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ON SCHWARZ PROBLEM FOR THE csu2KNIZHNIK{ZAMOLODCHIKOV EQUATIONYassen S. Stanev,* Ivan T. Todorov*International Erwin Schr�odinger Institute for Mathematical PhysicsAugust 16, 1994Abstract. We study the monodromy representations Bk;I of the mapping classgroup B4 acting on 4{point blocks satisfying the Knizhnik{Zamolodchikov equationfor the level k su2 current algebra. We classify all irreducible Bk;I which are real-ized by �nite groups; we also display �nite irreducible components for the reduciblerepresentations corresponding to k = 10.1. IntroductionThe discovery by V. Pasquier of the close interrelationship between V. Jonestheory of subfactors and a family of 2{dimensional (critical) lattice models led tointroducing the ADE models labelled by Dynkin diagrams and to the ensuing ADEclassi�cation of su2 current algebra and minimal conformal theories [1]. The parallelwith the classi�cation of �nite subgroups of SU2 has not been fully understood inthe 7 years since this publication. The present note reports on the �rst results ofan attempt to relate the properties of rational 2D conformal �eld theories to thecases in which the associated monodromy representations of the braid group are�nite matrix groups. We answer on the way the question when does the Knizhnik{Zamolodchikov (KZ) equation [2] for chiral 4 point blocks have an algebraic solution.Here we restrict our attention to conformal blocks of chiral vertex operators carryingthe same isospin I and conformal weight �I = I(I+1)k+2 .More than 120 years ago Schwarz [3] solved a similar problem for Gauss hyper-geometric equation. Only comparatively recently his study was pushed further toincorporate the n{th order equation for the generalized hypergeometric functionnFn�1 [4] and the classi�cation of algebraic Appell{Lauricella functions [5].The possibility to address Schwarz's problem for the KZ equation has been pre-pared in previous work [6, 7, 8] where an explicit form for the generators of theassociated monodromy representation of the braid group B4 on 4 strands has beenworked out. The role of braid invariance in constructing 2D correlation functionsSupported by the Federal Ministry of Science and Research, Austria*On leave from the Institute for Nuclear Research, Bulgarian Academy of Sciences, So�a, BulgariaTypeset by AMS-TEX



2 Y. S. Stanev, I. T. Todorovhas been already recognized in the pioneer work of Belavin, Polyakov and Zamolod-chikov [9] on minimal conformal models. The monodromy representations of thebraid group acting on chiral vertex operators of the su2 conformal current algebrahave been �rst studied by Tsuchiya and Kanie [10].The results of the paper can be summarized as follows.1. We construct a family of matrix representations of the mapping class groupB4 of the 2{sphere with 4 punctures (which can be viewed as the braid group on 4strands with 3 additional relations { Section 2A). Their matrix elements appear aspolynomials with integer coe�cients in a variable q or q1=2 (depending on whether2I is even or odd) satisfying(1.1) qh = �1; h = k + 2; k = 1; 2; : : : ;where h is the height of a level k representation of the bsu2 Kac{Moody algebra[11]. They thus belong to the cyclotomic �eld Q(q1=2) (Section 2C). The resultingfamily of matrix groups provides a representation of the abstract groups studied in[12] - see Remark at the end of Section 2C.2. A braid invariant hermitean form A, whose entries belong to the same cy-clotomic �eld, is constructed and diagonalized (Section 3A). It is positive de�nitewhenever the quantum dimensions of the intermediate