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2Abstra
t. Using the L2 norm of the Higgs �eld as a Morse fun
tion, we study themoduli spa
es of U(p; q)-Higgs bundles over a Riemann surfa
e. We require that thegenus of the surfa
e be at least two, but pla
e no 
onstraints on (p; q). A key step is theidenti�
ation of the fun
tion's lo
al minima as moduli spa
es of holomorphi
 triples.In a 
ompanion paper [7℄ we prove that these moduli spa
es of triples are non-emptyand irredu
ible.Be
ause of the relation between 
at bundles and fundamental group representations,we 
an interpret our 
on
lusions as results about the number of 
onne
ted 
omponentsin the moduli spa
e of semisimple PU(p; q)-representations. The topologi
al invariantsof the 
at bundles are used to label subspa
es. These invariants are bounded by aMilnor{Wood type inequality. For ea
h allowed value of the invariants satisfying a
ertain 
oprimality 
ondition, we prove that the 
orresponding subspa
e is non-emptyand 
onne
ted. If the 
oprimality 
ondition does not hold, our results apply to the
losure of the moduli spa
e of irredu
ible representations.



31. Introdu
tionThe relation between Higgs bundles and fundamental group representations providesa vivid illustration of the intera
tion between geometry and topology. On the topo-logi
al side we have a 
losed oriented surfa
e X and the moduli spa
e (or 
hara
tervariety) of representations of �1X in a Lie group G. We 
ross over to 
omplex geometryby �xing a 
omplex stru
ture on X, thereby turning it into a Riemann surfa
e. Thespa
e of representations, or equivalently the spa
e of 
at G-bundles, then emerges asa 
omplex analyti
 moduli spa
e of G-Higgs bundles. In this guise, the moduli spa
e
arries a natural proper fun
tion whose restri
tion to the smooth lo
us is a Morse-Bottfun
tion. We 
an therefore use this fun
tion to determine topologi
al properties of themoduli spa
e of representations. In this paper our goal is to pursue these ideas in the
ase where the group G is PU(p; q), the adjoint form of the non-
ompa
t group U(p; q).A U(p; q)-Higgs bundle is a spe
ial 
ase of the G-Higgs bundles de�ned by Hit
hinin [22℄, where G is a real form of a 
omplex redu
tive Lie group. Su
h obje
ts providea natural generalization of holomorphi
 ve
tor bundles, whi
h 
orrespond to the 
aseG = U(n) and zero Higgs �eld. In parti
ular, they permit an extension to othergroups of the Narasimhan and Seshadri theorem ([26℄) on the relation between unitaryrepresentations of �1X and stable ve
tor bundles. By embedding U(p; q) in GL(p+ q)we 
an give a 
on
rete des
ription of a U(p; q)-Higgs bundle as a pair(V �W;� = � 0 �
 0 �) (1.1)where V and W are holomorphi
 ve
tor bundles of rank p and q respe
tively, � is ase
tion inH0(Hom(W;V )
K), and 
 2 H0(Hom(V;W )
K), so that � 2 H0(End(V �W )
K).By the work of Hit
hin [22, 23℄ Donaldson [12℄, Simpson [29, 30, 31, 32℄ and Corlette[10℄, we 
an de�ne moduli spa
es of polystable Higgs bundles, and these 
an be iden-ti�ed with moduli spa
es of solutions to natural gauge theoreti
 equations. Moreover,sin
e the gauge theory equations amount to a proje
tive 
atness 
ondition, these mod-uli spa
es 
orrespond to moduli spa
es of 
at stru
tures. In the 
ase of U(p; q)-Higgsbundles, the 
at stru
tures 
orrespond to semi-simple representations of �1X into thegroup PU(p; q). The Higgs bundle moduli spa
es 
an thus be used, in a way whi
h wemake pre
ise in Se
tions 2 and 3, to study the representation varietyR(PU(p; q)) = Hom+(�1X;PU(p; q))=PU(p; q) ;where Hom+(�1X;PU(p; q)) denotes the set of semi-simple representations of �1X inPU(p; q), and the quotient is by the adjoint a
tion.Our main tool for studying the topology of the Higgs moduli spa
e is the fun
tionwhi
h measures the L2-norm of the Higgs �eld. When the moduli spa
e is smooth,this turns out to provide a suitably non-degenerate Bott-Morse fun
tion whi
h is,moreover, a proper map. In some 
ases (
f. [22, 18, 20℄) the 
riti
al submanifolds arewell enough understood to allow the extra
tion of topologi
al information as detailed asthe Poin
ar�e polynomial. In our 
ase our understanding is 
on�ned to the lo
al minimaof the fun
tion. This is suÆ
ient to allow us to 
ount the number of 
omponents of theHiggs moduli spa
es, and thus of the representation varieties. A trivial but importantobservation is that the properness of the fun
tion allows us to draw 
on
lusions about
onne
ted 
omponents also in the non-smooth 
ase; we shall hen
eforth, somewhat



4impre
isely, refer to the fun
tion as the \Morse Fun
tion", whether or not the modulispa
e is smooth.The 
riterion we use for �nding the lo
al minima 
an be applied more generally, forinstan
e if U(p; q) is repla
ed by any real form of a 
omplex redu
tive group. Thisshould provide an important tool for future resear
h. In the present 
ase, this 
riterionallows us to identify the subspa
es of lo
al minima as moduli spa
es in their own right,namely as moduli spa
es of the holomorphi
 triples introdu
ed in [4℄. In a 
ompanionpaper [7℄ we develop the theory of su
h obje
ts and their moduli spa
es. Using theresults of [7℄ we are able to dedu
e several results about the Higgs moduli spa
es andalso about the 
orresponding representation spa
es.The relation between Higgs bundles and surfa
e group representations has beensu

essfully exploited by others, going ba
k originally to the work of Hit
hin andSimpson on 
omplex redu
tive groups. The use of Higgs bundle methods to studyR(G) for real G was pioneered by Hit
hin in [23℄, and further developed in [18, 19℄.It has also been used by Xia and Xia-Markman (in [34, 35, 36, 24℄) to study variousspe
ial 
ases of G = PU(p; q). None of these, though, address the general 
ase ofPU(p; q), as we do in this paper.We now give a brief summary of the 
ontents and main results of this paper.In Se
tions 2 and 3 we give some ba
kground and des
ribe the basi
 obje
ts of ourstudy. In Se
tions 2 we des
ribe the natural invariants asso
iated with representationsof �1X into PU(p; q). We also dis
uss the invariants asso
iated with representations of�, the universal 
entral extensions of �1, into U(p; q). In both 
ases, these involve a pairof integers (a; b) whi
h 
an be interpreted respe
tively as degrees of rank p and rankq ve
tor bundles over X. In the 
ase of the PU(p; q) representations, the pair is wellde�ned only as a 
lass in a quotient Z�Z=(p; q)Z. This leads us to de�ne subspa
esR[a; b℄ � R(PU(p; q)) and R�(a; b) � R�(U(p; q)). For �xed (a; b), the spa
e R�(a; b)�bers over R[a; b℄ with 
onne
ted �bers.In se
tion 3 we de�ne U(p; q)-Higgs bundles and their moduli spa
es and establishtheir essential properties. Thinking of a U(p; q)-Higgs bundle as a pair (V �W;�), theparameters (a; b) appear here as the degrees of the bundles V and W . It is the modulispa
e of polystable U(p; q)-Higgs bundles with deg(V ) = a and degW = b, whi
h wedenote by M(a; b), that 
an be identi�ed with M(a; b) with the 
omponent R�(a; b)of R�(U(p; q)). This, together with the �bration over R�(U(p; q)) are the 
ru
ial linksbetween the Higgs moduli and the surfa
e group representation varieties.Fixing p; q; a and b, we begin the Morse theoreti
 analysis of M(a; b) in Se
tion 4.The basi
 results we need (
f. Proposition 4.3) are that the L2-norm of the Higgs �eldhas a minimum on ea
h 
onne
ted 
omponent of M(a; b), and hen
e if the subspa
eof lo
al minima is 
onne
ted then so is M(a; b). We identify the lo
al minima, thelo
i of whi
h we denote by N (a; b), and prove (
f. Theorem 4.6 and Proposition 4.8)that these 
orrespond pre
isely to 
ertain holomorphi
 triples in the sense of [4℄. A fulltreatment of holomorphi
 triples and their moduli spa
es is given in [7℄. We summarizethe salient features of these moduli spa
es in Se
tion 5.In se
tion 6 we knit together all the strands. Using the properties of the modulispa
es of triples, we establish the key (for our purposes) topologi
al properties of thestrata N (a; b). These lead dire
tly to our main results for the moduli spa
es M(a; b).



5Some of the results depend on (a; b) only in the 
ombination� = � (a; b) = 2aq � bpp+ q ;known as the Toledo invariant. Indeed, (a; b) is 
onstrained by the bounds 0 6 j� j 6�M , where �M = 2minfp; qg(g � 1). Originally proved by Domi
 and Toledo in [11℄,these bounds emerge naturally from our point of view (
f. Corollary 3.27 and Remark5.7). Bounds on invariants of this type, for representations of �nitely generated groupsin U(p; q), have also re
ently been studied using te
hniques from ergodi
 theory (see[9℄). Summarizing our main results, we proveTheorem A (Theorems 6.1 and 6.5). Fix positive integers (p; q). Take (a; b) 2Z�Zand let � (a; b) be the Toledo invariant. LetMs(a; b) �M(a; b) denote the moduli spa
eof stri
tly stable U(p; q)-Higgs bundles.(1) M(a; b) is non-empty if and only if 0 6 j� (a; b)j 6 �M . If � = 0, or j� j = �Mand p 6= q then Ms(a; b) is empty; otherwise it is non-empty.(2) If j� (a; b)j = 0 or j� (a; b)j = �M and p 6= q then M(a; b) is 
onne
ted.(3) Whenever non-empty, the moduli spa
e Ms(a; b) is a smooth manifold of theexpe
ted dimension (i.e. 1+(p+ q)2(g�1)), with 
onne
ted 
losure �Ms(a; b) �M(a; b). In these 
ases, if M(a; b) has more than one 
onne
ted 
omponent,then GCD(p + q; a+ b) 6= 1 and, if p = q, 0 < j� j 6 (p � 1)(2g � 2).Theorem B (Theorem 3.32). Suppose that p 6= q and (a; b) 2 Z�Zare su
h thatj� (a; b)j = �M . To be spe
i�
, suppose that p < q and � (a; b) = p(2g � 2). Then everyelement in M(a; b) de
omposes as the dire
t sum of a polystable U(p; p)-Higgs bundlewith maximal Toledo invariant and a polystable ve
tor bundle of rank q � p. ThusM(p; q; a; b) �=M(p; p; a; a� p(2g � 2)) �M(q � p; b� a+ p(2g � 2)): (1.2)In parti
ular, the dimension at a smooth point inM(p; q; a; b) is 2+(q2+5p2�2pq)(g�1), and is hen
e stri
tly smaller than the expe
ted dimension if g > 2.(A similar result holds if p > q, as well as if � = �p(2g � 2)).Sin
e we identify M(a; b) = R�(a; b), we 
an translate these results dire
tly intostatements about R�(a; b) (given in Theorems 6.6 and 6.7). The subspa
e in R�(a; b)whi
h 
orresponds to Ms(a; b) �M(a; b) is denoted by R��(a; b). The representationsit labels in
lude all the simple representations. De�ning R��(U(p; q)) � R�(U(p; q)) tobe the union over all (a; b) of the 
omponents R��(a; b) we thus obtainTheorem C (Corollary 6.16) The moduli spa
e R��(U(p; q)) has2(p + q)minfp; qg(g � 1) + GCD(p; q)
onne
ted 
omponents.Sin
e R�(a; b) �bers over R[a; b℄ with 
onne
ted �bers, we 
an apply our results to thelatter. The results are given in Theorems 6.10 and 6.11.The above results fall just short of saying that the full moduli spa
es M(a; b) (=R(a; b)) and R[a; b℄ are 
onne
ted for all allowed 
hoi
es of (a; b). They show howeverthat if any one is not 
onne
ted then it has one (non-empty) 
onne
ted 
omponentwhi
h 
ontains all the irredu
ible obje
ts. Any other 
omponents must thus 
onsist



6entirely of redu
ible (or stri
tly semisimple) elements. Theorem B and its analogsfor R�(a; b) and R[a; b℄ generalize rigidity results of Toledo [33℄ (when p = 1) andHern�andez [21℄ (when p = 2).This paper, together with its 
ompanion [7℄ form a substantially revised version ofthe preprint [6℄. The main results proved in this paper were announ
ed in the note [5℄.In that note we 
laim (without proof) that the 
onne
tedness results for the modulispa
es R(a; b) and R[a; b℄ hold without the above quali�
ations. This is a reasonable
onje
ture, whi
h we hope to 
ome ba
k to in a future publi
ation.We note, �nally, that our methods surely apply more widely than to U(p; q)-Higgsbundles and PU(p; q) representations. Careful s
rutiny of the Lie algebra propertiesused in the proofs suggests we 
an repla
e U(p; q) by any real group G for whi
h G=His hermitian symmetri
, where H � G is a maximal 
ompa
t subgroup. This will beaddressed in a future publi
ation.A
knowledgements. We thank the mathemati
s departments of the University ofIllinois at Urbana-Champaign, the University Aut�onoma of Madrid and the Univer-sity of Aarhus, the Department of Pure Mathemati
s of the University of Porto, theMathemati
al S
ien
es Resear
h Institute of Berkeley and the Mathemati
al Insti-tute of the University of Oxford, and the Erwin S
hr�odinger International Institutefor Mathemati
al Physi
s in Vienna for their hospitality during various stages of thisresear
h. We thank Fran Burstall, Bill Goldman, Nigel Hit
hin, Eyal Markman, S.Ramanan, Domingo Toledo, and Eugene Xia, for many insights and patient explana-tions. 2. Representations of surfa
e groupsIn this se
tion we re
ord some general fa
ts about representations of a surfa
e groupin U(p; q) or PU(p; q) and set up our notation. A very useful referen
e for the generaltheory is Goldman's paper [16℄.2.1. Moduli spa
es of representations. LetX be a 
losed oriented surfa
e of genusg > 2. By de�nition U(p; q) is the subgroup of GL(n; C ) (with n = p + q) whi
hleaves invariant a hermitian form of signature (p; q). It is a non-
ompa
t real form ofGL(n; C ) with 
enter U(1) and maximal 
ompa
t subgroup U(p)�U(q). The quotientU(p; q)=(U(p) � U(q)) is a hermitian symmetri
 spa
e. The adjoint form PU(p; q) isgiven by the exa
t sequen
e of groups1 �! U(1) �! U(p; q) �! PU(p; q) �! 1 ;and we have a standard in
lusion PU(p; q) � PGL(n; C ).De�nition 2.1. By a representation of �1X in PU(p; q) we mean a homomorphism� : �1X ! PU(p; q). We say that a representation of �1X in PU(p; q) is semi-simpleif the indu
ed (adjoint) representation on the Lie algebra of PU(p; q) is semi-simple.The group PU(p; q) a
ts on the set of representations via 
onjugation. Restri
ting tothe semi-simple representations, we get the moduli spa
e of representations,R(PU(p; q)) = Hom+(�1X;PU(p; q))=PU(p; q) : (2.1)



