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SINGULAR SPHERICAL MAXIMAL OPERATORS ONA CLASS OF TWO STEP NILPOTENT LIE GROUPSDetlef M�uller Andreas SeegerAbstra
t. Let Hn �= R2n n R be the Heisenberg group and let �t be the normalized surfa
e measure forthe sphere of radius t in R2n. Consider the maximal fun
tion de�ned by Mf = supt>0 jf � �tj. We prove forn � 2 thatM de�nes an operator bounded on Lp(Hn) provided that p > 2n=(2n� 1). This improves an earlierresult by Nevo and Thangavelu, and the range for Lp boundedness is optimal. We also extend the result to amore general setting of surfa
es and to groups satisfying a nondegenera
y 
ondition; these in
lude the groups ofHeisenberg type. 1. Introdu
tionLet G be a �nite-dimensional step two nilpotent group whi
h we may identify with its Lie algebra g bythe exponential map. We assume that g splits as a dire
t sum g = w � z so that[w;w℄ � z; [w; z℄ = f0g;and that dim(w) = d, dim(z) = m.Throughout we shall make the followingNondegenera
y Hypothesis. For every nonzero linear fun
tional ! 2 z� the bilinear formJ! : w �w! R(X;Y ) 7! !([X;Y ℄)is nondegenerate.Note that the skew symmetry of J! and the nondegenera
y hypothesis imply that d is even.There is a natural dilation stru
ture relative to w and z, namely for X 2 w and U 2 z we 
onsider thedilations Æt : (X;U ) 7! (tX; t2U ):With the identi�
ation of the Lie algebra with the group Æt be
omes an automorphism of the group.In exponential 
oordinates (x; u), x 2 Rd, u 2 Rm, the group multipli
ation is given by(1.1) (x; u) � (y; v) = (x+ y; u+ v + xtJy)where xtJy = (xtJ1y; : : : ; xtJmy) 2 Rm and the Ji are skew-symmetri
 matri
es a
ting on Rd (i.e. J ti =�Ji). For u 2 Rm we also form the skew-symmetri
 matri
es Ju = Pmi=1 uiJi and the nondegenera
yhypothesis is equivalent with the invertibility of Ju for all u 6= 0.1991 Mathemati
s Subje
t Classi�
ation. 42B25, 22E25, 43A80.Key words and phrases. spheri
al maximal operators, Heisenberg groups, step two nilpotent groups, os
illatory integraloperators, fold singularities.The se
ond author was supported in part by the National S
ien
e Foundation. Typeset by AMS-TEX1



2 DETLEF M�ULLER ANDREAS SEEGERThe most prominent examples are the Heisenberg groups Hn whi
h arise when d = 2n, m = 1 andJ = J1 is the standard symple
ti
 matrix on R2n. These belong to the 
lass of Heisenberg-type groups(termed H-type groups in [9℄), for whi
h J2u = �4juj2I, so that the nondegenera
y hypothesis is 
learlysatis�ed in this 
ase. Note that in general m has to be small 
ompared to d (see [9℄ where the 
onne
tionwith Radon-Hurwitz numbers is pointed out). The 
lass 
onsidered here has been introdu
ed by M�etivier[10℄ in his study of analyti
 hypoellipti
ity; the nondegenera
y assumption is termed \Condition (H)" in[10℄. There are many groups whi
h satisfy the nondegenera
y 
ondition but whi
h are not isomorphi
 to aHeisenberg-type group; we give an example in x7.Let � be a smooth 
onvex hypersurfa
e in w and let � be a 
ompa
tly supported smooth density on�. We make the followingCurvature Hypothesis. The Gaussian 
urvature of � does not vanish on the support of �.De�ne the dilate �t by h�t; fi = Z f(tx; 0)d�(x):(1.2)We re
all the de�nition of 
onvolutionf � g(x; u) = Z f(y; v)g((y; v)�1 � (x; u))dydv= Z f(y; v)g(x � y; u� v + xtJy)dydv(1.3)and de�ne for S
hwartz-fun
tions the maximal operator M byMf(x; u) = supt>0 jf � �t(x; u)j:We prove the following sharp result.Theorem. Suppose d > 2. Then M extends to a bounded operator on Lp(G) if and only if p > d=(d� 1).Remarks. (i) Other more \regular" spheri
al maximal fun
tions on the Heisenberg group have been 
on-sidered in [2℄, [15℄. In these papers the maximal fun
tions are generated by measures on hypersurfa
es andthe averaging operators are Fourier integral operators asso
iated to lo
al 
anoni
al graphs. In our workthe maximal fun
tions are generated by measures on surfa
es of 
odimension m + 1, and the asso
iated
anoni
al relations proje
t with fold singularities.(ii) A previous result is due to Nevo and Thangavelu [12℄ who 
onsidered the 
ase of spheri
al meanson the non
entral part of the Heisenberg groups (m = 1) and obtained Lp boundedness in the smallerrange p > (d� 1)=(d� 2), d > 2.(iii) Our theorem is an analogue of Stein's theorem [16℄ in the Eu
lidean 
ase. The ne
essity ofthe 
ondition p > d=(d � 1) follows from the example in [16℄; one tests M on the fun
tion given byf(y; v) = jyj1�d(log jyj)�1�(y; v) with a suitable 
uto� fun
tion �. The L2 methods in this paper are notsuÆ
ient to establish Lp boundedness for p > 2 for the 
ase d = 2 (that is, for an extension of Bourgain'sresult [1℄ in the Eu
lidean 
ase); we shall return to this 
ase in a subsequent paper.(iv) The result should remain true for any nilpotent Lie group of step � 2; i.e. the nondegenera
yhypothesis should not be ne
essary. This is 
urrently an open problem.(v) As a 
orollary of the Lp estimate for the maximal operator one obtains the pointwise 
onvergen
eresult limt!0 �t � f(x) = 
f(x) almost everywhere, if f 2 Lp and 
 = R d�. Moreover the Lp bounds ofthe maximal operator are relevant for 
ertain results in ergodi
 theory, where one needs to have pointwise
ontrol for large t.