states are positive:(1.2) [2�+ 1] > 0 for � = 0; 1; : : :;m = min(2I; k � 2I):3. The main result of the paper is contained in Lemma 3.2 and Theorem 3.3 ofSection 3B. The Lemma says that the matrix group Bk;I (consisting of (m + 1) �(m+ 1) braid matrices that leave the non{degenerate hermitian form A invariant)is �nite whenever A is totally positive: i.e., whenever it is positive together withall its Galois transforms, corresponding to the substitutions(1.3) q! qn for (2h; n) = 1((2h; n) = 1 indicating that n is coprime with 2h). Conversely, if the representationBk;I is irreducible (or, equivalently, if the invariant form A is unique), the conditionof total positivity is also necessary for the monodromy representation Bk;I of themapping class group to be a �nite group. As a result we end up essentially withthree �nite groups of 2 � 2 matrices (which can be identi�ed within the originalSchwarz classi�cation { see also [13]) one group of 3 � 3 matrices and an in�niteseries of (1{dimensional) cyclic groups (of the type Z4;Z2 and f1g).2. Monodromy representations of the mappingclass group of the sphere with four punctures2A. The group B4. Basic relations. We shall list the properties of the abstractgroup B4 in order of increasing specialization.To begin with, B4 is a group of three generators Bi; i = 1; 2; 3, satisfying therelations for the braid group on four strands:(2.1) B1B3 = B3B1; BiBi+1Bi = Bi+1BiBi+1; i = 1; 2:



Schwarz problem for KZ equation 3They further display the characteristic properties of a (cyclic) central extension ofthe braid group on the sphere S2:(2.2) B1B2B23B2B1 = c2 = B3B2B21B2B3; c2Bi = Bic2:(a �nite power of the central element c being equal to 1). Finally, they obey therelation(2.3) (B1B2B3)4 = c4which singles out a central extension of the mapping class group of the sphere withfour punctures (the mapping class group proper corresponding to c = 1). Theabove de�nition yields the following2.1. Corollary. The relations (2.1)-(2.3) imply(2.4) (B1B2)3 = c2 = (B2B3)3and B21 = B23 . Moreover, all generators belong to the same conjugacy class, since(B1B2B1)B1 = B2(B1B2B1).2B. General characteristics of the monodromy representations (k; I) ofB4. For each level k(= 1; 2; : : :) of the csu2 Kac{Moody algebra [11] there exists a�nite family of chiral vertex operators VI carrying isospin I in the range(2.5) 2I = 0; 1; : : :; k:The 4 point blocks of VI span a 2I +1 dimensional space ~HI of solutions of the KZequation which carry a monodromy representation ( ~2I) of B4. This representationis found to have the following properties [10, 6, 7].(1) The two commuting generators of B4 (which according to Corollary 2.1 havethe same squares { i.e. yield the same monodromy) are actually equal(2.5) B1 = B3so that B4 has just two generators, B1 and B2.(2) The central element c2 of (2.2) is an integer power of a primitive root of �1(2.6) c2 = �q4I(I+1); qh = �1; h = k + 2; �q = q�1:(3) There exists a positive semide�nite B4 invariant hermitean form (; ) whichvanishes on a 4I � k dimensional subspace of ~HI for k � 4I(� 2k). The represen-tation (~I) of B4 in ~HI induces a representation (k; I) in the factor space(2.7) HkI = ~HI=(v;v)=0of dimension(2.8a) dimHkI = min(2I + 1; k� 2I + 1) = m+ 1;



