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PACS: 11.10.Hi; 04.62.+vOn the Renormalization Group in Curved Spa
etimeStefan Hollands� and Robert M. WaldyEnri
o Fermi Institute, Department of Physi
s,University of Chi
ago, 5640 Ellis Ave.,Chi
ago IL 60637, USASeptember 20, 2002Abstra
tWe de�ne the renormalization group 
ow for a renormalizable intera
ting quan-tum �eld in 
urved spa
etime via its behavior under s
aling of the spa
etime metri
,g ! �2g. We 
onsider expli
itly the 
ase of a s
alar �eld, ', with a self-intera
tionof the form �'4, although our results should generalize straightforwardly to otherrenormalizable theories. We 
onstru
t the intera
ting �eld|as well as its Wi
kpowers and their time-ordered-produ
ts|as formal power series in the algebra gen-erated by the Wi
k powers and time-ordered-produ
ts of the free �eld, and wedetermine the 
hanges in the intera
ting �eld observables resulting from 
hangesin the renormalization pres
ription. Our main result is the proof that, for any�xed renormalization pres
ription, the intera
ting �eld algebra for the spa
etime(M;�2g) with 
oupling parameters p is isomorphi
 to the intera
ting �eld algebrafor the spa
etime (M; g) but with di�erent values, p(�), of the 
oupling parameters.The map p ! p(�) yields the renormalization group 
ow. The notion of essentialand inessential 
oupling parameters is de�ned, and we de�ne the notion of a �xedpoint as a point, p, in the parameter spa
e for whi
h there is no 
hange in essentialparameters under renormalization group 
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1 Introdu
tionTheories of a 
lassi
al �eld in Minkowski spa
etime that are derived from an a
tion prin-
iple will automati
ally possess an invarian
e under a s
aling of the global inertial 
oor-dinates of spa
etime (or, equivalently, under s
aling of the �eld momenta) provided thata 
orresponding s
aling of the �eld amplitude and 
oupling 
onstants are also performedin su
h a way that the a
tion remains un
hanged. If the quantum theory of this �eld isrenormalizable, it turns out that in perturbation theory there also is a similar invarian
eof quantities of interest|su
h as the Green's fun
tions of the �elds|under s
aling of the�eld momenta, but the required s
aling of the �eld amplitudes and 
oupling 
onstantsdi�ers, in general, from the simple s
aling laws for the 
lassi
al theory. This 
hangeof the \�eld strength normalization" and 
oupling 
onstants under s
aling is 
alled the\renormalization group 
ow" of the theory. Important qualitative as well as quantita-tive information about quantum �eld theories 
an be gained from an analysis of theirrenormalization group 
ow.For quantum �eld theories in Minkowski spa
etime, there exist well known pro
eduresfor 
al
ulating the renormalization group 
ow in perturbation theory. In many 
ases, thepi
ture obtained from low orders is believed to be at least in qualitative agreement withthe behavior that would hold in the full, nonperturbatively 
onstru
ted quantum �eldtheory. Consequently, perturbative 
al
ulations of the renormalization group 
ow haveplayed an important role in arguments 
on
erning fundamental properties of quantum�eld theories. In parti
ular, they form the basis of the 
laim that 
ertain non-abeliangauge theories are \asymptoti
ally free", i.e., that the gauge 
oupling 
ows towards zeroat small distan
es (large momenta).It is therefore of interest to know whether a similar s
aling analysis 
an also be per-formed for perturbative intera
ting quantum �eld theory on an arbitrary globally hyper-boli
 
urved (Lorentzian) spa
etime. As we shall brie
y review in se
tion 2 below, the
onstru
tion of perturbative intera
ting quantum �eld theory in 
urved spa
etime hasre
ently been a
hieved in [14℄, [15℄, based upon some earlier key results established in[3, 4℄ and other referen
es. However, for at least the following two reasons, it does notseem possible to give a straightforward generalization to 
urved spa
etime of the usuals
aling analyses given for Minkowski spa
etime. First, as already indi
ated above, therenormalization group 
ow in Minkowski spa
etime is usually formulated in terms of be-havior under the s
aling of global inertial 
oordinates or, equivalently, s
aling of the �eldmomenta. However, in 
urved spa
etime a formulation in terms of s
aling of 
oordinates(or momenta) would introdu
e a very awkward and undesired 
oordinate dependen
e intothe 
onstru
tions. Also, sin
e the s
aling of 
oordinates no longer 
orresponds to a 
on-formal isometry of the spa
etime metri
, one would not expe
t a simple behavior to o

urunder s
alings of any 
oordinates. Se
ond, the quantities whose s
aling behavior is usually
onsidered in studying the renormalization group 
ow in Minkowski spa
e are the Green'sfun
tions of the intera
ting �eld or other quantities from whi
h these 
an be derived, su
h2



as the \e�e
tive a
tion". However, the Green's fun
tions depend on a 
hoi
e of state. Forquantum �eld theories in Minkowski spa
etime, this state would naturally be 
hosen tobe the (unique) Poin
are invariant va
uum state. However, even for a free quantum �eldin a general 
urved spa
etime, there is no \preferred va
uum state" nor any other statethat 
an be singled out for spe
ial 
onsideration. Thus, even if a renormalization group
ow 
ould be de�ned in terms of Green's fun
tions, there is no reason to expe
t it to beindependent of the 
hoi
e of state used to de�ne the Green's fun
tions.A solution to the se
ond diÆ
ulty is a
hieved by formulating the theory via the al-gebrai
 approa
h. In this approa
h, one views the observables as forming an abstra
talgebra, and one views the quantum states as suitable linear fun
tionals on this algebra.This algebra is referred to as \abstra
t", be
ause no representation of this algebra on aparti
ular Hilbert spa
e has been 
hosen from the outset, so that the (potentially prob-lemati
) issue of 
hoosing states is 
ompletely disentagled from the issue of 
onstru
tingthe observables of the theory. As we shall see, the renormalization group 
ow 
an thenbe de�ned at the level of the algebra of observables.The �rst diÆ
ulty above is solved by de�ning the renormalization group 
ow in termsof the behavior of the algebra of the intera
ting �eld under a s
aling of the spa
etimemetri
, g ! �2g, as has previously been suggested by other authors [21, 18, 19℄. InMinkowski spa
etime, the di�eomorphism de�ned by the res
aling of the global inertial
oordinates, x� ! �x�, is a 
onformal isometry with 
onstant 
onformal fa
tor �, sores
aling the 
oordinates or momenta is equivalent to res
aling the spa
etime metri
.However, in a general 
urved spa
etime there will not exist any 
onformal isometries, sores
aling the metri
 is not equivalent to any res
aling of 
oordinates or momenta. As weshall see, in perturbation theory the intera
ting �eld has a well de�ned behavior unders
aling of the spa
etime metri
.The results we shall obtain in this paper are based primarily on our previous uniquenesstheorems [14℄ for Wi
k polynomials and their time-ordered produ
ts for a free quantum�eld. As we shall explain further in se
tion 2 below, these results imply that the intera
ting�eld algebra is well de�ned up to 
ertain renormalization ambiguities. In parti
ular,for the 
ase of a renormalizable theory, the ambiguities in the intera
ting �eld algebra
orrespond pre
isely to 
hanges in the (�nite number of) parameters appearing in theintera
tion Lagrangian1. This observation gives rise to the following means to de�ne1In other words, if one 
hanges the pres
ription for de�ning Wi
k produ
ts and their time orderedprodu
ts for the free theory in a manner 
ompatible with the axioms of [14℄ and [15℄, the new intera
ting�eld algebra one obtains via the 
onstru
tion given in se
tion 3 below will 
orrespond to the intera
ting�eld algebra obtained with the original pres
ription, but with the intera
tion Lagrangian modi�ed bythe addition of terms of the same form as appearing in the original Lagrangian. The de�nition of theintera
ting �eld with the new pres
ription will also 
orrespond up to a numeri
al fa
tor to the de�nition ofthe intera
ting �eld in the 
orresponding algebra obtained from the original pres
ription with the modi�edLagrangian, i.e., the isomorphism of the intera
ting �eld algebras for the two di�erent pres
riptions willmap the intera
ting �eld to a multiple of the intera
ting �eld. It should be noted, however, that thenew de�nition of higher Wi
k powers of the intera
ting �eld (as well as time-ordered-produ
ts of Wi
k3



the renormalization group 
ow: Fix a renormalization pres
ription for de�ning the free�eld Wi
k polynomials and their time ordered produ
ts. Now apply this renormalizationpres
ription to de�ne Wi
k polynomials and their time-ordered-produ
ts for free quantum�elds on the spa
etime (M;�2g), with all of the parameters of the theory also s
aleda

ording to their \engineering dimension" (i.e., s
aled in su
h a way as to keep the
lassi
al a
tion invariant). The free �eld algebra of observables W(M;g) (de�ned in [14℄and in se
tion 2 below) is naturally isomorphi
 toW(M;�2g) with s
aled parameters, andwe 
an use this isomorphism to de�ne a new (�-dependent) renormalization pres
riptionfor Wi
k polynomials and their time-ordered produ
ts on the original spa
etime (M;g).We thereby obtain a new (�-dependent) pres
ription for de�ning the intera
ting �eldalgebra. However, by our uniqueness results, this pres
ription must be equivalent tothe original pres
ription for de�ning the intera
ting �eld algebra modulo a 
hange ofparameters appearing in the intera
tion Lagrangian. Consequently, we get a �-dependent\
ow" in the parameter spa
e of the intera
ting theory2. This 
ow de�nes the a
tion ofthe renormalization group for a quantum �eld in 
urved spa
etime.In order to implement the above ideas, we �rst must de�ne the intera
ting quantum�eld algebra and therefore must address the following two diÆ
ulties: (i) As in Minkowskispa
etime, the intera
ting quantum �eld is de�ned only perturbatively, and it is notexpe
ted that the perturbation series 
onverges. (ii) The usual formula for de�ning theintera
ting �eld expresses it in terms of a free \in"-�eld [12℄. Even if the theory under
onsideration is su
h that in Minkowski spa
etime the intera
ting �eld approa
hes a free\in"-�eld in the asymptoti
 past in a suitable sense, there is no reason to expe
t any su
hbehavior to o

ur in an arbitrary globally hyperboli
 
urved spa
etime.As dis
ussed in se
tion 3.1, we shall, in essen
e, sidestep issue (i) by treating the inter-a
ting �eld algebra only at the level of a formal perturbation series. In other words, we donot attempt to de�ne the intera
ting �eld algebra at a �nite value of a nonlinear 
ouplingparameter, �, but simply 
onsider the algebra generated by the formal perturbation seriesexpressions in �. In this respe
t, our analysis is neither better nor worse than the 
or-responding analyses for perturbative quantum �eld theory in Minkowski spa
etime. Wenote, however, that at least some of the diÆ
ulties en
ountered in making sense of per-turbative expansions for nonlinear quantum �eld theory may be due to the non-analyti
powers of the intera
ting �eld) will not 
orrespond to the de�nition of these quantities obtained from theoriginal pres
ription with the modi�ed Lagrangian. Instead, under the isomorphism of the algebras, ahigher Wi
k power (or a time-ordered-produ
t of Wi
k powers) will, in general, be mapped into a �eldof the form spe
i�ed in eq. (52) below.2In other words, if we s
ale the spa
etime metri
 and 
orrespondingly s
ale the parameters, p0, of thefree Lagrangian, L0, a

ording to their \engineering dimension", then the resulting theory is equivalentto a theory where the metri
 and parameters, p0, are not s
aled, but the intera
tion Lagrangian, L1, ismodi�ed by �-dependent terms of the same form as appear in the (full) Lagrangian L = L0 + L1. Itshould be emphasized that it is far from obvious that, for a perturbatively 
onstru
ted intera
ting theory,a 
hange in a parameter appearing in L1 as o

urs in the renormalization group 
ow is equivalent to a
orresponding 
hange in that parameter in L0; see the end of se
tion 4.1 for further dis
ussion.4



behavior of ground states and/or \in" and \out" states. It appears 
on
eivable that atleast some of the diÆ
ulties of perturbation theory 
ould be averted if one works stri
tlyat the algebrai
 level and uses perturbation formulas only to obtain algebrai
 relation-ships between intera
ting �eld observables (thereby de�ning the intera
ting �eld algebra)rather than using perturbation theory to 
al
ulate quantities involving, say, ground statesor \in" and \out" states. However, we shall not attempt to pursue these ideas in thispaper.On the other hand, diÆ
ulty (ii) 
an be genuinely over
ome by properly taking limits asthe 
uto� on the intera
tion is removed: The Bogoliubov formula de�ning the intera
ting�eld (see eq. (35) below) is well de�ned if the nonlinear 
oupling parameter, �, is takento be a smooth fun
tion of 
ompa
t support, so that the nonlinear intera
tion is \turnedo�" in the past and future. If one then attempts to take a limit where � approa
hes a
onstant, diÆ
ulties may arise if one demands that the intera
ting �eld remain �xed in,say, the asymptoti
 past. However, no diÆ
ulties arise if, following the ideas of [4℄, wedemand that the intera
ting �eld remain �xed in the \interior" of the spa
etime as �approa
hes a 
onstant. This 
onstru
tion is given in se
tion 3.1.The organization of this paper is as follows. In se
tion 2, we brie
y review the main in-gredients that we will need from free quantum �eld theory in 
urved spa
etime, in
ludingthe de�nition and uniqueness properties of Wi
k powers and their time-ordered-produ
ts.In se
tion 3.1 we give the 
onstru
tion of the intera
ting �eld and in se
tion 3.2 we 
har-a
terize its renormalization ambiguities. The s
aling behavior of the intera
ting theoryis analyzed in se
tion 4.1, and the renormalization group 
ow is de�ned. The notions ofessential and inessential 
oupling parameters and the notion of \�xed points" under therenormalization group 
ow are de�ned in se
tion 4.2. In appendix B, we will relate ourrather abstra
t formulation of renormalization theory and the renormalization group 
owat the algebrai
 level to more usual formulations in terms of Feynman diagrams.In this paper, we will 
onsider only a s
alar �eld with Lagrangian density of the formL = L0 +L1 � 12[(r')2 +m2'2 + �R'2 + �'4℄�; (1)where, R is the s
alar 
urvature and � is the volume element 
onstru
ted from the spa
e-time metri
 g = gab. The self-intera
tion L1 = 12�'4� will be treated perturbatively.However, all of our analysis should generalize straightforwardly to other renormalizablequantum �eld theories.Our notation and 
onventions follow those of our previous papers [14℄, [15℄. All spa
e-times (M;g) 
onsidered in this paper will be assumed to be globally hyperboli
 and timeoriented. We will denote the free quantum s
alar �eld (de�ned by the Lagrangian (1) with� = 0) by ' and will use the generi
 notation � to denote other lo
al 
ovariant �elds inthe free theory. The intera
ting �eld will be denoted 'L1 and other lo
al 
ovariant �eldsin the intera
ting theory will be denoted �L1. In this paper, all �elds will be smeared withs
alar densities (of unit weight); we will denote the spa
e of smooth unit weight s
alar5



densities of 
ompa
t support on M by D1(M).2 The free quantum �eld in 
urved spa
etimeThe perturbative 
onstru
tion of a self-intera
ting quantum s
alar �eld in 
urved spa
e-time is based upon the 
onstru
tion of the free quantum �eld theory. In this se
tion,we 
onsider the quantum �eld theory of a free s
alar �eld ', des
ribed by the 
lassi
alLagrangian density L0 = 12[(r')2 +m2'2 + �R'2℄�: (2)Note that under a s
aling of metri
, g! �2g with � a positive 
onstant, the Lagrangiandensity remains invariant provided that we also s
ale the �eld, ', mass, m, and 
ouplingparameter �, by ' ! ��1', m ! ��1m, � ! �. We refer to the power of � appearingin these s
aling rules as the engineering dimension of the quantity. More generally, anymonomial, �, 
onstru
ted out of ' and its derivatives, the 
urvature, and the 
oupling
onstants m and � will have a well de�ned engineering dimension, denoted d�.As is well known, in a general 
urved spa
etime, there is no \preferred va
uum state"nor even any preferred Hilbert spa
e 
onstru
tion of the quantum theory 
orrespondingto the 
lassi
al Lagrangian (2) (see, e.g., [22℄ for further dis
ussion). Therefore, in ourview, it is essential to formulate the theory via the algebrai
 approa
h.As in [14℄, we shall take the algebra of observables of the free �eld to be the \extendedWi
k polynomial algebra"W(M;g). As des
ribed in [14℄, this algebra 
an be 
onstru
tedby 
hoosing a quasifree Hadamard state, !, on the \
anoni
al 
ommutation algebra",A(M;g), then 
onsidering the normal ordered �eld operators on the GNS representationof !, and showing [3℄ that one gets well de�ned operators by smearing these normalordered operators with suitable distributions rather than test fun
tions. The resultingalgebra of operators 
an then be shown [14℄ to be independent of the 
hoi
e of !.Following [8℄, we outline here a mu
h more dire
t 
onstru
tion of W(M;g). This 
on-stru
tion is suÆ
iently di�erent in appearan
e from that given in [14℄ that it is worthwhileto explain the relationship between the 
onstru
tions. First, re
all the usual 
onstru
tionof the 
anoni
al 
ommutation algebra, A(M;g): Start with the free *-algebra generatedby the identity, 11, and all expressions of the form '(f), where f is an element of D1(M),the spa
e of smooth s
alar densities on M with 
ompa
t support. (Thus, this algebra
onsists of all �nite linear 
ombinations of 11 and terms 
ontaining �nitely many fa
torsof the form '(fi) and '(fj)�.) Next, de�ne the two-sided ideal 
onsisting of all elementsof this algebra that 
ontain at least one fa
tor of any of the following four types:(i) '(�1f1 + �2f2)� �1'(f1)� �2'(f2), with �1; �2 2 C ;(ii) '(f)� � '( �f); 6



