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ABSTRACT. We study the monodromy representations B%7 of the mapping class
group B4 acting on 4—point blocks satisfying the Knizhnik—Zamolodchikov equation
for the level k sup current algebra. We classify all irreducible 8% which are real-
ized by finite groups; we also display finite irreducible components for the reducible
representations corresponding to k£ = 10.

1. Introduction

The discovery by V. Pasquier of the close interrelationship between V. Jones
theory of subfactors and a family of 2-dimensional (critical) lattice models led to
introducing the ADE models labelled by Dynkin diagrams and to the ensuing ADE
classification of suy current algebra and minimal conformal theories [1]. The parallel
with the classification of finite subgroups of SU; has not been fully understood in
the 7 years since this publication. The present note reports on the first results of
an attempt to relate the properties of rational 2D conformal field theories to the
cases in which the associated monodromy representations of the braid group are
finite matrix groups. We answer on the way the question when does the Knizhnik—
Zamolodchikov (KZ) equation [2] for chiral 4 point blocks have an algebraic solution.

Here we restrict our attention to conformal blocks of chiral vertex operators carrying
1(141)

E+2
More than 120 years ago Schwarz [3] solved a similar problem for Gauss hyper-

geometric equation. Only comparatively recently his study was pushed further to
incorporate the n—th order equation for the generalized hypergeometric function
nFrn_1 [4] and the classification of algebraic Appell-Lauricella functions [5].

The possibility to address Schwarz’s problem for the KZ equation has been pre-
pared in previous work [6, 7, 8] where an explicit form for the generators of the
associated monodromy representation of the braid group B4 on 4 strands has been

the same 1sospin I and conformal weight Ay =

worked out. The role of braid invariance in constructing 2D correlation functions
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has been already recognized in the pioneer work of Belavin, Polyakov and Zamolod-
chikov [9] on minimal conformal models. The monodromy representations of the
braid group acting on chiral vertex operators of the sus conformal current algebra
have been first studied by Tsuchiya and Kanie [10].

The results of the paper can be summarized as follows.

1. We construct a family of matrix representations of the mapping class group
B, of the 2-sphere with 4 punctures (which can be viewed as the braid group on 4
strands with 3 additional relations — Section 2A). Their matrix elements appear as
polynomials with integer coefficients in a variable ¢ or ¢'/2 (depending on whether
27 is even or odd) satisfying

(1.1) d==1, h=k+2, k=1,2...,

where h is the height of a level k representation of the 5us Kac—Moody algebra
[11]. They thus belong to the cyclotomic field Q(ql/z) (Section 2C). The resulting
family of matrix groups provides a representation of the abstract groups studied in
[12] - see Remark at the end of Section 2C.

2. A braid invariant hermitean form A, whose entries belong to the same cy-
clotomic field, is constructed and diagonalized (Section 3A). Tt is positive definite
whenever the quantum dimensions of the intermediate states are positive:

(1.2) 2A+1]>0for A=0,1,...,m =min(2], k — 27).

3. The main result of the paper is contained in Lemma 3.2 and Theorem 3.3 of
Section 3B. The Lemma says that the matrix group B! (consisting of (m + 1) x
(m 4+ 1) braid matrices that leave the non—degenerate hermitian form A invariant)
is finite whenever A is totally positive: i.e., whenever it is positive together with
all its Galois transforms, corresponding to the substitutions

(1.3) q— ¢" for (2h,n) =1

((2h,n) = 1 indicating that n is coprime with 2h). Conversely, if the representation
B*1 is irreducible (or, equivalently, if the invariant form A is unique), the condition
of total positivity is also necessary for the monodromy representation B*! of the
mapping class group to be a finite group. As a result we end up essentially with
three finite groups of 2 x 2 matrices (which can be identified within the original
Schwarz classification — see also [13]) one group of 3 x 3 matrices and an infinite
series of (1-dimensional) cyclic groups (of the type Z4, Zs and {1}).

2. Monodromy representations of the mapping
class group of the sphere with four punctures

2A. The group B;. Basic relations. We shall list the properties of the abstract
group By in order of increasing specialization.

