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Projective Invariancefor Classical and Quantum Systems 1A.V. BobylevKeldysh Institute of Applied Mathematics, Russian Academy of ScienceMiusskaya pl.4, 125047 Moscow, RussiaG. VilasiErwin Schr�odinger International Institute for Mathematical PhysicsPasteurgasse 6/7 A-1090 Wien, AustriaandDipartimento di Fisica Teorica e S.M.S.A. Universit�a di SalernoVia S. Allende - 84081 Baronissi (Sa),Italy (e-mail: vilasi@salerno.infn.it)andIstituto Nazionale di Fisica Nucleare, Sezione di Napoli, Italy(Submitted 31 July 1994)AbstractThe Lie Group of projective transformations for di�erent physical systems is considered. Itis shown that many mathematically and physically relevant equations are projectively invariant.Classical and quantum systems of particles and their generalizations to kinetic theory and hydro-dynamics are considered from this new view point. New invariant equations and correspondingConservation laws are introduced. The speci�c role of these transformations and The potentialU (x) = �jxj2 with x 2 Rn are discussed from physical and geometrical points of view. It is shownthat all the considered examples are connected with a system of free particles.PACS :O3.20.+i,03.40.Gc,03.65 Fd1 IntroductionLie group analysis methods applied to mathematical models of relevant physical systems alwayslead to an unexplicitely distinction between trivial and non-trivial symmetries. Roughly speakingit means that we can easily guess the �nal result in the �rst case, not in the second one.The term trivial can be also applied to the linear transformations of the both dependent andindependent variables in the considered equation. We note that these trivial symmetries are oftenconnected with very fundamental properties of the physical world, such as isotropy and uniformityof space or time.1Supported in part by Ministero dell' Universit�a e della Ricerca Scienti�ca e Tecnologica and Istituto Nazionaledi Fisica Nucleare, Italy.



Analysing, from this point of view, the well-known complete symmetry groups of classical equa-tions in mathematical physics, one can notice that in many cases (see below) one of a few non-trivial symmetries turns out to be linked with projective transformations. In the classical book ofL.V.Ovsiannikov [1] this symmetry for the Euler gasdynamics equations is even used as an exampleof non trivial transformations which cannot be guessed from so-called physical considerations.Apparently there is no serious comparative analysis of di�erent projectively invariant physicalsystems in literature. Therefore we try to do it in this paper.We shall also observe that in some sense all projectively invariant systems are closely connectedwith the free particle motion in a bigger carrier Euclidean space.That is why we start from the simplest system (a particle moving along the x-axis with aconstant velocity) using it to introduce all necessary notions.Let us consider the free motion equation:d2xdt2 = 0 x 2 R1 t 2 R1 (1)and introduce some standard notationsWe are interested in a 1- parameter group of transformations:x0 = '(x; t; a) t0 =  (x; t; a) (2)where a is the so-called group parameter.The group property of transformations (2) implies that they satisfy the following Cauchy prob-lem. dx0da = X(x0; t0) dt0da = T (x0; t0) (3)x0ja=0 = x t0ja=0 = twhere X = �@'@a�a=o T = �@ @a�a=0at least for su�ciently small j a j. In a modern language, equations (3) are the di�erential equationsfor integral curves (2) of the vector �eld:Z = X(x; t) @@x + T (x; t) @@t (4)belonging to the tangent bundle based on the manifold whose local coordinates are (x,t).Using an older but perhaps a more familiar terminology, the invariance of our equation fortransformations (2) is expressed saying that it admits the operator Z, the in�nitesimal operator ofthe group (3).It is well-known [1] , [2], [3] that the complete invariance of eq. (1) is accounted by a 8-parametersgroup whose corresponding operator Z has the following formZ = �1 @@t + �2t @@t + �3t @@x + �4 �t2 @@t + tx @@x�++ �1 @@x + �2x @@x + �3x @@t + �4�x2 @@x + xt @@t� (5)