(iii) '((rara �m2 � �R)f); and(iv) '(f1)'(f2)�'(f2)'(f1)�i�(f1; f2)11, where � denotes the advan
ed minus retardedGreen's fun
tion for the Klein-Gordon operator.Then A(M;g) is de�ned by fa
toring the free algebra by this ideal.It is useful to make the following trivial 
hange in the 
onstru
tion of A(M;g): Insteadof starting with the free algebra generated by the identity, 11, and symbols of the form'(f), we start with the free tensor algebra of smooth 
ompa
tly supported s
alar testdensities on M , F(M) � C �Mn�1 
nD1(M): (3)with a *-operation de�ned by 
omplex 
onjugation. (Note that although the dire
t sumin eq. (3) is in�nite, by de�nition, ea
h element of F(M) has only �nitely many non-zeroentries.) The *-algebra F(M) already in
orporates the identi�
ations 
orresponding to(i) and (ii) above, and 
learly is isomorphi
 to the free algebra of the previous paragraphfa
tored by the ideal generated by (i) and (ii). Thus, we 
an equivalently de�ne A(M;g)by fa
toring F(M) by the ideal generated by expressions (iii) and (iv) above. We willin
orporate this viewpoint in our notation by denoting elements of A(M;g) by theirrepresentatives in F(M). Thus, for example, we will denote the element of A(M;g)
orresponding to the �eld operator smeared with f 2 D1(M) by [f ℄ rather than '(f).Next, we note that given any t 2 F(M), the imposition of the 
ommutation relations(iv) above would allow us to 
hoose a unique representative of t in the totally symmetri
tensor algebra. Thus, rather than imposing these 
ommutation relations by fa
torizationas above, we may instead work with the totally symmetri
 tensor algebra. Hen
e, wede�ne Fsym(M) � C �Mn�1 
nsymD1(M): (4)and we de�ne a produ
t, ?0, (whi
h depends upon g) in Fsym(M) that 
orresponds totaking the ordinary tensor produ
t in F(M). Namely, if tn 2 
nsymD1(M) and sm 2
msymD1(M), we de�ne(tn?0sm)n+m�2k(x1; : : : ; xn+m�2k) = n!m!k!(n� k)!(m� k)!SZM2k tn(y1; : : : ; yk; x1; : : : ; xn�k)sm(yk+1; : : : ; y2k; xn�k+1; : : : ; xn+m�2k) kYi=1 i2�(yi; yk+i); (5)where \S" denotes total symmetrization in the variables x1; : : : ; xn+m�2k and where theintegral is over the \y"-variables3. In other words, the right side of eq. (5) gives the3Sin
e tn and sm are densities, no volume element has to be spe
i�ed in the integral.7



totally symmetri
 representative of tn 
 sm in the tensor algebra F(M) under impositionof the 
ommutation relations (iv). Sin
e the algebra (4) with the produ
t (5) alreadyin
orporates 
onditions (i), (ii), and (iv) above, we 
onsider the ideal 
onsisting of allelements of Fsym(M) that 
ontain at least one fa
tor of the form (rara � m2 � �R)f .We again obtain A(M;g) by fa
toring Fsym(M) by this ideal.We now make an important further modi�
ation to the above 
onstru
tion by intro-du
ing a new (!-dependent) produ
t, ?, on Fsym(M) by repla
ing i2� in eq. (5) by !where ! is an arbitrary (\undensitized") distribution in two variables that satis�es theKlein-Gordon equation in ea
h variable and whose antisymmetri
 part is equal to i2�,(tn?sm)n+m�2k(x1; : : : ; xn+m�2k) = n!m!k!(n� k)!(m� k)!SZM2k tn(y1; : : : ; yk; x1; : : : ; xn�k)sm(yk+1; : : : ; y2k; xn�k+1; : : : ; xn+m�2k) kYi=1 !(yi; yk+i); (6)where the integral is again over the \y"-variables. Then, by the same argument as inLemma 2.1 of [14℄, it 
an be seen that Fsym(M) with the produ
t ? is naturally isomorphi
to Fsym(M) with the produ
t ?0. Therefore if we fa
tor Fsym(M) with the produ
t ?by the ideal 
omprised by all elements of Fsym(M) that 
ontain at least one fa
tor of(rara �m2 � �R)f , we again obtain an algebra isomorphi
 to A(M;g). It also shouldbe noted that for f1; f2 2 D1(M) we havef1 ? f2 � f2 ? f1 = i�(f1; f2)11: (7)Now, 
hoose ! to be the two-point fun
tion of a Hadamard state. Then the produ
t(6) 
orresponds to Wi
k's formula expressing the produ
t of a normal-ordered n-pointfun
tion with a normal ordered m-point fun
tion in terms of normal ordered produ
ts,where the normal ordering is done with respe
t to the quasi-free Hadamard state withtwo-point fun
tion !. It 
an thereby be seen that for any tn 2 
nsymD1(M) of the formtn = f1 
sym � � � 
sym fn with ea
h fi 2 D1(M), the algebrai
 element [tn℄ 2 A(M;g)
orresponding to the equivalen
e 
lass of tn is represented by the normal ordered produ
t:'(f1) � � �'(fn) :! in the GNS-representation of the state !.The key observation needed to de�ne the algebraW(M;g) is to note that the wavefrontset properties of ! then imply that eq. (6) 
ontinues to make sense when the test fun
tionspa
e 
nsymD1(M) in (4) is repla
ed by the mu
h larger spa
e4E 0sym(M�n) = f
ompa
tly supp. symm. distr. tn jWF(tn) � T �Mn n (V �n+ [ V �n� )g; (8)4Sin
e the elements in E 0sym(M�n) are distributions, they automati
ally have the 
hara
ter of densities.The spa
e 
nsymD1(M ) 
an therefore be naturally identi�ed with a subspa
e of E 0sym(M�n), without theneed to spe
ify a volume element on M . 8



where V� is the future/past light
one with respe
t to the metri
 g, and where \WF"denotes the wave-front set of a distribution [13℄. We de�ne W(M;g) to be the ve
torspa
e E 0(M;g) � C �Mn�1 E 0sym(M�n): (9)with produ
t (6), fa
tored by the ideal 
omprised by all elements of the form (rara �m2� �R)xitn(x1; : : : ; xn). Thus, every element a 2 W 
orresponds to an equivalen
e 
lassa = [s℄ of an element s = s0 +Pnk=1 sk, where s0 2 C , and where sk 2 E 0sym(M�k). Theprodu
t of two elements in W is given by [s℄ ? [t℄ � [s ? t℄. If f is a smooth s
alar densityon M of 
ompa
t support, then the equivalen
e 
lass [f ℄ 2 W 
orresponds exa
tly to thesmeared free �eld '(f).The de�nition of the algebra W a priori depends on some 
hoi
e for !, but it wasshown in [14℄ that di�erent 
hoi
es for ! give rise to isomorphi
 algebras. Therefore, asan abstra
t algebra, W is independent of this 
hoi
e. Sin
e A is naturally a subalgebraof W, we automati
ally know what elements of W 
orrespond to the smeared �eld '(f)and its smeared n-point fun
tions. However, it is not obvious what (if any) elements ofW 
orrespond to smeared Wi
k powers of the �eld and time-ordered produ
ts of Wi
kpowers.This issue was addressed in [14℄ and [15℄, where an axiomati
 approa
h was taken. Akey 
ondition imposed in [14℄ and [15℄ on the de�nition of Wi
k powers and their time-ordered-produ
ts was that they be lo
al, 
ovariant �elds [5℄. In order to de�ne this notion,it is ne
essary to think of the �elds as being de�ned not only for a given, �xed spa
etime,but rather for all (globally hyperboli
) spa
etimes, and we in
orporate this viewpointhere by indexing the �eld with the spa
etime under 
onsideration, su
h as �[M;g℄. If(M;g) and ( ~M; ~g) are two spa
etimes su
h that there is a 
ausality preserving isometri
embedding, �, of ( ~M; ~g) into (M;g), then the algebra W( ~M; ~g) 
an be regarded as asubalgebra of W(M;g) via a homomorphism �� in a natural way [14℄, so that the free�eld theory with algebra W(M;g) is a lo
al, 
ovariant �eld theory [5℄. The requirementthat � be a lo
al 
ovariant �eld is then that��(�[ ~M; ~g℄(x)) = �[M;g℄(�(x)): (10)It was shown in [14℄ that this requirement together with a number of additional require-ments (su
h as 
ommutation properties, 
ontinuity and analyti
ity 
onditions, mi
rolo
alspe
tral 
onditions, and 
ausal fa
torization) uniquely determines the de�nition of Wi
kpowers and their time-ordered-produ
t up to 
ertain well de�ned renormalization ambi-guities. Existen
e of Wi
k powers satisfying these properties also was established in [14℄,and existen
e of their time-ordered-produ
ts was proven in [15℄.The results of the present paper will rely heavily on the uniqueness theorem 5.2 of[14℄ for time-ordered-produ
ts. The allowed ambiguity in the de�nition of time-ordered-produ
ts as given in theorem 5.2 of [14℄ is rather awkward to state, so we �nd it useful9



to reformulate this theorem in the following manner (see [1, 8℄). First, we introdu
e anabstra
t ve
tor spa
e, V, 
omprised by �nite linear 
ombinations of basis elements labeledby formal produ
ts of ' and its 
ovariant derivatives,V = spanC n� =Yr(a1 � � �rai)'o : (11)We refer to the elements of V as \formal" be
ause we do not assume any relations betweenthe �elds at this stage. In parti
ular, we regard the �eld and its derivatives as independentquantities whi
h are not related by the �eld equation. LetD1(M;V) � fsmooth densities on M of 
ompa
t support with values in Vg (12)so that an element F 2 D1(M;V) 
an be uniquely expressed as a �nite sum F =Pfi�iwith ea
h �i a basis element of V and fi 2 D1(M). It is 
onvenient to think of a pres
rip-tion for de�ning Wi
k powers as a linear map from D1(M;V) into the algebra W(M;g).Thus, a pres
ription for Wi
k powers asso
iates to an element f(x)� 2 D1(M;V) an ele-ment �(f) 2 W(M;g). Similarly, it is useful to view the n-fold time ordered produ
t ofWi
k powers as an n-times multilinear mapT :�nD1(M;V) ! W(M;g) (13)(f1�1; : : : ; fn�n) ! T (Y�i(fi)): (14)The map de�ning Wi
k powers is, of 
ourse, the spe
ial 
ase n = 1 of the map de�ningtime-ordered-produ
ts.Let us now suppose that we have two pres
riptions for de�ning time-ordered-produ
ts(and, in parti
ular, two pres
riptions for de�ning Wi
k powers). It is simplest and most
onvenient to express the formula for the di�eren
e between these pres
riptions in termsof the lo
al S-matrix, S(P fi�i), for the formal sumP fi�i, whi
h is formally de�ned byS(X fi�i) = 11 +Xn�1 inn!T ( nYX�i(fi)): (15)(Of 
ourse, as dis
ussed further at the beginning of se
tion 3.1 below, the series on the rightside of eq. (15) is not expe
ted to 
onverge. It should be viewed as merely a bookeepingdevi
e that will allow us to write an in�nite sequen
e of 
ompli
ated equations|givenexpli
itly in eq. (25) below|as a single equation.) Denote the image of the n-tuple(f1�1; : : : ; fn�n) 2 �nD1(M;V) under the �rst pres
ription as T (Q�i(fi)) and denoteits image under the se
ond pres
ription as ~T (Q ~�i(fi)). Then, if both pres
riptions satisfyall of the requirements stated in [14℄, [15℄, theorem 5.2 of [14℄ establishes that the followingrelation holds between the 
orresponding lo
al S-matri
es:~S(X fi�i) = S(X fi�i + Æ(X fi�i)); (16)10



where Æ(Pfi�i) is given by the formal power series expressionÆ(X fi�i) =Xn�1 in�1n! On(�nX fi�i): (17)Equation (16) is to be interpreted as an in�nite sequen
e of equalities between terms
ontaining equal numbers of ea
h of the fi's under the formal substitutions (15) and (17).In eq. (17), the On's are multilinear mapsOn :�nD1(M;V)! D1(M;V) (18)of the form: On(�ni=1fi�i) = Xj Fj	j; (19)where 	j are basis �elds in V and the densities Fj are of the formFj(x) = �(x) X(a)=(a1):::(an)Cj(a)(x) nYi=1r(ai)fi(x): (20)In this formula, we have iden�ed the densities fi with test fun
tions on M using themetri
 volume element � and we have used the multi-index notation r(a) = r(a1 � � � ras).The quantities Cj (a) are tensors that are monomials in the Riemann tensor, its 
ovariantderivatives, and m2, with 
oeÆ
ients that are analyti
 fun
tions of �. The quantities Onare further restri
ted by the requirement that[T (On(�ni=1fi�i)); '(fn+1)℄ = nXk=1 T (On(f1�1; : : : ; iX(a) (fn+1�(a)fk) ��k�r(a)'; : : : ; fn�n)):(21)Here, ��=�r(a)' is the element in V obtained by formally di�erentiating the expression� 2 V with respe
t to r(a)' (thereby viewing the latter as an \independent variable"),(a) is a spa
etime multi-index as above, and(fn+1�(a)fi)(x) = ZM fn+1(x)�(x; y)r(a)fi(y); (22)where � is the advan
ed minus retarded Green's fun
tion, and where the integration isover the \y"-variables. In addition, if dj(a) is the engineering dimension of Cj(a), N(a)the number of 
ovariant derivatives appearing expli
itly in equation (20), and dj is theengineering dimension of the �eld 	j, then ea
h of the terms in the sum (20) must satisfythe power 
ounting relation nXi=1 d�i = 4n+N(a) + dj(a) + dj (23)11



