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ABSTRACT. Let u and uy, be the solution and, respectively, the finite ele-
ment solution of the Poisson’s equation Au = f with zero boundary condi-
tions. We construct for any m € N and any polygon P a sequence of finite
dimensional subspaces Vi, such that ||u—uy, || g1 < C dim(Vn)_m/2||f||Hm—17
where f € H™~1(P) is arbitrary and C' is a constant that depends only on P
(we do not assume v € H™11(P)). Although the final result is in terms of the
“usual” Sobolev spaces, the proof relies on estimates for the Poisson problem
in Sobolev spaces with weights. Other “A™"—type approximation results are
also obtained. This is an announcement, but some sketches of the proofs of the
main results are provided. Full details of the proofs and complete references
will be provided in a different paper.
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INTRODUCTION

Let P be a polygonal domain in the plane and m € N = {1,2,...}. In this paper
we will construct a class of triangulations (or adaptive meshes) of P that provide
an asymptotic order of convergence = m.

Denote by H™(P) the mth order Sobolev space on P, with norm |[u||g=. We
shall consider the Poisson problem

Au=yg
u|a[g>:0

Let H{(P) be the subspace of distributions in H!(P) with vanishing trace on P.
The inner product of fi, fo € H?(P) = L?(P) will be denoted by (f1, f2). It will be

V. N. was partially supported by NSF Grants DMS 99-1981 and DMS 02-00808. ... Manuscripts
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convenient to write Poisson’s problem in the form

(1) a(u,v) = (Vu, Vo) = (f,v), Yve& Hy(P).
Let V C H}(PP) be a subspace, we shall denote by uy the solution to the problem
(2) a(uy,v) = (f,v), YveV.

It is a basic problem to construct finite dimensional subspaces V C H{(IP) such
that the error ||u — uy||g: is small. We also want to achieve this in an “economic”
way, that is, with dim(V") not too large.

To better explain our results, let us recall the following basic result in approx-
imation theory [9, 10]. Let 7 = (I}) be a triangulation of P with triangles. Let
V = V(T ,m+1) be the finite element space of piecewise polynomials of order < m
on 7. For any function u € C(P), we shall denote by uy € V = V(7,m + 1) the
interpolating function associated to uw. Then, if we consider on H*' the norm | - |4
defined by the form a(-,-), we have the standard inequality

(3) lu—uy |y < fu—url.
Using the equivalence of the || - ||z and | - |1, we obtain

Theorem 0.1. Let V = V(T ,m+ 1). Assume that all triangles T; of the trian-
gulation T = (I;) of P have angles > « and edges of length < h and > ah. Then
there exists an absolute constant C; = Cy(a, m) such that

(4) cHlw— vl <|lu—wllgs < CLh™ [l

for any w € H™TY(P). Similarly, there exists an absolute constant Cy = Ca(a, a, m)
such that

(5) e Mu—uvlla < flu—wllm < Co(area(®)/ dim(V)™||ufl g

The constants C; and C5 above are “absolute” in the sense that they do not
depend on the domain P, its triangulation 7, or the function uw. The constant ¢
however depends on the polygon PP

One can argue, based on Weyl’s theorem on the asymptotic of eigenvalues of
the Laplace operator with Dirichlet boundary conditions [15], that the estimates
obtained by combining Theorem 0.1 and Equation (3) are optimal as far as the
asymptotic order of convergence m, if u € H™T1(IP). However, it is not true, in
general, that u € H™H(P), even if f = Au € C*(P), because the boundary of P
is not smooth [11, 13]. On the other hand, Weyl’s theorem mentioned above does
not prevent similar asymptotic rates of convergence for polygons. However, it is
known [3] that the only hope to achieve similar rates of convergence is to choose
carefuly the triangulation 7. It is the purpose of this paper to provide conditions
on the triangulation 7 under which such higher asymptotic rates of convergence
are obtained.

More precisely, we shall construct for any P a class C(m, h, €, &, a, b) of parti-
tions 7 of P, depending on m € NN and some parameters h, k, «, €, b, such that the
following theorem holds.

Theorem 0.2. There exists a constant B = B(&, a,l, €,b) such that for any poly-
gon P with any two vertices at distance > | and any partition T in C(m, h, €, k, o, b)

we have

lu = wvllzzs < BAim(V) ™| fllgn-s, V€ H"7HE).
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Here V=V (T,m+1) and u and uy are the solutions to Equations (1) and (2).

