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SINGULAR SPHERICAL MAXIMAL OPERATORS ONA CLASS OF TWO STEP NILPOTENT LIE GROUPSDetlef M�uller Andreas SeegerAbstrat. Let Hn �= R2n n R be the Heisenberg group and let �t be the normalized surfae measure forthe sphere of radius t in R2n. Consider the maximal funtion de�ned by Mf = supt>0 jf � �tj. We prove forn � 2 thatM de�nes an operator bounded on Lp(Hn) provided that p > 2n=(2n� 1). This improves an earlierresult by Nevo and Thangavelu, and the range for Lp boundedness is optimal. We also extend the result to amore general setting of surfaes and to groups satisfying a nondegeneray ondition; these inlude the groups ofHeisenberg type. 1. IntrodutionLet G be a �nite-dimensional step two nilpotent group whih we may identify with its Lie algebra g bythe exponential map. We assume that g splits as a diret sum g = w � z so that[w;w℄ � z; [w; z℄ = f0g;and that dim(w) = d, dim(z) = m.Throughout we shall make the followingNondegeneray Hypothesis. For every nonzero linear funtional ! 2 z� the bilinear formJ! : w �w! R(X;Y ) 7! !([X;Y ℄)is nondegenerate.Note that the skew symmetry of J! and the nondegeneray hypothesis imply that d is even.There is a natural dilation struture relative to w and z, namely for X 2 w and U 2 z we onsider thedilations Æt : (X;U ) 7! (tX; t2U ):With the identi�ation of the Lie algebra with the group Æt beomes an automorphism of the group.In exponential oordinates (x; u), x 2 Rd, u 2 Rm, the group multipliation is given by(1.1) (x; u) � (y; v) = (x+ y; u+ v + xtJy)where xtJy = (xtJ1y; : : : ; xtJmy) 2 Rm and the Ji are skew-symmetri matries ating on Rd (i.e. J ti =�Ji). For u 2 Rm we also form the skew-symmetri matries Ju = Pmi=1 uiJi and the nondegenerayhypothesis is equivalent with the invertibility of Ju for all u 6= 0.1991 Mathematis Subjet Classi�ation. 42B25, 22E25, 43A80.Key words and phrases. spherial maximal operators, Heisenberg groups, step two nilpotent groups, osillatory integraloperators, fold singularities.The seond author was supported in part by the National Siene Foundation. Typeset by AMS-TEX1



2 DETLEF M�ULLER ANDREAS SEEGERThe most prominent examples are the Heisenberg groups Hn whih arise when d = 2n, m = 1 andJ = J1 is the standard sympleti matrix on R2n. These belong to the lass of Heisenberg-type groups(termed H-type groups in [9℄), for whih J2u = �4juj2I, so that the nondegeneray hypothesis is learlysatis�ed in this ase. Note that in general m has to be small ompared to d (see [9℄ where the onnetionwith Radon-Hurwitz numbers is pointed out). The lass onsidered here has been introdued by M�etivier[10℄ in his study of analyti hypoelliptiity; the nondegeneray assumption is termed \Condition (H)" in[10℄. There are many groups whih satisfy the nondegeneray ondition but whih are not isomorphi to aHeisenberg-type group; we give an example in x7.Let � be a smooth onvex hypersurfae in w and let � be a ompatly supported smooth density on�. We make the followingCurvature Hypothesis. The Gaussian urvature of � does not vanish on the support of �.De�ne the dilate �t by h�t; fi = Z f(tx; 0)d�(x):(1.2)We reall the de�nition of onvolutionf � g(x; u) = Z f(y; v)g((y; v)�1 � (x; u))dydv= Z f(y; v)g(x � y; u� v + xtJy)dydv(1.3)and de�ne for Shwartz-funtions the maximal operator M byMf(x; u) = supt>0 jf � �t(x; u)j:We prove the following sharp result.Theorem. Suppose d > 2. Then M extends to a bounded operator on Lp(G) if and only if p > d=(d� 1).Remarks. (i) Other more \regular" spherial maximal funtions on the Heisenberg group have been on-sidered in [2℄, [15℄. In these papers the maximal funtions are generated by measures on hypersurfaes andthe averaging operators are Fourier integral operators assoiated to loal anonial graphs. In our workthe maximal funtions are generated by measures on surfaes of odimension m + 1, and the assoiatedanonial relations projet with fold singularities.(ii) A previous result is due to Nevo and Thangavelu [12℄ who onsidered the ase of spherial meanson the nonentral part of the Heisenberg groups (m = 1) and obtained Lp boundedness in the smallerrange p > (d� 1)=(d� 2), d > 2.(iii) Our theorem is an analogue of Stein's theorem [16℄ in the Eulidean ase. The neessity ofthe ondition p > d=(d � 1) follows from the example in [16℄; one tests M on the funtion given byf(y; v) = jyj1�d(log jyj)�1�(y; v) with a suitable uto� funtion �. The L2 methods in this paper are notsuÆient to establish Lp boundedness for p > 2 for the ase d = 2 (that is, for an extension of Bourgain'sresult [1℄ in the Eulidean ase); we shall return to this ase in a subsequent paper.(iv) The result should remain true for any nilpotent Lie group of step � 2; i.e. the nondegenerayhypothesis should not be neessary. This is urrently an open problem.(v) As a orollary of the Lp estimate for the maximal operator one obtains the pointwise onvergeneresult limt!0 �t � f(x) = f(x) almost everywhere, if f 2 Lp and  = R d�. Moreover the Lp bounds ofthe maximal operator are relevant for ertain results in ergodi theory, where one needs to have pointwiseontrol for large t.



