theory appearing in theLagrangian (1). More preisely, the interating �eld algebra obtained with the new pre-sription will be isomorphi to the interating �eld algebra obtained with the originalpresription, but with the interation Lagrangian modi�ed by the addition of \ountert-erms", whih|for a renormalizable theory, as onsidered here|are of the same form asthose appearing in the original Lagrangian. This isomorphism of the interating �eldalgebras for the two di�erent presriptions will map the interating �eld to a multiple ofthe interating �eld. However, the relationship between the higher Wik powers of theinterating �eld and their time-ordered-produts as de�ned by the two presriptions ismore ompliated: the isomorphism between the algebras will map a higher Wik power(or a time-ordered-produt of Wik powers) into a �eld of the form spei�ed in eq. (52)below.To make the above statements more expliit, suppose that we are given two presrip-tions for de�ning the Wik produts and their time ordered produts in the free �eld21



theory, both satisfying the assumptions of our uniqueness theorem. These presriptionswill give rise to two di�erent onstrutions of interating �elds, whih we shall denote asTL1(Q�i) respetively ~TL1(Q ~�i), and we write BL1(M;g) respetively ~BL1(M;g) for thealgebras generated by these �elds. Then the relation between the tilde interating �eldsand the untilde interating �elds an be stated as follows: There exists a *-isomorphismr : ~BL1(M;g)! BL1+ÆL1(M;g) (49)suh that r� ~'L1(f)� = Z'L1+ÆL1(f); (50)for all f 2 D1(M). The �eld ~'L1 on the left side of eq. (50) is the interating �eldde�ned using the \tilde presription" with respet to the interation Lagrangian densityL1, whereas the �eld 'L1+ÆL1 on the right side of this equation is de�ned using the \untildepresription" with respet to the interation Lagrangian density L1 + ÆL1, where ÆL1 isgiven by ÆL1 = 12[Æz(r')2+ Æ�R'2 + Æm2'2 + Æ�'4℄�: (51)The parameters in this expression (inluding Æ�), as well the parameter Z in eq. (50) areformal power series in � with real oeÆients. The generalization of formula (50) for theation of r on an arbitrary interating time-ordered-produt in the tilde presription isgiven byr ~TL1  nYi=1 ~�i(fi)!! = TL1+ÆL1  nYi=1 Zi�i(fi)!+XP TL1+ÆL10�YI2P OjIj(�i2Ifi�i) Yj =2I 8I2P Zj�j(fj)1A : (52)Here, the Zi are formal power series in � whose oeÆients are real provided the orre-sponding �eld �i is (formally) hermitian. TheOn are multilinearmaps from�nD1(M;V)!D1(M;V) that depend on the interation Lagrangian L1 and have similar properties tothe maps On in our uniqueness theorem for the time-ordered produts of Wik produts inthe free theory: First, the On an be given an analogous representation to the quantitiesOn in the free theory given in eq. (19),On(�ni=1fi�i) =Xj jGj	j (53)The densities Gj have the same form as the the orresponding expressions Fj in the freetheory (see eq. (20)), and the j are formal power series in �. If the terms appearing onthe right side of eq. (53) are written out in terms of geometrial tensors (and the oupling22



onstants in the free theory), then the engineering dimensions of eah term will satisfy a\power ounting relation" idential to that in the free theory, eq. (23).In terms of the generating funtionalSL1(X fi�i) = 11 +Xn�1 inn!TL1( nYX�i(fi)) (54)for the interating Wik produts and time-ordered-produts, and the generating fun-tional ÆL1(X fi�i) �Xn�1 in�1n! On(�nX fi�i); (55)relations (52) an be rewritten more ompatly asr� eSL1(X fi�i)� = SL1+ÆL1(XZifi�i + ÆL1(X fi�i)): (56)In the preeding disussion, we have highlighted the analogies between the strutureof the renormalization ambiguities in the free and interating theories. However, thereare also some key di�erenes. Firstly, in our identity (25) speifying the renormaliza-tion ambiguities of the time-ordered-produts in the free theory, the tilde and untildetime-ordered-produts are de�ned both \with respet to the same Lagrangian". By on-trast, in the orresponding formula (52) in the interating theory, the tilde and untildetime-ordered-produts are de�ned with respet to di�erent Lagrangians. A seond keydi�erene between formulas (25) and (52) the free and interating theories is the appear-ane of the \�eld strength renormalization fators," Zi, in the interating theory, whihare absent in the free theory. Third, while the maps On and On in the free and inter-ating theories satisfy a number of similar properities, the map On does not satisfy theommutator property, eq. (21), satis�ed by On in the free theory. Fourth, we note the ap-pearane of the automorphism r in our formula (52) for the renormalization ambiguity ofthe interating time-ordered-produts, whih is absent in the orresponding formula (25)in the free theory.Proof of equation (52): Let � be a uto� funtion of ompat support as above whihis 1 in an open neighborhood of the losure, �V of a globally hyperboli subset V of Msuh that V \ � is a Cauhy surfae of V for some Cauhy surfae � of M . Eq. (16)implies that eS�L1(f�) = S(�L1 + Æ(�L1))�1 ? S(f� + �L1 + Æ(f� + �L1)): (57)In order to bring this equation into a more onvenient form, let us de�ne the followingelements in X (M;g):Æn(�L1; f1�1; : : : ; fn�n) � �nin�1��1 : : : ��n Æ(�L1 + nXi=1 �ifi�i)�����1=���=�n=0: (58)23



It follows from our uniqueness theorem that we an write Æ0(�L1) as a sum (over n andj) of terms of the general formFn;j(x)	j = �(x) X(a)=(a1):::(an)Cn;j(a)(x) nYi=1r(ai)�(x)	j; (59)where C(a)n;j are monomials in the Riemann tensor, its derivatives, and m2. Sine �L1has engineering dimension 4, it follows from eq. (23) that eah term in (59) must haveengineering dimension 4. Sine �L1 is hermitian, it follows from eq. (24) that the C(a)n;jmust be real and that the �elds 	j must be hermitian. We now divide the terms (59)appearing in Æ0(�L1) into a group onsisting of all terms not ontaining any derivativesof � and a seond group of terms eah ontaining at least one derivative of �. This givesa deomposition of Æ0(�L1) into the following two groups of terms:Æ0(�L1) = �Xn�1 �n�nXj n;j	j +Xn�1 �nXj fn;j�j: (60)Here, n;j are real onstants, 	j runs through all hermitian �elds of engineering dimen-sion 4 (inluding �elds with dimensionful ouplings suh as m2'2 or R211), the fn;j areompatly supported smooth densities on M whose support does not interset on openneighborhood of �V , and �j are hermitian �elds of engineering dimension less than 4. Inthe deomposition (60), we may replae the smooth funtions �n in the �rst sum by thefuntion � at the expense of adding new terms of the kind appearing in the seond sum,exept that these new terms will have engineering dimension equal to 4. If this is done,we obtain the deomposition Æ0(�L0) = �ÆL1 +Xj hj�j: (61)Here ÆL1 is the real linear ombination �P aj	j where 	j is running over all hermitian�elds of engineering dimension 4 (inluding again �elds with dimensionful oupling) andwhere aj =Pn�1 n;j�n. The seond sum in the above deomposition (61) of Æ0(�L1) on-tains only real test densities hj of ompat support that vanish on an open neighborhoodof �V . The quantities �j are now hermitian �elds of engineering dimension � 4.The �eld (density) ÆL1 in eq. (61) is therefore of the form laimed in eq. (51), exeptthat it may ontain (i) terms of the form Cj11, where Cj is a monomial in the Riemanntensor, its ovariant derivatives and m2, and (ii) a term proportional to 'rara'. Inpriniple these terms should be inluded in eq. (51). However, the terms (i) proportional tothe identity do not ontribute to the relative S-matrix given by eq. (57) and an thereforebe dropped. Furthermore, it an be seen that the term (ii) an always be eliminated infavor of the term m2'2+ �R'2 together with a sum of produts of urvature tensors and24