SPHERICAL MAXIMAL OPERATORS ON TWO STEP NILPOTENT LIE GROUPS 3(vi) We use in an essential way the invarian
e of the subspa
e w under the dilation group fÆtg. Namelythis implies a favorable bound for the prin
ipal symbol of (d=dt)�t on the fold surfa
e of the asso
iated
anoni
al relation. A similar phenomenon was observed in [11℄ for averages along light rays.(vii) One 
an repla
e the measure on w by a measure supported on a perturbed subspa
e W whi
h istransversal to the 
enter but no longer invariant under fÆtg; then the phenomenon in the last remark doesnot o

ur. In the above 
oordinates W is given as(1.4) W = f(x;�x); x 2 Rdg;where � = (�ij) is a m� d matrix. De�ne a measure ��t byh��t ; fi = Z f(tx; t2�x)d�(x);we also set �� := ��1 . Consider the maximal operator M� de�ned by(1.5) M�f = supt>0 jf � ��t j:For general � we then prove the partial result that M� is bounded for p > (3d�1)=(3d�4). We 
onje
turethat boundedness holds for p > d=(d� 1) whi
h by our theorem holds true for � = 0.Notation: Given two quantities A and B we write A . B if there is a positive 
onstant C, su
h thatA � CB. 2. Preliminary de
ompositionsWe shall present the argument for the maximal operator M� in (1.5). We shall denote by �j the jth
olumn of � and by k�k the matrix norm of � with respe
t to the Eu
lidean norms on Rd and Rm. Inwhat follows we shall always assume that k�k � C1 for some �xed C1 (and various bounds may depend onC1). If k�k o

urs expli
itly in an estimate then we are interested in the behavior for �! 0, as the 
aseof our Theorem 
orresponds to � = 0.We note that by lo
alizations and rotations in Rd one 
an assume that � has small support and thatthe proje
tion of � to w is given as a graph xd = �(x0), x0 = (x1; : : : ; xd�1), so that rx0�(0) = 0 and sothat � is supported in a small neighborhood of (0;�(0)) (we may assume that jrx0�(x0)j � C�10 
0=100)where 
0, C0 are de�ned in (5.10) below). Note that a rotation has the e�e
t of repla
ing the matri
es Jiin the group law by QtJiQ with Q 2 SO(d). We thus will need to prove an estimate whi
h is uniform inthese rotations.Using the Fourier inversion formula for Dira
 measures we may write��(x; u) = �(x; u) ZZ ei��(xd��(x0))+��(u��x)�d�d�where � is a smooth 
ompa
tly supported fun
tion and the integral 
onverges in the sense of os
illatoryintegrals (thus in the sense of distributions).We split the integrals by introdu
ing dyadi
 de
ompositions in (�; � ) and then also in �, when j�j < j� j.Let �0 2 C10 (R) be an even fun
tion so that �0(s) = 1 if jsj � 1=2 and supp(�0) � (�1; 1). Also de�ne�1(s) = �0(s=2)� �1(s) and for k � 1, 1 � l < k=3,�0(�; � ) = �0(p�2 + j� j2)(2.1.1) �k;0(�; � ) = �1(2�kp�2 + j� j2)(1 � �0(2�k�))(2.1.2) �k;l(�; � ) = �1(2�kp�2 + j� j2)�1(2l�k�)e�k(�; � ) = �1(2�kp�2 + j� j2)�0(2[k=3℄�k�1�):(2.1.3)



4 DETLEF M�ULLER ANDREAS SEEGERThen observe that �0 +Xk�1��k;0 + X1�l<k=3�k;l + e�k� = 1;and for k > 0 the fun
tion �k;0 is supported where � � 2k and j� j . 2k, �k;l is supported where j� j � 2kand j�j � 2k�l and e�k is supported where j� j � 2k and j�j . 22k=3.De�ne K0(x; u) = �(x; u) ZZ ei��(xd��(x0))+��(u��x)��0(�; � )d�d�;(2.2.1) Kk;l(x; u) = �(x; u) ZZ ei��(xd��(x0))+��(u��x)��k;l(�; � )d�d�; 0 � l < k=3,(2.2.2) eKk(x; u) = �(x; u) ZZ ei��(xd��(x0))+��(u��x)� e�k(�; � )d�d� ;(2.2.3)moreover for t > 0 de�ne the dilates[K0t ;Kk;lt ; eKkt ℄(x; u) = t�(d+2m)[K0;Kk;l; eKk℄(t�1x; t�2u):Note that ��t = K0t +Pk�1 �Kk;0t +P1�l<k=3Kk;lt + eKkt �.Sin
e K0 is a bounded 
ompa
tly supported fun
tion the asso
iated maximal fun
tion is 
ontrolledby the appropriate variant of the Hardy-Littlewood maximal fun
tion and therefore ([17℄) we have theinequality 

 supt jf �K0t j

p � Cpkfkpfor 1 < p � 1.Using known estimates for os
illatory integral operators with fold singularities and additional almostorthogonality estimates we shall derive in x3 and x5 the following L2 estimates.Proposition 2.1. Suppose k > 0. Then for 0 � l < k=3(2.3) 

 supt jf �Kk;lt j

2 . pk2�k(d�2)=2(1 + k�k2l)1=2kfk2;moreover(2.4) 

 supt jf � eKkt j

2 . pk2�k(d�2)=2(1 + k�k2k=3)1=2kfk2To obtain Lp results we shall interpolate with weak type inequalities proved in x6.Lemma 2.2. Let k > 0. For all � > 0 we have(2.5) meas�f(x; u) : supt>0 jf �Kk;lt (x; u)j > �g� . k2k�l(1 + k�k2l)��1kfk1for 0 � l < k=3 and(2.6) meas�f(x; u) : supt>0 jf � eKkt (x; u)j > �g� . k22k=3(1 + k�k2k=3)��1kfk1:We interpolate by the real method and obtainCorollary 2.3. Suppose 1 < p � 2 and k > 0. Then for 0 � l < k=3(2.7) 

 supt jf �Kk;lt j

p � Cpk1=p2�k(d�1�d=p)2�l(2=p�1)(1 + k�k2l)1=pkfkp;moreover(2.8) 

 supt jf � eKkt j

p � Cpk1=p2�k(d�4=3�d=p+2=3p)(1 + k�k2k=3)1=pkfk2:Now if p < 2 we may sum in k and l and see that M� is Lp bounded if d�4=3�d=p+1=(3p)> 0 whi
his equivalent to p > (3d�1)=(3d�4) (showing the estimate mentioned in remark (vii) in the introdu
tion).If � = 0 we get a better bound, namely that Lp boundedness holds if d � 1 � d=p > 0 or p > d=(d� 1).This proves our main Theorem.



