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A NOTE ON IMPROVING THE RATE OF CONVERGENCE OF`HIGH ORDER FINITE ELEMENTS' ON POLYGONSCONSTANTIN BACUTA, VICTOR NISTOR, JINCHAO XU, AND LUDMIL ZIKATANOVVersion: 1.3; Revised: 01/18/2003; Run: Mar
h 10, 2003Abstra
t. Let u and uVn be the solution and, respe
tively, the �nite ele-ment solution of the Poisson's equation �u = f with zero boundary 
ondi-tions. We 
onstru
t for any m 2 N and any polygon Pa sequen
e of �nitedimensional subspa
esVn su
h that ku�uVnkH1 � C dim(Vn)�m=2kfkHm�1 ,where f 2 Hm�1(P) is arbitrary and C is a 
onstant that depends only on P(we do not assume u 2 Hm+1(P)). Although the �nal result is in terms of the\usual" Sobolev spa
es, the proof relies on estimates for the Poisson problemin Sobolev spa
es with weights. Other \hm"{type approximation results arealso obtained. This is an announ
ement, but some sket
hes of the proofs of themain results are provided. Full details of the proofs and 
omplete referen
eswill be provided in a di�erent paper.ContentsIntrodu
tion 11. Sobolev spa
es with weights 32. Estimates for Poisson's equation 63. A modi�ed Bramble-Hilbert Lemma 64. The main results 7Referen
es 9Introdu
tionLet Pbe a polygonal domain in the plane and m 2 N= f1; 2; : : :g. In this paperwe will 
onstru
t a 
lass of triangulations (or adaptive meshes) of P that providean asymptoti
 order of 
onvergen
e = m.Denote by Hm(P) the mth order Sobolev spa
e on P, with norm kukHm . Weshall 
onsider the Poisson problem( �u = guj�P= 0Let H10(P) be the subspa
e of distributions in H1(P) with vanishing tra
e on P.The inner produ
t of f1; f2 2 H0(P) = L2(P) will be denoted by hf1; f2i. It will beV. N. was partially supported by NSF GrantsDMS 99-1981 andDMS 02-00808. ... Manus
riptsavailable from http://www.math.psu.edu/nistor/ .1



2 C. BACUTA, V. NISTOR, J. XU, AND L. ZIKATANOV
onvenient to write Poisson's problem in the form(1) a(u; v) := hru;rvi = hf; vi; 8v 2 H10 (P):Let V � H10(P) be a subspa
e, we shall denote by uV the solution to the problem(2) a(uV ; v) = hf; vi; 8v 2 V:It is a basi
 problem to 
onstru
t �nite dimensional subspa
es V � H10(P) su
hthat the error ku� uV kH1 is small. We also want to a
hieve this in an \e
onomi
"way, that is, with dim(V ) not too large.To better explain our results, let us re
all the following basi
 result in approx-imation theory [9, 10℄. Let T = (Tj) be a triangulation of Pwith triangles. LetV = V (T ;m+1) be the �nite element spa
e of pie
ewise polynomials of order � mon T . For any fun
tion u 2 C(P), we shall denote by uI 2 V = V (T ;m + 1) theinterpolating fun
tion asso
iated to u. Then, if we 
onsider on H1 the norm j � j1de�ned by the form a(�; �), we have the standard inequality(3) ju� uV j1 � ju� uI j1:Using the equivalen
e of the k � kH1 and j � j1, we obtainTheorem 0.1. Let V = V (T ;m + 1). Assume that all triangles Tj of the trian-gulation T = (Tj) of P have angles � � and edges of length � h and � ah. Thenthere exists an absolute 
onstant C1 = C1(�;m) su
h that(4) 
�1ku� uV kH1 � ku� uIkH1 � C1hmkukHm+1for any u 2 Hm+1(P). Similarly, there exists an absolute 
onstant C2 = C2(�; a;m)su
h that(5) 
�1ku� uV kH1 � ku� uIkH1 � C2�area(P)=dim(V )�m=2kukHm+1The 
onstants C1 and C2 above are \absolute" in the sense that they do notdepend on the domain P, its triangulation T , or the fun
tion u. The 
onstant 