7The moduli spa
e of representations 
an be des
ribed more 
on
retely as follows.From the standard presentation�1X = hA1; B1; : : : ; Ag; Bg j gYi=1[Ai; Bi℄ = 1iwe see that Hom+(�1X;PU(p; q)) 
an be embedded in PU(p; q)2g viaHom+(�1X;PU(p; q))! PU(p; q)2g� 7! (�(A1); : : : �(Bg)):We give Hom+(�1X;PU(p; q)) the subspa
e topology and R(PU(p; q)) the quotienttopology. This topology is Hausdor� be
ause we have restri
ted attention to semi-simple representations.Clearly any representation of �1X in U(p; q) gives rise to a representation in PU(p; q);however, not all representations in PU(p; q) lift to U(p; q). We are thus motivated to
onsider representations of the 
entral extension0 �!Z�! � �! �1X �! 1 : (2.2)Su
h extensions are de�ned (as in [1℄) by the generators A1; B1; : : : ; Ag; Bg and a 
en-tral element J subje
t to the relation Qgi=1[Ai; Bi℄ = J . With � thus de�ned, anyrepresentation of �1X in PU(p; q) 
an be lifted to a representation of � in U(p; q).In analogy with De�nition 2.1 we make the following de�nition.De�nition 2.2. We de�ne the moduli spa
e of semi-simple representations of � inU(p; q) by R�(U(p; q)) = Hom+(�;U(p; q))=U(p; q) ; (2.3)where semi-simpli
ity is de�ned with respe
t to the indu
ed adjoint representation.This spa
e is topologized in the same way as R(PU(p; q)).2.2. Invariants. Our basi
 obje
tive is to study the number of 
onne
ted 
omponentsof the spa
es R(PU(p; q)) and R�(U(p; q)). The �rst step in the study of topologi
alproperties of these spa
es is to identify the appropriate topologi
al invariant of a rep-resentation � : �1X ! G. For a general 
onne
ted Lie group G the relevant invariantis an obstru
tion 
lass in H2(X;�1G) �= �1G (see Goldman [16, 17℄). In the followingwe give an expli
it des
ription of this invariant in our 
ase, using 
hara
teristi
 
lassesof the 
at bundles asso
iated to representations of the fundamental group. In fa
t weshall not need the more general des
ription of the invariant.We begin by 
onsidering the 
ase G = U(p; q). By the same argument as in [1℄1,R�(U(p; q)) 
an be identi�ed with the moduli spa
e of U(p; q)-bundles on X withproje
tively 
at 
onne
tions. Taking a redu
tion to the maximal 
ompa
t U(p)�U(q),we thus asso
iate to ea
h 
lass ~� 2 R�(U(p; q)) a ve
tor bundle of the form V �W ,where V and W are rank p and q respe
tively, and thus a pair of integers (a; b) =(deg(V );deg(W )). There is thus a map~
 : R�(U(p; q))!Z�Z1While [1℄ gives the argument for U(n) and PU(n), there are no essential 
hanges to be made inorder to adapt for the 
ase of U(p; q) and PU(p; q).



8given by ~
(~�) = (a; b). The 
orresponding map on Hom+(�;U(p; q)) is 
learly 
on-tinuous and thus lo
ally 
onstant. Sin
e U(p; q) is 
onne
ted, the map ~
 is likewise
ontinuous and thus 
onstant on 
onne
ted 
omponents. We make the following de�-nition.De�nition 2.3. The subspa
e of R�(U(p; q)) 
orresponding to representations withinvariants (a; b) is denoted byR�(a; b) = ~
�1(a; b)= f~� 2 R�(U(p; q)) j ~
(~�) = (a; b) 2Z�Zg :Note that R�(a; b) is a union of 
onne
ted 
omponents, be
ause ~
 is 
onstant onea
h 
onne
ted 
omponent.Next we 
onsider the 
ase G = PU(p; q). Any 
at PU(p; q)-bundle lifts to a U(p; q)-bundle with a 
onne
tion with 
onstant 
entral 
urvature. This lift is, however,not uniquely determined: in fa
t two su
h U(p; q)-bundles give rise to the same 
atPU(p; q)-bundle if and only if one 
an be obtained from the other by twisting with aline bundle L with a unitary 
onne
tion of 
onstant 
urvature. If the invariant of theU(p; q)-bundle is (a; b) and the degree of L is l, then the invariant asso
iated to thetwisted bundle is (a+ pl; b+ ql). There is thus a well de�ned map
 : R(PU(p; q)) �! (Z�Z)=(p; q)Z; (2.4)where (Z�Z)=(p; q)Zdenotes the quotient ofZ�Zby theZ-a
tion l�(a; b) = (a+pl; b+ql). Noti
e that (Z�Z)=(p; q)Z
an be identi�ed with �1(PU(p; q)). The invariantde�ned by 
 is the same as the obstru
tion 
lass de�ned by Goldman [16, 17℄.De�nition 2.4. Denote the image of (a; b) in (Z�Z)=(p; q)Zby [a; b℄. The subspa
eof R(PU(p; q)) 
orresponding to representations with invariant [a; b℄ is denoted byR[a; b℄ = 
�1[a; b℄= f� 2 R(PU(p; q)) j 
(�) = [a; b℄ 2 (Z�Z)=(p; q)Zg :The spa
e R[a; b℄ is a union of 
onne
ted 
omponents in the same way as R�(a; b).In order to 
ompare the spa
es R�(a; b) and R[a; b℄ noti
e that we have surje
tive mapsR�(a; b)!R[a; b℄: (2.5)Moreover, the preimage ��1(R[a; b℄) = [(a;b)R�(a; b) (2.6)where the union is over all (a; b) in the 
lass [a; b℄ 2 (Z�Z)=(p; q)Z. As mentionedabove, tensoring by line bundles of degree l with 
onstant 
urvature 
onne
tions givesan isomorphism R�(a; b) �=�! R�(a+ pl; b+ ql) :Noti
e that if 
(�) = [a;�a℄ for a representation � 2 R(PU(p; q)), then the asso
i-ated U(p; q)-bundle 
an be taken to have degree zero and the proje
tively 
at 
on-ne
tion is a
tually 
at. Then � de�nes a representation of �1X in U(p; q). Underthe 
orresponden
e between R(PU(p; q)) and R�(U(p; q)), � 
orresponds to a � rep-resentation in whi
h the 
entral element J a
ts trivially. Furthermore, the subspa
es



9R�(a;�a) � R�(U(p; q)) 
an be identi�ed with 
omponents of R(U(p; q)) (the modulispa
e for representations of �1X in U(p; q)). Indeed, de�ningR(a) = R�(a;�a) ; (2.7)we see that R(U(p; q)) is a union over a 2Zof the subspa
es R(a).Finally, we observe that the moduli spa
e of 
at degree zero line bundles a
ts bytensor produ
t of bundles on R�(a; b). Sin
e this moduli spa
e is isomorphi
 to thetorus U(1)2g, we get the following relation between 
onne
ted 
omponents.Proposition 2.5. The map R�(a; b)!R[a; b℄ given in (2.5) de�nes a U(1)2g-�bration.Thus the subspa
e R[a; b℄ � R(PU(p; q)) is 
onne
ted if R�(a; b) is 
onne
ted. �3. Higgs bundles and flat 
onne
tionsWe study the moduli spa
es of representations by 
hoosing a 
omplex stru
ture onX. This allows us to identify these spa
es with 
ertain moduli spa
es of Higgs bundles.In this se
tion we explain this 
orresponden
e and re
all some general fa
ts about Higgsbundles. Following this, we des
ribe the spe
ial 
lass of Higgs bundles relevant for thestudy of representations in PU(p; q) and U(p; q) and derive some �rst results aboutthese moduli spa
es.3.1. GL(n; C )-Higgs bundles. Give X the stru
ture of a Riemann surfa
e. We re
all(from [10, 12, 22, 29, 31, 32℄) the following de�nition and basi
 fa
ts about GL(n; C )-Higgs bundles.De�nition 3.1. (1) A GL(n; C )-Higgs bundle on X is a pair (E;�), where E is arank n holomorphi
 ve
tor bundle over X and � 2 H0(End(E)
K) is a holomorphi
endomorphism of E twisted by the 
anoni
al bundle K of X.(2) The GL(n; C )-Higgs bundle (E;�) is stable if the slope stability 
ondition�(E 0) < �(E) (3.1)holds for all proper �-invariant subbundles E 0 of E. Here the slope is de�ned by�(E) = deg(E)= rk(E) and �-invarian
e means that �(E 0) � E 0
K. Semistability isde�ned by repla
ing the above stri
t inequality with a weak inequality. A Higgs bundleis 
alled polystable if it is the dire
t sum of stable Higgs bundles with the same slope.(3) Given a hermitian metri
 on E, letA denote the unique unitary 
onne
tion 
ompat-ible with the holomorphi
 stru
ture, and let FA be its 
urvature. Hit
hin's equationson (E;�) are FA + [�;��℄ = �p�1�IdE!;��A� = 0; (3.2)where ! is the K�ahler form on X, IdE is the identity on E, � = �(E) and ��A is theanti-holomorphi
 part of the 
ovariant derivative dA. A solution to Hit
hin's equationsis irredu
ible if there is no proper subbundle of E preserved by A and �.



10Theorem 3.2. (1) Let (E;�) be a GL(n; C )-Higgs bundle. Then (E;�) is polystable ifand only if it admits a hermitian metri
 su
h that Hit
hin's equations (3.2) are satis�ed.Moreover, (E;�) is stable if and only if the 
orresponding solution is irredu
ible.(2) Fix a hermitian metri
 in a smooth rank n 
omplex ve
tor bundle on X, thenthere is a gauge theoreti
 moduli spa
e of pairs (A;�), 
onsisting of a unitary 
onne
-tion A and an endomorphism valued (1; 0)-form �, whi
h are solutions to Hit
hin'sequations (3.2), modulo U(n)-gauge equivalen
e.(3) The moduli spa
e of rank n degree d polystable Higgs bundles is a quasi-proje
tivevariety of 
omplex dimension 2(d+n2(g�1)). There is a map from the gauge theoreti
moduli spa
e to this moduli spa
e given by taking a solution (A;�) to Hit
hin's equationsto the Higgs bundle (E;�), where the holomorphi
 stru
ture on E is given by ��A. Thismap is a homeomorphism, and a di�eomorphism on the smooth lo
us.(4) If we de�ne a Higgs 
onne
tion (as in [31℄) byD = dA + � (3.3)where � = �+ ��, then Hit
hin's equations are equivalent to the 
onditionsFD =�p�1�IdE!;dA� = 0;d�A� = 0: (3.4)In parti
ular, D is a proje
tively 
at 
onne
tion. If deg(E) = 0 then D is a
tually
at. It follows that in this 
ase the pair (E;D) de�nes a representation of �1X inGL(n; C ). If deg(E) 6= 0, then the pair (E;D) de�nes a representation of �1X inPGL(n; C ), or equivalently, a representation of � in GL(n; C ). By the theorem ofCorlette ([10℄), every semisimple representation of � (and therefore every semisimplerepresentation of �1X) arises in this way.(5) This 
orresponden
e gives rise to a homeomorphism between the moduli spa
e ofpolystable Higgs bundles of rank n and the moduli spa
e of semisimple representationsof � in GL(n; C ). If the degree of the Higgs bundle is zero, then the moduli spa
e ishomeomorphi
 to the moduli spa
e of representations of �1X in GL(n; C ).3.2. U(p; q)-Higgs bundles. If we �x integers p and q su
h that n = p + q, then we
an isolate a spe
ial 
lass of GL(n; C )-Higgs bundles by the requirements thatE = V �W� = � 0 �
 0 � (3.5)where V and W are holomorphi
 ve
tor bundles of rank p and q respe
tively andthe non-zero 
omponents in the Higgs �eld are � 2 H0(Hom(W;V ) 
 K), and 
 2H0(Hom(V;W )
K).The form of the Higgs �eld is determined by the Lie theory of the symmetri
 spa
eU(p; q)=(U(p)� U(q)). Re
all that for any real form G of a 
omplex redu
tive groupGC , with maximal 
ompa
t subgroup H, there is an Ad-invariant de
ompositiong = h+mwhere g=Lie(G), h=Lie(H) is the +1 eigenspa
e of the Cartan involution and m is the�1 eigenspa
e. This indu
es a de
omposition



11gC = hC +mC (3.6)of gC=Lie(GC ). In the 
ase of G = U(p; q), where H = U(p) � U(q) and thus hC =gl(p; C ) � gl(q; C ), the de
omposition (3.6) be
omesgl(n; C ) = (gl(p; C ) � gl(q; C )) +mC : (3.7)If we identify gl(p; C ) � gl(q; C ) with the blo
k diagonal elements in gl(n; C ), then mC
orresponds to the o� diagonal matri
es.We 
an now des
ribe the above Higgs bundles more intrinsi
ally as follows. LetPGL(p;C) and PGL(q;C) be the prin
ipal frame bundles for V and W respe
tively. LetP = PGL(p;C) � PGL(q;C) be the �ber produ
t, and let AdP = P �Ad gl(n; C ) be theadjoint bundle, where GL(p; C ) � GL(q; C ) � GL(n; C ) a
ts by the adjoint a
tion onthe Lie algebra of GL(n; C ). This de�nes a subbundlePmC = P �Ad mC � AdP : (3.8)We 
an then make the following de�nition.De�nition 3.3. AU(p; q)-Higgs bundle2 onX is a pair (P;�) where P is a holomorphi
prin
ipal GL(p; C ) � GL(q; C ) bundle, and � is a holomorphi
 se
tion of the ve
torbundle PmC 
K (where PmC is the bundle de�ned in (3.8)).Remark 3.4. We 
an always write P = PGL(p;C) � PGL(q;C) . If we let V and W bethe standard ve
tor bundles asso
iated to PGL(p;C) and PGL(q;C) respe
tively, then any� 2 H0(PmC 
K) 
an be written as in (3.5). We will usually adopt the ve
tor bundledes
ription of U(p; q)-Higgs bundles.Remark 3.5. De�nition 3.3 is 
ompatible with the de�nitions in [23℄ and [18℄, whereG-Higgs bundles are de�ned for any real form G of a 
omplex redu
tive Lie groupGC . There, using the above notation, a G-Higgs bundle is a pair (P;�), where Pis a prin
ipal HC -bundle and � is a holomorphi
 se
tion of (P �Ad mC ) 
 K. Froma di�erent perspe
tive, De�nition 3.3 de�nes an example of a prin
ipal pair in thesense of [2℄ and [25℄. Stri
tly speaking, sin
e the 
anoni
al bundle K plays the roleof a �xed `twisting bundle', what we get is a prin
ipal pair in the sense of [8℄. Thede�ning data for the pair are then the prin
ipal GL(p; C ) �GL(q; C ) �GL(1)-bundlePGL(p;C) � PGL(q;C) � PK (where PK is the frame bundle for K), and the asso
iatedve
tor bundle PmC 
K.Lemma 3.6. Let (E = V �W;�) be a U(p; q)-Higgs bundle with a hermitian metri
su
h that V �W is a unitary orthogonal de
omposition. Let A be a unitary 
onne
tionand let D = dA+ � be the 
orresponding Higgs 
onne
tion, where � = �+��. Then Dis a U(p; q)-
onne
tion, i.e. in any unitary lo
al frame the 
onne
tion 1-form takes itsvalues in the Lie algebra of U(p; q).Proof. Fix a lo
al unitary frame. Then D = d + A + �, where A takes its values inu(p)� u(q) � u(p; q), while � takes its values in m, whereu(p; q) = u(p) � u(q) +m2The reason for the name is explained by Remark 3.5 and Lemma 3.6



