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SINGULAR SPHERICAL MAXIMAL OPERATORS ON
A CLASS OF TWO STEP NILPOTENT LIE GROUPFPS

DETLEF MULLER ANDREAS SEEGER

ABSTRACT. Let H™ 2 R?” x R be the Heisenberg group and let u: be the normalized surface measure for
the sphere of radius ¢ in R?”. Consider the maximal function defined by M f = sup;sg |f * pt|. We prove for
n > 2 that M defines an operator bounded on L?(H™) provided that p > 2n/(2n — 1). This improves an earlier
result by Nevo and Thangavelu, and the range for LP boundedness is optimal. We also extend the result to a
more general setting of surfaces and to groups satisfying a nondegeneracy condition; these include the groups of
Heisenberg type.

1. Introduction

Let GG be a finite-dimensional step two nilpotent group which we may identify with its Lie algebra g by
the exponential map. We assume that g splits as a direct sum g = w0 ¢ 3 so that

[, 0] C 35, [m,3] = {0},
and that dim(t) = d, dim(3) = m.
Throughout we shall make the following
Nondegeneracy Hypothesis. For every nonzero linear functional w € 3* the bilinear form
wXxtw—R
Tt (1Y) (X, Y)
is nondegenerate.

Note that the skew symmetry of 7, and the nondegeneracy hypothesis imply that d is even.

There is a natural dilation structure relative to to and 3, namely for X € o and U € 3 we consider the
dilations

6 0 (X, U) = (1X,12U).
With the identification of the Lie algebra with the group J; becomes an automorphism of the group.

In exponential coordinates (z,u), = € RY u € R™ the group multiplication is given by

(1.1) (z,u) - (y,v) = (z+y,u+v+2'Jy)
where z'Jy = (2! J1y, ..., 2" Jmy) € R™ and the J; are skew-symmetric matrices acting on R? (i.e. Jf =
—J;). For u € R™ we also form the skew-symmetric matrices J, = Zzn:l u;J; and the nondegeneracy

hypothesis is equivalent with the invertibility of J, for all u # 0.
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The most prominent examples are the Heisenberg groups H”™ which arise when d = 2n, m = 1 and
J = Ji is the standard symplectic matrix on R?". These belong to the class of Heisenberg-type groups
(termed H-type groups in [9]), for which J2 = —4]u|?, so that the nondegeneracy hypothesis is clearly
satisfied in this case. Note that in general m has to be small compared to d (see [9] where the connection
with Radon-Hurwitz numbers is pointed out). The class considered here has been introduced by Métivier
[10] in his study of analytic hypoellipticity; the nondegeneracy assumption is termed “Condition (H)” in
[10]. There are many groups which satisfy the nondegeneracy condition but which are not isomorphic to a
Heisenberg-type group; we give an example in §7.

Let X be a smooth convex hypersurface in w and let 1 be a compactly supported smooth density on
3. We make the following

Curvature Hypothesis. The Gaussian curvature of ¥ does not vanish on the support of p.

Define the dilate p; by
(1.2) (e )= [ St 0)u).
We recall the definition of convolution
Frten) = [ 0ol o) o, u)dyde
(1.3) :/f(y, v)g(z — y,u — v+ z' Jy)dydv

and define for Schwartz-functions the maximal operator M by

M f(x,u) = sup |f * pe(2, u)].
>0

We prove the following sharp result.
Theorem. Suppose d > 2. Then M extends to a bounded operator on LP(G) if and only if p > d/(d—1).

Remarks. (i) Other more “regular” spherical maximal functions on the Heisenberg group have been con-
sidered in [2], [15]. In these papers the maximal functions are generated by measures on hypersurfaces and
the averaging operators are Fourier integral operators associated to local canonical graphs. In our work
the maximal functions are generated by measures on surfaces of codimension m + 1, and the associated
canonical relations project with fold singularities.

(ii) A previous result is due to Nevo and Thangavelu [12] who considered the case of spherical means
on the noncentral part of the Heisenberg groups (m = 1) and obtained L? boundedness in the smaller
range p > (d—1)/(d—2),d > 2.

(iii) Our theorem is an analogue of Stein’s theorem [16] in the Euclidean case. The necessity of
the condition p > d/(d — 1) follows from the example in [16]; one tests M on the function given by
fy,v) = |lyl*~4(log|y|)~*x(y,v) with a suitable cutoff function x. The L? methods in this paper are not
sufficient to establish LP boundedness for p > 2 for the case d = 2 (that is, for an extension of Bourgain’s
result [1] in the Euclidean case); we shall return to this case in a subsequent paper.

(iv) The result should remain true for any nilpotent Lie group of step < 2; i.e. the nondegeneracy
hypothesis should not be necessary. This is currently an open problem.

(v) As a corollary of the L? estimate for the maximal operator one obtains the pointwise convergence
result limy_q gy * f(2) = c¢f(2) almost everywhere, if f € LP and ¢ = [ du. Moreover the LP bounds of
the maximal operator are relevant for certain results in ergodic theory, where one needs to have pointwise
control for large .
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(vi) We use in an essential way the invariance of the subspace 1o under the dilation group {d;}. Namely
this implies a favorable bound for the principal symbol of (d/dt)u: on the fold surface of the associated
canonical relation. A similar phenomenon was observed in [11] for averages along light rays.