for all multi-indi
es (a) and all j. Furthermore, the quantities Æ(f�) de�ned in eq. (17)satisfy the reality 
ondition Æ(f�)� = Æ(f�) (24)for real valued f and hermitian �, whi
h 
orresponds to the unitarity requirement,S(f�)�1 = S(f�)�, for real valued f and hermitian �. Equation (24) is equivalentto the reality property On(�nf�)� = (�1)n�1On(�nf�).The relations between the two pres
riptions for time-ordered-produ
ts given impli
itlyin eq. (16) 
an be written out expli
itly as~T  nYi=1 ~�i(fi)! = T  nYi=1 �i(fi)!+XP T  YI2P OjIj(�j2Ifj�j) Yi=2I 8I2P �i(fi)! : (25)where, P is a 
olle
tion of pairwise disjoint subsets I1; I2; : : : of the set f1; : : : ; ng, not allof whi
h 
an be empty, and jIj is the number of elements of su
h a set. Equation (25)
orresponds to our previous formulation of the uniqueness theorem given in theorem 5.2of [14℄, ex
ept that, for simpli
ity, we asssumed in the statement of that theorem that the\untilded" pres
ription for de�ning Wi
k produ
ts was given by \lo
al normal ordering"with respe
t to a lo
al Hadamard parametrix. In Minkowski spa
etime a proof thateq. (25) 
orresponds to the formal expansion of eq. (16) is given in [20, thm. 6.1℄; the
ombinatori
al arguments given there 
an be generalized in a straightforward manner tothe present 
ase.If we takeP fi�i to be the intera
tion Lagrangian density, then eq. (16) 
orrespondsto the familiar statement in perturbative quantum �eld theory in Minkowski spa
etimethat the \renormalization ambiguities" in the S-matrix5 
orrespond simply to adding\
ounterterms" to the Lagrangian of the appropriate \power 
ounting" dimension. Theonly signi�
ant di�eren
e o

urring when one goes to 
urved spa
etime is that additional
ounterterms involving the spa
etime 
urvature may o

ur.We 
on
lude this se
tion by reviewing the s
aling properties of Wi
k powers andtheir time-ordered-produ
ts. Fix a Wi
k power �[M;g; p℄ and 
onsider the 1-parameterfamily of Wi
k powers �[M;�2g; p(�)℄ de�ned on the spa
etimes (M;�2g), with 
oupling
onstants p(�) = (��2m2; �): (26)These quantities belong (when smeared with a test density) to di�erent algebras,�[M;�2g; p(�)℄(f) 2 W(M;�2g; p(�)) (27)5We should emphasize that our interest here is not in determining the renormalization ambiguitiesin a global s
attering matrix (whi
h will, in general, not even be de�ned) but rather in determining therenormalization ambiguities in the intera
ting �eld itself (as well as its Wi
k powers and the time-ordered-produ
ts of its Wi
k powers). However, the formulas expressing these ambiguities are most 
onvenientlyexpressed in terms of the relative S-matrix, whi
h is de�ned in terms of the lo
al S-matrix (see se
tion3.2 below), so a knowledge of the ambiguities in the lo
al S-matrix will enable us to determine theambiguities in the intera
ting �eld. 12



(where we now have indi
ated expli
itly the dependen
e of this algebra and the �eld onthe 
oupling parameters p), and hen
e 
annot be 
ompared dire
tly. However, as observedin [14℄, one 
an de�ne a natural *-isomorphism�� :W(M;�2g; p(�))!W(M;g; p); ��([tn℄) � ��n[tn℄: (28)In other words, �� maps the elementofW(M;�2g; p(�)) 
orresponding to :'(f1) � � �'(fn) :!�in the GNS-representation of the quasi-free Hadamard state !� into the element ofW(M;g; p) 
orresponding to :'(f1) � � �'(fn) :! in the GNS-representation of the quasi-freeHadamard state !, where the two-point fun
tions of !� and ! are related by !�(x1; x2) =��2!(x1; x2). Using this isomorphism, we 
an then identify theWi
k produ
t �[M;�2g; p(�)℄with a lo
al 
ovariant �eld ��(�[M;�2g; p(�)℄) for the uns
aled metri
 and uns
aled 
ou-pling 
onstants g; p.The free �eld ' has the homogeneous s
aling behavior��('(f)) = ��1'(f); (29)where the �eld on the left side of this equation is de�ned in terms of the s
aled metri
 �2gand s
aled 
oupling 
onstants p(�), whereas the �eld on the right side of this equationis de�ned in terms of the uns
aled metri
 g and uns
aled 
oupling 
onstants p. Thehigher order Wi
k powers and their time-ordered-produ
ts have an \almost" homogeneouss
aling behavior in the sense that6�� T  nYi=1 �i(fi)!! = ��dT T  nYi=1 �i(fi)!+��dT XP T  YI2P OjIj(�;�j2Ifj�j) Yi=2I 8I2P �i(fi)! ; (30)where dT is the engineering dimension of the time-ordered-produ
t and the quantitiesOn(�;�ni=1fi�i) =Xj Fj(log �)	j (31)have the same properties as the quantities eq. (20) in our uniqueness theorem, withthe only di�eren
e that the s
alar densities Fj(log �) now have an additional polynomialdependen
e on log �.As we will see, the �elds in the intera
ting quantum �eld theory will not have thisalmost homogeneous s
aling behavior in general.6The fa
t that the non-homogeneous terms on the right side of eq. (30) take the form of lo
al, 
ovariant�elds that depend polynomially on log�was taken as an axiom in [14℄, the 
onsisten
y of whi
h was provenin [15℄. The spe
i�
 form of these terms follows from the uniqueness theorem of [14℄.13



3 Intera
ting �elds in 
urved spa
etime3.1 De�nition of the intera
ting �eldIn this se
tion, we 
onsider the intera
ting �eld theory des
ribed by the Lagrangian density(1). Our main aim is to de�ne the intera
ting �eld, 'L1, as well as its Wi
k powers andthe time-ordered-produ
ts of its Wi
k powers. We use the generi
 notation �L1 to denoteany Wi
k power and TL1(Q�i) to denote any time-ordered-produ
t of Wi
k powers ofthe intera
ting �eld.The �rst step is to de�ne a suitable algebra, X (M;g), of whi
h these intera
ting �eldswill be elements. The intera
ting �eld algebra will then be de�ned to be a suitable sub-algebra, BL1(M;g), of X (M;g) (see eq. (46) below). Unfortunately, even in Minkowskispa
etime, if � 6= 0 there is no known way to 
onstru
t the �elds for this theory other thanon the level of perturbation theory. Furthermore, the perturbative formulae for the quan-tities that are normally 
al
ulated|su
h as Green's fun
tions and S-matrix elements|arenot expe
ted to 
onverge. In this regard, however, we note that quantities su
h as Green'sfun
tions and S-matrix elements do not depend solely on the algebrai
 properties of the�elds themselves, but also involve properties of the va
uum state or ground state and, inmany instan
es, also \in" and \out" states. However, even if, in some suitable sense, thealgebra of �elds were to vary analyti
ally under 
hanges of the parameter �, there is noreason that 
ertain states of the theory, su
h as the ground state, need vary analyti
ally.This suggests the possibility that if perturbation theory were used solely for the purposeof 
al
ulating algebrai
 relations involving the intera
ting �eld|rather than propertiesinvolving states|then perhaps at least some of the diÆ
ulties with the 
onvergen
e ofperturbative expansions would not arise. In other words, rather than using perturbationtheory to 
al
ulate Green's fun
tions, S-matrix elements, or other quantities that dependupon states, we suggest that it may be more fruitful to use perturbation theory to at-tempt to �nd analyti
 relations between the �eld observables that hold to all orders inperturbation theory.However, we shall not attempt to pursue any su
h program here, but rather will onlyattempt to 
onstru
t the intera
ting theory at the level of formal power series in the
oupling 
onstant �. Thus, we shall take X (M;g) to beX (M;g) =�1n=0W(M;g) (32)where an element A 2 X (M;g) of the form A = (A0; A1; A2; : : : ) should be interpretedas 
orresponding to the formal power seriesA = 1Xn=0 An�n: (33)The multipli
ation law in X (M;g) is then de�ned to be that 
orresponding to the mul-tipli
ation of the formal power series expressions (33), i.e., if A = (A0; A1; A2; : : : ) and14



B = (B0; B1; B2; : : : ), then A ? B = (A0 ? B0; A1 ? B0 + A0 ? B1; : : : ). Note that theintera
ting �eld algebra BL1(M;g) � X (M;g) that we will de�ne in eq. (46) below willthen formally 
orrespond to the entire one parameter family of intera
ting �eld algebrasfor all values of �, rather than the intera
ting �eld algebra for a spe
i�
 value of �.To de�ne the intera
ting �eld, we �rst 
onsider a situation in whi
h the intera
tionis turned on only in some �nite spa
etime region, i.e., we 
hoose a 
uto� fun
tion, �, of
ompa
t support on M whi
h is equal to 1 on an open neighborhood of the 
losure, �V , ofsome globally hyperboli
 open region V with the property that �\V is a Cau
hy surfa
efor V for some Cau
hy surfa
e � in M . This 
uto� will be removed in a later step (seebelow). We de�ne the relative S-matrix for f� with respe
t to the intera
tion Lagrangiandensity �L1 by S�L1(f�) = S(�L1)�1 ? S(�L1 + f�) (34)where the lo
al S-matrix, S(f�), was de�ned in eq. (15) above. Then the Wi
k power,��L1 , for the intera
ting theory with Lagrangian density �L1 
orresponding to the Wi
kpower � of the free theory is de�ned by [2℄��L1(f) � �i��S�L1(�f�)�����=0: (35)Here the right side of eq. (35) should be viewed as (rigorously) de�ning an element ofX (M;g), whi
h is obtained by formally expanding S(�L1)�1 and S(�L1 + f�) in powersof the 
oupling 
onstant � and then 
olle
ting all of the (�nite number of) terms thatmultiply �n for ea
h n (see eq. (33) above and eq. (37) below). Similarly, the time-ordered-produ
t of Wi
k powers of the intera
ting �eld with Lagrangian density �L1 is de�nedby T�L1( nYi=1 �i(fi)) � �nin��1 : : : ��nS�L1(Xi �ifi�i)�����1=���=�n=0: (36)Note that the de�nition of ��L1 (as well as that of T�L1(Q�i)) has been adjusted sothat ��L1 
oin
ides with the 
orresponding free �eld � before the intera
tion is \swit
hedon". This 
an be seen expli
itly by expressing ��L1(f) in terms of the \totally retardedprodu
ts"7 ��L1(f) = �(f) +Xn�1 inn!R(f�; �L1; : : : ; �L1| {z }n fa
tors ); (37)Sin
e the R-produ
ts have supportsuppR � f(y; x1; : : : ; xn) j xi 2 J�(y) 8ig; (38)7This formula is known as \Haag's series," sin
e an expansion of this kind was �rst derived in [12℄ forMinkowski spa
etime; see also [11℄. 15



it follows that all terms in the above sum will vanish if the support of f does not interse
tthe 
ausal future of the support of �.Below, we will need to know how the �elds (36) 
hange under a 
hange of the 
uto�fun
tion �. Now if � and �0 are two 
uto� fun
tions, ea
h of whi
h are 1 in an openneighborhood of �V as above, then there exists a smooth fun
tion h� of 
ompa
t supporton M whi
h is equal to �� �0 on the 
ausal past of the region V , and whose support doesnot interse
t the 
ausal future of V . The unitary U(�; �0) de�ned byU(�; �0) = S�L1(h�L1) (39)is then independent of the parti
ular 
hoi
e for h�, and one has [4, thm. 8.6℄U(�; �0) ? T�L1(Y�i(fi)) ? U(�; �0)�1 = T�0L1(Y�i(fi)); (40)for all �elds �i and all smooth s
alar densities fi of 
ompa
t support in V .We now remove the 
uto� �. Formulas (35) and (36) will not, in general, makesense if we straightforwardly attempt to take the limit � ! 1. Indeed if � 
ould beset equal to 1 throughout the spa
etime in eq. (35), then the resulting formula for �L1would de�ne an intera
ting �eld in the sense of Bogoliubov [2℄, with the property thatthe intera
ting �eld approa
hes the free �eld in the asymptoti
 past. However, even inMinkowski spa
etime, it is far from 
lear that su
h an asymptoti
 limit of the intera
ting�eld will exist (parti
ularly for massless �elds), and it is mu
h less likely that any su
hlimit would exist in generi
 globally hyperboli
 
urved spa
etimes that are not 
at in theasymptoti
 past.In order to remove the 
uto� in a manner in whi
h the limit will exist, we will not tryto take a limit where the �eld remains �xed in the asymptoti
 past but rather|followingthe ideas of [4℄|we will take a limit where the �eld remains �xed in regions of in
reasingsize in the interior of the spa
etime. To make this 
onstru
tion pre
ise, it is useful to havethe following lemma:Lemma 3.1. Let (M;g) be a globally hyperboli
 spa
etime. Then there exists a sequen
eof 
ompa
t sets, fKng, with the properties that (i) for ea
h n, Kn � Vn+1, where Vn+1 �int(Kn+1) (ii) [nKn = M , and (iii) for ea
h n, Vn is globally hyperboli
 and � \ Vn is aCau
hy surfa
e for Vn, where � is a Cau
hy surfa
e for M .Proof. Let t be a time fun
tion on (M;g) with range �1 < t <1 whose level surfa
esare Cau
hy surfa
es, �t, that foliate M [10℄, [7℄. Let � = �0. Choose any 
ompleteRiemannian metri
, qab, on �, 
hoose x0 2 �, and let Bn be the 
losed ball (on �) ofradius n about x0 with respe
t to qab. De�neKn = D(Bn) \ J�(�n) \ J+(��n) (41)where D denotes the domain of dependen
e and J� and J+ denote the 
ausal past andfuture, respe
tively. Then Kn is 
losed. Furthermore, sin
e Bn is 
ompa
t it follows that16



J+(Bn)\ J�(�n) and J�(Bn)\ J+(��n) are 
ompa
t. Sin
e Kn is a subset of the unionof these two sets, it follows that Kn is 
ompa
t. Clearly, we have Vn � Vn+1. However,if x lies on the boundary of Kn, then it must lie on the boundary of D(Bn) and/or lieon �n or ��n; in all 
ases, it follows immediately that x 2 Vn+1. Thus, Kn � Vn+1. Toprove property (ii), let y 2M with, say, y 2 J+(�). Sin
e J�(y) \ � is 
ompa
t, it mustbe 
ontained in some ball of radius r about x0 (with respe
t to the metri
 qab on �).Then y 2 D(Br), so y 2 Kn for any n su
h that n > r and n > t(y), as we desired toshow. Finally, the fa
t that Vn is globally hyperboli
 with Cau
hy surfa
e Vn \ � followsimmediately from the fa
t that Vn is the interior of the domain of dependen
e of Bn forthe spa
etime I�(�n) \ I+(��n).Let fKng, n = 1; 2; : : : , be a sequen
e of 
ompa
t sets with the properties stated inlemma 3.1. For ea
h n, let �n be a smooth fun
tion with support 
ontained in Kn+1 su
hthat �n = 1 on an open neighborhood of Kn. Let U1 = 11 and let Un = U(�n; �n�1) for alln > 1, where U(�n; �n�1) was de�ned in eq. (39) above. Write un = U1 ?U2 ? � � � ?Un. Ourde�nition of the intera
ting �eld, its Wi
k powers, and their time-ordered-produ
ts is:TL1(Y�i(fi)) � limn!1Ad(un)T�nL1(Y�i(fi)); (42)where we use the notation Ad(un)A = un ? A ? u�1n for any A 2 X (M;g). The existen
eof the limit is a dire
t 
onsequen
e of the following proposition:Proposition 3.1. Suppose that N is su
h that the support of ea
h fi is 
ontained in KN .Then for all n;m � N we haveAd(un)T�nL1(Y�i(fi)) = Ad(um)T�mL1(Y�i(fi)) (43)Proof. It suÆ
es to show that for any n � N we haveun+1 ? T�n+1L1(Y�i(fi)) ? u�1n+1 = un ? T�nL1(Y�i(fi)) ? u�1n (44)But by eq. (40) we haveUn+1 ? T�n+1L1(Y�i(fi)) ? U�1n+1 = T�nL1(Y�i(fi)) (45)from whi
h the desired result follows immediately by applying Ad(un) to both sides.Now, given any 
ompa
t set K � M and any family of 
ompa
t sets Kn satisfyingproperties (i) and (ii) of the above lemma, then there always exists8 an N su
h that8Proof: Otherwise, one 
ould �nd a sequen
e fxng 2 K su
h that xn =2 Kn for all n. However, thissequen
e would have an a

umulation point, x, whi
h must lie in the interior of some KN , resulting in a
ontradi
tion. 17



