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2Abstrat. Using the L2 norm of the Higgs �eld as a Morse funtion, we study themoduli spaes of U(p; q)-Higgs bundles over a Riemann surfae. We require that thegenus of the surfae be at least two, but plae no onstraints on (p; q). A key step is theidenti�ation of the funtion's loal minima as moduli spaes of holomorphi triples.In a ompanion paper [7℄ we prove that these moduli spaes of triples are non-emptyand irreduible.Beause of the relation between at bundles and fundamental group representations,we an interpret our onlusions as results about the number of onneted omponentsin the moduli spae of semisimple PU(p; q)-representations. The topologial invariantsof the at bundles are used to label subspaes. These invariants are bounded by aMilnor{Wood type inequality. For eah allowed value of the invariants satisfying aertain oprimality ondition, we prove that the orresponding subspae is non-emptyand onneted. If the oprimality ondition does not hold, our results apply to thelosure of the moduli spae of irreduible representations.



31. IntrodutionThe relation between Higgs bundles and fundamental group representations providesa vivid illustration of the interation between geometry and topology. On the topo-logial side we have a losed oriented surfae X and the moduli spae (or haratervariety) of representations of �1X in a Lie group G. We ross over to omplex geometryby �xing a omplex struture on X, thereby turning it into a Riemann surfae. Thespae of representations, or equivalently the spae of at G-bundles, then emerges asa omplex analyti moduli spae of G-Higgs bundles. In this guise, the moduli spaearries a natural proper funtion whose restrition to the smooth lous is a Morse-Bottfuntion. We an therefore use this funtion to determine topologial properties of themoduli spae of representations. In this paper our goal is to pursue these ideas in thease where the group G is PU(p; q), the adjoint form of the non-ompat group U(p; q).A U(p; q)-Higgs bundle is a speial ase of the G-Higgs bundles de�ned by Hithinin [22℄, where G is a real form of a omplex redutive Lie group. Suh objets providea natural generalization of holomorphi vetor bundles, whih orrespond to the aseG = U(n) and zero Higgs �eld. In partiular, they permit an extension to othergroups of the Narasimhan and Seshadri theorem ([26℄) on the relation between unitaryrepresentations of �1X and stable vetor bundles. By embedding U(p; q) in GL(p+ q)we an give a onrete desription of a U(p; q)-Higgs bundle as a pair(V �W;� = � 0 � 0 �) (1.1)where V and W are holomorphi vetor bundles of rank p and q respetively, � is asetion inH0(Hom(W;V )
K), and  2 H0(Hom(V;W )
K), so that � 2 H0(End(V �W )
K).By the work of Hithin [22, 23℄ Donaldson [12℄, Simpson [29, 30, 31, 32℄ and Corlette[10℄, we an de�ne moduli spaes of polystable Higgs bundles, and these an be iden-ti�ed with moduli spaes of solutions to natural gauge theoreti equations. Moreover,sine the gauge theory equations amount to a projetive atness ondition, these mod-uli spaes orrespond to moduli spaes of at strutures. In the ase of U(p; q)-Higgsbundles, the at strutures orrespond to semi-simple representations of �1X into thegroup PU(p; q). The Higgs bundle moduli spaes an thus be used, in a way whih wemake preise in Setions 2 and 3, to study the representation varietyR(PU(p; q)) = Hom+(�1X;PU(p; q))=PU(p; q) ;where Hom+(�1X;PU(p; q)) denotes the set of semi-simple representations of �1X inPU(p; q), and the quotient is by the adjoint ation.Our main tool for studying the topology of the Higgs moduli spae is the funtionwhih measures the L2-norm of the Higgs �eld. When the moduli spae is smooth,this turns out to provide a suitably non-degenerate Bott-Morse funtion whih is,moreover, a proper map. In some ases (f. [22, 18, 20℄) the ritial submanifolds arewell enough understood to allow the extration of topologial information as detailed asthe Poinar�e polynomial. In our ase our understanding is on�ned to the loal minimaof the funtion. This is suÆient to allow us to ount the number of omponents of theHiggs moduli spaes, and thus of the representation varieties. A trivial but importantobservation is that the properness of the funtion allows us to draw onlusions aboutonneted omponents also in the non-smooth ase; we shall heneforth, somewhat



4impreisely, refer to the funtion as the \Morse Funtion", whether or not the modulispae is smooth.The riterion we use for �nding the loal minima an be applied more generally, forinstane if U(p; q) is replaed by any real form of a omplex redutive group. Thisshould provide an important tool for future researh. In the present ase, this riterionallows us to identify the subspaes of loal minima as moduli spaes in their own right,namely as moduli spaes of the holomorphi triples introdued in [4℄. In a ompanionpaper [7℄ we develop the theory of suh objets and their moduli spaes. Using theresults of [7℄ we are able to dedue several results about the Higgs moduli spaes andalso about the orresponding representation spaes.The relation between Higgs bundles and surfae group representations has beensuessfully exploited by others, going bak originally to the work of Hithin andSimpson on omplex redutive groups. The use of Higgs bundle methods to studyR(G) for real G was pioneered by Hithin in [23℄, and further developed in [18, 19℄.It has also been used by Xia and Xia-Markman (in [34, 35, 36, 24℄) to study variousspeial ases of G = PU(p; q). None of these, though, address the general ase ofPU(p; q), as we do in this paper.We now give a brief summary of the ontents and main results of this paper.In Setions 2 and 3 we give some bakground and desribe the basi objets of ourstudy. In Setions 2 we desribe the natural invariants assoiated with representationsof �1X into PU(p; q). We also disuss the invariants assoiated with representations of�, the universal entral extensions of �1, into U(p; q). In both ases, these involve a pairof integers (a; b) whih an be interpreted respetively as degrees of rank p and rankq vetor bundles over X. In the ase of the PU(p; q) representations, the pair is wellde�ned only as a lass in a quotient Z�Z=(p; q)Z. This leads us to de�ne subspaesR[a; b℄ � R(PU(p; q)) and R�(a; b) � R�(U(p; q)). For �xed (a; b), the spae R�(a; b)�bers over R[a; b℄ with onneted �bers.In setion 3 we de�ne U(p; q)-Higgs bundles and their moduli spaes and establishtheir essential properties. Thinking of a U(p; q)-Higgs bundle as a pair (V �W;�), theparameters (a; b) appear here as the degrees of the bundles V and W . It is the modulispae of polystable U(p; q)-Higgs bundles with deg(V ) = a and degW = b, whih wedenote by M(a; b), that an be identi�ed with M(a; b) with the omponent R�(a; b)of R�(U(p; q)). This, together with the �bration over R�(U(p; q)) are the ruial linksbetween the Higgs moduli and the surfae group representation varieties.Fixing p; q; a and b, we begin the Morse theoreti analysis of M(a; b) in Setion 4.The basi results we need (f. Proposition 4.3) are that the L2-norm of the Higgs �eldhas a minimum on eah onneted omponent of M(a; b), and hene if the subspaeof loal minima is onneted then so is M(a; b). We identify the loal minima, theloi of whih we denote by N (a; b), and prove (f. Theorem 4.6 and Proposition 4.8)that these orrespond preisely to ertain holomorphi triples in the sense of [4℄. A fulltreatment of holomorphi triples and their moduli spaes is given in [7℄. We summarizethe salient features of these moduli spaes in Setion 5.In setion 6 we knit together all the strands. Using the properties of the modulispaes of triples, we establish the key (for our purposes) topologial properties of thestrata N (a; b). These lead diretly to our main results for the moduli spaes M(a; b).



5Some of the results depend on (a; b) only in the ombination� = � (a; b) = 2aq � bpp+ q ;known as the Toledo invariant. Indeed, (a; b) is onstrained by the bounds 0 6 j� j 6�M , where �M = 2minfp; qg(g � 1). Originally proved by Domi and Toledo in [11℄,these bounds emerge naturally from our point of view (f. Corollary 3.27 and Remark5.7). Bounds on invariants of this type, for representations of �nitely generated groupsin U(p; q), have also reently been studied using tehniques from ergodi theory (see[9℄). Summarizing our main results, we proveTheorem A (Theorems 6.1 and 6.5). Fix positive integers (p; q). Take (a; b) 2Z�Zand let � (a; b) be the Toledo invariant. LetMs(a; b) �M(a; b) denote the moduli spaeof stritly stable U(p; q)-Higgs bundles.(1) M(a; b) is non-empty if and only if 0 6 j� (a; b)j 6 �M . If � = 0, or j� j = �Mand p 6= q then Ms(a; b) is empty; otherwise it is non-empty.(2) If j� (a; b)j = 0 or j� (a; b)j = �M and p 6= q then M(a; b) is onneted.(3) Whenever non-empty, the moduli spae Ms(a; b) is a smooth manifold of theexpeted dimension (i.e. 1+(p+ q)2(g�1)), with onneted losure �Ms(a; b) �M(a; b). In these ases, if M(a; b) has more than one onneted omponent,then GCD(p + q; a+ b) 6= 1 and, if p = q, 0 < j� j 6 (p � 1)(2g � 2).Theorem B (Theorem 3.32). Suppose that p 6= q and (a; b) 2 Z�Zare suh thatj� (a; b)j = �M . To be spei�, suppose that p < q and � (a; b) = p(2g � 2). Then everyelement in M(a; b) deomposes as the diret sum of a polystable U(p; p)-Higgs bundlewith maximal Toledo invariant and a polystable vetor bundle of rank q � p. ThusM(p; q; a; b) �=M(p; p; a; a� p(2g � 2)) �M(q � p; b� a+ p(2g � 2)): (1.2)In partiular, the dimension at a smooth point inM(p; q; a; b) is 2+(q2+5p2�2pq)(g�1), and is hene stritly smaller than the expeted dimension if g > 2.(A similar result holds if p > q, as well as if � = �p(2g � 2)).Sine we identify M(a; b) = R�(a; b), we an translate these results diretly intostatements about R�(a; b) (given in Theorems 6.6 and 6.7). The subspae in R�(a; b)whih orresponds to Ms(a; b) �M(a; b) is denoted by R��(a; b). The representationsit labels inlude all the simple representations. De�ning R��(U(p; q)) � R�(U(p; q)) tobe the union over all (a; b) of the omponents R��(a; b) we thus obtainTheorem C (Corollary 6.16) The moduli spae R��(U(p; q)) has2(p + q)minfp; qg(g � 1) + GCD(p; q)onneted omponents.Sine R�(a; b) �bers over R[a; b℄ with onneted �bers, we an apply our results to thelatter. The results are given in Theorems 6.10 and 6.11.The above results fall just short of saying that the full moduli spaes M(a; b) (=R(a; b)) and R[a; b℄ are onneted for all allowed hoies of (a; b). They show howeverthat if any one is not onneted then it has one (non-empty) onneted omponentwhih ontains all the irreduible objets. Any other omponents must thus onsist



6entirely of reduible (or stritly semisimple) elements. Theorem B and its analogsfor R�(a; b) and R[a; b℄ generalize rigidity results of Toledo [33℄ (when p = 1) andHern�andez [21℄ (when p = 2).This paper, together with its ompanion [7℄ form a substantially revised version ofthe preprint [6℄. The main results proved in this paper were announed in the note [5℄.In that note we laim (without proof) that the onnetedness results for the modulispaes R(a; b) and R[a; b℄ hold without the above quali�ations. This is a reasonableonjeture, whih we hope to ome bak to in a future publiation.We note, �nally, that our methods surely apply more widely than to U(p; q)-Higgsbundles and PU(p; q) representations. Careful srutiny of the Lie algebra propertiesused in the proofs suggests we an replae U(p; q) by any real group G for whih G=His hermitian symmetri, where H � G is a maximal ompat subgroup. This will beaddressed in a future publiation.Aknowledgements. We thank the mathematis departments of the University ofIllinois at Urbana-Champaign, the University Aut�onoma of Madrid and the Univer-sity of Aarhus, the Department of Pure Mathematis of the University of Porto, theMathematial Sienes Researh Institute of Berkeley and the Mathematial Insti-tute of the University of Oxford, and the Erwin Shr�odinger International Institutefor Mathematial Physis in Vienna for their hospitality during various stages of thisresearh. We thank Fran Burstall, Bill Goldman, Nigel Hithin, Eyal Markman, S.Ramanan, Domingo Toledo, and Eugene Xia, for many insights and patient explana-tions. 2. Representations of surfae groupsIn this setion we reord some general fats about representations of a surfae groupin U(p; q) or PU(p; q) and set up our notation. A very useful referene for the generaltheory is Goldman's paper [16℄.2.1. Moduli spaes of representations. LetX be a losed oriented surfae of genusg > 2. By de�nition U(p; q) is the subgroup of GL(n; C ) (with n = p + q) whihleaves invariant a hermitian form of signature (p; q). It is a non-ompat real form ofGL(n; C ) with enter U(1) and maximal ompat subgroup U(p)�U(q). The quotientU(p; q)=(U(p) � U(q)) is a hermitian symmetri spae. The adjoint form PU(p; q) isgiven by the exat sequene of groups1 �! U(1) �! U(p; q) �! PU(p; q) �! 1 ;and we have a standard inlusion PU(p; q) � PGL(n; C ).De�nition 2.1. By a representation of �1X in PU(p; q) we mean a homomorphism� : �1X ! PU(p; q). We say that a representation of �1X in PU(p; q) is semi-simpleif the indued (adjoint) representation on the Lie algebra of PU(p; q) is semi-simple.The group PU(p; q) ats on the set of representations via onjugation. Restriting tothe semi-simple representations, we get the moduli spae of representations,R(PU(p; q)) = Hom+(�1X;PU(p; q))=PU(p; q) : (2.1)