(vii) One can replace the measure on tv by a measure supported on a perturbed subspace 20 which is
transversal to the center but no longer invariant under {4;}; then the phenomenon in the last remark does
not occur. In the above coordinates 20 is given as

(1.4) Qﬁ:{(x,Ax),xE}Rd},

where A = (A;;) is a m x d matrix. Define a measure pi* by
it ) = [ fite 2 Aadp(o),
we also set u? := pu?. Consider the maximal operator M* defined by
(1.5) MAf =sup|f * pbd.
>0

For general A we then prove the partial result that M* is bounded for p > (3d —1)/(3d —4). We conjecture
that boundedness holds for p > d/(d — 1) which by our theorem holds true for A = 0.

Notation: Given two quantities A and B we write A < B if there is a positive constant ', such that

A< CB.

2. Preliminary decompositions

We shall present the argument for the maximal operator M* in (1.5). We shall denote by A; the jt
column of A and by ||A]| the matrix norm of A with respect to the Euclidean norms on R? and R™. In
what follows we shall always assume that ||A|| < € for some fixed € (and various bounds may depend on
C4). If ||A]| occurs explicitly in an estimate then we are interested in the behavior for A — 0, as the case
of our Theorem corresponds to A = 0.

We note that by localizations and rotations in R¢ one can assume that g has small support and that
the projection of ¥ to 1 is given as a graph x4 = I['(2'), ' = (%1,...,24-1), so that V,T'(0) = 0 and so
that g is supported in a small neighborhood of (0,T(0)) (we may assume that |V T'(2')] < C35teo/100)
where ¢g, Cy are defined in (5.10) below). Note that a rotation has the effect of replacing the matrices J;
in the group law by Q'J;Q with @ € SO(d). We thus will need to prove an estimate which is uniform in
these rotations.

Using the Fourier inversion formula for Dirac measures we may write
i () = X 0) / / o (70T 7 (4=02) g g

where x is a smooth compactly supported function and the integral converges in the sense of oscillatory
integrals (thus in the sense of distributions).
We split the integrals by introducing dyadic decompositions in (o, 7) and then also in ¢, when |o| < |7].

Let (o € C5°(R) be an even function so that {y(s) = 1 if |s| < 1/2 and supp(¢o) C (=1, 1). Also define
C1(s) = Co(s/2) — ¢i(s) and for k> 1, 1 <1 < k/3,

(2.1.1) Bo(a,7) = (/o2 + |7]?)

(2.1.2) Bro(o, ) = (2772 + |72 (1 — (275 0))
Bri(o,7) = G2 Ve + |76 (2 o)

(2.13) Bi(o,7) = G2V [FP)G I F1g).
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Then observe that B
Bo+ > (Beo+ > Bus+B)=1,

E>1 1<I<k/3
and for k > 0 the function B ¢ is supported where o & 2% and |7| < 2% By 1 is supported where || a2 2%
and |o| ~ 28! and By is supported where |r| & 2% and |o| < 224/3,

Define
(2.2.1) [(0(1‘, ) = x(x,u) // ei(a(xd—F(x'))+T~(u—Ax)) Bo(o, T)dodr,
(2.2.2) [zk,l(x’ ) = x(x,u) // 6i(a(xd—F(x'))+r.(u—Ax)) Br.i(o, 7)dodr, 0<1<k/3,
(2.2.3) Kk (z,u) = x(,u) // ei(a(xd—F(x’))+T~(u—Ax)) gk (o, 7)dodT;

moreover for ¢ > 0 define the dilates
(K2, KPP KF)(2, u) = ¢~ @2 KO KR KR (6 e, 6 %),
Note that puft = K{ + Y sy (K" + 2 crepys K0+ KF).

Since KV is a bounded compactly supported function the associated maximal function is controlled
by the appropriate variant of the Hardy-Littlewood maximal function and therefore ([17]) we have the
inequality

[sup £ K21, < Coll 1l

for 1 < p<oo.

Using known estimates for oscillatory integral operators with fold singularities and additional almost
orthogonality estimates we shall derive in §3 and §5 the following L? estimates.

Proposition 2.1. Suppose k > 0. Then for 0 <1< k/3

(2.3) [sup [ 55|, S VE2TEEDE 4 A2 211l
¢

moreover

(2.4) Isup £ KF [, S VE2THEDEL 4 A2 2 1
¢

To obtain LP results we shall interpolate with weak type inequalities proved in §6.
Lemma 2.2. Let k > 0. For all « > 0 we have
(2.5) meas({(x, u) : sup |f * K (@, u)| > a}) < k27 (14 [|A]12)a ™| ]l
t>0
for 0 <1< k/3 and
(2.6) meas({(z,u) :sup [ f * Kf (v, u)| > a}) < k22301 4+ [|A25/%)a" || f]]r.
t>0
We interpolate by the real method and obtain
Corollary 2.3. Suppose 1 < p <2 and k > 0. Then for 0 <1< k/3

(27) [supl7 # K, < Gy ram e t=almg=t @l (1A 127 £l
moreover
(2.8) [sup 15 KEIl], < Cplt/ram amalsmdimb2n (14 ||A282) o) 1]

Now if p < 2 we may sum in k and [ and see that M* is L? bounded if d —4/3 —d/p+1/(3p) > 0 which
is equivalent to p > (3d —1)/(3d —4) (showing the estimate mentioned in remark (vii) in the introduction).
If A = 0 we get a better bound, namely that L? boundedness holds if d — 1 —d/p > 0 or p > d/(d — 1).
This proves our main Theorem.



SPHERICAL MAXIMAL OPERATORS ON TWO STEP NILPOTENT LIE GROUPS 5

3. Square functions and almost orthogonality

It is advantageous to introduce cancellation in the above kernels, modulo small acceptable errors.