4 Y. S. Stanev, I. T. Todorovwhere(2.8b) m = m(k; I) = min(2I; k � 2I) = 12(k � jk � 4Ij):For 4I � k the invariant form has no kernel and the two B4 modules ~HI and HkIcoincide.(4) The generators Bi = Bk;Ii of the (factor) representation (k; I) are cyclicelements of �nite order:(2.9) Bhi = ch; c = cI = (�1)2I �q2I(I+1); (�qh = �1);so Bhi is always a multiple of the unit matrix (in particular, it is a central elementof BI;k4 ); moreover, for integer isospin B4hi = 1, for half integer isospin B4hi = 1.2C. Explicit realization. We shall exhibit a realization B(I)4 of the (unfactored)representation (~I) of B4 with the following properties [6, 7]:(2.10) B1B2B1 = B2B1B2 = cIF; F 2 = 1where the phase factor cI is given in (2.9) and(2.11) F�� = �2I�+�; �; � = 0; 1; : : : ; 2I; (detF = (�1)I(2I+1));B1 is, on the other hand, an upper triangular matrix, B2 is a lower triangular one.These conditions still leave the freedom for a rescaling of the type(2.12) B�� ! g�g�1� B�� with g� = g2I��(6= 0):The choice we shall adopt here di�ers from the one made in [6, 7] by just such arescaling. Taking a suitably normalized basis of 2I-fold parametric integral solu-tions of the KZ equation, we �nd(2.13) (B1)�� = (�1)2I��q�(�+1)�2I(I+1) �2I � ��� � � :Here � nm � stand for the (real) q-binomial coe�cients (vanishing for n < m):(2.14) � nm � = [n]![m]![n�m]! ; [n]! = [n][n� 1]!; [0]! = 1; [n] = qn � �qnq � �q :This realization of the (2I + 1) � (2I + 1) matrix group B(I)4 has two remarkableproperties which will be exploited in Section 3 below.The generators B1 and B2 = FB1F are inverted by complex conjugation:(2.15) �Bi = B�1i (= Bi(q�1))( also �F = F�1 = F ):Clearly, this property is not preserved by products of non-commuting generatorslike B1B2. It does, however, have an implication for any element of our matrixgroup.



Schwarz problem for KZ equation 52.2. Corollary. If A(= A(�)) is an invariant hermitean form, i.e. if(2.16) B�AB = A for all B 2 B(I)4then in the realization (2.11) (2.13) it also satis�es(2.17) tBA = AB for (tB)�� = B��:The second property is an arithmetic one: the matrix elements of any B 2 B(I)4are elements of the cyclotomic �eld Q(q1=2). In fact, they are polynomials in q1=2with integer coe�cients (and qh = �1). The elements of the commutator subgroupare ploynomials in q (rather than q1=2) also for half integer isospins.Remark on the connection with the work of Howie and Thomas [12].If we multiply the generators Bi of B(I)4 by q 23 I(I+1) we can relate the resultinggroup B̂(I) of matrices of determinant �1 with a family of groups considered in[12]. Indeed B̂(I) is generated by F and(2.18) ! = q 23 I(I+1)B1B2satisfying the relations(2.19) F 2 = !3 = 1 = (F!)N(I;h)where N (I; h) is an appropriate divisor of 6h. If B̂(I) is �nite then the groupcommutator should be of �nite order(2.20) (F!F!2)n = 1 for some n 2 N:Thus, B̂(I) appears as a representation of the abstract group (2; 3;N (I; h); n) con-sidered in [12]. Consequently, in all cases (given by Theorem B of [12]) in which theabove abstract group is �nite, our matrix group B̂(I) is also �nite. The converse ishowever, not true since our B̂(I) involves additional relations. (2.19) and (2.20) donot guarantee, for instance, that the monodromy element !2(F!)3!F is of �niteorder. The result of Theorem 3.3 below shows in fact, that none of the interestingcases of �nite mapping class groups is covered by the list of �nite abstract groupsof [12]. 3. Invariant forms and irreducible �nite groups3A. The generic invariant symmetric form.Proposition 3.1. For any q 6= 0 there exists a diagonalizable B̂(I)4 invariant sym-metric form(3.1) A = tSDS:



6 Y. S. Stanev, I. T. TodorovHere D is a diagonal matrix with non{zero elements(3.2) D�� � D(k;I)� = � [�]![2I + 1 + �]![2I + 1]![2�]! �2 1[2�+ 1] ; � = 0; 1; : : : ;m;where the upper limit m = m(k; I) of indices � for which D�� is non{zero is givenby (2.8b). S is an upper triangular matrix satisfying(3.3a) S�� = ��� for �; � � m+ 1( if 4I > k)(3.3b) S�� = (�1)��� ��� � [2I � �]![2�+ 1]![2I � �]![�+ � + 1]! for � � � � mand tS(= S�) is its transposed (equal to its hermitean conjugate).Sketch of proof.For 4I � k + 1 the similarity transformation(3.4) B1 ! B(I)1 = SB1S�1;where(3.5) S�1�� = ��� � [2I � �]![�+ �]![2I � �]![2�]! ;diagonalizes B1, the eigenvalues b� of B1 appearing as(3.6) (B(I)1 )�� = ���b�; b� = (�1)2I��q�(�+1)�2I(I+1):For 4I � k + 2, Bi are not diagonalizable, but B(I)1 (3.4) (with S�1, the inverse ofS (3.3), only given by (3.5) for �; � � m and continued as in (3.3a) for � > m) stillsatis�es (3.6) for � � m(= k � 2I). In both cases, we obtain from (3.1) and (3.2)the B1 invariance condition for A:(3.7) tB1A = AB1 () [B(I)1 ; D] = 0:Veri�cation of F or B2 invariance requires more work and uses the explicit form ofA:(3.8a) A�� = (�1)�+�[�]![�]![2I � �]![2I � �]!([2I + 1]!)2 mX�=0T�(�; �; I)where(3.8b) T� = [2I + � + 1]!2[2I � �]!2[2� + 1][�+ � + 1]![�+ � + 1]![�� �]![�� �]!(= 0 for � > min(�; �)):As a consequence of Corollary 2.2 A also de�nes an invariant hermitean form.



Schwarz problem for KZ equation 7Remark. An expression of the type (3.2) (3.8) was �rst derived in Section 3Dof [7] using quantum group techniques. Apart from a misprint in (3.84c) of thatreference the two formulas di�er because of a di�erent choice of normalization ofthe basis. The expression (3.8) is related to Z�� (3.84) of [7] by[2I + 1]2A�� = � 2I� � � 2I� �Z��:Clearly, A�� are real for both q real (q 6= 0) and for q on the unit circle, q�q = 1.The cuto� in � and � in (3.2) and (3.3a) only occurs for q a root of unity.3B. Galois automorphisms and positivity. We have not speci�ed so far thechoice of a primitive root q of �1 ((2.6)). Positivity of the invariant form (3.1) (3.2)requires setting(3.9) [2] = q + �q = 2 cos �h:All other properties of B(I)4 remain valid for any primitive hth root of �1, and are,hence, invariant under Galois automorphisms* (1.3).Lemma 3.2. (i) If the form (3.1) (3.2) is totally positive, i.e. if for q satisfying(3.9)(3.10) D(k;I)� (qn) > 0 for any n; (2h; n) = 1; and � = 0; 1; : : : ;m;then the (m+ 1){dimensional representation Bk;I which leaves the non{degenerateform A invariant is a �nite matrix group. (ii) Conversely, if the invariant hermiteanform A is unique (or equivalently, if the representation Bk;I is irreducible), thenthe condition of total positivity of A is also necessary for the �niteness of Bk;I.This is a corollary of known results in algebraic number theory. The followingsketch of a proof was communicated to the authors by Boris Venkov.(i) The invariance group of a totally positive form A over a cyclotomic �eld iscompact. Since Bk;I is discrete it follows that it is �nite.(ii) Since any (in our case, �nite dimensional) representation of a compact (inparticular, of a �nite) group Bk;I is unitarizable, then the unique invariant form Ashould be positive together with all its Galois images.This result gives a powerful criterion when is the group Bk;I �nite. Beforeapplying it we shall give a more explicit characterization of our group. In the socalled \s{channel basis", in which the invariant form is diagonal we can write(3.11) Bk;I = f(Bk;I�� ) = ((SBS�1)��); B 2 B(I)4 ; �; � = 0; 1; : : : ;mg:Alternatively we can work in the original basis and factor the null subspace withrespect to the form A (3.1) (3.8). An invariant condition for the (m+ 1)� (m+1)matrix generators of Bk;I is given by the characteristic equation(3.12) mY�=0(B(k;I)i � b�) = 0; i = 1; 2;for b� given by (3.6).*Galois automorphisms have been also used recently [14] for classifying modular invariantpartition functions.