SPHERICAL MAXIMAL OPERATORS ON TWO STEP NILPOTENT LIE GROUPS 3(vi) We use in an essential way the invariane of the subspae w under the dilation group fÆtg. Namelythis implies a favorable bound for the prinipal symbol of (d=dt)�t on the fold surfae of the assoiatedanonial relation. A similar phenomenon was observed in [11℄ for averages along light rays.(vii) One an replae the measure on w by a measure supported on a perturbed subspae W whih istransversal to the enter but no longer invariant under fÆtg; then the phenomenon in the last remark doesnot our. In the above oordinates W is given as(1.4) W = f(x;�x); x 2 Rdg;where � = (�ij) is a m� d matrix. De�ne a measure ��t byh��t ; fi = Z f(tx; t2�x)d�(x);we also set �� := ��1 . Consider the maximal operator M� de�ned by(1.5) M�f = supt>0 jf � ��t j:For general � we then prove the partial result that M� is bounded for p > (3d�1)=(3d�4). We onjeturethat boundedness holds for p > d=(d� 1) whih by our theorem holds true for � = 0.Notation: Given two quantities A and B we write A . B if there is a positive onstant C, suh thatA � CB. 2. Preliminary deompositionsWe shall present the argument for the maximal operator M� in (1.5). We shall denote by �j the jtholumn of � and by k�k the matrix norm of � with respet to the Eulidean norms on Rd and Rm. Inwhat follows we shall always assume that k�k � C1 for some �xed C1 (and various bounds may depend onC1). If k�k ours expliitly in an estimate then we are interested in the behavior for �! 0, as the aseof our Theorem orresponds to � = 0.We note that by loalizations and rotations in Rd one an assume that � has small support and thatthe projetion of � to w is given as a graph xd = �(x0), x0 = (x1; : : : ; xd�1), so that rx0�(0) = 0 and sothat � is supported in a small neighborhood of (0;�(0)) (we may assume that jrx0�(x0)j � C�10 0=100)where 0, C0 are de�ned in (5.10) below). Note that a rotation has the e�et of replaing the matries Jiin the group law by QtJiQ with Q 2 SO(d). We thus will need to prove an estimate whih is uniform inthese rotations.Using the Fourier inversion formula for Dira measures we may write��(x; u) = �(x; u) ZZ ei��(xd��(x0))+��(u��x)�d�d�where � is a smooth ompatly supported funtion and the integral onverges in the sense of osillatoryintegrals (thus in the sense of distributions).We split the integrals by introduing dyadi deompositions in (�; � ) and then also in �, when j�j < j� j.Let �0 2 C10 (R) be an even funtion so that �0(s) = 1 if jsj � 1=2 and supp(�0) � (�1; 1). Also de�ne�1(s) = �0(s=2)� �1(s) and for k � 1, 1 � l < k=3,�0(�; � ) = �0(p�2 + j� j2)(2.1.1) �k;0(�; � ) = �1(2�kp�2 + j� j2)(1 � �0(2�k�))(2.1.2) �k;l(�; � ) = �1(2�kp�2 + j� j2)�1(2l�k�)e�k(�; � ) = �1(2�kp�2 + j� j2)�0(2[k=3℄�k�1�):(2.1.3)



4 DETLEF M�ULLER ANDREAS SEEGERThen observe that �0 +Xk�1��k;0 + X1�l<k=3�k;l + e�k� = 1;and for k > 0 the funtion �k;0 is supported where � � 2k and j� j . 2k, �k;l is supported where j� j � 2kand j�j � 2k�l and e�k is supported where j� j � 2k and j�j . 22k=3.De�ne K0(x; u) = �(x; u) ZZ ei��(xd��(x0))+��(u��x)��0(�; � )d�d�;(2.2.1) Kk;l(x; u) = �(x; u) ZZ ei��(xd��(x0))+��(u��x)��k;l(�; � )d�d�; 0 � l < k=3,(2.2.2) eKk(x; u) = �(x; u) ZZ ei��(xd��(x0))+��(u��x)� e�k(�; � )d�d� ;(2.2.3)moreover for t > 0 de�ne the dilates[K0t ;Kk;lt ; eKkt ℄(x; u) = t�(d+2m)[K0;Kk;l; eKk℄(t�1x; t�2u):Note that ��t = K0t +Pk�1 �Kk;0t +P1�l<k=3Kk;lt + eKkt �.Sine K0 is a bounded ompatly supported funtion the assoiated maximal funtion is ontrolledby the appropriate variant of the Hardy-Littlewood maximal funtion and therefore ([17℄) we have theinequality  supt jf �K0t jp � Cpkfkpfor 1 < p � 1.Using known estimates for osillatory integral operators with fold singularities and additional almostorthogonality estimates we shall derive in x3 and x5 the following L2 estimates.Proposition 2.1. Suppose k > 0. Then for 0 � l < k=3(2.3)  supt jf �Kk;lt j2 . pk2�k(d�2)=2(1 + k�k2l)1=2kfk2;moreover(2.4)  supt jf � eKkt j2 . pk2�k(d�2)=2(1 + k�k2k=3)1=2kfk2To obtain Lp results we shall interpolate with weak type inequalities proved in x6.Lemma 2.2. Let k > 0. For all � > 0 we have(2.5) meas�f(x; u) : supt>0 jf �Kk;lt (x; u)j > �g� . k2k�l(1 + k�k2l)��1kfk1for 0 � l < k=3 and(2.6) meas�f(x; u) : supt>0 jf � eKkt (x; u)j > �g� . k22k=3(1 + k�k2k=3)��1kfk1:We interpolate by the real method and obtainCorollary 2.3. Suppose 1 < p � 2 and k > 0. Then for 0 � l < k=3(2.7)  supt jf �Kk;lt jp � Cpk1=p2�k(d�1�d=p)2�l(2=p�1)(1 + k�k2l)1=pkfkp;moreover(2.8)  supt jf � eKkt jp � Cpk1=p2�k(d�4=3�d=p+2=3p)(1 + k�k2k=3)1=pkfk2:Now if p < 2 we may sum in k and l and see that M� is Lp bounded if d�4=3�d=p+1=(3p)> 0 whihis equivalent to p > (3d�1)=(3d�4) (showing the estimate mentioned in remark (vii) in the introdution).If � = 0 we get a better bound, namely that Lp boundedness holds if d � 1 � d=p > 0 or p > d=(d� 1).This proves our main Theorem.