Indeed
‘// Kk’l(x,u)dxdu‘ + ‘ //Kk(x,u)dxdu‘ < On27HY,

for all N =0, 1,..., and this estimate follows by an integration by parts in the (x, u) variables. Thus there
is a C§° function b which is equal to 1 on supp(x), and constants v ;, % so that

// KR (e, u)dedu = Ykl // bz, u)drdu

(3.1) B

// Kk(x,u)dxdu = % // bz, u)drdu
where
(3.2) el + e < Cn27.
We define
(3.3.1) KR e, u) = KMz, u) — vi,1b(z, u)
(3.3.2) KF(z,u) = K" (z,u) — yb(x, u)

and denote by ICt , IC’“ their dilates, as before. Then the functions ICf l, K¥ have integral zero.

Since the maximal operator generated by the kernel & (with nonisotropic dilations) is bounded by the
nonisotropic Hardy-Littlewood maximal operator we see that for 1 < p < oo

||SUP|f*( kl_l’kl ||| < COnp27 kNHpr

Now 1in order to deal with the main term we shall use the following standard lemma in the subject
which is an immediate consequence of a similar one stated in [17, p.499].

Lemma 3.1. Suppose that

sup (ZHF )1/2§A1

nen
1/2
sup ( ) < As.
nen
Then
sup sup |Fn(- |H < C(AL+ VAL Ag).
n sE 1 2

We omit the proof. Using Lemma 3.1 one sees that the estimates

[ suplf « K, < VE275E@=272(0 4 ||AY129 1)1 £

| suplf’*AtIH2 S VE2THER L |A122) ) £
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follow from the following estimates which are uniform in s € [1,2].

1/2
(3.4) (XN« kEL]) < Varka=0r2 g

5.5 (][] ..

for I < k/3, and

2
2) < VE27REA=297 2 (1 1 A 1291 £ 2,

(3.6) (Z £« K50, 2) < VR g

(3.7) (2] Easi

2\ 1/2
)" S VR A2 e
2

Note by scaling that it suffices to prove these estimates for s = 1. We shall first use the cancellation
of the kernels ICzn and ICZn to show certain almost orthogonality properties (for the sums in n) and then
we use stronger estimates for oscillatory integrals to establish decay estimates for fixed n.

An almost orthogonality lemma. We first state a simple and presumably well known consequence of
the Cotlar-Stein Lemma.

Lemma 3.2. Suppose 0 < ¢ < 1, A < B/2 and let {T,}52, be a sequence of bounded operators on a
Hilbert space H so that the operator norms satisfy

(3.8) ITa]] < A
and
(3.9) T, 77| < B2l

Then for all f € H

(3.10) (S ims) " < caveTlog B,

Proof. For N > 1 consider the operator
Tn + H — (*(H)

which maps f to the sequence (71 f,...,Tnf,0,0,...). Now ||Tn|| = ||7~J<‘,7}\r||1/2 where T3Tn : H — H is
given by

N
TNInf =) TiTuf.
We let S,, = TXT,, and observe that

155Sull = 15571 = [T TR T T |
<ITNTIFNITH] < A® min{A?, B2~ F =0y,
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The standard Cotlar-Stein Lemma [17] gives

ITsTall < 30 ma{ sup [ISESil2, sup |l8S71)')

m=oQ

and thus

[Tvl* <A > min{4, B27I7I}

m=—0oQ

< C%*e7 1 A%log(B/A).

Thus ||7x f||e2(zr) is dominated by the right hand side of (3.10), and the assertion follows by taking the
limit as N — oo. O

Remark. We proved Lemma 3.2 by using the statement of the Cotlar-Stein Lemma. Using the proof of the
Cotlar-Stein Lemma one can also show the following more general fact: If |7, 77| < a?(n — n’) then

(S mR) " < (ShF) i

JEL
Of course, Lemma 3.2 is an immediate consequence of this inequality.
Almost orthogonality estimates. Here we wish to apply Lemma 3.2 to convolutions on groups. If
Tf = f * g we first note that its adjoint is given by T*f = f x g* where ¢* = ¢g(-—1). Moreover using

Minkowski’s inequality and the unimodularity of nilpotent Lie groups one obtains the standard convolution
inequality

1+ gll2 < Mlg™ Il 11112 = llgllall fll2-

We now fix k,[ and s € [1, 2] and derive almost orthogonality properties for the operators of convolution
with K5,
Notice that for n < 0 the function ICg;fs is supported in a (small) ball of radius C2” (in fact in a smaller

nonisotropic ball). Moreover we have |V, ,K5!(y, v)| < 2¢07*+2) and using the cancellation of Icfj;fs we
obtain

K5 (K5) ™ (,u)] S 2802027 if n < 0.

By scaling and applying Schur’s Lemma we obtain

< 2k(m+2)2—|n—n'| ||f||2

~

(3.11) £ K55+ (K527,

first for n < n’ and then by taking adjoints also for n < n’. This and the following estimates are uniform

in s €[l,2].

Similarly we get

KL ek, ) ,
(3.12) Hf ‘s 825 5 4 s 55 s H2 < ghtmtg=ln=n'l) 11,
and also
(3.13) Hf % Ekn/s % (Ek"s)*nz < 2k(m+2)2—|n—n/|||f||2.
oKk,  O(KE. ) . ,
s s < (m+4)9—|n—n’|
(3.14) Hf*s sy g2t H2~2 2 1171l
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In §5 we shall prove the inequalities

(3.15) If Kk,le 5 Q—k(d—l)/221/2||f||2

(5.16) |7+ (2555 |, S 27k i
for I < k/3, and

(3.17) |1 5 K5y < 27k A=D2988)

(3.18) R R I

By scaling and by (3.2) the same inequalities hold with K*! and K* replaced by ICf’l and Ef and with
s KF' 9, KF* replaced by 3SIC§;}5, 05Kk, for 1 < s < 2.

