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A NOTE ON IMPROVING THE RATE OF CONVERGENCE OF`HIGH ORDER FINITE ELEMENTS' ON POLYGONSCONSTANTIN BACUTA, VICTOR NISTOR, JINCHAO XU, AND LUDMIL ZIKATANOVVersion: 1.3; Revised: 01/18/2003; Run: Marh 10, 2003Abstrat. Let u and uVn be the solution and, respetively, the �nite ele-ment solution of the Poisson's equation �u = f with zero boundary ondi-tions. We onstrut for any m 2 N and any polygon Pa sequene of �nitedimensional subspaesVn suh that ku�uVnkH1 � C dim(Vn)�m=2kfkHm�1 ,where f 2 Hm�1(P) is arbitrary and C is a onstant that depends only on P(we do not assume u 2 Hm+1(P)). Although the �nal result is in terms of the\usual" Sobolev spaes, the proof relies on estimates for the Poisson problemin Sobolev spaes with weights. Other \hm"{type approximation results arealso obtained. This is an announement, but some skethes of the proofs of themain results are provided. Full details of the proofs and omplete refereneswill be provided in a di�erent paper.ContentsIntrodution 11. Sobolev spaes with weights 32. Estimates for Poisson's equation 63. A modi�ed Bramble-Hilbert Lemma 64. The main results 7Referenes 9IntrodutionLet Pbe a polygonal domain in the plane and m 2 N= f1; 2; : : :g. In this paperwe will onstrut a lass of triangulations (or adaptive meshes) of P that providean asymptoti order of onvergene = m.Denote by Hm(P) the mth order Sobolev spae on P, with norm kukHm . Weshall onsider the Poisson problem( �u = guj�P= 0Let H10(P) be the subspae of distributions in H1(P) with vanishing trae on P.The inner produt of f1; f2 2 H0(P) = L2(P) will be denoted by hf1; f2i. It will beV. N. was partially supported by NSF GrantsDMS 99-1981 andDMS 02-00808. ... Manusriptsavailable from http://www.math.psu.edu/nistor/ .1



2 C. BACUTA, V. NISTOR, J. XU, AND L. ZIKATANOVonvenient to write Poisson's problem in the form(1) a(u; v) := hru;rvi = hf; vi; 8v 2 H10 (P):Let V � H10(P) be a subspae, we shall denote by uV the solution to the problem(2) a(uV ; v) = hf; vi; 8v 2 V:It is a basi problem to onstrut �nite dimensional subspaes V � H10(P) suhthat the error ku� uV kH1 is small. We also want to ahieve this in an \eonomi"way, that is, with dim(V ) not too large.To better explain our results, let us reall the following basi result in approx-imation theory [9, 10℄. Let T = (Tj) be a triangulation of Pwith triangles. LetV = V (T ;m+1) be the �nite element spae of pieewise polynomials of order � mon T . For any funtion u 2 C(P), we shall denote by uI 2 V = V (T ;m + 1) theinterpolating funtion assoiated to u. Then, if we onsider on H1 the norm j � j1de�ned by the form a(�; �), we have the standard inequality(3) ju� uV j1 � ju� uI j1:Using the equivalene of the k � kH1 and j � j1, we obtainTheorem 0.1. Let V = V (T ;m + 1). Assume that all triangles Tj of the trian-gulation T = (Tj) of P have angles � � and edges of length � h and � ah. Thenthere exists an absolute onstant C1 = C1(�;m) suh that(4) �1ku� uV kH1 � ku� uIkH1 � C1hmkukHm+1for any u 2 Hm+1(P). Similarly, there exists an absolute onstant C2 = C2(�; a;m)suh that(5) �1ku� uV kH1 � ku� uIkH1 � C2�area(P)=dim(V )�m=2kukHm+1The onstants C1 and C2 above are \absolute" in the sense that they do notdepend on the domain P, its triangulation T , or the funtion u. The onstant