K � KN . Given any smeared time-ordered-produ
t of Wi
k powers, we 
hoose K to bethe union of the supports of all of the (�nite number of) test fun
tions appearing in thetime-ordered produ
t. By the above proposition, there exists an N su
h that the sequen
eappearing on the right side of eq. (42) is 
onstant for all n > N . Therefore, the limitexists.The meaning of the sequen
e Ad(un)T�nL1(Q�i(fi)); n = 1; 2; : : : , is easily understoodas follows. Sin
e u1 = 11, the �rst element of this sequen
e is just the Bogoluibov formulafor this intera
ting �eld quantity with 
uto� fun
tion �1. The se
ond element of thissequen
e modi�es the Bogoliubov formula with 
uto� fun
tion �2 in su
h a way that,a

ording to eq. (40) above, the modi�ed Bogoliubov formula with 
uto� fun
tion �2agrees with the unmodi�ed Bogoliubov formula with 
uto� fun
tion �1 when the supportsof all of the fi are 
ontained within K1. For the third element of the sequen
e, the unitarymap U3 �rst modi�es the Bogoliubov formula with 
uto� fun
tion �3 so that it agrees inregion K2 with the Bogoliubov formula with 
uto� fun
tion �2. The a
tion of the unitaryU2 then further modi�es this expression so that it agrees in region K2 with the modi�edBogoliubov formula of the previous step. In this way, we have implemented the ideaof \keeping the intera
ting �eld �xed in the interior of the spa
etime" as the 
uto� isremoved.We de�ne the intera
ting �eld algebra BL1(M;g) to be the subalgebra of X (M;g)generated by the intera
ting �eld, its Wi
k powers, and their time-ordered-produ
ts, i.e.,BL1(M;g) � falgebra generated by TL1(Y�i(fi)) j fi 2 D1(M);�i 2 Vg: (46)This de�nition of BL1(M;g) as a subalgebra of X (M;g) depends on a 
hoi
e of a familyof 
ompa
t sets Kn satisfying the properties of lemma 3.1 as well as a 
hoi
e of 
uto�fun
tions �n. If we were to 
hoose a di�erent family, ~Kn, of 
ompa
t sets and a 
orre-sponding di�erent family, ~�n, of 
uto� fun
tions, we will obtain a di�erent subalgebra~BL1(M;g) � X (M;g) of intera
ting �elds. However, the algebra ~BL1(M;g) is isomorphi
to BL1(M;g). To see this, fo
us attention on the subalgebras ~BL1(K;g) and BL1(K;g)generated by �elds that are smeared with test fun
tions with support in a �xed 
ompa
tset K. Let n be su
h that K � Kn and K � ~Kn. LetXn = un ? U(~�n; �n) ? ~u�1n : (47)Then Xn is a unitary element of X (M;g). However, for any ~F 2 ~BL1(K;g), it followsfrom eqs. (40) and (42) together with proposition 3.1 that Ad(Xn) ~F is the 
orrespondingintera
ting �eld quantity F 2 BL1(K;g). This shows that the map 
K : ~BL1(K;g) !BL1(K;g) whi
h asso
iates to any element of ~BL1(K;g) the 
orresponding intera
ting�eld quantity in BL1(K;g) is well de�ned and is a *-isomorphism. However, sin
e K isarbitrary, this argument a
tually shows that the map 
 : ~BL1(M;g) ! BL1(M;g) whi
hasso
iates to any element of ~BL1(M;g) the 
orresponding element of BL1(M;g) also is18



well de�ned and is a *-isomorphism of these algebras9. Thus, as an abstra
t algebra,BL1(M;g) is independent of the 
hoi
es of Kn and �n that entered in its 
onstru
tion. Inthe following we assume that we have made an arbitrary, but �xed, 
hoi
e for Kn and �nin every spa
etime.In the free theory, the notion of a lo
al and 
ovariant �eld was de�ned relative to anatural inje
tive *-homomorphism �� : W( ~M; ~g) ! W(M;g) asso
iated with 
ausalitypreserving isometri
 embeddings � of a spa
etime ( ~M; ~g) into another spa
etime (M;g).The Wi
k produ
ts of the free �eld and their time-ordered-produ
ts were then seen to belo
al, 
ovariant �elds in the sense that eq. (10) holds. In order to get a 
orrespondingnatural inje
tive *-homomorphism, �� : BL1( ~M; ~g) ! BL1(M;g), for the intera
ting�eld algebra, we must 
ompose the natural a
tion of �� on BL1( ~M; ~g) with the map 

onstru
ted above in order to 
ompensate for the fa
t that the 
hoi
es for Kn and �n on(M;g) may not 
orrespond to the 
hoi
es of ~Kn and ~�n on ( ~M; ~g). It then follows thatthe intera
ting �eld, its Wi
k powers and their time-ordered-produ
ts as de�ned aboveare lo
al and 
ovariant �elds in the sense that for any 
ausality preserving isometri
embedding, �, we have ��(�L1 [ ~M; ~g℄(x)) = �L1 [M;g℄(�(x)); (48)with an analogous equation holding for the intera
ting time-ordered-produ
ts.Finally, we 
omment upon how the theory we have just de�ned is to be interpreted, i.e.,how the mathemati
al formulas derived above for the intera
ting �eld relate to predi
tionsof physi
ally observable phenomena. In many dis
ussions of quantum �eld theory inMinkowski spa
etime, the interpretation of the theory is made entirely via the (global)S-matrix. Here it is assumed that in the asymptoti
 past and future, states of the �eld 
anbe identi�ed with states of a free �eld theory, whi
h have a natural parti
le interpretation.It is also assumed that one 
an prepare states 
orresponding to desired in
oming parti
lestates and that one 
an measure the properties of the state of outgoing parti
les, so thatthe S-matrix 
an be determined. A wide 
lass of predi
tions of the theory|in
ludingessentially all of the ones that 
an be measured in pra
ti
e|
an thereby be formulated interms of measurements of the S-matrix for parti
le s
attering, without the need to evenmention lo
al �elds. Indeed, when this viewpoint on quantum �eld theory is taken to theextreme, the lo
al quantum �elds, in e�e
t, play the role of merely being tools used for
al
ulating the S-matrix.An alternative, but 
losely related, viewpoint on interpreting the theory in Minkowskispa
etimemakes 
ru
ial use of the existen
e of a preferred va
uum state. Here, one fo
usesattention on the 
orrelation fun
tions of the �eld in this state, whi
h are assumed to bemeasureable|at least in the asymptoti
 past and future and for suÆ
iently large spatialseparation of the points. The interpretation of the theory 
an be formulated in terms of9Note, however, that there need not exist a unitary element X 2 X (M;g) whose a
tion on ~BL1(M;g)
oin
ides with 
. 19



its predi
tions for these 
orrelation fun
tions. This viewpoint on the interpretation of thetheory is 
losely related to the �rst one, sin
e the parti
le measurements in the S-matrixinterpretation 
an be viewed as really 
orresponding to measuring 
ertain properties ofthese 
orrelation fun
tions.However, for quantum �elds in a general, globally hyperboli
 
urved spa
etime, wedo not expe
t to have asymptoti
, free parti
le states or any globally preferred states.It therefore would not appear fruitful to attempt to interpret the theory in a manneranalogous to the above ways in whi
h the theory is normally interpreted in Minkowskispa
etime. Rather, it would seem mu
h more fruitful to view the intera
ting �eld itself|together with its Wi
k powers and other lo
al 
ovariant �elds in BL1(M;g)|as the fun-damental observables in the theory. To make \measurements", we assume that we havea

ess to some external systems that 
ouple to the �eld observables of interest via knownintera
tion Lagrangians, and that we 
an then measure the state of the external systemsat di�erent times. It is 
lear that by making suÆ
iently many measurements of this sort,we 
an test any aspe
t of the theory and|if the theory is valid|we also 
an determineany unknown 
oupling parameters in the theory. However, it is not straightforward togive a simple, universal algorithm for doing so, sin
e the properties of the states will de-pend upon the spa
etime under 
onsideration, and a type of experiment that would mostusefully probe the theory for a parti
ular spa
etime may not be as useful for anotherspa
etime.To make the remarks of the previous paragraph more expli
it, 
onsider a typi
al ex-periment in Minkowski spa
etime wherein one prepares a system of parti
les in a givenin
oming state and measures the parti
le 
ontent of the outgoing parti
les. Both the\state preparation" and the \measurement" of the \parti
les" in their �nal state really
onsist of introdu
ing 
ertain external systems that have desired 
ouplings to the quantum�eld, preparing the initial state of these external systems suitably, and measuring their�nal state. In a 
urved spa
etime, one 
ould presumably introdu
e external systems with
ouplings to the �eld that are similar to those of systems used in Minkowski spa
etime,although it should be noted that there is not any obvious, general notion of what it meansto have \the same" system in a 
urved spa
etime as one had in Minkowski spa
etime,unless one goes to a limit where the size of the system is mu
h smaller than any 
urvatures
ales. However, even if one 
onsiders an external system in 
urved spa
etime that 
orre-sponds to a system of \parti
le dete
tors" in Minkowski spa
etime, it may not be possibleto give any 
onsistent interpretation of the out
ome of the 
urved spa
etime measure-ments in terms of \parti
les". Nevertheless, su
h measurements still provide informationabout the states of the quantum �eld, and it is 
lear that all aspe
ts of the quantum �eldtheory 
an be probed by 
oupling the �eld to suitable external systems and measuringthe state of these external systems.In should be noted that the above situation is not signi�
antly di�erent from the
ase of 
lassi
al �eld theory. Suppose that a 
lassi
al �eld ' with Lagrangian (1) 
an bemeasured via its e�e
t on the motion of s
alar test 
harges, whi
h feel a for
e proportional20



to ra'. In Minkowski spa
etime, one 
ould set up an experiment where a global familyof inertial observers release test parti
les at some time in the distant past. By studyingthe test parti
le motion for a brief interval of time, they 
ould re
onstru
t ' (up to a
onstant) in that region of spa
etime and asso
iate a nonintera
ting solution with thestate of the �eld in the distant past. By repeating this pro
edure in the distant futurethey 
ould obtain a 
orresponding non-intera
ting solution there, and they 
ould therebydetermine the 
lassi
al S-matrix. A great deal of information about the intera
ting theoryis en
oded in the 
lassi
al S-matrix. However, it does not seem straightforward to givea simple algorithm for making measurements with a similar interpretative 
ontent in ageneral 
urved spa
etime, where there are no asymptoti
 regions and no globally preferredfamilies of observers. Nevertheless, it is 
lear that the 
lassi
al �eld theory in 
urvedspa
etime is as meaningful and interpretable as in Minkowski spa
etime, and that all ofthe predi
tions of the 
urved spa
etime theory 
an be probed by doing experiments thatstudy the motion of a suÆ
iently wide 
lass of test parti
les.3.2 Renormalization ambiguities for the intera
ting �eldIn the previous subse
tion we explained the 
onstru
tion of the intera
ting Wi
k produ
tsand their time-ordered-produ
ts in the intera
ting �eld theory 
lassi
ally des
ribed by theLagrangian L given by (1). These 
onstru
tions were based on a pres
ription for de�ningthe Wi
k produ
ts and their time-ordered-produ
ts in the 
orresponding free �eld theory.As we dis
ussed in se
tion 2, the de�nition of these quantities is subje
t to some well-spe
i�ed ambiguities. Therefore, the quantities in the intera
ting �eld theory also will besubje
t to ambiguities.The purpose of this se
tion is to give a pre
ise spe
i�
ation of these ambiguities. Weshall show is that a 
hange in the pres
ription for the Wi
k produ
ts and their time-ordered-produ
ts (within the 
lass of \allowed pres
riptions" spe
i�ed by our uniquenesstheorem) 
orresponds to a shift of 
oupling parameters of the theory appearing in theLagrangian (1). More pre
isely, the intera
ting �eld algebra obtained with the new pre-s
ription will be isomorphi
 to the intera
ting �eld algebra obtained with the originalpres
ription, but with the intera
tion Lagrangian modi�ed by the addition of \
ountert-erms", whi
h|for a renormalizable theory, as 
onsidered here|are of the same form asthose appearing in the original Lagrangian. This isomorphism of the intera
ting �eldalgebras for the two di�erent pres
riptions will map the intera
ting �eld to a multiple ofthe intera
ting �eld. However, the relationship between the higher Wi
k powers of theintera
ting �eld and their time-ordered-produ
ts as de�ned by the two pres
riptions ismore 
ompli
ated: the isomorphism between the algebras will map a higher Wi
k power(or a time-ordered-produ
t of Wi
k powers) into a �eld of the form spe
i�ed in eq. (52)below.To make the above statements more expli
it, suppose that we are given two pres
rip-tions for de�ning the Wi
k produ
ts and their time ordered produ
ts in the free �eld21



theory, both satisfying the assumptions of our uniqueness theorem. These pres
riptionswill give rise to two di�erent 
onstru
tions of intera
ting �elds, whi
h we shall denote asTL1(Q�i) respe
tively ~TL1(Q ~�i), and we write BL1(M;g) respe
tively ~BL1(M;g) for thealgebras generated by these �elds. Then the relation between the tilde intera
ting �eldsand the untilde intera
ting �elds 
an be stated as follows: There exists a *-isomorphismr : ~BL1(M;g)! BL1+ÆL1(M;g) (49)su
h that r� ~'L1(f)� = Z'L1+ÆL1(f); (50)for all f 2 D1(M). The �eld ~'L1 on the left side of eq. (50) is the intera
ting �eldde�ned using the \tilde pres
ription" with respe
t to the intera
tion Lagrangian densityL1, whereas the �eld 'L1+ÆL1 on the right side of this equation is de�ned using the \untildepres
ription" with respe
t to the intera
tion Lagrangian density L1 + ÆL1, where ÆL1 isgiven by ÆL1 = 12[Æz(r')2+ Æ�R'2 + Æm2'2 + Æ�'4℄�: (51)The parameters in this expression (in
luding Æ�), as well the parameter Z in eq. (50) areformal power series in � with real 
oeÆ
ients. The generalization of formula (50) for thea
tion of r on an arbitrary intera
ting time-ordered-produ
t in the tilde pres
ription isgiven byr ~TL1  nYi=1 ~�i(fi)!! = TL1+ÆL1  nYi=1 Zi�i(fi)!+XP TL1+ÆL10�YI2P OjIj(�i2Ifi�i) Yj =2I 8I2P Zj�j(fj)1A : (52)Here, the Zi are formal power series in � whose 
oeÆ
ients are real provided the 
orre-sponding �eld �i is (formally) hermitian. TheOn are multilinearmaps from�nD1(M;V)!D1(M;V) that depend on the intera
tion Lagrangian L1 and have similar properties tothe maps On in our uniqueness theorem for the time-ordered produ
ts of Wi
k produ
ts inthe free theory: First, the On 
an be given an analogous representation to the quantitiesOn in the free theory given in eq. (19),On(�ni=1fi�i) =Xj 
jGj	j (53)The densities Gj have the same form as the the 
orresponding expressions Fj in the freetheory (see eq. (20)), and the 
j are formal power series in �. If the terms appearing onthe right side of eq. (53) are written out in terms of geometri
al tensors (and the 
oupling22