however depends on the polygon P.One 
an argue, based on Weyl's theorem on the asymptoti
 of eigenvalues ofthe Lapla
e operator with Diri
hlet boundary 
onditions [15℄, that the estimatesobtained by 
ombining Theorem 0.1 and Equation (3) are optimal as far as theasymptoti
 order of 
onvergen
e m, if u 2 Hm+1(P). However, it is not true, ingeneral, that u 2 Hm+1(P), even if f = �u 2 C1(P), be
ause the boundary of Pis not smooth [11, 13℄. On the other hand, Weyl's theorem mentioned above doesnot prevent similar asymptoti
 rates of 
onvergen
e for polygons. However, it isknown [3℄ that the only hope to a
hieve similar rates of 
onvergen
e is to 
hoose
arefuly the triangulation T . It is the purpose of this paper to provide 
onditionson the triangulation T under whi
h su
h higher asymptoti
 rates of 
onvergen
eare obtained.More pre
isely, we shall 
onstru
t for any P a 
lass C(m;h; �; �; �; b) of parti-tions T of P, depending on m 2 N and some parameters h; �; �; �; b, su
h that thefollowing theorem holds.Theorem 0.2. There exists a 
onstant B = B(�; �; l; �; b) su
h that for any poly-gon Pwith any two verti
es at distan
e � l and any partition T in C(m;h; �; �; �; b)we have ku� uV kH1 � B dim(V )�m=2kfkHm�1 ; 8 f 2 Hm�1(P):



FINITE ELEMENTS ON POLYGONS 3Here V = V (T ;m+ 1) and u and uV are the solutions to Equations (1) and (2).The pre
ise meaning of the 
onstants h; �; �; �; and b is explained in Se
tion 4.SuÆ
es to say now that m is the asymptoti
 rate of 
onvergen
e, h is the largestadmissible length of the sides of the triangles in the partition, � 
ontrols the de
ayof the triangles as they approa
h a vertex, � is the minimum admissible angle of atriangle in the partition, 0 < � < �=�1, where �1 is the largest angle of the polygon,and b 
ontrols the ratio of the size of 
lose triangles. The 
onstants h; �; �; �; and bmust satisfy 
ertain 
onditions for the 
lass C(m;h; �; �; �; b) to be non-empty. Thefollowing result is therefore relevant.Theorem 0.3. For any polygon P there exist 0 < � � 1, � > 0, 1 > b > 0 and asequen
e hn ! 0 su
h that, if � = 2�m=�, the 
lass C(m;hn; �; �; �; b) is not empty.The 
onstants � and b 
an be written expli
itly in terms of � and the geometryof P.We should point out at this time that our results are not yet in the most suitableform for appli
ations. This is be
ause it is important to 
hose � and � large andb < 1 
lose to 1 in order to de
rease the 
onstant B = B(�; �; l; �; b). Too smallor too large values for � will in
rease the error. Also, it is not 
lear when the 
lassC(m;�; �; �; b) is not empty. We hope to deal with this issues in later papers.The proofs use some estimates on the Diri
hlet problem in Sobolev spa
es withweights [8, 13, 14℄. These estimates follow from the results in [14℄, see Se
tion 2.We suggest that the reader 
onsults also the very ni
e paper of Babu�ska, Kellogg,and Pitk�aranta [3℄ for some related results. In fa
t, our results when m = 1 
an bere
overed from the results in that paper. Our method is, however, di�erent be
ausewe do not use \singular fun
tions."Throughout this paper, \x := y" will mean that \x" is de�ned to be equal to\y," as 
ustomary.A
knowledgements. We thank Doug Arnold, Bjorn Enquist, Irina Mitrea, andMarius Mitrea for useful dis
ussions.1. Sobolev spa
es with weightsWe now re
all the de�nition of Sobolev spa
es with weights [8, 12, 13℄ andestablish some properties of these spa