Now the inequality (3.4) follows from (3.15) and (3.11) if we apply Lemma 3.2 with A = 2-*(d=1)/291/2
and B = 2807+ Similarly (3.5) follows from (3.16) and (3.12), (3.6) from (3.17) and (3.13), and (3.7)
from (3.18) and (3.14).

The next two sections are concerned with the derivation of inequalities (3.15-18).

4. Preliminaries on oscillatory integral operators with folding canonical relations

We shall reduce matters to estimates for oscillatory integral operators whose canonical relations have
two-sided fold singularities. We consider localizations near the fold surface and the estimate goes back to
Phong and Stein [13] for certain conormal operators in the plane; the general case is implicit in Cuccagna’s
paper [3]. For the version needed here we refer to [6].

Let 2 € R™ xR™ be an open set and let I be an open set in some finite dimensional space. We consider
phases o(z,y,v) and amplitudes ax(z,y,7v), (#,y,7) € @ x @ x T, and assume that

(4.1) 10208 ¢ (, y,9)| < C
(42) 1050] ax (2, y,7)| < CAUHD/

say, for all multiindices «, 8 with |«|,|8] < 10n, with uniform bounds in © x T'; we also assume that all
derivatives depend continuously on the parameter ~.

We shall assume that
CLP = {(l‘, Pz, Y, _pr)}

is a folding canonical relation, i.e. for each point Py = (zg, yo,v0) we have
(4.3) rank @7 (Po) >n —1,
and for unit vectors U, V

Solx/y(Po)V =0 = |<V, Vy)det go'x/y| > e,
UtSD/x/y(PO) =0 = |<U, V) det go'x/y| > e,

for some ¢ > 0.

We consider the oscillatory integral operator T5[b] defined by

Tif(e) = [ e, 0) ) dy
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which is bounded on all L? if b is bounded and compactly supported. We shall take for b certain localizations
of the symbol in terms of the size of det go’x’y. Let 1 be smooth and compactly supported in (—1, 1) so that
n(s) =1 for |s] < 1/2 and set

ﬁl(xa Y, 7) = 77(2l det Solx{y(xa Y, 7)) - 77(2l+1 det Solx{y(xa Y, 7))a
so that 3 localizes to the set where |det ¢}, | &~ 27¢. We also define
CA($ay):1_ Z ﬁl(xay)
21<)\1/3

so that |det ¢, | < A~1/3 on supp((y).

Then there is a neighborhood U of (zg, yo,v0) so that for all ay satisfying (4.2), supported in U the
following estimates hold for the operator norms:

(4.6) I TalaxBi]|| oo, . < CL22ATM20 2h < AI/P
and
(4.7) T3 axC|| paey 2 < CyAY/ 6712,

These estimates are a consequence of Theorem 2.1 in [6].

5. Reduction to oscillatory integral operators

We now consider the operator of convolution with K*! and give the proof of the bound (3.15). The op-
erator 9, K*! is more singular, but its estimation is rather analogous, so we shall point out the modifications
needed for (3.16) at the end of this section. The estimations for K* and 8, Kf will be similar.

Since K*' is compactly supported in a fixed neighborhood we may use the translation invariance to
reduce to the case that f is also compactly supported in a fixed neighborhood of the origin. Thus it suffices
to show the desired bound for the operator with Schwartz kernel

(5.1) Xl(x,u)[(k’l(x—y,u—v—l—xtjy)xz(y, v),

for suitable compactly supported smooth functions 1 and y». In what follows we set A = 2% and then by
a change of variables the kernel (5.1) can be written as

(5.2) HM (2, u,y,v) = A™T! // eM‘z’(x’“’y’v’g’T)Xo(x, u,y,v)m (o, T)dodr

where
Sx,u,y,v,0,7) = 0(xa —ya—T(&' —y) + 7 (u—v+a"Jy — Az —y))
and where |7| ~ 1 and |o| ~ 27! on the support of #;; specifically
m(o, 7) = G(Vo? +712)G (2'0),
and XO(% u, Yy, v) = X1($a U)X($ —yu—v+ $tjy)X2(ya v)~

Notation. We let P : R? — R4~ be the linear map with Pe; = ¢;, i =1,...,d —1 and Peg = 0. We also
use the notation P for the (d — 1) x d matrix

P=(I 0)

and P! for its transpose.
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Stationary phase calculations. We wish to apply stationary phase arguments to reduce matters to the
estimation of an oscillatory integral operators without frequency variables (see e.g. the general discussion

in [5]).

We shall apply a scaled Fourier transform on R™*1 in the (x4, u) variables. Define

Frg(a' xa,u) = // 6_i>‘(xd’zd+“'w)g(x/,zd,w)dzddw;

then (/\/271')(’”"'1)/2}")\ is a unitary operator and thus, if H*! denotes the operator with Schwartz kernel
HM' we have to prove that FyHM maps L? to itself with operator norm O(A~(@47)/2912) et y3(xq, u)
denote a smooth compactly supported function which is equal to one whenever |z4] + |u] < 10, and define

Fx1 by
Faag(a' xq,u) = xs(zq, u) // emAMTazatuw) g (o 2y w)dzgdw;

moreover let Fy o = Fy — F 1. Then the Schwartz kernel of fAylHA’l is given by
(5.3) /\m+1/eim'(x’“’y’v’e)bl(x,u,y,v,H)dH

where with
0 = (zq,w,0,7)

the phase function ¥ is given by

U, u,y,v,0) = — x4z —u-w+ U(Zd —ya—I(z' = y'))
+ 7t (w —v+ APt(x/ — )+ Aalzd — ya) + (l‘/t, zd)Jy),

and the amplitude is given by
bl($a u,y,v, 9) = X3(xda U)Xo(l‘/, Zdy Y, w)nl(o-a T)'