onstants in the free theory), then the engineering dimensions of ea
h term will satisfy a\power 
ounting relation" identi
al to that in the free theory, eq. (23).In terms of the generating fun
tionalSL1(X fi�i) = 11 +Xn�1 inn!TL1( nYX�i(fi)) (54)for the intera
ting Wi
k produ
ts and time-ordered-produ
ts, and the generating fun
-tional ÆL1(X fi�i) �Xn�1 in�1n! On(�nX fi�i); (55)relations (52) 
an be rewritten more 
ompa
tly asr� eSL1(X fi�i)� = SL1+ÆL1(XZifi�i + ÆL1(X fi�i)): (56)In the pre
eding dis
ussion, we have highlighted the analogies between the stru
tureof the renormalization ambiguities in the free and intera
ting theories. However, thereare also some key di�eren
es. Firstly, in our identity (25) spe
ifying the renormaliza-tion ambiguities of the time-ordered-produ
ts in the free theory, the tilde and untildetime-ordered-produ
ts are de�ned both \with respe
t to the same Lagrangian". By 
on-trast, in the 
orresponding formula (52) in the intera
ting theory, the tilde and untildetime-ordered-produ
ts are de�ned with respe
t to di�erent Lagrangians. A se
ond keydi�eren
e between formulas (25) and (52) the free and intera
ting theories is the appear-an
e of the \�eld strength renormalization fa
tors," Zi, in the intera
ting theory, whi
hare absent in the free theory. Third, while the maps On and On in the free and inter-a
ting theories satisfy a number of similar properities, the map On does not satisfy the
ommutator property, eq. (21), satis�ed by On in the free theory. Fourth, we note the ap-pearan
e of the automorphism r in our formula (52) for the renormalization ambiguity ofthe intera
ting time-ordered-produ
ts, whi
h is absent in the 
orresponding formula (25)in the free theory.Proof of equation (52): Let � be a 
uto� fun
tion of 
ompa
t support as above whi
his 1 in an open neighborhood of the 
losure, �V of a globally hyperboli
 subset V of Msu
h that V \ � is a Cau
hy surfa
e of V for some Cau
hy surfa
e � of M . Eq. (16)implies that eS�L1(f�) = S(�L1 + Æ(�L1))�1 ? S(f� + �L1 + Æ(f� + �L1)): (57)In order to bring this equation into a more 
onvenient form, let us de�ne the followingelements in X (M;g):Æn(�L1; f1�1; : : : ; fn�n) � �nin�1��1 : : : ��n Æ(�L1 + nXi=1 �ifi�i)�����1=���=�n=0: (58)23



It follows from our uniqueness theorem that we 
an write Æ0(�L1) as a sum (over n andj) of terms of the general formFn;j(x)	j = �(x) X(a)=(a1):::(an)Cn;j(a)(x) nYi=1r(ai)�(x)	j; (59)where C(a)n;j are monomials in the Riemann tensor, its derivatives, and m2. Sin
e �L1has engineering dimension 4, it follows from eq. (23) that ea
h term in (59) must haveengineering dimension 4. Sin
e �L1 is hermitian, it follows from eq. (24) that the C(a)n;jmust be real and that the �elds 	j must be hermitian. We now divide the terms (59)appearing in Æ0(�L1) into a group 
onsisting of all terms not 
ontaining any derivativesof � and a se
ond group of terms ea
h 
ontaining at least one derivative of �. This givesa de
omposition of Æ0(�L1) into the following two groups of terms:Æ0(�L1) = �Xn�1 �n�nXj 
n;j	j +Xn�1 �nXj fn;j�j: (60)Here, 
n;j are real 
onstants, 	j runs through all hermitian �elds of engineering dimen-sion 4 (in
luding �elds with dimensionful 
ouplings su
h as m2'2 or R211), the fn;j are
ompa
tly supported smooth densities on M whose support does not interse
t on openneighborhood of �V , and �j are hermitian �elds of engineering dimension less than 4. Inthe de
omposition (60), we may repla
e the smooth fun
tions �n in the �rst sum by thefun
tion � at the expense of adding new terms of the kind appearing in the se
ond sum,ex
ept that these new terms will have engineering dimension equal to 4. If this is done,we obtain the de
omposition Æ0(�L0) = �ÆL1 +Xj hj�j: (61)Here ÆL1 is the real linear 
ombination �P aj	j where 	j is running over all hermitian�elds of engineering dimension 4 (in
luding again �elds with dimensionful 
oupling) andwhere aj =Pn�1 
n;j�n. The se
ond sum in the above de
omposition (61) of Æ0(�L1) 
on-tains only real test densities hj of 
ompa
t support that vanish on an open neighborhoodof �V . The quantities �j are now hermitian �elds of engineering dimension � 4.The �eld (density) ÆL1 in eq. (61) is therefore of the form 
laimed in eq. (51), ex
eptthat it may 
ontain (i) terms of the form Cj11, where Cj is a monomial in the Riemanntensor, its 
ovariant derivatives and m2, and (ii) a term proportional to 'rara'. Inprin
iple these terms should be in
luded in eq. (51). However, the terms (i) proportional tothe identity do not 
ontribute to the relative S-matrix given by eq. (57) and 
an thereforebe dropped. Furthermore, it 
an be seen that the term (ii) 
an always be eliminated infavor of the term m2'2+ �R'2 together with a sum of produ
ts of 
urvature tensors and24



m2 of engineering dimension 4 times the identity 11, if the following additional 
onditionis imposed on the time-ordered-produ
ts:T  '(rara �m2 � �R)'(f0) nYi=1 �i(fi)! = T  Xj Kj11(f0) nYi=1 �i(fi)! (62)for all �i and all fi 2 D1(M), where Kj are monomials in the Riemann tensor, itsderivatives and m2 of engineering dimension 4. For the 
ase of the Wi
k power '(rara�m2� �R)' itself, this 
ondition was shown to hold by Moretti [17, eq. (47)℄ for the \lo
alnormal ordering pres
ription" given in [14℄ and eq. (105) below. Using the methodsof [15℄, it 
an be shown that this additional normalization 
ondition 
an also be satis�edfor general time-ordered-produ
ts of the form (62). Therefore, we will assume that a
ondition of the form eq. (62) has been imposed10. It then follows that ÆL1 has the form
laimed in eq. (51).Again, using the properties of the maps On in our uniqueness theorem, we 
an writeÆ1(�L1; f�) = fÆZ� +O1(f�); (63)where ÆZ is a formal power series in the 
oupling 
onstant �. If � is hermitian, then itfollows again from eq. (24) that these power series have real 
oeÆ
ients. The elementO1(f�) is of the form PZjGj	j, where the Gj 
an be written asGj(x) = �(x)X(a) Cj (a)(x)r(a)f(x); (64)where we have identi�ed the density f with a smooth fun
tion onM via the metri
 volumeelement � and where the Cj(a) are monomials in the Riemann tensor, its derivatives andm2 of the 
orre
t dimension. The Zj are formal power series in � and the 	j are lo
al
ovariant �elds with fewer powers in the free �eld than �. Moreover, for n � 2, we de�neOn(�ni=1fi�i) � Æn(�L1; f1�1; : : : ; fn�n): (65)Using the properties of On given in our uniqueness theorem for the time-ordered-produ
tsin the free theory, we 
an again 
on
lude that the On must have the form stated beloweq. (52), and that, in parti
ular, they are independent of the parti
ular 
hoi
e of � so longas the support of f is 
ontained in the region where � is equal to 1. If we �nally de�neÆ�L1(f�) as in eq. (55) and set Z = 1+ ÆZ, then we 
an re
ast eq. (57) into the followingform: eS�L1(f�) = S�(L1+ÆL1)+P hj�j (Zf� + ÆL1(f�)): (66)10We will give a systemati
 analysis elsewhere of 
onditions that 
an be imposed on Wi
k powers andtime-ordered-produ
ts involving derivatives. 25



On J(V ) = J+(V ) [ J�(V ) (the union of 
ausal future and 
ausal past of V ), we de
om-pose hj = hj� + hj+, where hj� has 
ompa
t support whi
h does not interse
t J�(V ). Ifwe now set W (�) = S�(L1+ÆL1)(Xhj��j): (67)then we obtain by [4, thm. 8.1℄,eS�L1(f�) = W (�) ? S�(L1+ÆL1)(Zf� + ÆL1(f�)) ? W (�)�1; (68)whi
h holds for all f 2 D1(M) with 
ompa
t support in V . More generally, an analogousformula will hold if the expression f� is repla
ed by a sum of the form P�ifi�i, whereea
h fi has 
ompa
t support in V .We now obtain the desired formula eq. (52) from eq. (68) by removing the 
uto� � inthe same way as in our de�nition of the intera
ting �eld in se
tion 3.1: We 
onsider asequen
e of 
uto� fun
tions �n whi
h are equal to 1 on globally hyperboli
 open regionsVn with 
ompa
t 
losure that exhaust M . The intera
ting �elds TL1+ÆL1(Q�i) are thengiven in terms of the 
orresponding �elds with 
uto� intera
tion �n(L1+ÆL1) via eq. (42),and the intera
ting �elds ~TL1(Q ~�i) are likewise given in terms of the 
orresponding �eldswith 
uto� intera
tion �nL1 by the tilde version of eq. (42). Using that the intera
ting�elds with 
uto� �n are related via the unitary W (�n) (see eq. (68)), one 
an now easilyobtain a *-isomorphism r : ~BL1(M;g)! BL1+ÆL1(M;g) satisfyingr � eSL1(f�)� = SL1+ÆL1(Zf� + ÆL1(f�)); (69)where f is now an arbitrary test density of 
ompa
t support. We 
an repla
e f� in theabove formula by a sumP�ifi�i and di�erentiate the formula n times with respe
t to tothe parameters �i (setting these parameters to zero afterwards). This gives us the desiredidentity (52).4 The Renormalization Group in Curved Spa
etime4.1 S
aling of intera
ting �eldsAs explained in the previous se
tion, it is possible to give a perturbative 
onstru
tion ofthe intera
ting quantum �eld theory that de�nes the intera
ting �eld, its Wi
k produ
ts,and their time ordered produ
ts as lo
al, 
ovariant �elds. The 
onstru
tion of this theorydepends on a pres
ription for de�ning Wi
k powers and their time-ordered-produ
ts in the
orresponding free theory. As also explained, the de�nition of these quantities involvessome ambiguities, and 
onsequently the de�nition of the intera
ting �eld theory is alsoambiguous. Nevertheless we showed in the previous subse
tion that these ambiguities 
anbe analyzed in mu
h the same way as in the free theory. The result of this analysis wassummarized in eq. (52). 26



In the present se
tion we want to investigate the behavior of the intera
ting �eld, itsWi
k powers, and their time-ordered-produ
ts in the intera
ting theory under a res
alingof the metri
 by a 
onstant 
onformal fa
tor �. As explained in the introdu
tion, thisanalysis 
orresponds to a de�nition of the renormalization group in 
urved spa
etime.For the Wi
k powers and time-ordered-produ
ts in the free theory, the s
aling behaviorwas analyzed at the end of se
tion 2 using the \s
aling map", ��, (introdu
ed in eq. (28)above), whi
h asso
iates to every element of W(M;�2g; p(�)) a 
orresponding elementof W(M;g; p), where p(�) = (��2m2; �) are the res
aled 
oupling 
onstants. Choose anarbitrary, but �xed, pres
ription for de�ning Wi
k powers and their time-ordered-produ
tsin the free theory that satisfy the axioms of [14℄ and [15℄. Let � be an arbitrary, but �xed,positive real number, and let � be a Wi
k power with engineering dimension d. We de�ne��[M;g; p℄(f) = �d �� ��[M;�2g; p(�)℄(f)� ; (70)and we similarly de�ne �T (Q ��i)[M;g; p℄. It follows immediately that �� and �T (Q ��i)provide pres
riptions for de�ning Wi
k powers and their time-ordered-produ
ts that alsosatisfy all of the axioms of [14℄ and [15℄. As we have already noted, it then follows thatthe relation of this new �-dependent pres
ription to the original pres
ription is of theform given by eq. (30) (but without the fa
tors of ��dT o

urring on the right side of thatequation).In order to analyze the s
aling behavior of the �elds in the intera
ting theory de-�ned by the intera
tion Lagrangian density L1 = �'4�, we pro
eed as follows. Ournew �-dependent pres
ription, eq. (70), for de�ning Wi
k powers and their time-ordered-produ
ts for the free �eld gives rise, via the 
onstru
tion of se
tion 3.1, to a new �-dependent pres
ription for the perturbative 
onstru
tion of the 
orresponding intera
ting�elds, whi
h we denote by ��L1 and �TL1(Q ��i), respe
tively. These quantities span analgebra of intera
ting �elds denoted by �BL1(M;g). From the uniqueness result, eq. (52),for the intera
ting Wi
k powers and their time-ordered-produ
ts derived in the pre
eedingsubse
tion we then immediately get, for ea
h � > 0, a *-isomorphismr� : �BL1(M;g)! BL1+ÆL1(�)(M;g): (71)Here, ÆL1(�) is the �-dependent 
ounterterm Lagrangian of the form (51), whose �-dependent 
oupling parameters are given by formal power series in �. The 
oeÆ
ients inthese power series are polynomials in log � whose degree in
reases with n; for exampleÆm2(�) = 1Xn=1 pn(log �)�n; (72)where the pn's are polynomials11.11It is possible to derive inequalities for the maximum degree of the polynomials pn as a fun
tion ofthe order n in perturbation theory. 27