We notice that Z is constructed by using the operatorsZ1 = @@t Z2 = t @@t Z3 = t @@x Z4 = t2 @@t + tx @@x (6)and the exchange �i $ �i x$ t.The �rst three operators re
ect, respectively, the invariance of the free motion, described byequation (1), under time translations (the uniformity of time), time scaling (di�erent time unitschoose freedom), Galileo transformations (the principle of relativity).The corresponding 1-parameter subgroups on the (x; t) plane are given by:x0 = x x0 = x x0 = x+ �3tt0 = t + �1; t0 = e�2t; t0 = t: (7)The fourth operator in (6), i.e. Z4 = t2 @@t + tx @@x; (8)generates the 1-parameter group x0 = x1� at ; t0 = t1� at ; (9)which is a particular case of so-called projective transformations [1] , [2]. The invariance undertransformations (9) will be called the projective invariance1.From our considerations, it follows that the projective transformations (9) belong to the list ofthe four basic groups (7)-(9) of the equation (1).From a geometrical point of view we are studying the point transformations on the plane (x; t),which map straight lines into straight lines. So, we have four independent groups and know thatthree of them, the linear ones, have a clear physical interpretation. The fourth, nonlinear, group is,obviously, local (at < 1) as local in nature is the Lie Group Theory. The physical meaning of theprojective transformations remains unclear. On the other side there exist some models of di�erentphysical nature in which the property of projective invariance is also present. How to connect theseexamples of projectively invariant equations from di�erent �elds of physics? How to look for newprojectively invariant systems? What about the consequences of this invariance on the existence ofadditional conservation laws? The �rst step in answering these questions was made in [4], but someproblems remain unsolved. This paper can be considered as an attempt to clarify the situation,also for quantum systems.To avoid any possible misundertandings we would like to stress that the aim of our paper isfar from usual aims of group analysis, although we shall indicate some new projectively invariantsystems. The central problem here is to understand the role of these simple transformations inphysics and try to expalin why we �nd projectively invariant systems in quite di�erent �elds. It isof course rather physical than mathematical problemWe start from well-known examples as projectively invariant systems.2 Three examples.The transformations (9) can be generalized obviously to the multidimensional case, the correspond-ing operator being:1This terminology is not universally adopted (see, for example, [3] ) but it is convenient for goals of our paper.



Z = t2 @@t + tx � @@x ; x 2 Rn ; t 2 R; (10)the dot �, x and @@x denoting, respectively, the standard scalar product in Rn, a vector of Euclideanspace Rn (n = 1; 2; ::) and the gradient operator.The corresponding projective tranformations in Rn+1 are:x0 = x1� at ; t0 = t1� at ; x 2 Rn ; t 2 R (11)We also consider the transformation at the points (x; v) of the phase space R2n, where v denotesthe velocity, i.e. v = dxdt . If we requirethe correspondence v = ddtx(t)! v0 = ddt0x0(t0); (12)the extended operator Ẑ, the so-called �rst extension of Z, can be written asẐ = t2 @@t + tx � @@x + (x� vt) � @@v (13)from which we get the following formulas for the extended transformations in the phase space-timeR2n+1 t0 = t1� at ; x0 = x1� at ; v0 = v(1� at) + axx 2 Rn ; v 2 Rn ; t 2 R ; n = 1; ::: (14)We are ready now to consider the three classical examples with similar symmetry properties [1], [2].2.1 Classical MechanicsLet x 2 Rn be a coordinate of a particle (massm � 1) moving in the central �eld with the potentialU(jxj) = �jxj2 ; � > 0; x 2 Rn (15)The equation of the motion: d2xdt2 = � @@xU(jxj) (16)is, for any �, invariant under projective transformations (11). The free motion (case � = 0) is nowincluded in the more general equation (15)-(16). On the other hand this equation can be obtained,for any �xed positive �, from the one of the free motion.2.2 The Heat Transfer EquationThe heat transfer equation is written:ut = �u = nXi=1 @2u@x2i ; n = 1; : : : (17)