SPHERICAL MAXIMAL OPERATORS ON TWO STEP NILPOTENT LIE GROUPS 53. Square fun
tions and almost orthogonalityIt is advantageous to introdu
e 
an
ellation in the above kernels, modulo small a

eptable errors.Indeed ��� ZZ Kk;l(x; u)dxdu���+ ��� ZZ eKk(x; u)dxdu���� CN2�kN ;for all N = 0; 1; : : : , and this estimate follows by an integration by parts in the (x; u) variables. Thus thereis a C10 fun
tion b whi
h is equal to 1 on supp(�), and 
onstants 
k;l, 
k so that(3.1) ZZ Kk;l(x; u)dxdu = 
k;l ZZ b(x; u)dxduZZ eKk(x; u)dxdu= 
k ZZ b(x; u)dxduwhere(3.2) j
kj+ j
k;lj � CN2�kN :We de�ne Kk;l(x; u) = Kk;l(x; u)� 
k;lb(x; u)(3.3.1) eKk(x; u) = eKk(x; u)� 
kb(x; u)(3.3.2)and denote by Kk;lt , eKkt their dilates, as before. Then the fun
tions Kk;lt , Kkt have integral zero.Sin
e the maximal operator generated by the kernel b (with nonisotropi
 dilations) is bounded by thenonisotropi
 Hardy-Littlewood maximal operator we see that for 1 < p � 1

 supt jf � (Kk;lt �Kk;lt )j

p � CN;p2�kNkfkp:Now in order to deal with the main term we shall use the following standard lemma in the subje
twhi
h is an immediate 
onsequen
e of a similar one stated in [17, p.499℄.Lemma 3.1. Suppose that sups2[1;2℄�Xn2Z

Fn(�; s)

22�1=2 � A1sups2[1;2℄�Xn2Z

�Fn�s (�; s)

22�1=2 � A2:Then 


 supn sups2[1;2℄ jFn(�; s)j


2 � C(A1 +pA1A2):We omit the proof. Using Lemma 3.1 one sees that the estimates

 supt jf � Kk;lt j

2 . pk2�k(d�2)=2(1 + k�k2l)1=2kfk2

 supt jf � eKkt j

2 . pk2�k(d�2)=2(1 + k�k2k=3)1=2kfk2



6 DETLEF M�ULLER ANDREAS SEEGERfollow from the following estimates whi
h are uniform in s 2 [1; 2℄.�Xn 

f � Kk;l2ns

22�1=2 . pk2�k(d�1)=22l=2kfk2(3.4) �Xn 


f � ht ��tKk;lt it=2ns


22�1=2 . pk2�k(d�3)=22�l=2(1 + k�k2l)kfk2;(3.5)for l < k=3, and �Xn 

f � eKk2ns

22�1=2 . pk2�k(d�1)=2+k=6kfk2(3.6) �Xn 


f � ht ��t eKkt it=2ns


22�1=2 . pk2�k(d�3)=2�k=6(1 + k�k2k=3)kfk2:(3.7)Note by s
aling that it suÆ
es to prove these estimates for s = 1. We shall �rst use the 
an
ellationof the kernels Kk;l2ns and eKk2ns to show 
ertain almost orthogonality properties (for the sums in n) and thenwe use stronger estimates for os
illatory integrals to establish de
ay estimates for �xed n.An almost orthogonality lemma. We �rst state a simple and presumably well known 
onsequen
e ofthe Cotlar-Stein Lemma.Lemma 3.2. Suppose 0 < " < 1, A � B=2 and let fTng1n=1 be a sequen
e of bounded operators on aHilbert spa
e H so that the operator norms satisfy(3.8) kTnk � Aand(3.9) kTnT �n0k � B22�"jn�n0j:Then for all f 2 H(3.10) � 1Xn=1kTnfk2�1=2 � CAp"�1 log(B=A)kfk:Proof. For N � 1 
onsider the operator TN : H ! `2(H)whi
h maps f to the sequen
e (T1f; : : : ; TN f; 0; 0; : : :). Now kTNk = kT �NTNk1=2 where T �NTN : H ! H isgiven by T �NTNf = NXn=1T �nTnf:We let Sn = T �nTn and observe thatkS�kSlk = kSkS�l k = kT �kTkT �l Tlk� kT �kkkTkT �l kkTlk � A2minfA2; B22�jk�lj"g:



SPHERICAL MAXIMAL OPERATORS ON TWO STEP NILPOTENT LIE GROUPS 7The standard Cotlar-Stein Lemma [17℄ giveskT �NTNk � 1Xm=1max� supk�l=m kS�kSlk1=2; supk�l=m kSkS�l k1=2	and thus kTNk2 � A 1Xm=�1minfA;B2�jmj"g� C2"�1A2 log(B=A):Thus kTNfk`2(H) is dominated by the right hand side of (3.10), and the assertion follows by taking thelimit as N !1. �Remark. We proved Lemma 3.2 by using the statement of the Cotlar-Stein Lemma. Using the proof of theCotlar-Stein Lemma one 
an also show the following more general fa
t: If kTnT �n0k � �2(n � n0) then� NXn=1 kTnfk2�1=2 . �Xj2Zj�(j)j2�1=2kfk:Of 
ourse, Lemma 3.2 is an immediate 
onsequen
e of this inequality.Almost orthogonality estimates. Here we wish to apply Lemma 3.2 to 
onvolutions on groups. IfTf = f � g we �rst note that its adjoint is given by T �f = f � g� where g� = g(��1). Moreover usingMinkowski's inequality and the unimodularity of nilpotent Lie groups one obtains the standard 
onvolutioninequality kf � gk2 � kg�k1kfk2 = kgk1kfk2:We now �x k; l and s 2 [1; 2℄ and derive almost orthogonality properties for the operators of 
onvolutionwith Kk;l2ns.Noti
e that for n � 0 the fun
tion Kk;l2ns is supported in a (small) ball of radius C2n (in fa
t in a smallernonisotropi
 ball). Moreover we have jry;vKk;ls (y; v)j � 2k(m+2) and using the 
an
ellation of Kk;l2ns weobtain jKk;ls � (Kk;l2ns)�(x; u)j . 2k(m+2)2n if n � 0:By s
aling and applying S
hur's Lemma we obtain(3.11) 

f � Kk;l2n0s � (Kk;l2ns)�

2 . 2k(m+2)2�jn�n0jkfk2�rst for n � n0 and then by taking adjoints also for n < n0. This and the following estimates are uniformin s 2 [1; 2℄.Similarly we get(3.12) 


f � s�Kk;l2n0 s�s � s�(Kk;l2n0s)��s 


2 . 2k(m+4)2�jn�n0jkfk2and also 

f � eKk2n0s � ( eKk2ns)�

2 . 2k(m+2)2�jn�n0jkfk2:(3.13) 


f � s� eKk2ns�s � s�( eKk2n0 s)��s 


2 . 2k(m+4)2�jn�n0jkfk2:(3.14)