SPHERICAL MAXIMAL OPERATORS ON TWO STEP NILPOTENT LIE GROUPS 53. Square funtions and almost orthogonalityIt is advantageous to introdue anellation in the above kernels, modulo small aeptable errors.Indeed ��� ZZ Kk;l(x; u)dxdu���+ ��� ZZ eKk(x; u)dxdu���� CN2�kN ;for all N = 0; 1; : : : , and this estimate follows by an integration by parts in the (x; u) variables. Thus thereis a C10 funtion b whih is equal to 1 on supp(�), and onstants k;l, k so that(3.1) ZZ Kk;l(x; u)dxdu = k;l ZZ b(x; u)dxduZZ eKk(x; u)dxdu= k ZZ b(x; u)dxduwhere(3.2) jkj+ jk;lj � CN2�kN :We de�ne Kk;l(x; u) = Kk;l(x; u)� k;lb(x; u)(3.3.1) eKk(x; u) = eKk(x; u)� kb(x; u)(3.3.2)and denote by Kk;lt , eKkt their dilates, as before. Then the funtions Kk;lt , Kkt have integral zero.Sine the maximal operator generated by the kernel b (with nonisotropi dilations) is bounded by thenonisotropi Hardy-Littlewood maximal operator we see that for 1 < p � 1 supt jf � (Kk;lt �Kk;lt )jp � CN;p2�kNkfkp:Now in order to deal with the main term we shall use the following standard lemma in the subjetwhih is an immediate onsequene of a similar one stated in [17, p.499℄.Lemma 3.1. Suppose that sups2[1;2℄�Xn2ZFn(�; s)22�1=2 � A1sups2[1;2℄�Xn2Z�Fn�s (�; s)22�1=2 � A2:Then  supn sups2[1;2℄ jFn(�; s)j2 � C(A1 +pA1A2):We omit the proof. Using Lemma 3.1 one sees that the estimates supt jf � Kk;lt j2 . pk2�k(d�2)=2(1 + k�k2l)1=2kfk2 supt jf � eKkt j2 . pk2�k(d�2)=2(1 + k�k2k=3)1=2kfk2



6 DETLEF M�ULLER ANDREAS SEEGERfollow from the following estimates whih are uniform in s 2 [1; 2℄.�Xn f � Kk;l2ns22�1=2 . pk2�k(d�1)=22l=2kfk2(3.4) �Xn f � ht ��tKk;lt it=2ns22�1=2 . pk2�k(d�3)=22�l=2(1 + k�k2l)kfk2;(3.5)for l < k=3, and �Xn f � eKk2ns22�1=2 . pk2�k(d�1)=2+k=6kfk2(3.6) �Xn f � ht ��t eKkt it=2ns22�1=2 . pk2�k(d�3)=2�k=6(1 + k�k2k=3)kfk2:(3.7)Note by saling that it suÆes to prove these estimates for s = 1. We shall �rst use the anellationof the kernels Kk;l2ns and eKk2ns to show ertain almost orthogonality properties (for the sums in n) and thenwe use stronger estimates for osillatory integrals to establish deay estimates for �xed n.An almost orthogonality lemma. We �rst state a simple and presumably well known onsequene ofthe Cotlar-Stein Lemma.Lemma 3.2. Suppose 0 < " < 1, A � B=2 and let fTng1n=1 be a sequene of bounded operators on aHilbert spae H so that the operator norms satisfy(3.8) kTnk � Aand(3.9) kTnT �n0k � B22�"jn�n0j:Then for all f 2 H(3.10) � 1Xn=1kTnfk2�1=2 � CAp"�1 log(B=A)kfk:Proof. For N � 1 onsider the operator TN : H ! `2(H)whih maps f to the sequene (T1f; : : : ; TN f; 0; 0; : : :). Now kTNk = kT �NTNk1=2 where T �NTN : H ! H isgiven by T �NTNf = NXn=1T �nTnf:We let Sn = T �nTn and observe thatkS�kSlk = kSkS�l k = kT �kTkT �l Tlk� kT �kkkTkT �l kkTlk � A2minfA2; B22�jk�lj"g:



SPHERICAL MAXIMAL OPERATORS ON TWO STEP NILPOTENT LIE GROUPS 7The standard Cotlar-Stein Lemma [17℄ giveskT �NTNk � 1Xm=1max� supk�l=m kS�kSlk1=2; supk�l=m kSkS�l k1=2	and thus kTNk2 � A 1Xm=�1minfA;B2�jmj"g� C2"�1A2 log(B=A):Thus kTNfk`2(H) is dominated by the right hand side of (3.10), and the assertion follows by taking thelimit as N !1. �Remark. We proved Lemma 3.2 by using the statement of the Cotlar-Stein Lemma. Using the proof of theCotlar-Stein Lemma one an also show the following more general fat: If kTnT �n0k � �2(n � n0) then� NXn=1 kTnfk2�1=2 . �Xj2Zj�(j)j2�1=2kfk:Of ourse, Lemma 3.2 is an immediate onsequene of this inequality.Almost orthogonality estimates. Here we wish to apply Lemma 3.2 to onvolutions on groups. IfTf = f � g we �rst note that its adjoint is given by T �f = f � g� where g� = g(��1). Moreover usingMinkowski's inequality and the unimodularity of nilpotent Lie groups one obtains the standard onvolutioninequality kf � gk2 � kg�k1kfk2 = kgk1kfk2:We now �x k; l and s 2 [1; 2℄ and derive almost orthogonality properties for the operators of onvolutionwith Kk;l2ns.Notie that for n � 0 the funtion Kk;l2ns is supported in a (small) ball of radius C2n (in fat in a smallernonisotropi ball). Moreover we have jry;vKk;ls (y; v)j � 2k(m+2) and using the anellation of Kk;l2ns weobtain jKk;ls � (Kk;l2ns)�(x; u)j . 2k(m+2)2n if n � 0:By saling and applying Shur's Lemma we obtain(3.11) f � Kk;l2n0s � (Kk;l2ns)�2 . 2k(m+2)2�jn�n0jkfk2�rst for n � n0 and then by taking adjoints also for n < n0. This and the following estimates are uniformin s 2 [1; 2℄.Similarly we get(3.12) f � s�Kk;l2n0 s�s � s�(Kk;l2n0s)��s 2 . 2k(m+4)2�jn�n0jkfk2and also f � eKk2n0s � ( eKk2ns)�2 . 2k(m+2)2�jn�n0jkfk2:(3.13) f � s� eKk2ns�s � s�( eKk2n0 s)��s 2 . 2k(m+4)2�jn�n0jkfk2:(3.14)