The precise meaning of the constants h, k, «, €, and b is explained in Section 4.
Suffices to say now that m is the asymptotic rate of convergence, h is the largest
admissible length of the sides of the triangles in the partition, & controls the decay
of the triangles as they approach a vertex, « is the minimum admissible angle of a
triangle in the partition, 0 < € < 7/, where «; is the largest angle of the polygon,
and b controls the ratio of the size of close triangles. The constants &, &, a, ¢, and b
must satisfy certain conditions for the class C(m, h, &, «, €,b) to be non-empty. The
following result is therefore relevant.

Theorem 0.3. For any polygon P there exist 0 < e <1, a>0,1>b>0 and a
sequence h, — 0 such that, if kK = 27"/¢, the class C(m, hp, K, o, €, b) is not empty.

The constants « and b can be written explicitly in terms of € and the geometry
of P.

We should point out at this time that our results are not yet in the most suitable
form for applications. This is because it is important to chose a and & large and
b < 1 close to 1 in order to decrease the constant B = B(x,«,l,¢,b). Too small
or too large values for € will increase the error. Also, it is not clear when the class
C(m, k,a, €, b) is not empty. We hope to deal with this issues in later papers.

The proofs use some estimates on the Dirichlet problem in Sobolev spaces with
weights [8, 13, 14]. These estimates follow from the results in [14], see Section 2.

We suggest that the reader consults also the very nice paper of Babuska, Kellogg,
and Pitkaranta [3] for some related results. In fact, our results when m = 1 can be
recovered from the results in that paper. Our method is, however, different because
we do not use “singular functions.”

Throughout this paper, “z := y” will mean that “z” is defined to be equal to
“y,” as customary.

Acknowledgements. We thank Doug Arnold, Bjorn Enquist, Irina Mitrea, and
Marius Mitrea for useful discussions.

1. SOBOLEV SPACES WITH WEIGHTS

We now recall the definition of Sobolev spaces with weights [8, 12, 13] and
establish some properties of these spaces needed for our results.

1.1. Notation. We shall use the standard notation and denote by 9% := 971 952 a
constant coefficient differential monomial on R for any multi-index o = (a1, a2) €
Z3. Also, la| := a1 4+ 3. By L*(2), we shall denote the space of square integrable
functions on an a subset set © C R? with respect to the usual Lebesgue measure,
with norm |[u||7. = IS |u(z)|*dz. Also, by L2 () we shall denote the space of
functions on © whose restriction to any compact subset K of Q is in L?(K).

First, let us recall that the mth Sobolev space H™ (),  C R? open, is defined
by

H™(Q) :={u e L*(Q), 0“u € L*(Q), Y|a| < m},

and is endowed with the norm
allFm = > (0% ullZ-.
lo|<m

(Compare with the definition of the norm on Sobolev spaces with weights below.)

We agree that ||u||gm = oo if u ¢ H™(Q). Also, by H?.(Q) we shall denote the

loc
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space of functions on 2 whose restriction to any relatively compact, open subset V

of Qisin H™(V).

1.2. Weighted Sobolev spaces. A crucial role in our proof is played by a certain
modification of the usual definition above of Sobolev spaces. For the simplicity of
the presentation, we shall assume from now on that P is a triangle all of whose
angles are acute. The general case is similar, but the notation is more complicated.
To make a choice, we shall decide that P is an open set.

We now introduce some notation that will remain fixed throughout the paper.
Let [ be the length of the shortest edge of P. We denote by @1,Q2, and @3 the
vertices of P. Let Ps be the union of the three isosceles triangles that have an
angle in common with P and equal sides of length = §. The complement P ~ P;
is a hexagon precisely when § < /2. (In fact, we shall only need this construction
when § < {/4.)

Fix in what follows a smooth function p : P — [0, 00) such that p(z) = the
distance from x to the closest vertex of P, for & € IPj/4, and 1/4 < p(x) < [, for
r € P\ P4 We are ready now to recall the following definition [8, 13].

Definition 1.1. Let m € Z4 and a € R. The mth Sobolev space with weight p¢
on £ C P, Q open, is the space KJ*(£2) defined by

Km(Q) = {u € L} (Q), pl*17*710%u € L¥(Q), V|a|<m}, a€Zl.
The norm on K7 is
lullip = Y 1177 0% |72
|a<m

Standard arguments show that K"(IP) is complete (and hence a Hilbert space).

Our notation is slightly different from the one in above mentioned papers, in
that the value of the weight parameter a is shifted: Ky = V57, _,_;. This simplifies
certain formulas.

