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Abstract

This review revolves around the question which generakibistion of scatterers (in a Eu-
clidean space) results in a pure point diffraction spectrurirstly, we treat mathematical
diffration theory and state conditions under which suchsriiution has pure point diffrac-
tion. We explain how a cut and project scheme naturally apieahis context and then turn
our attention to the special situation of model sets aniti#ubstitution systems. As an ex-
ample, we analyse the paperfolding sequence. In the lastvyp@summarize some aspects of
stochastic point sets, with focus both on structure andatiffon.
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0.1.1 Introduction

Diffraction experiments are important to determine theaure of a solid, even more so with
the refined methods available today. Recent applicatiarisde aperiodic systems as well as
systems with disorder.

Kinematic diffraction can be described and understoodrims$eof Fourier analysis. The
diffractionimage is related to the Fourier transform of éwocorrelation or Patterson function
of the scattering obstacle, e.g., the electron density.sithation is well understood for (ideal)
crystals, which show a complete lattice of periods, evenugothe corresponding inverse
problem does not have a unique solution in general.

Beyond the periodic situation, firm results are sparse, antifinecently, one did not even
know which general distribution of scatterers would regult pure point diffraction spectrum,
i.e., in a diffraction image of pure Bragg peaks only. Thigiea revolves around this ques-
tion [1], and summarises the present state of affairs, witt®l emphasis on contributions
obtained during the time of the DFG focus program on quasteiy. We concentrate on the
few results here that have been establishigdrously, and indicate where further research is
needed.

The article is organised as follows: In the first section, wetesconditions (Theorem 1)
under which a set of scatterers diffract, i.e., its diffrantspectrum consists of Bragg peaks
only. Instead of looking at very general set of scattereesspecialise in those sets that model
physical structures (as weighted Dirac combs). Theoremef #tates criteria under which
these sets diffract. With this result, we explain in Sec.®How a cut and project scheme
naturally appears. So, we obtain the associated interaabspf model sets, like the Fibonacci
or the rhombic Penrose tilings, through the informatioregiby the autocorrelation. Model
sets (or cut and project sets) are the most common modelpéoiogic order (quasicrystals).

In Sec. 0.1.4 we investigate lattice substitution systeWis. first explore the diffraction
spectrum for scatterers distributed (aperiodic or evegtsistic) over a lattice (Theorems 4
and 5), before turning to distributions obtained by subsiths. For this special case, we
are again interested under which conditions they diffriitieprem 6). As an application of
a lattice substitution system as well as a model set with Boeclidean internal space, we
calculate, in Sec. 0.1.5, the diffraction spectrum of thegiolding sequence.

Thereafter, we leave the area of deterministic point sedsam to systems with disorder,
i.e., to random tilings in Sec. 0.1.6. We carefully introdube notion of a random tiling,
before we state results about one dimensional binary rartdioigs in Theorem 8 and about
the two dimensional Ising lattice gas in Theorem 9. We end $eiction by the example
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of a Fibonacci random tiling, where we are particularly reted in the role of the internal
space of quasiperiodic random tilings for their diffractispectrum (Theorems 10 and 11).
We conclude our article with an outlook (Sec. 0.1.7) whereinggcate future directions in
diffraction theory.

0.1.2 Mathematical diffraction theory

The basic object of interest is a set of scatterers in a EeatidspaceR ¢, which we model
by atranslation bounded complex measure. It describes the distribution of matter in a
mathematically adequate way. To calculate the diffracsjpectrum, we need trautocorre-
lation measurey,, attached tav. Thediffraction spectrunis then the Fourier transform,

of the autocorrelation measure. Hefg,(F) is the total intensity scattered into the volume
elementF, and thus describes the outcome of a diffraction experijrmnhpare [8]. It can
uniquely be decomposed &8s = (7, )pp + (Yu )sc + (7 )ac PY the Lebesgue decomposition
theorem, see [4]. Heréy,, ),, is apure point measurewhich corresponds to the Bragg part
of the diffraction spectrum(y,, ), is absolutely continuouand (¥,, ). Singular continuous
with respect to Lebesgue measure. The pure pointednese difffaction spectrum,, of w

is in question, i.e., whether the Lebesgue decompositidages toy,, = (7, )y (then, the
diffraction spectrum consists of Bragg peaks only).

We first fix an averaging sequenge= {B,, | n € N} of balls of radius: around0, so
we begin analysing the spectrum by looking at finite piecafigpof the structure in question.
We define(f) = w(f), wheref(z) = f(—x), and set,, = w| and@, = (w,)". Then,
the measures "

Vw VOl(Bn) (1)

are well-defined, since they are (volume averaged) conemlsbf two measures with compact
support. The autocorrelation, of w exists, if(»yfu"))nEN converges in the vague topology,
compare [6], and is then, by construction, a positive defimiteasure.

We say that a measureasmost periodidf the set of translates iglatively compacfi.e.,
its closure is compact). Of course, we have to fix a topologytis, and in our case we need
the strongor product topologyon the space of translation bounded complex measures (and
not the vague topology), see [2, 5]. With this topology, weadpofstrong almost periodicity
to distinguish it from almost periodicity in other topolegi The key result reads:

IMost results also apply to more general spaces, namaipmpact locally compact Abelian groups, with
Lebesgue measure replaced by Haar measure, etc., see [2].