7The moduli spae of representations an be desribed more onretely as follows.From the standard presentation�1X = hA1; B1; : : : ; Ag; Bg j gYi=1[Ai; Bi℄ = 1iwe see that Hom+(�1X;PU(p; q)) an be embedded in PU(p; q)2g viaHom+(�1X;PU(p; q))! PU(p; q)2g� 7! (�(A1); : : : �(Bg)):We give Hom+(�1X;PU(p; q)) the subspae topology and R(PU(p; q)) the quotienttopology. This topology is Hausdor� beause we have restrited attention to semi-simple representations.Clearly any representation of �1X in U(p; q) gives rise to a representation in PU(p; q);however, not all representations in PU(p; q) lift to U(p; q). We are thus motivated toonsider representations of the entral extension0 �!Z�! � �! �1X �! 1 : (2.2)Suh extensions are de�ned (as in [1℄) by the generators A1; B1; : : : ; Ag; Bg and a en-tral element J subjet to the relation Qgi=1[Ai; Bi℄ = J . With � thus de�ned, anyrepresentation of �1X in PU(p; q) an be lifted to a representation of � in U(p; q).In analogy with De�nition 2.1 we make the following de�nition.De�nition 2.2. We de�ne the moduli spae of semi-simple representations of � inU(p; q) by R�(U(p; q)) = Hom+(�;U(p; q))=U(p; q) ; (2.3)where semi-simpliity is de�ned with respet to the indued adjoint representation.This spae is topologized in the same way as R(PU(p; q)).2.2. Invariants. Our basi objetive is to study the number of onneted omponentsof the spaes R(PU(p; q)) and R�(U(p; q)). The �rst step in the study of topologialproperties of these spaes is to identify the appropriate topologial invariant of a rep-resentation � : �1X ! G. For a general onneted Lie group G the relevant invariantis an obstrution lass in H2(X;�1G) �= �1G (see Goldman [16, 17℄). In the followingwe give an expliit desription of this invariant in our ase, using harateristi lassesof the at bundles assoiated to representations of the fundamental group. In fat weshall not need the more general desription of the invariant.We begin by onsidering the ase G = U(p; q). By the same argument as in [1℄1,R�(U(p; q)) an be identi�ed with the moduli spae of U(p; q)-bundles on X withprojetively at onnetions. Taking a redution to the maximal ompat U(p)�U(q),we thus assoiate to eah lass ~� 2 R�(U(p; q)) a vetor bundle of the form V �W ,where V and W are rank p and q respetively, and thus a pair of integers (a; b) =(deg(V );deg(W )). There is thus a map~ : R�(U(p; q))!Z�Z1While [1℄ gives the argument for U(n) and PU(n), there are no essential hanges to be made inorder to adapt for the ase of U(p; q) and PU(p; q).



8given by ~(~�) = (a; b). The orresponding map on Hom+(�;U(p; q)) is learly on-tinuous and thus loally onstant. Sine U(p; q) is onneted, the map ~ is likewiseontinuous and thus onstant on onneted omponents. We make the following de�-nition.De�nition 2.3. The subspae of R�(U(p; q)) orresponding to representations withinvariants (a; b) is denoted byR�(a; b) = ~�1(a; b)= f~� 2 R�(U(p; q)) j ~(~�) = (a; b) 2Z�Zg :Note that R�(a; b) is a union of onneted omponents, beause ~ is onstant oneah onneted omponent.Next we onsider the ase G = PU(p; q). Any at PU(p; q)-bundle lifts to a U(p; q)-bundle with a onnetion with onstant entral urvature. This lift is, however,not uniquely determined: in fat two suh U(p; q)-bundles give rise to the same atPU(p; q)-bundle if and only if one an be obtained from the other by twisting with aline bundle L with a unitary onnetion of onstant urvature. If the invariant of theU(p; q)-bundle is (a; b) and the degree of L is l, then the invariant assoiated to thetwisted bundle is (a+ pl; b+ ql). There is thus a well de�ned map : R(PU(p; q)) �! (Z�Z)=(p; q)Z; (2.4)where (Z�Z)=(p; q)Zdenotes the quotient ofZ�Zby theZ-ation l�(a; b) = (a+pl; b+ql). Notie that (Z�Z)=(p; q)Zan be identi�ed with �1(PU(p; q)). The invariantde�ned by  is the same as the obstrution lass de�ned by Goldman [16, 17℄.De�nition 2.4. Denote the image of (a; b) in (Z�Z)=(p; q)Zby [a; b℄. The subspaeof R(PU(p; q)) orresponding to representations with invariant [a; b℄ is denoted byR[a; b℄ = �1[a; b℄= f� 2 R(PU(p; q)) j (�) = [a; b℄ 2 (Z�Z)=(p; q)Zg :The spae R[a; b℄ is a union of onneted omponents in the same way as R�(a; b).In order to ompare the spaes R�(a; b) and R[a; b℄ notie that we have surjetive mapsR�(a; b)!R[a; b℄: (2.5)Moreover, the preimage ��1(R[a; b℄) = [(a;b)R�(a; b) (2.6)where the union is over all (a; b) in the lass [a; b℄ 2 (Z�Z)=(p; q)Z. As mentionedabove, tensoring by line bundles of degree l with onstant urvature onnetions givesan isomorphism R�(a; b) �=�! R�(a+ pl; b+ ql) :Notie that if (�) = [a;�a℄ for a representation � 2 R(PU(p; q)), then the assoi-ated U(p; q)-bundle an be taken to have degree zero and the projetively at on-netion is atually at. Then � de�nes a representation of �1X in U(p; q). Underthe orrespondene between R(PU(p; q)) and R�(U(p; q)), � orresponds to a � rep-resentation in whih the entral element J ats trivially. Furthermore, the subspaes



9R�(a;�a) � R�(U(p; q)) an be identi�ed with omponents of R(U(p; q)) (the modulispae for representations of �1X in U(p; q)). Indeed, de�ningR(a) = R�(a;�a) ; (2.7)we see that R(U(p; q)) is a union over a 2Zof the subspaes R(a).Finally, we observe that the moduli spae of at degree zero line bundles ats bytensor produt of bundles on R�(a; b). Sine this moduli spae is isomorphi to thetorus U(1)2g, we get the following relation between onneted omponents.Proposition 2.5. The map R�(a; b)!R[a; b℄ given in (2.5) de�nes a U(1)2g-�bration.Thus the subspae R[a; b℄ � R(PU(p; q)) is onneted if R�(a; b) is onneted. �3. Higgs bundles and flat onnetionsWe study the moduli spaes of representations by hoosing a omplex struture onX. This allows us to identify these spaes with ertain moduli spaes of Higgs bundles.In this setion we explain this orrespondene and reall some general fats about Higgsbundles. Following this, we desribe the speial lass of Higgs bundles relevant for thestudy of representations in PU(p; q) and U(p; q) and derive some �rst results aboutthese moduli spaes.3.1. GL(n; C )-Higgs bundles. Give X the struture of a Riemann surfae. We reall(from [10, 12, 22, 29, 31, 32℄) the following de�nition and basi fats about GL(n; C )-Higgs bundles.De�nition 3.1. (1) A GL(n; C )-Higgs bundle on X is a pair (E;�), where E is arank n holomorphi vetor bundle over X and � 2 H0(End(E)
K) is a holomorphiendomorphism of E twisted by the anonial bundle K of X.(2) The GL(n; C )-Higgs bundle (E;�) is stable if the slope stability ondition�(E 0) < �(E) (3.1)holds for all proper �-invariant subbundles E 0 of E. Here the slope is de�ned by�(E) = deg(E)= rk(E) and �-invariane means that �(E 0) � E 0
K. Semistability isde�ned by replaing the above strit inequality with a weak inequality. A Higgs bundleis alled polystable if it is the diret sum of stable Higgs bundles with the same slope.(3) Given a hermitian metri on E, letA denote the unique unitary onnetion ompat-ible with the holomorphi struture, and let FA be its urvature. Hithin's equationson (E;�) are FA + [�;��℄ = �p�1�IdE!;��A� = 0; (3.2)where ! is the K�ahler form on X, IdE is the identity on E, � = �(E) and ��A is theanti-holomorphi part of the ovariant derivative dA. A solution to Hithin's equationsis irreduible if there is no proper subbundle of E preserved by A and �.



10Theorem 3.2. (1) Let (E;�) be a GL(n; C )-Higgs bundle. Then (E;�) is polystable ifand only if it admits a hermitian metri suh that Hithin's equations (3.2) are satis�ed.Moreover, (E;�) is stable if and only if the orresponding solution is irreduible.(2) Fix a hermitian metri in a smooth rank n omplex vetor bundle on X, thenthere is a gauge theoreti moduli spae of pairs (A;�), onsisting of a unitary onne-tion A and an endomorphism valued (1; 0)-form �, whih are solutions to Hithin'sequations (3.2), modulo U(n)-gauge equivalene.(3) The moduli spae of rank n degree d polystable Higgs bundles is a quasi-projetivevariety of omplex dimension 2(d+n2(g�1)). There is a map from the gauge theoretimoduli spae to this moduli spae given by taking a solution (A;�) to Hithin's equationsto the Higgs bundle (E;�), where the holomorphi struture on E is given by ��A. Thismap is a homeomorphism, and a di�eomorphism on the smooth lous.(4) If we de�ne a Higgs onnetion (as in [31℄) byD = dA + � (3.3)where � = �+ ��, then Hithin's equations are equivalent to the onditionsFD =�p�1�IdE!;dA� = 0;d�A� = 0: (3.4)In partiular, D is a projetively at onnetion. If deg(E) = 0 then D is atuallyat. It follows that in this ase the pair (E;D) de�nes a representation of �1X inGL(n; C ). If deg(E) 6= 0, then the pair (E;D) de�nes a representation of �1X inPGL(n; C ), or equivalently, a representation of � in GL(n; C ). By the theorem ofCorlette ([10℄), every semisimple representation of � (and therefore every semisimplerepresentation of �1X) arises in this way.(5) This orrespondene gives rise to a homeomorphism between the moduli spae ofpolystable Higgs bundles of rank n and the moduli spae of semisimple representationsof � in GL(n; C ). If the degree of the Higgs bundle is zero, then the moduli spae ishomeomorphi to the moduli spae of representations of �1X in GL(n; C ).3.2. U(p; q)-Higgs bundles. If we �x integers p and q suh that n = p + q, then wean isolate a speial lass of GL(n; C )-Higgs bundles by the requirements thatE = V �W� = � 0 � 0 � (3.5)where V and W are holomorphi vetor bundles of rank p and q respetively andthe non-zero omponents in the Higgs �eld are � 2 H0(Hom(W;V ) 
 K), and  2H0(Hom(V;W )
K).The form of the Higgs �eld is determined by the Lie theory of the symmetri spaeU(p; q)=(U(p)� U(q)). Reall that for any real form G of a omplex redutive groupGC , with maximal ompat subgroup H, there is an Ad-invariant deompositiong = h+mwhere g=Lie(G), h=Lie(H) is the +1 eigenspae of the Cartan involution and m is the�1 eigenspae. This indues a deomposition



11gC = hC +mC (3.6)of gC=Lie(GC ). In the ase of G = U(p; q), where H = U(p) � U(q) and thus hC =gl(p; C ) � gl(q; C ), the deomposition (3.6) beomesgl(n; C ) = (gl(p; C ) � gl(q; C )) +mC : (3.7)If we identify gl(p; C ) � gl(q; C ) with the blok diagonal elements in gl(n; C ), then mCorresponds to the o� diagonal matries.We an now desribe the above Higgs bundles more intrinsially as follows. LetPGL(p;C) and PGL(q;C) be the prinipal frame bundles for V and W respetively. LetP = PGL(p;C) � PGL(q;C) be the �ber produt, and let AdP = P �Ad gl(n; C ) be theadjoint bundle, where GL(p; C ) � GL(q; C ) � GL(n; C ) ats by the adjoint ation onthe Lie algebra of GL(n; C ). This de�nes a subbundlePmC = P �Ad mC � AdP : (3.8)We an then make the following de�nition.De�nition 3.3. AU(p; q)-Higgs bundle2 onX is a pair (P;�) where P is a holomorphiprinipal GL(p; C ) � GL(q; C ) bundle, and � is a holomorphi setion of the vetorbundle PmC 
K (where PmC is the bundle de�ned in (3.8)).Remark 3.4. We an always write P = PGL(p;C) � PGL(q;C) . If we let V and W bethe standard vetor bundles assoiated to PGL(p;C) and PGL(q;C) respetively, then any� 2 H0(PmC 
K) an be written as in (3.5). We will usually adopt the vetor bundledesription of U(p; q)-Higgs bundles.Remark 3.5. De�nition 3.3 is ompatible with the de�nitions in [23℄ and [18℄, whereG-Higgs bundles are de�ned for any real form G of a omplex redutive Lie groupGC . There, using the above notation, a G-Higgs bundle is a pair (P;�), where Pis a prinipal HC -bundle and � is a holomorphi setion of (P �Ad mC ) 
 K. Froma di�erent perspetive, De�nition 3.3 de�nes an example of a prinipal pair in thesense of [2℄ and [25℄. Stritly speaking, sine the anonial bundle K plays the roleof a �xed `twisting bundle', what we get is a prinipal pair in the sense of [8℄. Thede�ning data for the pair are then the prinipal GL(p; C ) �GL(q; C ) �GL(1)-bundlePGL(p;C) � PGL(q;C) � PK (where PK is the frame bundle for K), and the assoiatedvetor bundle PmC 
K.Lemma 3.6. Let (E = V �W;�) be a U(p; q)-Higgs bundle with a hermitian metrisuh that V �W is a unitary orthogonal deomposition. Let A be a unitary onnetionand let D = dA+ � be the orresponding Higgs onnetion, where � = �+��. Then Dis a U(p; q)-onnetion, i.e. in any unitary loal frame the onnetion 1-form takes itsvalues in the Lie algebra of U(p; q).Proof. Fix a loal unitary frame. Then D = d + A + �, where A takes its values inu(p)� u(q) � u(p; q), while � takes its values in m, whereu(p; q) = u(p) � u(q) +m2The reason for the name is explained by Remark 3.5 and Lemma 3.6