m2 of engineering dimension 4 times the identity 11, if the following additional onditionis imposed on the time-ordered-produts:T  '(rara �m2 � �R)'(f0) nYi=1 �i(fi)! = T  Xj Kj11(f0) nYi=1 �i(fi)! (62)for all �i and all fi 2 D1(M), where Kj are monomials in the Riemann tensor, itsderivatives and m2 of engineering dimension 4. For the ase of the Wik power '(rara�m2� �R)' itself, this ondition was shown to hold by Moretti [17, eq. (47)℄ for the \loalnormal ordering presription" given in [14℄ and eq. (105) below. Using the methodsof [15℄, it an be shown that this additional normalization ondition an also be satis�edfor general time-ordered-produts of the form (62). Therefore, we will assume that aondition of the form eq. (62) has been imposed10. It then follows that ÆL1 has the formlaimed in eq. (51).Again, using the properties of the maps On in our uniqueness theorem, we an writeÆ1(�L1; f�) = fÆZ� +O1(f�); (63)where ÆZ is a formal power series in the oupling onstant �. If � is hermitian, then itfollows again from eq. (24) that these power series have real oeÆients. The elementO1(f�) is of the form PZjGj	j, where the Gj an be written asGj(x) = �(x)X(a) Cj (a)(x)r(a)f(x); (64)where we have identi�ed the density f with a smooth funtion onM via the metri volumeelement � and where the Cj(a) are monomials in the Riemann tensor, its derivatives andm2 of the orret dimension. The Zj are formal power series in � and the 	j are loalovariant �elds with fewer powers in the free �eld than �. Moreover, for n � 2, we de�neOn(�ni=1fi�i) � Æn(�L1; f1�1; : : : ; fn�n): (65)Using the properties of On given in our uniqueness theorem for the time-ordered-produtsin the free theory, we an again onlude that the On must have the form stated beloweq. (52), and that, in partiular, they are independent of the partiular hoie of � so longas the support of f is ontained in the region where � is equal to 1. If we �nally de�neÆ�L1(f�) as in eq. (55) and set Z = 1+ ÆZ, then we an reast eq. (57) into the followingform: eS�L1(f�) = S�(L1+ÆL1)+P hj�j (Zf� + ÆL1(f�)): (66)10We will give a systemati analysis elsewhere of onditions that an be imposed on Wik powers andtime-ordered-produts involving derivatives. 25



On J(V ) = J+(V ) [ J�(V ) (the union of ausal future and ausal past of V ), we deom-pose hj = hj� + hj+, where hj� has ompat support whih does not interset J�(V ). Ifwe now set W (�) = S�(L1+ÆL1)(Xhj��j): (67)then we obtain by [4, thm. 8.1℄,eS�L1(f�) = W (�) ? S�(L1+ÆL1)(Zf� + ÆL1(f�)) ? W (�)�1; (68)whih holds for all f 2 D1(M) with ompat support in V . More generally, an analogousformula will hold if the expression f� is replaed by a sum of the form P�ifi�i, whereeah fi has ompat support in V .We now obtain the desired formula eq. (52) from eq. (68) by removing the uto� � inthe same way as in our de�nition of the interating �eld in setion 3.1: We onsider asequene of uto� funtions �n whih are equal to 1 on globally hyperboli open regionsVn with ompat losure that exhaust M . The interating �elds TL1+ÆL1(Q�i) are thengiven in terms of the orresponding �elds with uto� interation �n(L1+ÆL1) via eq. (42),and the interating �elds ~TL1(Q ~�i) are likewise given in terms of the orresponding �eldswith uto� interation �nL1 by the tilde version of eq. (42). Using that the interating�elds with uto� �n are related via the unitary W (�n) (see eq. (68)), one an now easilyobtain a *-isomorphism r : ~BL1(M;g)! BL1+ÆL1(M;g) satisfyingr � eSL1(f�)� = SL1+ÆL1(Zf� + ÆL1(f�)); (69)where f is now an arbitrary test density of ompat support. We an replae f� in theabove formula by a sumP�ifi�i and di�erentiate the formula n times with respet to tothe parameters �i (setting these parameters to zero afterwards). This gives us the desiredidentity (52).4 The Renormalization Group in Curved Spaetime4.1 Saling of interating �eldsAs explained in the previous setion, it is possible to give a perturbative onstrution ofthe interating quantum �eld theory that de�nes the interating �eld, its Wik produts,and their time ordered produts as loal, ovariant �elds. The onstrution of this theorydepends on a presription for de�ning Wik powers and their time-ordered-produts in theorresponding free theory. As also explained, the de�nition of these quantities involvessome ambiguities, and onsequently the de�nition of the interating �eld theory is alsoambiguous. Nevertheless we showed in the previous subsetion that these ambiguities anbe analyzed in muh the same way as in the free theory. The result of this analysis wassummarized in eq. (52). 26



In the present setion we want to investigate the behavior of the interating �eld, itsWik powers, and their time-ordered-produts in the interating theory under a resalingof the metri by a onstant onformal fator �. As explained in the introdution, thisanalysis orresponds to a de�nition of the renormalization group in urved spaetime.For the Wik powers and time-ordered-produts in the free theory, the saling behaviorwas analyzed at the end of setion 2 using the \saling map", ��, (introdued in eq. (28)above), whih assoiates to every element of W(M;�2g; p(�)) a orresponding elementof W(M;g; p), where p(�) = (��2m2; �) are the resaled oupling onstants. Choose anarbitrary, but �xed, presription for de�ning Wik powers and their time-ordered-produtsin the free theory that satisfy the axioms of [14℄ and [15℄. Let � be an arbitrary, but �xed,positive real number, and let � be a Wik power with engineering dimension d. We de�ne��[M;g; p℄(f) = �d �� ��[M;�2g; p(�)℄(f)� ; (70)and we similarly de�ne �T (Q ��i)[M;g; p℄. It follows immediately that �� and �T (Q ��i)provide presriptions for de�ning Wik powers and their time-ordered-produts that alsosatisfy all of the axioms of [14℄ and [15℄. As we have already noted, it then follows thatthe relation of this new �-dependent presription to the original presription is of theform given by eq. (30) (but without the fators of ��dT ourring on the right side of thatequation).In order to analyze the saling behavior of the �elds in the interating theory de-�ned by the interation Lagrangian density L1 = �'4�, we proeed as follows. Ournew �-dependent presription, eq. (70), for de�ning Wik powers and their time-ordered-produts for the free �eld gives rise, via the onstrution of setion 3.1, to a new �-dependent presription for the perturbative onstrution of the orresponding interating�elds, whih we denote by ��L1 and �TL1(Q ��i), respetively. These quantities span analgebra of interating �elds denoted by �BL1(M;g). From the uniqueness result, eq. (52),for the interating Wik powers and their time-ordered-produts derived in the preeedingsubsetion we then immediately get, for eah � > 0, a *-isomorphismr� : �BL1(M;g)! BL1+ÆL1(�)(M;g): (71)Here, ÆL1(�) is the �-dependent ounterterm Lagrangian of the form (51), whose �-dependent oupling parameters are given by formal power series in �. The oeÆients inthese power series are polynomials in log � whose degree inreases with n; for exampleÆm2(�) = 1Xn=1 pn(log �)�n; (72)where the pn's are polynomials11.11It is possible to derive inequalities for the maximum degree of the polynomials pn as a funtion ofthe order n in perturbation theory. 27