Frequently, we make use of the one-to-one correspondetoesrameasureand regulaBorel measureby the
Riesz-Markov representation theorem, wheraeasuréds a continuous linear functional on the space of compactly
supported continuous functions B, while aBorel measurés defined on the Borel sets BfY. Theconvolutiorof
two measureg, v is defined age x v(f) = fmd e f(z + y) du(z) dv(y) and is well-defined if at least one of
them has compact support. A measuiis translation bounded, for all compactx’ C R¢, supyepa |ul(t+ K) <
C' - < oo for some constan' ;- which only depends o’. Here, || denotes théotal variation measuréwhich is
positive)and + K = {t + =z |z € K}. See [2, 3, 4,5, 6, 7] and references therein for details.

3A measurey is positive definitaff w(f = f) > 0 for all complex-valued continuous functions with compact
support, compare [3].



Theorem 1 [2, 5] The measure is pure point diffractive iff

(i) v, exists.
(i) =, is strongly almost periodic. d

Note that (i) is merely a convention, since one can alwayls @icappropriate subsequence of
the averaging sequengéfor which v, exists.

So, given a measure, we have to check these two conditions to decide whether it is
pure point diffractive. This can be done for many relevararagles. We would also like to
solve thehomometryor inverse problemi.e., the question which measuresaccount for a
given diffraction spectruny. This is a hard problem, because there is no inversion psaafes
Eqg. 1. In fact, rather different can have the same diffraction, see [9]. One also would like to
understand the implications of a pure point spectrum. Heeawill not explore these last two
questions further.

Instead, let us specialise on the situation of a countaliles s& scatterers iR ¢ with
(bounded) scattering strengthis), « € S. It can be represented as a complex Borel measure
in the form of aweighted Dirac comb

w= Zv(r)éx,

T€ES

whered,, is the unit point (or Dirac) measure locatedwat.e.,d, (¢) = ¢(z) for continuous
functionsy. This way, atoms are modeled by their position and scatiesirengths. Convo-
lutions with more realistic profiles are not considered héxg can easily be treated by the
convolution theorem, see [3].

Denote the set of “inter-atomic distances”By= S — S = {x — y | #,y € S}. Then we
make the following three assumptions, see [2]:

(A1) The measure is translation bounded, i.e, there exist constarjsso that

sup Z [v(z)] < Cx <
tERY e sA(t4K)

for all compact sets C R<.

(A 2) Theautocorrelation coefficients

o) = Jim s X il

rT—y=z

exist forallz € A (we sety(z) = 0if z ¢ A). Consequently (if also (A 3) holds), the
autocorrelation measurg, = 5. , 1(2) d, exists.

(A3) The setA®sS= {z € A|n(z) # 0} C Aisuniformly discretei.e., there isam > 0
such that open balls of radinscentred at the points ak®*are mutually disjoint.

4For later reference, we write = A - 8 if v(z) = Aforallz € 5.
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The support ofy,, (which is the support ofy(z)) plays a special role, in particular the
group generated by it:

L= (A%, CR* 2)

The point sets is repetitiveif for any compact sek’ C R4, {t € R4 SNK = (t+5)NK}
is relatively densg i.e., there exists a radiud = R(K) > 0 such that every open baliz (y)
contains at least one elementtaf R4 for whichS N K = (t+S) N K. If S is repetitive, we
haveA = A® hencel, = (A),.

We define dranslation invariant pseudo-metfiby
ns—y1?
n(0)

If all weightsv(x) are non-negative, one hasgs, ) < 1 for all s,¢ € R4, but, in general,
o is bounded by/2. This pseudo-metrig defines auniformity, both onZ andR?, see [2].
The induced topology is, in general, completely differeotr the usual Euclidean topology
of R4, Itis called theautocorrelation topology

Next we define, foe > 0, a setP. of e-almost period®f the autocorrelation,, through

ols.0) =1 - )

P ={teR|g(t,0) < e} 4)
We clearly have the following inclusions fer< ¢’:
{periodsow} c P. C P, C RY

and furthermoreP; = A®SSif all weightsv(z) are non-negative. Now, we are able to apply
Theorem 1 to weighted Dirac combs.

Theorem 2 [2] Letw be a weighted Dirac comb that satisfi@ 1), (A 2) and (A 3). Then
4. exists, and the following statements are equivalent:

(i) P.

is relatively dense for alt > 0.

(i) =, is norm almost periodic.

(iiif) ~, is strongly almost periodic.

(iv) 4, is pure point diffractive. d

The norm almost periodicityn (ii) refers to the topology defined by the norw||, =
sup,cga |w|(z + K) for some fixed compack™ with nonempty interior, e.g., a closed unit
ball. The concept of norm almost periodicity is independsrhe choice ofi’.

This theorem applies to the diffraction from the visibldilz points, see [2, 10], but also
to model sets which we will consider next.

5A setQ is relatively denséf there is a radius? > 0 such that every ball of radiug in R4 contains at least one
point of Q.

6A pseudo-metriis a non-negative, symmetric function & x R that satisfies the triangle inequality. Such a
function g is translation invariantf o(s + r, ¢ + r) = o(s,t) forall » € R<



0.1.3 Model sets

The well-known cut and project mechanism provides exampiegeighted point sets which
satisfy the assumptions (A 1), (A 2) and (A 3). But here, wetstéth a countable weighted
set of scatterers ifi¢ for which the corresponding weighted Dirac comb fulfils Trexa 2
and is therefore pure point diffractive. This will lead usatsuitable cut and project scheme.

