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(a) (b) (c)Figure 1: Examples of tiling with the shaded obje
ts. In (
) a tiling by a triangle is shown that is usingrotations as well as translations. We will not deal with su
h tilings here. In (a) a tiling by a square is shownand in (b) a tiling by an L-shaped region. In (b) the set of translations is a latti
e, but not in (a).ForwardIn this survey I will try to des
ribe how Fourier Analysis is used in the study of translational tiling. Rightaway I will emphasize two restri
tions that separate this area from the general theory of tilings.� There is only one tile. This is an obje
t that is moved around in spa
e (whatever spa
e we are tryingto tile, most generally an abelian group) in a way that there are no \overlaps" among the several 
opiesof it and almost nothing, in the sense of Lebesgue or 
ounting measure, is left un
overed. This obje
tmay be a domain in spa
e or a fun
tion de�ned on spa
e, usually nonnegative. Examples are shownin Figure 1.� The only allowed motions of the tile are translations. No rotations or re
e
tions of the obje
t areallowed. In fan
ier language, we are tiling abelian groups, not ve
tor spa
es.This paper is broken up into three \le
tures", whi
h 
orrespond roughly to the three hour-long le
tures I gavein the Universit�a di Milano{Bi
o

a, in June 2001, during the meeting on Fourier Analysis and Convexity.Le
ture 1 has to do with how Fourier Analysis is used to prove stru
ture, or rigidity, in tilings. In Le
ture2, some problems are presented about latti
e-tiling and in Le
ture 3 a tiling problem of Fun
tional Analysisis dis
ussed, the Fuglede Conje
ture on spe
tral domains.An advan
e apology: I will des
ribe mostly material with whi
h I am aquainted the most, through myown work.Finally, I would like to thank the organizers L. Brandolini, L. Colzani, A. Iosevi
h and G. Travaglini fororganizing this great meeting and giving me the 
han
e to parti
ipate.4



1 Le
ture 1: Introdu
tion to the method and stru
ture of tilings.1.1 Tiling and densityIt's time for the �rst de�nition, of what tiling means. We speak mostly of tiling Rd and Zd in this paper,but tiling makes sense on all abeliean groups.
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������Figure 2: A triangle fun
tion tiling the real lineDe�nition 1.1. (Translational tiling)Suppose 0 � f 2 L1(Rd) and � � Rd is a dis
rete multiset. We say that f tiles Rd with � at level (orweight) ` if X�2� f(x � �) = `; a.e.(x):We write: f + � = `Rd.In Figure 2 a tiling by the triangle fun
tion f(x) = (1 � jxj)+ is shown with translation set � = Zandlevel 1. In the parti
ular 
ase when f = �
 is the indi
ator fun
tion of a measurable domain 
 � Rd of �nitemeasure, we write also 
 + � = mRd, where the positive integer m represents the level of the (generallymultiple) tiling.The tiling assumption f + � = `Rd has some immediate impli
ations about the density properties of themultiset �.De�nition 1.2. (Density)A multiset � � Rd has asymptoti
 density � iflimR!1 #(� \BR(x))jBR(x)j ! �uniformly in x 2 Rd. We write � = dens �.We say that � has (uniformly) bounded density if the fra
tion above is bounded by a 
onstant � uniformlyfor x 2 R and R > 1. We say then that � has density (uniformly) bounded by �.Last, the upper density of a set � � Rd is de�ned aslim supR!1 supx2Rd #(� \BR(x))jBR(x)j :Remark 1.1. A

ording to this de�nition a set � may have density uniformly bounded by a number � <1yet dens � may not exist.Lemma 1.1. If 0 � f 2 L1(Rd) is not the zero fun
tion and f + � = `Rd then � has bounded density.Proof. By hypothesis Xa2� f(x � a) = `; almost everywhere;5