es needed for our results.1.1. Notation. We shall use the standard notation and denote by �� := ��11 ��22 , a
onstant 
oeÆ
ient di�erential monomial on R2, for any multi-index � = (�1; �2) 2Z2+. Also, j�j := �1+�2. By L2(
), we shall denote the spa
e of square integrablefun
tions on an a subset set 
 � R2 with respe
t to the usual Lebesgue measure,with norm kuk2L2 := R
 ju(x)j2dx. Also, by L2lo
(
) we shall denote the spa
e offun
tions on 
 whose restri
tion to any 
ompa
t subset K of 
 is in L2(K).First, let us re
all that the mth Sobolev spa
e Hm(
), 
 � R2 open, is de�nedby Hm(
) := fu 2 L2(
); ��u 2 L2(
); 8j�j � mg;and is endowed with the normkuk2Hm := Xj�j�mk��uk2L2 :(Compare with the de�nition of the norm on Sobolev spa
es with weights below.)We agree that kukHm = 1 if u 62 Hm(
). Also, by Hmlo
(
) we shall denote the



4 C. BACUTA, V. NISTOR, J. XU, AND L. ZIKATANOVspa
e of fun
tions on 
 whose restri
tion to any relatively 
ompa
t, open subset Vof 
 is in Hm(V ).1.2. Weighted Sobolev spa
es. A 
ru
ial role in our proof is played by a 
ertainmodi�
ation of the usual de�nition above of Sobolev spa
es. For the simpli
ity ofthe presentation, we shall assume from now on that P is a triangle all of whoseangles are a
ute. The general 
ase is similar, but the notation is more 
ompli
ated.To make a 
hoi
e, we shall de
ide that P is an open set.We now introdu
e some notation that will remain �xed throughout the paper.Let l be the length of the shortest edge of P. We denote by Q1; Q2; and Q3 theverti
es of P. Let PÆ be the union of the three isos
eles triangles that have anangle in 
ommon with P and equal sides of length = Æ. The 
omplement Pr PÆis a hexagon pre
isely when Æ < l=2. (In fa
t, we shall only need this 
onstru
tionwhen Æ � l=4.)Fix in what follows a smooth fun
tion � : P! [0;1) su
h that �(x) = thedistan
e from x to the 
losest vertex of P, for x 2 Pl=4, and l=4 � �(x) � l, forx 2 PrPl=4. We are ready now to re
all the following de�nition [8, 13℄.De�nition 1.1. Let m 2Z+ and a 2 R. The mth Sobolev spa
e with weight �aon 
 � P, 
 open, is the spa
e Kma (
) de�ned byKma (
) := fu 2 L2lo
(
); �j�j�a�1��u 2 L2(
); 8j�j � mg; � 2Z2+:The norm on Kma is kuk2Kma := Xj�j�m k�j�j�a�1��uk2L2:Standard arguments show that Kma (P) is 
omplete (and hen
e a Hilbert spa
e).Our notation is slightly di�erent from the one in above mentioned papers, inthat the value of the weight parameter a is shifted: Kma = V m2;m�a�1. This simpli�es
ertain formulas.1.3. Some lemmas. We now re
ord some properties of the spa
es Kma (P) that willbe needed in what follows. All the following properties follow from straightforward
al
ulations and are, for the most part, well known.Sin
e most of the fun
tions spa
es used below are de�ned on P, we shall oftenomit P from the notation. We shall thus write Kma := Kma (P), L2 = L2(P), and soon. We shall denote �aW = f�af; f 2 Wg, for any spa
e of fun
tions W . Below,an isomorphism of Bana
h spa
es is a 
ontinuous bije
tion.Lemma 1.2. The fun
tion �j�j�a���a is bounded on P.This gives:Lemma 1.3. We have K0�1 = L2 and �aKmb = Kma+b. Moreover, multipli
ation by�a gives rise to an isomorphism Kmb !Kma+b.We have the following in
lusions:Lemma 1.4. Let m � m0 and a � a0. We have:(a) kukKm0a0 � la�a0kukKm0a0 .(b) kukKm0a0 � Æa�a0kukKm0a0 , if u 2 Kma (PÆ), 0 < Æ � l=4.(
) Kma � Km0a0 .