The constructive picture behind this is the following: @rof Eg. 2, we have a pseudo-
metric ¢, defined in Eqg. 3, which in turn defines a uniformity, and thieaautocorrelation
topologyon L. Inside L, the setsP. of Eq. 4 are the open balls of radigsaround0 in
the autocorrelation topology. The grodpequipped with this topology admits(Blausdorff)
completiort /, which is alocally compact Abelian grodp This means that there is a con-
tinuous group homomorphisgt 7. — H wherey(L) is dense ind. The relative denseness
of P_ is crucial here, because for every getof L there is an open s&8(¢) of H so that
¢(P.) = (L) N B(e) and B(e) has compact closurB(¢) for 0 < < 1, giving the local
compactness afi .

We obtain the followingut and project schemsee [2]:

T Tint -
R4 — R4 x H —  H=¢p(L)
(5)
Y 1—71\ Y /dense

L+ L={(x¢)lxel}

Here, L is alatticein R¢x H, i.e., L is a closed subgroup so that the factor greBig x )/ L
is compact. The projectiony; is dense irinternal spacefl and the projectiom into physical
spaceR? is one-to-one of..

The internal spacé and the lattice. both arise from the group via the autocorrelation
topology. In spite of its abstraction, the procedure givasikithe familiar Euclidean internal
spaces of the well-known examples (e.g. Fibonacci). In #se of the rhombic Penrose
tilings it gives the minimal internal space possible formegenting them in the cut and project
formalism: H = R? x (Z /5Z), see [2]. For other tilings, the internal space may#mlic, see
Section 0.1.5 for an example. Note that the completion mapnot one-to-one in general,
its kernel is), , , P., the group of statistical periods. For examplesifs a lattice with all
weights equal, thef = L, » = 0, H = 0 andL = L, so the cut and project scheme collapses
into triviality. In general, the internal spadé ignores the periodic part af, for which no
additional structure is required, and reflects only the imoiér parts.

AsetA C R%is amodel sefor the cut and project scheme in Eq. 5, if there is a relaivel
compact set’ C H with non-empty interior and ac R¢ such that

A=t+AW)=t+{z e L]|px)ec W}

"H is acompletiorof L, if L has dense image i and every Cauchy sequencefihhas a limitinH, e.g.,R is
the completion of). The completion is unique up to topological isomorphism.

8A topological space is callddcally compacif each point is contained in a compact neighbourhood. # $piace
is an Abelian group, we speak of a locally compact Abeliarugtd&Examples are Euclidean apéhdic spaces.



0.1 Which distributions of matter diffract? — Some answers 7

Note that, in the context of model sets, the mafs often called the-map and denoted by
()%, i.e., one writes™ = ¢ (). A model set is always Belone seti.e., it is both relatively
dense and uniformly discrete. A model set is callegular if the boundary ofit’ hasHaar
measur 0. Regular model sets are the most relevant model sets fohysiqal applications
in the theory of quasicrystals. They also play a prominetd o the analysis of sequences
with long-range (aperiodic) order, cf. [11] and referentesrein.

One of the cornerstones of the theory of model sets is:

Theorem 3 [6, 12] Regular model sets are pure point diffractive. O

Let us now go back to our discussion of diffraction in the extibf the assumptions (A 1),
(A 2) and (A 3). The pure point diffraction in Theorem 2 is intitely related to the cut and
project scheme in Eq. 5. Butit can happen that th&'segelf is not a model set (e.g., as inthe
case of the visible lattice points), see [2]. So the questitses: Which pure point diffractive
point setsare (regular) model sets? We have only partial progress on this.

Noting thatWW, = ¢(P.) has non-empty interior for all < ¢ < 1, it follows form our
above discussion th&. C A(W,). Sincel is countable, we even get th&t = A(IV,) can
be violated for at most countably many values p§o thatA®Sis the union of an ascending
sequence of model sets. Furthermore we have

Proposition 1 [13] Assumé€A 1), (A 2) and (A 3) hold. ThenA®%Sis a model set. O

This leaves open the question of whether or.iat a model set. Progress in this seems to
depend on utilising the dynamical hull df

X(A)={A+t|t e R4}, (6)

where closure is taken with respect to theal topology®. Then(X(/l), ]Rd) is adynamical
systemunder the obvious action &% on X (A).

If Ais arepetitive regular model set then it is known [12] thdt!) is strictly ergodic i.e.,
both minimat! and uniquely ergodfé. There is a conjecture to the effect that, conversely,
any pure point diffractivéMeyer set? of R¢ for which X (A) is strictly ergodic is in fact a
model set.

0.1.4 Lattice substitution systems

An interesting class of point sets is formed by the subseddattice. Even though they can be
aperiodic or even stochastic, the underlying lattickeaves its imprint, most notably in form
of a periodicity of the diffraction, with the dual lattideé* as lattice of periods.

90n every locally compact Abelian group there exists a un{gpeo a multiplicative constant) translation invari-

antregular Borel measure. This is called the Haar measnddsayiven by the Lebesgue measure on Euclidean space
R4,

OInformally, two discrete and closed point sets are closéénlocal topology, if, after a small translation, these
two coincide on a large compact region.

1A dynamical systeniX, T') is minimalin caseX has no proper closeB-invariant subsets. It isniquely ergodic
if there is only onél'-invariant Borel probability measure o¥i.

127 Delone setS is aMeyer sefiff the set of “inter-atomic distancesA = S — S is also a Delone set. Every
model setis a Meyer set.