12is the eigenspae deomposition of the Cartan involution. �De�nition 3.7. Let (E;�) be a U(p; q)-Higgs bundle with E = V � W and � =� 0 � 0 �. We say (E;�) is a stable U(p; q)-Higgs bundle if the slope stability ondition�(E 0) < �(E), is satis�ed for all �-invariant subbundles of the form E 0 = V 0�W 0, i.e.for all subbundles V 0 � V and W 0 �W suh that� :W 0 �! V 0 
K (3.9) : V 0 �! W 0 
K : (3.10)Semistability for U(p; q)-Higgs bundles is de�ned by replaing the above strit inequal-ity with a weak inequality, and (E;�) is polystable if it is a diret sum of stableU(p; q)-Higgs bundles all of the same slope. We shall say that a polystable U(p; q)-Higgs bundle whih is not stable is reduible. A morphism between two U(p; q)-Higgsbundles (V �W;�) and (V 0�W 0;�0) is given by maps gV : V ! V 0 and gW :W ! W 0whih intertwine � and �0, i.e. suh that (gV � gW )
 IK Æ � = �0 Æ (gV � gW ) whereIK is the identity on K. In partiular we have a natural notion of isomorphism ofU(p; q)-Higgs bundles.Remark 3.8. The stability ondition for a U(p; q)-Higgs bundle is a priori weaker thanthe stability ondition given in De�nition 3.1 for GL(n; C )-Higgs bundles. However,it is shown in [19, Setion 2.3℄ that the weaker ondition is in fat equivalent to theordinary stability of (E;�).Proposition 3.9. Let (E;�) be a U(p; q)-Higgs bundle with E = V �W and � =� 0 � 0 �. Then (E;�) is polystable if and only if it admits a hermitian metri suh thatE = V �W is an orthogonal deomposition and suh that Hithin's equations (3.2) aresatis�ed.Proof. This is a speial ase of the orrespondene invoked in [23℄ for G-Higgs bundleswhere G is a real form of a redutive Lie group. By Remark 3.5 it an also be seen asa speial ase of the Hithin{Kobayashi orrespondene for prinipal pairs (f. [2℄ and[25℄ and [8℄). We note �nally that in one diretion the result follows immediately fromTheorem 3.2 (1): if (V �W;�) supports a ompatible metri suh that (3.2) is satis�ed,then it is polystable as a GL(n; C )-Higgs bundle, and hene it is U(p; q)-polystable. �De�nition 3.10. We de�ne M(a; b) to be the moduli spae of polystable U(p; q)-Higgs bundles with deg(V ) = a and degW = b. We denote by Ms(a; b) the subspaeparameterizing the stritly stable U(p; q)-Higgs bundles.The onstrution of M(a; b) is essentially the same as in setion x9 of [32℄. Therethe moduli spae of G-Higgs bundles is onstruted for any redutive group G. Wetake G = GL(p; C ) � GL(q; C ). The di�erene between a U(p; q)-Higgs bundle and aGL(p; C ) �GL(q; C )-Higgs bundle is entirely in the nature of the Higgs �elds. Takingthe standard embedding of GL(p; C ) � GL(q; C ) in GL(p + q; C ) we see that in aGL(p; C ) � GL(q; C )-Higgs bundle the Higgs �eld � takes its values in the subspae(gl(p) � gl(q)) � gl(p + q), while in a U(p; q)-Higgs bundle the Higgs �eld � takesits values in the omplementary subspae mC (as in (3.7)). Sine both subspaesare invariant under the adjoint ation of GL(p; C ) � GL(q; C ), the same method ofonstrution works for the moduli spaes of both types of Higgs bundle.



13We an desribe the gauge theory version of the moduli spaeM(a; b) using standardmethods; see Hithin [22℄ for a onstrution in the ase of ordinary rank 2 Higgsbundles. To adapt to our ase we proeed as follows. Let E = V �W be a smoothomplex vetor bundle with a hermitian metri suh that the diret sum deompositionis orthogonal. We let A denote the spae of onnetions on E whih are diret sumsof unitary onnetions on V and W and we let 
 denote the spae of Higgs �elds� 2 
1;0(End(E)) of the form � = � 0 � 0 �. The orrespondene between unitaryonnetions and holomorphi strutures via ��-operators turns A �
 into a omplexaÆne spae whih aquires a hermitian metri using the metri on E and integrationover X. The group G of U(p)�U(q)-gauge transformations ats on the on�gurationspae C � A � 
 of solutions (A;�) to Hithin's equations (3.2). The quotient C=Gis, by de�nition, the gauge theory moduli spae. As in [22℄, the open subset of C=Gorresponding to irreduible solutions has a K�ahler manifold strutureTo see that the gauge theory moduli spae is homeomorphi to M(a; b) we anonsider this latter spae from the omplex analyti point of view (f. Remark 3.23below): onsider triples (��V ; ��W ;�), where ��V and ��W are ��-operators on V and W ,respetively, and � 2 
. Let CC be the set of suh triples for whih � is holomorphiand the assoiated U(p; q)-Higgs bundle is polystable. We an then viewM(a; b) as thequotient of CC by the omplex gauge group. We learly have an inlusion C ,! CC whihdesends to give a ontinuous map from the gauge theory moduli spae to M(a; b).The Hithin-Kobayashi orrespondene of Proposition 3.9 now shows that this map isin fat a homeomorphism.For a third perspetive, we observe that provided that V and W are not isomorphibundles, i.e. provided p 6= q or a 6= b, we an viewMs(a; b) as a subvariety of a modulispae of stable GL(p+ q)-Higgs bundle. If V ' W , thenMs(a; b) is a �nite over of asubvariety in the larger moduli spae:Proposition 3.11. With n = p+ q and d = a+ b, let Ms(d) denote the moduli spaeof stable GL(n; C )-Higgs bundles of degree d. If p 6= q or a 6= b then Ms(a; b) embedsas a losed subvariety in Ms(d). If p = q and a = b, then there is a �nite morphismfrom M(a; a) to M(d).Proof. Let [V �W;�℄p;q denote the point in M(a; b) represented by the U(p; q)-Higgsbundle (V �W;�). Then (E = V �W;�) is a stable GL(n; C )-Higgs bundle and themapM(a; b)!M(d) is de�ned by[V �W;�℄p;q 7! [E;�℄n ;where [; ℄n denotes the isomorphism lass in M(d). The only question is whetherthis map is injetive. Suppose that (E = V � W;�) and (E 0 = V 0 � W 0;�0) areisomorphi as GL(n; C )-Higgs bundles. Let the isomorphism be given by a omplexgauge transformation g : E ! E 0. If g is not of the form ( gV 00 gW ) then the o� diagonalomponents determine morphisms � : V ! W 0 and � : W ! V 0. Let N = ker(�) �ker(�) be the subbundle of V �W determined by the kernels of � and �. If p 6= q thenN is a non-trivial proper subbundle. Moreover, using the fat that g� = �0g, we seethat it is �-invariant. Sine (V �W;�) is stable, it follows that�(N) < �(E) : (3.11)



14 Similarly, the images of � and � determine a proper �0-invariant subbundle of E 0,say I, for whih �(I) < �(E 0) : (3.12)But if �(E) = �(E 0) then (3.11) and (3.12) annot both be satis�ed. Thus � and �must both vanish and hene [V �W;�℄p;q = [V 0 �W 0;�0℄p;q.If p = q, then this argument an fail, but only if � and � are both isomorphisms.In that ase, N = 0 and I = E. This also requires a = b. Under these onditions, ifV and W are non-isomorphi, then [V �W; ( 0 � 0 )℄n = [W � V; ( 0 � 0 )℄n but the Higgsbundles are not isomorphi as U(p; q)-Higgs bundles. �Proposition 3.12. If GCD(p + q; a+ b) = 1 then Ms(a; b) =M(a; b).Proof. If GCD(p+ q; a+ b) = 1 then for purely numerial reasons there are no stritlysemistable U(p; q)-Higgs bundles in M(a; b). �The link to moduli spaes of representations is provided by the next result.Proposition 3.13. There is a homeomorphism M(a; b) �= R�(a; b).Proof. Suppose that (E = V �W;�) represents a point in M(a; b), i.e. suppose thatit is a U(p; q)-polystable Higgs bundle, and suppose that E has a hermitian metrisuh that the diret sum deomposition is orthogonal and Hithin's equations (3.2) aresatis�ed. Rewriting the equations in terms of the Higgs onnetionD = dA+�, where Ais the metri onnetion and � = �+��, we see that D is projetively at. By Lemma3.6 it is a projetively at U(p; q)-onnetion, and thus de�nes a point in R�(a; b).Conversely by Corlette's theorem [10℄, every representation in Hom+(�1X;PU(p; q)),or equivalently every representation in Hom+(�;U(p; q)), arises in this way. The fatthat this orrespondene gives a homeomorphism follows by the same argument as theone given in [32℄ for ordinary Higgs bundles. �De�nition 3.14. De�ne the subspae R��(a; b) to be the subspae orresponding toMs(a; b) via the homeomorphism in Proposition 3.13. Using the �bration of R�(a; b)over R[a; b℄, de�ne R�[a; b℄ � R[a; b℄ to be the image of R��(a; b).Remark 3.15. Thus R��(a; b) parameterizes the representations whih give rise to stableU(p; q)-Higgs bundles. Reall from Remark 3.8 that a U(p; q)-Higgs bundle is stable(in the sense of De�nition 3.7) if and only if its is stable as an ordinary GL(n; C )-Higgs bundle. Now, a GL(n; C )-Higgs bundle is stable if and only if the orrespondingrepresentation of � on C n is irreduible (f. Corlette [10℄). Hene we see that thesubspae R��(a; b) orresponds to the representations of � in U(p; q) whih are irre-duible as GL(n; C ) representations. Similarly, the subspae R�[a; b℄ orresponds tothe representations of �1X whih are irreduible as PGL(n; C ) representations.We point out, moreover, that the subspae R��(a; b) inludes as a dense open set therepresentations whose indued adjoint representations on the Lie algebra of PU(p; q)are irreduible. It may also ontain some representations whose indued adjoint repre-sentation is reduible for the following reason. If (E = V �W;�) is the U(p; q)-Higgsbundle orresponding to a representation in R��(a; b), then (End(E);�) is a polystableHiggs bundle but it is not neessarily stable. The representations with reduible in-dued adjoint representation are the ones for whih (End(E);�) is stritly polystable.



153.3. Deformation theory. The results of Biswas and Ramanan [3℄ and Hithin [23℄readily adapt to desribe the deformation theory of U(p; q)-Higgs bundles.De�nition 3.16. Let (E = V �W;�) be a U(p; q)-Higgs bundle. We introdue thefollowing notation: U = End(E)U+ = End(V )� End(W ) ;U� = Hom(W;V )�Hom(V;W ) :With this notation, U = U+ � U�, that � 2 H0(U� 
K), and that ad(�) inter-hanges U+ and U�. We onsider the omplex of sheavesC� : U+ ad(�)���! U� 
K : (3.13)Lemma 3.17. Let (E;�) be a stable U(p; q)-Higgs bundle. Thenker�ad(�) : H0(U+)! H0(U� 
K)� = C ; (3.14)ker�ad(�) : H0(U�)! H0(U+ 
K)� = 0 : (3.15)Proof. By Remark 3.8 (E;�) is stable as a GL(n; C )-Higgs bundle. Hene it is simple,that is, its only endomorphisms are the non-zero salars. Thus,ker�ad(�) : H0(U)! H0(U 
K)� = C :Sine U = U+ � U� and ad(�) interhanges these two summands, the statements ofthe Lemma follow. �Proposition 3.18 (Biswas-Ramanan [3℄).(1) The spae of endomorphisms of (E;�) is isomorphi to the zeroth hyperoho-mology group H 0(C�).(2) The spae of in�nitesimal deformations of (E;�) is isomorphi to the �rsthyperohomology group H 1(C�).(3) There is a long exat sequene0 �! H 0(C�) �! H0(U+) �! H0(U� 
K) �! H 1(C�)�! H1(U+) �! H1(U� 
K) �! H 2(C�) �! 0 ; (3.16)where the maps H i(U+) �! H i(U� 
K) are indued by ad(�). �Proposition 3.19. Let (E;�) be a stable U(p; q)-Higgs bundle, then(1) H 0(C�) = C (in other words (E;�) is simple) and(2) H 2(C�) = 0.Proof. (1) Follows immediately from Lemma 3.17 and Proposition 3.18 (3).(2) We have natural ad-invariant isomorphisms U+ �= (U+)� and U� �= (U�)�. Thusad(�) : H1(U+)! H1(U� 
K)is Serre dual to ad(�) : H0(U�) ! H0(U+ 
 K). Hene Lemma 3.17 and (3) ofProposition 3.18 show that H 2(C�) = 0. �



16Proposition 3.20. The moduli spae of stable U(p; q)-Higgs bundles is a smooth om-plex variety of dimension 1 + (p+ q)2(g � 1).Proof. By Proposition 3.19 (2) H 2(C�) = 0 at all points in the moduli spae of stableU(p; q)-Higgs bundles. Smoothness is thus a onsequene of the results of [3℄, as follows.Let e 2 M(a; b) be the point orresponding to a stable U(p; q)-Higgs bundle (E;�) andlet F be the in�nitesimal deformation funtor of (E;�) as in [3℄. Then the ompletionof the loal ring Oe pro-represents F (f. Shlessinger [28℄). Now Proposition 3.19 andTheorem 3.1 of [3℄ show that the ompletion of Oe is regular and hene Oe is itselfregular. Thus M(a; b) is smooth at e.Using (2) and (3) of Proposition 3.18, Proposition 3.19 and the Riemann-Roh The-orem, the dimension of the moduli spae is given bydimH 1(C�) = 1 � �(U+) + �(U� 
K)= 1 + (p2 + q2)(g � 1) + 2pq(g � 1)= 1 + (p+ q)2(g � 1) : �Remark 3.21. The dimension of the moduli spae of stable U(p; q)-Higgs bundles ishalf that of the moduli spae of stable GL(p+ q; C )-Higgs bundles.Remark 3.22. By Proposition 3.12 M(a; b) is smooth if GCD(p + q; a+ b) = 1.Remark 3.23. As an alternative to the algebrai arguments of [3℄, the fat that thedeformation theory of a U(p; q)-Higgs bundle is ontrolled by the omplex of sheaves(3.13) an be seen from the omplex analyti point of view as follows. As in the gaugetheory onstrution of M(a; b) (f. Setion 3.2 let V �W be a smooth omplex vetorbundle, and onsider a U(p; q)-Higgs bundle as being given by a triple (��V ; ��W ;�).Now write down a Dolbeault resolution of the omplex C�:
0(U+) ad(�)���! 
1;0(U�)??y�� ??y���
0;1(U+) ad(�)���! 
1;1(U�)??y ??y0 ���! 0 :Consider the assoiated total omplex C0 D0! C1 D1! C2. Then C0 is the Lie algebra ofthe GL(p; C )�GL(q; C )-gauge group and C1 is the tangent spae to the aÆne spae oftriples (��V ; ��W ;�). Furthermore, D0 is the in�nitesimal ation of the omplex gaugegroup, whileD1 is the derivative of the holomorphiity ondition: this gives the desiredinterpretation of the deformation omplex C� in omplex analyti terms.To onlude this line of thought we give an alternative argument for the smooth-ness of the moduli spae of stable U(p; q)-Higgs bundles: suppose that (��V ; ��W ;�)orresponds to a stable U(p; q)-Higgs bundle (E;�). Proposition 3.19 shows thatH 0(C�) = C and H 2(C�) = 0. The di�erential of the holomorphiity ondition isthus surjetive and (E;�) has no non-trivial automorphisms. It follows by standard



17arguments that the moduli spae an be onstruted as a smooth omplex manifoldnear (E;�).3.4. Bounds on the topologial invariants. In this setion we show how the Higgsbundle point of view provides an easy proof of a result of Domi and Toledo [11℄ whihallows us to bound the topologial invariants deg(V ) and deg(W ) for whih U(p; q)-Higgs bundles may exist. The lemma is a slight variation on the results of [19, Setion3℄ (f. also Lemma 3.6 of Markman and Xia [24℄).Lemma 3.24. Let (E;�) be a semistable U(p; q)-Higgs bundle. Thenp(�(V )� �(E)) 6 rk()(g � 1); (3.17)q(�(W )� �(E)) 6 rk(�)(g � 1): (3.18)If equality ours in (3.17) then either (E;�) is stritly semistable or p = q and  isan isomorphism. If equality ours in (3.18) then either (E;�) is stritly semistableor p = q and � is an isomorphism.Proof. If  = 0 then V is �-invariant. By stability, �(V ) 6 �(E) and equality an onlyour if (E;�) is stritly semistable. This proves (3.17) in the ase  = 0. We maytherefore assume that  6= 0. Let N = ker() � V and let I = im() 
K�1 � W .Then rk(N) + rk(I) = p (3.19)and, sine  indues a non-zero setion of det((V=N)� 
 I 
K),deg(N) + deg(I) + rk(I)(2g � 2) > deg(V ): (3.20)The bundles N and V � I are �-invariant subbundles of E and hene we obtain bysemistability that �(N) 6 �(E) and �(V � I) 6 �(E) or, equivalently, thatdeg(N) 6 �(E) rk(N); (3.21)deg(I) 6 �(E)(p + rk(I))� deg(V ): (3.22)Adding (3.21) and (3.22) and using (3.19) we obtaindeg(N) + deg(I) 6 2�(E)p � deg(V ): (3.23)Finally, ombining (3.20) and (3.23) we getdeg(V )� rk(I)(2g � 2) 6 2�(E)p � deg(V );whih is equivalent to (3.17) sine rk() = rk(I). Note that equality an only ourif we have equality in (3.21) and (3.22) and thus either (E;�) is stritly semistableor neither of the subbundles N and V � I is proper and non-zero. In the latter ase,learly N = 0 and I = W and therefore p = q; furthermore we must also have equalityin (3.20) implying that  is an isomorphism. An analogous argument applied to �proves (3.18). �Remark 3.25. The proof also shows that if we have equality in, say, (3.17) then the map : V=N ! I 
K is an isomorphism. In partiular, if p < q and �(V )� �(E) = g � 1then  : V �=�! I 
K.We an re-formulate Lemma 3.24 to obtain the following orollary.



18Corollary 3.26. Let (E;�) be a semistable U(p; q)-Higgs bundle. Thenq(�(E)� �(W )) 6 rk()(g � 1); (3.24)p(�(E)� �(V )) 6 rk(�)(g � 1): (3.25)Proof. Use �(W )� �(E) = pq ��(E) � �(V )� to see that (3.24) is equivalent to (3.17).Similarly (3.25) is equivalent to (3.18). �An important orollary of the lemma above is the following Milnor{Wood typeinequality for U(p; q)-Higgs bundles (due to Domi and Toledo [11℄, improving ona bound obtained by Dupont [13℄ in the ase G = SU(p; q)). This result gives boundson the possible values of the topologial invariants deg(V ) and deg(W ).Corollary 3.27. Let (E;�) be a semistable U(p; q)-Higgs bundle. Thenpqp+ q j�(V )� �(W )j 6 minfp; qg(g � 1): (3.26)Proof. Sine �(E) = pp+q�(V ) + qp+q�(W ) we have �(V ) � �(E) = qp+q (�(V ) � �(W )and therefore (3.17) gives pqp+ q (�(V )� �(W )) 6 rk()(g � 1):A similar argument using (3.18) shows thatpqp+ q (�(W )� �(V )) 6 rk(�)(g � 1):But, obviously, rk(�) and rk() are both less than or equal to minfp; qg. �De�nition 3.28. The Toledo invariant of the representation orresponding to (E =V �W;�) is � = � (a; b) = 2qa� pbp+ q (3.27)where a = deg(V ) and b = deg(W ).Remark 3.29. Sine� = 2 pqp + q (�(V ) � �(W )) = �2p(�(E) � �(V )) = 2q(�(E)� �(W )) ;the inequalities in Lemma 3.24 and Corollary 3.26 an be written as�2 6 rk()(g � 1); (3.28)��2 6 rk(�)(g � 1): (3.29)Similarly the inequality (3.26) an be written j� j 6 �M , where�M = minfp; qg(2g � 2) : (3.30)



193.5. Rigidity and extreme values of the Toledo invariant. If j� j = �M then themoduli spae M(a; b) has speial features. These depend on whether p = q or p 6= q.Consider �rst the ase p = q. Notie that if p = q then � (a; b) = a � b and�M = p(2g � 2). We thus examine the moduli spae M(a; b) when ja� bj = p(2g � 2).Before giving a desription we review briey the notion of L-twisted Higgs pairs. LetL be a line bundle. An L-twisted Higgs pair (V; �) onsists of a holomorphi vetorbundle V and an L-twisted homomorphism � : V �! V 
 L. The notions of stability,semistability and polystability are de�ned as for Higgs bundles. The moduli spaeof semistable L-twisted Higgs pairs has been onstruted by Nitsure using GeometriInvariant Theory [27℄. LetML(n; d) be the moduli spae of polystable L-twisted Higgspairs of rank n and degree d.Proposition 3.30. Let p = q and ja� bj = p(2g � 2). ThenM(a; b) �=MK2(p; a) �=MK2(p; b):Proof. Let (E = V �W;�) 2 M(a; b). Suppose for de�niteness that b�a = p(2g�2).From (3.18) it follows that  : V �! W 
K is an isomorphism. We an then ompose� :W �! V 
K with 
 IdK : V 
K �! W 
K2 to obtain a K2-twisted Higgs pair�W : W �! W 
 K2. Similarly, twisting � : W �! V 
K with K and omposingwith , we obtain a K2-twisted Higgs pair �V : V �! V 
K2. Conversely, given anisomorphism  : V �! W 
K, we an reover � from �V as well as from �W . It islear that the (poly)stability of (E;�) is equivalent to the (poly)stability of (V; �V )and to the (poly)stability of (W; �W ), proving the laim. �Remark 3.31. The moduli spae MK2(p; a) ontains an open (irreduible) subset on-sisting of a vetor bundle over the moduli spae of stable bundles of rank p and degreea. This is beause the stability of V implies the stability of any K2-twisted Higgspair (V; �V ), and H1(End V 
K2) = 0. The rank of the bundle is determined by theRiemann{Roh Theorem.Now onsider the ase p 6= q. For de�niteness, we assume p < q. We use the morepreise notation M(p; q; a; b) for the moduli spae of U(p; q)-Higgs bundles suh thatdeg(V ) = a, and deg(W ) = b, and write the Toledo invariant as� = � (p; q; a; b) = 2qa� pbp+ q : (3.31)Theorem 3.32. Suppose (p; q; a; b) are suh that p < q and j� (p; q; a; b)j = p(2g � 2).Then every element in M(p; q; a; b) is stritly semistable and deomposes as the diretsum of a polystable U(p; p)-Higgs bundle with maximal Toledo invariant and a polystablevetor bundle of rank (q � p). If � = p(2g � 2), thenM(p; q; a; b) �=M(p; p; a; a� p(2g � 2)) �M(q � p; b� a+ p(2g � 2)); (3.32)where M(q � p; b � a + p(2g � 2)) denotes the moduli spae of polystable bundles ofdegree q� p and rank b� a+ p(2g� 2). In partiular, the dimension at a smooth pointin M(p; q; a; b) is 2 + (p2 + 5q2 � 2pq)(g � 1), and it is hene stritly smaller than theexpeted dimension.(A similar result holds if � = �p(2g � 2) and also if p > q.)



20Proof. Let (E = V �W;�) 2 M(p; q; a; b) and suppose that � (p; q; a; b) = p(2g � 2).Then �(V )� �(E) = g� 1 and �(E)��(W ) = pq (g� 1). Sine rk(�) and rk() are atmost p, it follows from (3.17) and (3.25) that rk(�) = rk() = p. LetW = im()
K�1and let W� = ker(�). Then V � W is a �-invariant subbundle of V � W , and�(V � W) = �(0 � W�) = �(E). We see that (E;�) is stritly semistable (as wealready knew from Lemma 3.24). Sine it is polystable it must split as(V �W ;�)� (0�W=W ; 0):It is lear that (V � W ;�) 2 M(p; p; a; a � p(2g � 2)) and that (V � W;�) hasmaximal Toledo invariant, that is, � (p; p; a; a� p(2g � 2)) = 2p(g � 1). Also, using0 �! ker(�) �! V �W �! (V �W)
K �! 0:we see that W=W 2 M(q � p; b � a+ p(2g � 2)). To omplete the proof we observethat dimMs(p; p; a; a� p(2g � 2)) + dimM s(q � p; b� a+ p(2g � 2))= 1 + (2p)2(g � 1) + 1 + (q � p)2(g � 1) = 2 + (p2 + 5q2 � 2pq)(g � 1):Sine q > 1, this is smaller than 1+ (p+ q)2(g� 1), the dimension of M(p; q; a; b). �Corollary 3.33. Fix (p; q; a; b) suh that p < q and � (p; q; a; b) = p(2g � 2). ThenM(p; q; a; b) �=MK2(p; a� p(2g � 2)) �M(q � p; b� a+ p(2g � 2)):Proof. It follows from Theorem 3.32 and Proposition 3.30. �Remark 3.34. The fat the moduli spae has smaller dimension than expeted may beviewed as a ertain kind of rigidity. This phenomenon (for large Toledo invariant) hasbeen studied from the point of view of representations of the fundamental group byD. Toledo [33℄ when p = 1 and L. Hern�andez [21℄ when p = 2. We deal here with thegeneral ase whih, as far as we know, has not appeared previously in the literature.4. Morse theoryMorse theoreti tehniques to study of the topology of moduli spaes of Higgs bundleswere introdued by Hithin [22, 23℄. Though standard Morse theory annot be appliedtoM(a; b) when it is not smooth, as we shall see in the following, we an still use Morsetheory ideas to ount onneted omponents. Throughout this setion we assume thatp and q are any positive integers and that (a; b) 2 Z�Zis suh that j� j 6 �M , where� is as in De�nition 3.28 and �M is given by (3.30).4.1. The Morse funtion. Consider the moduli spaeM(a; b) from the gauge theorypoint of view (f. Setion 3.2). We an then de�ne a real positive funtionf : M(a; b)! R[A;�℄ 7! ZX j�j2 : (4.1)We have the following result due to Hithin [22℄.Proposition 4.1. (1) The funtion f is proper.