To begin with, B4 is a group of three generators B;,¢ = 1,2, 3, satisfying the
relations for the braid group on four strands:

(2.1) ByBs = BsBy, BiBiy1B; = Biy1BiBij1, i=12.



SCHWARZ PROBLEM FOR K7 EQUATION 3

They further display the characteristic properties of a (cyclic) central extension of
the braid group on the sphere S

(2.2) B1ByBiByBy = ¢* = B3By BBy B3, ¢’ B; = Bic*.

(a finite power of the central element ¢ being equal to 1). Finally, they obey the
relation

(2.3) (B1B2B3)* = ¢*

which singles out a central extension of the mapping class group of the sphere with
four punctures (the mapping class group proper corresponding to ¢ = 1). The
above definition yields the following

2.1. Corollary. The relations (2.1)-(2.3) imply
(2.4) (BiB2)® = ¢ = (B2By)?

and B? = B2. Moreover, all generators belong to the same conjugacy class, since
(B1B2B1)B1 = B2(B1B2By).

2B. General characteristics of the monodromy representations (k,I) of
By. For each level k(= 1,2,...) of the 5us Kac—Moody algebra [11] there exists a
finite family of chiral vertex operators V; carrying isospin [ in the range

(2.5) 2I=0,1,... k.

The 4 point blocks of V7 span a 21 +1 dimensional space H  of solutions of the KZ
equation which carry a monodromy representation (QNI) of B4. This representation
is found to have the following properties [10, 6, 7].

(1) The two commuting generators of B4 (which according to Corollary 2.1 have
the same squares — i.e. yield the same monodromy) are actually equal

(2.5) By = Bs

so that B4 has just two generators, By and Bs.
(2) The central element ¢? of (2.2) is an integer power of a primitive root of —1

(2.6) A =gt b= L h=k+2,i=q".

(3) There exists a positive semidefinite B, invariant hermitean form (,) which
vanishes on a 4] — k dimensional subspace of Hy for k < 4I(< 2k). The represen-
tation (I) of By in My induces a representation (k, ) in the factor space

(27) Hir = ﬁ[/(v,v):O
of dimension

(2.8a) dimHMpr =min(2] + 1, k—2I+ 1) = m+ 1,
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where
1
(2.8b) m=m(k,I) =min(2], k —2I) = §(k—|k—4f|).

For 41 < k the invariant form has no kernel and the two 34 modules 7:(1 and Hyr
coincide.

(4) The generators B; = Bf’l of the (factor) representation (k,I) are cyclic
elements of finite order:

(29) Bzh — Ch, c=c; = (_1)21621(I+1)’ ((jh — _1)’

so Bl is always a multiple of the unit matrix (in particular, it is a central element
of Bi’k); moreover, for integer isospin B#* = 1, for half integer isospin B#* = 1.

2C. Explicit realization. We shall exhibit a realization BELI) of the (unfactored)
representation (I) of By with the following properties [6, 7]:

(2.10) B1ByBy = BoB1 By = ¢/ F, F’=1
where the phase factor ¢y is given in (2.9) and
(2.11) Fag=063,, Apu=0,1,...,21, (detF = (-1)7+y;

Bj is, on the other hand, an upper triangular matrix, By is a lower triangular one.
These conditions still leave the freedom for a rescaling of the type

(2.12) By = 929y Bay With gy = gar-x(# 0).

The choice we shall adopt here differs from the one made in [6, 7] by just such a
rescaling. Taking a suitably normalized basis of 2/-fold parametric integral solu-
tions of the KZ equation, we find

(2.13) (Bl)ku — (_1)2I—uqu(>\+1)—21(1+1) |:21 — /\:| .

w—A

Here [:1] stand for the (real) ¢-binomial coefficients (vanishing for n < m):

(2.14) [”] = %,[n]!: [][n — 1], [0)! = 1,[n] = -—L .

m [n — m] 9—4q

This realization of the (27 + 1) x (21 4+ 1) matrix group BELI) has two remarkable
properties which will be exploited in Section 3 below.
The generators B; and Bs = F'B1 F are inverted by complex conjugation:

(2.15) B; = By (= Bi(¢""))(also F = F~' = F).