the function u(x; t) denoting the temperature �eld at the point x 2 Rn, at time instant t > 0. Theequation (17) admits the operatorZ = t2 @@t + tx � @@x � �nt2 + jxj2�u @@u ; (18)i.e. it is invariant under the projective transformations (11) of independent variables x and t andthe following linear transformations of dependent variable u(x; t):u0 = u(1� at)n=2 exp � ajxj24(1� at)! (19)So,the symmetry property of the dissipative heat transfer (or di�usion) equation is similar to theone of a particle in the central �eld (15). This symmetry property can be obviously generalized tothe Burgers equation [2] and to the Burgers Hierarchy [5].2.3 Euler Gas DynamicsThe Euler gas dynamics equations for a monatomic gas can be written in the standard form@�@t + u@�@x + �divu = 0 ; x 2 Rn ; t > 0@u@t + �u � @@x� u+ 1� @p@x = 0; (20)@p@t + u � @p@x + n+ 2n pdivu = 0 ;where the scalar functions �(x; t), p(x; t) and the n-component vector function u(x; t) respectivelydenote the density, the pressure and the bulk velocity of the gas at the space-time point (x; t).These equations admit the operatorZ = t2 @@t + tx � @@x + (x� ut) � @@u � nt� @@� � (n + 2)tp @@p (21)So, the Euler compressible equations (20) are also invariant under the projective transformations(11) of independent variables (x; t) and the linear transformations of dependent variables�0 = �(1� at)nu0 = u+ a(x� ut) (22)p0 = p(1� at)n+2We notice that the bulk velocity u(x; t) is transformed similarly to the time-derivative of x(t)in eq.s (12)-(14).Remark. In the examples 1 and 3 two additional conservation laws appear due to this symmetry.These conservation laws and related questions will be considered in Sec. 4.It is an interesting task to understand the coincidence of the symmetry properties for so di�erentphysical systems. The connection between examples 1 and 3, which was partially clari�ed in [4](published only in Russian), will be discussed in next section.



3 Classical Dynamics, Hydrodynamics and Kinetic TheoryWe do not consider the example 2 (heat-transfer equation) in this sectionand concentrate our attention on examples 1 and 3 only. To understand the connection betweenthese examples (a particle in the central �eld and the Euler equations of gas dynamics) we have toremind the formal connection between dynamics and hydrodynamics through the kinetic theory ofgases:Two-bodyproblem ! N-bodyproblem ! Boltzmannequation ! Hydrodynamics,Euler equationsIt has been proved in [4] that, for particles interacting with the potential (15), the projectiveinvariance is conserved along all this series: from the starting two-body problem to the �nishingEuler equations.It is worthwhile to observe that N-body dynamics is invariant under the transformations (11) or(14) for every particle coordinate and velocity. The exact formulation of this symmetry propertyis the following:Proposition 1. The dynamical equationsdxidt = Vi; dvidt = � @@xi NXj=1;j 6=iU(jxi � xj j) (23)xi 2 Rn; Vi 2 Rn; t 2 R; i = 1; : : : ; Nfor the N-particle system with the potential (15) 2 are invariant under the projective transforma-tions: t0 = t1� at ; x0i = xi1� at ; v0i = vi(1� at) + axi i = 1; : : : ; n: (24)We notice also that the transformations (24) preserve the phase volume, i.e.dx0 ^ dv0 = dx ^ dv (25)So, the Liouville equation for this N -particle problem is also projectively invariant. It is easy nowto guess the corresponding properties of the Boltzmann equation and compressible Navier- Stokesequation.Proposition 2. Let f(x; v; t) be a distribution function, x, v and t respectively denoting the position,the velocity and the time, satisfying the Boltzmann equation for the intermodular potential (15),i.e. for x 2 Rn v 2 Rn; t > 0@f@t + v � @f@x = ZRn�Sn�1 dw d!juj�n�juju � !juj ��f(v0)f(w0)� f(v)f(w)	 (26)where u = v�w; Sn�1 is the unit sphere in Rn, ! 2 Sn�1; j!j = 1, v0 and w0 denote the velocitiesafter collision: v0 = 12 (v + w + juj!) ; w0 = 12 (v + w � juj!) :2The N -body potential (15) is well known as the Calogero-Moser potential . It was �rstly considered by Calogero[6] and its complete integrability, in one space dimension, was shown by Moser [7]. Furthermore new invarianceproperties have been recently found [8],[9].