21(2) The restrition of f to Ms(a; b) is a moment map for the Hamiltonian irleation [A;�℄ 7! [A; ei��℄.(3) If M(a; b) is smooth, then f is a perfet Bott-Morse funtion. �Thus, if the moduli spae is smooth, then its number of onneted omponents isbounded by the number of onneted omponents of the subspae of loal minima off . However, even ifM(a; b) is not smooth, f an be used to obtain information aboutthe onneted omponents of M(a; b) using the following elementary result.Proposition 4.2. Let Z be a Hausdor� spae and let f : Z ! R be proper and boundedbelow. Then f attains a minimum on eah onneted omponent of Z and, furthermore,if the subspae of loal minima of f is onneted then so is Z. �In partiular this applies to our situation, giving:Proposition 4.3. The funtion f : M(a; b)! R de�ned in (4.1) has a minimum oneah onneted omponent of M(a; b). Moreover, if the subspae of loal minima of fis onneted then so is M(a; b). �De�nition 4.4. LetN (a; b) = f(E;�) 2 M(a; b) j � = 0 or  = 0g: (4.2)Proposition 4.5. For all (E;�) 2 M(a; b)f(E;�) > j� (a; b)j2 (4.3)with equality if and only if (E;�) 2 N (a; b).Proof. By Hithin's equations (3.2) and Chern-Weil theory we getk�k2� kk2 = p(�(E) � �(V )) = ��2 : (4.4)Thus f(E;�) = k�k2 + kk2= 2kk2 � �2= 2k�k2 + �2 : (4.5)�The above Proposition identi�esN (a; b) as the set of global minima of f . The followingTheorem, whih is of fundamental importane to our approah, shows that there areno other loal minima.Theorem 4.6. Let (E;�) be a polystable U(p; q)-Higgs bundle inM(a; b). Then (E;�)is a loal minimum of f : M(a; b)! R if and only if (E;�) belongs to N (a; b).Proof. This follows diretly from Proposition 4.5 above and Propositions 4.17 and 4.20,whih are given in Setions 4.4 and 4.5, respetively. �



22Remark 4.7. This Theorem was already known to hold when p; q 6 2 (by the results of[19℄, Hithin [22℄, and Xia [36℄), and also when p = q and (p�1)(2g�2) < j� j 6 p(2g�2)by Markman-Xia [24℄.Whih setion atually vanishes for a minimum is given by the following.Proposition 4.8. Let (E;�) 2 N (a; b). Then(1)  = 0 if and only if a=p 6 b=q (i.e. � 6 0). In this ase,f(N (a; b)) = b� q(a+ b)=(p + q) = ��2 :(2) � = 0 if and only if a=p > b=q (i.e. � > 0). In this ase,f(N (a; b)) = a� p(a+ b)=(p+ q) = �2 :In partiular, � =  = 0 if and only if a=p = b=q (i.e. � = 0) and, in this ase,f(E;�) = 0.Proof. The relation between the onditions on � and those on a=p�b=q follows diretlyfrom the de�nition of � (f. (3.27)). The rest follows immediately from (4.5) and thefat that f is, by de�nition, non-negative. Alternatively one an argue algebraially,using Lemma 3.24 and polystability. �Corollary 4.9. If a=p = b=q then N (a; b) �=M(p; a)�M(q; b).Proof. If a=p = b=q, then any (E;�) 2 N (a; b) has E = V �W and � = 0. Polystabilityof (E;�) is thus equivalent to the polystability of V and W . �4.2. Critial points of the Morse funtion. In this setion we reall Hithin'smethod [22, 23℄ for determining the loal minima of f and spell out how this works inthe ase of U(p; q)-Higgs bundles.Sine f is a moment map, a smooth point of the moduli spae is a ritial pointif and only if it is a �xed point of the irle ation. To determine the �xed points,note that, if (A;�) represents a �xed point then there must be a 1-parameter familyof gauge transformations g(�) taking (A;�) to (A; ei��). This gives an in�nitesimalU(p)� U(q)-gauge transformation  = _g whih is ovariantly onstant (i.e. dA = 0)and suh that [ ;�℄ = i�. (Note that we an take  to be trae-free.) It followsthat we an deompose E in holomorphi subbundles F� on whih  ats as i� andfurthermore that � maps F� to F�+1 
K. We thus have the following result.Proposition 4.10. A U(p; q)-Higgs bundle (E;�) in M(a; b) represents a �xed pointof the irle ation if and only if it is a system of Hodge bundles, that is,E = F1 � � � � � Fm (4.6)for holomorphi vetor bundles Fi suh that the restrition�i := �jFi 2 H0(Hom(Fi; Fi+1)
K) ;and the Fi are diret sums of bundles ontained in V and W . Furthermore, eah Fi isan eigenbundle for an in�nitesimal trae-free gauge transformation  . If �i 6= 0, thenthe weight of  on Fi+1 is one plus the weight of  on Fi. Moreover, if (E;�) is stable,then eah restrition �i is non-zero and the Fi are alternately ontained in V and W .



23Proof. Only the last statement requires a proof. But if some omponent of � vanished,or if some Fi had a non-zero omponent in both V and W , then (E;�) would bereduible and hene not stable. �When (E;�) is stable the deomposition E = F1 � � � � � Fm gives a orrespondingdeomposition of the bundle U = End(E) into eigenbundles for the adjoint ation of : U = m�1Mk=�m+1 Uk ;where Uk =Li�j=k Hom(Fj; Fi) is the eigenbundle orresponding to the eigenvalue ik.By Hithin's alulations in [23, x8℄ (see also [18, Setion 2.3.2℄) the eigenvalues ofthe Hessian of f at a smooth ritial point an be determined in the following way.Proposition 4.11. Let (E;�) be a stable U(p; q)-Higgs bundle whih represents aritial point of f . Then the eigenspae of the Hessian of f orresponding to theeigenvalue �k is H 1 of the following omplex:C�k : U+k ad(�)���! U�k+1 
K; (4.7)where we use the notation U+k = Uk \ U+ ;U�k = Uk \ U� ;with U+ and U� as de�ned in De�nition 3.16. In partiular (E;�) orresponds to aloal minimum of f if and only if H 1(C�k) = 0for all k > 1. �Remark 4.12. When (E;�) is a stable U(p; q)-Higgs bundle, we know from Proposi-tion 4.10 that the Fi are alternately ontained in V and W . Thus we haveU+ = Mk evenUk ; U� = Mk oddUk : (4.8)In partiular all the eigenvalues of the Hessian of f are even.Remark 4.13. The desription in Proposition 4.11 of the eigenspae of the Hessian off gives rise to the long exat sequene0 �! H 0(C�k) �! H0(U+k ) �! H0(U�k+1 
K) �! H 1(C�k)�! H1(U+k ) �! H1(U�k+1 
K) �! H 2(C�k ) �! 0 :Suppose that (E;�) is a stable U(p; q)-Higgs bundle. The vanishing result of Propo-sition 3.19 shows that H 0(C�k) = H 2(C�k) = 0 for k 6= 0 (while H 0(C�0) = C andH 2(C�0) = 0). Hene one an use this exat sequene, Remark 4.12, and the Riemann{Roh formula to alulate the dimension of H 1(C�k) for any k in terms of the ranks andthe degrees of the Fi. This provides a method for alulating the Morse index of f ata ritial point. However, we shall omit the formula sine we have no need for it.



244.3. Loal minima and the adjoint bundle. In this setion we give a riterion for(E;�) to be a loal minimum in terms of the adjoint bundle. This is the key step inthe proof of Theorem 4.6. We use the notation introdued in Setion 4.2.Consider the omplex C�k de�ned in (4.7) and let�(C�k) = dimH 0(C�k)� dimH 1(C�k) + dimH 2(C�k):Proposition 4.14. Let (E;�) be a polystable U(p; q)-Higgs bundle whih is a �xedpoint of the S1-ation on M(a; b). Then �(C�k) 6 0 and equality holds if and only ifad(�) : U+k ! U�k+1 
Kis an isomorphism.Proof. For simpliity we shall adopt the notation��k = ad(�)jU�k : U�k �! U�k+1 
K:The key fat we need is that there is a natural ad-invariant isomorphism U �= U�under whih we have U+ �= (U+)�, U� �= (U�)� and U�k �= (U��k)�. Sine ad(�)t =ad(�)
 1K�1 under this isomorphism we have(��k )t = ���k�1 
 1K�1 : (4.9)We have the short exat sequene0 �! ker(�+k ) �! (U�k+1 
K)� �! im(�+k ) �! 0:From (4.9) we have ker(�+;tk ) �= ker(���k�1)
K�1. Thus, tensoring the above sequeneby K, we obtain the short exat sequene0 �! ker(���k�1) �! (U�k+1)� �! im(�+k )
K �! 0:It follows thatdeg(im(�+k )) 6 deg(U�k+1) + (2g � 2) rk(�+k ) + deg(ker(���k�1)):Combining this inequality with the fat thatdeg(U+k ) 6 deg(ker(�+k )) + deg(im(�+k )); (4.10)we obtaindeg(U+k ) 6 deg(U�k+1) + (2g � 2) rk(�+k ) + deg(ker(���k�1)) + deg(ker(�+k )): (4.11)Sine (E;�) is semistable, so is the Higgs bundle (End(E); ad(�)). Clearly the kernelker(��k ) � End(E) is �-invariant and hene, from semistability,deg(ker(��k )) 6 0;for all k. Substituting this inequality in (4.11), we obtaindeg(U+k ) 6 deg(U�k+1) + (2g � 2) rk(�+k ): (4.12)From the long exat sequene (4.7) and the Riemann{Roh formula we obtain�(C�k) = �(U+k )� �(U�k+1 
K)= (1� g)�rk(U+k ) + rk(U�k+1)�+ deg(U+k )� deg(U�k+1):Using this identity and the inequality (4.12) we see that�(C�k) 6 (g � 1)�2 rk(�+k )� rk(U+k )� rk(U�k+1)�:



25Hene �(C�k) 6 0. Furthermore, if equality holds we haverk(�+k ) = rk(U+k ) = rk(U�k+1)and also equality must hold in (4.12) and so deg(im(�+k )) = deg(U�k+1 
K), showingthat �+k is an isomorphism as laimed. �Corollary 4.15. Let (E;�) be a stable U(p; q)-Higgs bundle whih represents a ritialpoint of f . This ritial point is a loal minimum if and only ifad(�) : U+k ! U�k+1 
Kis an isomorphism for all k > 1.Proof. By Proposition 3.19 we have H 0(C�k) = H 2(C�k) = 0 for k > 1. Hene we have��(C�k) = H 1(C�k) and the result follows from Propositions 4.11 and 4.14. �Remark 4.16. Let (P;�) be a G-Higgs bundle as de�ned in Remark 3.5 and de�neU = P 
Ad gC ;U+ = P 
Ad hC ;U� = P 
Ad mC :Then U = U+�U� and if (P;�) is �xed under the irle ation we an write U =LUkas a diret sum of eigenbundles for an in�nitesimal gauge transformation as before.Thus we an de�ne a omplex C�k as in (4.7). If (P;�) is a stable G-Higgs bundle, thenthe Higgs vetor bundle (U; ad(�)) is semistable and so the proof of Proposition 4.14goes through unhanged. Thus this key result is valid in the more general setting.4.4. Stable Higgs bundles. In this setion we prove Theorem 4.6 for stable Higgsbundles. The reduible (polystable) ones are dealt with in the next setion. Weontinue to use the notation of Setion 4.2.Proposition 4.17. Let (E;�) = (F1 � � � � � Fm;�) be a stable U(p; q)-Higgs bundlerepresenting a ritial point of f suh that m > 3. Then (E;�) is not a loal minimumof f .Proof. Note that Uk = 0 for jkj > m; in partiular Um = 0. We shall onsider the aseswhen m is odd and even separately.The ase m odd. In this ase m� 1 is even and so, using Remark 4.12 we see thatU+m�1 = Um�1 6= 0 while U�m � Um = 0. Hene ad(�) : U+m�1 ! U�m 
K annot be anisomorphism and we are done by Corollary 4.15.The ase m even. From Remark 4.12 we see thatU�m�1 = Um�1 = Hom(F1; Fm)U+m�2 = Um�2 = Hom(F1; Fm�1) �Hom(F2; Fm):Thus, by Corollary 4.15 it suÆes to prove thatad(�) : Um�2 ! Um�1 
Kis not an isomorphism. In fat the restrition of ad(�) to a �ber annot even beinjetive. Indeed, if it were, then its restrition to Hom(F1; Fm�1) would be injetive



26and hene �m�1 would also be injetive. Take a non-zero element � 2 Hom(F2; Fm)whose image is ontained in the image of �m�1. De�ne � = ��1�� 2 Hom(F1; Fm�1).Then ad(�)(� + �) = 0 whih is a ontradition. �Remark 4.18. Let (E;�) be a stable U(p; q)-Higgs bundle with � = 0 or  = 0. Then,as pointed out above, Proposition 4.5 shows that (E;�) is a loal minimum of f . Thisan also be seen from the Morse theory point of view, as follows. Suh a Higgs bundleeither has � =  = 0 or it is a Hodge bundle of length 2. In the former ase, learlywe have End(E) = U0. In the latter ase, E = F1 � F2 with F1 = V and F2 = W (if� = 0) or vie-versa (if  = 0). Hene End(E) = U�1 � U0 � U1. Hene, in both asesUk = 0 for jkj > 1. It follows that the omplex C�k is zero for any k > 0 and hene alleigenvalues of the Hessian of f are positive.4.5. Reduible Higgs bundles. In this setion we shall �nally onlude the proofof Theorem 4.6 by showing that it also holds for reduible Higgs bundles. First weshall show that a reduible Higgs bundle whih is not of the form given in Theorem 4.6annot be a loal minimum of f ; for this we use an argument similar to the one givenby Hithin [23, x8℄ for the ase of G = PSL(n;R).Let (E;�) be a stritly polystable U(p; q)-Higgs bundle whih is a loal minimum off . Sine f(E;�) is the sum of the values of f on eah of the stable diret summands(on the orresponding lower rank moduli spae), it follows that eah stable diretsummand must be a loal minimum in its moduli spae and, therefore, a �xed pointof the irle ation. Hene (E;�) is itself �xed and thus (f. Proposition 4.10)E =MF� ;where eah F� is an i�-eigenbundle for an in�nitesimal trae-free U(p) � U(q)-gaugetransformation  . Moreover, if �jF� 6= 0, then its image is ontained in F�+1 
K. Inanalogy with the ase of stable U(p; q)-Higgs bundles we writeEndE =MU� ;where U� is the i�-eigenbundle for the adjoint ation of  . LetU+� = U� \ U+ ;U�� = U� \ U� ;then we an de�ne a omplex of sheavesC�>0 :M�>0 U+� ad(�)���!M�>1 U�� 
K : (4.13)In this language Hithin's riterion [23, x8℄ for showing that a given �xed point is nota loal minimum an be expressed as follows.Lemma 4.19. Let (Et;�t) be a 1-parameter family of polystable U(p; q)-Higgs bundlessuh that (E0;�0) is a �xed point of the irle ation. If the tangent vetor ( _E; _�) at0 is non-trivial and lies in the subspaeH 1(C�>0)of the in�nitesimal deformation spae H 1(C�) of (E0;�0), then (E0;�0) is not a loalminimum of f . �



27Proposition 4.20. Let (E;�) be a reduible U(p; q)-Higgs bundle. If � 6= 0 and  6= 0then (E;�) is not a loal minimum of f .Proof. As we noted above, eah stable diret summand of (E;�) is a loal minimumon its moduli spae and therefore (by Proposition 4.17) it has � = 0 or  = 0. Henewe an hoose two stable diret summands (E 0 = V 0�W 0;�0) and (E 00 = V 00�W 00;�00)suh that  0 6= 0 and � 00 6= 0 and � 0 =  00 = 0. It is learly suÆient to show that(E 0�E 00;�0��00) is not a loal minimum of f on the orresponding moduli spae andwe an therefore assume that (E;�) = (E 0 � E 00;�0 � �00) without loss of generality.We shall onstrut a family of deformations (Et;�t) of (E;�) satisfying the onditionsof Lemma 4.19.By Lemma 4.21 both H1(Hom(W 00;W 0)) and H1(Hom(V 0; V 00)) are non-vanishing,so let � 2 H1(Hom(V 0; V 00)) and � 2 H1(Hom(W 00;W 0)) be non-zero. We an thende�ne a deformation of (E;�) by using that � de�nes an extension0 �! V 00 �! V � �! V 0 �! 0 ;while � de�nes an extension0 �! W 0 �!W � �!W 00 �! 0 :Let E(�;�) = V � �W � and de�ne �(�;�) by the ompositionsb(�;�) : W � �!W 00 �00�! V 00 ! V � ;(�;�) : V � �! V 0 0�! W 0 �!W �:Note that (E0;�0) = (E;�) (the Higgs �elds agree sine � 0 =  00 = 0). It is then easyto see that (E�;�;��;�) is stable: the essential point is that the destabilizing subbundlesV 0 and W 00 of (E;�) are not subbundles of the deformed Higgs bundle; we leave thedetails to the reader.Now de�ne the family (Et;�t) = (E(�t;�t);�(�t;�t)). It is lear that the induedin�nitesimal deformation of E is_E = (�; �) 2 H1(Hom(V 0; V 00))�H1(Hom(W 00;W 0)) � H1(End(E)) :Considering the holomorphi struture as given by a ��-operator on the underlyingsmooth bundle, our de�nition of (E(�;�);�(�;�)) did not hange the Higgs �eld butonly the holomorphi struture on E. Thus, taking a Dolbeault representative (f.Remark 3.23) for ( _E; _�) 2 H 1(C�) we see that the weights of  on ( _E; _�) are givenby its weights on _E. From Proposition 4.10 we have deompositions E 0 =LF 0k andE00 = LF 00k into eigenspaes of in�nitesimal trae-free gauge transformations  0 and 00. Note that the in�nitesimal gauge transformation produing the deomposition ofE is  =  0 +  00. Clearly we haveF 01 = V 0 ; F 02 = W 0 ;F 001 = W 00 ; F 002 = V 00 :Let �0V and �0W be the weights of the ation of  0 on V 0 and W 0 respetively, andanalogously for E 00. We then have that�0W = �0V + 1 ; �00V = �00W + 1 :



28and, sine tr 0 = tr 00 = 0, �0V p0 + �0W q0 = 0 ;�00V p00 + �00W q00 = 0 ;where p0 = rk(V 0), q0 = rk(W 0), p00 = rk(V 00) and q00 = rk(W 00). From these equationswe onlude that �0W � �00W = p0p0 + q0 + p00p00 + q00 > 0 ;�00V � �0V = q00p00 + q00 + q0p0 + q0 > 0 :It follows that the weights of  on H1(Hom(W 00;W 0)) and H1(Hom(V 0; V 00)) are bothpositive and hene that ( _E; _�) lies in a diret sum of positive weight spaes of  . Thisonludes the proof of the Proposition. �Lemma 4.21. Let (E 0 = V 0 � W 0;�0) and (E 00 = V 00 � W 00;�00) be stable U(p; q)-Higgs bundles of the same slope. Then the ohomology groups H1(Hom(V 0; V 00)) andH1(Hom(W 00;W 0)) are both non-vanishing.Proof. Sine  00 = 0, V 00 is a �-invariant subbundle of E 00. Thus �(V 00) < �(E 00). Usingthe Riemann{Roh formula and the equality �(E 00) = �(E 0) we obtainh0(Hom(V 0; V 00)� h1(Hom(V 0; V 00) = p0p00(1 � g + �(V 00) � �(V 0))< p0p00(1 � g + �(E 0)� �(V 0)):Sine rk(� 0) 6 p0 the inequality (3.25) of Corollary 3.26 shows that �(E 0)��(V 0) 6 g�1and we therefore dedue thath0(Hom(V 0; V 00)� h1(Hom(V 0; V 00) < 0;from whih it follows that H1(Hom(V 0; V 00) 6= 0.Similarly one sees that H1(Hom(W 00;W 0)) 6= 0. �4.6. Loal minima and onnetedness. In this setion we obtain onnetednessresults on Ms(a; b) and its losure �Ms(a; b). We denote by N s(a; b) � N (a; b) thesubspae onsisting of stable U(p; q)-Higgs bundles, and denote its losure by �N s(a; b).The invariants (a; b) will be �xed in the following and we shall oasionally dropthem from the notation and writeM =M(a; b), et.Proposition 4.22. The losure of N s in M oinides with �N s and�N s = �Ms \N :Proof. Clear. �Now onsider the restrition of the Morse funtion to �Ms,f : �Ms ! R :Proposition 4.23. The restrition of f to �Ms is proper and the subspae of loalminima of this funtion oinides with �N s.



29Proof. Properness of the restrition follows from properness of f and the fat that �Msis losed inM. By Proposition 4.5 f is onstant on N and its value there is its globalminimum on M. Thus �N s is ontained in the subspae of loal minima of f .It remains to see that there are f has no other loal minima on �Ms. We alreadyknow that the subspae of loal minima on Ms is N s. Thus, sineMs is open in �Ms,there annot be any additional loal minima on Ms. We need to prove therefore thatthere are no loal minima in ( �Ms rMs)r �N s. So let (E;�) be a stritly poly-stableU(p; q)-Higgs bundle representing a point in this spae. From Proposition 4.22 we seethat � 6= 0 and  6= 0. In the proof of Proposition 4.20 we onstruted a family (Et;�t)of U(p; q)-Higgs bundles suh that (E;�) = (E0;�0) and (Et;�t) is stable for t 6= 0.Furthermore we showed that the restrition of f to this family does not have a loalminimum at (E0;�0). It follows that (E;�) is not a loal minimum of f on �Ms. �Proposition 4.24. (1) If N (a; b) is onneted, then so is M(a; b).(2) If N s(a; b) is onneted, then so is �Ms(a; b).Proof. (1) In view of Proposition 4.3, this follows from Theorem 4.6.(2) IfN s(a; b) is onneted, then so is its losure �N s(a; b). But from Proposition 4.23,�N s(a; b) is the subspae of loal minima of the proper positive map f : �Ms(a; b)! R.Hene the result follows from Proposition 4.2. �5. Loal Minima as holomorphi triplesThe next step is to identify the spaes N (a; b) and N s(a; b) as moduli spaes intheir own right. By de�nition (f. De�nition 4.4), the Higgs bundles in N (a; b) all have� = 0 or  = 0 in their Higgs �elds. Suppose �rst that (E;�) is a U(p; q)-Higgs bundlewith  = 0. Then (E;�) determines the triple T = (E1; E2; �) whereE1 = V 
KE2 = W;� = � :Conversely, given two holomorphi bundles E1; E2 of rank p and q respetively, togetherwith a bundle endomorphism � 2 H0(Hom(E2; E1)), we an use the above relations tode�ne a U(p; q)-Higgs bundle with  = 0. Similarly, there is a bijetive orrespondenebetween U(p; q)-Higgs bundles with � = 0 and holomorphi triples in whihE1 = W 
K;E2 = V� = :The triples (E1; E2;�) are examples of the holomorphi triples studied in [4℄ and [15℄.5.1. Holomorphi triples. We briey reall the relevant de�nitions, referring to [4℄and [15℄ for details. A holomorphi triple on X, T = (E1; E2; �), onsists of twoholomorphi vetor bundles E1 and E2 on X and a holomorphi map � : E2 ! E1.Denoting the ranks E1 and E2 by n1 and n2, and their degrees by d1 and d2, we referto (n;d) = (n1; n2; d1; d2) as the type of the triple.



30 A homomorphism from T 0 = (E 01; E 02; �0) to T = (E1; E2; �) is a ommutative dia-gram E 02 �0���! E 01??y ??yE2 ����! E1:T 0 = (E 01; E 02; �0) is a subtriple of T = (E1; E2; �) if the homomorphisms of sheavesE01 ! E1 and E 02 ! E2 are injetive.For any � 2 R the �-degree and �-slope of T are de�ned to bedeg�(T ) = deg(E1) + deg(E2) + � rk(E2);��(T ) = deg�(T )rk(E1) + rk(E2)= �(E1 � E2) + � rk(E2)rk(E1) + rk(E2) :The triple T = (E1; E2; �) is �-stable if��(T 0) < ��(T ) (5.1)for any proper sub-triple T 0 = (E 01; E 02; �0). De�ne �-semistability by replaing (5.1)with a weak inequality. A triple is alled �-polystable if it is the diret sum of �-stabletriples of the same �-slope. It is stritly �-semistable (polystable) if it is �-semistable(polystable) but not �-stable.We denote the moduli spae of isomorphism lasses of �-polystable triples of type(n1; n2; d1; d2) by N� = N�(n;d) = N�(n1; n2; d1; d2) : (5.2)Using Seshadri S-equivalene to de�ne equivalene lasses, this is the moduli spae ofequivalene lasses of �-semistable triples. The isomorphism lasses of �-stable triplesform a subspae whih we denoted by N s�.Proposition 5.1 ([4, 15℄). The moduli spae N�(n1; n2; d1; d2) is a omplex analytivariety, whih is projetive when � is rational. A neessary ondition for the modulispae N�(n1; n2; d1; d2) to be non-empty is(0 6 �m 6 � 6 �M if n1 6= n20 6 �m 6 � if n1 = n2 (5.3)where �m = �1 � �2; (5.4)�M = (1 + n1 + n2jn1 � n2j)(�1 � �2) (5.5)and �1 = d1n1 , �2 = d2n2 .Within the allowed range for � there is a disrete set of ritial values. These arethe values of � for whih it is numerially possible to have a subtriple T 0 = (E 01; E 02; �0)suh that �(E 01 � E 02) 6= �(E1 � E2) but ��(T 0) = ��(T 0). All other values of � arealled generi. The ritial values of � are preisely the values for � at whih the



31stability properties of a triple an hange, i.e. there an be triples whih are stritly�-semistable, but either �0-stable or �0-unstable for �0 6= �.Strit �-semistability an, in general, also our at generi values for �, but only ifthere an be subtriples with �(E 01�E 02) = �(E1�E2) and n02n01+n02 = n2n1+n2 . In this asethe triple is stritly �-semistable for all values of �. We refer to this phenomenon as�-independent semistability. This annot happen if GCD(n2; n1 + n2; d1 + d2) = 1.5.2. Identi�ation of N (a; b). The following result relates the stability onditionsfor holomorphi triples and that for U(p; q)-Higgs bundles.Proposition 5.2. A U(p; q)-Higgs bundle (E;�) with � = 0 or  = 0 is (semi)stableif and only if the orresponding holomorphi triple is �-(semi)stable for � = 2g � 2.Proof. Let T = (E1; E2; �) be the triple orresponding to the Higgs bundle (V �W;�).For de�niteness we shall assume that  = 0 (of ourse, the same argument applies if� = 0). Thus E1 = V 
K and E2 = W and, hene,deg(E1) = deg(V ) + p(2g � 2):Sine p = rk(E1) and q = rk(E2) it follows that��(T ) = �(E) + pp+ q (2g � 2) + qp+ q�: (5.6)If we set � = 2g � 2 we therefore have��(T ) = �(E) + 2g � 2: (5.7)Clearly the orrespondene between holomorphi triples and U(p; q)-Higgs bundlesgives a orrespondene between sub-triples T 0 = (E 01; E 02; �0) and �-invariant subbun-dles of E whih respet the deomposition E = V �W (i.e., subbundles E 0 = V 0�W 0with V 0 � V and W 0 �W ). Now, it follows from (5.7) that �(E 0) < �(E) if and onlyif ��(T 0) < ��(T ) (and similarly for semistability), thus onluding the proof. �We thus have the following important haraterization of the subspae of loal min-ima of f on M(a; b).Theorem 5.3. Let N (a; b) be the subspae of loal minima of f on M(a; b) and let �be the Toledo invariant as de�ned in De�nition 3.28.If a=p 6 b=q, or equivalently if � 6 0, then N (a; b) an be identi�ed with the modulispae of �-polystable triples of type (p; q; a+ p(2g � 2); b), with � = 2g � 2.If a=p > b=q, or equivalently if � > 0, then N (a; b) an be identi�ed with the modulispae of �-polystable triples of type (q; p; b+ q(2g � 2); a), with � = 2g � 2.That is,N (a; b) �= (N2g�2(p; q; a+ p(2g � 2); b) if a=p 6 b=q (equivalently � 6 0)N2g�2(q; p; b+ q(2g � 2); a) if a=p > b=q (equivalently � > 0)Proof. This follows from Theorem 4.6, Proposition 4.8, and Proposition 5.2. �Thus, ombining Proposition 4.24 and Theorem 5.3, we getTheorem 5.4. (1) Suppose a=p 6 b=q. If N2g�2(p; q; a+ p(2g � 2); b) is onnetedthen M(a; b) is onneted. If N s2g�2(p; q; a + p(2g � 2); b) is onneted then�Ms(a; b) is onneted.