It is not diÆ
ult to see that the relation between ��L1 and �L1 is simply��L1[M;g; p℄(f) = �d �� ��L1 [M;�2g; p(�)℄(f)� ; (73)where here we have again denoted by �� the obvious extension of �� from W to X . Asimilar formula holds for the time-ordered-produ
ts of the intera
ting �elds. Consequently,if we 
ompose �� with r� 
onstru
ted above, we obtain a *-isomorphism R� = r� Æ ��R� : BL1(M;�2g; p(�))! BL1+ÆL1(�)(M;g; p); (74)where we indi
ate expli
itly the dependen
e on the parameters p in the free theory. Sin
ethe s
aling map �� in the free theory satis�es �� Æ ��0 = ���0, it follows thatR� Æ R�0 = R��0 (75)Using eq. (52) we �nd that the a
tion of R� on an intera
ting time-ordered-produ
tin the algebra BL1(M;�2g; p(�)) is given byR� TL1  nYi=1 �i(fi)!! = ��dT TL1+ÆL1(�) nYi=1 Zi(�)�i(fi)!+��dT XP TL1+ÆL1(�)0�YI2P OjIj(�;�i2Ifi�i) Yj =2I 8I2P Zj(�)�j(fj)1A : (76)Here, the �-dependent �eld strength renormalization fa
tors, Zi(�), 
an be written asZi(�) = 1 +Pn�1 zi;n(log �)�n, where the 
oeÆ
ients zi;n depend at most polynomiallyon log �. The termsOn(�;�ifi�i) have the same form as eq. (52), and ea
h of the terms inthe sum on the right side of this equation is a formal power series in �, whose 
oeÆ
ientsare geometri
 tensors times polynomials in log �. For the spe
ial 
ase of the intera
ting�eld 'L1, the above formula simpli�es toR�('L1(f)) = ��1Z(�)'L1+ÆL1(�)(f): (77)Equation (76) is our desired formula for the s
aling behavior of the �elds in the in-tera
ting quantum �eld theory. Although eq. (76) has many obvious similarities to the
orresponding formula eq. (30) in the free theory, it should be noted that there are a num-ber of important di�eren
es, in parallel with the di�eren
es in the general renormalizationambiguities of the free and intera
ting �elds (see se
tion 3.2 above). Most prominently, inthe free �eld theory, the s
aling relations (30) relate res
aled time-ordered-produ
ts to theuns
aled time-ordered-produ
ts de�ned with respe
t to the \same Lagrangian", whereas28



the s
aling relations eq. (76) in the intera
ting theory12 relate the res
aled time-ordered-produ
ts for the intera
tion Lagrangian L1, to the uns
aled time-ordered-produ
ts de�nedwith respe
t to the intera
tion Lagrangian L1(�) = L1+ ÆL1(�). Another important dif-feren
e between the s
aling relations (76) and (30) is the o

urren
e of the �eld strengthrenormalization fa
tors, Zi(�), in the intera
ting �eld theory, while su
h fa
tors are ab-sent in the free theory. As a 
onsequen
e, the intera
ting �elds do not in general have analmost homogeneous s
aling behavior.Given any �xed renormalization pres
ription, eq. (74) shows that the theory de�nedfor the res
aled metri
 and res
aled parameters of the free theory is equivalent to theoriginal theory with a modi�ed Lagrangian ÆL1. The �-dependen
e of the parametersÆm2(�), Æz(�), Æ�(�), and Æ�(�) in ÆL1(�) de�ne the renormalization group 
ow of thetheory. As already mentioned Æm2, Æz, Æ�, and Æ� are formal power series in �. Thesequantities also depend upon the parameters appearing in L0, so Æm2, Æz, Æ�, and Æ�should be viewed as e�e
tively being fun
tions of �;m2, and �, as well as of �. However,it should be noted that the renormalization group 
ow is independent of the spa
etimemetri
 g.The physi
al meaning of the renormalization group 
ow 
an perhaps be best explainedby imagining that a quantum �eld theory textbook from an an
ient 
ivilization has beendis
overed. This textbook 
ontains a 
omplete des
ription of perturbative renormalizationtheory for the s
alar �eld (1) as well as 
omplete instru
tions on how to build apparatusesto prepare states of the theory and to make measurements (see the dis
ussion at the endof se
tion 3.1). It also re
ords the results of these measurements and 
ompares themwith theoreti
al predi
tions (to some appropriately high order in perturbation theory),thereby �xing the parameters of the theory. However, the one pie
e of information thatis missing is the system of units used by the an
ient 
ivilization; in other words, thelengths
ale, l, used by the an
ient 
ivilization to de�ne the fundamental unit of length (interms of whi
h other units, su
h as mass, are de�ned in the standard way) is not presentlyknown. This lengths
ale enters both the renormalization pres
ription given in the book(sin
e, the spe
i�
ation of a parti
ular lo
ally 
onstru
ted Hadamard parametrix and therenormalization pres
ription for de�ning time-ordered-produ
ts require a spe
i�
ation ofa unit of length) as well as the instru
tions for building the apparatuses and making themeasurements. Suppose, now, that a physi
ist from the present era tries to verify theexperimental 
laims made in the book. He makes a guess, l0, as to the value of l, whi
h,as it turns out, di�ers from l by a fa
tor of ��1, i.e., l0 = l=�. Sin
e the present-day12For the 
lassi
al intera
ting �eld, the s
aling relations also do not involve a modi�
ation of the inter-a
tion Lagrangian, as 
an be seen from the fa
t that the 
lassi
al Lagrangian L (and the 
orresponding
lassi
al nonlinear equations of motion) is manifestly invariant under transformation g! �2g, '! ��1',m2 ! ��2m2 and � ! �. This 
an also be seen, more indire
tly, in present formalism if one keeps expli
-itly the dependen
e of our 
onstru
tions on ~, so that the 
orresponding 
lassi
al theory 
orresponds tothe limit ~! 0. This is most naturally done by introdu
ing ~ as an expli
it parameter in our de�nitionof the produ
t \?", eq. (6), in our algebra W (and likewise X ), see [8℄.29



physi
ist will normalize the spa
etime metri
 so that a rod of length l0 will have unitlength (whereas the an
ient 
ivilization assumed that a rod of length l has unit length),the spa
etime metri
 g0 used by the present-day physi
ist will di�er from the metri
 gthat would have been used by the an
ient 
ivilization by g0 = �2g. Correspondingly,all of the experimental apparatuses built by the present-day physi
ist will be a fa
tor of� smaller in all linear dimensions than intended by the author of the an
ient textbook.When the present day physi
ist 
ompletes his experiments, he will �nd that his resultsdisagree with the results reported in the book. He will �nd that this disagreement willbe alleviated he 
ompares his results to the theoreti
al predi
tions obtained from therenormalization pres
ription given in the book by using the mass parameter m0 = ��1min L0 rather than m, but disagreements will still remain. However, if, in addition to thesubstitution m0 = ��1m in L0, the present-day physi
ist also modi�es the intera
tionLagrangian L1 by eq. (51) (with Æz; Æm2, et
. given by eq. (72)), then he will �nd exa
tagreement with the theoreti
al predi
tions obtained from the renormalization pres
riptiongiven in the book, provided that he also rede�nes the �eld variables in a

ordan
e withthe *-isomorphismR� given by eq. (76). In other words, when the properties of the s
alar�eld are investigated on a s
ale di�erent from that used by the an
ient 
ivilization, itsproperties will be found to di�er by a \running of 
oupling 
onstants" in the intera
tionLagrangian.The quantity Æ�(�) 
an be viewed as modifying the nonlinear 
oupling parameter �appearing in the original intera
tion Lagrangian L1. However, it should be noted that thequantities Æm2(�), Æz(�), and Æ�(�) all 
orrespond to parameters appearing in the originalfree Lagrangian, L0, rather than L1. It would be natural to try to interpret these termsin L1 as 
orresponding to 
hanges in the 
oupling 
onstants m2, z = 1, and � appearingin L0. However, we do not know how to justify su
h an interpretation be
ause we haveonly 
onstru
ted the intera
ting theory at the level of a formal perturbation expansion.Therefore, we 
annot 
ompare an intera
ting theory based on the free Lagrangian L0 withan intera
ting theory based on the free Lagrangian L0 + ÆL0, where ÆL0 = 12 [Æz(r')2+Æ�R'2 + Æm2'2℄�.Finally, as we have already noted, the renormalization group 
ow o

urs in the pa-rameter spa
e of the theory and is independent of the spa
etime metri
. Thus, in orderto 
al
ulate (or measure) the renormalization group 
ow, it suÆ
es to restri
t attentionto a single spa
etime, provided that the spa
etime is not so spe
ial that possible 
ur-vature 
ouplings do not o

ur. Thus, for example, in the theory with Lagrangian (1),the only 
oupling to 
urvature o

urs in the term �R'2, so it would suÆ
e to 
al
u-late the renormalization group 
ow in any spa
etime with nonvanishing s
alar 
urvature.We will indi
ate how to 
al
ulate renormalization group 
ow in 
urved spa
etime interms of Feynman diagrams in appendix B. However, we point out here that a great dealof information about the renormalization group 
ow 
an be dedu
ed from dimensional30




onsiderations as well as from some simple properties that hold in spe
ial spa
etimes13.From dimensional 
onsiderations alone, it follows that the dependen
e of Æm2(�), Æz(�),Æ�(�); Æ�(�) on the parametersm2, �, and �must be of the form Æm2(�) = m2Fm2(�; �; �),Æz(�) = Fz(�; �; �), Æ�(�) = F�(�; �; �); Æ�(�) = F�(�; �; �). However, it is possible (andwould be very natural) to 
hoose a pres
ription for de�ning free �eld Wi
k produ
ts andtheir time-ordered-produ
ts in an arbitrary spa
etime su
h that in the spe
ial 
ase ofMinkowski spa
etime, this pres
ription does not depend upon the irrelvant parameter �.It follows immediately that with su
h a renormalization pres
ription, the renormalizationgroup 
ow 
annot depend upon � in Minkowski spa
etime and, therefore|sin
e the 
owis independent of the spa
etime metri
|the 
ow 
annot depend upon � in any spa
etime.More generally, it is possible (and would be very natural) to 
hoose a pres
ription forde�ning free �eld Wi
k produ
ts and their time-ordered-produ
ts in an arbitrary spa
e-time su
h that in the spe
ial 
ase of a spa
etime with 
onstant s
alar 
urvature R (su
has deSitter spa
etime), the only dependen
e of the pres
ription on the parametersm2 and� o

urs in the 
ombination m2+ �R. This 
ondition implies that (in all spa
etimes), therenomalization group 
ow must take the formÆm2 = m2G1(�; �)Æ� = �G1(�; �) +G2(�; �)Æz = G3(�; �)Æ� = G4(�; �) (78)The fun
tions G1, G3, and G4 
an all be determined by 
al
ulations done entirely inMinkowski spa
etime; the fun
tion G2 
annot be determined by 
al
ulations in Minkowskispa
etime but 
ould be determined by 
al
ulations done, e.g., in deSitter spa
etime.4.2 Fixed points, essential vs. inessential 
oupling parametersIn the previous se
tion we have seen that a res
aling of the spa
etime metri
 by a 
onstant
onformal fa
tor, g ! �2g, (a \
hange of length s
ale") gives rise to di�erent de�nitionsof the intera
ting �eld theory. The relation between the de�nitions of the �eld theory atdi�erent length s
ales is given by the renormalization group. It is of interest to ask atwhat points in the parameter spa
e of the theory the de�nition of a �eld theory is a
tually\independent" of the s
ale at whi
h it is de�ned. Su
h points are usually referred to as\�xed points".Naively, one might attempt to de�ne a �xed point as a point in parameter spa
e atwhi
h the �-derivatives of Æm2(�), Æz(�), Æ�(�), and Æ�(�) all vanish. However, thisde�nition would be too restri
tive be
ause it ex
ludes points where the renormalization13We are indebted to K.-H. Rehren, C.J. Fewster, and K. Fredenhagen for bringing this point to ourattention. 31



group 
ow is nonvanishing but 
orresponds merely to a rede�nition of �eld variables. Onewould like to de�ne the notion of �xed points so that it also in
ludes points in parameterspa
e where the renormalization group 
ow is nonvanishing but is tangent to a trivial
ow 
orresponding to a �eld rede�nition.To see more expli
itly the nature of su
h trivial 
ows, 
onsider a �eld theory withLagrangian L(') and 
onsider a mapping ' ! F (') on �eld spa
e su
h that F (')(x)depends only on '(x) and �nitely many of its 
ovariant derivatives at the point x. Then,although the Lagrangian L(') and L(F (')) may look very di�erent (i.e., di�erent kinds of
ouplings and di�erent values of 
oupling parameters), they nevertheless would de�ne anequivalent 
lassi
al �eld theory. Thus, at the 
lassi
al level, there is a wide 
lass of trivial
ows in parameter spa
e that 
orrespond to �eld rede�nitions. However, the situationis far more restri
tive for a �eld with Lagrangian (1) if we want the �eld rede�nition tokeep the Lagrangian in a perturbatively renormalizable form. It is not diÆ
ult to seethat (in 4 dimensions) this leaves us only with the possibility to multiply the �eld by a
onstant, i.e., the only possible form of F is F (') = s'. The new 
lassi
al LagrangianL(s) � L(F (')) is thenL(s) = 12 [s2(r')2 + s2(m2 + �R)'2 + s4�'4℄�: (79)If one splits this Lagrangian into its free and intera
ting parts via L(s) = L0+L1(s) withL0 = 12 [(r')2+m2'2 + �R'2℄�, the intera
tion Lagrangian takes the formL1(s) = 12[(s2 � 1)(r')2 + (s2 � 1)(m2 + �R)'2 + s4�'4℄�: (80)Therefore, one might expe
t that the \one-parameter 
ow" de�ned by eq. (80)|with staken to be an arbitrary power series in �|would 
orrespond to a trivial 
ow in theparameter spa
e of the theory in the sense that the theory 
onstru
ted from the intera
-tion Lagrangian L1(s) would be equivalent to the theory 
onstru
ted from the originalintera
tion Lagrangian L1 = 12�'4�.However, the a
tual situation is somewhat more 
ompli
ated than the above 
on-siderations might suggest. The theories 
onstru
ted from the intera
tion LagrangiansL1(s) and L1 will depend upon the spe
i�
 
hoi
e of renormalization pres
ription, and,for any given pres
ription, we see no reason why these two theories need be equivalent.Indeed, it appears far from 
lear that there exists any renormalization pres
ription thatgives equivalen
e of the two theories. Nevertheless, we shall now show that, for any �xedrenormalization pres
ription, there exists some one-parameter family of intera
tion La-grangians, K1(s), su
h that the theories 
onstru
ted from K1(s) are equivalent to thetheory 
onstru
ted from L1 in the sense that the algebras BK1(s)(M;g) and BL1(M;g)are isomorphi
. Furthermore, the a
tion of this isomorphism on the intera
ting �eld 
or-responds to the simple �eld rede�nition F (') = N(s)', where N(s) is a formal powerseries with the propery N(s = 1) = 1. The pre
ise statement of this result is as follows:32