however depends on the polygon P.One an argue, based on Weyl's theorem on the asymptoti of eigenvalues ofthe Laplae operator with Dirihlet boundary onditions [15℄, that the estimatesobtained by ombining Theorem 0.1 and Equation (3) are optimal as far as theasymptoti order of onvergene m, if u 2 Hm+1(P). However, it is not true, ingeneral, that u 2 Hm+1(P), even if f = �u 2 C1(P), beause the boundary of Pis not smooth [11, 13℄. On the other hand, Weyl's theorem mentioned above doesnot prevent similar asymptoti rates of onvergene for polygons. However, it isknown [3℄ that the only hope to ahieve similar rates of onvergene is to hoosearefuly the triangulation T . It is the purpose of this paper to provide onditionson the triangulation T under whih suh higher asymptoti rates of onvergeneare obtained.More preisely, we shall onstrut for any P a lass C(m;h; �; �; �; b) of parti-tions T of P, depending on m 2 N and some parameters h; �; �; �; b, suh that thefollowing theorem holds.Theorem 0.2. There exists a onstant B = B(�; �; l; �; b) suh that for any poly-gon Pwith any two verties at distane � l and any partition T in C(m;h; �; �; �; b)we have ku� uV kH1 � B dim(V )�m=2kfkHm�1 ; 8 f 2 Hm�1(P):



FINITE ELEMENTS ON POLYGONS 3Here V = V (T ;m+ 1) and u and uV are the solutions to Equations (1) and (2).The preise meaning of the onstants h; �; �; �; and b is explained in Setion 4.SuÆes to say now that m is the asymptoti rate of onvergene, h is the largestadmissible length of the sides of the triangles in the partition, � ontrols the deayof the triangles as they approah a vertex, � is the minimum admissible angle of atriangle in the partition, 0 < � < �=�1, where �1 is the largest angle of the polygon,and b ontrols the ratio of the size of lose triangles. The onstants h; �; �; �; and bmust satisfy ertain onditions for the lass C(m;h; �; �; �; b) to be non-empty. Thefollowing result is therefore relevant.Theorem 0.3. For any polygon P there exist 0 < � � 1, � > 0, 1 > b > 0 and asequene hn ! 0 suh that, if � = 2�m=�, the lass C(m;hn; �; �; �; b) is not empty.The onstants � and b an be written expliitly in terms of � and the geometryof P.We should point out at this time that our results are not yet in the most suitableform for appliations. This is beause it is important to hose � and � large andb < 1 lose to 1 in order to derease the onstant B = B(�; �; l; �; b). Too smallor too large values for � will inrease the error. Also, it is not lear when the lassC(m;�; �; �; b) is not empty. We hope to deal with this issues in later papers.The proofs use some estimates on the Dirihlet problem in Sobolev spaes withweights [8, 13, 14℄. These estimates follow from the results in [14℄, see Setion 2.We suggest that the reader onsults also the very nie paper of Babu�ska, Kellogg,and Pitk�aranta [3℄ for some related results. In fat, our results when m = 1 an bereovered from the results in that paper. Our method is, however, di�erent beausewe do not use \singular funtions."Throughout this paper, \x := y" will mean that \x" is de�ned to be equal to\y," as ustomary.Aknowledgements. We thank Doug Arnold, Bjorn Enquist, Irina Mitrea, andMarius Mitrea for useful disussions.1. Sobolev spaes with weightsWe now reall the de�nition of Sobolev spaes with weights [8, 12, 13℄ andestablish some properties of these spaes needed for our results.1.1. Notation. We shall use the standard notation and denote by �� := ��11 ��22 , aonstant oeÆient di�erential monomial on R2, for any multi-index � = (�1; �2) 2Z2+. Also, j�j := �1+�2. By L2(