1.3. Some lemmas. We now record some properties of the spaces K7*(IP) that will
be needed in what follows. All the following properties follow from straightforward
calculations and are, for the most part, well known.

Since most of the functions spaces used below are defined on P, we shall often
omit P from the notation. We shall thus write K7 := K7 (), L? = L?(I?), and so
on. We shall denote p*W = {p®f, f € W}, for any space of functions . Below,
an isomorphism of Banach spaces is a continuous bijection.

Lemma 1.2. The function pl?1=29% p* is bounded on .

This gives:
Lemma 1.3. We have K, = L? and p*K* = Ky Moreover, multiplication by
p* gwes rise to an isomorphism K" — K7l .

We have the following inclusions:

Lemma 1.4. Let m > m' and a > a'. We have:

(@ Il < 1 gy

(6) Nullycor < 8= lullyco, if u € K (Bs), 0< 8 <1/4.
(¢) K C K7
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Lemma 1.5. We have ||u||g~ < ]\4||u||;<z_1 and ||U||KT1 < M||u||gm, where
M = max{1,{™}.

Corollary 1.6.
Kta—1 Cp"H™ C KLy

The following lemma asserts that the H™ and KJ'-norms are equivalent on
H™(Q), for any region @ on which p is bounded from below. More precisely, we
have.

Lemma 1.7. Let 0 < & < /4 and let Q@ C P be an open subset such that
p >4 on Q. Then ||lullg= < Mi|lullxm and ||u|lxm < Ms||u|lg=, for any u €
H™(Q), where My := max{[*F! [mmFatl gatl s=mratiy qnd  similarly, My =
max{l—a—l’l—m+a+1’6—a—1’ 6m—a—1}’

The following lemma compares the weighted Sobolev spaces to the usual Sobolev
spaces close to the vertices.

Lemma 1.8. Let 0 < § < min{l/4,1} and Q@ C Py be an open subset. Then
lfullm < 3* =™ Hjullxg, if a > m =1, and |[ullcy < 6 Hullgn, if a < -1

Also, ||u||;<;v7 < (5a_al||u||;<;n, for any a > d'.

One of the main reasons for using the weighted Sobolev spaces is the homogeneity
of their norms. We first need to introduce dilations for certain functions defined
on Ps. Assume for a moment that @1 = O := (0,0), the origin of the coordinate
system. Let A > 0 and let Q C P;;4NPy;/4 be completely contained in the triangle
closest to Q1. Also, let v be a function defined on Q. Then we define vy (x) := v(Ax)
for any * € A71Q. (The conditions on € are formulated so that this definition
makes sense.) In general, if Q C ;4N Py;4, but is not necessarily contained in a
single connected component, of /4N IPy;/4, we define vy () by translating each Q;,
j=1,2,3 to the origin first.

Lemma 1.9. Let X > 0 and let Q@ C Pyya NPy be an open subset. Then
[url|xm = A |ullxm for any w € K7*(R).

The above lemma also explains why we are choosing a different normalization
for the weight factor p®. (See the comment after our definition of weighted Sobolev
spaces.)

We shall need a well known alternative definition of the Sobolev spaces with
weights. Assume again, for a moment, that @y = O := (0,0), the origin of the
coordinate system. Let £ C [P;;4 be completely contained in the triangle closest
to Q1. Then the vector fields 0, and 0y are defined using polar coordinates on €.
For general Q C [Py/4, we define these vector fields by translations (or, which is the
same thing, by considering polar coordinates centered at either of the vertices @;).
Then p =7, d,p =1 and dyp =0 on [P;;4, by definition.

Lemma 1.10. We have
Ko () = {u € HZ(P), =" (ro,) dju € L*(Pyya), Vi+j < m}.

We conclude our list of lemmas on the weighted Sobolev spaces with the following
result, which 1s also well known.

Lemma 1.11. Let P be a constant coefficient differential operator of order k on
R Then P defines a continuous map P : K™(P) — KT__kk(ED), m > k.
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2. ESTIMATES FOR POISSON’S EQUATION

We shall need the following estimates on the solutions of Poisson’s equation.
First, let us notice that £7'(P) C H2.(P). Thus, if m > 1, the trace

(6) ulop € Ho P (0P),  we K

loc

is defined. (One can give a more precise description of the range of this trace, or
restriction, map, [2, 14], but this will not be needed in what follows. See also [1].)
The following theorem is a slight variation on a result in [16].