In (26) �n(juj; cos�) denotes the (generalized for n 6= 3) di�erential cross-section for the scat-tering angle 0 < � < �. For the potential (15) it can be written in the form�n(juj; cos�) = An(cos �)juj1�n; n = 2; 3 : : : (27)The equation (26)-(27) is invariant under the following transformation:f 0 = f; t0 = t1� at ; x0 = x1� at ; v0 = v(1� at) + ax (28)At last we can formulate the same properties for Navier Stokes equations.Proposition 3. With notations of ref. [4] the standard Navier-Stokes equations for a dilute gas,with the potential (15), are written:@�@t + div �u = 0; u = u(u1; :::un) (29)� @@t + u � @@x�uk + 1� @p@xk = 1� @@xi�n(T ) � @ui@xk + @uk@xi � 2n�ikdiv u�@p@t + u � @p@x + 
p div u = 2n @@x � �n(T )@T@x + 2n�n(T ) @ui@xk ��� @ui@xk + @uk@xi � 2n�ik div u� ;
 = n+ 2n ; p = �T ; i; k = 1; :::n;where T denotes the temperature and the sum over repetead indices is meant. For this potentialthe viscousity �n(T ) and the heat-transfer �n(T ) coe�cients have the form�n(T ) = �0Tn=2; �(T ) = �0Tn=2; (30)�0 and �0 denoting constant values.The equations (29)-(30) are invariant under the projective transformations (11), (22), i.e., theseequations have the same symmetry property as the Euler equations (20).These propositions can be easily proved by simple veri�cation .Thus we get the projective invariance of the Boltzmann, Navier-Stokes and Euler equations fromthe one of a very simple mechanical system. It is remarkable that the connection with the speci�cpotential (15) appears to be lost in Euler (continuous media) limit because the Euler equations(20) are independent on the intermolecular potential.4 Additional Conservation LawsWe describe brie
y the additional invariants for previous three examples. In the example 1, theconservation of the energy can be written in the formE = jvj22 + �jxj2 = const: (31)We can conclude, from the symmetry, that for any a><0 (jaj is su�ciently small)E 0 = jv0j22 + �jx0j2 = const0; (32)



where the formulas (14) are used. Here E 0 is a polinomial (quadratic) function of parameter aE 0 = E � aI1 + a22 I2 = const;So we get two new invariants I1 = 2tE � x � v = constI2 = 2t2E � x � (2tv � x) = const ; E = jvj22 + �jxj2 = const (33)In the case of N -particle system we get similarly the same invariants in the formI(N)1 = 2tE � NXk=1 xk � vk = constI(N)2 = 2t2E � NXk=1 xk � (2tvk � xk) = const (34)E = NXk=1 v2k2 + X1�i<j�N �jxi � xj j2 ; N = 2; 3; : : :The physical (or geometrical) meaning of these conservation laws is clari�ed by the followingformula d2dt2 NXk=1x2k = 4E = const; (35)which is equivalent to the two conservation laws in (34).It is remarkable that the analogous conservation laws for the Boltzmann equationI(B)1 = ZRn�Rn dxdvf(x; v; t)v � (vt� x) = constI(B)2 = ZRn�Rn dxdvf(x; v; t)(vt� x)2 = const (36)hold in the general case independently on the intermolecular potential. The same conservation lawsin terms of density �(x; t) = ZRn dv f(x; v; t);bulk velocity u(x; t) = 1� ZRn dv f(x; v; t)and pressure p(x; t) = 1n ZRn dvf(x; v; t)(v� u)2also hold in the general case of the Navier- Stokes and Euler equations. Thus the projectiveinvariance is valid only for special potential (15) (except the Euler equation) but the additionalconservation laws are valid in the general case.The explicit formulas of the hydrodynamical invariants are:I(H)1 = I(B)1 = ZR3 dxnt ��u2 + np�� �x � uo (37)