For the error term fAyzHA’l we have a similar formula, only with y3 replaced by 1 — x3. Then in
view of the support properties of (1 — x3) we see that |V., w¥| > |24] + |u| on supp(l — x3) and by
integration by parts with respect to the (z4, w) variables we see that the kernel of fAyzHA’l is bounded
by CnA =N (|z4] + |u|)~™. Moreover this kernel is supported on a set where |z4| + |u] > 1 and where
|#'| + |y| + |v| < C. Thus, with an obvious application of Schur’s Lemma we conclude that the operator
Fy2HM is bounded on L? with operator norm O(A=") for any N.

We return to the main term fAylHA’l and 1t remains to be shown that
(5.4) | Fa 1M < 212 (ddm)/2,

Note that for fixed (x,u,y,v) the phase function ¥ is a polynomial of degree < 2 in the # variables
and that the Hessian U%, is nondegenerate.

Indeed,

\I!/Zd = —xd—i—eilJTy—l—O'—l—TtAd

\Iliu =T—u

UV o—w—v+ (l‘/t, za)Jy + AP (2 —y') + Ag(2q — ya)
U o=zg—ys—D(2' — )

(5.5)
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and with = denoting the column vector in R™ with coordinates =; = eilJiy + A;4 we have

<+

"o_
\IIGG -

=[] oo
o~ O
o o ~
oo o

Clearly the linear equations ¥y = 0 have a unique solution et = (24, W, 7, & )eris, With

(zd)erit (2, u, y,v) = ya + F(x/ — y’)
(Wi)erit (x, u,y,v) = v — (&', ya + T(2' — ) Sy — el AP 2/ — /) — Aial' (2" — /)
(Ti)crit(x,u,y, U) = U

m

Terit (2,0, y,0) = 2a — Y ui(hJiy + Aja)

i=1

and we can apply the method of stationary phase (with respect to the 2(m + 1) frequency variables #).
Setting

q)($a u,y, U) = \P($a u,y,v, gcrit(xa u,y, U))
(5.6)

= —wa(ya +T(2' —¢) = wi(vi — (&' ya + (2’ —¥/))Jiy — Aual (2’ — yf) — el AP (' — )
i=1

we obtain that
(5.7)
A / NI 0Oy (g, g, 0,0)d8 = NN 3 gl g )X + RN 2,0, 0)
7=0

where

(5.8) S}(x, u, Y, v) =

(2i)_j ( det(Wog (2, y, u, v, Ocriz (2, u, y, v))/?m) 1/21

<\Ij D€aD€> bl(x,u,y,v,g)
J!

0=0crit(z,u,y,v)

and

(5.9) By (0,9, 0)| < Cwllbllz,,, ATY < CR2im 420N,

+242N

Here we have applied Lemma 7.7.3 in [7].

Since 2! < A/3 the error term R;‘\;l (which is compactly supported) defines a bounded operator on LP
with norm Q(A~(m+1+N)/3) wwhich for large N is much better than the desired bound in (5.4).

Claim 5.1. The operators with kernels /\_jé";»(x,u,y,v)eiA¢(x’“’y’”) have L? operator norm
()(/\—(d+m)/2—j/32l/2)

This clearly implies (5.4).
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Geometry of the canonical relation.

We consider the canonical relation Co = (2, u, @, ®y;y, v, =Py, —P, ) and the singularities of the maps
L (Y, v) = (Ps, Bu), pr : (z,u) — (Py, P,). It is our objective to check the analogues of (4.3-4.5) and
we will have to verify a few elementary linear algebra facts.

Let A denote the (d—1)x (d—1) matrix '/ (z'—y') and let B denote the column vector I'(z'—y') € R4~L;
recall that we may assume that |B] is small. Indeed if

(5.10.1) co = min 1ot
ue m—1

(5.10.2) Co = max ||Jy]|
ugSm—1

we may assume that

IBIl < €t eo /100,
Now pyr, is explicitly given by

@x/ — _xdrl(x/ _ y/) 4 PJuy+ F/(lJ _ y/)ezlt]uy‘i' UtAdF/(lJ _ y/) + utAPt
q)xd = —Ya — F($/ - y/)
®y, = —(v; — (l‘/t, ya+ Tz —y) iy — e AP (2 — o) — Al (2 — o).

We compute the differential Dpy as

(vg — € Jyy — u'Ag)A + PJ,P' + Bel,J,P* PJyeq 0

1 _ t
(5.11) P ), (y0) = B -1 0
C c I

where T is an m x m identity matrix and C'is m x (d — 1) matrix with rows C; = x’tPJiPt + ydeZJiPt —
(e Jiy + Nia) Bt + el AP* + T'(2' — y/)el, J; P* and c is the column in R™ with ¢; = (l‘/t, 0)Jeq + €', Jiy. In
this calculation the skew symmetry of the J; is used.

We now compute the determinant of (5.11) and obtain

(5.12) det B, ) () = (—1)"det ((xd — et Juy — ulAg)A+ PJ, P+ E(B))
where
(5.13) E(B) = BelyJy Pt + PJyeqB'.