8 DETLEF M�ULLER ANDREAS SEEGERIn x5 we shall prove the inequalitieskf �Kk;lk2 . 2�k(d�1)=22l=2kfk2(3.15) f � h�Kk;ls�s is=12 . 2�k(d�3)=22�l=2(1 + k�k2l)kfk2(3.16)for l < k=3, and kf � eKkk2 . 2�k(d�1)=22k=6kfk2(3.17) f � � eKks�s ��s=12 . 2�k(d�3)=22�k=6(1 + k�k2k=3)kfk2:(3.18)By saling and by (3.2) the same inequalities hold with Kk;l and eKk replaed by Kk;lt and eKkt and with�sKk;l, �s eKk replaed by �sKk;l2ns, �s eKk2ns, for 1 � s � 2.Now the inequality (3.4) follows from (3.15) and (3.11) if we apply Lemma 3.2 with A = 2�k(d�1)=22l=2and B = 2k(m+4). Similarly (3.5) follows from (3.16) and (3.12), (3.6) from (3.17) and (3.13), and (3.7)from (3.18) and (3.14).The next two setions are onerned with the derivation of inequalities (3.15-18).4. Preliminaries on osillatory integral operators with folding anonial relationsWe shall redue matters to estimates for osillatory integral operators whose anonial relations havetwo-sided fold singularities. We onsider loalizations near the fold surfae and the estimate goes bak toPhong and Stein [13℄ for ertain onormal operators in the plane; the general ase is impliit in Cuagna'spaper [3℄. For the version needed here we refer to [6℄.Let 
 2 Rn�Rn be an open set and let � be an open set in some �nite dimensional spae. We onsiderphases '(x; y; ) and amplitudes a�(x; y; ), (x; y; ) 2 
 �
� �, and assume thatj��x��y'(x; y; )j � C(4.1) j��x��y a�(x; y; )j � C�(j�j+j�j)=3(4.2)say, for all multiindies �; � with j�j; j�j � 10n, with uniform bounds in 
 � �; we also assume that allderivatives depend ontinuously on the parameter .We shall assume that C' = f(x; 'x; y;�'y)gis a folding anonial relation, i.e. for eah point P0 = (x0; y0; 0) we have(4.3) rank '00xy(P0) � n � 1;and for unit vetors U , V '00xy(P0)V = 0 =) ��hV;ryi det'00xy�� � ;(4.4) U t'00xy(P0) = 0 =) ��hU;rxi det'00xy�� � ;(4.5)for some  > 0.We onsider the osillatory integral operator T�[b℄ de�ned byT�[b℄f(x) = Z ei�'(x;y;)b(x; y; )f(y)dy



SPHERICAL MAXIMAL OPERATORS ON TWO STEP NILPOTENT LIE GROUPS 9whih is bounded on allLp if b is bounded and ompatly supported. We shall take for b ertain loalizationsof the symbol in terms of the size of det'00xy. Let � be smooth and ompatly supported in (�1; 1) so that�(s) = 1 for jsj � 1=2 and set�l(x; y; ) = �(2l det'00xy(x; y; )) � �(2l+1 det'00xy(x; y; ));so that �l loalizes to the set where j det'00xyj � 2�l. We also de�ne��(x; y) = 1� X2l<�1=3 �l(x; y)so that j det'00xyj . ��1=3 on supp(��).Then there is a neighborhood U of (x0; y0; 0) so that for all a� satisfying (4.2), supported in U thefollowing estimates hold for the operator norms:(4.6) T�[a��l ℄L2!L2 � C12l=2��n=2; 2l � �1=3and(4.7) T�[a���℄L2!L2 � C1�1=6�n=2:These estimates are a onsequene of Theorem 2.1 in [6℄.5. Redution to osillatory integral operatorsWe now onsider the operator of onvolution with Kk;l and give the proof of the bound (3.15). The op-erator �sKk;l is more singular, but its estimation is rather analogous, so we shall point out the modi�ationsneeded for (3.16) at the end of this setion. The estimations for eKk and �s eKks will be similar.Sine Kk;l is ompatly supported in a �xed neighborhood we may use the translation invariane toredue to the ase that f is also ompatly supported in a �xed neighborhood of the origin. Thus it suÆesto show the desired bound for the operator with Shwartz kernel(5.1) �1(x; u)Kk;l(x� y; u� v + xtJy)�2(y; v);for suitable ompatly supported smooth funtions �1 and �2. In what follows we set � = 2k and then bya hange of variables the kernel (5.1) an be written as(5.2) H�;l(x; u; y; v) = �m+1 ZZ ei��(x;u;y;v;�;�)�0(x; u; y; v)�l(�; � )d�d�where �(x; u; y; v; �; � ) = �(xd � yd � �(x0 � y0)) + � � (u� v + xtJy � �(x� y))and where j� j � 1 and j�j � 2�l on the support of �l; spei�ally�l(�; � ) = �1(p�2 + j� j2)�1(2l�);and �0(x; u; y; v) = �1(x; u)�(x� y; u� v + xtJy)�2(y; v).Notation. We let P : Rd ! Rd�1 be the linear map with Pei = ei, i = 1; : : : ; d� 1 and Ped = 0. We alsouse the notation P for the (d� 1)� d matrix P = ( I 0 )and P t for its transpose.