and 
learly ` > 0. Choose R > 1 so that J = RBR(0) f > 0, where BR(0) is the ball 
entered at 0 with radiusR. Let t 2 Rd be arbitrary. We havejB2R(0)j � ` = ZB2R(t)Xa2� f(x � a) dx� ZB2R(t) Xja�tj<R f(x � a) dx� #(� \BR(t)) ZBR(0) f:Thus #(�\BR(t)) � jB2R(0)j`=J is bounded independent of t, whi
h implies that � has uniformly boundeddensity.Working similarly on easily gets the following lemma.Lemma 1.2. If 0 � f 2 L1(Rd) is not the zero fun
tion and f +� = `Rd then � density dens � = `(R f)�1.It is time also to de�ne pa
king.De�nition 1.3. (Pa
king)Suppose 0 � f 2 L1(Rd) and � � Rd is a dis
rete multiset. We say that f pa
ks Rd with � at level ` ifX�2� f(x � �) � `; a.e.(x):We write: f + � � `Rd.The following lemma is almost trivial, yet useful.Lemma 1.3. If 0 � f 2 L1(Rd) is not the zero fun
tion and f + � � `Rd is a pa
king then � has densityuniformly bounded by `(R f)�1.Finally, one 
an easily prove the following about translation sets.Lemma 1.4. Suppose f + � � `Rd and esssup f = `. Theninf fj�� �j : �; � 2 �; � 6= �g > 0: (1.1)In parti
ular, if E + � = Rd is a tiling by the set E at level 1 then (1.1) holds.1.2 Tiling in Fourier spa
eNext, we asso
iate to any point multiset � the measureÆ� = X�2� Æ�;where Æ� is one unit point mass at the point � (see Figure 3). Generally, this measure is in�nite globallybut has �nite total variation in any bounded set, at least when the set � has bounded density. This is the
ase whenever � is involved in a tiling. It follows thatjÆ�j(BR(t)) � CRd;whi
h implies that the obje
t Æ� is a so-
alled tempered distribution, a bounded linear fun
tional on theS
hwarz spa
e S of smooth fun
tions whi
h, along with all their partial derivatives, de
ay faster than anypower at in�nity. 6



Figure 3: The measure Æ� 
orresponding to some � in the plane.If T is a tempered distribution one de�nes its Fourier Transform bT by duality as follows:bT (�) = T (b�);for any � 2 S (it is easy to prove that the Fourier Transform b� is also in S). We normalize the FourierTransform for a fun
tion f 2 L1(Rd) as bf (t) = Z e�2�iht;xif(x) dx;whi
h leads to the inversion formula f(x) = Z e2�iht;xi bf (t) dt;whenever bf 2 L1, whi
h happens for all fun
tions f 2 S.We are now in the position to argue formally as follows. Suppose f + � = `Rd. This means thatX�2� f(x � �) = `; (a.e. x);whi
h we rewrite as a 
onvolution f � Æ� = `:Take the Fourier Transform of both sides to getbf �
Æ� = `Æ0:As the support of the right hand side is just f0g we 
on
lude thatsupp
Æ� � f0g [ Z( bf ); (1.2)where we denote the zero-set of the 
ontinuous fun
tion g by Z(g):Z(g) = �x 2 Rd : g(x) = 0	:The in
lusion in (1.2) is the starting point of the method of applying Fourier Analysis to translational tiling.Whenever we have tiling, we dedu
e (1.2). Sometimes we may be able to get tiling from (1.2), but we usuallyneed some extra 
onditions to make this 
on
lusion.Having argued formally, let us now prove 
arefully the following theorem. Noti
e that we have essentiallyadded the 
ondition bf 2 C1 to make the argument go through. This 
ondition is automati
ally validwhenever f has 
ompa
t support, as, for instan
e, when f is the indi
ator fun
tion of a bounded domain(the 
lassi
al geometri
 situation), but will de�nitely not be there when we talk about the Fuglede problemin Le
ture 3. There we will need a di�erent theorem of this sort, with di�erent assumptions (see Theorem3.11). 7