32 (2) Suppose a=p > b=q. If N2g�2(q; p; b+ q(2g � 2); a) is onneted then M(a; b) isonneted. If N s2g�2(q; p; b+q(2g�2); a) is onneted then �Ms(a; b) is onneted.5.3. The Toledo invariant, 2g � 2, and �-stability for triples. In view of The-orems 5.3 and 5.4, it is important to understand where 2g � 2 lies in relation to therange (given by Proposition 5.1) for the stability parameter �. Reall that for given(p; q; a; b), the Toledo invariant (De�nition 3.28) is onstrained by 0 6 j� j 6 �M , where(see (3.30)) �M = minfp; qg(2g � 2). Reall also that � is onstrained by the boundsgiven in Proposition 5.1. Whenever neessary we shall indiate the dependene of �mand �M on (p; q; a; b) by writing �m = �m(p; q; a; b), and similarly for �M .Lemma 5.5. Fix (p; q; a; b). Then�m(p; q; a; b) = (2g � 2) � p + q2pq j� j (5.8)where � is the Toledo invariant. If p 6= q then�M(p; q; a; b) = � 2maxfp; qgjp� qj ��m(p; q; a; b) : (5.9)If p = q then �M (p; q; a; b) =1.Proof. By Theorem 5.3 the type of the triple is determined by the sign of � . The resultthus follows by applying (5.3) and (5.4) to triples of type (p; q; a + p(2g � 2); b) (if� 6 0) or type (q; p; b+ q(2g � 2); a) (if � > 0). �Proposition 5.6. Fix (p; q; a; b). Then0 6 j� j 6 �M , (0 < �m(p; q; a; b) 6 2g � 2 6 �M(p; q; a; b) if p 6= q0 6 �m(p; q; a; b) 6 2g � 2 if p = q (5.10)Furthermore, � = 0, 2g � 2 = �m (5.11)and j� j = �M , (2g � 2 = �M if p 6= q�m = 0 if p = q (5.12)Proof. Using (5.8) and (5.9) we see that 0 6 j� j 6 �M is equivalent to2g � 2 > �m > � jp � qj2maxfp; qg� (2g � 2) ; (5.13)and hene also (assuming p 6= q) to�2maxfp; qgjp � qj � (2g � 2) > �M > (2g � 2) : (5.14)In both (5.13) and (5.14), we get equality in the �rst plae if and only if � = 0, andin the seond plae if and only if j� j = �M . Notie that jp�qj2maxfp;qg is stritly positive ifp 6= q and is zero if p = q. The results follow. �These results are summarized in Figure 1, whih an be used as follows. For anyallowed value of � , draw a horizontal line at height � . The orresponding range for �and the relative loation of 2g � 2 are then read o� from the �-axis.



33Remark 5.7. The above proposition gives another explanation for the Milnor{Woodinequality in Corollary 3.27. Using the fat that the non-emptiness of M(a; b) isequivalent to the non-emptiness of N (a; b) and hene to that of either N2g�2(p; q; a+p(2g � 2); b) or N2g�2(q; p; b+ q(2g� 2); a), we see that the Milnor{Wood inequality isequivalent to the ondition that 2g� 2 lies within the range where �-polystable triplesof the given kind exist.5.4. Moduli spaes of triples. Proposition 5.6 shows that in order to study N (a; b)for di�erent values of the Toledo invariant, we need to understand the moduli spaesof triples for values of � that may lie anywhere (inluding at the extremes �m and �M)in the �-range given in Proposition 5.1. The information we need an be found in [7℄.>From the results in [7℄ we get the following for triples of type (n1; n2; d1; d2).Theorem 5.8. (1) A triple T = (E1; E2; �) of type (n1; n2; d1; d2) is �m-polystableif and only if � = 0 and E1 and E2 are polystable. We thus haveN�m(n1; n2; d1; d2) �=M(n1; d1)�M(n2; d2):where M(n; d) denotes the moduli spae of polystable bundles of rank n anddegree d. In partiular, N�m(n1; n2; d1; d2) is non-empty and irreduible.(2) If � > �m is any value suh that 2g � 2 6 � (and � < �M if n1 6= n2)then N s�(n1; n2; d1; d2) is non-empty, irreduible, and smooth of dimension (g�1)(n21 + n22 � n1n2)� n1d2 + n2d1 + 1. Moreover:� If n1 = n2 = n then N s�(n; n; d1; d2) is birationally equivalent to a PN-�bration over M s(n; d2)� Symd1�d2(X), where M s(n; d2) denotes the subspaeof stable bundles of type (n; d2), Symd1�d2(X) is the symmetri produt, andthe �ber dimension is N = n(d1 � d2)� 1.� If n1 > n2 then N s�(n1; n2; d1; d2) is birationally equivalent to a PN-�bration over M s(n1 � n2; d1 � d2) �M s(n2; d2), where the �ber dimension isN = n2d1 � n1d2 + n2(n1 � n2)(g � 1)� 1.� If n1 < n2 then N s�(n1; n2; d1; d2) is birationally equivalent to a PN-�bration over M s(n2 � n1; d2 � d1) �M s(n1; d1), where the �ber dimension isN = n2d1 � n1d2 + n1(n2 � n1)(g � 1)� 1.(3) If n1 6= n2 then N�M (n1; n2; d1; d2) is non-empty and irreduible. MoreoverN�M (n1; n2; d1; d2) �= (M(n2; d2)�M(n1 � n2; d1 � d2) if n1 > n2M(n1; d1)�M(n2 � n1; d2 � d1) if n1 < n2. (5.15)Theorem 5.9. If n1 = n2 = n then:(1) If �m = 0, i.e. if d1 = d2 (= d), then N�(n; n; d; d) �=M(n; d) for all � > 0. Inpartiular N�(n; n; d; d) is non-empty and irreduible.(2) If 0 < d1 � d2 < �, then N�(n; n; d1; d2) is non-empty and irreduible.Remark 5.10. Notie that if n1 = n2 and �m = 0, then N�(n; n; d; d) �=M(n; d) for all� > 0, while N0(n; n; d; d) �= M(n; d) �M(n; d). The piture is quite di�erent if werestrit to the stable points in the moduli spaes. In fat there are no stable points inN0(n; n; d; d), i.e., N s0 (n; n; d; d) is empty, while N s�(n; n; d; d) �=M s(n; d) for � > 0.Proposition 5.11 (f. [4℄ and [7℄).



34 (1) If � 2 [�m; �M ℄ is generi and GCD(n1; n1 + n2; d1 + d2) = 1, thenN�(n1; n2; d1; d2) = N s�(n1; n2; d1; d2):In partiular, the moduli spae N�(n1; n2; d1; d2) is non-empty and irreduibleif in addition 2g � 2 6 �.(2) Let m 2Zbe suh that GCD(n1 + n2; d1 + d2 �mn1) = 1. Then � = m is nota ritial value and there are no �-independent semistable triples.6. Main resultsWe now use the results of Setion 5.4, applied to the ase � = 2g � 2, to dedueour main results on the moduli spaes of U(p; q)-Higgs bundles, and hene for therepresentation spaes R(PU(p; q)) and R�(U(p; q)) (de�ned in setion 2). Reall thatwe identi�ed omponents ofR(PU(p; q)) labeled by [a; b℄ 2Z�Z=(p+q)Z, and similarlyidenti�ed omponents of R�(U(p; q)) labeled by (a; b) 2Z�Z. Our arguments proeedalong the following lines:� By Proposition 2.5 R�(a; b) is a U(1)2g-�bration over R[a; b℄. The numberof onneted omponents of R�(a; b) is thus greater than or equal to that ofR[a; b℄.� By Proposition 3.13 there is a homeomorphismbetweenR�(a; b) and the modulispaeM(a; b) of U(p; q)-Higgs bundles. This restrits to give a homeomorphismbetween R��(a; b) and Ms(a; b).� By Proposition 4.3 the number of onneted omponents of Ms(a; b) is deter-mined by the number of onneted omponents in the subspae of loal minimafor the Bott-Morse funtion de�ned in Setion 4.1.� By Theorem 5.3 we an identify the subspae of loal minima as a moduli spaeof �-stable triples, with � = 2g � 2.Summarizing, we have:j�0(R[a; b℄)j 6 j�0(R�(a; b))j = j�0(M(a; b))j6 j�0(N (a; b))j = j�0(N2g�2(n1; n2; d1; d2))jwhere j�0(�)j denotes the number of omponents, and (in the notation of Setion 5) themoduli spae of triples whih appears in the last line is eitherN2g�2(p; q; a+p(2g�2); b)(if a=p 6 b=q) or N2g�2(q; p; b+ q(2g� 2); a). Similarly, replaing Proposition 4.3 withProposition 4.24, we get thatj�0( �R�[a; b℄)j 6 j�0( �R��(a; b))j = j�0( �Ms(a; b))j6 j�0( �N s(a; b))j = j�0( �N s2g�2(n1; n2; d1; d2))jIn partiular, if the moduli spaes of triples are onneted, then so are the Higgs modulispaes and the moduli spaes of representations.6.1. Moduli spaes of Higgs bundles. We begin with results for the U(p; q)-Higgsmoduli spaes. Reall from Proposition 3.20 that, whenever the moduli spaeMs(a; b)of stable U(p; q)-Higgs bundles with invariants (a; b) is non-empty, it is a smooth om-plex manifold of dimension 1 + (p+ q)2(g � 1). We shall refer to this dimension as theexpeted dimension in the following.



35Theorem 6.1. Let (p; q) be any pair of positive integers and let (a; b) 2Z�Zbe suhthat 0 6 j� (a; b)j 6 �M .(1) If either of the following sets of onditions apply, then the moduli spaeMs(a; b)is a non-empty smooth manifold of the expeted dimension, with onneted lo-sure �Ms(a; b):(i) 0 < j� (a; b)j < �M ,(ii) j� (a; b)j = �M and p = q.(2) If any one of the following sets of onditions apply, then the moduli spaeM(a; b) is non-empty and onneted:(i) � (a; b) = 0,(ii) j� (a; b)j = �M and p 6= q,(iii) (p � 1)(2g � 2) < j� j 6 �M = p(2g � 2) and p = q.Proof. (2) By Proposition 5.6 ondition (i) implies that �m < 2g � 2 < �M for thetriples orresponding to points in N (a; b). Thus Theorem 5.8(2) (together with The-orem 5.3) implies that N (a; b) is non-empty and onneted. Similarly, ondition (ii)implies that �m = 0, and we an apply Theorem 5.9(1). The rest follows from Theorem5.4. (3) By Proposition 5.6, the onditions in (i) and (ii) are equivalent to �m = 2g�2and �M = 2g�2 respetively. It follows by parts (1) and (3) of Theorem 5.8 (togetherwith Theorem 5.3) that N (a; b) is non-empty and onneted. The rest follows fromTheorem 5.4.For (iii), we use the fat that j� j = jb � aj if p = q. The ondition on j� j is thusequivalent to d1 � d2 < 2g � 2 for the triples orresponding to points in N (a; b). Theresult thus follows by Theorem 5.9(2). �Remark 6.2. Combining (1) and (i){(ii) of (2) in Theorem 6.1, we see that the modulispae M(a; b) is non-empty for all (p; q; a; b) suh that 0 6 j� j 6 �M .Remark 6.3. In Theorem 3.32 we gave a detailed desription for M(a; b) in the asethat p 6= q and j� (a; b)j = �M . The desription was omplete, provided that the spaewas non-empty. By the previous remark we an now remove this aveat.In general, the stable lousMs(a; b) is not the full moduli spae and the full modulispae M(a; b) is not smooth. Singularities an our at points representing stritlysemistable objets, and these an also aount for singularities in N (a; b), the spae ofloal minima (as in Setion 5). These types of singularities are prevented by ertainoprimality ondition:Proposition 6.4. Suppose that GCD(p + q; a+ b) = 1. Then:(1) M(a; b) is smooth.(2) � = 2g � 2 is not a ritial value for triples of type (p; q; a + p(2g � 2); b) or(q; p; b+ q(2g � 2); a).(3) The moduli spaes N2g�2(p; q; a+ p(2g � 2); b) and N2g�2(q; p; b+ q(2g � 2); a)are non-empty, smooth and irreduible.Proof. (1) This is simply a re-statement of (2) in Proposition 3.13.(2) Apply Proposition 5.11 (2) with (n1; n2; d1; d2) equal to (p; q; a+ p(2g � 2); b)or (q; p; b+ q(2g � 2); a) and m = 2g � 2.