In a more general formulation, let I" — C be any bounded function, and consider the
weighted Dirac comb

w= Zv(r)éx.

zel’

This includes the previous case via= 14, i.e.,v(z) = 1 for z € S and0 otherwise. Then,
if 4., is any of its autocorrelations (e.g. as obtained along abldtsubsequence of averaging
balls), we have the following result.

Theorem 4 [14] Let " be a latticd®in R¢ andw a weighted Dirac comb of with bounded
complex weights. Let, be any of its autocorrelations, i.e., any of the limit poiotshe family
{+{" | n € N}. Then the following holds.

(i) The autocorrelationy,, can be represented as

Vw:@éfzze(x)éxa

zel’

where©®: R4 — C is a bounded continuous positive definite function thatrpukates
the autocorrelation coefficientg ) as defined at € I". Moreover, there exists such a
@ which extends to an entire functieh C¢ — C with the additional growth restriction
that there are constant§, R > 0 and N € Z such that|@(z)| < C - (1 + |z|)V -
exp(R | Im(z)]) forall z € C4.

(i) The diffraction spectrum,, of w is a translation bounded positive measure that is pe-
riodic with the dual latticé* I'* = {k € R?| (k,z) € Z forallz € I'} as lattice of
periods. Furthermorey,, has a representation as a convolution,

ﬁ/w:g*(sf*a

in which g is a finite positive measure supported on a fundamental doofai™ that is
contained in the ball of radiu® around the origin. O

This reduces the analysis of the spectral typg oo that ofg, which has compact support.
An interesting application concerns lattice subsets anit tomplements, which leads to
the following result.

Theorem 5 [14] Let " be a latticd®in R4, and letS C I" be a subset with existing (natural)
autocorrelation coefficientgq (z) = dens (S N (z 4+ S)). Then the following holds.

(i) The autocorrelation coefficients;.(z) of the complement sé® = I' \ S also exist.
They areng.(z) = 0 forall z ¢ I" and otherwise, for € I', satisfy the relation

Nge(2) — dens(S¢) = ng(z) — dens(S)

13 These results can be generalised to lattice subsets inylamahpact Abelian groups whose topology has a
countable base, see [14] for details.
14The Euclidean scalar product is denoted/hy}).
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(i) If, in addition,dens(S) = dens(I")/2, the setsS and.S¢ are homometric.
(iii) The diffraction spectra of the setsand 5S¢ are related by
Yge =Yg + (dens(S¢) — dens(S)) - dens(I7) 5.
In particular, y4. = 74 if dens(5¢) = dens(S).
(iv) The diffraction measurg.. is pure pointiffy is pure point. d

As an immediate consequence of part (i), one can check thawthpseudometrics defined
by S and S¢ via Eq. 3 are scalar multiples of one another, hence defineaire uniformity
(aslong aslens(S) - dens(S°) > 0).

Of considerable interest in this context are lattice subsétich are obtained by lattice
substitution systems viaelone multisetS. They are the natural generalisation of one dimen-
sional substitution rules with constant length, and it vesently possible [15, 16, 17] to find a
complete generalisation of Dekking’s coincidence craeiisee [18]) to this general situation.
The result, stated below, is a circle of equivalences whidkctly puts pure pointedness and
model sets on the same footing. Although one of the equivaléteria is modular coinci-
dence, we refer the reader to [17] for the rather technichihiien, just pointing out that its
primary virtue is that it is testable by a straightforwardadithm.

A matrix function systeniMFS) on a latticel” C R¢ is given by anm x m-matrix
@ = (@ij), where eachp, ; is a finite set (possibly empty) of mappings— I'. Here, the
mappings of® are affine linear mappings, where the linear part has the form @ = and
is thesamefor all maps. We cally theinflation factor. It is required to have all eigenvalues
exceedingl in absolute value. Any MF#® induces a mapping a@ubstitutionon P(I")™,
whereP (I") denotes the set of subsets/of

m

U U s
U, i=1 fed,;
2 : = ; (7)
U U U rw)
i1 fed,,

We say thatV = (U4, ...,U,,)" is afixed pointof @ if U = ®#U. Furthermore, we call
(U, ®) alattice substitution systemon I" if ¢ is an MFS onl", U is a fixed point of®, the
U,’s are pairwise disjoint and all the unions in Eq. 7 are digjoh lattice substitution system
is primitiveif its correspondingsubstitution matrix\/ = (#9®,,),; ;<,, IS primitive, i.e., if
there is a € IN such thatV/* has positive entries only.

Let U be a lattice substitution system for the MES We say that &/-clusterC =
U N Bg(s) = (U; N Bg(s)) defined by intersecting all the componentsldfwith a

i<m?

15A multisetin R4 is a subset/; x -+ x U, C R4 x ... x R4 (m copies), wherd/, C R<. We also write
U=(U,....Uy" = (U),;,, Wesaytha{U,), .  is aDelone multisein R* if eachU, is Delone and the
unionJ;Z, U; C R4 is also Delone. It is convenient to think of a multiset as ansit types of colours (types of
atoms);: being the colour of points itV .
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ball of radiusR around a point € R, is legal if it lies in @"(u) for some points of U.
Furthermore, we define the symmetric difference of two nsals as symmetric difference of
their corresponding components, iEAV = (U, AV, ., = (U, \ V) U (VN T;))jcm-
We also use the notatioh+ 7' = {e+y |z € S,y € TYandU + S = (U; + S);<,, =
{z+ylovelU, ye S}, forsetsS, T and a multisel. N

Theorem 6 [17] LetU be a primitive lattice substitution system with expansiap & for the
latticeI" = |, ,,, U; inR* and suppose that evety-cluster is legal. Lef” = ', +- - -+1,,
wherel; = (A, — A;),. The following assertions are equivalent.