Theorem 1.1. Suppose that f 2 L1(Rd) is nonnegative, bf 2 C1 and f + � = `Rd for some multiset �.Then (1.2) follows.Proof. Let K = f0g [ Z( bf ), whi
h is a 
losed set. In
lusion (1.2) means (by the de�nition of the supportof a tempered distribution) that 
Æ�( ) = 0 for all smooth  supported in K
 (see Figure 4). For su
h a  nbf = 0o (x)0
Figure 4: A test fun
tion  supported away from f0g [ nbf = 0o�ebf  �^ (�) = Z bf(�x) (x)e�2�i�x dx= Z Z f(y)e�2�iyx (x)e�2�i�x dx dy= Z f(y) Z  (x)e�2�i(�+y)x dx dy= Z f(y) b (� + y) dy= Z f(�t) b (� � t) dt= ( ef � b )(�); (1.3)where we use the notation ef (x) = f(�x).We must show 
Æ�( ) = 0. We have 
Æ�( ) = 
Æ� ebf �  ebf ! :Noti
e that ebf and bf have the same zeros (sin
e f is real), so the quotient � =  =ebf is a C10 (K
) fun
tion.
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We have 
Æ�( ) = 
Æ�(ebf �)= Æ��(ebf�)^� (by the de�nition of the Fourier Transform for distributions)= X�2�(ebf�)^(�) (by the de�nition of Æ�)= X� ( ef � b�)(�) (by (1.3))= X� Z ef (�� x)b�(x) dx= Z X� f(x � �)b�(x) dx= ` Z b�(x) dx (sin
e f + � = `Rd)= `�(0)= 0 (as 0 =2 supp�):1.2.1 The latti
e 
ase and the suÆ
ien
y of the support 
ondition for tilingSuppose � = AZd, A 2 GL(d;R), is a latti
e inRd (a dis
rete subgroup whi
h 
ontains d linearly independentve
tors). The Fourier Transform of the tempered distribution Æ� takes a parti
ularly simple form as 
laimedby the Poisson Summation Formula: 
Æ� = 1detAÆ�� ; (1.4)where �� = �� 2 Rd : h�; �i 2Z; 8� 2 �	 = A�>Rdis the dual latti
e of � (see Figure 5). 0
0

1
1 2

12 Æ�
Æ�Figure 5: The \Dira
 
omb" Æ� when � = 12Z, and its Fourier Transform, the 
omb 2Æ2Z.9



The Poisson Summation Formula is usually stated as the equalityX�2� b�(�) = 1detA X��2�� �(��);for all � 2 S, and this is exa
tly the 
ontent of (1.4), as the Fourier Transform of Æ� is de�ned by duality.Equation (1.2) now gives the impli
ation below, valid for any latti
e �,f + � is a tiling) bf vanishes on �� n f0g:This is in fa
t easy to prove using ordinary multiple Fourier Series, after applying a linear transformationthat maps � to Zd. Working this way one gets easily that the above impli
ation is, in fa
t, an equivalen
e,so that f + � is a tiling, bf vanishes on �� n f0g: (1.5)We prefer however to sti
k to using (1.2) as our guiding tool and not mention Fourier Series. As to why thereverse impli
ation holds, the answer is in the following theorem.Theorem 1.2. Suppose that � is a multiset of bounded density and that f is a nonnegative integrablefun
tion on Rd. Suppose also that 
Æ� is lo
ally a measure and thatsupp
Æ� � f0g [ nbf = 0o:Then � has density and f + � = `Rd, for ` = R f � dens �.Intuitively, to kill a tempered distribution whi
h is a measure any zero (of whatever order) suÆ
es.Proof. Let F (x) = P�2� f(x � �). We want to show that F is a 
onstant ` and for this it is enough toshow that for any nonnegative b� 2 S we have R F b� = ` R b� = `�(0). We haveZ F b� = X� Z f(x � �)b�(x) dx= Z f(y)X� b�(y + �) dy= Z f(y)Æ�(b�(y � �)) dy= Z f(y)
Æ�(e2�iyx�(x)) dy= Z Z f(y)e2�iyx�(x) d
Æ�(x) dy= Z bf (�x)�(x) d
Æ�(x)= 
Æ�(f0g)�(0) bf (0);whi
h proves the desired equality with ` = R f �
Æ�(f0g). The fa
t that � has density and the value for dens �follow from Lemma 1.2.1.3 Stru
ture of tilings in dimension 1We 
an now show the following theorem [KL96℄.Theorem 1.3. (Kolountzakis and Lagarias, 1996)Suppose 0 � f 2 L1(R) and has 
ompa
t support. Suppose also thatf + � = `R;10