Theorem 4.1. Let s = 1+Pi�1 si�i be a formal power series in � with real 
oeÆ
ients.Then there exists an intera
tion Lagrangian K1(s) of the same form as the original La-grangian, a formal power series N(s) and a *-isomorphism �s : BL1(M;g)! BK1(s)(M;g)su
h that �s ['L1(f)℄ = N(s)'K1(s)(f) (81)for all f 2 D1(M), and su
h that N(s = 1) = 1 and K1(s = 1) = L1.A proof of this theorem is given in appendix A.A

ording to the above theorem, it is natural to view the intera
tion Lagrangians L1and K1(s) as de�ning the same quantum �eld theories and �s as implementing the �eldrede�nition. If we 
hoose 
oordinates on the spa
e of parameters in the Lagrangian sothat the 
oordinate ve
tor �eld of one of the 
oordinates is tangent to the 
ow de�ned byK1(s), then we refer to this 
oordinate as an inessential parameter of the theory (see, e.g.,[23℄). We de�ne a �xed point of the renormalization group 
ow to be a point at whi
honly the inessential parameter 
hanges under the 
ow. More pre
isely, if � ! L1(�) isthe renormalization group 
ow, then we say that we are at a �xed point if there is a1-parameter family �! s(�) su
h thatL1(�) =K1(s(�)) for all � > 0. (82)This relation 
an be di�erentiated with respe
t to log �, thereby relating a �xed pointto a zero of a suitably de�ned �-fun
tion. For this, we write L1(�) = L1 + ÆL1(�), andK1(s) = L1 + ÆK1(s), and we denote the parameters in ÆL1(�) by Æz(�); Æ�(�) et
. andthe parameters in ÆK1(s) by Æ~z(s); Æ~�(s) et
. We de�ne14�� � �� log �Æ�� ��sÆ~�� ��sÆ~z��1 �� log �Æz������=s=1: (83)Then a �xed point15 
orresponds to a zero of �� (together with a zero of similarly de�nedbeta fun
tions �m2; ��).A
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tually of the form (80), then the �-fun
tion for � would be given by �� ��� log� (Æ�(�)� 2�Æz(�))j�=115It should be noted that the intera
ting theory has been 
onstru
ted only at the level of a formalperturbation expansion, it will not be possible to reliably determine �xed points unless they o

ur near� = 0. 33



A Appendix AIn this appendix we give a proof of theorem 4.1. Mainly for notational simpli
ity, wewill assume throughout this proof that � = m2 = 0, so that L0 = 12(r')2�; the general
ase 
an be treated in exa
tly the same way. Consider the Lagrangian density ÆL0 =12Æs(r')2� with Æs = s2�1, and a 
uto� fun
tion � whi
h is equal to 1 in a neighborhoodof the 
losure �V of a globally hyperboli
 neighborhood V with 
ompa
t 
losure and with aCau
hy surfa
e of the form �\V , where � is a Cau
hy surfa
e forM . Although ÆL0 is, of
ourse, only quadrati
 in the �eld ', we may 
onsider it as an \intera
tion Lagrangian,"and we 
an de�ne, by eqs. (35) respe
tively (36) (with L1 in those equations repla
edby ÆL0), the 
orresponding \intera
ting" �elds as formal power series in Æs (or, moreproperly, as formal power series in �, sin
e s itself is a formal power series in �).The �rst step in our proof is to show that the \intera
ting �elds" '�ÆL0(f) with f asmooth test density of 
ompa
t support in V satisfy exa
tly the same algebrai
 relations asthe �elds s�1'(f). Furthermore, we show that the \intera
ting time-ordered-produ
ts"T�ÆL0(Q�i(fi)) (with the support of fi 
ontained in V ) satisfy 
ommutation relationswith the �eld '�ÆL0(f) that have exa
tly the same form as the 
ommutation relations ofs�NT (Q�i(fi)) with s�1'(f) given in [15℄, where N is the number of free �eld fa
tors inthe time-ordered-produ
t. We formulate this result as a lemma.Lemma A.1. For all smooth test densities with support in V , we have that'�ÆL0(raraf) = 0; '�ÆL0(f)� = '�ÆL0( �f ); ['�ÆL0(f1); '�ÆL0(f2)℄ = is�2�(f1; f2)11(84)in the sense of formal power series16 in �. More generally it holds that"T�ÆL0( nYi=1 �i(fi)); '�ÆL0(fn+1)# =s�2 nXj=1 T�ÆL0(�1(f1) : : : iX(a) ��j�r(a)'(fn+1�(a)fj) : : :�n(fn)); (85)where fn+1�(a)fj was de�ned in eq. (22).Proof. In order to prove the �rst relation in eq. (84), we �rst expand'�ÆL0(f) = '(f) +Xn�1 (iÆs)nn! R(f'; �L0; : : : ; �L0| {z }n fa
tors ): (86)16For example, s�1 is de�ned as the formal power series Pn(�1)n(Pi�1 si�i)n.34



Sin
e L0 is only quadrati
 in the �eld ', the totally retarded produ
ts (86) 
an be givenin 
losed form in terms of the retarded Green's fun
tion �ret for rara,R('(x); nYi=1 L0(yi)) = in Xi1���in�ret(x; yi1) r!r��ret(yi1; yi2) r!r� � ��ret(yin�1); yin) r!r'(yin); (87)where the summation over the spa
etime index has been suppressed in the expression r!r. We now use this expression to analyze the oparator R(raraf';�n�ÆL0), wheref is a test density supported in V . In order to do this, we perform the following steps:We use rara�ret = Æ to turn the �rst retarded Green's fun
tion on the right side ofeq. (87) into a delta-fun
tion. We then use that � is 1 in V and that f has support inV and perform n su

essive partial integrations in order to turn the  r!r derivatives into!r!r derivatives whi
h will now hit a single retarded Green's fun
tion, thus resulting ea
htime in a new delta-fun
tion. If this is done, then one obtains R(raraf';�n�ÆL0) = 0,thereby proving the �rst equation in (84). The se
ond equation in (84) follows from theunitarity of the relative S-matrix S�ÆL0(f') for real-valued f .We will demonstrate eq. (85) in the 
ase of Wi
k powers of the form 'k; Wi
k powerswith derivatives and time-ordered-produ
ts 
an be treated similarly. The proof of thelast relation in eq. (84) is in
luded as the spe
ial 
ase k = 1. Our starting point is therelation [8℄17�'k�ÆL0(x1); '�ÆL0(x2)� =Xn�0 (iÆs)nn! ZM�nYj �(yj)� R('k(x1);'(x2) nYj=1L0(yj))�R('(x2);'k(x1) nYj=1L0(yj))! ; (88)where the integral is over the \y"-variables. We will now simplify the terms under thesum in the above equation, starting with the terms R('k(x1);'(x2)Qnj=1L0(yj)). Forthis, we use the fa
t that the time ordered produ
ts with a fa
tor ' 
an be shown tosatisfy the following requirement in addition to any other requirements imposed so far18:(rara)xT ('(x) nYj=1�j(yj)) = i nXj=1X(b) r(b)Æ(yj; x)T (�1(y1) � � � ��j�r(b)'(yj) � � ��n(yn))(89)17A general formula of this kind whi
h holds within the LSZ-framework in Minkowski spa
etime was�rst given by [11℄.18A proof of this equation for Minkowski spa
etime appears in [9℄. This proof 
an be generalized to
urved spa
etimes by suitably modifying the 
onstru
tions of time ordered produ
ts given in [15℄.35



for all �elds �j . It 
an be seen that this impliesR('k(x1);'(x2) nYj=1L0(yj)) = i nXl=1 ra�ret(yl; x2)R('k(x1);ra'(yl)Yj 6=l L0(yj))+ i�ret(x1; x2)R(�'k�' (x2); nYj=1L0(yj)) (90)for the retarded produ
ts appearing in eq. (88). Now the retarded produ
ts in the sumon the right side of eq. (90) again 
ontain a fa
tor ', and we 
an a similar argument asabove to further simplyfy ea
h of these terms. Repeating this pro
edure n times, we 
anrewrite the right side of eq. (90) as= i nXN=0 iN Xl1���lN �ret(x1; yl1) r!r�ret(yl1; yl2) r!r� � ��ret(ylN ; x2)�R(�'k�' (x2); Yj 6=l1;:::;lN L0(yj)): (91)The se
ond term R('(x2);'k(x1)Qnj=1L0(yj)) under the sum in eq. (88) 
an be writtenin the form of expression (91) with x1 and x2 ex
hanged. We now substitute theseexpressions ba
k into (88) and perform the following steps: We use that x1; x2 2 V , that� � 1 on V and the support property supp�ret � f(x1; x2) 2 M �M j x1 2 J+(x2)g tobring ea
h of turn ea
h of the  r!r derivatives on the variables ylj into a !r!r derivativea
ting on a single retarded Green's fun
tion via a partial integration. We then use thatrara�ret = Æ and use these delta-fun
tions to get rid of the string of retarded Green'sfun
tions in (91). We now exploit the relation �ret(x1; x2) = �adv(x2; x1) (with �adv theadvan
ed Green's fun
tion), as well as � = �adv ��ret, whi
h enables one to get rid ofall retarded Green's fun
tions in favor of 
ommutator fun
tions. We �nally 
olle
t similarterms and use the geometri
 series P1N=0(Æs)N = s�2 (here it must be used that s hasthe spe
ial form 1 +Pi�1 si�i, or else the formal power series s�2 is not well-de�ned). Ifall this is done, then one obtains (85) for the spe
ial 
ase of a Wi
k produ
t of the form'k. It follows from eqs. (84) and (85) that the linear map���'(f1) ? � � � ? '(fn)� � sn '�ÆL0(f1) ? � � � ? '�ÆL0(fn) (92)de�nes a *-homomorphism from the 
anoni
al 
ommutation relation algebra A(V;g) intothe subalgebra of X (M;g) spanned by produ
ts of the �elds '�ÆL0(f), where f is anarbitrary test density supported in V . Sin
e the algebra A(V;g) is simple, �� is inje
tive.36



It is possible to see that the homomorphism �� 
an be extended by 
ontinuity19 to aunique *-homorphism from W(V;g), (and therefore also from X (V;g)) to X (M;g). Wewill denote this extension by the same symbol ��.We will now 
onstru
t for any set of test densities fi of 
ompa
t support in V and forany set of �elds �i 2 V an element F (s;�ifi�i) 2 X (V;g) su
h that�� [F (s;�ni=1fi�i)℄ = sN T�ÆL0( nYi=1 �i(fi)); (93)where N is the number of fa
tors of ' in the time-ordered-produ
t. Furthermore, we
laim that quantities F (s;�ifi�i) are independent of the parti
ular 
hoi
e of � and Vand de�ne in fa
t a new, s-dependent pres
ription for de�ning time-ordered-produ
ts inthe free theory, i.e. that ~T ( nYi=1 ~�i(fi)) � F (s;�ni=1fi�i) (94)satis�es all the requirements of our uniqueness theorem for time-ordered-produ
ts in thefree theory.Before we sket
h the proof of eq. (93) and the 
laims following that equation, we wouldlike to mention that we see no reason obvious why the pres
ription ~T should 
oin
ide withthe original pres
ription T . As we will see below, the possible failure of ~T to 
oin
idewith T is the reason why the Lagrangian K1(s) in the theorem need not have the simpleform expe
ted from the 
lassi
al theory.It follows from the relation ��0 = Ad(U(�0; �)) Æ �� (95)(with U(�; �0) de�ned as in eq. (39), but with L1 in that equation repla
ed by ÆL0)that if elements F (s;�ifi�i) satisfying eq. (93) exist, then they must be independentof �. We now explain how to 
onstru
t these elements. By de�nition of �� given ineq. (92) we already know that eq. (93) holds for the �eld s'�ÆL0(f) with F (s; f') givenby '(f) in that 
ase. The 
onstru
tion of F (s;�ifi�i) for a general time-ordered-produ
tsNT�ÆL0(Q�i(fi)) is as follows: On the algebraW(M;g), we 
onsider, for all ti 2 E 0(M;g),the (
ommutative, asso
iative) produ
t20�nW(M;g)!W(M;g); �ni=1[ti℄! W (�ni=1[ti℄) � [t1 
sym � � � 
sym tn℄: (96)19It was shown in [14℄ that the H�ormander topology on the spa
es E 0sym(M�n) (see eq. (8)) indu
es anatural topology on the algebra W(V;g) and likewise on the algebra X (M;g). It 
an then be seen thatthe map �� de�ned in eq. (92) is 
ontinuous with respe
t to this topology.20If the ti are given by smooth densities fi on M , then the produ
t W ([f1℄; : : : ; [fn℄) 
orresponds tothe normal ordered produ
t : '(f1) � � �'(fn) :!, where the normal ordering is done with respe
t to thequasifree state ! used in the de�nition of the algebra W.37



We also denote by W the 
orresponding produ
t on X (M;g) when ea
h ti is a formalpower series in � with 
oeÆ
ients in E 0(M;g). Then it follows from the third equationin (84) that, within V , we have[W (�nk=1'�ÆL0(xk)); '�ÆL0(xn+1)℄ = s�2 nXk=1 i�(xk; xn+1)W (�j 6=k'�ÆL0(xj)): (97)Sin
e the time-ordered-produ
ts T�ÆL0(Q�i(fi)) satisfy similar 
ommutation relationswith the �eld '�ÆL0(f) (see eq. (85)), it is possible to prove that, within V , these time-ordered-produ
ts 
an expanded in terms of the produ
ts W (�i'�ÆL0(xi)) in a manneranalogous to the usual Wi
k expansion,T�ÆL0( nYi=1 'ki(xi)) =Xj�k �kj��k1�j1 :::kn�jn(x1; : : : ; xn)�W ('�ÆL0(x1); : : : ; '�ÆL0(x1)| {z }j1 times ; : : : ; '�ÆL0(xn); : : : ; '�ÆL0(xn)| {z }jn times ); (98)where the 
oeÆ
ients �k1�j1:::kn�jn are distributional and we use a multi-index notationj = (j1; : : : ; jn), j! = Q ji!, et
. The proof of this statement is similar to the proof ofthe Wi
k expansion for the time-ordered-produ
ts in the free �eld theory given in [15℄.Namely, we assume indu
tively that eq. (98) has been demonstrated for all multi indi
esk with jkj =Pki < m. In order to prove it for a multi index k with jkj = m, we 
onsiderthe expressionD�(x1; : : : ; xn) = T�ÆL0( nYi=1 'ki(xi))� X06=j�k�kj��k1�j1:::kn�jn(x1; : : : ; xn)�W ('�ÆL0(x1); : : : ; '�ÆL0(x1)| {z }j1 times ; : : : ; '�ÆL0(xn); : : : ; '�ÆL0(xn)| {z }jn times ); (99)where the only term �k1:::kn that is not yet known by the indu
tion hypothesis has beenomitted from the sum in (99). The 
ommutation relations for the individual terms on theright side of this equation now imply the 
ommutation relation [D�(x1; : : : ; xn); '�ÆL0(y)℄ =0 within V . The above statements will still be true for a suitable V 
ontaining a neigh-borhood of some Cau
hy surfa
e � of M . In this 
ase, one 
an easily prove using eq. (86)and the above 
ommutation relation that D� must in fa
t be a multiple of the identity.We de�ne �k1:::kn to be this multiple.The produ
ts on the right side of eq. (98) 
an be written in terms of ordinary produ
tsusing the formulaW (�Ni=1'�ÆL0(xi)) =XP Yj =2I 8I2P '�ÆL0(xj) YP3I=fi1;i2g!�ÆL0(xi1; xi2): (100)38



where P runs over all sets of mutually disjoint subsets I = fi1; i2g of f1; : : : ; Ng with 2elements and where !�ÆL0(x1; x2) = !('�ÆL0(x1)'�ÆL0(x2)). Thus, sin
e we already knowthat s'�ÆL0(x) is the image of '(x) under ��, we get from formula (100) an algebrai
element whose image under �� is W (�i'�ÆL0(xi)). On
e we have found those elements,we then get via eq. (98) algebrai
 elements F (s;�ifi�i) in X (V;g) whose image under ��is sN T�ÆL0(Q�i(fi)).It 
an be shown expli
itly that the quantities F (s;�ifi�i) are (s-dependent) lo
aland 
ovariant �elds in the sense of our de�nition of lo
al and 
ovariant �elds in the freetheory (see eq. (10)), and that they have a smooth/analyti
 dependen
e on the metri
under smooth/analyti
 variations of the metri
. It is straightforward to show that thequantities F (s;�ifi�i) satisfy the 
ausal fa
torization propertyF (s;�ni=1fi�i) = F (s;�i2Ifi�i) ? F (s;�j2Jfj�j) (101)whenever J�(supp fi) \ supp fj = ; for all (i; j) 2 I � J , where I [ J = f1; : : : ; ng isa partition into disjoint sets. It 
an be shown from eq. (85) that the �elds F (s;�ifi�i)also satisfy the 
ommutator property with a free �eld. Thus, these �elds give a pres
rip-tion ~T (Q ~�i(fi)) for de�ning time-ordered-produ
ts to whi
h our uniqueness theoremdes
ribed in se
tion 2 
an be applied21.By this uniqueness result, the relation between the pres
ription ~T and the originalpres
ription T for time-ordered-produ
ts in the free theory is given by eq. (16). This isequivalent to �� hS(X fi�i)i = S�ÆL0(sMiX fi�i + Æ(s;X fi�i)); (102)where the Æ was introdu
ed in eq. (17), and where Mi is the number of fa
tors of ' inthe �eld �i. (Note that Æ now has an additional s-dependen
e, due to the fa
t that thepres
ription ~T is s-dependent.) Equation (102) is the key identity for this proof. In orderto exploit it, we introdu
e a 
uto� fun
tion �0 whi
h equals 1 on V and whi
h is su
hthat the support of �0 is 
ontained in the region where � equals 1. If we now apply �� tothe element S�0L1(P fi�i), use eq. (102) and pro
eed in a similar way as in the proof ofeq. (52) in se
tion 3.2 to bring the resulting expression into a 
onvenient form, then weobtain the identityAd(V (�; �0)) Æ ��[S�0L1(X fi�i)℄ = S�0K1(s)(XNi(s)fi�i + ÆL1(s;X fi�i)) (103)for all test densities fi with support in V . Here, V (�; �0) is a unitary that is de�ned in asimilar way as the unitary W (�) in the proof of eq. (52) in se
tion 3.2, Ni(s) are formal21Note however that the time-ordered-produ
ts ~T (Q ~�i) are by 
onstru
tion only de�ned as formalpower series in X (V;g) rather than W(V;g), sin
e they may depend on s whi
h is itself a formal powerseries in �. It is however not diÆ
ult to see that our uniqueness theorem 
an nevertheless still be applied.39