Theorem 2.1. Let P be a polygon in the place. Then the map
(M AKPTER)A{u € HL(P), ulor = 0} — K75(B), m >0,
15 an isomorphism.
We shall write K" (P)N {ulsp = 0} := KT (P)N {u € HL, (P), ulogp = 0} in
what follows, for simplicity.

Proof. Let A¢ be the Laplace operator associated to the metric g¢ = p~?gg,
where gg is the Euclidean metric on R2. Then the main result of [14] asserts that
A¢ defines an isomorphism

Ac : KPP (P) — K™y (P).
The result then follows from A = p~?A. d
The above theorem can be found in a slightly different form in [16].

Corollary 2.2. For any polygon P, there exists a constant nn > 0, depending on
P, such that

(8) ALK P)N {ulor = 0} — KLy, m >0,
is an isomorphism for any |e| < 7.

It is possible to show that n = m/ay, where o is the largest angle of P [16].

3. A MODIFIED BRAMBLE-HILBERT LEMMA

As we have explained in the introduction, we are looking for extensions of the
well known Theorem 0.1.

Let M (1,9, «) := C(a) M1 M2, where C(«) is as in Theorem 0.1 and M; and Mo
are as in Lemma 1.7.

Theorem 3.1. Fiza >0 and 0 < § < l/4. Let P be a triangle with the shortest
edge = and Q C P be a polygonal domain such that p > 3§ on Q. Let T = (Ij) be
a triangulation as of Q with triangles with angles > o« and sides < h. Then

(9) llw = urlly < ML 6, @)™ ||ullcm+r
Jor any u € K™T1(Q).

Proof. This follows from Theorem 0.1 and the equivalence of the H™ and K-
norms on £ (Lemma 1.7). O

We now extend Theorem 3.1 to trapezoids of the form Ps ~ Pys. Let Ci(k) =
M, kl/8, ) (l/4)™.
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Theorem 3.2. Let k,a >0, and 0 < § < /4. Let T = (1) be a triangulation of
Q:=Ps ~\ Pys with triangles with angles > o and edges < h. Then

(10) |lu = urllxr < C1(k)3°(h/8)™ ||ullcm+s

Jor any u € K™T1(Q).

Proof. We use Lemma 1.9 with A = 4/ to conclude that ||u — uz|[xm = |Jux —
UD\HKB”' Then we notice that uyy = uxy (that is, dilation commutes with interpo-

lation. Therefore, we can apply Theorem 3.1 to the region A7!'Q = Prra~ Pyiya,
the triangulation A='7, and the function uy to obtain that

RIN™
i = wnrlley < Mrt/8.0) (35) ol

This then gives

llu = urllxy = llux —warllcy < Cr(r)(A/6)™ [urlljcrs
< Co(r)6(h/8)™ [[urll et
where the last inequality is provided by Lemma 1.4b. a

4. THE MAIN RESULTS

We now introduce the class of triangulations for which we will prove our main
results, namely the class C(m, h, ¢, k, a, b). Then we prove our main approximations
results, including the Theorems 0.2 and 0.3 announced in the introduction.

4.1. The class C(m,h, ¢, &, a,b). The following definition is formulated for the
case [P an acute angle triangle, for simplicity. However, the case of a polygon is
completely similar and will be discussed in the paper that will include the details
of the proofs.

We continue to denote by ! the shortest edge of the triangle P. Also, recall the
constant M ({4, a) introduced in Theorem 3.1.

Definition 4.1. Fix m e N={1,2...} and let ¢ € (0,1], h > 0, x,b € (0,1), and
« € (0,7/2) be parameters. We define C(m, h, €, k, a, b) to be the set of triangula-
tions 7 defined as follows. Choose n such that

K< M, &l/8, a)h™.

We decompose P as the union of Qg := P~ Pyq, Q1 1= Prya~ Prya, oo, Qp 1=
Ppn-1y74 N Pynyya, and §~2n+1 = Pynyy4. For each j = 0,...,n, we triangulate £2;
with triangles with all angles > «, and edges of length at most

(11) hp j = hi=e/mi

and at least bhy, ;. Then 7 is the union of the triangles appearing in the triangu-
lations of €2;, j < n, and of the three triangles forming €, 41.

We begin with the following “A™”—approximation result for the triangulations

in C(m, h, e, &, a,b).

Theorem 4.2. There exists a constant By = By(l, &, «) such that

(12) llu = urllcy < Bo(2h)™ ||ulljcm+,

for any triangulation T € C(m, h, ¢, k, o, b) and any v € K™+ N {ulp = 0}.
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Proof. 1t is enough to establish the corresponding estimate for |[(u — ur)|a,llx1,
for j=0,1,...,n4+ 1 and By = max{1,{} M ([, kl/8, a).