Clearly, this property is not preserved by products of non-commuting generators
like B1Bs. It does, however, have an implication for any element of our matrix

group.
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2.2. Corollary. If A(= A(*)) Is an invariant hermitean form, i.e. if
(2.16) B*AB = A for all B € B
then in the realization (2.11) (2.13) it also satisfies

(2.17) ‘BA = AB for (‘B)x, = By,

The second property is an arithmetic one: the matrix elements of any B € BELI)
are elements of the cyclotomic field Q(ql/z). In fact, they are polynomials in ¢/2
with integer coefficients (and ¢"* = —1). The elements of the commutator subgroup
are ploynomials in ¢ (rather than ql/z) also for half integer isospins.

Remark on the connection with the work of Howie and Thomas [12].

2

If we multiply the generators B; of BELI) by ¢57U+1) we can relate the resulting
group BD of matrices of determinant £1 with a family of groups considered in
[12]. Tndeed BU) is generated by F' and

(2.18) w = ¢3!+ B, B,
satisfying the relations
(219) F2:w321:(Fw)N(Ivh)

where N(I,h) is an appropriate divisor of 6h. If BD s finite then the group
commutator should be of finite order

(2.20) (Fwaz)" =1 for some n € N.

Thus, BY) appears as a representation of the abstract group (2,3; N(I,h),n) con-
sidered in [12]. Consequently, in all cases (given by Theorem B of [12]) in which the
above abstract group is finite, our matrix group B is also finite. The converse is
however, not true since our BY) involves additional relations. (2.19) and (2.20) do
not guarantee, for instance, that the monodromy element w?(Fw)wF is of finite
order. The result of Theorem 3.3 below shows in fact, that none of the interesting
cases of finite mapping class groups is covered by the list of finite abstract groups

of [12].

3. Invariant forms and irreducible finite groups

3A. The generic invariant symmetric form.

Proposition 3.1. For any q # 0 there exists a diagonalizable BELI) mvariant sym-
metric form

(3.1) A=1SDS.
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Here D is a diagonal matrix with non—zero elements

ANRI4+1+A1° 1
2 Day = DD = [ A=0,1,...
(3:2) A=A x| mgg T oheem

where the upper limit m = m(k, I) of indices A for which Dy, is non—zero is given
by (2.8b). S is an upper triangular matrix satisfying

(3.3) Sap = b for A, > m+ 1(if 47 > k)

. 27 — AJI[2) + 1]!
3b ey [ 1] for A < pu <
(3.3b) S =(=1) [/\] RI— A +put+l o =H=T

and 'S(= S*) is its transposed (equal to its hermitean conjugate).
Sketch of proof.
For 41 < k + 1 the similarity transformation
(3.4) B, — B = sB, 57!,
where

(3.5) S7l = M [21 = AJM[A + 4!

Al 20— p)i2p]t
diagonalizes By, the eigenvalues by of By appearing as
(3.6) (BEI))AM = byuba, by = (—1)H A+ =21(I41)

For 41 > k + 2, B; are not diagonalizable, but BEI) (3.4) (with S=1, the inverse of
S (3.3), only given by (3.5) for A, < m and continued as in (3.3a) for ;1 > m) still
satisfies (3.6) for y < m(= k — 2I). In both cases, we obtain from (3.1) and (3.2)
the Bj invariance condition for A:

(3.7) ‘ByA=AB, < [B{") D] =0.

Verification of F' or By invariance requires more work and uses the explicit form of

A:

(=DM u]t & .
27— N'27 — /(21 + 112 VZTV(ML, I)

=0

(3.8a) Ay =

where

27 101221 — v]?[2v + 1
21 + v+ P21 — V)20 + 1] (= 0 for v > min(\, ).

(3.8b) T, = A+v+ 1 p+ v+ 1{p—v]A=2]!