(i) U has pure point diffraction spectrum (meaning that e&gthas this property);
(ii) U has pure point dynamical spectrum (meaning that dachas this property);
(iii) dens(UA(Q"a +U)) =3 0 = (0),,, forall a € I";

(iv) A modular coincidence relative 19* I'” occurs ind™ for somelM ;
(v) EachU; is a regular model set, < m, for the cut and project scheme

R  RExT — T
U

I I
O

Here, thepure point dynamical spectruie defined as follows: For a dynamical system
(X,T) (see Eq. 6) that has a (unique) invariant probability memgw@associated to it (which is
the case for dynamical systems which arise from primitivessitutions), we have the Hilbert
spacel?(X, p) and the unitary operataB: L*(X,u) — L*(X,pn), [+~ foT. Ifthe
eigenfunctions of3 spanL?( X, ), then we have a pure point dynamical spectrum. Note that
the equivalence of (i) and (ii) can also be established in eergeneral setting, see [19].

The model set in this theorem is with respect to a very pddiotut and project scheme.
The key point is the internal group which we now briefly explain/” is the@-adic comple-
tion (in terms of gorofinite group see [20, 21])

T=(T)q=lmI/Q"I" = lim(I/I" « [/QI" = ...« I/Q"I"  ..)

of 1", supplied with the usual topology of a profinite group (whiohkes it compact). We
note that/” embeds naturally inté". Then,I" is the group{(t,t) € R¢ x T |t € I'}.

This gives a satisfactory approach to those systems wénielmodel sets, including an
algorithm to test it. The latter, however, is of limited valto disprove the model set property,
unless one can see that no coincidence can ever occur. Baitition, Frettloh has recently
proved several sufficient criteria. Although they are ndtaxstive, they are easy to check and
seem to cover many cases of relevance, see [22] for details.
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0.1.5 Paperfolding sequence as model set

To demonstrate the usefulness of the general setting, lnsider an explicit example with
ap-adic internal space.
The so-called regular paperfolding sequéfictarts as

11011001110010011101100011001001 . .. (8)
and can be obtained by folding a sheet of paper repeatedhetiett, see [23]:

— \—> —

The sequence in Eq. 8 is obtained by unfolding the (infinitagls and encoding a left
(right) bend byl (0).

An alternative description employs two steps: The first aeiees the unique one-sided
fixed point of the primitivet-letter substitution of constant length

a — ab
b = b
T e S5 ad
d — ed

bl

which starts agbcbadcbabedadeb . . .. The following second step mapsandb to 1 ande and
d t0 0, giving the sequence in Eq. 8.

Here, we change the point of view slightly, in that we consis-sided (or bi-infinite)
fixed points ofe, of which there are precisely tWd

bla — cblab — adceblabch — ... = wy
dla — edlab — adedlabed — .. 5w,

where| denotes the seamline. Note that andw, differ only in the first position to the left
of the seamline, otherwise they are equal.

Let us represent the letters with intervals of equal lerigiéind points on their left end, of
typea, b, c andd. Let 2, denote the:-points, etc. Then, the substitution together with the

16 More generally, we can define a paperfolding sequence rigelys the sequencéa,, as,...} is called a
paperfolding sequence iff; = —a3 = a5 = —a7 = ..., and the remaining sequen€es, a4, ... } is a paper
folding sequence. We obtain the regular paperfolding seceiéora,, € {1, —1} and writing0 for —1.

I"This is a primitive substitution of heightwhich has a coincidence (after two substitutions). Theeeitdis pure
point diffractive by a criterion of Dekking, see [18].

18The dynamical zeta function can be calculated with the nietiidAnderson and Putnam [24], and gives

1
T1-2z

(=)

From here, one sees that the number of fixed points™f(m > 1) is 2", which shows thai, andw, are the only
solutions ofo (w) = w with w a bi-infinite word.
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fixed point equatiomr(w) = w lead to the following system of equations:

2, = 29, U 24,
2, = 202,41 U (282,41
2. = 20, U 282,
2, = 22,41 U (22,+1)

where alsa2, U £2, U £2_ U 2, = Z by construction. With this, one quickly checks that the
first and the third equation lead to the unique solution

02, =47, R.=47+2
which reduces the other equations to

Qb = (SZ—I-I)
Qd = (SZ+5)

(282,+1)

U
U 22,4+ 1).

Since{2, and{2, are subsets df, the general solution is

2, = U2mt2z+2m—1
m>1

2, = U2mt2z+43.2m 1,
m>1

where the only remaining freedom consists in adding thelsing set{—1} to either of them.
This reflects the difference between the two fixed poimis({—1} goes taf2,) andw, ({—1}
goes tof2,).