8 DETLEF M�ULLER ANDREAS SEEGERIn x5 we shall prove the inequalitieskf �Kk;lk2 . 2�k(d�1)=22l=2kfk2(3.15) 


f � h�Kk;ls�s is=1


2 . 2�k(d�3)=22�l=2(1 + k�k2l)kfk2(3.16)for l < k=3, and kf � eKkk2 . 2�k(d�1)=22k=6kfk2(3.17) 


f � � eKks�s ��s=1


2 . 2�k(d�3)=22�k=6(1 + k�k2k=3)kfk2:(3.18)By s
aling and by (3.2) the same inequalities hold with Kk;l and eKk repla
ed by Kk;lt and eKkt and with�sKk;l, �s eKk repla
ed by �sKk;l2ns, �s eKk2ns, for 1 � s � 2.Now the inequality (3.4) follows from (3.15) and (3.11) if we apply Lemma 3.2 with A = 2�k(d�1)=22l=2and B = 2k(m+4). Similarly (3.5) follows from (3.16) and (3.12), (3.6) from (3.17) and (3.13), and (3.7)from (3.18) and (3.14).The next two se
tions are 
on
erned with the derivation of inequalities (3.15-18).4. Preliminaries on os
illatory integral operators with folding 
anoni
al relationsWe shall redu
e matters to estimates for os
illatory integral operators whose 
anoni
al relations havetwo-sided fold singularities. We 
onsider lo
alizations near the fold surfa
e and the estimate goes ba
k toPhong and Stein [13℄ for 
ertain 
onormal operators in the plane; the general 
ase is impli
it in Cu

agna'spaper [3℄. For the version needed here we refer to [6℄.Let 
 2 Rn�Rn be an open set and let � be an open set in some �nite dimensional spa
e. We 
onsiderphases '(x; y; 
) and amplitudes a�(x; y; 
), (x; y; 
) 2 
 �
� �, and assume thatj��x��y'(x; y; 
)j � C(4.1) j��x��y a�(x; y; 
)j � C�(j�j+j�j)=3(4.2)say, for all multiindi
es �; � with j�j; j�j � 10n, with uniform bounds in 
 � �; we also assume that allderivatives depend 
ontinuously on the parameter 
.We shall assume that C' = f(x; 'x; y;�'y)gis a folding 
anoni
al relation, i.e. for ea
h point P0 = (x0; y0; 
0) we have(4.3) rank '00xy(P0) � n � 1;and for unit ve
tors U , V '00xy(P0)V = 0 =) ��hV;ryi det'00xy�� � 
;(4.4) U t'00xy(P0) = 0 =) ��hU;rxi det'00xy�� � 
;(4.5)for some 
 > 0.We 
onsider the os
illatory integral operator T�[b℄ de�ned byT�[b℄f(x) = Z ei�'(x;y;
)b(x; y; 
)f(y)dy



SPHERICAL MAXIMAL OPERATORS ON TWO STEP NILPOTENT LIE GROUPS 9whi
h is bounded on allLp if b is bounded and 
ompa
tly supported. We shall take for b 
ertain lo
alizationsof the symbol in terms of the size of det'00xy. Let � be smooth and 
ompa
tly supported in (�1; 1) so that�(s) = 1 for jsj � 1=2 and set�l(x; y; 
) = �(2l det'00xy(x; y; 
)) � �(2l+1 det'00xy(x; y; 
));so that �l lo
alizes to the set where j det'00xyj � 2�l. We also de�ne��(x; y) = 1� X2l<�1=3 �l(x; y)so that j det'00xyj . ��1=3 on supp(��).Then there is a neighborhood U of (x0; y0; 
0) so that for all a� satisfying (4.2), supported in U thefollowing estimates hold for the operator norms:(4.6) 

T�[a��l ℄

L2!L2 � C12l=2��n=2; 2l � �1=3and(4.7) 

T�[a���℄

L2!L2 � C1�1=6�n=2:These estimates are a 
onsequen
e of Theorem 2.1 in [6℄.5. Redu
tion to os
illatory integral operatorsWe now 
onsider the operator of 
onvolution with Kk;l and give the proof of the bound (3.15). The op-erator �sKk;l is more singular, but its estimation is rather analogous, so we shall point out the modi�
ationsneeded for (3.16) at the end of this se
tion. The estimations for eKk and �s eKks will be similar.Sin
e Kk;l is 
ompa
tly supported in a �xed neighborhood we may use the translation invarian
e toredu
e to the 
ase that f is also 
ompa
tly supported in a �xed neighborhood of the origin. Thus it suÆ
esto show the desired bound for the operator with S
hwartz kernel(5.1) �1(x; u)Kk;l(x� y; u� v + xtJy)�2(y; v);for suitable 
ompa
tly supported smooth fun
tions �1 and �2. In what follows we set � = 2k and then bya 
hange of variables the kernel (5.1) 
an be written as(5.2) H�;l(x; u; y; v) = �m+1 ZZ ei��(x;u;y;v;�;�)�0(x; u; y; v)�l(�; � )d�d�where �(x; u; y; v; �; � ) = �(xd � yd � �(x0 � y0)) + � � (u� v + xtJy � �(x� y))and where j� j � 1 and j�j � 2�l on the support of �l; spe
i�
ally�l(�; � ) = �1(p�2 + j� j2)�1(2l�);and �0(x; u; y; v) = �1(x; u)�(x� y; u� v + xtJy)�2(y; v).Notation. We let P : Rd ! Rd�1 be the linear map with Pei = ei, i = 1; : : : ; d� 1 and Ped = 0. We alsouse the notation P for the (d� 1)� d matrix P = ( I 0 )and P t for its transpose.