), we shall denote the spae of square integrablefuntions on an a subset set 
 � R2 with respet to the usual Lebesgue measure,with norm kuk2L2 := R
 ju(x)j2dx. Also, by L2lo(
) we shall denote the spae offuntions on 
 whose restrition to any ompat subset K of 
 is in L2(K).First, let us reall that the mth Sobolev spae Hm(
), 
 � R2 open, is de�nedby Hm(
) := fu 2 L2(
); ��u 2 L2(
); 8j�j � mg;and is endowed with the normkuk2Hm := Xj�j�mk��uk2L2 :(Compare with the de�nition of the norm on Sobolev spaes with weights below.)We agree that kukHm = 1 if u 62 Hm(
). Also, by Hmlo(
) we shall denote the



4 C. BACUTA, V. NISTOR, J. XU, AND L. ZIKATANOVspae of funtions on 
 whose restrition to any relatively ompat, open subset Vof 
 is in Hm(V ).1.2. Weighted Sobolev spaes. A ruial role in our proof is played by a ertainmodi�ation of the usual de�nition above of Sobolev spaes. For the simpliity ofthe presentation, we shall assume from now on that P is a triangle all of whoseangles are aute. The general ase is similar, but the notation is more ompliated.To make a hoie, we shall deide that P is an open set.We now introdue some notation that will remain �xed throughout the paper.Let l be the length of the shortest edge of P. We denote by Q1; Q2; and Q3 theverties of P. Let PÆ be the union of the three isoseles triangles that have anangle in ommon with P and equal sides of length = Æ. The omplement Pr PÆis a hexagon preisely when Æ < l=2. (In fat, we shall only need this onstrutionwhen Æ � l=4.)Fix in what follows a smooth funtion � : P! [0;1) suh that �(x) = thedistane from x to the losest vertex of P, for x 2 Pl=4, and l=4 � �(x) � l, forx 2 PrPl=4. We are ready now to reall the following de�nition [8, 13℄.De�nition 1.1. Let m 2Z+ and a 2 R. The mth Sobolev spae with weight �aon 
 � P, 
 open, is the spae Kma (
) de�ned byKma (
) := fu 2 L2lo(
); �j�j�a�1��u 2 L2(
); 8j�j � mg; � 2Z2+:The norm on Kma is kuk2Kma := Xj�j�m k�j�j�a�1��uk2L2:Standard arguments show that Kma (P) is omplete (and hene a Hilbert spae).Our notation is slightly di�erent from the one in above mentioned papers, inthat the value of the weight parameter a is shifted: Kma = V m2;m�a�1. This simpli�esertain formulas.1.3. Some lemmas. We now reord some properties of the spaes Kma (P) that willbe needed in what follows. All the following properties follow from straightforwardalulations and are, for the most part, well known.Sine most of the funtions spaes used below are de�ned on P, we shall oftenomit P from the notation. We shall thus write Kma := Kma (P), L2 = L2(P), and soon. We shall denote �aW = f�af; f 2 Wg, for any spae of funtions W . Below,an isomorphism of Banah spaes is a ontinuous bijetion.Lemma 1.2. The funtion �j�j�a���a is bounded on P.This gives:Lemma 1.3. We have K0�1 = L2 and �aKmb = Kma+b. Moreover, multipliation by�a gives rise to an isomorphism Kmb !Kma+b.We have the following inlusions:Lemma 1.4. Let m � m0 and a � a0. We have:(a) kukKm0a0 � la�a0kukKm0a0 .(b) kukKm0a0 � Æa�a0kukKm0a0 , if u 2 Kma (PÆ), 0 < Æ � l=4.() Kma � Km0a0 .