If one now follows the construction of a canonical cut andgecbscheme as derived in [2],
one finds that the autocorrelation topology is thadic topology, and this complet&s(the
set of differences) t@., the compact group of-adic integers. So we have the cut and project
scheme

R +— RxZy, — Z
U

L

wherel = {(m,m) |m € Z}is a lattice. Our points are now model sets in this scheme.
Defining the windows (as subsetsif)

Wa:Q_aa Wb:ﬁba Wc:ﬁca Wd:Q_da
one findsiW, " W, = {—1} and thus
2y =AW,), 2y =AW,), .= AW.), 82, =AW\ {-1})

for w,, while {—1} moves from(2, to £2, for w,.
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As a regular model set, the paperfolding sequence is purg gifractive'®>. More pre-
cisely,ifw = A-d, +B-6, +C-d, +D-d, ,the diffraction measure reads

2

. _|A+B+C+D
Yo = || 9%z

4

2

‘1‘2 ‘A—B—I—C—D

. A-C
4

b
™2

m odd

Finally, let us consider the binary reduction. One gets

uUR, = | 2mtz4om—1
m>0

2ue, = J2a+iz43.2m 1
m>0

plus{—1} added to one of them. Clearly, these are again re@utadic model sets, and thus
also pure point diffractive. To summarise:

Theorem 7 The quaternary regular paperfolding sequenegsand w, are regular 2-adic
model sets, with pure point diffraction spectrum as giveBdn9. Also, the binary reduction
is a regular2-adic model set, hence also pure point diffractive. O

This structure is then inherited by the entire LI-cBssf the paperfolding sequence. The
members can be obtained via different folding sequeticese [23, 25] and references therein
for details. Further examples along similar lines can bentbim [2, 26, 27].

0.1.6 Systems with disorder

Here, we consider diffraction properties of stochasticnpsets. Simple, well-understood
examples are Bernoulli subsets of lattices or model sets4&} and certain lattice gases,
which can be analysed using elementary methods from stochathis approach has recently
been generalised considerably [29] to cover stochastecBehs from rather general Delone
sets. The results prove the folklore claim that uncorrelasndom removal of scatterers
has two effects, namely reducing the overall intensity efdiffraction of the fully occupied
set, without changing the relative intensities, and adainghite noise type constant diffuse
background. The influence of disorder due to thermal fluatnatis discussed in [30].

A prominent class of stochastic point sets are random 8lif3d., 32, 33]. Diffraction
properties of these tilings are understood for systemsowmitmteraction, for one-dimensional

9t is an example of a limit periodic system.

22Two structuresd; andA, arelocally indistinguishableor locally isomorphicor LI) if each patch ofd; (es-
sentially, the intersection off; with a compact set) is, up to translation, also a patchi.gfand vice versa. The
corresponding equivalence class is callé@lass

21Wwe get the paperfolding in Eq. 8 by setting= ay =a, =a, =...=ay, = ... (see Footnote 16), because
we only fold in one direction. Using a different folding semce, which corresponds to tiag, not being equal,
we get a different paperfolding sequence, but this one ilthé one in Eq. 8 and vice versa and therefore in the
same Ll-class. So, all such paperfolding sequences hawathe diffraction spectrum, namely Eq. 9 in the binary
reduction, i.e.A = B andC = D.
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Markov systems, and for product tilings [9, 34, 35]. Systemith interaction are generally
difficult to analyse. Here, only few results are availabledertain exactly solvable models
from statistical mechanics with crystallographic symrsstr whose autocorrelation can be
computed explicitly [9, 34, 35, 36]. Symmetries of a stotitgsoint set are understood to be
symmetries on average. For a detailed discussion of thisaginsee [32, 34].

Most examples of random tilings with quasicrystallograpyimmetries are obtained from
ideal quasicrystallographic tilings by relaxing the alkmhMocal configurations. Since, as for
ideal tilings, random tiling coordinates may be lifted intdernal space via the-map, the
random tiling ensemble possesses a so-cdlkght representatiomhich, in a way, can be
understood as a description on the basis of a deviation froradel set. At present, there are
no rigorous results concerning diffraction propertiesasfaom tilings with height representa-
tion in dimensiord > 2. Henley [31] argues, using elasticity theory for the freergly of such
an ensemble, that the discrete part of the diffraction speconly consists in the trivial Bragg
peak at the origin in dimensiah< 2, since the width of the distribution of scatterer positions
in internal space diverges with the system size. In dimerssio> 2, the distribution width
converges with the system size, implying a non-trivial tige part in the diffraction spectrum.
Even less is known about the nature of the continuous paftinl1, though absolute conti-
nuity is expected. For a numerical investigation of difffan properties of the randomized
Ammann-Beenker tiling, see [35]. In what follows, we willdias on stochastic disorder in
random tilings, mainly in the one-dimensional case, beedlnis understanding of the higher
dimensional situation is still rather incomplete.

The diffraction of 1D random tiling®€ has been investigated previously [34]. 1D binary
random tilings have a non-trivial pure point part iff theywhea rational interval length ratio
a = u/v.

Theorem 8 [34] The natural density oft exists with probabilistic certainty and is given by
d=(pu+qv)y . fw=4, = > e 9, denotes the corresponding stochastic Dirac comb,
the autocorrelationy,, of w also exists with probabilistic certainty and is a positivefidite
pure point measure. The diffraction spectrum consistd) privbabilistic certainty, of a pure
point (Bragg) part and an absolutely continuous partigso= (7, )pp + (. )ac:
If @ = u/v, the pure point part is
. ] ifadQ
=d?. 0 .