Here we used the factorization

GA+ PJ P!+ Bel J Pt Plyeq\ _ (0A+ PJ, P+ E(B) Plyeq I 0
B -1 )~ 0 -1 —-B' 1

Note that E(B) is a skew-symmetric (d — 1) x (d — 1) matrix and so is PJ,P* + E(B). Thus, since
d —1is odd, the rank of PJ, P' + E(B) is at most d — 2, and the following lemma shows that for small B
the rank is equal to d — 2.

Lemma 5.2. Suppose that

Co
Bl < —.
181 < 3¢

Then the following holds:
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1 € Ker WP+ then
) IfW e K PJ,Pt+ E(B)) th
(5.14) el PYW] > S

(ii) dimKer (PJ,P' + E(B)) = 1.
(111) If X belongs to the orthogonal complement of Ker (PJ,P'+ E(B)) then

(5.15) (P JuP" + E(B)X]| > %0|le|~

Proof. Observe that
IE(B)I| < 2Co||B]|.

Thus if W € Ker (PJ,P"+ E(B)) and ||W|| = 1 then
L= |[P'w <[5 Il JuP W
<IN (lea 2w PW I+ [P TP = (177 I (e Ju PP+ | E(B)W]))
< g (Il P'W I+ 2Gol 1 B))
and thus, if || B|| < ¢p/4Cy we obtain |e%,J, P*W| > ¢y/2 which is (5.14).

Let S, = Jy, + E(B). Since Sy is skew symmetric, it can be diagonalized over C, and the eigenvalues
are imaginary. The bounds (5.10.1/2) are still valid if J; ! is acting as a linear transformation on C¢. Let
n € C? be a unit eigenvector of S, so that S,n = iAn and ||n|| = 1; then

Co
A= 1Sunll Z ([ Junll = 1E(B)nll > co = [|E(B)|| Z co = 2Col| Bl > 7

by assumption on B. Hence |A| > ¢g/2 for every eigenvalue iA of S,. In particular S, is nondegenerate.
But then PS, P! = PJ, P!+ E(B) has rank d — 2 and therefore a one-dimensional kernel and all nontrivial
eigenvalues of S, are also eigenvalues of PS, Pt. This implies for vectors X orthogonal to the kernel of
PS, Pt that

PS,P'X > %0||X||

which is (5.15).

Lemma 5.3. Let U be a symmetric positiv definite matriz on R™ and let S be a skew-symmetric matriz
on R™. Then:

(i) For all o # 0, the matriz oA + S is invertible and the inverse satisfies the bounds

(5.16) (o6 +8)7H | < Jo~H~ 1.
(ii) If S is invertible then o0 + S is invertible for all ¢ and we have the bound
_ _ , _1p -1
(5.17) (o6 +S)THI<2AS7H o lo] < (2lIMS™HD
Proof.

For a unit vector e in R” we get
(0% + S)ell > [((oA+ S)e, e)| = [(oUe, e)] > o]l A7 7"
Here we have used that by the skew symmetry of S we have (Se,e) = 0, and also that ||[A7Y| = 1/Amin,
where Apin is a minimal eigenvalue of 2. This establishes invertibility and the bound (5.16).

If in addition S is invertible and o is small we may simply use the Neumann series to get invertibility
of oA+ S. Namely, if |o] < (2||Ql||||5_1||)_1 we get (oA +5)7t = S‘l(I+Zﬁ1(—1)jUj(ﬁS_l)j) and the
bound (5.17) is immediate. O
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Lemma 5.4. Let £ > 1 be an odd integer, let 21 be the cone of real symmetric positive definite € x £
matrices and let Qo be the set of all skew symmetric £ x £ matrices with rank £ — 1.

For S € Q9 choose a unit vector eg in the kernel of S and let wg be the orthogonal projection to the
orthogonal complement of eg.

Then for A€y, S € Qs, 0 €R we have
(5.18) det(c A+ 5) = o(Aeg,eg)det(mg(c A+ S)me) + O'ZF(A, S, o)
where F' 1s a smooth function on 1 x {15 x R,

Proof. Let = Q(S) be an orthogonal transformation with %@ = (0,...,1). Then

¢ _(cAy+ Sy oa
Q'(cA+95)Q = ( oat 0_77)
where Sp is a skew symmetric invertible (¢ — 1) x (¢ — 1) matrix, Ag is positive definite, a € R*~! and
n=(Aeg,eg). We apply Lemma 5.3 to ¢ Ay + Sy and factor

cAo+ So ca _ I 0 cAy + S oa
oal on )~ \oat(cAg+ So)™t 1 0 on— o’al(cAg + So)ta

and conclude that

det(gA +5) = det(oc Ay + SO)(‘”? - Uzat(UAo + So)_la).
The assertion follows since det(cAg + Sp) = det(ns(cA + S)n%). O

We now proceed to verify the conditions (4.3-5) in §4. By Lemma 5.3 the determinant of <I>E’x W), (y,v)

can only vanish when ¢ = 0. = xg — eZJuy — u*A, vanishes. In this case the dimension of the kernel
<I>E’x W), (y,v) is equal to the dimension of the kernel of P.J, P* + E(B) with B = I'(z' — ¥/}, thus equal to 1.
Thus rank (<I>E’x W)y U)) > d+ m — 1 everywhere.