It is not diÆult to see that the relation between ��L1 and �L1 is simply��L1[M;g; p℄(f) = �d �� ��L1 [M;�2g; p(�)℄(f)� ; (73)where here we have again denoted by �� the obvious extension of �� from W to X . Asimilar formula holds for the time-ordered-produts of the interating �elds. Consequently,if we ompose �� with r� onstruted above, we obtain a *-isomorphism R� = r� Æ ��R� : BL1(M;�2g; p(�))! BL1+ÆL1(�)(M;g; p); (74)where we indiate expliitly the dependene on the parameters p in the free theory. Sinethe saling map �� in the free theory satis�es �� Æ ��0 = ���0, it follows thatR� Æ R�0 = R��0 (75)Using eq. (52) we �nd that the ation of R� on an interating time-ordered-produtin the algebra BL1(M;�2g; p(�)) is given byR� TL1  nYi=1 �i(fi)!! = ��dT TL1+ÆL1(�) nYi=1 Zi(�)�i(fi)!+��dT XP TL1+ÆL1(�)0�YI2P OjIj(�;�i2Ifi�i) Yj =2I 8I2P Zj(�)�j(fj)1A : (76)Here, the �-dependent �eld strength renormalization fators, Zi(�), an be written asZi(�) = 1 +Pn�1 zi;n(log �)�n, where the oeÆients zi;n depend at most polynomiallyon log �. The termsOn(�;�ifi�i) have the same form as eq. (52), and eah of the terms inthe sum on the right side of this equation is a formal power series in �, whose oeÆientsare geometri tensors times polynomials in log �. For the speial ase of the interating�eld 'L1, the above formula simpli�es toR�('L1(f)) = ��1Z(�)'L1+ÆL1(�)(f): (77)Equation (76) is our desired formula for the saling behavior of the �elds in the in-terating quantum �eld theory. Although eq. (76) has many obvious similarities to theorresponding formula eq. (30) in the free theory, it should be noted that there are a num-ber of important di�erenes, in parallel with the di�erenes in the general renormalizationambiguities of the free and interating �elds (see setion 3.2 above). Most prominently, inthe free �eld theory, the saling relations (30) relate resaled time-ordered-produts to theunsaled time-ordered-produts de�ned with respet to the \same Lagrangian", whereas28



the saling relations eq. (76) in the interating theory12 relate the resaled time-ordered-produts for the interation Lagrangian L1, to the unsaled time-ordered-produts de�nedwith respet to the interation Lagrangian L1(�) = L1+ ÆL1(�). Another important dif-ferene between the saling relations (76) and (30) is the ourrene of the �eld strengthrenormalization fators, Zi(�), in the interating �eld theory, while suh fators are ab-sent in the free theory. As a onsequene, the interating �elds do not in general have analmost homogeneous saling behavior.Given any �xed renormalization presription, eq. (74) shows that the theory de�nedfor the resaled metri and resaled parameters of the free theory is equivalent to theoriginal theory with a modi�ed Lagrangian ÆL1. The �-dependene of the parametersÆm2(�), Æz(�), Æ�(�), and Æ�(�) in ÆL1(�) de�ne the renormalization group ow of thetheory. As already mentioned Æm2, Æz, Æ�, and Æ� are formal power series in �. Thesequantities also depend upon the parameters appearing in L0, so Æm2, Æz, Æ�, and Æ�should be viewed as e�etively being funtions of �;m2, and �, as well as of �. However,it should be noted that the renormalization group ow is independent of the spaetimemetri g.The physial meaning of the renormalization group ow an perhaps be best explainedby imagining that a quantum �eld theory textbook from an anient ivilization has beendisovered. This textbook ontains a omplete desription of perturbative renormalizationtheory for the salar �eld (1) as well as omplete instrutions on how to build apparatusesto prepare states of the theory and to make measurements (see the disussion at the endof setion 3.1). It also reords the results of these measurements and ompares themwith theoretial preditions (to some appropriately high order in perturbation theory),thereby �xing the parameters of the theory. However, the one piee of information thatis missing is the system of units used by the anient ivilization; in other words, thelengthsale, l, used by the anient ivilization to de�ne the fundamental unit of length (interms of whih other units, suh as mass, are de�ned in the standard way) is not presentlyknown. This lengthsale enters both the renormalization presription given in the book(sine, the spei�ation of a partiular loally onstruted Hadamard parametrix and therenormalization presription for de�ning time-ordered-produts require a spei�ation ofa unit of length) as well as the instrutions for building the apparatuses and making themeasurements. Suppose, now, that a physiist from the present era tries to verify theexperimental laims made in the book. He makes a guess, l0, as to the value of l, whih,as it turns out, di�ers from l by a fator of ��1, i.e., l0 = l=�. Sine the present-day12For the lassial interating �eld, the saling relations also do not involve a modi�ation of the inter-ation Lagrangian, as an be seen from the fat that the lassial Lagrangian L (and the orrespondinglassial nonlinear equations of motion) is manifestly invariant under transformation g! �2g, '! ��1',m2 ! ��2m2 and � ! �. This an also be seen, more indiretly, in present formalism if one keeps expli-itly the dependene of our onstrutions on ~, so that the orresponding lassial theory orresponds tothe limit ~! 0. This is most naturally done by introduing ~ as an expliit parameter in our de�nitionof the produt \?", eq. (6), in our algebra W (and likewise X ), see [8℄.29