12is the eigenspa
e de
omposition of the Cartan involution. �De�nition 3.7. Let (E;�) be a U(p; q)-Higgs bundle with E = V � W and � =� 0 �
 0 �. We say (E;�) is a stable U(p; q)-Higgs bundle if the slope stability 
ondition�(E 0) < �(E), is satis�ed for all �-invariant subbundles of the form E 0 = V 0�W 0, i.e.for all subbundles V 0 � V and W 0 �W su
h that� :W 0 �! V 0 
K (3.9)
 : V 0 �! W 0 
K : (3.10)Semistability for U(p; q)-Higgs bundles is de�ned by repla
ing the above stri
t inequal-ity with a weak inequality, and (E;�) is polystable if it is a dire
t sum of stableU(p; q)-Higgs bundles all of the same slope. We shall say that a polystable U(p; q)-Higgs bundle whi
h is not stable is redu
ible. A morphism between two U(p; q)-Higgsbundles (V �W;�) and (V 0�W 0;�0) is given by maps gV : V ! V 0 and gW :W ! W 0whi
h intertwine � and �0, i.e. su
h that (gV � gW )
 IK Æ � = �0 Æ (gV � gW ) whereIK is the identity on K. In parti
ular we have a natural notion of isomorphism ofU(p; q)-Higgs bundles.Remark 3.8. The stability 
ondition for a U(p; q)-Higgs bundle is a priori weaker thanthe stability 
ondition given in De�nition 3.1 for GL(n; C )-Higgs bundles. However,it is shown in [19, Se
tion 2.3℄ that the weaker 
ondition is in fa
t equivalent to theordinary stability of (E;�).Proposition 3.9. Let (E;�) be a U(p; q)-Higgs bundle with E = V �W and � =� 0 �
 0 �. Then (E;�) is polystable if and only if it admits a hermitian metri
 su
h thatE = V �W is an orthogonal de
omposition and su
h that Hit
hin's equations (3.2) aresatis�ed.Proof. This is a spe
ial 
ase of the 
orresponden
e invoked in [23℄ for G-Higgs bundleswhere G is a real form of a redu
tive Lie group. By Remark 3.5 it 
an also be seen asa spe
ial 
ase of the Hit
hin{Kobayashi 
orresponden
e for prin
ipal pairs (
f. [2℄ and[25℄ and [8℄). We note �nally that in one dire
tion the result follows immediately fromTheorem 3.2 (1): if (V �W;�) supports a 
ompatible metri
 su
h that (3.2) is satis�ed,then it is polystable as a GL(n; C )-Higgs bundle, and hen
e it is U(p; q)-polystable. �De�nition 3.10. We de�ne M(a; b) to be the moduli spa
e of polystable U(p; q)-Higgs bundles with deg(V ) = a and degW = b. We denote by Ms(a; b) the subspa
eparameterizing the stri
tly stable U(p; q)-Higgs bundles.The 
onstru
tion of M(a; b) is essentially the same as in se
tion x9 of [32℄. Therethe moduli spa
e of G-Higgs bundles is 
onstru
ted for any redu
tive group G. Wetake G = GL(p; C ) � GL(q; C ). The di�eren
e between a U(p; q)-Higgs bundle and aGL(p; C ) �GL(q; C )-Higgs bundle is entirely in the nature of the Higgs �elds. Takingthe standard embedding of GL(p; C ) � GL(q; C ) in GL(p + q; C ) we see that in aGL(p; C ) � GL(q; C )-Higgs bundle the Higgs �eld � takes its values in the subspa
e(gl(p) � gl(q)) � gl(p + q), while in a U(p; q)-Higgs bundle the Higgs �eld � takesits values in the 
omplementary subspa
e mC (as in (3.7)). Sin
e both subspa
esare invariant under the adjoint a
tion of GL(p; C ) � GL(q; C ), the same method of
onstru
tion works for the moduli spa
es of both types of Higgs bundle.



13We 
an des
ribe the gauge theory version of the moduli spa
eM(a; b) using standardmethods; see Hit
hin [22℄ for a 
onstru
tion in the 
ase of ordinary rank 2 Higgsbundles. To adapt to our 
ase we pro
eed as follows. Let E = V �W be a smooth
omplex ve
tor bundle with a hermitian metri
 su
h that the dire
t sum de
ompositionis orthogonal. We let A denote the spa
e of 
onne
tions on E whi
h are dire
t sumsof unitary 
onne
tions on V and W and we let 
 denote the spa
e of Higgs �elds� 2 
1;0(End(E)) of the form � = � 0 �
 0 �. The 
orresponden
e between unitary
onne
tions and holomorphi
 stru
tures via ��-operators turns A �
 into a 
omplexaÆne spa
e whi
h a
quires a hermitian metri
 using the metri
 on E and integrationover X. The group G of U(p)�U(q)-gauge transformations a
ts on the 
on�gurationspa
e C � A � 
 of solutions (A;�) to Hit
hin's equations (3.2). The quotient C=Gis, by de�nition, the gauge theory moduli spa
e. As in [22℄, the open subset of C=G
orresponding to irredu
ible solutions has a K�ahler manifold stru
tureTo see that the gauge theory moduli spa
e is homeomorphi
 to M(a; b) we 
an
onsider this latter spa
e from the 
omplex analyti
 point of view (
f. Remark 3.23below): 
onsider triples (��V ; ��W ;�), where ��V and ��W are ��-operators on V and W ,respe
tively, and � 2 
. Let CC be the set of su
h triples for whi
h � is holomorphi
and the asso
iated U(p; q)-Higgs bundle is polystable. We 
an then viewM(a; b) as thequotient of CC by the 
omplex gauge group. We 
learly have an in
lusion C ,! CC whi
hdes
ends to give a 
ontinuous map from the gauge theory moduli spa
e to M(a; b).The Hit
hin-Kobayashi 
orresponden
e of Proposition 3.9 now shows that this map isin fa
t a homeomorphism.For a third perspe
tive, we observe that provided that V and W are not isomorphi
bundles, i.e. provided p 6= q or a 6= b, we 
an viewMs(a; b) as a subvariety of a modulispa
e of stable GL(p+ q)-Higgs bundle. If V ' W , thenMs(a; b) is a �nite 
over of asubvariety in the larger moduli spa
e:Proposition 3.11. With n = p+ q and d = a+ b, let Ms(d) denote the moduli spa
eof stable GL(n; C )-Higgs bundles of degree d. If p 6= q or a 6= b then Ms(a; b) embedsas a 
losed subvariety in Ms(d). If p = q and a = b, then there is a �nite morphismfrom M(a; a) to M(d).Proof. Let [V �W;�℄p;q denote the point in M(a; b) represented by the U(p; q)-Higgsbundle (V �W;�). Then (E = V �W;�) is a stable GL(n; C )-Higgs bundle and themapM(a; b)!M(d) is de�ned by[V �W;�℄p;q 7! [E;�℄n ;where [; ℄n denotes the isomorphism 
lass in M(d). The only question is whetherthis map is inje
tive. Suppose that (E = V � W;�) and (E 0 = V 0 � W 0;�0) areisomorphi
 as GL(n; C )-Higgs bundles. Let the isomorphism be given by a 
omplexgauge transformation g : E ! E 0. If g is not of the form ( gV 00 gW ) then the o� diagonal
omponents determine morphisms � : V ! W 0 and � : W ! V 0. Let N = ker(�) �ker(�) be the subbundle of V �W determined by the kernels of � and �. If p 6= q thenN is a non-trivial proper subbundle. Moreover, using the fa
t that g� = �0g, we seethat it is �-invariant. Sin
e (V �W;�) is stable, it follows that�(N) < �(E) : (3.11)



14 Similarly, the images of � and � determine a proper �0-invariant subbundle of E 0,say I, for whi
h �(I) < �(E 0) : (3.12)But if �(E) = �(E 0) then (3.11) and (3.12) 
annot both be satis�ed. Thus � and �must both vanish and hen
e [V �W;�℄p;q = [V 0 �W 0;�0℄p;q.If p = q, then this argument 
an fail, but only if � and � are both isomorphisms.In that 
ase, N = 0 and I = E. This also requires a = b. Under these 
onditions, ifV and W are non-isomorphi
, then [V �W; ( 0 �
 0 )℄n = [W � V; ( 0 
� 0 )℄n but the Higgsbundles are not isomorphi
 as U(p; q)-Higgs bundles. �Proposition 3.12. If GCD(p + q; a+ b) = 1 then Ms(a; b) =M(a; b).Proof. If GCD(p+ q; a+ b) = 1 then for purely numeri
al reasons there are no stri
tlysemistable U(p; q)-Higgs bundles in M(a; b). �The link to moduli spa
es of representations is provided by the next result.Proposition 3.13. There is a homeomorphism M(a; b) �= R�(a; b).Proof. Suppose that (E = V �W;�) represents a point in M(a; b), i.e. suppose thatit is a U(p; q)-polystable Higgs bundle, and suppose that E has a hermitian metri
su
h that the dire
t sum de
omposition is orthogonal and Hit
hin's equations (3.2) aresatis�ed. Rewriting the equations in terms of the Higgs 
onne
tionD = dA+�, where Ais the metri
 
onne
tion and � = �+��, we see that D is proje
tively 
at. By Lemma3.6 it is a proje
tively 
at U(p; q)-
onne
tion, and thus de�nes a point in R�(a; b).Conversely by Corlette's theorem [10℄, every representation in Hom+(�1X;PU(p; q)),or equivalently every representation in Hom+(�;U(p; q)), arises in this way. The fa
tthat this 
orresponden
e gives a homeomorphism follows by the same argument as theone given in [32℄ for ordinary Higgs bundles. �De�nition 3.14. De�ne the subspa
e R��(a; b) to be the subspa
e 
orresponding toMs(a; b) via the homeomorphism in Proposition 3.13. Using the �bration of R�(a; b)over R[a; b℄, de�ne R�[a; b℄ � R[a; b℄ to be the image of R��(a; b).Remark 3.15. Thus R��(a; b) parameterizes the representations whi
h give rise to stableU(p; q)-Higgs bundles. Re
all from Remark 3.8 that a U(p; q)-Higgs bundle is stable(in the sense of De�nition 3.7) if and only if its is stable as an ordinary GL(n; C )-Higgs bundle. Now, a GL(n; C )-Higgs bundle is stable if and only if the 
orrespondingrepresentation of � on C n is irredu
ible (
f. Corlette [10℄). Hen
e we see that thesubspa
e R��(a; b) 
orresponds to the representations of � in U(p; q) whi
h are irre-du
ible as GL(n; C ) representations. Similarly, the subspa
e R�[a; b℄ 
orresponds tothe representations of �1X whi
h are irredu
ible as PGL(n; C ) representations.We point out, moreover, that the subspa
e R��(a; b) in
ludes as a dense open set therepresentations whose indu
ed adjoint representations on the Lie algebra of PU(p; q)are irredu
ible. It may also 
ontain some representations whose indu
ed adjoint repre-sentation is redu
ible for the following reason. If (E = V �W;�) is the U(p; q)-Higgsbundle 
orresponding to a representation in R��(a; b), then (End(E);�) is a polystableHiggs bundle but it is not ne
essarily stable. The representations with redu
ible in-du
ed adjoint representation are the ones for whi
h (End(E);�) is stri
tly polystable.



153.3. Deformation theory. The results of Biswas and Ramanan [3℄ and Hit
hin [23℄readily adapt to des
ribe the deformation theory of U(p; q)-Higgs bundles.De�nition 3.16. Let (E = V �W;�) be a U(p; q)-Higgs bundle. We introdu
e thefollowing notation: U = End(E)U+ = End(V )� End(W ) ;U� = Hom(W;V )�Hom(V;W ) :With this notation, U = U+ � U�, that � 2 H0(U� 
K), and that ad(�) inter-
hanges U+ and U�. We 
onsider the 
omplex of sheavesC� : U+ ad(�)���! U� 
K : (3.13)Lemma 3.17. Let (E;�) be a stable U(p; q)-Higgs bundle. Thenker�ad(�) : H0(U+)! H0(U� 
K)� = C ; (3.14)ker�ad(�) : H0(U�)! H0(U+ 
K)� = 0 : (3.15)Proof. By Remark 3.8 (E;�) is stable as a GL(n; C )-Higgs bundle. Hen
e it is simple,that is, its only endomorphisms are the non-zero s
alars. Thus,ker�ad(�) : H0(U)! H0(U 
K)� = C :Sin
e U = U+ � U� and ad(�) inter
hanges these two summands, the statements ofthe Lemma follow. �Proposition 3.18 (Biswas-Ramanan [3℄).(1) The spa
e of endomorphisms of (E;�) is isomorphi
 to the zeroth hyper
oho-mology group H 0(C�).(2) The spa
e of in�nitesimal deformations of (E;�) is isomorphi
 to the �rsthyper
ohomology group H 1(C�).(3) There is a long exa
t sequen
e0 �! H 0(C�) �! H0(U+) �! H0(U� 
K) �! H 1(C�)�! H1(U+) �! H1(U� 
K) �! H 2(C�) �! 0 ; (3.16)where the maps H i(U+) �! H i(U� 
K) are indu
ed by ad(�). �Proposition 3.19. Let (E;�) be a stable U(p; q)-Higgs bundle, then(1) H 0(C�) = C (in other words (E;�) is simple) and(2) H 2(C�) = 0.Proof. (1) Follows immediately from Lemma 3.17 and Proposition 3.18 (3).(2) We have natural ad-invariant isomorphisms U+ �= (U+)� and U� �= (U�)�. Thusad(�) : H1(U+)! H1(U� 
K)is Serre dual to ad(�) : H0(U�) ! H0(U+ 
 K). Hen
e Lemma 3.17 and (3) ofProposition 3.18 show that H 2(C�) = 0. �



16Proposition 3.20. The moduli spa
e of stable U(p; q)-Higgs bundles is a smooth 
om-plex variety of dimension 1 + (p+ q)2(g � 1).Proof. By Proposition 3.19 (2) H 2(C�) = 0 at all points in the moduli spa
e of stableU(p; q)-Higgs bundles. Smoothness is thus a 
onsequen
e of the results of [3℄, as follows.Let e 2 M(a; b) be the point 
orresponding to a stable U(p; q)-Higgs bundle (E;�) andlet F be the in�nitesimal deformation fun
tor of (E;�) as in [3℄. Then the 
ompletionof the lo
al ring Oe pro-represents F (
f. S
hlessinger [28℄). Now Proposition 3.19 andTheorem 3.1 of [3℄ show that the 
ompletion of Oe is regular and hen
e Oe is itselfregular. Thus M(a; b) is smooth at e.Using (2) and (3) of Proposition 3.18, Proposition 3.19 and the Riemann-Ro
h The-orem, the dimension of the moduli spa
e is given bydimH 1(C�) = 1 � �(U+) + �(U� 
K)= 1 + (p2 + q2)(g � 1) + 2pq(g � 1)= 1 + (p+ q)2(g � 1) : �Remark 3.21. The dimension of the moduli spa
e of stable U(p; q)-Higgs bundles ishalf that of the moduli spa
e of stable GL(p+ q; C )-Higgs bundles.Remark 3.22. By Proposition 3.12 M(a; b) is smooth if GCD(p + q; a+ b) = 1.Remark 3.23. As an alternative to the algebrai
 arguments of [3℄, the fa
t that thedeformation theory of a U(p; q)-Higgs bundle is 
ontrolled by the 
omplex of sheaves(3.13) 
an be seen from the 
omplex analyti
 point of view as follows. As in the gaugetheory 
onstru
tion of M(a; b) (
f. Se
tion 3.2 let V �W be a smooth 
omplex ve
torbundle, and 
onsider a U(p; q)-Higgs bundle as being given by a triple (��V ; ��W ;�).Now write down a Dolbeault resolution of the 
omplex C�:
0(U+) ad(�)���! 
1;0(U�)??y�� ??y���
0;1(U+) ad(�)���! 
1;1(U�)??y ??y0 ���! 0 :Consider the asso
iated total 
omplex C0 D0! C1 D1! C2. Then C0 is the Lie algebra ofthe GL(p; C )�GL(q; C )-gauge group and C1 is the tangent spa
e to the aÆne spa
e oftriples (��V ; ��W ;�). Furthermore, D0 is the in�nitesimal a
tion of the 
omplex gaugegroup, whileD1 is the derivative of the holomorphi
ity 
ondition: this gives the desiredinterpretation of the deformation 
omplex C� in 
omplex analyti
 terms.To 
on
lude this line of thought we give an alternative argument for the smooth-ness of the moduli spa
e of stable U(p; q)-Higgs bundles: suppose that (��V ; ��W ;�)
orresponds to a stable U(p; q)-Higgs bundle (E;�). Proposition 3.19 shows thatH 0(C�) = C and H 2(C�) = 0. The di�erential of the holomorphi
ity 
ondition isthus surje
tive and (E;�) has no non-trivial automorphisms. It follows by standard



17arguments that the moduli spa
e 
an be 
onstru
ted as a smooth 
omplex manifoldnear (E;�).3.4. Bounds on the topologi
al invariants. In this se
tion we show how the Higgsbundle point of view provides an easy proof of a result of Domi
 and Toledo [11℄ whi
hallows us to bound the topologi
al invariants deg(V ) and deg(W ) for whi
h U(p; q)-Higgs bundles may exist. The lemma is a slight variation on the results of [19, Se
tion3℄ (
f. also Lemma 3.6 of Markman and Xia [24℄).Lemma 3.24. Let (E;�) be a semistable U(p; q)-Higgs bundle. Thenp(�(V )� �(E)) 6 rk(
)(g � 1); (3.17)q(�(W )� �(E)) 6 rk(�)(g � 1): (3.18)If equality o

urs in (3.17) then either (E;�) is stri
tly semistable or p = q and 
 isan isomorphism. If equality o

urs in (3.18) then either (E;�) is stri
tly semistableor p = q and � is an isomorphism.Proof. If 
 = 0 then V is �-invariant. By stability, �(V ) 6 �(E) and equality 
an onlyo

ur if (E;�) is stri
tly semistable. This proves (3.17) in the 
ase 
 = 0. We maytherefore assume that 
 6= 0. Let N = ker(
) � V and let I = im(
) 
K�1 � W .Then rk(N) + rk(I) = p (3.19)and, sin
e 
 indu
es a non-zero se
tion of det((V=N)� 
 I 
K),deg(N) + deg(I) + rk(I)(2g � 2) > deg(V ): (3.20)The bundles N and V � I are �-invariant subbundles of E and hen
e we obtain bysemistability that �(N) 6 �(E) and �(V � I) 6 �(E) or, equivalently, thatdeg(N) 6 �(E) rk(N); (3.21)deg(I) 6 �(E)(p + rk(I))� deg(V ): (3.22)Adding (3.21) and (3.22) and using (3.19) we obtaindeg(N) + deg(I) 6 2�(E)p � deg(V ): (3.23)Finally, 
ombining (3.20) and (3.23) we getdeg(V )� rk(I)(2g � 2) 6 2�(E)p � deg(V );whi
h is equivalent to (3.17) sin
e rk(
) = rk(I). Note that equality 
an only o

urif we have equality in (3.21) and (3.22) and thus either (E;�) is stri
tly semistableor neither of the subbundles N and V � I is proper and non-zero. In the latter 
ase,
learly N = 0 and I = W and therefore p = q; furthermore we must also have equalityin (3.20) implying that 
 is an isomorphism. An analogous argument applied to �proves (3.18). �Remark 3.25. The proof also shows that if we have equality in, say, (3.17) then the map
 : V=N ! I 
K is an isomorphism. In parti
ular, if p < q and �(V )� �(E) = g � 1then 
 : V �=�! I 
K.We 
an re-formulate Lemma 3.24 to obtain the following 
orollary.



18Corollary 3.26. Let (E;�) be a semistable U(p; q)-Higgs bundle. Thenq(�(E)� �(W )) 6 rk(
)(g � 1); (3.24)p(�(E)� �(V )) 6 rk(�)(g � 1): (3.25)Proof. Use �(W )� �(E) = pq ��(E) � �(V )� to see that (3.24) is equivalent to (3.17).Similarly (3.25) is equivalent to (3.18). �An important 
orollary of the lemma above is the following Milnor{Wood typeinequality for U(p; q)-Higgs bundles (due to Domi
 and Toledo [11℄, improving ona bound obtained by Dupont [13℄ in the 
ase G = SU(p; q)). This result gives boundson the possible values of the topologi
al invariants deg(V ) and deg(W ).Corollary 3.27. Let (E;�) be a semistable U(p; q)-Higgs bundle. Thenpqp+ q j�(V )� �(W )j 6 minfp; qg(g � 1): (3.26)Proof. Sin
e �(E) = pp+q�(V ) + qp+q�(W ) we have �(V ) � �(E) = qp+q (�(V ) � �(W )and therefore (3.17) gives pqp+ q (�(V )� �(W )) 6 rk(
)(g � 1):A similar argument using (3.18) shows thatpqp+ q (�(W )� �(V )) 6 rk(�)(g � 1):But, obviously, rk(�) and rk(
) are both less than or equal to minfp; qg. �De�nition 3.28. The Toledo invariant of the representation 
orresponding to (E =V �W;�) is � = � (a; b) = 2qa� pbp+ q (3.27)where a = deg(V ) and b = deg(W ).Remark 3.29. Sin
e� = 2 pqp + q (�(V ) � �(W )) = �2p(�(E) � �(V )) = 2q(�(E)� �(W )) ;the inequalities in Lemma 3.24 and Corollary 3.26 
an be written as�2 6 rk(
)(g � 1); (3.28)��2 6 rk(�)(g � 1): (3.29)Similarly the inequality (3.26) 
an be written j� j 6 �M , where�M = minfp; qg(2g � 2) : (3.30)



193.5. Rigidity and extreme values of the Toledo invariant. If j� j = �M then themoduli spa
e M(a; b) has spe
ial features. These depend on whether p = q or p 6= q.Consider �rst the 
ase p = q. Noti
e that if p = q then � (a; b) = a � b and�M = p(2g � 2). We thus examine the moduli spa
e M(a; b) when ja� bj = p(2g � 2).Before giving a des
ription we review brie
y the notion of L-twisted Higgs pairs. LetL be a line bundle. An L-twisted Higgs pair (V; �) 
onsists of a holomorphi
 ve
torbundle V and an L-twisted homomorphism � : V �! V 
 L. The notions of stability,semistability and polystability are de�ned as for Higgs bundles. The moduli spa
eof semistable L-twisted Higgs pairs has been 
onstru
ted by Nitsure using Geometri
Invariant Theory [27℄. LetML(n; d) be the moduli spa
e of polystable L-twisted Higgspairs of rank n and degree d.Proposition 3.30. Let p = q and ja� bj = p(2g � 2). ThenM(a; b) �=MK2(p; a) �=MK2(p; b):Proof. Let (E = V �W;�) 2 M(a; b). Suppose for de�niteness that b�a = p(2g�2).From (3.18) it follows that 
 : V �! W 
K is an isomorphism. We 
an then 
ompose� :W �! V 
K with 

 IdK : V 
K �! W 
K2 to obtain a K2-twisted Higgs pair�W : W �! W 
 K2. Similarly, twisting � : W �! V 
K with K and 
omposingwith 
, we obtain a K2-twisted Higgs pair �V : V �! V 
K2. Conversely, given anisomorphism 
 : V �! W 
K, we 
an re
over � from �V as well as from �W . It is
lear that the (poly)stability of (E;�) is equivalent to the (poly)stability of (V; �V )and to the (poly)stability of (W; �W ), proving the 
laim. �Remark 3.31. The moduli spa
e MK2(p; a) 
ontains an open (irredu
ible) subset 
on-sisting of a ve
tor bundle over the moduli spa
e of stable bundles of rank p and degreea. This is be
ause the stability of V implies the stability of any K2-twisted Higgspair (V; �V ), and H1(End V 
K2) = 0. The rank of the bundle is determined by theRiemann{Ro
h Theorem.Now 
onsider the 
ase p 6= q. For de�niteness, we assume p < q. We use the morepre
ise notation M(p; q; a; b) for the moduli spa
e of U(p; q)-Higgs bundles su
h thatdeg(V ) = a, and deg(W ) = b, and write the Toledo invariant as� = � (p; q; a; b) = 2qa� pbp+ q : (3.31)Theorem 3.32. Suppose (p; q; a; b) are su
h that p < q and j� (p; q; a; b)j = p(2g � 2).Then every element in M(p; q; a; b) is stri
tly semistable and de
omposes as the dire
tsum of a polystable U(p; p)-Higgs bundle with maximal Toledo invariant and a polystableve
tor bundle of rank (q � p). If � = p(2g � 2), thenM(p; q; a; b) �=M(p; p; a; a� p(2g � 2)) �M(q � p; b� a+ p(2g � 2)); (3.32)where M(q � p; b � a + p(2g � 2)) denotes the moduli spa
e of polystable bundles ofdegree q� p and rank b� a+ p(2g� 2). In parti
ular, the dimension at a smooth pointin M(p; q; a; b) is 2 + (p2 + 5q2 � 2pq)(g � 1), and it is hen
e stri
tly smaller than theexpe
ted dimension.(A similar result holds if � = �p(2g � 2) and also if p > q.)



20Proof. Let (E = V �W;�) 2 M(p; q; a; b) and suppose that � (p; q; a; b) = p(2g � 2).Then �(V )� �(E) = g� 1 and �(E)��(W ) = pq (g� 1). Sin
e rk(�) and rk(
) are atmost p, it follows from (3.17) and (3.25) that rk(�) = rk(
) = p. LetW
 = im(
)
K�1and let W� = ker(�). Then V � W
 is a �-invariant subbundle of V � W , and�(V � W
) = �(0 � W�) = �(E). We see that (E;�) is stri
tly semistable (as wealready knew from Lemma 3.24). Sin
e it is polystable it must split as(V �W
 ;�)� (0�W=W
 ; 0):It is 
lear that (V � W
 ;�) 2 M(p; p; a; a � p(2g � 2)) and that (V � W
;�) hasmaximal Toledo invariant, that is, � (p; p; a; a� p(2g � 2)) = 2p(g � 1). Also, using0 �! ker(�) �! V �W �! (V �W
)
K �! 0:we see that W=W
 2 M(q � p; b � a+ p(2g � 2)). To 
omplete the proof we observethat dimMs(p; p; a; a� p(2g � 2)) + dimM s(q � p; b� a+ p(2g � 2))= 1 + (2p)2(g � 1) + 1 + (q � p)2(g � 1) = 2 + (p2 + 5q2 � 2pq)(g � 1):Sin
e q > 1, this is smaller than 1+ (p+ q)2(g� 1), the dimension of M(p; q; a; b). �Corollary 3.33. Fix (p; q; a; b) su
h that p < q and � (p; q; a; b) = p(2g � 2). ThenM(p; q; a; b) �=MK2(p; a� p(2g � 2)) �M(q � p; b� a+ p(2g � 2)):Proof. It follows from Theorem 3.32 and Proposition 3.30. �Remark 3.34. The fa
t the moduli spa
e has smaller dimension than expe
ted may beviewed as a 
ertain kind of rigidity. This phenomenon (for large Toledo invariant) hasbeen studied from the point of view of representations of the fundamental group byD. Toledo [33℄ when p = 1 and L. Hern�andez [21℄ when p = 2. We deal here with thegeneral 
ase whi
h, as far as we know, has not appeared previously in the literature.4. Morse theoryMorse theoreti
 te
hniques to study of the topology of moduli spa
es of Higgs bundleswere introdu
ed by Hit
hin [22, 23℄. Though standard Morse theory 
annot be appliedtoM(a; b) when it is not smooth, as we shall see in the following, we 
an still use Morsetheory ideas to 
ount 
onne
ted 
omponents. Throughout this se
tion we assume thatp and q are any positive integers and that (a; b) 2 Z�Zis su
h that j� j 6 �M , where� is as in De�nition 3.28 and �M is given by (3.30).4.1. The Morse fun
tion. Consider the moduli spa
eM(a; b) from the gauge theorypoint of view (
f. Se
tion 3.2). We 
an then de�ne a real positive fun
tionf : M(a; b)! R[A;�℄ 7! ZX j�j2 : (4.1)We have the following result due to Hit
hin [22℄.Proposition 4.1. (1) The fun
tion f is proper.