FINITE ELEMENTS ON POLYGONS 5Lemma 1.5. We have kukHm � MkukKmm�1 and kukKm�1 � MkukHm , whereM = maxf1; lmg.Corollary 1.6. Kmm+a�1 � �aHm � Kma�1:The following lemma asserts that the Hm and Kma {norms are equivalent onHm(
), for any region 
 on whih � is bounded from below. More preisely, wehave.Lemma 1.7. Let 0 < Æ < l=4 and let 
 � P be an open subset suh that� � Æ on 
. Then kukHm � M1kukKma and kukKma � M2kukHm , for any u 2Hm(
), where M1 := maxfla+1; l�m+a+1; Æa+1; Æ�m+a+1g and, similarly, M2 :=maxfl�a�1; l�m+a+1; Æ�a�1; Æm�a�1g.The following lemma ompares the weighted Sobolev spaes to the usual Sobolevspaes lose to the verties.Lemma 1.8. Let 0 < Æ < minfl=4; 1g and 
 � PÆ be an open subset. ThenkukHm � Æa�m+1kukKma , if a � m � 1, and kukKma � Æ�a�1kukHm , if a � �1.Also, kukKma0 � Æa�a0kukKma , for any a � a0.One of the main reasons for using the weighted Sobolev spaes is the homogeneityof their norms. We �rst need to introdue dilations for ertain funtions de�nedon PÆ. Assume for a moment that Q1 = O := (0; 0), the origin of the oordinatesystem. Let � > 0 and let 
 � Pl=4\P�l=4 be ompletely ontained in the trianglelosest to Q1. Also, let v be a funtion de�ned on 
. Then we de�ne v�(x) := v(�x)for any x 2 ��1
. (The onditions on 
 are formulated so that this de�nitionmakes sense.) In general, if 
 � Pl=4\P�l=4, but is not neessarily ontained in asingle onneted omponent of Pl=4\P�l=4, we de�ne v�(x) by translating eah Qj ,j = 1; 2; 3 to the origin �rst.Lemma 1.9. Let � > 0 and let 
 � Pl=4 \ P�l=4 be an open subset. Thenku�kKma = �akukKma for any u 2 Kma (
).The above lemma also explains why we are hoosing a di�erent normalizationfor the weight fator �a. (See the omment after our de�nition of weighted Sobolevspaes.)We shall need a well known alternative de�nition of the Sobolev spaes withweights. Assume again, for a moment, that Q1 = O := (0; 0), the origin of theoordinate system. Let 
 � Pl=4 be ompletely ontained in the triangle losestto Q1. Then the vetor �elds �r and �� are de�ned using polar oordinates on 
.For general 
 � Pl=4, we de�ne these vetor �elds by translations (or, whih is thesame thing, by onsidering polar oordinates entered at either of the verties Qj).Then � = r, �r� = 1 and ��� = 0 on Pl=4, by de�nition.Lemma 1.10. We haveKma (P) = fu 2 Hmlo(P); r�a�1(r�r)i�j�u 2 L2(Pl=4); 8i+ j � mg:We onlude our list of lemmas on the weighted Sobolev spaes with the followingresult, whih is also well known.Lemma 1.11. Let P be a onstant oeÆient di�erential operator of order k onRd. Then P de�nes a ontinuous map P : Kma (P)!Km�ka�k (P), m � k.



6 C. BACUTA, V. NISTOR, J. XU, AND L. ZIKATANOV2. Estimates for Poisson's equationWe shall need the following estimates on the solutions of Poisson's equation.First, let us notie that Kma (P)� Hmlo(P). Thus, if m � 1, the trae(6) uj�P2 Hm�1=2lo (�P); u 2 Kmais de�ned. (One an give a more preise desription of the range of this trae, orrestrition, map, [2, 14℄, but this will not be needed in what follows. See also [1℄.)The following theorem is a slight variation on a result in [16℄.Theorem 2.1. Let P be a polygon in the plae. Then the map(7) � : Km+20 (P)\ fu 2 H1lo(P); uj�P= 0g ! Km�2(P); m � 0;is an isomorphism.We shall write Km+20 (P)\ fuj�P= 0g := Km+20 (P)\ fu 2 H1lo(P); uj�P= 0g inwhat follows, for simpliity.Proof. Let �C be the Laplae operator assoiated to the metri gC := ��2gE ,where gE is the Eulidean metri on R2. Then the main result of [14℄ asserts that�C de�nes an isomorphism �C : Km+20 (P)!Km�2(P):The result then follows from � = ��2�C. �The above theorem an be found in a slightly di�erent form in [16℄.Corollary 2.2. For any polygon P, there exists a onstant � > 0, depending onP, suh that(8) � : Km+2� (P)\ fuj�P= 0g ! Km��2; m � 0;is an isomorphism for any j�j < �.It is possible to show that � = �=�1, where �1 is the largest angle of P [16℄.3. A modified Bramble-Hilbert LemmaAs we have explained in the introdution, we are looking for extensions of thewell known Theorem 0.1.Let M (l; Æ; �) := C(�)M1M2, where C(�) is as in Theorem 0.1 and M1 and M2are as in Lemma 1.7.Theorem 3.1. Fix � > 0 and 0 < Æ < l=4. Let P be a triangle with the shortestedge = l and 
 � P be a polygonal domain suh that � � Æ on 
. Let T = (Tj) bea triangulation as of 
 with triangles with angles � � and sides � h. Then(9) ku� uIkK10 �M (l; Æ; �)hmkukKm+1�for any u 2 Km+1� (
).Proof. This follows from Theorem 0.1 and the equivalene of the Hm and Kma {norms on 
 (Lemma 1.7). �We now extend Theorem 3.1 to trapezoids of the form PÆ r P�Æ. Let C1(�) =M (l; �l=8; �)(l=4)m.