physiist will normalize the spaetime metri so that a rod of length l0 will have unitlength (whereas the anient ivilization assumed that a rod of length l has unit length),the spaetime metri g0 used by the present-day physiist will di�er from the metri gthat would have been used by the anient ivilization by g0 = �2g. Correspondingly,all of the experimental apparatuses built by the present-day physiist will be a fator of� smaller in all linear dimensions than intended by the author of the anient textbook.When the present day physiist ompletes his experiments, he will �nd that his resultsdisagree with the results reported in the book. He will �nd that this disagreement willbe alleviated he ompares his results to the theoretial preditions obtained from therenormalization presription given in the book by using the mass parameter m0 = ��1min L0 rather than m, but disagreements will still remain. However, if, in addition to thesubstitution m0 = ��1m in L0, the present-day physiist also modi�es the interationLagrangian L1 by eq. (51) (with Æz; Æm2, et. given by eq. (72)), then he will �nd exatagreement with the theoretial preditions obtained from the renormalization presriptiongiven in the book, provided that he also rede�nes the �eld variables in aordane withthe *-isomorphismR� given by eq. (76). In other words, when the properties of the salar�eld are investigated on a sale di�erent from that used by the anient ivilization, itsproperties will be found to di�er by a \running of oupling onstants" in the interationLagrangian.The quantity Æ�(�) an be viewed as modifying the nonlinear oupling parameter �appearing in the original interation Lagrangian L1. However, it should be noted that thequantities Æm2(�), Æz(�), and Æ�(�) all orrespond to parameters appearing in the originalfree Lagrangian, L0, rather than L1. It would be natural to try to interpret these termsin L1 as orresponding to hanges in the oupling onstants m2, z = 1, and � appearingin L0. However, we do not know how to justify suh an interpretation beause we haveonly onstruted the interating theory at the level of a formal perturbation expansion.Therefore, we annot ompare an interating theory based on the free Lagrangian L0 withan interating theory based on the free Lagrangian L0 + ÆL0, where ÆL0 = 12 [Æz(r')2+Æ�R'2 + Æm2'2℄�.Finally, as we have already noted, the renormalization group ow ours in the pa-rameter spae of the theory and is independent of the spaetime metri. Thus, in orderto alulate (or measure) the renormalization group ow, it suÆes to restrit attentionto a single spaetime, provided that the spaetime is not so speial that possible ur-vature ouplings do not our. Thus, for example, in the theory with Lagrangian (1),the only oupling to urvature ours in the term �R'2, so it would suÆe to alu-late the renormalization group ow in any spaetime with nonvanishing salar urvature.We will indiate how to alulate renormalization group ow in urved spaetime interms of Feynman diagrams in appendix B. However, we point out here that a great dealof information about the renormalization group ow an be dedued from dimensional30



onsiderations as well as from some simple properties that hold in speial spaetimes13.From dimensional onsiderations alone, it follows that the dependene of Æm2(�), Æz(�),Æ�(�); Æ�(�) on the parametersm2, �, and �must be of the form Æm2(�) = m2Fm2(�; �; �),Æz(�) = Fz(�; �; �), Æ�(�) = F�(�; �; �); Æ�(�) = F�(�; �; �). However, it is possible (andwould be very natural) to hoose a presription for de�ning free �eld Wik produts andtheir time-ordered-produts in an arbitrary spaetime suh that in the speial ase ofMinkowski spaetime, this presription does not depend upon the irrelvant parameter �.It follows immediately that with suh a renormalization presription, the renormalizationgroup ow annot depend upon � in Minkowski spaetime and, therefore|sine the owis independent of the spaetime metri|the ow annot depend upon � in any spaetime.More generally, it is possible (and would be very natural) to hoose a presription forde�ning free �eld Wik produts and their time-ordered-produts in an arbitrary spae-time suh that in the speial ase of a spaetime with onstant salar urvature R (suhas deSitter spaetime), the only dependene of the presription on the parametersm2 and� ours in the ombination m2+ �R. This ondition implies that (in all spaetimes), therenomalization group ow must take the formÆm2 = m2G1(�; �)Æ� = �G1(�; �) +G2(�; �)Æz = G3(�; �)Æ� = G4(�; �) (78)The funtions G1, G3, and G4 an all be determined by alulations done entirely inMinkowski spaetime; the funtion G2 annot be determined by alulations in Minkowskispaetime but ould be determined by alulations done, e.g., in deSitter spaetime.4.2 Fixed points, essential vs. inessential oupling parametersIn the previous setion we have seen that a resaling of the spaetime metri by a onstantonformal fator, g ! �2g, (a \hange of length sale") gives rise to di�erent de�nitionsof the interating �eld theory. The relation between the de�nitions of the �eld theory atdi�erent length sales is given by the renormalization group. It is of interest to ask atwhat points in the parameter spae of the theory the de�nition of a �eld theory is atually\independent" of the sale at whih it is de�ned. Suh points are usually referred to as\�xed points".Naively, one might attempt to de�ne a �xed point as a point in parameter spae atwhih the �-derivatives of Æm2(�), Æz(�), Æ�(�), and Æ�(�) all vanish. However, thisde�nition would be too restritive beause it exludes points where the renormalization13We are indebted to K.-H. Rehren, C.J. Fewster, and K. Fredenhagen for bringing this point to ourattention. 31



group ow is nonvanishing but orresponds merely to a rede�nition of �eld variables. Onewould like to de�ne the notion of �xed points so that it also inludes points in parameterspae where the renormalization group ow is nonvanishing but is tangent to a trivialow orresponding to a �eld rede�nition.To see more expliitly the nature of suh trivial ows, onsider a �eld theory withLagrangian L(') and onsider a mapping ' ! F (') on �eld spae suh that F (')(x)depends only on '(x) and �nitely many of its ovariant derivatives at the point x. Then,although the Lagrangian L(') and L(F (')) may look very di�erent (i.e., di�erent kinds ofouplings and di�erent values of oupling parameters), they nevertheless would de�ne anequivalent lassial �eld theory. Thus, at the lassial level, there is a wide lass of trivialows in parameter spae that orrespond to �eld rede�nitions. However, the situationis far more restritive for a �eld with Lagrangian (1) if we want the �eld rede�nition tokeep the Lagrangian in a perturbatively renormalizable form. It is not diÆult to seethat (in 4 dimensions) this leaves us only with the possibility to multiply the �eld by aonstant, i.e., the only possible form of F is F (') = s'. The new lassial LagrangianL(s) � L(F (')) is thenL(s) = 12 [s2(r')2 + s2(m2 + �R)'2 + s4�'4℄�: (79)If one splits this Lagrangian into its free and interating parts via L(s) = L0+L1(s) withL0 = 12 [(r')2+m2'2 + �R'2℄�, the interation Lagrangian takes the formL1(s) = 12[(s2 � 1)(r')2 + (s2 � 1)(m2 + �R)'2 + s4�'4℄�: (80)Therefore, one might expet that the \one-parameter ow" de�ned by eq. (80)|with staken to be an arbitrary power series in �|would orrespond to a trivial ow in theparameter spae of the theory in the sense that the theory onstruted from the intera-tion Lagrangian L1(s) would be equivalent to the theory onstruted from the originalinteration Lagrangian L1 = 12�'4�.However, the atual situation is somewhat more ompliated than the above on-siderations might suggest. The theories onstruted from the interation LagrangiansL1(s) and L1 will depend upon the spei� hoie of renormalization presription, and,for any given presription, we see no reason why these two theories need be equivalent.Indeed, it appears far from lear that there exists any renormalization presription thatgives equivalene of the two theories. Nevertheless, we shall now show that, for any �xedrenormalization presription, there exists some one-parameter family of interation La-grangians, K1(s), suh that the theories onstruted from K1(s) are equivalent to thetheory onstruted from L1 in the sense that the algebras BK1(s)(M;g) and BL1(M;g)are isomorphi. Furthermore, the ation of this isomorphism on the interating �eld or-responds to the simple �eld rede�nition F (') = N(s)', where N(s) is a formal powerseries with the propery N(s = 1) = 1. The preise statement of this result is as follows:32