FINITE ELEMENTS ON POLYGONS 5Lemma 1.5. We have kukHm � MkukKmm�1 and kukKm�1 � MkukHm , whereM = maxf1; lmg.Corollary 1.6. Kmm+a�1 � �aHm � Kma�1:The following lemma asserts that the Hm and Kma {norms are equivalent onHm(
), for any region 
 on whi
h � is bounded from below. More pre
isely, wehave.Lemma 1.7. Let 0 < Æ < l=4 and let 
 � P be an open subset su
h that� � Æ on 
. Then kukHm � M1kukKma and kukKma � M2kukHm , for any u 2Hm(
), where M1 := maxfla+1; l�m+a+1; Æa+1; Æ�m+a+1g and, similarly, M2 :=maxfl�a�1; l�m+a+1; Æ�a�1; Æm�a�1g.The following lemma 
ompares the weighted Sobolev spa
es to the usual Sobolevspa
es 
lose to the verti
es.Lemma 1.8. Let 0 < Æ < minfl=4; 1g and 
 � PÆ be an open subset. ThenkukHm � Æa�m+1kukKma , if a � m � 1, and kukKma � Æ�a�1kukHm , if a � �1.Also, kukKma0 � Æa�a0kukKma , for any a � a0.One of the main reasons for using the weighted Sobolev spa
es is the homogeneityof their norms. We �rst need to introdu
e dilations for 
ertain fun
tions de�nedon PÆ. Assume for a moment that Q1 = O := (0; 0), the origin of the 
oordinatesystem. Let � > 0 and let 
 � Pl=4\P�l=4 be 
ompletely 
ontained in the triangle
losest to Q1. Also, let v be a fun
tion de�ned on 
. Then we de�ne v�(x) := v(�x)for any x 2 ��1
. (The 
onditions on 
 are formulated so that this de�nitionmakes sense.) In general, if 
 � Pl=4\P�l=4, but is not ne
essarily 
ontained in asingle 
onne
ted 
omponent of Pl=4\P�l=4, we de�ne v�(x) by translating ea
h Qj ,j = 1; 2; 3 to the origin �rst.Lemma 1.9. Let � > 0 and let 
 � Pl=4 \ P�l=4 be an open subset. Thenku�kKma = �akukKma for any u 2 Kma (
).The above lemma also explains why we are 
hoosing a di�erent normalizationfor the weight fa
tor �a. (See the 
omment after our de�nition of weighted Sobolevspa
es.)We shall need a well known alternative de�nition of the Sobolev spa
es withweights. Assume again, for a moment, that Q1 = O := (0; 0), the origin of the
oordinate system. Let 
 � Pl=4 be 
ompletely 
ontained in the triangle 
losestto Q1. Then the ve
tor �elds �r and �� are de�ned using polar 
oordinates on 
.For general 
 � Pl=4, we de�ne these ve
tor �elds by translations (or, whi
h is thesame thing, by 
onsidering polar 
oordinates 
entered at either of the verti
es Qj).Then � = r, �r� = 1 and ��� = 0 on Pl=4, by de�nition.Lemma 1.10. We haveKma (P) = fu 2 Hmlo
(P); r�a�1(r�r)i�j�u 2 L2(Pl=4); 8i+ j � mg:We 
on
lude our list of lemmas on the weighted Sobolev spa
es with the followingresult, whi
h is also well known.Lemma 1.11. Let P be a 
onstant 
oeÆ
ient di�erential operator of order k onRd. Then P de�nes a 
ontinuous map P : Kma (P)!Km�ka�k (P), m � k.



6 C. BACUTA, V. NISTOR, J. XU, AND L. ZIKATANOV2. Estimates for Poisson's equationWe shall need the following estimates on the solutions of Poisson's equation.First, let us noti
e that Kma (P)� Hmlo
(P). Thus, if m � 1, the tra
e(6) uj�P2 Hm�1=2lo
 (�P); u 2 Kmais de�ned. (One 
an give a more pre
ise des
ription of the range of this tra
e, orrestri
tion, map, [2, 14℄, but this will not be needed in what follows. See also [1℄.)The following theorem is a slight variation on a result in [16℄.Theorem 2.1. Let P be a polygon in the pla
e. Then the map(7) � : Km+20 (P)\ fu 2 H1lo
(P); uj�P= 0g ! Km�2(P); m � 0;is an isomorphism.We shall write Km+20 (P)\ fuj�P= 0g := Km+20 (P)\ fu 2 H1lo
(P); uj�P= 0g inwhat follows, for simpli
ity.Proof. Let �C be the Lapla
e operator asso
iated to the metri
 gC := ��2gE ,where gE is the Eu
lidean metri
 on R2. Then the main result of [14℄ asserts that�C de�nes an isomorphism �C : Km+20 (P)!Km�2(P):The result then follows from � = ��2�C. �The above theorem 
an be found in a slightly di�erent form in [16℄.Corollary 2.2. For any polygon P, there exists a 
onstant � > 0, depending onP, su
h that(8) � : Km+2� (P)\ fuj�P= 0g ! Km��2; m � 0;is an isomorphism for any j�j < �.It is possible to show that � = �=�1, where �1 is the largest angle of P [16℄.3. A modified Bramble-Hilbert LemmaAs we have explained in the introdu
tion, we are looking for extensions of thewell known Theorem 0.1.Let M (l; Æ; �) := C(�)M1M2, where C(�) is as in Theorem 0.1 and M1 and M2are as in Lemma 1.7.Theorem 3.1. Fix � > 0 and 0 < Æ < l=4. Let P be a triangle with the shortestedge = l and 
 � P be a polygonal domain su
h that � � Æ on 
. Let T = (Tj) bea triangulation as of 
 with triangles with angles � � and sides � h. Then(9) ku� uIkK10 �M (l; Æ; �)hmkukKm+1�for any u 2 Km+1� (
).Proof. This follows from Theorem 0.1 and the equivalen
e of the Hm and Kma {norms on 
 (Lemma 1.7). �We now extend Theorem 3.1 to trapezoids of the form PÆ r P�Æ. Let C1(�) =M (l; �l=8; �)(l=4)m.