10 DETLEF M�ULLER ANDREAS SEEGERStationary phase 
al
ulations. We wish to apply stationary phase arguments to redu
e matters to theestimation of an os
illatory integral operators without frequen
y variables (see e.g. the general dis
ussionin [5℄).We shall apply a s
aled Fourier transform on Rm+1, in the (xd; u) variables. De�neF�g(x0; xd; u) = ZZ e�i�(xdzd+u�w)g(x0; zd; w)dzddw;then (�=2�)(m+1)=2F� is a unitary operator and thus, if H�;l denotes the operator with S
hwartz kernelH�;l we have to prove that F�H�;l maps L2 to itself with operator norm O(��(d+m)=22l=2). Let �3(xd; u)denote a smooth 
ompa
tly supported fun
tion whi
h is equal to one whenever jxdj+ juj � 10, and de�neF�;1 by F�;1g(x0; xd; u) = �3(xd; u) ZZ e�i�(xdzd+u�w)g(x0; zd; w)dzddw;moreover let F�;2 = F� � F�;1. Then the S
hwartz kernel of F�;1H�;l is given by(5.3) �m+1 Z ei�	(x;u;y;v;�)bl(x; u; y; v; �)d�where with � = (zd; w; �; � )the phase fun
tion 	 is given by	(x; u; y; v; �) = � xdzd � u �w + ��zd � yd � �(x0 � y0)�+ � t�w � v + �P t(x0 � y0) + �d(zd � yd) + (x0t; zd)Jy�;and the amplitude is given bybl(x; u; y; v; �) = �3(xd; u)�0(x0; zd; y; w)�l(�; � ):For the error term F�;2H�;l we have a similar formula, only with �3 repla
ed by 1 � �3. Then inview of the support properties of (1 � �3) we see that jrzd;w	j � jxdj + juj on supp(1 � �3) and byintegration by parts with respe
t to the (zd; w) variables we see that the kernel of F�;2H�;l is boundedby CN�m+1�N (jxdj+ juj)�N . Moreover this kernel is supported on a set where jxdj + juj � 1 and wherejx0j + jyj + jvj � C. Thus, with an obvious appli
ation of S
hur's Lemma we 
on
lude that the operatorF�;2H�;l is bounded on L2 with operator norm O(��N ) for any N .We return to the main term F�;1H�;l and it remains to be shown that(5.4) kF�;1H�;lk . 2l=2��(d+m)=2:Note that for �xed (x; u; y; v) the phase fun
tion 	 is a polynomial of degree � 2 in the � variablesand that the Hessian 	00�� is nondegenerate.Indeed,(5.5) 	0zd = �xd + etdJ� y + � + � t�d	0w = � � u	0� = w � v + (x0t; zd)Jy +�P t(x0 � y0) + �d(zd � yd)	0� = zd � yd � �(x0 � y0)



SPHERICAL MAXIMAL OPERATORS ON TWO STEP NILPOTENT LIE GROUPS 11and with � denoting the 
olumn ve
tor in Rm with 
oordinates �i = etdJiy + �id we have	00�� = 0B� 0 0 �t 10 0 I 0� I 0 01 0 0 01CA :Clearly the linear equations 	� = 0 have a unique solution �
rit = (zd; w; �; �)
rit, with(zd)
rit(x; u; y; v) = yd + �(x0 � y0)(wi)
rit(x; u; y; v) = vi � (x0t; yd + �(x0 � y0))Jiy � eti�P t(x0 � y0)� �id�(x0 � y0)(�i)
rit(x; u; y; v) = ui�
rit(x; u; y; v) = xd � mXi=1 ui(etdJiy + �id)and we 
an apply the method of stationary phase (with respe
t to the 2(m + 1) frequen
y variables �).Setting�(x; u; y; v) := 	(x; u; y; v; �
rit(x; u; y; v))= �xd(yd + �(x0 � y0)) � mXi=1 ui�vi � (x0t; yd + �(x0 � y0))Jiy � �id�(x0 � y0) � eti�P t(x0 � y0)�(5.6)we obtain that�m+1 Z ei�	(x;u;y;v;�)bl(x; u; y; v; �)d� = ei��(x;u;y;v)N�1Xj=0 E lj(x; u; y; v)��j +R�;lN (x; u; y; v)(5.7)where(5.8) E lj(x; u; y; v) =(2i)�j� det(	��(x; y; u; v; �
rit(x; u; y; v))=2�i��1=2 1j!h	�1�� D� ; D�ijbl(x; u; y; v; �)����=�
rit(x;u;y;v)and(5.9) jR�;lN (x; u; y; v)j � CNkblkL2m+2+2N��N � C 0N2l(m+2+2N)��N :Here we have applied Lemma 7.7.3 in [7℄.Sin
e 2l � �1=3 the error term R�;lN (whi
h is 
ompa
tly supported) de�nes a bounded operator on Lpwith norm O(��(2m+1+N)=3) whi
h for large N is mu
h better than the desired bound in (5.4).Claim 5.1. The operators with kernels ��jE lj(x; u; y; v)ei��(x;u;y;v) have L2 operator normO(��(d+m)=2�j=32l=2)This 
learly implies (5.4).