In order to verify (4.4) let Vz be a nonvanishing vector field which is in the kernel of Dpr when the
mixed Hessian (5.11) becomes singular (i.e. when x4 — €% J,y — u!A4 = 0). Then

d—1 9 9 m 9
( ) L ; Lj 3y; + 9L 9va + 2. L, 9v;

and with A = T”(2' — y/'), we have g, = B'W, and
(5.20) (0 A+ PJ,P' + Bel\Jy Pt + PJyeqB )Wy, = 0;

moreover the functions hy ; are in the ideal generated by the Wy ; (and the coefficients can be computed
from (5.11)). To get a nontrivial kernel (when ¢ = 0) we must choose a nonvanishing vector Wy, satisfying
(5.20). Notice that then |e%,J, P!W| is bounded below, by (5.14). By Lemma 5.4 we have

Vi (det q)/(/x,u),(y,v)) = (=D)4F (2, y,u)e', Ju PPWL 4 Fa(z, y,u, v)(xa — e Juy — u'Ag)

where Fy and Fy are smooth and F; does not vanish. Thus |V (det <I>E’x W)y U))| > ¢ on the zero set of
det @/

(wu),(y,v)
Next we consider the map pr and let Vg be a nonvanishing vector field which is in the kernel of Dpg
(or the cokernel of (5.11)) when z4 — ¢/, Juy — u'Ag = 0. Then

d—1 m
G G G
- L - hpi—
Ve=> Wgj 5y TR > iz

j=1 i=
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where by (5.11) the functions hg; vanish when z4 — e/, Juy — u'Aq = 0 and
Wh[eA + PJ P + B\ J, Pl + gr B = 0
WgPJued —gr = 0;

thus since A is symmetric and J,, skew symmetric we have essentially the same equation for W above,
except that J, is replaced by —Jy:

(5.21) (UA—PJuPt—PJuedBt —eZJuPt)WR =0.
Moreover gr = eZJuPtWR does not vanish by (5.14). As x4 — eZJuy — utA, does not depend on z’ we get

Vr(det q)/(/x,u),(y,v)) = ﬁl(x, y,u)el J, P'Wg + ﬁz(l‘, y,u,v)(xg — ey Juy — utAy)

with smooth functions ﬁl, ﬁz and nonvanishing ﬁl. Thus |Vg(det <I>E’x W) (y U))| 1s bounded below on the

zero set of det <I>E’x and we have verified the statements analogous to (4.3-5).

)y (y,v)

Proof of Claim 5.1, conclusion. For small [ the bound is immediate from Hérmander’s standard L2
estimate for nondegenerate oscillatory integrals ([8], cf. (5.12) and Lemma 5.3 above). For large [ we can,
by Lemma 5.4, rewrite the amplitude S} as a finite sum

S;(x, y, u, v) = 2% Z G (27 det @E/xyuyyyv))qu(l‘, u,y,v)
li|<c¢

where the ¢;4; are compactly supported and smooth and satisfy the estimates 97, , ,qi+i = O(Qlo‘). Since
20 < A3 this type of blowup is covered by (4.2) and we can apply the estimate (4.6) and see that the
operator with kernel /\_jS; has L? operator norm < 220t \=3 \=(d+m)/291/2 Thig implies our claim.

Modifications for the proof of (3.16). By scaling we need to consider the operator of convolution with
8s[(§’l |s:1~

Let ¢ be as in (5.2) and

(o' ) = 0 <x u y v )
pxaxdauayavaUaT_ﬁs 8’82’8’82’0’7— o
(5.22)
=o(—zatya+ (2 —¢) Vol —y)) + QZTi(—Ui + v — 2’ Jiy) + ZTieﬁA(y — ).
i=1 i=1

As before we set A = 2F and observe that our operator is a sum of an operator G with Schwartz
kernel

GA’l(l‘, u,y, U) = Am+2 // eiA(b(x,u,y,U,U,T)p(l,/’ Td,U,Y,v,0, T)XO(I’ u,y, U)Ul(o'a T)dO'dT

and an operator which has similar properties as H*! above (thus satisfies estimates which are better than
claimed in (3.16)).
We now need to carry out the stationary phase calculations as before for the kernel ]-";ng)"l (since the

contribution from A,zg*v’ is again negligible). Tt has the form of (5.3), except that §; is replaced by A¢
where ¢; 1s given by

Cl(l‘, u,y,v, 9) = bl(l‘, u,y,v,zq4,w, 0, T)p(l’/, Zd, W, Y,v, 0, T)'



16 DETLEF MULLER ANDREAS SEEGER
Then by stationary phase the Schwartz kernel of ]-";ng)"l can be expanded as

(5.23)

/\m+2/ M‘I'(x’“’y’v’e)cl(x u,y,v,0)dd = P (@ u.y,v) Z S (z,u,y,v /\1_j +§J>‘\;l(1‘,u,y, v)
7=0

where again the error term E;‘\;l is easy to handle for large N and %}‘ is defined as in (5.8) but with b;
replaced by ¢;.

In order to finish the proof of (3.16) it is now sufficient to establish that the operator 7}>"l with kernel
Al_j%eiA¢(x’“’y’”) satisfies the bound

(5.24) 177 lzemsze S AT P27 (1 4 A2,
The differentiation in s causes a blowup by not more than A and by our previous analysis it follows that
(5.25) [T oy pe 22N T2 (92N =1y

If j = 1,2,... this estimate is sufficient for (5.24) since then 21/2(2%)\~1)J < 2712 by our restriction
2L < AV/3,

This crude estimate does not suffice for the leading term in the asymptotic expansion when ||A]| is
small (or zero).

However note that when A = 0 the coefficient of 7; in (5.22) vanishes on the critical set where 6 =
Ocrit (x, 4, y, v) since J¥/I1 = 0 on that set. We get

P(l’/a Zd,crity Werity Y, U, Ocrit, Tcrit) :(xd - 62Juy - utAd)<($/ - y/) . vx’r($/ - y/) - F(l‘/ - y/))

+ 23 wi (AP (' = o) + efAal (@ = o).
i=1

Since |zq — €' Juy — u'Ag| & 27" on the support of ¢; and since the coefficients of u; are O(J|A]]) we now

gain an additional factor of O(27! 4 ||A||) in the estimate (5.25) for j = 0 and thus establish (5.24) also for
Jj=0.