10 DETLEF M�ULLER ANDREAS SEEGERStationary phase alulations. We wish to apply stationary phase arguments to redue matters to theestimation of an osillatory integral operators without frequeny variables (see e.g. the general disussionin [5℄).We shall apply a saled Fourier transform on Rm+1, in the (xd; u) variables. De�neF�g(x0; xd; u) = ZZ e�i�(xdzd+u�w)g(x0; zd; w)dzddw;then (�=2�)(m+1)=2F� is a unitary operator and thus, if H�;l denotes the operator with Shwartz kernelH�;l we have to prove that F�H�;l maps L2 to itself with operator norm O(��(d+m)=22l=2). Let �3(xd; u)denote a smooth ompatly supported funtion whih is equal to one whenever jxdj+ juj � 10, and de�neF�;1 by F�;1g(x0; xd; u) = �3(xd; u) ZZ e�i�(xdzd+u�w)g(x0; zd; w)dzddw;moreover let F�;2 = F� � F�;1. Then the Shwartz kernel of F�;1H�;l is given by(5.3) �m+1 Z ei�	(x;u;y;v;�)bl(x; u; y; v; �)d�where with � = (zd; w; �; � )the phase funtion 	 is given by	(x; u; y; v; �) = � xdzd � u �w + ��zd � yd � �(x0 � y0)�+ � t�w � v + �P t(x0 � y0) + �d(zd � yd) + (x0t; zd)Jy�;and the amplitude is given bybl(x; u; y; v; �) = �3(xd; u)�0(x0; zd; y; w)�l(�; � ):For the error term F�;2H�;l we have a similar formula, only with �3 replaed by 1 � �3. Then inview of the support properties of (1 � �3) we see that jrzd;w	j � jxdj + juj on supp(1 � �3) and byintegration by parts with respet to the (zd; w) variables we see that the kernel of F�;2H�;l is boundedby CN�m+1�N (jxdj+ juj)�N . Moreover this kernel is supported on a set where jxdj + juj � 1 and wherejx0j + jyj + jvj � C. Thus, with an obvious appliation of Shur's Lemma we onlude that the operatorF�;2H�;l is bounded on L2 with operator norm O(��N ) for any N .We return to the main term F�;1H�;l and it remains to be shown that(5.4) kF�;1H�;lk . 2l=2��(d+m)=2:Note that for �xed (x; u; y; v) the phase funtion 	 is a polynomial of degree � 2 in the � variablesand that the Hessian 	00�� is nondegenerate.Indeed,(5.5) 	0zd = �xd + etdJ� y + � + � t�d	0w = � � u	0� = w � v + (x0t; zd)Jy +�P t(x0 � y0) + �d(zd � yd)	0� = zd � yd � �(x0 � y0)



SPHERICAL MAXIMAL OPERATORS ON TWO STEP NILPOTENT LIE GROUPS 11and with � denoting the olumn vetor in Rm with oordinates �i = etdJiy + �id we have	00�� = 0B� 0 0 �t 10 0 I 0� I 0 01 0 0 01CA :Clearly the linear equations 	� = 0 have a unique solution �rit = (zd; w; �; �)rit, with(zd)rit(x; u; y; v) = yd + �(x0 � y0)(wi)rit(x; u; y; v) = vi � (x0t; yd + �(x0 � y0))Jiy � eti�P t(x0 � y0)� �id�(x0 � y0)(�i)rit(x; u; y; v) = ui�rit(x; u; y; v) = xd � mXi=1 ui(etdJiy + �id)and we an apply the method of stationary phase (with respet to the 2(m + 1) frequeny variables �).Setting�(x; u; y; v) := 	(x; u; y; v; �rit(x; u; y; v))= �xd(yd + �(x0 � y0)) � mXi=1 ui�vi � (x0t; yd + �(x0 � y0))Jiy � �id�(x0 � y0) � eti�P t(x0 � y0)�(5.6)we obtain that�m+1 Z ei�	(x;u;y;v;�)bl(x; u; y; v; �)d� = ei��(x;u;y;v)N�1Xj=0 E lj(x; u; y; v)��j +R�;lN (x; u; y; v)(5.7)where(5.8) E lj(x; u; y; v) =(2i)�j� det(	��(x; y; u; v; �rit(x; u; y; v))=2�i��1=2 1j!h	�1�� D� ; D�ijbl(x; u; y; v; �)����=�rit(x;u;y;v)and(5.9) jR�;lN (x; u; y; v)j � CNkblkL2m+2+2N��N � C 0N2l(m+2+2N)��N :Here we have applied Lemma 7.7.3 in [7℄.Sine 2l � �1=3 the error term R�;lN (whih is ompatly supported) de�nes a bounded operator on Lpwith norm O(��(2m+1+N)=3) whih for large N is muh better than the desired bound in (5.4).Claim 5.1. The operators with kernels ��jE lj(x; u; y; v)ei��(x;u;y;v) have L2 operator normO(��(d+m)=2�j=32l=2)This learly implies (5.4).



12 DETLEF M�ULLER ANDREAS SEEGERGeometry of the anonial relation.We onsider the anonial relation C� = (x; u;�x;�u; y; v;��y;��v) and the singularities of the mapspL : (y; v) 7! (�x;�u), pR : (x; u) 7! (�y;�v). It is our objetive to hek the analogues of (4.3-4.5) andwe will have to verify a few elementary linear algebra fats.Let A denote the (d�1)�(d�1)matrix �00(x0�y0) and letB denote the olumn vetor �0(x0�y0) 2 Rd�1;reall that we may assume that jBj is small. Indeed if0 = minu2Sm�1 kJ�1u k�1(5.10.1) C0 = maxu2Sm�1 kJuk(5.10.2)we may assume that kBk � C�10 0=100:Now pL is expliitly given by�x0 = �xd�0(x0 � y0) + PJuy + �0(x0 � y0)etdJuy + ut�d�0(x0 � y0) + ut�P t�xd = �yd � �(x0 � y0)�ui = ��vi � (x0t; yd + �(x0 � y0))Jiy � eti�P t(x0 � y0) � �id�(x0 � y0)�:We ompute the di�erential DpL as(5.11) �00(x;u);(y;v) = 0� (xd � etdJuy � ut�d)A + PJuP t + BetdJuP t PJued 0Bt �1 0C  I1Awhere I is an m�m identity matrix and C is m � (d� 1) matrix with rows Ci = x0tPJiP t + ydetdJiP t �(etdJiy + �id)Bt + eti�P t + �(x0 � y0)etdJiP t and  is the olumn in Rm with i = (x0t; 0)Jied + etdJiy. Inthis alulation the skew symmetry of the Ji is used.We now ompute the determinant of (5.11) and obtain(5.12) det �00(x;u);(y;v) = (�1)d det �(xd � etdJuy � ut�d)A + PJuP t +E(B)�where(5.13) E(B) = BetdJuP t + PJuedBt:Here we used the fatorization��A+ PJuP t + BetdJuP t PJuedBt �1 � = ��A + PJuP t +E(B) PJued0 �1 �� I 0�Bt 1� :Note that E(B) is a skew-symmetri (d � 1) � (d � 1) matrix and so is PJuP t + E(B). Thus, sined� 1 is odd, the rank of PJuP t+E(B) is at most d� 2, and the following lemma shows that for small Bthe rank is equal to d� 2.Lemma 5.2. Suppose that kBk � 04C0 :Then the following holds:



SPHERICAL MAXIMAL OPERATORS ON TWO STEP NILPOTENT LIE GROUPS 13(i) If W 2 Ker (PJuP t + E(B)) then(5.14) jetdJuP tW j � 02 kWk:(ii) dimKer (PJuP t +E(B)) = 1.(iii) If X belongs to the orthogonal omplement of Ker (PJuP t + E(B)) then(5.15) k(PJuP t + E(B))Xk � 02 kXk:Proof. Observe that kE(B)k � 2C0kBk:Thus if W 2 Ker (PJuP t + E(B)) and kWk = 1 then1 = kP tWk � kJ�1u kkJuP tWk� kJ�1u k�jetdJuP tW j+ kPJuP tWk� = kJ�1u k�jetdJuP tW j+ kE(B)Wk�� �10 �jetdJuP tW j+ 2C0kBk�and thus, if kBk � 0=4C0 we obtain jetdJuP tW j � 0=2 whih is (5.14).Let Su = Ju + E(B). Sine Su is skew symmetri, it an be diagonalized over C , and the eigenvaluesare imaginary. The bounds (5.10.1/2) are still valid if J�1u is ating as a linear transformation on C d . Let� 2 C d be a unit eigenvetor of Su so that Su� = i�� and k�k = 1; thenj�j = kSu�k � kJu�k � kE(B)�k � 0 � kE(B)k � 0 � 2C0kBk � 02by assumption on B. Hene j�j � 0=2 for every eigenvalue i� of Su. In partiular Su is nondegenerate.But then PSuP t = PJuP t+E(B) has rank d�2 and therefore a one-dimensional kernel and all nontrivialeigenvalues of Su are also eigenvalues of PSuP t. This implies for vetors X orthogonal to the kernel ofPSuP t that PSuP tX � 02 kXkwhih is (5.15).Lemma 5.3. Let A be a symmetri positiv de�nite matrix on Rn and let S be a skew-symmetri matrixon Rn. Then:(i) For all � 6= 0, the matrix �A + S is invertible and the inverse satis�es the bounds(5.16) k(�A+ S)�1k � j�j�1kA�1k:(ii) If S is invertible then �A+ S is invertible for all � and we have the bound(5.17) k(�A+ S)�1k � 2kS�1k if j�j � �2kAkkS�1k��1:Proof.For a unit vetor e in Rn we getk(�A+ S)ek � jh(�A+ S)e; eij = jh�Ae; eij � j�jkA�1k�1:Here we have used that by the skew symmetry of S we have hSe; ei = 0, and also that kA�1k = 1=�min,where �min is a minimal eigenvalue of A. This establishes invertibility and the bound (5.16).If in addition S is invertible and � is small we may simply use the Neumann series to get invertibilityof �A+ S. Namely, if j�j � �2kAkkS�1k��1 we get (�A+S)�1 = S�1(I +P1j=1(�1)j�j(AS�1)j) and thebound (5.17) is immediate. �



14 DETLEF M�ULLER ANDREAS SEEGERLemma 5.4. Let ` � 1 be an odd integer, let 
1 be the one of real symmetri positive de�nite ` � `matries and let 
2 be the set of all skew symmetri `� ` matries with rank ` � 1.For S 2 
2 hoose a unit vetor eS in the kernel of S and let �S be the orthogonal projetion to theorthogonal omplement of eS .Then for A 2 
1, S 2 
2, � 2 R we have(5.18) det(�A + S) = �hAeS ; eSi det(�S(�A+ S)��S ) + �2F (A; S; �)where F is a smooth funtion on 
1 �
2 �R.Proof. Let Q = Q(S) be an orthogonal transformation with etSQ = (0; : : : ; 1). ThenQt(�A + S)Q = ��A0 + S0 �a�at ���where S0 is a skew symmetri invertible (` � 1) � (` � 1) matrix, A0 is positive de�nite, a 2 R`�1 and� = hAeS ; eSi. We apply Lemma 5.3 to �A0 + S0 and fator��A0 + S0 �a�at ��� = � I 0�at(�A0 + S0)�1 1���A0 + S0 �a0 �� � �2at(�A0 + S0)�1a�and onlude that det(�A + S) = det(�A0 + S0)��� � �2at(�A0 + S0)�1a�:The assertion follows sine det(�A0 + S0) = det(�S(�A + S)��S). �We now proeed to verify the onditions (4.3-5) in x4. By Lemma 5.3 the determinant of �00(x;u);(y;v)an only vanish when � := �r � xd � etdJuy � ut�d vanishes. In this ase the dimension of the kernel�00(x;u);(y;v) is equal to the dimension of the kernel of PJuP t+E(B) with B = �0(x0 � y0), thus equal to 1.Thus rank (�00(x;u);(y;v)) � d+m � 1 everywhere.In order to verify (4.4) let VL be a nonvanishing vetor �eld whih is in the kernel of DpL when themixed Hessian (5.11) beomes singular (i.e. when xd � etdJuy � ut�d = 0). Then(5.19) VL = d�1Xj=1WL;j ��yj + gL ��yd + mXi=1 hL;i ��vi ;and with A = �00(x0 � y0), we have gL = BtWL and(5.20) (�A+ PJuP t + BetdJuP t + PJuedBt)WL = 0;moreover the funtions hL;i are in the ideal generated by the WL;j (and the oeÆients an be omputedfrom (5.11)). To get a nontrivial kernel (when � = 0) we must hoose a nonvanishing vetor WL satisfying(5.20). Notie that then jetdJuP tWLj is bounded below, by (5.14). By Lemma 5.4 we haveVL(det�00(x;u);(y;v)) = (�1)dF1(x; y; u)etdJuP tWL + F2(x; y; u; v)(xd � etdJuy � ut�d)where F1 and F2 are smooth and F1 does not vanish. Thus jVL(det �00(x;u);(y;v))j �  on the zero set ofdet �00(x;u);(y;v).Next we onsider the map pR and let VR be a nonvanishing vetor �eld whih is in the kernel of DpR(or the okernel of (5.11)) when xd � etdJuy � ut�d = 0. ThenVR = d�1Xj=1WR;j ��xj + gR ��xd + mXi=1 hR;i ��ui