12 DETLEF M�ULLER ANDREAS SEEGERGeometry of the 
anoni
al relation.We 
onsider the 
anoni
al relation C� = (x; u;�x;�u; y; v;��y;��v) and the singularities of the mapspL : (y; v) 7! (�x;�u), pR : (x; u) 7! (�y;�v). It is our obje
tive to 
he
k the analogues of (4.3-4.5) andwe will have to verify a few elementary linear algebra fa
ts.Let A denote the (d�1)�(d�1)matrix �00(x0�y0) and letB denote the 
olumn ve
tor �0(x0�y0) 2 Rd�1;re
all that we may assume that jBj is small. Indeed if
0 = minu2Sm�1 kJ�1u k�1(5.10.1) C0 = maxu2Sm�1 kJuk(5.10.2)we may assume that kBk � C�10 
0=100:Now pL is expli
itly given by�x0 = �xd�0(x0 � y0) + PJuy + �0(x0 � y0)etdJuy + ut�d�0(x0 � y0) + ut�P t�xd = �yd � �(x0 � y0)�ui = ��vi � (x0t; yd + �(x0 � y0))Jiy � eti�P t(x0 � y0) � �id�(x0 � y0)�:We 
ompute the di�erential DpL as(5.11) �00(x;u);(y;v) = 0� (xd � etdJuy � ut�d)A + PJuP t + BetdJuP t PJued 0Bt �1 0C 
 I1Awhere I is an m�m identity matrix and C is m � (d� 1) matrix with rows Ci = x0tPJiP t + ydetdJiP t �(etdJiy + �id)Bt + eti�P t + �(x0 � y0)etdJiP t and 
 is the 
olumn in Rm with 
i = (x0t; 0)Jied + etdJiy. Inthis 
al
ulation the skew symmetry of the Ji is used.We now 
ompute the determinant of (5.11) and obtain(5.12) det �00(x;u);(y;v) = (�1)d det �(xd � etdJuy � ut�d)A + PJuP t +E(B)�where(5.13) E(B) = BetdJuP t + PJuedBt:Here we used the fa
torization��A+ PJuP t + BetdJuP t PJuedBt �1 � = ��A + PJuP t +E(B) PJued0 �1 �� I 0�Bt 1� :Note that E(B) is a skew-symmetri
 (d � 1) � (d � 1) matrix and so is PJuP t + E(B). Thus, sin
ed� 1 is odd, the rank of PJuP t+E(B) is at most d� 2, and the following lemma shows that for small Bthe rank is equal to d� 2.Lemma 5.2. Suppose that kBk � 
04C0 :Then the following holds:



SPHERICAL MAXIMAL OPERATORS ON TWO STEP NILPOTENT LIE GROUPS 13(i) If W 2 Ker (PJuP t + E(B)) then(5.14) jetdJuP tW j � 
02 kWk:(ii) dimKer (PJuP t +E(B)) = 1.(iii) If X belongs to the orthogonal 
omplement of Ker (PJuP t + E(B)) then(5.15) k(PJuP t + E(B))Xk � 
02 kXk:Proof. Observe that kE(B)k � 2C0kBk:Thus if W 2 Ker (PJuP t + E(B)) and kWk = 1 then1 = kP tWk � kJ�1u kkJuP tWk� kJ�1u k�jetdJuP tW j+ kPJuP tWk� = kJ�1u k�jetdJuP tW j+ kE(B)Wk�� 
�10 �jetdJuP tW j+ 2C0kBk�and thus, if kBk � 
0=4C0 we obtain jetdJuP tW j � 
0=2 whi
h is (5.14).Let Su = Ju + E(B). Sin
e Su is skew symmetri
, it 
an be diagonalized over C , and the eigenvaluesare imaginary. The bounds (5.10.1/2) are still valid if J�1u is a
ting as a linear transformation on C d . Let� 2 C d be a unit eigenve
tor of Su so that Su� = i�� and k�k = 1; thenj�j = kSu�k � kJu�k � kE(B)�k � 
0 � kE(B)k � 
0 � 2C0kBk � 
02by assumption on B. Hen
e j�j � 
0=2 for every eigenvalue i� of Su. In parti
ular Su is nondegenerate.But then PSuP t = PJuP t+E(B) has rank d�2 and therefore a one-dimensional kernel and all nontrivialeigenvalues of Su are also eigenvalues of PSuP t. This implies for ve
tors X orthogonal to the kernel ofPSuP t that PSuP tX � 
02 kXkwhi
h is (5.15).Lemma 5.3. Let A be a symmetri
 positiv de�nite matrix on Rn and let S be a skew-symmetri
 matrixon Rn. Then:(i) For all � 6= 0, the matrix �A + S is invertible and the inverse satis�es the bounds(5.16) k(�A+ S)�1k � j�j�1kA�1k:(ii) If S is invertible then �A+ S is invertible for all � and we have the bound(5.17) k(�A+ S)�1k � 2kS�1k if j�j � �2kAkkS�1k��1:Proof.For a unit ve
tor e in Rn we getk(�A+ S)ek � jh(�A+ S)e; eij = jh�Ae; eij � j�jkA�1k�1:Here we have used that by the skew symmetry of S we have hSe; ei = 0, and also that kA�1k = 1=�min,where �min is a minimal eigenvalue of A. This establishes invertibility and the bound (5.16).If in addition S is invertible and � is small we may simply use the Neumann series to get invertibilityof �A+ S. Namely, if j�j � �2kAkkS�1k��1 we get (�A+S)�1 = S�1(I +P1j=1(�1)j�j(AS�1)j) and thebound (5.17) is immediate. �



14 DETLEF M�ULLER ANDREAS SEEGERLemma 5.4. Let ` � 1 be an odd integer, let 
1 be the 
one of real symmetri
 positive de�nite ` � `matri
es and let 
2 be the set of all skew symmetri
 `� ` matri
es with rank ` � 1.For S 2 
2 
hoose a unit ve
tor eS in the kernel of S and let �S be the orthogonal proje
tion to theorthogonal 
omplement of eS .Then for A 2 
1, S 2 
2, � 2 R we have(5.18) det(�A + S) = �hAeS ; eSi det(�S(�A+ S)��S ) + �2F (A; S; �)where F is a smooth fun
tion on 
1 �
2 �R.Proof. Let Q = Q(S) be an orthogonal transformation with etSQ = (0; : : : ; 1). ThenQt(�A + S)Q = ��A0 + S0 �a�at ���where S0 is a skew symmetri
 invertible (` � 1) � (` � 1) matrix, A0 is positive de�nite, a 2 R`�1 and� = hAeS ; eSi. We apply Lemma 5.3 to �A0 + S0 and fa
tor��A0 + S0 �a�at ��� = � I 0�at(�A0 + S0)�1 1���A0 + S0 �a0 �� � �2at(�A0 + S0)�1a�and 
on
lude that det(�A + S) = det(�A0 + S0)��� � �2at(�A0 + S0)�1a�:The assertion follows sin
e det(�A0 + S0) = det(�S(�A + S)��S). �We now pro
eed to verify the 
onditions (4.3-5) in x4. By Lemma 5.3 the determinant of �00(x;u);(y;v)
an only vanish when � := �
r � xd � etdJuy � ut�d vanishes. In this 
ase the dimension of the kernel�00(x;u);(y;v) is equal to the dimension of the kernel of PJuP t+E(B) with B = �0(x0 � y0), thus equal to 1.Thus rank (�00(x;u);(y;v)) � d+m � 1 everywhere.In order to verify (4.4) let VL be a nonvanishing ve
tor �eld whi
h is in the kernel of DpL when themixed Hessian (5.11) be
omes singular (i.e. when xd � etdJuy � ut�d = 0). Then(5.19) VL = d�1Xj=1WL;j ��yj + gL ��yd + mXi=1 hL;i ��vi ;and with A = �00(x0 � y0), we have gL = BtWL and(5.20) (�A+ PJuP t + BetdJuP t + PJuedBt)WL = 0;moreover the fun
tions hL;i are in the ideal generated by the WL;j (and the 
oeÆ
ients 
an be 
omputedfrom (5.11)). To get a nontrivial kernel (when � = 0) we must 
hoose a nonvanishing ve
tor WL satisfying(5.20). Noti
e that then jetdJuP tWLj is bounded below, by (5.14). By Lemma 5.4 we haveVL(det�00(x;u);(y;v)) = (�1)dF1(x; y; u)etdJuP tWL + F2(x; y; u; v)(xd � etdJuy � ut�d)where F1 and F2 are smooth and F1 does not vanish. Thus jVL(det �00(x;u);(y;v))j � 
 on the zero set ofdet �00(x;u);(y;v).Next we 
onsider the map pR and let VR be a nonvanishing ve
tor �eld whi
h is in the kernel of DpR(or the 
okernel of (5.11)) when xd � etdJuy � ut�d = 0. ThenVR = d�1Xj=1WR;j ��xj + gR ��xd + mXi=1 hR;i ��ui