Modifications for the proof of (3.17), (3.18). The only reason for the modified definition (2.2.3)
(replacing (2.2.2) for [ > k/3) is the preservation of the symbol estimates (4.2), needed for the validity of
(4.6), (4.7). The estimation for K* is exactly analogous to the estimation of K*! when [ < k/3, and the
same statement applies to the s-derivatives. Only notational modifications are needed.

6. Weak type (1,1) estimates

We are now proving the weak type inequality (2.5). The proof of (2.6) is omitted since it is exactly
analogous.

We apply standard Calderén-Zygmund arguments (with respect to nonisotropic families of balls on
nilpotent Lie groups, see [4], [17]). Cf. also [14] and related papers on singular Radon transforms.
Let
Bs = {(z,u) : |z] < 8, Ju| < 6%}

and denote by Bf its complement.
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Since we have already checked the L2 bounds for the maximal function it suffices to check the following
Hérmander type condition for L (R*) valued kernels:

sup sup / sup |Kf’l((y, v) (=, u)) - Kf’l(x, u)|dxdu < k2801 4 |A12
B

§>0 (y,v)€EBs J B, t>0

which follows from the two estimates

2RI+ |AY12Y),

oy - oy
sup /C sup |A2ns((y, v) 1(m,u)) —Azns(x,u)|dxdu5{ 2k(m+2) min{2-7§,276 -1}

(y,v)€Bs /B, s€[1,2]

Indeed we use the first bound for the O(k) terms with 2-28(m+1) < 92=n§ < 92k(m+1) and the second bound
for the remaining terms. We then sum the series in n. Using scaling we see that the latter estimates are
equivalent to

{ 2RI+ IAY12Y),

6.1 su sup |K8' (e —y,u—v+2tJy) — KB, w)|dedu <
60 s [ s K=y 9 = K u)dede S § gy e

(v)€B, /B, s€l1,2]

Because of the support properties of the kernel the integral on the left hand side is zero if r 3> 1. Now
assume that r < 1. Since |[VED!(z,u)| < 2°(m+2) the bound 2*(™+2)r in (6.1) is immediate. It remains to
show that
< 2771+ IA]129),

~

| sup [R],
s€[1,2]

and this follows from

(6.2) [ &5, <1,
(6.3) [0 K5, < 28701 +]|A)121).

By an integration by parts in o, 7 we see that

Qk—l ka

(6.4) (14 25=Uzy — D(a"))N (14 28|u — Az])N

K"z, u)| < Cy

from which (6.2) immediately follows. Moreover from (5.22) one obtains by the same argument
|0s K¥! (2, u)| is bounded by C42%~!(1 + ||A||2") times the right hand side of (6.4). Consequently we
obtain (6.3). This finishes the proof of the weak type inequality (2.5). O

7. Appendix

In this section we give the example of a two-step nilpotent Lie group G, with 10-dimensional Lie
algebra, which satisfies the nondegeneracy condition but which is not isomorphic to a group of Heisenberg
type.

For pp = (p1, o) € R? let

w0 0 —po
pz g1 00
F, =
K 0 Mo 1 0
0 0 ps m

and define the 8 x & matrix
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then

(7.1) det J, = (i + id)?.

Let g be the Lie algebra which is R® @ R? as a vector space, with Lie bracket
[X+U,Y +V] =0+ (X"Ju,0Y, X" JonY).

By (7.1) the group identified with g satisfies our nondegeneracy condition. We now prove by contradiction
that g 1s not 1somorphic to a Heisenberg-type Lie algebra.

Assume that there is a Lie algebra isomorphism o :'g — g where g is a Heisenberg-type algebra. Then
g =10 @3 where 3 is the center and « is a linear isomorphism from 3 to R2

Now with respect to orthonormal bases u1, ..., us on w and ug, u1pon 3 and e, ..., es on R¥and eg, €19
on R? the map « is given by the 10 x 10 matrix

A 0
L B
where A is an invertible 8 x 8 matrix and B an invertible 2 x 2 matrix.

Now let X = Zle riug, Y = Zle Yy;u;, and express w € 3™ in terms of the dual basis as w =
wyud + wouty. Then, since g is of Heisenberg type we have w([X,Y]) = 2! J,y with J2 = —(w} + w3)[; in
particular
(7.2) |det Jy | = (w? + w3)*,

Now if w = o’y (thus By = (w1, ws)") then
xthtuy =w([X,Y]) = (@) tw(alX,Y]) = (g, [aX,aY]) = (Az)" J,(Ay)
so that AtJMA = jBtu and therefore

det Jpi, = (det A)?det J,.

Thus by (7.1) and (7.2) we obtain |B'u|® = (det A)?(u} + p3)? and therefore, if (a,b) and (c,d) are the
rows of the matrix |det A|~'/4B¢,

2
pi+ py = ((apn 4 bpz)® + (epn + dpa)?)”,
for all 4 € R?. Thus
2
pi 4y = ((@® + A)pd + (0 + d®)pis + 2(ab + ed)ppz))

for all 4 € R? This implies a? + ¢ = 6% 4+ d? = 1 and setting p = ab + cd we obtain after a little algebra
that

(4p% + 2) 1o + dp(p + p2) = 0

for all 4 € R2. This implies both 2p? +1 = 0 and p = 0, thus a contradiction. O
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