for some � 2 R. Then there are J 2 N, �j; �j 2 R, j = 1; : : : ; J , �j > 0, su
h that� = J[j=1(�jR+ �j):That is, tiling sets for 
ompa
tly supported tiles in dimension 1 are �nite unions of 
omplete arithmeti
progressions.1.3.1 The idempotent theorem, the Bohr group and Meyer's theoremThis extreme stru
ture is, in the end, a 
onsequen
e of P.J. Cohen's idempotent theorem on a general abeliangroup [Coh59℄.Theorem 1.4. (Cohen, 1959)If � 2M (G) is a �nite measure on a lo
ally 
ompa
t abelian group G, su
h that b� takes only �nitely manyvalues then, for any su
h value 
, the set S = n
 2 bG : b�(
) = 
o belongs to the open 
oset ring of bG.The (open) 
oset ring is de�ned below.De�nition 1.4. (The 
oset ring of a group)The 
oset ring of an abelian group G is the smallest 
olle
tion of subsets of G whi
h is 
losed under �niteunions, �nite interse
tions and 
omplements and whi
h 
ontains all 
osets of G. For a topologi
al group Gthe smallest ring of subsets of G whi
h 
ontains all open 
osets is 
alled the open 
oset ring of G.Cohen's theorem therefore says that S 
an be 
onstru
ted with �nitely many set-theoreti
 operationsfrom the open 
osets of bG.The group bG is 
alled the dual group of G and is the group of 
ontinuous 
hara
ters on G, that is, thegroup of all group homomorphisms G ! C with the group operation beeing the pointwise multipli
ation.It 
an be proved that bbG is isomorphi
 (as a topologi
al group) with G (Pontryagin duality) and that bG is
ompa
t if and only if G is dis
rete. Further \G�H = bG � bH. Some dual group pairs are the following:(Z;T), (R;R), (Zn;Zn), (Rd;Rd), (Zd;Td).If � is a �nite measure on G its Fourier Transform is a 
ontinuous fun
tion on bG de�ned byb�(�) = ZG �(x) d�(x);the integration 
arried out with respe
t to the essentially unique translation invariant measure on G 
alledthe Haar measure. For example, when G = Rthe Haar measure is Lebesgue measure and �(x) = e2�I�x. (Thereader should 
onsult [R62℄ for the basi
 de�nitions and fa
ts about Fourier Analysis on lo
ally 
ompa
tabelian groups.)We do not use Cohen's theorem dire
tly, but rather a 
onsequen
e of it dis
overed by Y. Meyer [Mey70℄.Theorem 1.5. (Meyer, 1970)Let � � Rd be a dis
rete set and Æ� be the Radon measureÆ� = X�2� 
�Æ�; 
� 2 S;where S � C n f0g is a �nite set. Suppose that Æ� is tempered, and that 
Æ� is a Radon measure on Rd whi
hsatis�es ���
Æ����(BR(0)) � C1Rd; as R!1; (1.6)11



where C1 > 0 is a 
onstant. Then, for ea
h s 2 S, the set�s = f� 2 � : 
� = sgis in the 
oset ring of Rd.Proof. Let � 2 C1
 (B1(0)), �(0) = 1, so that its Fourier Transform satis�es ���b�(�)��� � C�j�j�� for all � > 0.For positive integers n de�ne the fun
tions�n(x) = �(nx) � �(x):Their Fourier Transforms satisfy b�n(�) = 1nd b�(�=n)b�(�);hen
e the b�n are all measures. We 
laim that the measures 
�n are uniformly bounded measures, i.e.j
�nj(Rd) � C, where C is independent of n. Indeedj
�nj(Bn(0)) � 1nd jjb�jj1 jb�j(Bn(0)) � C1jjb�jj1; (1.7)by our assumption on the growth of jb�j(Bn(0)).Furthermore, if 2k � n we have (using the fa
t that ���b�(�)��� � Cj�j�d�1 as � !1)j
�nj(B2k+1 (0) nB2k(0)) � C 1nd ���b����B2k+1=n(0)nB2k=n(0)jb�j(B2k+1 (0))� C 1nd �2kn ��d�1 2(k+1)d� Cn2�k:Hen
e j
�nj(Bn(0)
) � Xn�2k j
�nj(B2k+1 (0) nB2k(0)) � Cn Xn�2k 2�k � C1;whi
h, together with (1.7), shows that the sequen
e j
�nj(Rd) is bounded.Noti
e also that limn!1 �n(x) = 
x if x 2 � and is 0 otherwise. This is a 
onsequen
e of the fa
t that� is dis
rete and the support of �(nx) shrinks to 0.We now use the following properties of Rd, the Bohr 
ompa
ti�
ation of Rd, a lo
ally 
ompa
t abeliangroup.1. Rd is the dual group of RdÆ, the d-dimensional Eu
lidean spa
e with the dis
rete topology. ThereforeRd is a 
ompa
t group being the dual group of a dis
rete group.2. Rd � Rd as topologi
al spa
es and Rd is dense in Rd. Identifying the 
ontinuous fun
tions on Rd withbounded 
ontinuous fun
tions on Rd we get thatC(Rd) � C(Rd) \ L1(Rd)is a Bana
h spa
e in
lusion.Sin
e the measures 
�n are uniformly bounded they a
t on all bounded 
ontinuous fun
tions on Rd, and
onsequently also on all 
ontinuous fun
tions on Rd. That is they 
onstitute a uniformly bounded family oflinear fun
tionals on C(Rd). By the Bana
h-Alaoglu theorem there exists a measure � on Rd su
h that forevery f 2 C(Rd) there is a subsequen
e of 
�n, 
all it again 
�n, su
h that
�n(f) ! �(f); as n!1:12