(PYw)Pp { kE(l/ﬁ)Z(sk |fa€@
where, ifa € Q, we sete = a/b with coprimea, b € Z and definé = u/a = v/b. The
absolutely continuous pafty,, ), can be represented by the continuous function

o(k) = —— d.p(.] szinz(ﬂ'k’(u—v?)z
p sin®(7k u) + ¢ sin”(7wk v) — pg sin”(7k (v — v))

22 (1D binary) random tiling[31, 32] is a covering of the real line with two intervals ofdik lengths: andv
without gaps or overlaps. Associated with each randongtiinthe sett of left endpoint positions of its intervals.
We call two random tilinggquivalenif they are equal up to a translation. For each equivaleressche choose a
representative with € A. Therandom tiling ensemblis the set of all non-equivalent random tilings.
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Figure 1: Absolutely continuous background of a Fibonacci randoimgil

which is well defined fok (v — v) ¢ Z. It has a smooth continuation to the excluded points.
If « is irrational, this isg (k) = 0 for k(u — v) € Zwithk # 0 and

g(0) = — il pele— o)
pu?+qv? —pg(u—wv)? (pu+quv)?

Fora = a/b € @ as above, itig/(k) = 0 for k (u — v) € Z, butk u ¢ Z (or, equivalently,
kv ¢ 7Z),and

pq (a — b)2
Fy=d2 2"~/
9(k) (pa+qb)?
for the case that alsbu € Z. O

The most prominent 1D random tiling is the Fibonacci randdimg®. According to be
above theorem, its diffraction spectrum consists with piulistic certainty of a trivial Bragg
peak at the origin and of an absolutely continuous backgtpaee Fig. 1. The absolutely
continuous background shows localised, bell-shaped asedincreasing height at sequences
of points scaling with the golden ratia This is reminiscent of the perfect Fibonacci tiling.

In dimensions! > 2, properties of the autocorrelation are known only for dersample
systems of statistical mechanics with crystallographimsetries which can be interpreted in
terms of dimer systems, see [34, 36, 37]. This includes timimand the lozenge tiling, the
Ising lattice gas, and others. Here, the asymptotic bebawitthe autocorrelation coefficients
can be computed explicitly, leading to proofs of existencarnabsolutely continuous part in
addition to a pure point part.

23A Fibonacci random tilingis a random tiling with interval lengthe = = = (1 ++/5)/2 andv = 1, with
occupation probabilities = 1/7 andg = 1 — p = 1/72 of the intervals (almost surely). Each interval endpoint of
a representative of a Fibonacci random tiling belongs tologluleZ [r] = {m7 + n | m,n € Z}. Every (ideal)
Fibonacci tiling also appears as a Fibonacci random tiling.
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Theorem 9 [34] Away from the critical point, the diffraction spectrum oétlsing lattice gas
almost surely exists, &2-periodic and consists of a pure point and an absolutely icartus
part with continuous density. The pure point part reads

" 1
LTS T Gl =7 2 o

keZ?
2 T<T: Q) =6 Y G,
keL?

where the density is the ensemble average of the number of scatterers per oloitne. At
the critical point, the diffuse scattering diverges whepm@gaching the lattice positions of the
Bragg peaks.

We now analyse the effect of a cut and project setup on difragroperties. For 1D
random tilings, an embedding ink?’ is given as follows. Each positianc A of an element
of the random tiling ensemble may be written in the farm= mu + nv, wherem,n € Z.

If « = u/v & Q, the numbersn, n are uniquely determined. K € @, uniqueness is
achieved by parametrising = 0 by m = n = 0 and incrementing (decrementing) by
addition of au-interval to the right (left), and likewise with for v-intervals. Identifying the
unique coordinatese, n with points(m,n) € Z?, we map a random tiling to a bi-infinite,
directed walk on the edges of the square lattice. We call hatksvequivalent if they are
equal up to a translation. For each equivalence class ofsyalk may choose a representative
which passes through the originfi¥. This establishes a one-to-one correspondence between
non-equivalent random tilings and non-equivalent bi-iiirdirected walks.

Let us restrict to Fibonacci random tilings. Recall that ginkeal) Fibonacci tilings may
be obtained within the cut and project setup by (orthogopejection of lattice points of a
scaled copy of.? confined to a suitable strip onto the subspace with irratisiope1 /. This
way, we obtain a one-to-one correspondence between (rgniilorg coordinates in direct
space and in internal space via thenap, given by(mr + n)* = m7’' 4+ n, wherer’ = —1/r
is the algebraic conjugate of The valuer* of a tiling coordinater is also called itheight
and the above collection of direct and internal space tagetith the canonical projections is
also callecheight representationf the Fibonacci random tiling ensemble.

In the following, we will consider the distribution of scatéer positions of Fibonacci ran-
dom tilings in internal space. We restrict ourselves to Ipasoof Fibonacci random tilings of
M consecutive intervals on the positive half-axis, starihg = 0. Following [35], we con-
sider the occupation probability for the position of thehtigmost interval. Since the random
tiling patch is a Bernoulli system, the probability of thestn beingx = m7 + (M — m),
or equivalentlyz* = m7’' + (M — m) in internal space, is given by

~ M m —m
p(M,x*)=<m)p M

According to the theorem of de Moivre-Laplace, the binondiakribution (with meary: =
Mp and variancer? = Mpq) may be approximated by the Gaussian distribution for large
fixed M, yielding

1 T
PV ) =\~ g exp |5 e
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f(z)

z

-2 -1 1 2

Figure 2: Distribution of scatterer positions in internal space fdydhacci random tilings.

Note that in the limitl/ — oo, the admissible positions* lie dense in internal space. We
fixed the normalisation such that the integral of the densigr internal space equals unity.
To obtain the distribution of all interval positions of rasd tiling patches of lengtlv, we
sum over all endpoint positions of patches witk. V intervals and normaligé,

N
o) = 5 Sopma) = [ ol e (10)

In the second equation, we approximated the sum to leadidgr an N using the Euler-
Maclaurin summation formula. This leads to the followingut.