SPHERICAL MAXIMAL OPERATORS ON TWO STEP NILPOTENT LIE GROUPS 15where by (5.11) the fun
tions hR;i vanish when xd � etdJuy � ut�d = 0 andW tR��A + PJuP t +BetdJuP t℄ + gRBt = 0W tRPJued � gR = 0;thus sin
e A is symmetri
 and Ju skew symmetri
 we have essentially the same equation for WL above,ex
ept that Ju is repla
ed by �Ju:(5.21) (�A � PJuP t � PJuedBt � etdJuP t)WR = 0:Moreover gR = etdJuP tWR does not vanish by (5.14). As xd � etdJuy � ut�d does not depend on x0 we getVR(det �00(x;u);(y;v)) = eF1(x; y; u)etdJuP tWR + eF2(x; y; u; v)(xd � etdJuy � ut�d)with smooth fun
tions eF1, eF2 and nonvanishing eF1. Thus jVR(det �00(x;u);(y;v))j is bounded below on thezero set of det�00(x;u);(y;v) and we have veri�ed the statements analogous to (4.3-5).Proof of Claim 5.1, 
on
lusion. For small l the bound is immediate from H�ormander's standard L2estimate for nondegenerate os
illatory integrals ([8℄, 
f. (5.12) and Lemma 5.3 above). For large l we 
an,by Lemma 5.4, rewrite the amplitude E lj as a �nite sumE lj(x; y; u; v) = 22jl Xjij�C �1(2l+i det�00(x;u;y;v))ql+i(x; u; y; v)where the ql+i are 
ompa
tly supported and smooth and satisfy the estimates ��x;y;u;vql+i = O(2l�). Sin
e2l � �1=3 this type of blowup is 
overed by (4.2) and we 
an apply the estimate (4.6) and see that theoperator with kernel ��jE lj has L2 operator norm . 22jl��j��(d+m)=22l=2: This implies our 
laim.Modi�
ations for the proof of (3.16). By s
aling we need to 
onsider the operator of 
onvolution with�sKk;ls js=1.Let � be as in (5.2) and�(x0; xd; u; y; v; �; � ) = ��s��xs ; us2 ; ys ; vs2 ; �; �����s=1= �� � xd + yd + (x0 � y0) � rx0�(x0 � y0)�+ 2 mXi=1 �i(�ui + vi � xtJiy) + mXi=1 �ieti�(y � x):(5.22)As before we set � = 2k and observe that our operator is a sum of an operator G�;l with S
hwartzkernel G�;l(x; u; y; v) = �m+2 ZZ ei��(x;u;y;v;�;�)�(x0; xd; u; y; v; �; � )�0(x; u; y; v)�l(�; � )d�d�and an operator whi
h has similar properties as H�;l above (thus satis�es estimates whi
h are better than
laimed in (3.16)).We now need to 
arry out the stationary phase 
al
ulations as before for the kernel F�;1G�;l (sin
e the
ontribution from F�;2G�;l is again negligible). It has the form of (5.3), ex
ept that bl is repla
ed by �
lwhere 
l is given by 
l(x; u; y; v; �) = bl(x; u; y; v; zd; w; �; � )�(x0; zd; w; y; v; �; � ):