21(2) The restri
tion of f to Ms(a; b) is a moment map for the Hamiltonian 
ir
lea
tion [A;�℄ 7! [A; ei��℄.(3) If M(a; b) is smooth, then f is a perfe
t Bott-Morse fun
tion. �Thus, if the moduli spa
e is smooth, then its number of 
onne
ted 
omponents isbounded by the number of 
onne
ted 
omponents of the subspa
e of lo
al minima off . However, even ifM(a; b) is not smooth, f 
an be used to obtain information aboutthe 
onne
ted 
omponents of M(a; b) using the following elementary result.Proposition 4.2. Let Z be a Hausdor� spa
e and let f : Z ! R be proper and boundedbelow. Then f attains a minimum on ea
h 
onne
ted 
omponent of Z and, furthermore,if the subspa
e of lo
al minima of f is 
onne
ted then so is Z. �In parti
ular this applies to our situation, giving:Proposition 4.3. The fun
tion f : M(a; b)! R de�ned in (4.1) has a minimum onea
h 
onne
ted 
omponent of M(a; b). Moreover, if the subspa
e of lo
al minima of fis 
onne
ted then so is M(a; b). �De�nition 4.4. LetN (a; b) = f(E;�) 2 M(a; b) j � = 0 or 
 = 0g: (4.2)Proposition 4.5. For all (E;�) 2 M(a; b)f(E;�) > j� (a; b)j2 (4.3)with equality if and only if (E;�) 2 N (a; b).Proof. By Hit
hin's equations (3.2) and Chern-Weil theory we getk�k2� k
k2 = p(�(E) � �(V )) = ��2 : (4.4)Thus f(E;�) = k�k2 + k
k2= 2k
k2 � �2= 2k�k2 + �2 : (4.5)�The above Proposition identi�esN (a; b) as the set of global minima of f . The followingTheorem, whi
h is of fundamental importan
e to our approa
h, shows that there areno other lo
al minima.Theorem 4.6. Let (E;�) be a polystable U(p; q)-Higgs bundle inM(a; b). Then (E;�)is a lo
al minimum of f : M(a; b)! R if and only if (E;�) belongs to N (a; b).Proof. This follows dire
tly from Proposition 4.5 above and Propositions 4.17 and 4.20,whi
h are given in Se
tions 4.4 and 4.5, respe
tively. �



22Remark 4.7. This Theorem was already known to hold when p; q 6 2 (by the results of[19℄, Hit
hin [22℄, and Xia [36℄), and also when p = q and (p�1)(2g�2) < j� j 6 p(2g�2)by Markman-Xia [24℄.Whi
h se
tion a
tually vanishes for a minimum is given by the following.Proposition 4.8. Let (E;�) 2 N (a; b). Then(1) 
 = 0 if and only if a=p 6 b=q (i.e. � 6 0). In this 
ase,f(N (a; b)) = b� q(a+ b)=(p + q) = ��2 :(2) � = 0 if and only if a=p > b=q (i.e. � > 0). In this 
ase,f(N (a; b)) = a� p(a+ b)=(p+ q) = �2 :In parti
ular, � = 
 = 0 if and only if a=p = b=q (i.e. � = 0) and, in this 
ase,f(E;�) = 0.Proof. The relation between the 
onditions on � and those on a=p�b=q follows dire
tlyfrom the de�nition of � (
f. (3.27)). The rest follows immediately from (4.5) and thefa
t that f is, by de�nition, non-negative. Alternatively one 
an argue algebrai
ally,using Lemma 3.24 and polystability. �Corollary 4.9. If a=p = b=q then N (a; b) �=M(p; a)�M(q; b).Proof. If a=p = b=q, then any (E;�) 2 N (a; b) has E = V �W and � = 0. Polystabilityof (E;�) is thus equivalent to the polystability of V and W . �4.2. Criti
al points of the Morse fun
tion. In this se
tion we re
all Hit
hin'smethod [22, 23℄ for determining the lo
al minima of f and spell out how this works inthe 
ase of U(p; q)-Higgs bundles.Sin
e f is a moment map, a smooth point of the moduli spa
e is a 
riti
al pointif and only if it is a �xed point of the 
ir
le a
tion. To determine the �xed points,note that, if (A;�) represents a �xed point then there must be a 1-parameter familyof gauge transformations g(�) taking (A;�) to (A; ei��). This gives an in�nitesimalU(p)� U(q)-gauge transformation  = _g whi
h is 
ovariantly 
onstant (i.e. dA = 0)and su
h that [ ;�℄ = i�. (Note that we 
an take  to be tra
e-free.) It followsthat we 
an de
ompose E in holomorphi
 subbundles F� on whi
h  a
ts as i� andfurthermore that � maps F� to F�+1 
K. We thus have the following result.Proposition 4.10. A U(p; q)-Higgs bundle (E;�) in M(a; b) represents a �xed pointof the 
ir
le a
tion if and only if it is a system of Hodge bundles, that is,E = F1 � � � � � Fm (4.6)for holomorphi
 ve
tor bundles Fi su
h that the restri
tion�i := �jFi 2 H0(Hom(Fi; Fi+1)
K) ;and the Fi are dire
t sums of bundles 
ontained in V and W . Furthermore, ea
h Fi isan eigenbundle for an in�nitesimal tra
e-free gauge transformation  . If �i 6= 0, thenthe weight of  on Fi+1 is one plus the weight of  on Fi. Moreover, if (E;�) is stable,then ea
h restri
tion �i is non-zero and the Fi are alternately 
ontained in V and W .



23Proof. Only the last statement requires a proof. But if some 
omponent of � vanished,or if some Fi had a non-zero 
omponent in both V and W , then (E;�) would beredu
ible and hen
e not stable. �When (E;�) is stable the de
omposition E = F1 � � � � � Fm gives a 
orrespondingde
omposition of the bundle U = End(E) into eigenbundles for the adjoint a
tion of : U = m�1Mk=�m+1 Uk ;where Uk =Li�j=k Hom(Fj; Fi) is the eigenbundle 
orresponding to the eigenvalue ik.By Hit
hin's 
al
ulations in [23, x8℄ (see also [18, Se
tion 2.3.2℄) the eigenvalues ofthe Hessian of f at a smooth 
riti
al point 
an be determined in the following way.Proposition 4.11. Let (E;�) be a stable U(p; q)-Higgs bundle whi
h represents a
riti
al point of f . Then the eigenspa
e of the Hessian of f 
orresponding to theeigenvalue �k is H 1 of the following 
omplex:C�k : U+k ad(�)���! U�k+1 
K; (4.7)where we use the notation U+k = Uk \ U+ ;U�k = Uk \ U� ;with U+ and U� as de�ned in De�nition 3.16. In parti
ular (E;�) 
orresponds to alo
al minimum of f if and only if H 1(C�k) = 0for all k > 1. �Remark 4.12. When (E;�) is a stable U(p; q)-Higgs bundle, we know from Proposi-tion 4.10 that the Fi are alternately 
ontained in V and W . Thus we haveU+ = Mk evenUk ; U� = Mk oddUk : (4.8)In parti
ular all the eigenvalues of the Hessian of f are even.Remark 4.13. The des
ription in Proposition 4.11 of the eigenspa
e of the Hessian off gives rise to the long exa
t sequen
e0 �! H 0(C�k) �! H0(U+k ) �! H0(U�k+1 
K) �! H 1(C�k)�! H1(U+k ) �! H1(U�k+1 
K) �! H 2(C�k ) �! 0 :Suppose that (E;�) is a stable U(p; q)-Higgs bundle. The vanishing result of Propo-sition 3.19 shows that H 0(C�k) = H 2(C�k) = 0 for k 6= 0 (while H 0(C�0) = C andH 2(C�0) = 0). Hen
e one 
an use this exa
t sequen
e, Remark 4.12, and the Riemann{Ro
h formula to 
al
ulate the dimension of H 1(C�k) for any k in terms of the ranks andthe degrees of the Fi. This provides a method for 
al
ulating the Morse index of f ata 
riti
al point. However, we shall omit the formula sin
e we have no need for it.



244.3. Lo
al minima and the adjoint bundle. In this se
tion we give a 
riterion for(E;�) to be a lo
al minimum in terms of the adjoint bundle. This is the key step inthe proof of Theorem 4.6. We use the notation introdu
ed in Se
tion 4.2.Consider the 
omplex C�k de�ned in (4.7) and let�(C�k) = dimH 0(C�k)� dimH 1(C�k) + dimH 2(C�k):Proposition 4.14. Let (E;�) be a polystable U(p; q)-Higgs bundle whi
h is a �xedpoint of the S1-a
tion on M(a; b). Then �(C�k) 6 0 and equality holds if and only ifad(�) : U+k ! U�k+1 
Kis an isomorphism.Proof. For simpli
ity we shall adopt the notation��k = ad(�)jU�k : U�k �! U�k+1 
K:The key fa
t we need is that there is a natural ad-invariant isomorphism U �= U�under whi
h we have U+ �= (U+)�, U� �= (U�)� and U�k �= (U��k)�. Sin
e ad(�)t =ad(�)
 1K�1 under this isomorphism we have(��k )t = ���k�1 
 1K�1 : (4.9)We have the short exa
t sequen
e0 �! ker(�+k ) �! (U�k+1 
K)� �! im(�+k ) �! 0:From (4.9) we have ker(�+;tk ) �= ker(���k�1)
K�1. Thus, tensoring the above sequen
eby K, we obtain the short exa
t sequen
e0 �! ker(���k�1) �! (U�k+1)� �! im(�+k )
K �! 0:It follows thatdeg(im(�+k )) 6 deg(U�k+1) + (2g � 2) rk(�+k ) + deg(ker(���k�1)):Combining this inequality with the fa
t thatdeg(U+k ) 6 deg(ker(�+k )) + deg(im(�+k )); (4.10)we obtaindeg(U+k ) 6 deg(U�k+1) + (2g � 2) rk(�+k ) + deg(ker(���k�1)) + deg(ker(�+k )): (4.11)Sin
e (E;�) is semistable, so is the Higgs bundle (End(E); ad(�)). Clearly the kernelker(��k ) � End(E) is �-invariant and hen
e, from semistability,deg(ker(��k )) 6 0;for all k. Substituting this inequality in (4.11), we obtaindeg(U+k ) 6 deg(U�k+1) + (2g � 2) rk(�+k ): (4.12)From the long exa
t sequen
e (4.7) and the Riemann{Ro
h formula we obtain�(C�k) = �(U+k )� �(U�k+1 
K)= (1� g)�rk(U+k ) + rk(U�k+1)�+ deg(U+k )� deg(U�k+1):Using this identity and the inequality (4.12) we see that�(C�k) 6 (g � 1)�2 rk(�+k )� rk(U+k )� rk(U�k+1)�:



25Hen
e �(C�k) 6 0. Furthermore, if equality holds we haverk(�+k ) = rk(U+k ) = rk(U�k+1)and also equality must hold in (4.12) and so deg(im(�+k )) = deg(U�k+1 
K), showingthat �+k is an isomorphism as 
laimed. �Corollary 4.15. Let (E;�) be a stable U(p; q)-Higgs bundle whi
h represents a 
riti
alpoint of f . This 
riti
al point is a lo
al minimum if and only ifad(�) : U+k ! U�k+1 
Kis an isomorphism for all k > 1.Proof. By Proposition 3.19 we have H 0(C�k) = H 2(C�k) = 0 for k > 1. Hen
e we have��(C�k) = H 1(C�k) and the result follows from Propositions 4.11 and 4.14. �Remark 4.16. Let (P;�) be a G-Higgs bundle as de�ned in Remark 3.5 and de�neU = P 
Ad gC ;U+ = P 
Ad hC ;U� = P 
Ad mC :Then U = U+�U� and if (P;�) is �xed under the 
ir
le a
tion we 
an write U =LUkas a dire
t sum of eigenbundles for an in�nitesimal gauge transformation as before.Thus we 
an de�ne a 
omplex C�k as in (4.7). If (P;�) is a stable G-Higgs bundle, thenthe Higgs ve
tor bundle (U; ad(�)) is semistable and so the proof of Proposition 4.14goes through un
hanged. Thus this key result is valid in the more general setting.4.4. Stable Higgs bundles. In this se
tion we prove Theorem 4.6 for stable Higgsbundles. The redu
ible (polystable) ones are dealt with in the next se
tion. We
ontinue to use the notation of Se
tion 4.2.Proposition 4.17. Let (E;�) = (F1 � � � � � Fm;�) be a stable U(p; q)-Higgs bundlerepresenting a 
riti
al point of f su
h that m > 3. Then (E;�) is not a lo
al minimumof f .Proof. Note that Uk = 0 for jkj > m; in parti
ular Um = 0. We shall 
onsider the 
aseswhen m is odd and even separately.The 
ase m odd. In this 
ase m� 1 is even and so, using Remark 4.12 we see thatU+m�1 = Um�1 6= 0 while U�m � Um = 0. Hen
e ad(�) : U+m�1 ! U�m 
K 
annot be anisomorphism and we are done by Corollary 4.15.The 
ase m even. From Remark 4.12 we see thatU�m�1 = Um�1 = Hom(F1; Fm)U+m�2 = Um�2 = Hom(F1; Fm�1) �Hom(F2; Fm):Thus, by Corollary 4.15 it suÆ
es to prove thatad(�) : Um�2 ! Um�1 
Kis not an isomorphism. In fa
t the restri
tion of ad(�) to a �ber 
annot even beinje
tive. Indeed, if it were, then its restri
tion to Hom(F1; Fm�1) would be inje
tive