Theorem 4.1. Let s = 1+Pi�1 si�i be a formal power series in � with real oeÆients.Then there exists an interation Lagrangian K1(s) of the same form as the original La-grangian, a formal power series N(s) and a *-isomorphism �s : BL1(M;g)! BK1(s)(M;g)suh that �s ['L1(f)℄ = N(s)'K1(s)(f) (81)for all f 2 D1(M), and suh that N(s = 1) = 1 and K1(s = 1) = L1.A proof of this theorem is given in appendix A.Aording to the above theorem, it is natural to view the interation Lagrangians L1and K1(s) as de�ning the same quantum �eld theories and �s as implementing the �eldrede�nition. If we hoose oordinates on the spae of parameters in the Lagrangian sothat the oordinate vetor �eld of one of the oordinates is tangent to the ow de�ned byK1(s), then we refer to this oordinate as an inessential parameter of the theory (see, e.g.,[23℄). We de�ne a �xed point of the renormalization group ow to be a point at whihonly the inessential parameter hanges under the ow. More preisely, if � ! L1(�) isthe renormalization group ow, then we say that we are at a �xed point if there is a1-parameter family �! s(�) suh thatL1(�) =K1(s(�)) for all � > 0. (82)This relation an be di�erentiated with respet to log �, thereby relating a �xed pointto a zero of a suitably de�ned �-funtion. For this, we write L1(�) = L1 + ÆL1(�), andK1(s) = L1 + ÆK1(s), and we denote the parameters in ÆL1(�) by Æz(�); Æ�(�) et. andthe parameters in ÆK1(s) by Æ~z(s); Æ~�(s) et. We de�ne14�� � �� log �Æ�� ��sÆ~�� ��sÆ~z��1 �� log �Æz������=s=1: (83)Then a �xed point15 orresponds to a zero of �� (together with a zero of similarly de�nedbeta funtions �m2; ��).Aknowlegements: This work was supported in part by NSF grant PHY00-90138to the University of Chiago. Part of this researh was arried out during the programon Quantum Field Theory in Curved Spaetime at the Erwin Shr�odinger Institute, andwe wish to thank the Erwin Shr�odinger Institute for its hospitality.14If K1(s) were atually of the form (80), then the �-funtion for � would be given by �� ��� log� (Æ�(�)� 2�Æz(�))j�=115It should be noted that the interating theory has been onstruted only at the level of a formalperturbation expansion, it will not be possible to reliably determine �xed points unless they our near� = 0. 33



A Appendix AIn this appendix we give a proof of theorem 4.1. Mainly for notational simpliity, wewill assume throughout this proof that � = m2 = 0, so that L0 = 12(r')2�; the generalase an be treated in exatly the same way. Consider the Lagrangian density ÆL0 =12Æs(r')2� with Æs = s2�1, and a uto� funtion � whih is equal to 1 in a neighborhoodof the losure �V of a globally hyperboli neighborhood V with ompat losure and with aCauhy surfae of the form �\V , where � is a Cauhy surfae forM . Although ÆL0 is, ofourse, only quadrati in the �eld ', we may onsider it as an \interation Lagrangian,"and we an de�ne, by eqs. (35) respetively (36) (with L1 in those equations replaedby ÆL0), the orresponding \interating" �elds as formal power series in Æs (or, moreproperly, as formal power series in �, sine s itself is a formal power series in �).The �rst step in our proof is to show that the \interating �elds" '�ÆL0(f) with f asmooth test density of ompat support in V satisfy exatly the same algebrai relations asthe �elds s�1'(f). Furthermore, we show that the \interating time-ordered-produts"T�ÆL0(Q�i(fi)) (with the support of fi ontained in V ) satisfy ommutation relationswith the �eld '�ÆL0(f) that have exatly the same form as the ommutation relations ofs�NT (Q�i(fi)) with s�1'(f) given in [15℄, where N is the number of free �eld fators inthe time-ordered-produt. We formulate this result as a lemma.Lemma A.1. For all smooth test densities with support in V , we have that'�ÆL0(raraf) = 0; '�ÆL0(f)� = '�ÆL0( �f ); ['�ÆL0(f1); '�ÆL0(f2)℄ = is�2�(f1; f2)11(84)in the sense of formal power series16 in �. More generally it holds that"T�ÆL0( nYi=1 �i(fi)); '�ÆL0(fn+1)# =s�2 nXj=1 T�ÆL0(�1(f1) : : : iX(a) ��j�r(a)'(fn+1�(a)fj) : : :�n(fn)); (85)where fn+1�(a)fj was de�ned in eq. (22).Proof. In order to prove the �rst relation in eq. (84), we �rst expand'�ÆL0(f) = '(f) +Xn�1 (iÆs)nn! R(f'; �L0; : : : ; �L0| {z }n fators ): (86)16For example, s�1 is de�ned as the formal power series Pn(�1)n(Pi�1 si�i)n.34



Sine L0 is only quadrati in the �eld ', the totally retarded produts (86) an be givenin losed form in terms of the retarded Green's funtion �ret for rara,R('(x); nYi=1 L0(yi)) = in Xi1���in�ret(x; yi1) r!r��ret(yi1; yi2) r!r� � ��ret(yin�1); yin) r!r'(yin); (87)where the summation over the spaetime index has been suppressed in the expression r!r. We now use this expression to analyze the oparator R(raraf';�n�ÆL0), wheref is a test density supported in V . In order to do this, we perform the following steps:We use rara�ret = Æ to turn the �rst retarded Green's funtion on the right side ofeq. (87) into a delta-funtion. We then use that � is 1 in V and that f has support inV and perform n suessive partial integrations in order to turn the  r!r derivatives into!r!r derivatives whih will now hit a single retarded Green's funtion, thus resulting eahtime in a new delta-funtion. If this is done, then one obtains R(raraf';�n�ÆL0) = 0,thereby proving the �rst equation in (84). The seond equation in (84) follows from theunitarity of the relative S-matrix S�ÆL0(f') for real-valued f .We will demonstrate eq. (85) in the ase of Wik powers of the form 'k; Wik powerswith derivatives and time-ordered-produts an be treated similarly. The proof of thelast relation in eq. (84) is inluded as the speial ase k = 1. Our starting point is therelation [8℄17�'k�ÆL0(x1); '�ÆL0(x2)� =Xn�0 (iÆs)nn! ZM�nYj �(yj)� R('k(x1);'(x2) nYj=1L0(yj))�R('(x2);'k(x1) nYj=1L0(yj))! ; (88)where the integral is over the \y"-variables. We will now simplify the terms under thesum in the above equation, starting with the terms R('k(x1);'(x2)Qnj=1L0(yj)). Forthis, we use the fat that the time ordered produts with a fator ' an be shown tosatisfy the following requirement in addition to any other requirements imposed so far18:(rara)xT ('(x) nYj=1�j(yj)) = i nXj=1X(b) r(b)Æ(yj; x)T (�1(y1) � � � ��j�r(b)'(yj) � � ��n(yn))(89)17A general formula of this kind whih holds within the LSZ-framework in Minkowski spaetime was�rst given by [11℄.18A proof of this equation for Minkowski spaetime appears in [9℄. This proof an be generalized tourved spaetimes by suitably modifying the onstrutions of time ordered produts given in [15℄.35