16 DETLEF M�ULLER ANDREAS SEEGERThen by stationary phase the S
hwartz kernel of F�;1G�;l 
an be expanded as�m+2 Z ei�	(x;u;y;v;�)
l(x; u; y; v; �)d� = ei��(x;u;y;v)N�1Xj=0 eE lj(x; u; y; v)�1�j + eR�;lN (x; u; y; v)(5.23)where again the error term eR�;lN is easy to handle for large N and eE�j is de�ned as in (5.8) but with bjrepla
ed by 
j.In order to �nish the proof of (3.16) it is now suÆ
ient to establish that the operator T �;lj with kernel�1�j eE ljei��(x;u;y;v) satis�es the bound(5.24) kT �;lj kL2!L2 . �1�(d+m)=22�l=2(1 + k�k2l):The di�erentiation in s 
auses a blowup by not more than � and by our previous analysis it follows that(5.25) kT �;lj kL2!L2 . 2l=2�1�(d+m)=2(22l��1)j :If j = 1; 2; : : : this estimate is suÆ
ient for (5.24) sin
e then 2l=2(22l��1)j . 2�l=2 by our restri
tion2l � �1=3.This 
rude estimate does not suÆ
e for the leading term in the asymptoti
 expansion when k�k issmall (or zero).However note that when � = 0 the 
oeÆ
ient of �i in (5.22) vanishes on the 
riti
al set where � =�
rit(x; u; y; v) sin
e �	=�� = 0 on that set. We get�(x0; zd;
rit; w
rit; y; v; �
rit; �
rit) =(xd � etdJuy � ut�d)�(x0 � y0) � rx0�(x0 � y0)� �(x0 � y0)�+ 2 mXi=1 ui�eti�P t(x0 � y0) + eti�d�(x0 � y0)�:Sin
e jxd � etdJuy � ut�dj � 2�l on the support of 
l and sin
e the 
oeÆ
ients of ui are O(k�k) we nowgain an additional fa
tor of O(2�l+ k�k) in the estimate (5.25) for j = 0 and thus establish (5.24) also forj = 0.Modi�
ations for the proof of (3.17), (3.18). The only reason for the modi�ed de�nition (2.2.3)(repla
ing (2.2.2) for l > k=3) is the preservation of the symbol estimates (4.2), needed for the validity of(4.6), (4.7). The estimation for eKk is exa
tly analogous to the estimation of Kk;l when l < k=3, and thesame statement applies to the s-derivatives. Only notational modi�
ations are needed.6. Weak type (1,1) estimatesWe are now proving the weak type inequality (2.5). The proof of (2.6) is omitted sin
e it is exa
tlyanalogous.We apply standard Calder�on-Zygmund arguments (with respe
t to nonisotropi
 families of balls onnilpotent Lie groups, see [4℄, [17℄). Cf. also [14℄ and related papers on singular Radon transforms.Let BÆ = f(x; u) : jxj � Æ; juj � Æ2gand denote by B
Æ its 
omplement.
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e we have already 
he
ked the L2 bounds for the maximal fun
tion it suÆ
es to 
he
k the followingH�ormander type 
ondition for L1(R+) valued kernels:supÆ>0 sup(y;v)2BÆ ZB
10Æ supt>0 ��Kk;lt �(y; v)�1(x; u)��Kk;lt (x; u)��dxdu . k2k�l(1 + k�k2l)whi
h follows from the two estimatessup(y;v)2BÆ ZB
10Æ sups2[1;2℄ ��Kk;l2ns�(y; v)�1(x; u)��Kk;l2ns(x; u)��dxdu . � 2k�l(1 + k�k2l);2k(m+2)minf2�nÆ; 2nÆ�1g:Indeed we use the �rst bound for the O(k) terms with 2�2k(m+1) � 2�nÆ � 22k(m+1) and the se
ond boundfor the remaining terms. We then sum the series in n. Using s
aling we see that the latter estimates areequivalent to(6.1) sup(y;v)2Br ZB
10r sups2[1;2℄ ��Kk;ls �x� y; u� v + xtJy) �Kk;ls (x; u)��dxdu . � 2k�l(1 + k�k2l);2k(m+2)minfr�1; rg:Be
ause of the support properties of the kernel the integral on the left hand side is zero if r � 1. Nowassume that r . 1. Sin
e jrKk;ls (x; u)j . 2k(m+2) the bound 2k(m+2)r in (6.1) is immediate. It remains toshow that 

 sups2[1;2℄ jKk;ls j

1 . 2k�l(1 + k�k2l);and this follows from 

Kk;l

1 . 1;(6.2) 

�sKk;ls 

1 . 2k�l(1 + k�k2l):(6.3)By an integration by parts in �, � we see that(6.4) jKk;l(x; u)j � CN 2k�l(1 + 2k�ljxd � �(x0)j)N 2km(1 + 2kju� �xj)Nfrom whi
h (6.2) immediately follows. Moreover from (5.22) one obtains by the same argumentj�sKk;ls (x; u)j is bounded by C 0N2k�l(1 + k�k2l) times the right hand side of (6.4). Consequently weobtain (6.3). This �nishes the proof of the weak type inequality (2.5). �7. AppendixIn this se
tion we give the example of a two-step nilpotent Lie group G, with 10-dimensional Liealgebra, whi
h satis�es the nondegenera
y 
ondition but whi
h is not isomorphi
 to a group of Heisenbergtype.For � = (�1; �2) 2 R2 let E� = 0B��1 0 0 ��2�2 �1 0 00 �2 �1 00 0 �2 �1 1CAand de�ne the 8� 8 matrix J� = � 0 E��Et� 0 � ;



18 DETLEF M�ULLER ANDREAS SEEGERthen(7.1) det J� = (�41 + �42)2:Let g be the Lie algebra whi
h is R8�R2 as a ve
tor spa
e, with Lie bra
ket[X + U; Y + V ℄ = 0 + (XtJ(1;0)Y;XtJ(0;1)Y ):By (7.1) the group identi�ed with g satis�es our nondegenera
y 
ondition. We now prove by 
ontradi
tionthat g is not isomorphi
 to a Heisenberg-type Lie algebra.Assume that there is a Lie algebra isomorphism � : eg! g where eg is a Heisenberg-type algebra. Theneg = w � z where z is the 
enter and � is a linear isomorphism from z to R2.Now with respe
t to orthonormal bases u1; : : : ; u8 on w and u9; u10 on z and e1; : : : ; e8 on R8 and e9; e10on R2 the map � is given by the 10� 10 matrix�A 0L B�where A is an invertible 8� 8 matrix and B an invertible 2� 2 matrix.Now let X = P8i=1 xiui, Y = P8i=1 yiui, and express ! 2 z� in terms of the dual basis as ! =w1u�9 +w2u�10. Then, sin
e eg is of Heisenberg type we have !([X;Y ℄) = xt eJwy with eJ2w = �(w21 +w22)I; inparti
ular(7.2) j det eJwj = (w21 +w22)4:Now if ! = �t� (thus Bt� = (w1; w2)t) thenxt eJBt�y = !([X;Y ℄) = (�t)�1!(�[X;Y ℄) = h�; [�X;�Y ℄i = (Ax)tJ�(Ay)so that AtJ�A = eJBt� and therefore det eJBt� = (detA)2 det J�:Thus by (7.1) and (7.2) we obtain jBt�j8 = (detA)2(�41 + �42)2 and therefore, if (a; b) and (
; d) are therows of the matrix j detAj�1=4Bt,�41 + �42 = �(a�1 + b�2)2 + (
�1 + d�2)2�2;for all � 2 R2. Thus �41 + �42 = �(a2 + 
2)�21 + (b2 + d2)�22 + 2(ab+ 
d)�1�2)�2for all � 2 R2. This implies a2 + 
2 = b2 + d2 = 1 and setting � = ab+ 
d we obtain after a little algebrathat (4�2 + 2)�1�2 + 4�(�21 + �22) = 0for all � 2 R2. This implies both 2�2 + 1 = 0 and � = 0, thus a 
ontradi
tion. �
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