I(H)2 = I(B)2 = ZR3 dxnt2 ��u2 + np�+ �x � (x� 2tu)oOne can �nd in [4] a more complete information concerning the additional conservation laws. Wenotice only that these laws for the Euler equations were found in [10] and for the Boltzmann equationthey were apparently �rstly published in [11], without any connection with group symmetries. Thespecial transformation of the Boltzmann and the Navier-Stokes equations for the potential (15) wasintroduced in [12].The conservation laws (34)-(37) can be easily interpreted as a simple equations of motion forthe �rst moments in phase space. Let f(x; v; t) be normalized as probability densityZRn�Rn dxdvf(x; v; t) = 1Introducing the standard notations for average values of a given function h(x; v)hh(x; v)i = ZRn�Rn dxdvf(x; v; t)h(x; v);or for N -particle system hh(x; v)i = 1N NXk=1 h [xk(t); vk(t)] ;the equations for the �rst moments are:ddthxi = hvi ; ddthvi = 0 :The ones for the second moments, in the general case, are not so evident. It follows from (36) thatddthx2i = 2hx � vinot only for N -particle system but also for the Boltzmann equation.The energy conservation law can be written in di�erent forms for the Boltzmann equationhv2i2 = " = constand for N -particle system interacting with pair potential U(jxj)hv2i2 + 1N X1�i<j�N U(jxi � xj j) = EN = ~" = constFor last scalar second moment we get from (36)ddt hx � vi = 2" = const ;The analogous equation for the interacting N -particle system can be written only in the case ofthe special potential (15)ddthx � vi = 2~" = 1N 24 NXk=1 v2k + 2 X1�i<j�N �jxi � xj j235 = const ;which includes for � � 0 the system of non-interacting particles.So we have a parabolic law hx2i = At2 + Bt + C (38)in the three following cases:



1. non-interacting particles;2. particles interacting via the Calogero- Moser potential (15).3. Boltzmann (Navier-Stokes, Euler) gas.Thus we observed the connection between our examples 1 and 3. In sec. 5 we consider the example2, i.e. heat-transfer equation.5 Heat Transfer and Schr�odinger equations.The projective invariance of heat transfer equation can be understood observing that the freemotion equation for the velocity v(x; t) of continuous mediavt + vvx = 0 x 2 R; t 2 Ris invariant under the transformation (14).A more general equation: vt + vvx � F (vxx; vxxx; :::) = 0;F denoting an arbitrary function, after the transformation (14), takes the form:vt + vvx � (1 + at)�3F ((1 + at)3vxx; (1 + at)4vxxx; :::) = 0:It turns out the projective invariance of the Burgers equation (F = vxx) and so the one of heat-transfer equation, because of the Hopf-Cole transformation.As a by-product of last formula, some new projectively invariant systems as(vt + vvx)2 � vxxxxx = 0;(vt + vvx)4 � (vxxx)3 = 0;can be obtained.The projective symmetry of heat-transfer equation can be also understood from its formalanalogy with the Schr�odinger equation for the wave function 	(x; t) of the free motioni@ @t = � x 2 Rn ; t 2 R ; (39)where the corresponding dimensionless variables have been used.After our observation in Sec. 3-4 on the projectively invariant classical systems, it is natural tolook for symmetry of quantum mechanical systems too. The �rst step is to study from this pointof view the simplest quantum mechanical system, that corresponds to the equation (39) for a freeparticle. We know that the projective transformationst0 = t1� at ; x0 = x1� at (40)do not change the equation of the free motiond2xdt2 = 0



in classical mechanics. At quantum level it is easy to verify that the Schr�odinger equation (39) isinvariant under the transformations (40) if we simultaneously transform the dependent variable 	according to: 	0 = 	(1� at)n=2 exp � iajxj24(1� at)! ; (41)similar to (19). So, the Schr�odinger equation (39) admits the operatorZ = t2 @@t + tx � @@x � �nt2 + ijxj2� @@	 ; (42)that corresponds to the projective transformations (40-41).We are able to understand from the physical point of view the origin of the transformation (41):it means that the motion of a free particle is projectively invariant in quantum mechanics, i.e. theprojective invariance is preserved in the transition from classical to quantum mechanics.Actually, the physical containt of the wave function 	(x; t) is expressed via the probabilisticmeasure �(A) = RA dxj	(x; t)j2, A � Rn.The physical picture does not change under some transformations if the measure is invariant.In our case (41) the probability density transforms as:j	0j2 = j	j2(1� at)nObserving that (1� at)n is the inverse Jacobian of transformations (10) from x0 to x, we get:j	0j2dx0 = j	j2dx :Thus the free motion equation is projectively invariany in the both classical and quantummechanics.This fact also re