for all �elds �j . It an be seen that this impliesR('k(x1);'(x2) nYj=1L0(yj)) = i nXl=1 ra�ret(yl; x2)R('k(x1);ra'(yl)Yj 6=l L0(yj))+ i�ret(x1; x2)R(�'k�' (x2); nYj=1L0(yj)) (90)for the retarded produts appearing in eq. (88). Now the retarded produts in the sumon the right side of eq. (90) again ontain a fator ', and we an a similar argument asabove to further simplyfy eah of these terms. Repeating this proedure n times, we anrewrite the right side of eq. (90) as= i nXN=0 iN Xl1���lN �ret(x1; yl1) r!r�ret(yl1; yl2) r!r� � ��ret(ylN ; x2)�R(�'k�' (x2); Yj 6=l1;:::;lN L0(yj)): (91)The seond term R('(x2);'k(x1)Qnj=1L0(yj)) under the sum in eq. (88) an be writtenin the form of expression (91) with x1 and x2 exhanged. We now substitute theseexpressions bak into (88) and perform the following steps: We use that x1; x2 2 V , that� � 1 on V and the support property supp�ret � f(x1; x2) 2 M �M j x1 2 J+(x2)g tobring eah of turn eah of the  r!r derivatives on the variables ylj into a !r!r derivativeating on a single retarded Green's funtion via a partial integration. We then use thatrara�ret = Æ and use these delta-funtions to get rid of the string of retarded Green'sfuntions in (91). We now exploit the relation �ret(x1; x2) = �adv(x2; x1) (with �adv theadvaned Green's funtion), as well as � = �adv ��ret, whih enables one to get rid ofall retarded Green's funtions in favor of ommutator funtions. We �nally ollet similarterms and use the geometri series P1N=0(Æs)N = s�2 (here it must be used that s hasthe speial form 1 +Pi�1 si�i, or else the formal power series s�2 is not well-de�ned). Ifall this is done, then one obtains (85) for the speial ase of a Wik produt of the form'k. It follows from eqs. (84) and (85) that the linear map���'(f1) ? � � � ? '(fn)� � sn '�ÆL0(f1) ? � � � ? '�ÆL0(fn) (92)de�nes a *-homomorphism from the anonial ommutation relation algebra A(V;g) intothe subalgebra of X (M;g) spanned by produts of the �elds '�ÆL0(f), where f is anarbitrary test density supported in V . Sine the algebra A(V;g) is simple, �� is injetive.36



It is possible to see that the homomorphism �� an be extended by ontinuity19 to aunique *-homorphism from W(V;g), (and therefore also from X (V;g)) to X (M;g). Wewill denote this extension by the same symbol ��.We will now onstrut for any set of test densities fi of ompat support in V and forany set of �elds �i 2 V an element F (s;�ifi�i) 2 X (V;g) suh that�� [F (s;�ni=1fi�i)℄ = sN T�ÆL0( nYi=1 �i(fi)); (93)where N is the number of fators of ' in the time-ordered-produt. Furthermore, welaim that quantities F (s;�ifi�i) are independent of the partiular hoie of � and Vand de�ne in fat a new, s-dependent presription for de�ning time-ordered-produts inthe free theory, i.e. that ~T ( nYi=1 ~�i(fi)) � F (s;�ni=1fi�i) (94)satis�es all the requirements of our uniqueness theorem for time-ordered-produts in thefree theory.Before we sketh the proof of eq. (93) and the laims following that equation, we wouldlike to mention that we see no reason obvious why the presription ~T should oinide withthe original presription T . As we will see below, the possible failure of ~T to oinidewith T is the reason why the Lagrangian K1(s) in the theorem need not have the simpleform expeted from the lassial theory.It follows from the relation ��0 = Ad(U(�0; �)) Æ �� (95)(with U(�; �0) de�ned as in eq. (39), but with L1 in that equation replaed by ÆL0)that if elements F (s;�ifi�i) satisfying eq. (93) exist, then they must be independentof �. We now explain how to onstrut these elements. By de�nition of �� given ineq. (92) we already know that eq. (93) holds for the �eld s'�ÆL0(f) with F (s; f') givenby '(f) in that ase. The onstrution of F (s;�ifi�i) for a general time-ordered-produtsNT�ÆL0(Q�i(fi)) is as follows: On the algebraW(M;g), we onsider, for all ti 2 E 0(M;g),the (ommutative, assoiative) produt20�nW(M;g)!W(M;g); �ni=1[ti℄! W (�ni=1[ti℄) � [t1 
sym � � � 
sym tn℄: (96)19It was shown in [14℄ that the H�ormander topology on the spaes E 0sym(M�n) (see eq. (8)) indues anatural topology on the algebra W(V;g) and likewise on the algebra X (M;g). It an then be seen thatthe map �� de�ned in eq. (92) is ontinuous with respet to this topology.20If the ti are given by smooth densities fi on M , then the produt W ([f1℄; : : : ; [fn℄) orresponds tothe normal ordered produt : '(f1) � � �'(fn) :!, where the normal ordering is done with respet to thequasifree state ! used in the de�nition of the algebra W.37



We also denote by W the orresponding produt on X (M;g) when eah ti is a formalpower series in � with oeÆients in E 0(M;g). Then it follows from the third equationin (84) that, within V , we have[W (�nk=1'�ÆL0(xk)); '�ÆL0(xn+1)℄ = s�2 nXk=1 i�(xk; xn+1)W (�j 6=k'�ÆL0(xj)): (97)Sine the time-ordered-produts T�ÆL0(Q�i(fi)) satisfy similar ommutation relationswith the �eld '�ÆL0(f) (see eq. (85)), it is possible to prove that, within V , these time-ordered-produts an expanded in terms of the produts W (�i'�ÆL0(xi)) in a manneranalogous to the usual Wik expansion,T�ÆL0( nYi=1 'ki(xi)) =Xj�k �kj��k1�j1 :::kn�jn(x1; : : : ; xn)�W ('�ÆL0(x1); : : : ; '�ÆL0(x1)| {z }j1 times ; : : : ; '�ÆL0(xn); : : : ; '�ÆL0(xn)| {z }jn times ); (98)where the oeÆients �k1�j1:::kn�jn are distributional and we use a multi-index notationj = (j1; : : : ; jn), j! = Q ji!, et. The proof of this statement is similar to the proof ofthe Wik expansion for the time-ordered-produts in the free �eld theory given in [15℄.Namely, we assume indutively that eq. (98) has been demonstrated for all multi indiesk with jkj =Pki < m. In order to prove it for a multi index k with jkj = m, we onsiderthe expressionD�(x1; : : : ; xn) = T�ÆL0( nYi=1 'ki(xi))� X06=j�k�kj��k1�j1:::kn�jn(x1; : : : ; xn)�W ('�ÆL0(x1); : : : ; '�ÆL0(x1)| {z }j1 times ; : : : ; '�ÆL0(xn); : : : ; '�ÆL0(xn)| {z }jn times ); (99)where the only term �k1:::kn that is not yet known by the indution hypothesis has beenomitted from the sum in (99). The ommutation relations for the individual terms on theright side of this equation now imply the ommutation relation [D�(x1; : : : ; xn); '�ÆL0(y)℄ =0 within V . The above statements will still be true for a suitable V ontaining a neigh-borhood of some Cauhy surfae � of M . In this ase, one an easily prove using eq. (86)and the above ommutation relation that D� must in fat be a multiple of the identity.We de�ne �k1:::kn to be this multiple.The produts on the right side of eq. (98) an be written in terms of ordinary produtsusing the formulaW (�Ni=1'�ÆL0(xi)) =XP Yj =2I 8I2P '�ÆL0(xj) YP3I=fi1;i2g!�ÆL0(xi1; xi2): (100)38