26and hen
e �m�1 would also be inje
tive. Take a non-zero element � 2 Hom(F2; Fm)whose image is 
ontained in the image of �m�1. De�ne � = ��1�� 2 Hom(F1; Fm�1).Then ad(�)(� + �) = 0 whi
h is a 
ontradi
tion. �Remark 4.18. Let (E;�) be a stable U(p; q)-Higgs bundle with � = 0 or 
 = 0. Then,as pointed out above, Proposition 4.5 shows that (E;�) is a lo
al minimum of f . This
an also be seen from the Morse theory point of view, as follows. Su
h a Higgs bundleeither has � = 
 = 0 or it is a Hodge bundle of length 2. In the former 
ase, 
learlywe have End(E) = U0. In the latter 
ase, E = F1 � F2 with F1 = V and F2 = W (if� = 0) or vi
e-versa (if 
 = 0). Hen
e End(E) = U�1 � U0 � U1. Hen
e, in both 
asesUk = 0 for jkj > 1. It follows that the 
omplex C�k is zero for any k > 0 and hen
e alleigenvalues of the Hessian of f are positive.4.5. Redu
ible Higgs bundles. In this se
tion we shall �nally 
on
lude the proofof Theorem 4.6 by showing that it also holds for redu
ible Higgs bundles. First weshall show that a redu
ible Higgs bundle whi
h is not of the form given in Theorem 4.6
annot be a lo
al minimum of f ; for this we use an argument similar to the one givenby Hit
hin [23, x8℄ for the 
ase of G = PSL(n;R).Let (E;�) be a stri
tly polystable U(p; q)-Higgs bundle whi
h is a lo
al minimum off . Sin
e f(E;�) is the sum of the values of f on ea
h of the stable dire
t summands(on the 
orresponding lower rank moduli spa
e), it follows that ea
h stable dire
tsummand must be a lo
al minimum in its moduli spa
e and, therefore, a �xed pointof the 
ir
le a
tion. Hen
e (E;�) is itself �xed and thus (
f. Proposition 4.10)E =MF� ;where ea
h F� is an i�-eigenbundle for an in�nitesimal tra
e-free U(p) � U(q)-gaugetransformation  . Moreover, if �jF� 6= 0, then its image is 
ontained in F�+1 
K. Inanalogy with the 
ase of stable U(p; q)-Higgs bundles we writeEndE =MU� ;where U� is the i�-eigenbundle for the adjoint a
tion of  . LetU+� = U� \ U+ ;U�� = U� \ U� ;then we 
an de�ne a 
omplex of sheavesC�>0 :M�>0 U+� ad(�)���!M�>1 U�� 
K : (4.13)In this language Hit
hin's 
riterion [23, x8℄ for showing that a given �xed point is nota lo
al minimum 
an be expressed as follows.Lemma 4.19. Let (Et;�t) be a 1-parameter family of polystable U(p; q)-Higgs bundlessu
h that (E0;�0) is a �xed point of the 
ir
le a
tion. If the tangent ve
tor ( _E; _�) at0 is non-trivial and lies in the subspa
eH 1(C�>0)of the in�nitesimal deformation spa
e H 1(C�) of (E0;�0), then (E0;�0) is not a lo
alminimum of f . �



27Proposition 4.20. Let (E;�) be a redu
ible U(p; q)-Higgs bundle. If � 6= 0 and 
 6= 0then (E;�) is not a lo
al minimum of f .Proof. As we noted above, ea
h stable dire
t summand of (E;�) is a lo
al minimumon its moduli spa
e and therefore (by Proposition 4.17) it has � = 0 or 
 = 0. Hen
ewe 
an 
hoose two stable dire
t summands (E 0 = V 0�W 0;�0) and (E 00 = V 00�W 00;�00)su
h that 
 0 6= 0 and � 00 6= 0 and � 0 = 
 00 = 0. It is 
learly suÆ
ient to show that(E 0�E 00;�0��00) is not a lo
al minimum of f on the 
orresponding moduli spa
e andwe 
an therefore assume that (E;�) = (E 0 � E 00;�0 � �00) without loss of generality.We shall 
onstru
t a family of deformations (Et;�t) of (E;�) satisfying the 
onditionsof Lemma 4.19.By Lemma 4.21 both H1(Hom(W 00;W 0)) and H1(Hom(V 0; V 00)) are non-vanishing,so let � 2 H1(Hom(V 0; V 00)) and � 2 H1(Hom(W 00;W 0)) be non-zero. We 
an thende�ne a deformation of (E;�) by using that � de�nes an extension0 �! V 00 �! V � �! V 0 �! 0 ;while � de�nes an extension0 �! W 0 �!W � �!W 00 �! 0 :Let E(�;�) = V � �W � and de�ne �(�;�) by the 
ompositionsb(�;�) : W � �!W 00 �00�! V 00 ! V � ;
(�;�) : V � �! V 0 
0�! W 0 �!W �:Note that (E0;�0) = (E;�) (the Higgs �elds agree sin
e � 0 = 
 00 = 0). It is then easyto see that (E�;�;��;�) is stable: the essential point is that the destabilizing subbundlesV 0 and W 00 of (E;�) are not subbundles of the deformed Higgs bundle; we leave thedetails to the reader.Now de�ne the family (Et;�t) = (E(�t;�t);�(�t;�t)). It is 
lear that the indu
edin�nitesimal deformation of E is_E = (�; �) 2 H1(Hom(V 0; V 00))�H1(Hom(W 00;W 0)) � H1(End(E)) :Considering the holomorphi
 stru
ture as given by a ��-operator on the underlyingsmooth bundle, our de�nition of (E(�;�);�(�;�)) did not 
hange the Higgs �eld butonly the holomorphi
 stru
ture on E. Thus, taking a Dolbeault representative (
f.Remark 3.23) for ( _E; _�) 2 H 1(C�) we see that the weights of  on ( _E; _�) are givenby its weights on _E. From Proposition 4.10 we have de
ompositions E 0 =LF 0k andE00 = LF 00k into eigenspa
es of in�nitesimal tra
e-free gauge transformations  0 and 00. Note that the in�nitesimal gauge transformation produ
ing the de
omposition ofE is  =  0 +  00. Clearly we haveF 01 = V 0 ; F 02 = W 0 ;F 001 = W 00 ; F 002 = V 00 :Let �0V and �0W be the weights of the a
tion of  0 on V 0 and W 0 respe
tively, andanalogously for E 00. We then have that�0W = �0V + 1 ; �00V = �00W + 1 :



28and, sin
e tr 0 = tr 00 = 0, �0V p0 + �0W q0 = 0 ;�00V p00 + �00W q00 = 0 ;where p0 = rk(V 0), q0 = rk(W 0), p00 = rk(V 00) and q00 = rk(W 00). From these equationswe 
on
lude that �0W � �00W = p0p0 + q0 + p00p00 + q00 > 0 ;�00V � �0V = q00p00 + q00 + q0p0 + q0 > 0 :It follows that the weights of  on H1(Hom(W 00;W 0)) and H1(Hom(V 0; V 00)) are bothpositive and hen
e that ( _E; _�) lies in a dire
t sum of positive weight spa
es of  . This
on
ludes the proof of the Proposition. �Lemma 4.21. Let (E 0 = V 0 � W 0;�0) and (E 00 = V 00 � W 00;�00) be stable U(p; q)-Higgs bundles of the same slope. Then the 
ohomology groups H1(Hom(V 0; V 00)) andH1(Hom(W 00;W 0)) are both non-vanishing.Proof. Sin
e 
 00 = 0, V 00 is a �-invariant subbundle of E 00. Thus �(V 00) < �(E 00). Usingthe Riemann{Ro
h formula and the equality �(E 00) = �(E 0) we obtainh0(Hom(V 0; V 00)� h1(Hom(V 0; V 00) = p0p00(1 � g + �(V 00) � �(V 0))< p0p00(1 � g + �(E 0)� �(V 0)):Sin
e rk(� 0) 6 p0 the inequality (3.25) of Corollary 3.26 shows that �(E 0)��(V 0) 6 g�1and we therefore dedu
e thath0(Hom(V 0; V 00)� h1(Hom(V 0; V 00) < 0;from whi
h it follows that H1(Hom(V 0; V 00) 6= 0.Similarly one sees that H1(Hom(W 00;W 0)) 6= 0. �4.6. Lo
al minima and 
onne
tedness. In this se
tion we obtain 
onne
tednessresults on Ms(a; b) and its 
losure �Ms(a; b). We denote by N s(a; b) � N (a; b) thesubspa
e 
onsisting of stable U(p; q)-Higgs bundles, and denote its 
losure by �N s(a; b).The invariants (a; b) will be �xed in the following and we shall o

asionally dropthem from the notation and writeM =M(a; b), et
.Proposition 4.22. The 
losure of N s in M 
oin
ides with �N s and�N s = �Ms \N :Proof. Clear. �Now 
onsider the restri
tion of the Morse fun
tion to �Ms,f : �Ms ! R :Proposition 4.23. The restri
tion of f to �Ms is proper and the subspa
e of lo
alminima of this fun
tion 
oin
ides with �N s.



29Proof. Properness of the restri
tion follows from properness of f and the fa
t that �Msis 
losed inM. By Proposition 4.5 f is 
onstant on N and its value there is its globalminimum on M. Thus �N s is 
ontained in the subspa
e of lo
al minima of f .It remains to see that there are f has no other lo
al minima on �Ms. We alreadyknow that the subspa
e of lo
al minima on Ms is N s. Thus, sin
eMs is open in �Ms,there 
annot be any additional lo
al minima on Ms. We need to prove therefore thatthere are no lo
al minima in ( �Ms rMs)r �N s. So let (E;�) be a stri
tly poly-stableU(p; q)-Higgs bundle representing a point in this spa
e. From Proposition 4.22 we seethat � 6= 0 and 
 6= 0. In the proof of Proposition 4.20 we 
onstru
ted a family (Et;�t)of U(p; q)-Higgs bundles su
h that (E;�) = (E0;�0) and (Et;�t) is stable for t 6= 0.Furthermore we showed that the restri
tion of f to this family does not have a lo
alminimum at (E0;�0). It follows that (E;�) is not a lo
al minimum of f on �Ms. �Proposition 4.24. (1) If N (a; b) is 
onne
ted, then so is M(a; b).(2) If N s(a; b) is 
onne
ted, then so is �Ms(a; b).Proof. (1) In view of Proposition 4.3, this follows from Theorem 4.6.(2) IfN s(a; b) is 
onne
ted, then so is its 
losure �N s(a; b). But from Proposition 4.23,�N s(a; b) is the subspa
e of lo
al minima of the proper positive map f : �Ms(a; b)! R.Hen
e the result follows from Proposition 4.2. �5. Lo
al Minima as holomorphi
 triplesThe next step is to identify the spa
es N (a; b) and N s(a; b) as moduli spa
es intheir own right. By de�nition (
f. De�nition 4.4), the Higgs bundles in N (a; b) all have� = 0 or 
 = 0 in their Higgs �elds. Suppose �rst that (E;�) is a U(p; q)-Higgs bundlewith 
 = 0. Then (E;�) determines the triple T = (E1; E2; �) whereE1 = V 
KE2 = W;� = � :Conversely, given two holomorphi
 bundles E1; E2 of rank p and q respe
tively, togetherwith a bundle endomorphism � 2 H0(Hom(E2; E1)), we 
an use the above relations tode�ne a U(p; q)-Higgs bundle with 
 = 0. Similarly, there is a bije
tive 
orresponden
ebetween U(p; q)-Higgs bundles with � = 0 and holomorphi
 triples in whi
hE1 = W 
K;E2 = V� = 
:The triples (E1; E2;�) are examples of the holomorphi
 triples studied in [4℄ and [15℄.5.1. Holomorphi
 triples. We brie
y re
all the relevant de�nitions, referring to [4℄and [15℄ for details. A holomorphi
 triple on X, T = (E1; E2; �), 
onsists of twoholomorphi
 ve
tor bundles E1 and E2 on X and a holomorphi
 map � : E2 ! E1.Denoting the ranks E1 and E2 by n1 and n2, and their degrees by d1 and d2, we referto (n;d) = (n1; n2; d1; d2) as the type of the triple.



30 A homomorphism from T 0 = (E 01; E 02; �0) to T = (E1; E2; �) is a 
ommutative dia-gram E 02 �0���! E 01??y ??yE2 ����! E1:T 0 = (E 01; E 02; �0) is a subtriple of T = (E1; E2; �) if the homomorphisms of sheavesE01 ! E1 and E 02 ! E2 are inje
tive.For any � 2 R the �-degree and �-slope of T are de�ned to bedeg�(T ) = deg(E1) + deg(E2) + � rk(E2);��(T ) = deg�(T )rk(E1) + rk(E2)= �(E1 � E2) + � rk(E2)rk(E1) + rk(E2) :The triple T = (E1; E2; �) is �-stable if��(T 0) < ��(T ) (5.1)for any proper sub-triple T 0 = (E 01; E 02; �0). De�ne �-semistability by repla
ing (5.1)with a weak inequality. A triple is 
alled �-polystable if it is the dire
t sum of �-stabletriples of the same �-slope. It is stri
tly �-semistable (polystable) if it is �-semistable(polystable) but not �-stable.We denote the moduli spa
e of isomorphism 
lasses of �-polystable triples of type(n1; n2; d1; d2) by N� = N�(n;d) = N�(n1; n2; d1; d2) : (5.2)Using Seshadri S-equivalen
e to de�ne equivalen
e 
lasses, this is the moduli spa
e ofequivalen
e 
lasses of �-semistable triples. The isomorphism 
lasses of �-stable triplesform a subspa
e whi
h we denoted by N s�.Proposition 5.1 ([4, 15℄). The moduli spa
e N�(n1; n2; d1; d2) is a 
omplex analyti
variety, whi
h is proje
tive when � is rational. A ne
essary 
ondition for the modulispa
e N�(n1; n2; d1; d2) to be non-empty is(0 6 �m 6 � 6 �M if n1 6= n20 6 �m 6 � if n1 = n2 (5.3)where �m = �1 � �2; (5.4)�M = (1 + n1 + n2jn1 � n2j)(�1 � �2) (5.5)and �1 = d1n1 , �2 = d2n2 .Within the allowed range for � there is a dis
rete set of 
riti
al values. These arethe values of � for whi
h it is numeri
ally possible to have a subtriple T 0 = (E 01; E 02; �0)su
h that �(E 01 � E 02) 6= �(E1 � E2) but ��(T 0) = ��(T 0). All other values of � are
alled generi
. The 
riti
al values of � are pre
isely the values for � at whi
h the



31stability properties of a triple 
an 
hange, i.e. there 
an be triples whi
h are stri
tly�-semistable, but either �0-stable or �0-unstable for �0 6= �.Stri
t �-semistability 
an, in general, also o

ur at generi
 values for �, but only ifthere 
an be subtriples with �(E 01�E 02) = �(E1�E2) and n02n01+n02 = n2n1+n2 . In this 
asethe triple is stri
tly �-semistable for all values of �. We refer to this phenomenon as�-independent semistability. This 
annot happen if GCD(n2; n1 + n2; d1 + d2) = 1.5.2. Identi�
ation of N (a; b). The following result relates the stability 
onditionsfor holomorphi
 triples and that for U(p; q)-Higgs bundles.Proposition 5.2. A U(p; q)-Higgs bundle (E;�) with � = 0 or 
 = 0 is (semi)stableif and only if the 
orresponding holomorphi
 triple is �-(semi)stable for � = 2g � 2.Proof. Let T = (E1; E2; �) be the triple 
orresponding to the Higgs bundle (V �W;�).For de�niteness we shall assume that 
 = 0 (of 
ourse, the same argument applies if� = 0). Thus E1 = V 
K and E2 = W and, hen
e,deg(E1) = deg(V ) + p(2g � 2):Sin
e p = rk(E1) and q = rk(E2) it follows that��(T ) = �(E) + pp+ q (2g � 2) + qp+ q�: (5.6)If we set � = 2g � 2 we therefore have��(T ) = �(E) + 2g � 2: (5.7)Clearly the 
orresponden
e between holomorphi
 triples and U(p; q)-Higgs bundlesgives a 
orresponden
e between sub-triples T 0 = (E 01; E 02; �0) and �-invariant subbun-dles of E whi
h respe
t the de
omposition E = V �W (i.e., subbundles E 0 = V 0�W 0with V 0 � V and W 0 �W ). Now, it follows from (5.7) that �(E 0) < �(E) if and onlyif ��(T 0) < ��(T ) (and similarly for semistability), thus 
on
luding the proof. �We thus have the following important 
hara
terization of the subspa
e of lo
al min-ima of f on M(a; b).Theorem 5.3. Let N (a; b) be the subspa
e of lo
al minima of f on M(a; b) and let �be the Toledo invariant as de�ned in De�nition 3.28.If a=p 6 b=q, or equivalently if � 6 0, then N (a; b) 
an be identi�ed with the modulispa
e of �-polystable triples of type (p; q; a+ p(2g � 2); b), with � = 2g � 2.If a=p > b=q, or equivalently if � > 0, then N (a; b) 
an be identi�ed with the modulispa
e of �-polystable triples of type (q; p; b+ q(2g � 2); a), with � = 2g � 2.That is,N (a; b) �= (N2g�2(p; q; a+ p(2g � 2); b) if a=p 6 b=q (equivalently � 6 0)N2g�2(q; p; b+ q(2g � 2); a) if a=p > b=q (equivalently � > 0)Proof. This follows from Theorem 4.6, Proposition 4.8, and Proposition 5.2. �Thus, 
ombining Proposition 4.24 and Theorem 5.3, we getTheorem 5.4. (1) Suppose a=p 6 b=q. If N2g�2(p; q; a+ p(2g � 2); b) is 
onne
tedthen M(a; b) is 
onne
ted. If N s2g�2(p; q; a + p(2g � 2); b) is 
onne
ted then�Ms(a; b) is 
onne
ted.