power series in s, ÆL1 is de�ned as in eq. (55), and K1(s) is the intera
tion Lagrangiangiven by K1(s) = (s2 � 1)L0 + s4L1 + Æ(s; �L1)j�=1: (104)Finally, the desired *-isomorphism �s is then obtained from eq. (103) by removing the
uto� represented by � and �0 in the same way as in our 
onstru
tion of the intera
ting�eld given in se
tion 3.1. Equation (81) 
orresponds to the spe
ial 
ase � = ' of eq. (103).We �nally remark that, as indi
ated above, if the pres
ription ~T given by eq. (93) werea
tually equal to the original pres
ription T for de�ning the time-ordered-produ
ts, thenthe term Æ(s;Pfi�i) appearing in eq. (102) would be zero. This would imply that thefa
tors Ni(s) in eq. (103) is equal to sMi (where Mi is the number of fa
tors of ' in the�eld �i), the term ÆL1(s;Pfi�i) in eq. (103) would vanish, and the Lagrangian K1(s)would be equal to L1(s) given by eq. (80) as in the 
lassi
al theory. Thus, eq. (81) inthe statement of the theorem would be simpli�ed to �s['L1(f)℄ = s'L1(s)(f), in 
ompleteanalogy with the 
lassi
al theory.B How to 
al
ulate the renormalization group in termsof Feynman diagramsIn the previous se
tions we have set up a general framework for des
ribing how a givenperturbative intera
ting �eld theory in 
urved spa
etime 
hanges under a 
hange of length-s
ale, or, more properly, under a res
aling of the metri
. This has led us to a 
ompletelysatisfa
tory notion of the renormalization group 
ow in 
urved spa
etime, without therebyhaving to introdu
e arbitrary va
uum states, bare 
ouplings, 
uto�s or arbitrary masss
ales into the theory.However, our 
onstru
tion is rather abstra
t and it may not be obvious how one would
al
ulate this 
ow in pra
ti
e (to a given order in perturbation theory). We will nowoutline how this 
an be done, and we will thereby establish the 
onne
tion between theframework explained above and the formalism of Feynman diagrams, whi
h is 
ommonlyused to de�ne the renormalization group 
ow in Minkowski spa
etime22.To begin, we de�ne [14, 15℄, for suÆ
iently nearby points, \lo
ally normal ordered"�elds :Q'ki(xi) :H by: nYi=1 'ki(xi) :H � ÆjkjijkjÆf(x1)k1 : : : Æf(xn)kn exp �i'(f) + 12H(f; f)� ; (105)where jkj =P ki and whereH(x1; x2) = U(x1; x2)P (��1) + V (x1; x2) log j�j (106)22We have already noted at the end of se
tion 4.1 that the fun
tions G1; G3; G4 appearing in therenormalization group 
ow (see eq. (78)) 
an be determined in Minkowski spa
etime, and they 
an be
al
ulated by standard methods. However, the fun
tion G2 must be 
al
ulated in 
urved spa
etime.40



is the \lo
al Hadamard parametrix". Sin
e :'k(x) :H itself is a pres
ription for de�ningWi
k powers to whi
h our uniqueness theorem applies [14℄, it is possible to expand theWi
k powers 'k(x) in a \lo
al Wi
k expansion" in terms of these lo
ally normal ordered�elds [14℄, 'k(x) =Xj�k �kj�tk�j(x) :'j(x) :H; (107)where tk are �nite sums of terms of the form lo
al 
urvature terms times parameters inthe free theory, of the appropriate engineering dimension. Of 
ourse, if the pres
riptionfor de�ning Wi
k powers is 
hosen to be that of \lo
al normal ordering" with respe
t toH, then the expansion of eq. (107) is trivial, i.e., we have t0 = 1 and tj = 0 for all j > 0.A similar expansion is possible also for the time-ordered-produ
ts [15℄,T ( nYi=1 'ki(xi)) =Xj�k �kj�tk1�j1:::kn�jn(x1; : : : ; xn) : nYi=1 'ji(xi) :H; (108)where the tj1:::jn are 
ertain distributions that are de�ned lo
ally and 
ovariantly in termsof the metri
23, and where in eq. (109) we use the multi-index notation j = (j1; : : : ; jn),j! =Qi ji! et
.The lo
al Hadamard parametri
esH appearing in eqs. (107) and (108) 
ould be 
hosenso that in Minkowski spa
etime it 
oin
ides with the symmetrized two-point fun
tion ofthe unique, Poin
are invariant va
uum state. In that 
ase, when restri
ted to Minkowskispa
etime, the \lo
al normal ordering" pres
ription for de�ning Wi
k powers would 
o-in
ide with the (globally de�ned) normal ordering with respe
t to the Poin
are invariantva
uum state. Thus, in Minkowski spa
etime, the expansion (109) 
ould be viewed asexpressing time-ordered-produ
ts in terms of normal ordered produ
ts with repe
t to theusual va
uum state. In 
urved spa
etime, it also would be possible to 
hoose a globallyde�ned \va
uum state" (i.e., a quasi-free Hadamard state), !, and perform Wi
k expan-sions in terms of Wi
k produ
ts that are normal ordered with respe
t to !. This wouldhave the advantage that the resulting 
oe�
ients t would be globally de�ned rather thanbeing de�ned only on a neighborhood of the total diagonal. However, it would have themajor disadvantages that (i) the expansion (98) would always be nontrivial (sin
e a lo
al,
ovariant �eld 
annot 
oin
ide with a normal ordered �eld on all spa
etimes [14℄) and (ii)the t would no longer be lo
ally and 
ovariantly 
onstru
ted out of the metri
, so one
ould not evaluate the t by lo
al 
omputations.The distributions t 
an further be de
omposed into 
ontributions from individualFeynman diagrams as follows. Let F (k) be the set of all Feynman diagrams 
onsistingwith n verti
es lo
ated at the points x1; : : : ; xn that are 
onne
ted by a single kind of23However, it should be noted that tj1:::jn is not a
tually a lo
al, 
ovariant (
-number) �eld in thesense of [5℄, sin
e one 
annot give a lo
al, 
ovariant pres
ription for how to 
hoose the 
onvex normalneighborhood that enters the de�nition of H. 41



line, with the properties that the lines may emerge and end on two di�erent verti
es orthey may emerge and end on the same vertex, and the ith vertex has pre
isely ki edgesemerging/ending on it. If � is su
h a Feynman graph, then we denote by E(�) the set ofedges and by V (�) the set of verti
es. If e is an edge, then we write s(e) for the sour
e ofe and t(e) for its target. If v is a vertex, then we write n(v) for twi
e the number of edgesthat have v both as their starting and endpoint. For points x1; : : : ; xn su
h that xi 6= xjfor all i; j, we then havetk1:::kn(x1; : : : ; xn) = X�2F(k) 
� Ye2E(�)HF (xs(e); xt(e)) Yv2V (�) tn(v)(xv)� X�2F(k) t�(x1; : : : ; xn);where 
� are 
ombinatori
al fa
tors and HF is the \lo
al Feynman parametrix" given byHF (x1; x2) = U(x1; x2)(� + i0)�1 + V (x1; x2) log(� + i0): (109)Equation (109) 
an be viewed as giving the \Feynman rules" in 
urved spa
etime. Mainlyfor simpli
ity, we have only 
onsidered expli
itly only time-ordered-produ
ts of Wi
kpowers without derivatives. Our dis
ussion 
an be generalized to give similar Feynmanrules also for time-ordered-produ
ts 
ontaining derivatives.The Feynman rules in 
urved spa
etime are thus very similar to those in Minkowskispa
etime, with the lo
al Feynman parametrix (100) repla
ing the usual Feynman prop-agator. However, there is one key di�eren
e in that if the pres
ription used for de�ningWi
k powers does not 
oin
ide with \lo
al normal ordering", then the Wi
k expansion(98) will be nontrivial, and there will be 
orrespondingly nontrivial Feynman diagrams
ontaining lines that begin and end at the same vertex.The distributions t� in eq. (109) are lo
ally and 
ovariantly 
onstru
ted from the met-ri
 and the 
oupling parameters in the free theory. They des
ribe the 
ontribution ofan individual Feynman graph to a time-ordered-produ
t. Formula (109) only determinesthem as distributions on the produ
t manifold M�n minus the union of all of its partialdiagonals. A pres
ription for the extension of all time-ordered-produ
ts to all of M�n isusually 
alled \renormalization". The existen
e of a renormalization pres
ription satisfy-ing a list of ne
essary properties was proven in [15℄ without going through the intermediatestep of expanding the tk1:::kn in terms of Feynman diagrams.Given the distributions t� 
orresponding to a given pres
ription T for de�ning timeordered produ
ts, we 
an now obtain the 
orresponding res
aled pres
ription �T (seeeq. (70)) as follows: If p = (m2; �) and p(�) = (��2m2; �), we �rst sett��[M;g; p℄ � �2jE(�)j � t�[M;�2g; p(�)℄ (110)as well as H�[M;g; p℄ � �2 �H[M;�2g; p(�)℄: (111)42



The res
aled pres
ription �T is then given by�T ( nYi=1 �'ki(xi)) =Xj�k X�2F(k�j) t��(x1; : : : ; xn) : nYi=1 'ji(xi) :H� : (112)Given the res
aled pres
ription �T , we 
an now 
ompute the maps On(�;�ifi�i) (seeeq. (30)), whi
h relate the res
aled pres
ription to the original pres
ription T . The renor-malization group 
ow L1(�) is then given in terms of these quantities by given byÆL1(�) = 1Xn=1 in�1n! On(�;�n�L1)������=1: (113)Ea
h term in the sum (113) is of the form (51) for some real 
oupling 
onstants Æm2(n),Æz(n), Æ�(n), and Æ�(n), ea
h of whi
h is a polynomial in log �. These quantities are therenormalization group 
ow at n-th order in perturbation theory.This 
ompletes our brief dis
ussion on how to 
al
ulate the renormalization group 
owin terms of Feynman diagrams. We note, however, that the 
al
ulation of the �-fun
tionas de�ned by (83) is more 
ompli
ated sin
e it also requires the 
al
ulation of K1(s) (seeappendix A).Referen
es[1℄ F. M. Boas: \Gauge theories in lo
al 
ausal perturbation theory," DESY-THESIS1999-032, (1999) [arXiv: hep-th/0001014℄[2℄ N. N. Boboliubov and D. V. Shirkov: \Introdu
tion to the theory of quantized �elds,"New York (1959)[3℄ R. Brunetti, K. Fredenhagen and M. K�ohler: \The mi
rolo
al spe
trum 
ondition andWi
k polynomials on 
urved spa
etimes," Commun. Math. Phys. 180, 633-652 (1996)[4℄ R. Brunetti and K. Fredenhagen: \Mi
rolo
al Analysis and Intera
ting QuantumField Theories: Renormalization on physi
al ba
kgrounds," Commun. Math. Phys.208, 623-661 (2000)[5℄ R. Brunetti, K. Fredenhagen and R. Ver
h, \The generally 
ovariant lo
ality prin
iple:A new paradigm for lo
al quantum physi
s," arXiv:math-ph/0112041.[6℄ B. S. DeWitt and R. W. Brehme: \Radiation Damping In A Gravitational Field,"Annals Phys. 9 (1960) 220 43



[7℄ J. Die
kmann, \Cau
hy surfa
es in globally hyperboli
 spa
etimes," J. Math. Phys.29, 578 (1988).[8℄ M. D�uts
h and K. Fredenhagen: \Algebrai
 quantum �eld theory, perturbation the-ory, and the loop expansion," Commun. Math. Phys. 219, 5 (2002) [arXiv: hep-th/0001129℄; \Perturbative algebrai
 �eld theory, and deformation quantization,"[arXiv: hep-th/0101079℄[9℄ M. D�uts
h and K. Fredenhagen: \A lo
al (perturbative) 
onstru
tion of observablesin gauge theories: The example of QED," Commun. Math. Phys. 203, 71 (1999)[arXiv:hep-th/9807078℄[10℄ R. Gero
h: \Domain of Dependen
e," J. Math. Phys. 11, 437 (1970)[11℄ V. Glaser, H. Lehmann, W. Zimmermann: \Field operators and retarded produ
ts,"Nuovo Cim. 6, 1122 (1957)[12℄ R. Haag: \On quantum �eld theories," Dan. Mat. Fys. Medd. 29, 13 (1955) no. 12,reprinted in: Dispersion Relations and the Abstra
t Approa
h to Field Theory, L.Klein (ed.), Gordon & Brea
h, NY, 1961.[13℄ L. H�ormander: \The Analysis of Linear Partial Di�erential Operators I," Springer-Verlag, Berlin 1985[14℄ S. Hollands and R. M. Wald: \Lo
al Wi
k Polynomials and Time-Ordered-Produ
tsof Quantum Fields in Curved Spa
e," Commun. Math. Phys. 223, 289-326 (2001)[15℄ S. Hollands and R. M. Wald: \Existen
e of lo
al 
ovariant time-ordered-produ
tsof quantum �elds in 
urved spa
etime," Commun. Math. Phys. (in press) [arXiv:gr-q
/0111108℄[16℄ B. S. Kay and R. M. Wald: \Theorems on the uniqueness and thermal properties ofstationary, nonsingular, quasifree states on spa
etimes with a bifur
ate Killing hori-zon," Phys. Rep. 207, 49 (1991)[17℄ V. Moretti: \Comments on the stress-energy tensor operator in 
urved spa
etime,"[arXiv:gr-q
/0109048℄[18℄ B. L. Nelson and P. Panangaden: \ S
aling behavior of intera
ting quantum �eldsin 
urved spa
etime," Phys. Rev. D 25, 1019-1027 (1982)[19℄ B. L. Nelson and P. Panangaden: \Universality and quantum gravity," Phys. Rev.D 29, 2759-2762 (1984) 44



[20℄ G. Pinter: \Finite Renormalizations in the Epstein Glaser Framework and renormal-ization of the S-matrix in '4-theory," [arXiv: hep-the/9911063℄[21℄ L. Parker and D. J. Toms: \Renormalization-group analysis of grand uni�ed theoriesin 
urved spa
etime," Phys. Rev. D29 1584-1604 (1984)[22℄ R. M. Wald: \Quantum Field Theory on Curved Spa
etimes and Bla
k Hole Ther-modynami
s," The University of Chi
ago Press, Chi
ago (1990)[23℄ S. Weinberg: \Ultraviolet divergen
es in quantum theories of gravitation," in: Gen-eral Relativity, eds. S. W. Hawking and W. Israel, Cambridge University Press (1979)

45