where P runs over all sets of mutually disjoint subsets I = fi1; i2g of f1; : : : ; Ng with 2elements and where !�ÆL0(x1; x2) = !('�ÆL0(x1)'�ÆL0(x2)). Thus, sine we already knowthat s'�ÆL0(x) is the image of '(x) under ��, we get from formula (100) an algebraielement whose image under �� is W (�i'�ÆL0(xi)). One we have found those elements,we then get via eq. (98) algebrai elements F (s;�ifi�i) in X (V;g) whose image under ��is sN T�ÆL0(Q�i(fi)).It an be shown expliitly that the quantities F (s;�ifi�i) are (s-dependent) loaland ovariant �elds in the sense of our de�nition of loal and ovariant �elds in the freetheory (see eq. (10)), and that they have a smooth/analyti dependene on the metriunder smooth/analyti variations of the metri. It is straightforward to show that thequantities F (s;�ifi�i) satisfy the ausal fatorization propertyF (s;�ni=1fi�i) = F (s;�i2Ifi�i) ? F (s;�j2Jfj�j) (101)whenever J�(supp fi) \ supp fj = ; for all (i; j) 2 I � J , where I [ J = f1; : : : ; ng isa partition into disjoint sets. It an be shown from eq. (85) that the �elds F (s;�ifi�i)also satisfy the ommutator property with a free �eld. Thus, these �elds give a presrip-tion ~T (Q ~�i(fi)) for de�ning time-ordered-produts to whih our uniqueness theoremdesribed in setion 2 an be applied21.By this uniqueness result, the relation between the presription ~T and the originalpresription T for time-ordered-produts in the free theory is given by eq. (16). This isequivalent to �� hS(X fi�i)i = S�ÆL0(sMiX fi�i + Æ(s;X fi�i)); (102)where the Æ was introdued in eq. (17), and where Mi is the number of fators of ' inthe �eld �i. (Note that Æ now has an additional s-dependene, due to the fat that thepresription ~T is s-dependent.) Equation (102) is the key identity for this proof. In orderto exploit it, we introdue a uto� funtion �0 whih equals 1 on V and whih is suhthat the support of �0 is ontained in the region where � equals 1. If we now apply �� tothe element S�0L1(P fi�i), use eq. (102) and proeed in a similar way as in the proof ofeq. (52) in setion 3.2 to bring the resulting expression into a onvenient form, then weobtain the identityAd(V (�; �0)) Æ ��[S�0L1(X fi�i)℄ = S�0K1(s)(XNi(s)fi�i + ÆL1(s;X fi�i)) (103)for all test densities fi with support in V . Here, V (�; �0) is a unitary that is de�ned in asimilar way as the unitary W (�) in the proof of eq. (52) in setion 3.2, Ni(s) are formal21Note however that the time-ordered-produts ~T (Q ~�i) are by onstrution only de�ned as formalpower series in X (V;g) rather than W(V;g), sine they may depend on s whih is itself a formal powerseries in �. It is however not diÆult to see that our uniqueness theorem an nevertheless still be applied.39



power series in s, ÆL1 is de�ned as in eq. (55), and K1(s) is the interation Lagrangiangiven by K1(s) = (s2 � 1)L0 + s4L1 + Æ(s; �L1)j�=1: (104)Finally, the desired *-isomorphism �s is then obtained from eq. (103) by removing theuto� represented by � and �0 in the same way as in our onstrution of the interating�eld given in setion 3.1. Equation (81) orresponds to the speial ase � = ' of eq. (103).We �nally remark that, as indiated above, if the presription ~T given by eq. (93) wereatually equal to the original presription T for de�ning the time-ordered-produts, thenthe term Æ(s;Pfi�i) appearing in eq. (102) would be zero. This would imply that thefators Ni(s) in eq. (103) is equal to sMi (where Mi is the number of fators of ' in the�eld �i), the term ÆL1(s;Pfi�i) in eq. (103) would vanish, and the Lagrangian K1(s)would be equal to L1(s) given by eq. (80) as in the lassial theory. Thus, eq. (81) inthe statement of the theorem would be simpli�ed to �s['L1(f)℄ = s'L1(s)(f), in ompleteanalogy with the lassial theory.B How to alulate the renormalization group in termsof Feynman diagramsIn the previous setions we have set up a general framework for desribing how a givenperturbative interating �eld theory in urved spaetime hanges under a hange of length-sale, or, more properly, under a resaling of the metri. This has led us to a ompletelysatisfatory notion of the renormalization group ow in urved spaetime, without therebyhaving to introdue arbitrary vauum states, bare ouplings, uto�s or arbitrary masssales into the theory.However, our onstrution is rather abstrat and it may not be obvious how one wouldalulate this ow in pratie (to a given order in perturbation theory). We will nowoutline how this an be done, and we will thereby establish the onnetion between theframework explained above and the formalism of Feynman diagrams, whih is ommonlyused to de�ne the renormalization group ow in Minkowski spaetime22.To begin, we de�ne [14, 15℄, for suÆiently nearby points, \loally normal ordered"�elds :Q'ki(xi) :H by: nYi=1 'ki(xi) :H � ÆjkjijkjÆf(x1)k1 : : : Æf(xn)kn exp �i'(f) + 12H(f; f)� ; (105)where jkj =P ki and whereH(x1; x2) = U(x1; x2)P (��1) + V (x1; x2) log j�j (106)22We have already noted at the end of setion 4.1 that the funtions G1; G3; G4 appearing in therenormalization group ow (see eq. (78)) an be determined in Minkowski spaetime, and they an bealulated by standard methods. However, the funtion G2 must be alulated in urved spaetime.40