ects the fundamental nature of the projective transformations.So, in the framework of our approach the projective invariance of the heat-transfer equation(17) is connected with the formal coincidence of this equation and the Schr�odinger equation (39).We shall try now to generalize this symmetry property to more complex quantum systems.6 Quantum systems with interactionIt is naturaly, at this point, to consider the Schr�odinger equation for N particles interacting withpair potential (15). We have for the wave function 	(x1; : : : ; xN ; t) with xi 2 Rn; i = 1; : : : ; N ,the equation: i	t = NXi=1�i	 � Un	; (43)where UN = X1�i�j�N �jxi � xj j2 ; � = 0It is easy to verify the validity of the followingProposition 4. The equation (43) admits the operatorZ = t2 @@t + NXk=1 txk � @@xk �  N2 nt + i NXk=1 jxkj2!	 @@	 ;



i.e. the equation (43) is invariant under the transformationst0 = t1� at ; x0k = xk1� at ; 	0 = 	(1� at)So, we get the quantum version of the Proposition 1 of Sec. 3. It is obvious that we cangeneralize the Proposition 2 to quantum Ueling-Uhlenbeck kinetic equation [13] in the both casesof bosons and fermions. Thus the Proposition 2 also holds replacing in it the Boltzmann equationby the Ueling-Uhlenbeck equation with the same potential.To the best of our knowledge these proerties of quantum systems with interaction were neverdiscussed in the literature.7 ConclusionWe have considered the speci�c role of the projective transformationsx0 = x1� at ; t0 = t1� at ; x 2 Rn ; t 2 R (44)of space-time in the non-relativistic classical and quantum mechanics of particles and in the theoriesof continuous media: the Boltzmann, the Navier-Stokes and the Euler equations. We also clari�edthe speci�c role of the potential: U(jxj) = �jxj2 ; � > 0; x 2 Rn (45)in connection with these transformations. It is a remarkable fact that in the one-dimensional caseU is the so-called Calogero-Moser potential, for which the N-body problem is completely integrable. We also observe that the Calogero-Moser system can be obtained by reduction from a free motion[8], and so it is the same for its projective invariance. In the two-dimensional case this potentialcorresponds to the Maxwell molecules for the Boltzmann equation. Finally in four dimensions it isthe fundamental solution of Laplace equation:� �jxj2 = 0; jxj > 0; x 2 R4 (46)i.e. the four-dimensional Coulomb potential. It is clear from our consideration that also the Vlasovkinetic equation [13] for the potential (45) are projectively invariant in RRn for any n � 4 3.This property is of interest in the case n = 4 too, because of the identity (46). Unfortunately,in the most important case n = 3 the applications of the potential (45) are unclear. Obviously,the transformations (44) are of interest not only for the potential (45), because they transform theinitial equations (in all the above considered cases, i.e. for the Newton, Schr�odinger, Boltzmann andother equations) to the same equations with the new time-dependent potential (or the cross-sectionfor the Boltzmann equation and the viscousity and heat-transfer coe�cients for the Navier-Stokesequations). Thus, in the general case the projective transformations are, for the above mentionedequations, the so-called equivalence (not invariance) transformations [1] , [2]. This clari�es the factthat the additional conservation laws in kinetic theory and hydrodynamics appear to be valid inthe general case too (see section 4).Furthermore, the postulate that the projective invariance of the free motion of a particle is pre-served in the transition from classical (Newton) to quantum (Schr�odinger) mechanics, immediately3In the case n = 3 the integral term in the Vlasov equation, with the potential (45) is not correctly de�ned.