As a consequence of Corollary 2.2 A also defines an invariant hermitean form.
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Remark. An expression of the type (3.2) (3.8) was first derived in Section 3D
of [7] using quantum group techniques. Apart from a misprint in (3.84¢) of that
reference the two formulas differ because of a different choice of normalization of
the basis. The expression (3.8) is related to Z», (3.84) of [7] by

21| 21
T
Clearly, Ax, are real for both ¢ real (¢ # 0) and for ¢ on the unit circle, ¢¢ = 1.
The cutoff in A and p in (3.2) and (3.3a) only occurs for ¢ a root of unity.

3B. Galois automorphisms and positivity. We have not specified so far the
choice of a primitive root ¢ of —1 ((2.6)). Positivity of the invariant form (3.1) (3.2)
requires setting

(3.9) [2]:(]—1—@:2(:05%.
All other properties of BELI) remain valid for any primitive hth root of —1, and are,
hence, invariant under Galois automorphisms™* (1.3).

Lemma 3.2. (i) If the form (3.1) (3.2) is totally positive, i.e. if for q satisfying
(3.9)

(3.10) Dg\k’l)(q") >0 for any n,(2h,n) =1, and A =0,1,...,m,

then the (m + 1)-dimensional representation B*{ which leaves the non—degenerate
form A invariant is a finite matriz group. (ii) Conversely, if the invariant hermitean
form A is unique (or equivalently, if the representation B! is irreducible), then
the condition of total positivity of A is also necessary for the finiteness of B*1.

This is a corollary of known results in algebraic number theory. The following
sketch of a proof was communicated to the authors by Boris Venkov.

(i) The invariance group of a totally positive form A4 over a cyclotomic field is
compact. Since B*! is discrete it follows that it is finite.

(ii) Since any (in our case, finite dimensional) representation of a compact (in
particular, of a finite) group B is unitarizable, then the unique invariant form A
should be positive together with all its Galois images.

This result gives a powerful criterion when is the group B*! finite. Before
applying 1t we shall give a more explicit characterization of our group. In the so
called “s—channel basis” | in which the invariant form is diagonal we can write

3.11 BT = {(BYy = ((SBS™ )50, BeBY A u=0,1,....,m}.
Au H 4

Alternatively we can work in the original basis and factor the null subspace with
respect to the form A (3.1) (3.8). An invariant condition for the (m+ 1) x (m +1)
matrix generators of B¥ is given by the characteristic equation

(3.12) [T —by=0, i=12,
A=0
for by given by (3.6).

*Galois automorphisms have been also used recently [14] for classifying modular invariant
partition functions.
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Theorem 3.3. If the above described matriz group B*? acts irreducibly in Hyy
then it s only finite in the following cases.

(1) For the 1-dimensional representations corresponding to m = 0. These in-
clude the trivial representation for I = 0 and the “simple current” with 2I = k. In
the latter case the resulting group is Z4 for odd k, Zo for k = 4n 4+ 2 and again
trivial for k = 4n.

(2) Three cases of 2—-dimensional representations, 21 = 1, corresponding to levels
k=2, 4 and 8. The commutator subgroup C*), generated by the pair

9 _
(3.13) b= BBy = ByB By !Byt = (1_qq —qq2) b= BBy
1s isomorphic to the 24 element double cover of the tetrahedron group for k = 2; to
the 8 element group of quaternion units for k = 4; and to the 120 element double
cover of the icosahedron group for k = 8. The latter two groups are also recovered
for2l =k—1,%k=4,8.

(3) One 3-dimensional matriz group for I = 1, k = 4, that is a 27 element
subgroup of SUs.

Sketch of proof.

From the irreducibility assumption it follows that the invariant form A is unique.
Therefore we can apply part (ii) of Lemma 3.2 and deduce that it is totally positive.
This means according to (3.2) that all associated “quantum dimensions” should be
positive

(3.14) [2A+1]>0, A=0,1,...,m

for any primitive root of —1 (for a given h = k+ 2). For A = 1 this condition gives
2
(3.15) 3] = [Blpn = 1+ 2 cos % > 0 for (2h,n) = 1.

A straightforward analysis shows that this is only possible for A = 4,6 and 10. The
inequality [5]p,, > 0 (which arises for 27 > 2) is only satisfied for A = 6 when
[5l6.n =1 (for n=1,5,7).