is the \loal Hadamard parametrix". Sine :'k(x) :H itself is a presription for de�ningWik powers to whih our uniqueness theorem applies [14℄, it is possible to expand theWik powers 'k(x) in a \loal Wik expansion" in terms of these loally normal ordered�elds [14℄, 'k(x) =Xj�k �kj�tk�j(x) :'j(x) :H; (107)where tk are �nite sums of terms of the form loal urvature terms times parameters inthe free theory, of the appropriate engineering dimension. Of ourse, if the presriptionfor de�ning Wik powers is hosen to be that of \loal normal ordering" with respet toH, then the expansion of eq. (107) is trivial, i.e., we have t0 = 1 and tj = 0 for all j > 0.A similar expansion is possible also for the time-ordered-produts [15℄,T ( nYi=1 'ki(xi)) =Xj�k �kj�tk1�j1:::kn�jn(x1; : : : ; xn) : nYi=1 'ji(xi) :H; (108)where the tj1:::jn are ertain distributions that are de�ned loally and ovariantly in termsof the metri23, and where in eq. (109) we use the multi-index notation j = (j1; : : : ; jn),j! =Qi ji! et.The loal Hadamard parametriesH appearing in eqs. (107) and (108) ould be hosenso that in Minkowski spaetime it oinides with the symmetrized two-point funtion ofthe unique, Poinare invariant vauum state. In that ase, when restrited to Minkowskispaetime, the \loal normal ordering" presription for de�ning Wik powers would o-inide with the (globally de�ned) normal ordering with respet to the Poinare invariantvauum state. Thus, in Minkowski spaetime, the expansion (109) ould be viewed asexpressing time-ordered-produts in terms of normal ordered produts with repet to theusual vauum state. In urved spaetime, it also would be possible to hoose a globallyde�ned \vauum state" (i.e., a quasi-free Hadamard state), !, and perform Wik expan-sions in terms of Wik produts that are normal ordered with respet to !. This wouldhave the advantage that the resulting oe�ients t would be globally de�ned rather thanbeing de�ned only on a neighborhood of the total diagonal. However, it would have themajor disadvantages that (i) the expansion (98) would always be nontrivial (sine a loal,ovariant �eld annot oinide with a normal ordered �eld on all spaetimes [14℄) and (ii)the t would no longer be loally and ovariantly onstruted out of the metri, so oneould not evaluate the t by loal omputations.The distributions t an further be deomposed into ontributions from individualFeynman diagrams as follows. Let F (k) be the set of all Feynman diagrams onsistingwith n verties loated at the points x1; : : : ; xn that are onneted by a single kind of23However, it should be noted that tj1:::jn is not atually a loal, ovariant (-number) �eld in thesense of [5℄, sine one annot give a loal, ovariant presription for how to hoose the onvex normalneighborhood that enters the de�nition of H. 41



line, with the properties that the lines may emerge and end on two di�erent verties orthey may emerge and end on the same vertex, and the ith vertex has preisely ki edgesemerging/ending on it. If � is suh a Feynman graph, then we denote by E(�) the set ofedges and by V (�) the set of verties. If e is an edge, then we write s(e) for the soure ofe and t(e) for its target. If v is a vertex, then we write n(v) for twie the number of edgesthat have v both as their starting and endpoint. For points x1; : : : ; xn suh that xi 6= xjfor all i; j, we then havetk1:::kn(x1; : : : ; xn) = X�2F(k) � Ye2E(�)HF (xs(e); xt(e)) Yv2V (�) tn(v)(xv)� X�2F(k) t�(x1; : : : ; xn);where � are ombinatorial fators and HF is the \loal Feynman parametrix" given byHF (x1; x2) = U(x1; x2)(� + i0)�1 + V (x1; x2) log(� + i0): (109)Equation (109) an be viewed as giving the \Feynman rules" in urved spaetime. Mainlyfor simpliity, we have only onsidered expliitly only time-ordered-produts of Wikpowers without derivatives. Our disussion an be generalized to give similar Feynmanrules also for time-ordered-produts ontaining derivatives.The Feynman rules in urved spaetime are thus very similar to those in Minkowskispaetime, with the loal Feynman parametrix (100) replaing the usual Feynman prop-agator. However, there is one key di�erene in that if the presription used for de�ningWik powers does not oinide with \loal normal ordering", then the Wik expansion(98) will be nontrivial, and there will be orrespondingly nontrivial Feynman diagramsontaining lines that begin and end at the same vertex.The distributions t� in eq. (109) are loally and ovariantly onstruted from the met-ri and the oupling parameters in the free theory. They desribe the ontribution ofan individual Feynman graph to a time-ordered-produt. Formula (109) only determinesthem as distributions on the produt manifold M�n minus the union of all of its partialdiagonals. A presription for the extension of all time-ordered-produts to all of M�n isusually alled \renormalization". The existene of a renormalization presription satisfy-ing a list of neessary properties was proven in [15℄ without going through the intermediatestep of expanding the tk1:::kn in terms of Feynman diagrams.Given the distributions t� orresponding to a given presription T for de�ning timeordered produts, we an now obtain the orresponding resaled presription �T (seeeq. (70)) as follows: If p = (m2; �) and p(�) = (��2m2; �), we �rst sett��[M;g; p℄ � �2jE(�)j � t�[M;�2g; p(�)℄ (110)as well as H�[M;g; p℄ � �2 �H[M;�2g; p(�)℄: (111)42



The resaled presription �T is then given by�T ( nYi=1 �'ki(xi)) =Xj�k X�2F(k�j) t��(x1; : : : ; xn) : nYi=1 'ji(xi) :H� : (112)Given the resaled presription �T , we an now ompute the maps On(�;�ifi�i) (seeeq. (30)), whih relate the resaled presription to the original presription T . The renor-malization group ow L1(�) is then given in terms of these quantities by given byÆL1(�) = 1Xn=1 in�1n! On(�;�n�L1)������=1: (113)Eah term in the sum (113) is of the form (51) for some real oupling onstants Æm2(n),Æz(n), Æ�(n), and Æ�(n), eah of whih is a polynomial in log �. These quantities are therenormalization group ow at n-th order in perturbation theory.This ompletes our brief disussion on how to alulate the renormalization group owin terms of Feynman diagrams. We note, however, that the alulation of the �-funtionas de�ned by (83) is more ompliated sine it also requires the alulation of K1(s) (seeappendix A).Referenes[1℄ F. M. Boas: \Gauge theories in loal ausal perturbation theory," DESY-THESIS1999-032, (1999) [arXiv: hep-th/0001014℄[2℄ N. N. Boboliubov and D. V. Shirkov: \Introdution to the theory of quantized �elds,"New York (1959)[3℄ R. Brunetti, K. Fredenhagen and M. K�ohler: \The miroloal spetrum ondition andWik polynomials on urved spaetimes," Commun. Math. Phys. 180, 633-652 (1996)[4℄ R. Brunetti and K. Fredenhagen: \Miroloal Analysis and Interating QuantumField Theories: Renormalization on physial bakgrounds," Commun. Math. Phys.208, 623-661 (2000)[5℄ R. Brunetti, K. Fredenhagen and R. Verh, \The generally ovariant loality priniple:A new paradigm for loal quantum physis," arXiv:math-ph/0112041.[6℄ B. S. DeWitt and R. W. Brehme: \Radiation Damping In A Gravitational Field,"Annals Phys. 9 (1960) 220 43
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