Theorem 10 The distributiorp(z*) of scatterer positions of Fibonacci random tiling patches
in internal space is, to leading order in the patch si¥egiven by

pla¥) = &f (/%) J(z) =2 (ﬁ P erfc<|z|>) ,

whereerfc(z) = % [ e~'" dt denotes the complementary error function. O

The functionf(z) is shown in Fig. 2. Note that the width of the distributionwysowith
the system size ag' N, but the distribution itself is not a Gaussian, as usualliched.

This result was derived for patches 6f intervals, starting from the origin in positive
direction. Since the resultis symmetricin, itis also valid for tiling patches withy intervals,
starting from the origin in negative direction, hence algotfling patches witl2 vV intervals
with V intervals on the negative and on the positive axis each.

24A more natural normalisation may be the density of pointtsiad of unity, see below.
25For a comparison with numerical simulations of the Fibonaaadom tiling ensemble and for the example of
the two-dimensional Ammann-Beenkerrandom tiling, se¢.[35



18

Within the cut and project scheme, the Dirac comb of a modehsg be characterised as
a sum of point scatterers over the projected lattice points

w= Z 1o(z®)d,,

€L

weighted by the characteristic function of the (compact)daiw in internal space. For diffrac-
tion of quasicrystallographic random tilings, the commeprmach [31] is to investigate prop-
erties of an averaged structure given by the Dirac comb wethy the occurrence probabil-
ity of each scatterer within the random tiling ensemble. @heraged distribution in internal
space need not exist for the infinite tiling, as we showedé@mpttevious section. Itis generally
believed [31] that it exists in dimensiods> 2, the casel = 2 being marginal with a log-
arithmic growth of the distribution width with the systenzaj leading to the statement that
there is no non-trivial discrete component in the diffrantspectrum forl < 2 (for aperiodic
systems).

As argued in Eq. 10, the averaged structure may be writteimdridrm

W= p(a*)d,, (11)

€L

where the support af is generally the whole internal space. Note that this obggenerally
ill-defined, since summation is over a dense set. In avegagine loses information about
correlations between scatterers, so that the analysisavitiost yield information about the
discrete part of the diffraction spectrum, but not aboutdbetinuous part, see the theorem
below. We investigate under which conditions Eq. 11 definesrgered distribution. To this
end, we assume that vanishes sufficiently rapidly at infinity, which includestiBaussian
(and, in a certain sense, characteristic functions). Koiig [35], we consider the special
situation of a Euclidean internal spate= R™ and assume that the canonical projections
andmin are both dense and one-to-one. We denoteddi' D) the volume of a fundamental
domain of the latticd, € R¢ x H w.r.t. the product measure of the Lebesgue measur&s’on
and onH . We denote the dual lattice éfby (L)* = {# € R¢x H |(#,) € Zforall §j € L},
and its projection by.* = = ((L)*).

Theorem 11 [38] Assumep : R™ — C continuous andimy,_, . |y|" T ¢(y) = 0 for
somen > 0. Then, the weighted Dirac comb in Efjl is a translation bounded measure. It
has the unique autocorrelation

W= nE . ) = oy [ e Rl

being a translation bounded, positive definite pure poinasoee. Its Fourier transform is a
positive pure point measure. Afand;,,; are orthogonal projections, it is explicitly given by

1 Al k|2
= g - J
Yo vol(F D)? velr Pl

whereg denotes the Fourier transform ¢f O
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A natural choice for the normalisation of the functigrarises form the observation that for
Dirac combs satisfying the assumptions of the above thetnerdensity of pointg exists,

1 1
= lim ——w(B,) = ———— du. 12
P= b vol(By) w(Bn) vol(F D) /Rm () du (12)
The above theorem sheds light onto the example of the Filoobnaedom tiling. Here,
the internal distribution may be described by a sequencestrilalitions of increasing width
but constant mass. The limit of the corresponding sequehogeasures will have a trivial
discrete part and a continuous part, whose form may be cadparthe above results.

0.1.7 Outlook

For our discussion of pure pointedness, we made substasgalf the uniform discreteness of
A®SS This can certainly be relaxed, as Theorem 1 shows, butstfiegome considerably more
involved beyond this “barrier”. This is also intimately atd to stepping into the territory of
mixed spectra, which seems particularly timely.

Pure pointedness of the diffraction is equivalent to strahlgost periodicity of the au-
tocorrelation. More generally, one can show that any autetation~,, possesses a unique
decomposition into a strongly almost periodic part and akiyealmost periodic part with
zero volume average, compare [5]. So, we get

Yw = (7w)sap+ (’Yw)O—wap

where “weak” refers to the weak topology in relation to thr@sg (product) topology.

The Fourier transform ofy,, )s,piS @ pure point measure, while that @f, ) o_qpiS cON-
tinuous [5], so that one has full control of this question ba tevel of the autocorrelation.
Also, important issues of the diffraction of random tilingen be formulated and understood
in this context, but most results are folklore, and stillehée be proved. Furthermore, there
is no such decomposition known that would allow a distintid absolute versus singular
continuity. Itis highly desirable to improve this situati the future.

Finally, even if all the spectral questions were settled,lily remaining question is how
to characterise the homometry class, i.e., the class ofunessvith a given autocorrelation
(and hence diffraction). This is part of the inverse prohlerere results are rare at present.
So, the question of the title should now be replaced by anaife:

“Which distributions of matter are homometric?”
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