FINITE ELEMENTS ON POLYGONS 7Theorem 3.2. Let �; � > 0, and 0 < Æ < l=4. Let T = (Tj) be a triangulation of
 := PÆr P�Æ with triangles with angles � � and edges � h. Then(10) ku� uIkK10 � C1(�)Æ�(h=Æ)mkukKm+1�for any u 2 Km+1� (
).Proof. We use Lemma 1.9 with � = 4Æ=l to 
on
lude that ku � uIkKm0 = ku� �uI�kKm0 . Then we noti
e that uI� = u�I (that is, dilation 
ommutes with interpo-lation. Therefore, we 
an apply Theorem 3.1 to the region ��1
 = Pl=4 r P�l=4,the triangulation ��1T , and the fun
tion u� to obtain thatku� � u�IkK10 �M (l; �l=8; �)�hl4Æ�m ku�kKm+10This then givesku� uIkK10 = ku� � u�IkK10 � C1(�)(h=Æ)mku�kKm+10� C1(�)Æ�(h=Æ)mku�kKm+1� ;where the last inequality is provided by Lemma 1.4b. �4. The main resultsWe now introdu
e the 
lass of triangulations for whi
h we will prove our mainresults, namely the 
lass C(m;h; �; �; �; b). Then we prove our main approximationsresults, in
luding the Theorems 0.2 and 0.3 announ
ed in the introdu
tion.4.1. The 
lass C(m;h; �; �; �; b). The following de�nition is formulated for the
ase P an a
ute angle triangle, for simpli
ity. However, the 
ase of a polygon is
ompletely similar and will be dis
ussed in the paper that will in
lude the detailsof the proofs.We 
ontinue to denote by l the shortest edge of the triangle P. Also, re
all the
onstant M (l; Æ; �) introdu
ed in Theorem 3.1.De�nition 4.1. Fix m 2 N = f1; 2 : : :g and let � 2 (0; 1℄, h > 0, �; b 2 (0; 1); and� 2 (0; �=2) be parameters. We de�ne C(m;h; �; �; �; b) to be the set of triangula-tions T de�ned as follows. Choose n su
h that�n� �M (l; �l=8; �)hm:We de
ompose P as the union of 
0 := Pr Pl=4, 
1 := Pl=4 r P�l=4, ... , 
n :=P�n�1l=4 r P�nl=4, and e
n+1 := P�nl=4. For ea
h j = 0; : : : ; n, we triangulate 
jwith triangles with all angles � �, and edges of length at most(11) hn;j = h�(1��=m)jand at least bhn;j. Then T is the union of the triangles appearing in the triangu-lations of 
j , j � n, and of the three triangles forming e
n+1.We begin with the following \hm"{approximation result for the triangulationsin C(m;h; �; �; �; b).Theorem 4.2. There exists a 
onstant B0 = B0(l; �; �) su
h that(12) ku� uIkK10 � B0(2h)mkukKm+1� ;for any triangulation T 2 C(m;h; �; �; �; b) and any u 2 Km+1� \ fujP= 0g:



8 C. BACUTA, V. NISTOR, J. XU, AND L. ZIKATANOVProof. It is enough to establish the 
orresponding estimate for k(u � uI)j
jkK10 ,for j = 0; 1; : : : ; n+ 1 and B0 = maxf1; lgM (l; �l=8; �).For j = 0, we use Theorem 3.1 for 
 = 
0. For j = 1; 2; : : : ; n, we use Theorem3.2 for 
 = 
j. Then we noti
e that uI = 0 on e
n+1 and hen
e(13) k(u� uI)je
n+1kK10 = kuje
n+1kK10 � Æ�kuje
n+1kKm+1� ;by Lemma 1.8, with Æ = �nl=4. The result then follows by adding the squares ofall these estimates, using also Equation (11). �From this we obtain the following estimate on the error ku�uV kH1 of the FiniteElement solution. From now on we shall assume that 0 < � � 1 is 
hosen su
h that� : Km+1� \ fujP= 0g ! Km�1�be an isomorphism. This is possible due to Corollary 2.2.Theorem 4.3. There exists a 
onstant B00 = B00(l; �; �) su
h that(14) ku� uV kH1 � B00(2h)mkfkHm�1 :for any T 2 C(m;h; �; �; �; b) and any f 2 Km�1� ; where u 2 Km+1� \ fujP= 0g isthe unique solution of �u = f .Proof. Let �� be the norm of ��1 : Km�1� !Km+1� \ fujP= 0g. We haveku� uV kH1 � 