32 (2) Suppose a=p > b=q. If N2g�2(q; p; b+ q(2g � 2); a) is 
onne
ted then M(a; b) is
onne
ted. If N s2g�2(q; p; b+q(2g�2); a) is 
onne
ted then �Ms(a; b) is 
onne
ted.5.3. The Toledo invariant, 2g � 2, and �-stability for triples. In view of The-orems 5.3 and 5.4, it is important to understand where 2g � 2 lies in relation to therange (given by Proposition 5.1) for the stability parameter �. Re
all that for given(p; q; a; b), the Toledo invariant (De�nition 3.28) is 
onstrained by 0 6 j� j 6 �M , where(see (3.30)) �M = minfp; qg(2g � 2). Re
all also that � is 
onstrained by the boundsgiven in Proposition 5.1. Whenever ne
essary we shall indi
ate the dependen
e of �mand �M on (p; q; a; b) by writing �m = �m(p; q; a; b), and similarly for �M .Lemma 5.5. Fix (p; q; a; b). Then�m(p; q; a; b) = (2g � 2) � p + q2pq j� j (5.8)where � is the Toledo invariant. If p 6= q then�M(p; q; a; b) = � 2maxfp; qgjp� qj ��m(p; q; a; b) : (5.9)If p = q then �M (p; q; a; b) =1.Proof. By Theorem 5.3 the type of the triple is determined by the sign of � . The resultthus follows by applying (5.3) and (5.4) to triples of type (p; q; a + p(2g � 2); b) (if� 6 0) or type (q; p; b+ q(2g � 2); a) (if � > 0). �Proposition 5.6. Fix (p; q; a; b). Then0 6 j� j 6 �M , (0 < �m(p; q; a; b) 6 2g � 2 6 �M(p; q; a; b) if p 6= q0 6 �m(p; q; a; b) 6 2g � 2 if p = q (5.10)Furthermore, � = 0, 2g � 2 = �m (5.11)and j� j = �M , (2g � 2 = �M if p 6= q�m = 0 if p = q (5.12)Proof. Using (5.8) and (5.9) we see that 0 6 j� j 6 �M is equivalent to2g � 2 > �m > � jp � qj2maxfp; qg� (2g � 2) ; (5.13)and hen
e also (assuming p 6= q) to�2maxfp; qgjp � qj � (2g � 2) > �M > (2g � 2) : (5.14)In both (5.13) and (5.14), we get equality in the �rst pla
e if and only if � = 0, andin the se
ond pla
e if and only if j� j = �M . Noti
e that jp�qj2maxfp;qg is stri
tly positive ifp 6= q and is zero if p = q. The results follow. �These results are summarized in Figure 1, whi
h 
an be used as follows. For anyallowed value of � , draw a horizontal line at height � . The 
orresponding range for �and the relative lo
ation of 2g � 2 are then read o� from the �-axis.



33Remark 5.7. The above proposition gives another explanation for the Milnor{Woodinequality in Corollary 3.27. Using the fa
t that the non-emptiness of M(a; b) isequivalent to the non-emptiness of N (a; b) and hen
e to that of either N2g�2(p; q; a+p(2g � 2); b) or N2g�2(q; p; b+ q(2g� 2); a), we see that the Milnor{Wood inequality isequivalent to the 
ondition that 2g� 2 lies within the range where �-polystable triplesof the given kind exist.5.4. Moduli spa
es of triples. Proposition 5.6 shows that in order to study N (a; b)for di�erent values of the Toledo invariant, we need to understand the moduli spa
esof triples for values of � that may lie anywhere (in
luding at the extremes �m and �M)in the �-range given in Proposition 5.1. The information we need 
an be found in [7℄.>From the results in [7℄ we get the following for triples of type (n1; n2; d1; d2).Theorem 5.8. (1) A triple T = (E1; E2; �) of type (n1; n2; d1; d2) is �m-polystableif and only if � = 0 and E1 and E2 are polystable. We thus haveN�m(n1; n2; d1; d2) �=M(n1; d1)�M(n2; d2):where M(n; d) denotes the moduli spa
e of polystable bundles of rank n anddegree d. In parti
ular, N�m(n1; n2; d1; d2) is non-empty and irredu
ible.(2) If � > �m is any value su
h that 2g � 2 6 � (and � < �M if n1 6= n2)then N s�(n1; n2; d1; d2) is non-empty, irredu
ible, and smooth of dimension (g�1)(n21 + n22 � n1n2)� n1d2 + n2d1 + 1. Moreover:� If n1 = n2 = n then N s�(n; n; d1; d2) is birationally equivalent to a PN-�bration over M s(n; d2)� Symd1�d2(X), where M s(n; d2) denotes the subspa
eof stable bundles of type (n; d2), Symd1�d2(X) is the symmetri
 produ
t, andthe �ber dimension is N = n(d1 � d2)� 1.� If n1 > n2 then N s�(n1; n2; d1; d2) is birationally equivalent to a PN-�bration over M s(n1 � n2; d1 � d2) �M s(n2; d2), where the �ber dimension isN = n2d1 � n1d2 + n2(n1 � n2)(g � 1)� 1.� If n1 < n2 then N s�(n1; n2; d1; d2) is birationally equivalent to a PN-�bration over M s(n2 � n1; d2 � d1) �M s(n1; d1), where the �ber dimension isN = n2d1 � n1d2 + n1(n2 � n1)(g � 1)� 1.(3) If n1 6= n2 then N�M (n1; n2; d1; d2) is non-empty and irredu
ible. MoreoverN�M (n1; n2; d1; d2) �= (M(n2; d2)�M(n1 � n2; d1 � d2) if n1 > n2M(n1; d1)�M(n2 � n1; d2 � d1) if n1 < n2. (5.15)Theorem 5.9. If n1 = n2 = n then:(1) If �m = 0, i.e. if d1 = d2 (= d), then N�(n; n; d; d) �=M(n; d) for all � > 0. Inparti
ular N�(n; n; d; d) is non-empty and irredu
ible.(2) If 0 < d1 � d2 < �, then N�(n; n; d1; d2) is non-empty and irredu
ible.Remark 5.10. Noti
e that if n1 = n2 and �m = 0, then N�(n; n; d; d) �=M(n; d) for all� > 0, while N0(n; n; d; d) �= M(n; d) �M(n; d). The pi
ture is quite di�erent if werestri
t to the stable points in the moduli spa
es. In fa
t there are no stable points inN0(n; n; d; d), i.e., N s0 (n; n; d; d) is empty, while N s�(n; n; d; d) �=M s(n; d) for � > 0.Proposition 5.11 (
f. [4℄ and [7℄).



34 (1) If � 2 [�m; �M ℄ is generi
 and GCD(n1; n1 + n2; d1 + d2) = 1, thenN�(n1; n2; d1; d2) = N s�(n1; n2; d1; d2):In parti
ular, the moduli spa
e N�(n1; n2; d1; d2) is non-empty and irredu
ibleif in addition 2g � 2 6 �.(2) Let m 2Zbe su
h that GCD(n1 + n2; d1 + d2 �mn1) = 1. Then � = m is nota 
riti
al value and there are no �-independent semistable triples.6. Main resultsWe now use the results of Se
tion 5.4, applied to the 
ase � = 2g � 2, to dedu
eour main results on the moduli spa
es of U(p; q)-Higgs bundles, and hen
e for therepresentation spa
es R(PU(p; q)) and R�(U(p; q)) (de�ned in se
tion 2). Re
all thatwe identi�ed 
omponents ofR(PU(p; q)) labeled by [a; b℄ 2Z�Z=(p+q)Z, and similarlyidenti�ed 
omponents of R�(U(p; q)) labeled by (a; b) 2Z�Z. Our arguments pro
eedalong the following lines:� By Proposition 2.5 R�(a; b) is a U(1)2g-�bration over R[a; b℄. The numberof 
onne
ted 
omponents of R�(a; b) is thus greater than or equal to that ofR[a; b℄.� By Proposition 3.13 there is a homeomorphismbetweenR�(a; b) and the modulispa
eM(a; b) of U(p; q)-Higgs bundles. This restri
ts to give a homeomorphismbetween R��(a; b) and Ms(a; b).� By Proposition 4.3 the number of 
onne
ted 
omponents of Ms(a; b) is deter-mined by the number of 
onne
ted 
omponents in the subspa
e of lo
al minimafor the Bott-Morse fun
tion de�ned in Se
tion 4.1.� By Theorem 5.3 we 
an identify the subspa
e of lo
al minima as a moduli spa
eof �-stable triples, with � = 2g � 2.Summarizing, we have:j�0(R[a; b℄)j 6 j�0(R�(a; b))j = j�0(M(a; b))j6 j�0(N (a; b))j = j�0(N2g�2(n1; n2; d1; d2))jwhere j�0(�)j denotes the number of 
omponents, and (in the notation of Se
tion 5) themoduli spa
e of triples whi
h appears in the last line is eitherN2g�2(p; q; a+p(2g�2); b)(if a=p 6 b=q) or N2g�2(q; p; b+ q(2g� 2); a). Similarly, repla
ing Proposition 4.3 withProposition 4.24, we get thatj�0( �R�[a; b℄)j 6 j�0( �R��(a; b))j = j�0( �Ms(a; b))j6 j�0( �N s(a; b))j = j�0( �N s2g�2(n1; n2; d1; d2))jIn parti
ular, if the moduli spa
es of triples are 
onne
ted, then so are the Higgs modulispa
es and the moduli spa
es of representations.6.1. Moduli spa
es of Higgs bundles. We begin with results for the U(p; q)-Higgsmoduli spa
es. Re
all from Proposition 3.20 that, whenever the moduli spa
eMs(a; b)of stable U(p; q)-Higgs bundles with invariants (a; b) is non-empty, it is a smooth 
om-plex manifold of dimension 1 + (p+ q)2(g � 1). We shall refer to this dimension as theexpe
ted dimension in the following.



35Theorem 6.1. Let (p; q) be any pair of positive integers and let (a; b) 2Z�Zbe su
hthat 0 6 j� (a; b)j 6 �M .(1) If either of the following sets of 
onditions apply, then the moduli spa
eMs(a; b)is a non-empty smooth manifold of the expe
ted dimension, with 
onne
ted 
lo-sure �Ms(a; b):(i) 0 < j� (a; b)j < �M ,(ii) j� (a; b)j = �M and p = q.(2) If any one of the following sets of 
onditions apply, then the moduli spa
eM(a; b) is non-empty and 
onne
ted:(i) � (a; b) = 0,(ii) j� (a; b)j = �M and p 6= q,(iii) (p � 1)(2g � 2) < j� j 6 �M = p(2g � 2) and p = q.Proof. (2) By Proposition 5.6 
ondition (i) implies that �m < 2g � 2 < �M for thetriples 
orresponding to points in N (a; b). Thus Theorem 5.8(2) (together with The-orem 5.3) implies that N (a; b) is non-empty and 
onne
ted. Similarly, 
ondition (ii)implies that �m = 0, and we 
an apply Theorem 5.9(1). The rest follows from Theorem5.4. (3) By Proposition 5.6, the 
onditions in (i) and (ii) are equivalent to �m = 2g�2and �M = 2g�2 respe
tively. It follows by parts (1) and (3) of Theorem 5.8 (togetherwith Theorem 5.3) that N (a; b) is non-empty and 
onne
ted. The rest follows fromTheorem 5.4.For (iii), we use the fa
t that j� j = jb � aj if p = q. The 
ondition on j� j is thusequivalent to d1 � d2 < 2g � 2 for the triples 
orresponding to points in N (a; b). Theresult thus follows by Theorem 5.9(2). �Remark 6.2. Combining (1) and (i){(ii) of (2) in Theorem 6.1, we see that the modulispa
e M(a; b) is non-empty for all (p; q; a; b) su
h that 0 6 j� j 6 �M .Remark 6.3. In Theorem 3.32 we gave a detailed des
ription for M(a; b) in the 
asethat p 6= q and j� (a; b)j = �M . The des
ription was 
omplete, provided that the spa
ewas non-empty. By the previous remark we 
an now remove this 
aveat.In general, the stable lo
usMs(a; b) is not the full moduli spa
e and the full modulispa
e M(a; b) is not smooth. Singularities 
an o

ur at points representing stri
tlysemistable obje
ts, and these 
an also a

ount for singularities in N (a; b), the spa
e oflo
al minima (as in Se
tion 5). These types of singularities are prevented by 
ertain
oprimality 
ondition:Proposition 6.4. Suppose that GCD(p + q; a+ b) = 1. Then:(1) M(a; b) is smooth.(2) � = 2g � 2 is not a 
riti
al value for triples of type (p; q; a + p(2g � 2); b) or(q; p; b+ q(2g � 2); a).(3) The moduli spa
es N2g�2(p; q; a+ p(2g � 2); b) and N2g�2(q; p; b+ q(2g � 2); a)are non-empty, smooth and irredu
ible.Proof. (1) This is simply a re-statement of (2) in Proposition 3.13.(2) Apply Proposition 5.11 (2) with (n1; n2; d1; d2) equal to (p; q; a+ p(2g � 2); b)or (q; p; b+ q(2g � 2); a) and m = 2g � 2.