For j = 0, we use Theorem 3.1 for @ = €y. For j =1,2,..., n, we use Theorem
3.2 for Q = ;. Then we notice that uy = 0 on §~2n+1 and hence

(13) lw = wn)la,, s = s, Dy < 6Nl Hlmss

by Lemma 1.8, with § = x™[/4. The result then follows by adding the squares of
all these estimates, using also Equation (11). d

From this we obtain the following estimate on the error ||u— uy || of the Finite
Element solution. From now on we shall assume that 0 < € < 1 is chosen such that

A:K"H N {ulp =0} = K1
be an isomorphism. This is possible due to Corollary 2.2.
Theorem 4.3. There exists a constant By = B{(l, &, «) such that
(14) = uy|lm < By(2h)™ (| fllprm-s-

for any T € C(m, h,€,k,a,b) and any f € KT~L, where w € K N {ulp = 0} s
the unique solution of Au = f.

Proof. Let ve be the norm of A=!: Km=1 — KM+ N {u|p = 0}. We have

lu—uvllm < ellu—urlla
< Me|lu—urllx;
< MeBo(2h)™|[ul|cpt
< v MeBo(2h)™ || flm
< veMZeBo (2h)™| fl| grm-1 -

For the first inequality we first replace the norm ||ul|g: with the equivalent norm
|u|g = ||Vul|pz (use Poincaré’s inequality) and use that uy is the projection of u
onto V in the inner product defined by | - |g:. The second and fifth inequalities
are obtained using Lemma 1.5 (use also € < 1). The third inequality is obtained
from Theorem 4.2. The fourth inequality 1s obtained from the invertibility of A on
the corresponding spaces. a

The above theorems are satisfactory, except for one feature, namely that they do
not give a bound for the dimension of the interpolating spaces V := V(7 ,m + 1).
This is remedied by the following result.

Theorem 4.4. There exists a constant By = Bi(l, ¢, k, a, b) such that
(15) [lw = wrllicy < Budim(V)™?jul| s
for any partition T € C(m, h, €, k,a,b) and any u € K™+,

Proof. The area of each triangle in the triangulation of Q; is bounded from below
because it has all sides of length > bh,, ; and all angles > a. The dimension of V is
then bounded from above by estimating the minimum area of the triangles in the
partition, which must be < area(P). d
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4.2. The two main theorems. We now prove the two main theorems stated in
the introduction. We begin with Theorem 0.2.

Proof. The proof of Theorem 0.2 1s similar to that of Theorem 4.3, but using
Theorem 4.4 instead of Theorem 4.2. d

It remains to prove Theorem 0.3. This is achieved through the following example.

Proof. Fix P and m € N = {1,2,...} arbitrary. Also, choose 0 < ¢ < 1 such that
AKPH A {ulp =0} = K73t

be an isomorphism. Then choose k = 27™/¢.

For any triangulation 7 = (7}) of a polygonal domain Q, we shall denote by
27FT the triangulation of  obtained by dividing each triangle T; of 7 = (T})
into 22% equal triangles, all similar to T;. Also, if T = (T}) is a triangulation of
Ps~ Ps, then we shall denote by (7) the triangulation of P55 \ P;»s obtained by
applying a suitable similarity of ratio A to each of the triangles of T (the center of
each similarity is the closest vertex to the triangle that is transformed).

We shall use the notation of Definition 4.1. Let 7y be the triangulation of €
obtained by joining the baricenter of 2y to each of the six vertices of Qy. Write
Q1 = Uy UU; UUs, the union of its connected components. We triangulate each
U; into 5 triangles by joining its baricenter to the middle of the long basis and to

each of 1ts four vertices. We shall denote by §n+1 the triangulation of §n+1 into
its three connected components.

Next, we define a to be the least of the angles appearing in 7o U 77 U §~2n+1. Let
' be the shortest edge of 7o U 77 and h = /™ 1h’. Let by < 1 be the ratio of
the shortest and the longest edges in 7y. Define b; similarly, as the ratio of the
shortest and the longest edges in 7y. We complete our set of choices by taking
b = min{bg, by }r/™ L.

We define

T=2""To U2 " UL, 27" (T1) et U Qg

Then 7 € C :=C(m, 2 "h,¢,27/¢ a,b). Hence C is not empty. The statement of
the theorem is obtained by taking h, = 27"h. d
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