SPHERICAL MAXIMAL OPERATORS ON TWO STEP NILPOTENT LIE GROUPS 15where by (5.11) the funtions hR;i vanish when xd � etdJuy � ut�d = 0 andW tR��A + PJuP t +BetdJuP t℄ + gRBt = 0W tRPJued � gR = 0;thus sine A is symmetri and Ju skew symmetri we have essentially the same equation for WL above,exept that Ju is replaed by �Ju:(5.21) (�A � PJuP t � PJuedBt � etdJuP t)WR = 0:Moreover gR = etdJuP tWR does not vanish by (5.14). As xd � etdJuy � ut�d does not depend on x0 we getVR(det �00(x;u);(y;v)) = eF1(x; y; u)etdJuP tWR + eF2(x; y; u; v)(xd � etdJuy � ut�d)with smooth funtions eF1, eF2 and nonvanishing eF1. Thus jVR(det �00(x;u);(y;v))j is bounded below on thezero set of det�00(x;u);(y;v) and we have veri�ed the statements analogous to (4.3-5).Proof of Claim 5.1, onlusion. For small l the bound is immediate from H�ormander's standard L2estimate for nondegenerate osillatory integrals ([8℄, f. (5.12) and Lemma 5.3 above). For large l we an,by Lemma 5.4, rewrite the amplitude E lj as a �nite sumE lj(x; y; u; v) = 22jl Xjij�C �1(2l+i det�00(x;u;y;v))ql+i(x; u; y; v)where the ql+i are ompatly supported and smooth and satisfy the estimates ��x;y;u;vql+i = O(2l�). Sine2l � �1=3 this type of blowup is overed by (4.2) and we an apply the estimate (4.6) and see that theoperator with kernel ��jE lj has L2 operator norm . 22jl��j��(d+m)=22l=2: This implies our laim.Modi�ations for the proof of (3.16). By saling we need to onsider the operator of onvolution with�sKk;ls js=1.Let � be as in (5.2) and�(x0; xd; u; y; v; �; � ) = ��s��xs ; us2 ; ys ; vs2 ; �; �����s=1= �� � xd + yd + (x0 � y0) � rx0�(x0 � y0)�+ 2 mXi=1 �i(�ui + vi � xtJiy) + mXi=1 �ieti�(y � x):(5.22)As before we set � = 2k and observe that our operator is a sum of an operator G�;l with Shwartzkernel G�;l(x; u; y; v) = �m+2 ZZ ei��(x;u;y;v;�;�)�(x0; xd; u; y; v; �; � )�0(x; u; y; v)�l(�; � )d�d�and an operator whih has similar properties as H�;l above (thus satis�es estimates whih are better thanlaimed in (3.16)).We now need to arry out the stationary phase alulations as before for the kernel F�;1G�;l (sine theontribution from F�;2G�;l is again negligible). It has the form of (5.3), exept that bl is replaed by �lwhere l is given by l(x; u; y; v; �) = bl(x; u; y; v; zd; w; �; � )�(x0; zd; w; y; v; �; � ):



16 DETLEF M�ULLER ANDREAS SEEGERThen by stationary phase the Shwartz kernel of F�;1G�;l an be expanded as�m+2 Z ei�	(x;u;y;v;�)l(x; u; y; v; �)d� = ei��(x;u;y;v)N�1Xj=0 eE lj(x; u; y; v)�1�j + eR�;lN (x; u; y; v)(5.23)where again the error term eR�;lN is easy to handle for large N and eE�j is de�ned as in (5.8) but with bjreplaed by j.In order to �nish the proof of (3.16) it is now suÆient to establish that the operator T �;lj with kernel�1�j eE ljei��(x;u;y;v) satis�es the bound(5.24) kT �;lj kL2!L2 . �1�(d+m)=22�l=2(1 + k�k2l):The di�erentiation in s auses a blowup by not more than � and by our previous analysis it follows that(5.25) kT �;lj kL2!L2 . 2l=2�1�(d+m)=2(22l��1)j :If j = 1; 2; : : : this estimate is suÆient for (5.24) sine then 2l=2(22l��1)j . 2�l=2 by our restrition2l � �1=3.This rude estimate does not suÆe for the leading term in the asymptoti expansion when k�k issmall (or zero).However note that when � = 0 the oeÆient of �i in (5.22) vanishes on the ritial set where � =�rit(x; u; y; v) sine �	=�� = 0 on that set. We get�(x0; zd;rit; writ; y; v; �rit; �rit) =(xd � etdJuy � ut�d)�(x0 � y0) � rx0�(x0 � y0)� �(x0 � y0)�+ 2 mXi=1 ui�eti�P t(x0 � y0) + eti�d�(x0 � y0)�:Sine jxd � etdJuy � ut�dj � 2�l on the support of l and sine the oeÆients of ui are O(k�k) we nowgain an additional fator of O(2�l+ k�k) in the estimate (5.25) for j = 0 and thus establish (5.24) also forj = 0.Modi�ations for the proof of (3.17), (3.18). The only reason for the modi�ed de�nition (2.2.3)(replaing (2.2.2) for l > k=3) is the preservation of the symbol estimates (4.2), needed for the validity of(4.6), (4.7). The estimation for eKk is exatly analogous to the estimation of Kk;l when l < k=3, and thesame statement applies to the s-derivatives. Only notational modi�ations are needed.6. Weak type (1,1) estimatesWe are now proving the weak type inequality (2.5). The proof of (2.6) is omitted sine it is exatlyanalogous.We apply standard Calder�on-Zygmund arguments (with respet to nonisotropi families of balls onnilpotent Lie groups, see [4℄, [17℄). Cf. also [14℄ and related papers on singular Radon transforms.Let BÆ = f(x; u) : jxj � Æ; juj � Æ2gand denote by BÆ its omplement.