The identification of various finite groups uses relations of the type (cf. [15])

(3.16a) b =% = —1=(b""b)? for k=2
(3.16b) b? = 0% = (b7'b)? = —1 for k=4
(3.16¢) (b716%)? = (b71)? = b° = —1 for k=8

(3.16d) b =% = (bb)> = (b7b)> = L for k=4,1=1.
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Remark. The finite 2-dimensional braid groups (where the group algebra is a
Hecke algebra) have been classified some 10 years ago by V. Jones [13] by a quite
different method and the part (2) of the above theorem agrees with his result.
Indeed, if By, is the subgroup of su; generated by the normalized 2 X 2 matrices
B; = (jhi_lBi,i = 1,2, such that det B; = 1, then B, is isomorphic to the 48
element binary octahedron group (the double cover of the symmetry group of the
octahedron), B, is isomorphic to the 24 element binary tetrahedron group, while
C*) appear as their commutator subgroups. Only the binary icosahedron group Bs
coincides with its commutator subgroup C'®). The same finite braid groups appear
in minimal conformal models. The corresponding algebraic 4-point functions have
been computed in [16].

3C. Examples of reducible representations. The ADE classification of 5is
conformal theories [1] and the related classification of local extensions of chiral cur-
rent algebras [8] imply the existence of reducible representations in the family 5%/
for some exceptional pairs (k,I). Tt turns out that the (one and) two dimensional
irreducible components in the k¥ = 10 Eg—theory 1s again a finite matrix group.

For I = 2 and I = 3 there exists a 1-dimensional B'%/ invariant subspace in
each of the 5-dimensional spaces Hior for I = 2 and 3. It corresponds to a second,
degenerate invariant form whose “s—channel” expression D*:7) is no longer diagonal
but has the form

1 0 0 Np O
~ 0 00 0 0 Nos =2 —[31(=1 — /3
1 BO=| 0 00 o o 2 = 2 — 3 )
Nis 0 0 Ni 0 N33 = [3] - 3(= V3 —2).
0 00 0 0
We note that only the ratio
N223 N???)
(3.18) ng,z) =2= Dglo,s)

has an invariant (with respect to a rescaling of the type (2.12)) meaning. In both
cases the vector (1,0, 0, Ny3,0) spans a 1-dimensional representation of B'%{  that
18 Zo for I = 2 and the trivial representation for I = 3.

For 21 = 3 and 21 = 7 there is a 2-dimensional B(1%7) invariant subspace in each
of the 4—dimensional spaces Hygr for 27 = 3 and 7. The second invariant form DI
18, In this case,

1 0 0 Njp3
S0 _ 0O 0 0 0
(3.19a) DV = 00 N122 0
Nz 0 0 N123
where

(3.19b) Nog=— 2 (: —i) ,Ngz =1



10 Y. S. Stanev, I. T. ToDorROV

B]—4 2[8-5 ., 1 ( 2—%5)

(3.19¢) Nig= N?

62][3] — 6[2] = 202

The unitarized 2-dimensional sub-representation of B(1%7) in the subspace spanned
by (1,0,0, Nr3) ans (0,0, 1,0) is the same in the two cases and is generated by

(3.20) Bl<=B§”>=q‘°’”(q03 _(;) F:‘%G —11)

where [3]2 = 2[2)? for ¢*2 = —1,2] = 3 or 7. The generators I;,Z of the commutator
subgroup,
e a1 14445 1—¢F
—_ 1 S

(3.21) b= Bj FBlF_Q (—1—(]6 1= g ete.,

satisfy the relations (3.16a) for the double cover of the tetrahedron group. Further-
more, B satisfies the same equation, B% = —1 as By in the k = 2,21 = 1 theory.
There 18, 1n fact, a series of rational conformal models of Vlrasaro central charge
¢ =n+ 1/2: the Ising model (n = 0) and the level 1 §0(2n + 1) model the k& = 2
stz and the Fs model being the first examples. They exhibit striking similarities:
all models have the same structure of superselection sectors, the same fusion rules,

a 2¢ component Fermi field of conformal dimension 1/2 and a primary chiral vertex
operator of minimal positive dimension

Ae) = 5
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