8 Y. S. Stanev, I. T. TodorovTheorem 3.3. If the above described matrix group Bk;I acts irreducibly in HkIthen it is only �nite in the following cases.(1) For the 1{dimensional representations corresponding to m = 0. These in-clude the trivial representation for I = 0 and the \simple current" with 2I = k. Inthe latter case the resulting group is Z4 for odd k, Z2 for k = 4n + 2 and againtrivial for k = 4n.(2) Three cases of 2{dimensional representations, 2I = 1, corresponding to levelsk = 2, 4 and 8. The commutator subgroup C(k), generated by the pair(3.13) b = B�11 B2 = B2B1B�12 B�11 = �1� q2 ��q�q ��q2� ;�b = B1B�12is isomorphic to the 24 element double cover of the tetrahedron group for k = 2; tothe 8 element group of quaternion units for k = 4; and to the 120 element doublecover of the icosahedron group for k = 8. The latter two groups are also recoveredfor 2I = k � 1, k = 4; 8.(3) One 3{dimensional matrix group for I = 1, k = 4, that is a 27 elementsubgroup of SU3.Sketch of proof.From the irreducibility assumption it follows that the invariant form A is unique.Therefore we can apply part (ii) of Lemma 3.2 and deduce that it is totally positive.This means according to (3.2) that all associated \quantum dimensions" should bepositive(3.14) [2�+ 1] � 0; � = 0; 1; : : : ;mfor any primitive root of �1 (for a given h = k+ 2). For � = 1 this condition gives(3.15) [3] = [3]h;n = 1 + 2 cos 2n�h � 0 for (2h; n) = 1:A straightforward analysis shows that this is only possible for h = 4; 6 and 10. Theinequality [5]h;n � 0 (which arises for 2I � 2) is only satis�ed for h = 6 when[5]6;n = 1 (for n=1,5,7).The identi�cation of various �nite groups uses relations of the type (cf. [15])(3.16a) b3 = �b3 = �1 = (b�1�b)2 for k = 2(3.16b) b2 = �b2 = (b�1�b)2 = �1 for k = 4(3.16c) (b�1�b2)2 = (b�1�b)3 = �b5 = �1 for k = 8(3.16d) b3 = �b3 = (b�b)3 = (b�1�b)3 = 1 for k = 4; I = 1:



Schwarz problem for KZ equation 9Remark. The �nite 2{dimensional braid groups (where the group algebra is aHecke algebra) have been classi�ed some 10 years ago by V. Jones [13] by a quitedi�erent method and the part (2) of the above theorem agrees with his result.Indeed, if B̂k is the subgroup of su2 generated by the normalized 2 � 2 matricesB̂i = �q k+12 Bi; i = 1; 2, such that det B̂i = 1, then B̂2 is isomorphic to the 48element binary octahedron group (the double cover of the symmetry group of theoctahedron), B̂4 is isomorphic to the 24 element binary tetrahedron group, whileC(k) appear as their commutator subgroups. Only the binary icosahedron group B̂8coincides with its commutator subgroup C(8). The same �nite braid groups appearin minimal conformal models. The corresponding algebraic 4-point functions havebeen computed in [16].3C. Examples of reducible representations. The ADE classi�cation of csu2conformal theories [1] and the related classi�cation of local extensions of chiral cur-rent algebras [8] imply the existence of reducible representations in the family Bk;Ifor some exceptional pairs (k; I). It turns out that the (one and) two dimensionalirreducible components in the k = 10 E6{theory is again a �nite matrix group.For I = 2 and I = 3 there exists a 1{dimensional B10;I invariant subspace ineach of the 5-dimensional spaces H10I