SPHERICAL MAXIMAL OPERATORS ON TWO STEP NILPOTENT LIE GROUPS 17Sine we have already heked the L2 bounds for the maximal funtion it suÆes to hek the followingH�ormander type ondition for L1(R+) valued kernels:supÆ>0 sup(y;v)2BÆ ZB10Æ supt>0 ��Kk;lt �(y; v)�1(x; u)��Kk;lt (x; u)��dxdu . k2k�l(1 + k�k2l)whih follows from the two estimatessup(y;v)2BÆ ZB10Æ sups2[1;2℄ ��Kk;l2ns�(y; v)�1(x; u)��Kk;l2ns(x; u)��dxdu . � 2k�l(1 + k�k2l);2k(m+2)minf2�nÆ; 2nÆ�1g:Indeed we use the �rst bound for the O(k) terms with 2�2k(m+1) � 2�nÆ � 22k(m+1) and the seond boundfor the remaining terms. We then sum the series in n. Using saling we see that the latter estimates areequivalent to(6.1) sup(y;v)2Br ZB10r sups2[1;2℄ ��Kk;ls �x� y; u� v + xtJy) �Kk;ls (x; u)��dxdu . � 2k�l(1 + k�k2l);2k(m+2)minfr�1; rg:Beause of the support properties of the kernel the integral on the left hand side is zero if r � 1. Nowassume that r . 1. Sine jrKk;ls (x; u)j . 2k(m+2) the bound 2k(m+2)r in (6.1) is immediate. It remains toshow that  sups2[1;2℄ jKk;ls j1 . 2k�l(1 + k�k2l);and this follows from Kk;l1 . 1;(6.2) �sKk;ls 1 . 2k�l(1 + k�k2l):(6.3)By an integration by parts in �, � we see that(6.4) jKk;l(x; u)j � CN 2k�l(1 + 2k�ljxd � �(x0)j)N 2km(1 + 2kju� �xj)Nfrom whih (6.2) immediately follows. Moreover from (5.22) one obtains by the same argumentj�sKk;ls (x; u)j is bounded by C 0N2k�l(1 + k�k2l) times the right hand side of (6.4). Consequently weobtain (6.3). This �nishes the proof of the weak type inequality (2.5). �7. AppendixIn this setion we give the example of a two-step nilpotent Lie group G, with 10-dimensional Liealgebra, whih satis�es the nondegeneray ondition but whih is not isomorphi to a group of Heisenbergtype.For � = (�1; �2) 2 R2 let E� = 0B��1 0 0 ��2�2 �1 0 00 �2 �1 00 0 �2 �1 1CAand de�ne the 8� 8 matrix J� = � 0 E��Et� 0 � ;



18 DETLEF M�ULLER ANDREAS SEEGERthen(7.1) det J� = (�41 + �42)2:Let g be the Lie algebra whih is R8�R2 as a vetor spae, with Lie braket[X + U; Y + V ℄ = 0 + (XtJ(1;0)Y;XtJ(0;1)Y ):By (7.1) the group identi�ed with g satis�es our nondegeneray ondition. We now prove by ontraditionthat g is not isomorphi to a Heisenberg-type Lie algebra.Assume that there is a Lie algebra isomorphism � : eg! g where eg is a Heisenberg-type algebra. Theneg = w � z where z is the enter and � is a linear isomorphism from z to R2.Now with respet to orthonormal bases u1; : : : ; u8 on w and u9; u10 on z and e1; : : : ; e8 on R8 and e9; e10on R2 the map � is given by the 10� 10 matrix�A 0L B�where A is an invertible 8� 8 matrix and B an invertible 2� 2 matrix.Now let X = P8i=1 xiui, Y = P8i=1 yiui, and express ! 2 z� in terms of the dual basis as ! =w1u�9 +w2u�10. Then, sine eg is of Heisenberg type we have !([X;Y ℄) = xt eJwy with eJ2w = �(w21 +w22)I; inpartiular(7.2) j det eJwj = (w21 +w22)4:Now if ! = �t� (thus Bt� = (w1; w2)t) thenxt eJBt�y = !([X;Y ℄) = (�t)�1!(�[X;Y ℄) = h�; [�X;�Y ℄i = (Ax)tJ�(Ay)so that AtJ�A = eJBt� and therefore det eJBt� = (detA)2 det J�:Thus by (7.1) and (7.2) we obtain jBt�j8 = (detA)2(�41 + �42)2 and therefore, if (a; b) and (; d) are therows of the matrix j detAj�1=4Bt,�41 + �42 = �(a�1 + b�2)2 + (�1 + d�2)2�2;for all � 2 R2. Thus �41 + �42 = �(a2 + 2)�21 + (b2 + d2)�22 + 2(ab+ d)�1�2)�2for all � 2 R2. This implies a2 + 2 = b2 + d2 = 1 and setting � = ab+ d we obtain after a little algebrathat (4�2 + 2)�1�2 + 4�(�21 + �22) = 0for all � 2 R2. This implies both 2�2 + 1 = 0 and � = 0, thus a ontradition. �
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