FINITE ELEMENTS ON POLYGONS 7Theorem 3.2. Let �; � > 0, and 0 < Æ < l=4. Let T = (Tj) be a triangulation of
 := PÆr P�Æ with triangles with angles � � and edges � h. Then(10) ku� uIkK10 � C1(�)Æ�(h=Æ)mkukKm+1�for any u 2 Km+1� (
).Proof. We use Lemma 1.9 with � = 4Æ=l to onlude that ku � uIkKm0 = ku� �uI�kKm0 . Then we notie that uI� = u�I (that is, dilation ommutes with interpo-lation. Therefore, we an apply Theorem 3.1 to the region ��1
 = Pl=4 r P�l=4,the triangulation ��1T , and the funtion u� to obtain thatku� � u�IkK10 �M (l; �l=8; �)�hl4Æ�m ku�kKm+10This then givesku� uIkK10 = ku� � u�IkK10 � C1(�)(h=Æ)mku�kKm+10� C1(�)Æ�(h=Æ)mku�kKm+1� ;where the last inequality is provided by Lemma 1.4b. �4. The main resultsWe now introdue the lass of triangulations for whih we will prove our mainresults, namely the lass C(m;h; �; �; �; b). Then we prove our main approximationsresults, inluding the Theorems 0.2 and 0.3 announed in the introdution.4.1. The lass C(m;h; �; �; �; b). The following de�nition is formulated for thease P an aute angle triangle, for simpliity. However, the ase of a polygon isompletely similar and will be disussed in the paper that will inlude the detailsof the proofs.We ontinue to denote by l the shortest edge of the triangle P. Also, reall theonstant M (l; Æ; �) introdued in Theorem 3.1.De�nition 4.1. Fix m 2 N = f1; 2 : : :g and let � 2 (0; 1℄, h > 0, �; b 2 (0; 1); and� 2 (0; �=2) be parameters. We de�ne C(m;h; �; �; �; b) to be the set of triangula-tions T de�ned as follows. Choose n suh that�n� �M (l; �l=8; �)hm:We deompose P as the union of 
0 := Pr Pl=4, 
1 := Pl=4 r P�l=4, ... , 
n :=P�n�1l=4 r P�nl=4, and e
n+1 := P�nl=4. For eah j = 0; : : : ; n, we triangulate 
jwith triangles with all angles � �, and edges of length at most(11) hn;j = h�(1��=m)jand at least bhn;j. Then T is the union of the triangles appearing in the triangu-lations of 
j , j � n, and of the three triangles forming e
n+1.We begin with the following \hm"{approximation result for the triangulationsin C(m;h; �; �; �; b).Theorem 4.2. There exists a onstant B0 = B0(l; �; �) suh that(12) ku� uIkK10 � B0(2h)mkukKm+1� ;for any triangulation T 2 C(m;h; �; �; �; b) and any u 2 Km+1� \ fujP= 0g:



8 C. BACUTA, V. NISTOR, J. XU, AND L. ZIKATANOVProof. It is enough to establish the orresponding estimate for k(u � uI)j
jkK10 ,for j = 0; 1; : : : ; n+ 1 and B0 = maxf1; lgM (l; �l=8; �).For j = 0, we use Theorem 3.1 for 
 = 
0. For j = 1; 2; : : : ; n, we use Theorem3.2 for 
 = 
j. Then we notie that uI = 0 on e
n+1 and hene(13) k(u� uI)je
n+1kK10 = kuje
n+1kK10 � Æ�kuje
n+1kKm+1� ;by Lemma 1.8, with Æ = �nl=4. The result then follows by adding the squares ofall these estimates, using also Equation (11). �From this we obtain the following estimate on the error ku�uV kH1 of the FiniteElement solution. From now on we shall assume that 0 < � � 1 is hosen suh that� : Km+1� \ fujP= 0g ! Km�1�be an isomorphism. This is possible due to Corollary 2.2.Theorem 4.3. There exists a onstant B00 = B00(l; �; �) suh that(14) ku� uV kH1 � B00(2h)mkfkHm�1 :for any T 2 C(m;h; �; �; �; b) and any f 2 