gives only to the measure d� = j (x; t)j2dx a physical meaning, the wave function  (x; t) being notinvariant. So the physical interpretation of the wave function can be obtained, at least at physicallevel of rigour, from the postulate of the projective invariance of a free particle motion in quantummechanics.Resuming, the projective transformations (44) seem to play a relevant role in physics. Atleast they are transformations of invariance (or of equivalence) for a wide class of systems goingfrom those described by ordinary di�erential equations to the integro-di�erential Boltzmann andVlasov kinetic equations. We were trying in the paper to collect them and to explain their mutualconnection. Further, some new projectively invariant systems and the additional conservation laws,following from the projective symmetry, were founded. We hope that this paper will attract theattention to the role of the projective symmetry and of its physical meaning. At least it is clearthat this symmetry arises from the geometrical properties of the space-time in the non- relativisticphysics. All the considered examples are connected in some way with a system of free particlesmoving along geodesical (straight) trajectories in the Euclidean space-time. Observing that manycompletely integrable interacting systems actually turn out to be reduced system of free ones [14],one is tempted to use the projective invariance as an additional powerful symmetry in the study ofan unfolding procedure [8].8 AcknowledgmentsThis work was partially supported by the Russian Foundation of Fundamental Research (grant n.93-011-1689) and by the Italian Istituto Nazionale di Fisica Nucleare (INFN). One of the authors(A.V.B.) thanks the Salerno and Parma Universities, where part of this work was written, for theirkind hospitality and the other (G.V.) thanks pro�. V.Man'ko and G.Marmo for useful discussions.References[1] L.V.Ovsiannikov, Group Analysis of Di�erential Equations, (Academic Press, New York,1978).[2] N.H.Ibragimov, Group of transformations in Mathematical Physics, (Nauk., SSSR, 1985)[3] G.W.Bluman, S.Kumei,Symmetries and Di�erential Equations, (Springer, Berlin 1991)[4] A.V.Bobylev, N.H.Ibragimov, Mat. Modelirovanie, 1, 100 (1989)[5] S.De Filippo, G.Marmo, M.Salerno, G.Vilasi, Lett. Nuovo Cimento 37,105 (1983)[6] F. Calogero, J. Math. Phys., 12, 419 (1971)[7] J.Moser, Adv.Math. 16, 1 (1978)[8] J.Grabowski, G.Landi, G.Marmo, G.Vilasi, Generalized Reduction Procedure: Symplectic andPoisson Formalism.Forthscritte der Physik 42 (1994)[9] V.S.Gerdjikov, G.Vilasi,The Calogero-Moser Systems and The Weyl Groups. Preprint ofSalerno University, Salerno (1994).[10] N.H.Ibragimov, Doklady Acad. Nauk. SSSR 210, 1307 (1973)[11] A.V.Rykov, Zh. Vych. Math.i Math. Fiz. 25, 1902 (1985)
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