for I = 2 and 3. It corresponds to a second,degenerate invariant formwhose \s{channel" expression D(k;I) is no longer diagonalbut has the form(3.17) ~D(I) = 0BBB@ 1 0 0 NI3 00 0 0 0 00 0 0 0 0NI3 0 0 N2I3 00 0 0 0 01CCCA ; N23 = 2� [3](= 1�p3)N33 = [3]� 3(= p3� 2):We note that only the ratio(3.18) N223D(10;2)3 = 2 = N233D(10;3)3has an invariant (with respect to a rescaling of the type (2.12)) meaning. In bothcases the vector (1; 0; 0; NI3; 0) spans a 1{dimensional representation of B10;I, thatis Z2 for I = 2 and the trivial representation for I = 3.For 2I = 3 and 2I = 7 there is a 2-dimensional B(10;I) invariant subspace in eachof the 4{dimensional spaces H10I for 2I = 3 and 7. The second invariant form ~D(I)is, in this case,(3.19a) ~D(I) = 0B@ 1 0 0 NI30 0 0 00 0 N2I2 0NI3 0 0 N2I31CAwhere(3.19b) N 323 = � [2]2 + [3] �= � 1p6� ; N2322 = 1



10 Y. S. Stanev, I. T. Todorov(3.19c) N 723 = [3]� 46[2][3] = 2[3]� 56[2] ; N2722 = 12[2]2  = 2�p32 !The unitarized 2{dimensional sub-representation of B(10;I) in the subspace spannedby (1; 0; 0; NI3) ans (0; 0; 1; 0) is the same in the two cases and is generated by(3.20) B̂1(= B̂(I)1 ) = q3=2� q3 00 ��q3� ; F̂ = � [2][3] �1 11 �1�where [3]2 = 2[2]2 for q12 = �1; 2I = 3 or 7. The generators b̂; �̂b of the commutatorsubgroup,(3.21) b̂ = B̂�11 F̂ B̂1F̂ = 12 � 1 + q6 1� q6�1� q6 1� q6� etc:;satisfy the relations (3.16a) for the double cover of the tetrahedron group. Further-more, B̂1 satis�es the same equation, B̂81 = �1 as B1 in the k = 2; 2I = 1 theory.There is, in fact, a series of rational conformal models of Virasaro central chargec = n + 1=2: the Ising model (n = 0) and the level 1 bso(2n+ 1) model the k = 2csu2 and the E6 model being the �rst examples. They exhibit striking similarities:all models have the same structure of superselection sectors, the same fusion rules,a 2c component Fermi �eld of conformal dimension 1=2 and a primary chiral vertexoperator of minimal positive dimension�(c) = c8 :We would like to take this opportunity to thank P. Cohen, B. Dubrovin, L. Had-jiivanov, C. Itzykson, V. Pasquier, B. Venkov and J. B. Zuber for discussions atvarious stages of this work. The part of Boris Venkov in obtaining the results ofSec. 3B, that is central to the paper, was particularly important. The authors bene-�ted from the hospitality and the stimulating atmosphere of the Erwin Schr�odingerInternational Institute for Mathematical Physics where the major part of this workwas done. We also acknowledge partial support by the Bulgarian Foundation forScienti�c Research under contract F-11.References1. V. Pasquier, Operator content of the A-D-E lattice model, J. Phys. A. Math. Gren. 20(1987), 5707-5717.. A. Cappelli, C. Itzykson, J.B. Zuber, ADE classi�cation of minimal and A(1)1 conformalinvariant theories, Comm. Math. Phys. 113 (1987), 1-26.. see also, Nucl. Phys. B280 (1987), 445-465.2. V.G. Knizhnik, A.B. Zamoldchikov, Current algebra and Wess-Zumino model in twodimension, Nucl. Physics B247 (1984), 83-103.3. H.A. Schwarz, �Uber diejenigen F�alle in welhen die Gau�ische hypergeometrische Reiheeine algebraische Funktion ihres vierten Elements darstellt, Reine Angew.Math. (CrelleJ.) 75 (1873), 292-335.
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