Km�1� ; where u 2 Km+1� \ fujP= 0g isthe unique solution of �u = f .Proof. Let �� be the norm of ��1 : Km�1� !Km+1� \ fujP= 0g. We haveku� uV kH1 � ku� uIkH1� Mku� uIkK10� MB0(2h)mkukKm+1�� ��MB0(2h)mkfkKm�1��1� ��M2B0(2h)mkfkHm�1 :For the �rst inequality we �rst replae the norm kukH1 with the equivalent normjujH1 = krukL2 (use Poinar�e's inequality) and use that uV is the projetion of uonto V in the inner produt de�ned by j � jH1 . The seond and �fth inequalitiesare obtained using Lemma 1.5 (use also � � 1). The third inequality is obtainedfrom Theorem 4.2. The fourth inequality is obtained from the invertibility of � onthe orresponding spaes. �The above theorems are satisfatory, exept for one feature, namely that they donot give a bound for the dimension of the interpolating spaes V := V (T ;m + 1).This is remedied by the following result.Theorem 4.4. There exists a onstant B1 = B1(l; �; �; �; b) suh that(15) ku� uIkK10 � B1 dim(V )m=2kukKm+1� :for any partition T 2 C(m;h; �; �; �; b) and any u 2 Km+1� :Proof. The area of eah triangle in the triangulation of 
j is bounded from belowbeause it has all sides of length � bhn;j and all angles � �. The dimension of V isthen bounded from above by estimating the minimum area of the triangles in thepartition, whih must be � area(P). �



FINITE ELEMENTS ON POLYGONS 94.2. The two main theorems. We now prove the two main theorems stated inthe introdution. We begin with Theorem 0.2.Proof. The proof of Theorem 0.2 is similar to that of Theorem 4.3, but usingTheorem 4.4 instead of Theorem 4.2. �It remains to prove Theorem 0.3. This is ahieved through the following example.Proof. Fix Pand m 2 N = f1; 2; : : :g arbitrary. Also, hoose 0 < � � 1 suh that� : Km+1� \ fujP= 0g ! Km�1��2be an isomorphism. Then hoose � = 2�m=�.For any triangulation T = (Tj) of a polygonal domain 
, we shall denote by2�kT the triangulation of 
 obtained by dividing eah triangle Tj of T = (Tj)into 22k equal triangles, all similar to Tj . Also, if T = (Tj) is a triangulation ofPÆrP�Æ, then we shall denote by (T )� the triangulation of P�ÆrP��Æ obtained byapplying a suitable similarity of ratio � to eah of the triangles of T (the enter ofeah similarity is the losest vertex to the triangle that is transformed).We shall use the notation of De�nition 4.1. Let T0 be the triangulation of 
0obtained by joining the barienter of 
0 to eah of the six verties of 
0. Write
1 = U1 [ U2 [ U3, the union of its onneted omponents. We triangulate eahUj into 5 triangles by joining its barienter to the middle of the long basis and toeah of its four verties. We shall denote by e
n+1 the triangulation of e
n+1 intoits three onneted omponents.Next, we de�ne � to be the least of the angles appearing in T0 [ T1 [ e
n+1. Leth0 be the shortest edge of T0 [ T1 and h = ��=m�1h0. Let b0 < 1 be the ratio ofthe shortest and the longest edges in T0. De�ne b1 similarly, as the ratio of theshortest and the longest edges in T0. We omplete our set of hoies by takingb = minfb0; b1g��=m�1.We de�ne T = 2�nT0 [ 2�n+1T1 [nj=2 2�n+j(T1)�j�1 [ e
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