36 (3) Sin
e GCD(p + q; a+ b) = 1 implies GCD(p; p + q; b+ a + q(2g � 2)) = 1 (orGCD(q; p+q; b+a+p(2g�2)) = 1), the result follows from (2) and Proposition5.11 (1). �Theorem 6.5. Let (p; q) be any pair of positive integers and let (a; b) be su
h that0 6 j� (a; b)j 6 �M . Suppose also that GCD(p + q; a+ b) = 1. Then the moduli spa
eM(a; b) is a (non-empty) smooth, 
onne
ted manifold of the expe
ted dimension.Proof. Combine Proposition 6.4 and Theorem 5.4. �Theorems 6.1 plus 6.5 are equivalent to Theorem A in the Introdu
tion.6.2. Moduli spa
es of representations. Using Proposition 3.13 we 
an translatethe results of Se
tion 6.1 into results about the representation spa
es R�(a; b) andR��(a; b) (for U(p; q) representations of the surfa
e group �). We denote the 
losure ofR��(a; b) in R�(a; b) by �R��(a; b).Theorem 6.6. Let (p; q) be any pair of positive integers and let (a; b) 2Z�Zbe su
hthat 0 6 j� (a; b)j 6 �M .(1) The moduli spa
e R�(a; b) is non-empty.(2) If either of the following sets of 
onditions apply, then the moduli spa
e R��(a; b)is a non-empty smooth manifold of the expe
ted dimension, with 
onne
ted 
lo-sure �R��(a; b) in R�(a; b):(i) 0 < j� (a; b)j < �M ,(ii) j� (a; b)j = �M and p = q.(3) If any one of the following sets of 
onditions apply, then the moduli spa
eR�(a; b) is 
onne
ted:(i) � (a; b) = 0,(ii) j� (a; b)j = �M and p 6= q,(iii) (p � 1)(2g � 2) < j� j 6 �M = p(2g � 2) and p = q,(iv) GCD(p + q; a+ b) = 1(4) If GCD(p + q; a + b) = 1 then R�(a; b) is a smooth manifold of the expe
teddimension.Proof. By Proposition 3.13, this follows from Theorem 6.1 and 6.5. �Theorem 6.7. Let (p; q) be any pair of positive integers su
h that p 6= q, and let (a; b)be su
h that j� (a; b)j = �M . Then every representation in R�(a; b) is redu
ible (i.e.R��(a; b) is empty). If p < q, then every su
h representation de
omposes as a dire
tsum of a semisimple representation of � in U(p; p) with maximal Toledo invariant anda semisimple representation in U(q � p). Thus, if � = p(2g � 2) then there is anisomorphismR�(p; q; a; b) �= R�(p; p; a; a� p(2g � 2))�R�(q � p; b� a+ p(2g � 2));where the notation R�(p; q; a; b) indi
ates the moduli spa
e of representations of �in U(p; q) with invariants (a; b), and R�(n; d) denotes the moduli spa
e of degree drepresentations of � in U(n).(A similar result holds if p > q, as well as if � = �p(2g � 2)).



37Proof. Proposition 3.13 and Theorem 3.32. �As observed in Se
tion 2.2 (
f. (2.7)), the spa
es R(a) = R�(a;�a) 
an be iden-ti�ed with 
omponents of R(U(p; q)), i.e. with 
omponents of the moduli spa
e forrepresentations of �1X in U(p; q). Applying Theorems 6.6 and 6.7, together with theobservation that � (a;�a) = 2a in the spe
ial 
ase where b = �a, we thus obtain thefollowing results for R(U(p; q)). Noti
e that the 
ondition GCD(p + q; a+ b) = 1 isnever satis�ed if a+ b = 0.Theorem 6.8. Let (p; q) be any pair of positive integers and let a 2 Z�Z be su
hthat jaj 6 minfp; qg(g � 1).(2) The moduli spa
e R�(a) is non-empty(2) If either of the following sets of 
onditions apply, then the moduli spa
e R�(a)is a non-empty, smooth manifold of the expe
ted dimension, with 
onne
ted
losure �R�(a) in R(a):(i) 0 < jaj < minfp; qg(g � 1) , or(ii) jaj = p(g � 1) and p = q,(3) If any one of the following sets of 
onditions apply, then the moduli spa
e R(a)is 
onne
ted:(i) a = 0,(ii) jaj = minfp; qg(g � 1) and p 6= q,(iii) (p � 1)(g � 1) < jaj 6 p(g � 1) and p = q,Theorem 6.9. Let (p; q) be any pair of positive integers su
h that p 6= q. If jaj =minfp; qg(g � 1) then R�(a) is empty and every representation in R(a) is redu
ible.If p < q, then every su
h representation de
omposes as a dire
t sum of a semisim-ple representation of � in U(p; p) with maximal Toledo invariant and a semisimplerepresentation in U(q � p). Thus, if a = p(g � 1) then there is an isomorphismR(a) �= R�(p; p; a; a� p(2g � 2))�R�(q � p; p(2g � 2));where the notation R�(p; q; a; b) indi
ates the moduli spa
e of representations of �in U(p; q) with invariants (a; b), and R�(n; d) denotes the moduli spa
e of degree drepresentations of � in U(n).(A similar result holds if p > q, as well as if a = �p(g � 1)).From Theorem 6.6 and Proposition 2.5 we obtain the following theorem about themoduli spa
es for PU(p; q) representations of �1X. Note that the 
losure �R�[a; b℄ inR[a; b℄ is the image of �R��(a; b) under the map of Proposition 2.5, hen
e these twospa
es have the same number of 
onne
ted 
omponents.Theorem 6.10. Let (p; q) be any pair of positive integers and let (a; b) 2 Z�Z besu
h that 0 6 j� (a; b)j 6 �M .(1) The moduli spa
e R[a; b℄ is non-empty.(2) If either of the following sets of 
onditions apply, then the moduli spa
e R�[a; b℄is a non-empty smooth manifold of the expe
ted dimension, with 
onne
ted 
lo-sure �R�[a; b℄ in R[a; b℄:(i) 0 < j� (a; b)j < �M , or(ii) j� (a; b)j = �M and p = q,



38 (3) If any one of the following sets of 
onditions apply, then the moduli spa
e R[a; b℄of all semi-simple representations is 
onne
ted:(i) � (a; b) = 0,(ii) j� (a; b)j = �M and p 6= q. ,(iii) (p � 1)(2g � 2) < j� j 6 �M = p(2g � 2) and p = q,(iv) GCD(p + q; a+ b) = 1Theorem 6.11. Let (p; q) be any pair of positive integers su
h that p 6= q, and let(a; b) be su
h that j� (a; b)j = �M . Then R�[a; b℄ is empty. If p < q, then every su
hrepresentation redu
es to a semisimple representation of �1X in P(U(p; p)�U(q�p)),su
h that the PU(p; p) representation indu
ed via proje
tion on the �rst fa
tor hasmaximal Toledo invariant. (A similar result holds if p > q.)Remark 6.12. As explained by Hit
hin in [22, Se
tion 5℄, the moduli spa
e of irredu
iblerepresentations in the adjoint form of a Lie group is liable to a
quire singularities,be
ause of the existen
e of stable ve
tor bundles whi
h are �xed under the a
tion oftensoring by a �nite order line bundle. For this reason we do not make any smoothnessstatements in Theorem 6.10.6.3. Total number of 
omponents and 
oprimality 
onditions. We end withsome elementary observations about the total number of 
omponents in the de
om-position R(PU(p; q)) = S(a;b)R[a; b℄, and about the number of su
h 
omponents forwhi
h the 
oprime 
ondition GCD(p+ q; a+ b) = 1 apply. We begin with the numberof 
omponents.By de�nition, � (a; b) takes values in 2nZ, where n = p+ q.Proposition 6.13. Suppose that GCD(p; q) = k. Then the map� : Z�Z=(p; q)Z�! 2nZ[a; b℄ 7�! 2n(aq � bp)�ts in an exa
t sequen
e0 �!Z=kZ ��!Z�Z=(p; q)Z ��! 2kn Z�! 0where the map � is [t℄ 7! [t pk ; t qk ℄. In parti
ular, � is a k : 1 map onto the subset2knZ� 2nZ.Proof. The map � is 
learly inje
tive, and � Æ � = 0. To see that ker(� ) = im(�),observe that if � [a; b℄ = 0 then either a = b = 0 or ab = pq , i.e. [a; b℄ = [t pk ; t qk ℄ for somet 2Z. Finally, if a0q � b0p = k, then for any l 2Zwe have � [la0; lb0℄ = 2kn l. Thus � issurje
tive onto 2knZ. �Remark 6.14. Proposition 6.13 shows why3we must use [a; b℄ rather than � to label the
omponents of R(PU(p; q)) or of R�(U(p; q)).3Unless p and q are 
oprime, in whi
h 
ase there is a bije
tive 
orresponden
e between [a; b℄ and � .



39De�nition 6.15. Suppose that GCD(p; q) = k. De�neC = ��1([��M ; �M ℄ \ 2kn Z) ; (6.1)where � is the map de�ned in Proposition 6.13.The following is then an immediate 
orollary of Proposition 6.13.Corollary 6.16. Suppose that GCD(p; q) = k and C is as above. Then C is pre
iselythe set of all the points in Z�Z=(p; q)Zwhi
h label 
omponents R[a; b℄ in R(PU(p; q)).The 
ardinality of C isjCj = 2nminfp; qg(g � 1) + k= j([��M; �M ℄ \ 2nZ)j+GCD(p; q)� 1 :Proof. The �rst statement is a dire
t 
onsequen
e of Proposition 6.13 and the bound on� . Suppose for de�niteness that minfp; qg = p. Then sin
e �M = 2minfp; qg(g � 1) =2kn (n pk (g � 1)) 2 2knZ, the number of points in [��M ; �M ℄ \ 2knZis 2n pk (g � 1) + 1. These
ond statement now follows from the fa
t that � is a k : 1 map. The proof is similarif minfp; qg = q. �Finally, we examine the 
oprime 
ondition GCD(p+ q; a+ b) = 1. We regard p andq as �xed, but allow [a; b℄ to vary. The 
oprime 
ondition GCD(p + q; a+ b) = 1 
anthus be satis�ed on some 
omponents but not on others.De�nition 6.17. Fix p and q and let C �Z�Z=(p+q)Zbe as in De�nition 6.15. De�neC1 to be the subset of 
lasses [a; b℄ 2 C for whi
h the 
ondition GCD(p+ q; a+ b) = 1is satis�ed.Proposition 6.18. Fix p and q and let C and C1 be as above. Both C1 and its 
om-plement in C are non-empty.Proof. If a = p and b = q � 1 then GCD(p + q; a + b) = 1. Also, � (p; q � 1) = 2pp+q ,whi
h is in [��M ; �M ℄ \ 2knZ. Thus [p; q � 1℄ is in C1. It is similarly straightforward tosee that (p; q) = (0; 0) de�nes an element in C � C1, as does (p; q) = (p;�p) if p 6 q or(p; q) = (q;�q) if q 6 p. �It seems somewhat 
ompli
ated to go beyond this result and 
ompletely enumeratethe elements in C1. The following result is, however, a step in that dire
tion.De�nition 6.19. Let 
 � R� R be the region depi
ted in Figure 2, i.e. the regionbounded by (i) the ray b = q and a 6 p, (ii) the ray a = p and b 6 q, (iii) the raya = 0 and b 6 0, (iv) the ray b = 0 and a 6 0, (v) the line aq� bp = n2 �M , and (vi) theline aq � bp = �n2�M , and in
luding all the boundary lines ex
ept the �rst two rays.Let 
Zbe the set of integer points in 
, i.e. 
Z= 
TZ�Z. We refer to 
 as thefundamental region for (p; q) (see Figure 2). Then 
Zis the integer latti
e inside thefundamental region.Proposition 6.20. 4Suppose that p and q are integers with GCD(p; q) = k and p 6 q.4With an analogous Proposition for the 
ase p > q.



40 (1) There is a bije
tion between C and 
Z.(2) If (a; b) lies in 
Zthen d = a+ b satis�es the bounds�n(g � 1) 6 d < n : (6.2)All values of d in this range o

ur.(3) Let lt denote the line aq� bp = tk. Then the points on ltT
Zde�ne the lo
usof points (a; b) for whi
h � (a; b) = t2kn .(4) The line lt interse
ts 
Zfor �npk (g � 1) 6 t 6 npk (g � 1) For ea
h integer t inthis range, there are k points on ltT
Z.(5) For a �xed t, GCD(a+ b; nk ) is the same for all integer points (a; b) on ltT
Z.(6) If GCD(d; nk ) 6= 1 then GCD(d0; n) 6= 1 for all (a0; b0) 2 ltT
Z.Proof. (1) Suppose �rst that ap 6 bp. Pi
k l su
h that 0 6 a+ lp 6 p. Then b+ lq 6 q,so that (a + lp; b + lq) is in the fundamental region. Similarly, if ap > bp then we pi
kl su
h that 0 6 b+ lq 6 q and see that a + lp 6 p. In this way we get a well de�nedmap from C to the fundamental region. The map is 
learly inje
tive. To see that it issurje
tive, noti
e that the boundary lines aq�bp = np(g�1), and aq�bp = �np(g�1)
orrespond to the 
onditions � = �M and � = ��M respe
tively.(2) This is 
lear from a sket
h of the fundamental region (see Figure 2). In su
h asket
h, the lo
i of points with 
onstant value of d = a + b are straight lines of slope�1. Sin
e p 6 q, the extreme 
ases are those of the lines passing through the points(0;�n(g � 1) and (p; q). Using the points (0; b) with �n(g � 1) 6 b < q we get pointsat whi
h all values of d in the range �n(g � 1) 6 d < q are realized. We get values ofd in the range g 6 d < n at the points (a; q � 1), with 1 6 a < p.(3)-(4) This is simply a restatement of Proposition 6.13.(5)-(6) Both follow from the fa
t that for any two points (a; b) and (a0; b0) on lt, weget d0 = d+ snk for some s 2Z. �Remark 6.21. There is no 
onverse to (6). Even if GCD(d; nk ) = 1, it is possible thatGCD(d0; n) 6= 1 for some (a0; b0) 2 ltT
Z. For example, take p = 2; q = 4; a = �1; b =0; a0 = 0; b0 = 2, and t = �2. Then GCD(d0; n) = 2 but GCD(d; nk ) = 1.
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Figure 1: Range for the stability parameter � for triples in N (a; b), displayed asfun
tions of � = 2pqp+q (ap � bq ), and showing the relative lo
ation of 2g � 2.



42
-a�p+q2q �M 0 p

6b

�p+q2p �M
0q
�����������
� = 0������������ = �M������������ = ��M d = qr r r r r r r r r d = 0rrrrrrrrrrrrrrrrr d = �p+q2q �Mr r r r r r

Figure 2: Fundamental region for (a; b). Components of R(PU(p; q)) 
orrespond tothe integer points in this region. Illustrative lines of 
onstant � (at � = ��M ; 0; �M)and lines of 
onstant d (at d = � n2q�M ; 0; q) are shown.
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