36 (3) Sine GCD(p + q; a+ b) = 1 implies GCD(p; p + q; b+ a + q(2g � 2)) = 1 (orGCD(q; p+q; b+a+p(2g�2)) = 1), the result follows from (2) and Proposition5.11 (1). �Theorem 6.5. Let (p; q) be any pair of positive integers and let (a; b) be suh that0 6 j� (a; b)j 6 �M . Suppose also that GCD(p + q; a+ b) = 1. Then the moduli spaeM(a; b) is a (non-empty) smooth, onneted manifold of the expeted dimension.Proof. Combine Proposition 6.4 and Theorem 5.4. �Theorems 6.1 plus 6.5 are equivalent to Theorem A in the Introdution.6.2. Moduli spaes of representations. Using Proposition 3.13 we an translatethe results of Setion 6.1 into results about the representation spaes R�(a; b) andR��(a; b) (for U(p; q) representations of the surfae group �). We denote the losure ofR��(a; b) in R�(a; b) by �R��(a; b).Theorem 6.6. Let (p; q) be any pair of positive integers and let (a; b) 2Z�Zbe suhthat 0 6 j� (a; b)j 6 �M .(1) The moduli spae R�(a; b) is non-empty.(2) If either of the following sets of onditions apply, then the moduli spae R��(a; b)is a non-empty smooth manifold of the expeted dimension, with onneted lo-sure �R��(a; b) in R�(a; b):(i) 0 < j� (a; b)j < �M ,(ii) j� (a; b)j = �M and p = q.(3) If any one of the following sets of onditions apply, then the moduli spaeR�(a; b) is onneted:(i) � (a; b) = 0,(ii) j� (a; b)j = �M and p 6= q,(iii) (p � 1)(2g � 2) < j� j 6 �M = p(2g � 2) and p = q,(iv) GCD(p + q; a+ b) = 1(4) If GCD(p + q; a + b) = 1 then R�(a; b) is a smooth manifold of the expeteddimension.Proof. By Proposition 3.13, this follows from Theorem 6.1 and 6.5. �Theorem 6.7. Let (p; q) be any pair of positive integers suh that p 6= q, and let (a; b)be suh that j� (a; b)j = �M . Then every representation in R�(a; b) is reduible (i.e.R��(a; b) is empty). If p < q, then every suh representation deomposes as a diretsum of a semisimple representation of � in U(p; p) with maximal Toledo invariant anda semisimple representation in U(q � p). Thus, if � = p(2g � 2) then there is anisomorphismR�(p; q; a; b) �= R�(p; p; a; a� p(2g � 2))�R�(q � p; b� a+ p(2g � 2));where the notation R�(p; q; a; b) indiates the moduli spae of representations of �in U(p; q) with invariants (a; b), and R�(n; d) denotes the moduli spae of degree drepresentations of � in U(n).(A similar result holds if p > q, as well as if � = �p(2g � 2)).



37Proof. Proposition 3.13 and Theorem 3.32. �As observed in Setion 2.2 (f. (2.7)), the spaes R(a) = R�(a;�a) an be iden-ti�ed with omponents of R(U(p; q)), i.e. with omponents of the moduli spae forrepresentations of �1X in U(p; q). Applying Theorems 6.6 and 6.7, together with theobservation that � (a;�a) = 2a in the speial ase where b = �a, we thus obtain thefollowing results for R(U(p; q)). Notie that the ondition GCD(p + q; a+ b) = 1 isnever satis�ed if a+ b = 0.Theorem 6.8. Let (p; q) be any pair of positive integers and let a 2 Z�Z be suhthat jaj 6 minfp; qg(g � 1).(2) The moduli spae R�(a) is non-empty(2) If either of the following sets of onditions apply, then the moduli spae R�(a)is a non-empty, smooth manifold of the expeted dimension, with onnetedlosure �R�(a) in R(a):(i) 0 < jaj < minfp; qg(g � 1) , or(ii) jaj = p(g � 1) and p = q,(3) If any one of the following sets of onditions apply, then the moduli spae R(a)is onneted:(i) a = 0,(ii) jaj = minfp; qg(g � 1) and p 6= q,(iii) (p � 1)(g � 1) < jaj 6 p(g � 1) and p = q,Theorem 6.9. Let (p; q) be any pair of positive integers suh that p 6= q. If jaj =minfp; qg(g � 1) then R�(a) is empty and every representation in R(a) is reduible.If p < q, then every suh representation deomposes as a diret sum of a semisim-ple representation of � in U(p; p) with maximal Toledo invariant and a semisimplerepresentation in U(q � p). Thus, if a = p(g � 1) then there is an isomorphismR(a) �= R�(p; p; a; a� p(2g � 2))�R�(q � p; p(2g � 2));where the notation R�(p; q; a; b) indiates the moduli spae of representations of �in U(p; q) with invariants (a; b), and R�(n; d) denotes the moduli spae of degree drepresentations of � in U(n).(A similar result holds if p > q, as well as if a = �p(g � 1)).From Theorem 6.6 and Proposition 2.5 we obtain the following theorem about themoduli spaes for PU(p; q) representations of �1X. Note that the losure �R�[a; b℄ inR[a; b℄ is the image of �R��(a; b) under the map of Proposition 2.5, hene these twospaes have the same number of onneted omponents.Theorem 6.10. Let (p; q) be any pair of positive integers and let (a; b) 2 Z�Z besuh that 0 6 j� (a; b)j 6 �M .(1) The moduli spae R[a; b℄ is non-empty.(2) If either of the following sets of onditions apply, then the moduli spae R�[a; b℄is a non-empty smooth manifold of the expeted dimension, with onneted lo-sure �R�[a; b℄ in R[a; b℄:(i) 0 < j� (a; b)j < �M , or(ii) j� (a; b)j = �M and p = q,



38 (3) If any one of the following sets of onditions apply, then the moduli spae R[a; b℄of all semi-simple representations is onneted:(i) � (a; b) = 0,(ii) j� (a; b)j = �M and p 6= q. ,(iii) (p � 1)(2g � 2) < j� j 6 �M = p(2g � 2) and p = q,(iv) GCD(p + q; a+ b) = 1Theorem 6.11. Let (p; q) be any pair of positive integers suh that p 6= q, and let(a; b) be suh that j� (a; b)j = �M . Then R�[a; b℄ is empty. If p < q, then every suhrepresentation redues to a semisimple representation of �1X in P(U(p; p)�U(q�p)),suh that the PU(p; p) representation indued via projetion on the �rst fator hasmaximal Toledo invariant. (A similar result holds if p > q.)Remark 6.12. As explained by Hithin in [22, Setion 5℄, the moduli spae of irreduiblerepresentations in the adjoint form of a Lie group is liable to aquire singularities,beause of the existene of stable vetor bundles whih are �xed under the ation oftensoring by a �nite order line bundle. For this reason we do not make any smoothnessstatements in Theorem 6.10.6.3. Total number of omponents and oprimality onditions. We end withsome elementary observations about the total number of omponents in the deom-position R(PU(p; q)) = S(a;b)R[a; b℄, and about the number of suh omponents forwhih the oprime ondition GCD(p+ q; a+ b) = 1 apply. We begin with the numberof omponents.By de�nition, � (a; b) takes values in 2nZ, where n = p+ q.Proposition 6.13. Suppose that GCD(p; q) = k. Then the map� : Z�Z=(p; q)Z�! 2nZ[a; b℄ 7�! 2n(aq � bp)�ts in an exat sequene0 �!Z=kZ ��!Z�Z=(p; q)Z ��! 2kn Z�! 0where the map � is [t℄ 7! [t pk ; t qk ℄. In partiular, � is a k : 1 map onto the subset2knZ� 2nZ.Proof. The map � is learly injetive, and � Æ � = 0. To see that ker(� ) = im(�),observe that if � [a; b℄ = 0 then either a = b = 0 or ab = pq , i.e. [a; b℄ = [t pk ; t qk ℄ for somet 2Z. Finally, if a0q � b0p = k, then for any l 2Zwe have � [la0; lb0℄ = 2kn l. Thus � issurjetive onto 2knZ. �Remark 6.14. Proposition 6.13 shows why3we must use [a; b℄ rather than � to label theomponents of R(PU(p; q)) or of R�(U(p; q)).3Unless p and q are oprime, in whih ase there is a bijetive orrespondene between [a; b℄ and � .



39De�nition 6.15. Suppose that GCD(p; q) = k. De�neC = ��1([��M ; �M ℄ \ 2kn Z) ; (6.1)where � is the map de�ned in Proposition 6.13.The following is then an immediate orollary of Proposition 6.13.Corollary 6.16. Suppose that GCD(p; q) = k and C is as above. Then C is preiselythe set of all the points in Z�Z=(p; q)Zwhih label omponents R[a; b℄ in R(PU(p; q)).The ardinality of C isjCj = 2nminfp; qg(g � 1) + k= j([��M; �M ℄ \ 2nZ)j+GCD(p; q)� 1 :Proof. The �rst statement is a diret onsequene of Proposition 6.13 and the bound on� . Suppose for de�niteness that minfp; qg = p. Then sine �M = 2minfp; qg(g � 1) =2kn (n pk (g � 1)) 2 2knZ, the number of points in [��M ; �M ℄ \ 2knZis 2n pk (g � 1) + 1. Theseond statement now follows from the fat that � is a k : 1 map. The proof is similarif minfp; qg = q. �Finally, we examine the oprime ondition GCD(p+ q; a+ b) = 1. We regard p andq as �xed, but allow [a; b℄ to vary. The oprime ondition GCD(p + q; a+ b) = 1 anthus be satis�ed on some omponents but not on others.De�nition 6.17. Fix p and q and let C �Z�Z=(p+q)Zbe as in De�nition 6.15. De�neC1 to be the subset of lasses [a; b℄ 2 C for whih the ondition GCD(p+ q; a+ b) = 1is satis�ed.Proposition 6.18. Fix p and q and let C and C1 be as above. Both C1 and its om-plement in C are non-empty.Proof. If a = p and b = q � 1 then GCD(p + q; a + b) = 1. Also, � (p; q � 1) = 2pp+q ,whih is in [��M ; �M ℄ \ 2knZ. Thus [p; q � 1℄ is in C1. It is similarly straightforward tosee that (p; q) = (0; 0) de�nes an element in C � C1, as does (p; q) = (p;�p) if p 6 q or(p; q) = (q;�q) if q 6 p. �It seems somewhat ompliated to go beyond this result and ompletely enumeratethe elements in C1. The following result is, however, a step in that diretion.De�nition 6.19. Let 
 � R� R be the region depited in Figure 2, i.e. the regionbounded by (i) the ray b = q and a 6 p, (ii) the ray a = p and b 6 q, (iii) the raya = 0 and b 6 0, (iv) the ray b = 0 and a 6 0, (v) the line aq� bp = n2 �M , and (vi) theline aq � bp = �n2�M , and inluding all the boundary lines exept the �rst two rays.Let 
Zbe the set of integer points in 
, i.e. 
Z= 
TZ�Z. We refer to 
 as thefundamental region for (p; q) (see Figure 2). Then 
Zis the integer lattie inside thefundamental region.Proposition 6.20. 4Suppose that p and q are integers with GCD(p; q) = k and p 6 q.4With an analogous Proposition for the ase p > q.



40 (1) There is a bijetion between C and 
Z.(2) If (a; b) lies in 
Zthen d = a+ b satis�es the bounds�n(g � 1) 6 d < n : (6.2)All values of d in this range our.(3) Let lt denote the line aq� bp = tk. Then the points on ltT
Zde�ne the lousof points (a; b) for whih � (a; b) = t2kn .(4) The line lt intersets 
Zfor �npk (g � 1) 6 t 6 npk (g � 1) For eah integer t inthis range, there are k points on ltT
Z.(5) For a �xed t, GCD(a+ b; nk ) is the same for all integer points (a; b) on ltT
Z.(6) If GCD(d; nk ) 6= 1 then GCD(d0; n) 6= 1 for all (a0; b0) 2 ltT
Z.Proof. (1) Suppose �rst that ap 6 bp. Pik l suh that 0 6 a+ lp 6 p. Then b+ lq 6 q,so that (a + lp; b + lq) is in the fundamental region. Similarly, if ap > bp then we pikl suh that 0 6 b+ lq 6 q and see that a + lp 6 p. In this way we get a well de�nedmap from C to the fundamental region. The map is learly injetive. To see that it issurjetive, notie that the boundary lines aq�bp = np(g�1), and aq�bp = �np(g�1)orrespond to the onditions � = �M and � = ��M respetively.(2) This is lear from a sketh of the fundamental region (see Figure 2). In suh asketh, the loi of points with onstant value of d = a + b are straight lines of slope�1. Sine p 6 q, the extreme ases are those of the lines passing through the points(0;�n(g � 1) and (p; q). Using the points (0; b) with �n(g � 1) 6 b < q we get pointsat whih all values of d in the range �n(g � 1) 6 d < q are realized. We get values ofd in the range g 6 d < n at the points (a; q � 1), with 1 6 a < p.(3)-(4) This is simply a restatement of Proposition 6.13.(5)-(6) Both follow from the fat that for any two points (a; b) and (a0; b0) on lt, weget d0 = d+ snk for some s 2Z. �Remark 6.21. There is no onverse to (6). Even if GCD(d; nk ) = 1, it is possible thatGCD(d0; n) 6= 1 for some (a0; b0) 2 ltT
Z. For example, take p = 2; q = 4; a = �1; b =0; a0 = 0; b0 = 2, and t = �2. Then GCD(d0; n) = 2 but GCD(d; nk ) = 1.
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Figure 1: Range for the stability parameter � for triples in N (a; b), displayed asfuntions of � = 2pqp+q (ap � bq ), and showing the relative loation of 2g � 2.
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Figure 2: Fundamental region for (a; b). Components of R(PU(p; q)) orrespond tothe integer points in this region. Illustrative lines of onstant � (at � = ��M ; 0; �M)and lines of onstant d (at d = � n2q�M ; 0; q) are shown.
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