ku� uIkH1� M
ku� uIkK10� M
B0(2h)mkukKm+1�� ��M
B0(2h)mkfkKm�1��1� ��M2
B0(2h)mkfkHm�1 :For the �rst inequality we �rst repla
e the norm kukH1 with the equivalent normjujH1 = krukL2 (use Poin
ar�e's inequality) and use that uV is the proje
tion of uonto V in the inner produ
t de�ned by j � jH1 . The se
ond and �fth inequalitiesare obtained using Lemma 1.5 (use also � � 1). The third inequality is obtainedfrom Theorem 4.2. The fourth inequality is obtained from the invertibility of � onthe 
orresponding spa
es. �The above theorems are satisfa
tory, ex
ept for one feature, namely that they donot give a bound for the dimension of the interpolating spa
es V := V (T ;m + 1).This is remedied by the following result.Theorem 4.4. There exists a 
onstant B1 = B1(l; �; �; �; b) su
h that(15) ku� uIkK10 � B1 dim(V )m=2kukKm+1� :for any partition T 2 C(m;h; �; �; �; b) and any u 2 Km+1� :Proof. The area of ea
h triangle in the triangulation of 
j is bounded from belowbe
ause it has all sides of length � bhn;j and all angles � �. The dimension of V isthen bounded from above by estimating the minimum area of the triangles in thepartition, whi
h must be � area(P). �



FINITE ELEMENTS ON POLYGONS 94.2. The two main theorems. We now prove the two main theorems stated inthe introdu
tion. We begin with Theorem 0.2.Proof. The proof of Theorem 0.2 is similar to that of Theorem 4.3, but usingTheorem 4.4 instead of Theorem 4.2. �It remains to prove Theorem 0.3. This is a
hieved through the following example.Proof. Fix Pand m 2 N = f1; 2; : : :g arbitrary. Also, 
hoose 0 < � � 1 su
h that� : Km+1� \ fujP= 0g ! Km�1��2be an isomorphism. Then 
hoose � = 2�m=�.For any triangulation T = (Tj) of a polygonal domain 
, we shall denote by2�kT the triangulation of 
 obtained by dividing ea
h triangle Tj of T = (Tj)into 22k equal triangles, all similar to Tj . Also, if T = (Tj) is a triangulation ofPÆrP�Æ, then we shall denote by (T )� the triangulation of P�ÆrP��Æ obtained byapplying a suitable similarity of ratio � to ea
h of the triangles of T (the 
enter ofea
h similarity is the 
losest vertex to the triangle that is transformed).We shall use the notation of De�nition 4.1. Let T0 be the triangulation of 
0obtained by joining the bari
enter of 
0 to ea
h of the six verti
es of 
0. Write
1 = U1 [ U2 [ U3, the union of its 
onne
ted 
omponents. We triangulate ea
hUj into 5 triangles by joining its bari
enter to the middle of the long basis and toea
h of its four verti
es. We shall denote by e
n+1 the triangulation of e
n+1 intoits three 
onne
ted 
omponents.Next, we de�ne � to be the least of the angles appearing in T0 [ T1 [ e
n+1. Leth0 be the shortest edge of T0 [ T1 and h = ��=m�1h0. Let b0 < 1 be the ratio ofthe shortest and the longest edges in T0. De�ne b1 similarly, as the ratio of theshortest and the longest edges in T0. We 
omplete our set of 
hoi
es by takingb = minfb0; b1g��=m�1.We de�ne T = 2�nT0 [ 2�n+1T1 [nj=2 2�n+j(T1)�j�1 [ e
n+1:Then T 2 C := C(m; 2�nh; �; 2�n=�; �; b). Hen
e C is not empty. The statement ofthe theorem is obtained by taking hn = 2�nh. �Referen
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