Applying this with ea
h 
hara
ter of Rd in pla
e of f we obtain thatb�(x) = limn!1

�n(x) = 
�x; if �x 2 �;and is 0 otherwise. Hen
e b� has the �nite range �S. By Theorem 1.4 the set ��, and thus �, belongs tothe open 
oset ring of RdÆ. Sin
e RdÆ has the dis
rete topology the open 
oset ring is the same as the 
osetring of Rd.Sin
e we need to know what kind of sets the elements of the 
oset ring of Rd are, we use the followinggeneral theorem [K00a℄, whi
h says that dis
rete elements of the 
oset ring 
an always be 
onstru
ted fromdis
rete 
osets using �nitely many unions, interse
tions and 
omplementations.Theorem 1.6. (Kolountzakis, 2000)Let G be a topologi
al abelian group and let R be the least ring of sets whi
h 
ontains the dis
rete 
osets ofG. Then R 
ontains all dis
rete elements of the 
oset ring of G.In dimension 1 this implies the following result by Rosenthal [Ros66℄.Theorem 1.7. (Rosenthal, 1966)The elements of the 
oset ring of Rwhi
h are dis
rete in the usual topology of R are pre
isely the sets of theform F 4 J[j=1(�jZ+ �j) ; (1.8)where F � R is �nite, J 2 N, �j > 0 and �j 2 R (4 denotes symmetri
 di�eren
e).1.3.2 Getting stru
ture in dimension 1In this se
tion we prove Theorem 1.3. Assume that � � R is set of bounded density and that f + � = `Rfor a fun
tion f 2 L1 of 
ompa
t support, 
ontained in, say, (�A;A). We will use (1.2), so the �rst thing todo is to obtain information on the set Z( bf ) = nbf = 0o.We look at the Fourier Transform of f de�ned on the 
omplex numbersbf (z) = ZRe�2�izxf(x) dx; (z 2 C ):Sin
e f is supported in (�A;A) it follows that bf is entire so that Z( bf ) is a dis
rete subset of R. Furthermorebf satis�es the growth bound ��� bf(z)��� � Z A�A e2�xIm(z)jf(x)j dx � jjf jj1e2�Ajzj:If N (T ) 
ounts the number of zeros of bf (z) in the disk fz : jzj � Tg, an appli
ation of Jensen's formulagives lim supT!1 N (T )T � CA:Write B for the dis
rete set f0g[Z( bf ), so that by (1.2) the tempered distribution bÆ� is supported on B. Itis well known, and easy to prove, that a tempered distribution supported at a single point b is ne
essarily a�nite linear 
ombination of derivatives of Æb, and the same proof gives that
Æ� = Xb2BPb(�)Æb:13



Here Pb(�) = PNj=0 
j �j�xj is di�erential polynomial operator applied on the Dira
 point mass at b. (Thedegree N 
an be taken the same for all b 2 B as any tempered distribution has �nite degree. This is notused below.)Step 1 All Pb are 
onstants (hen
e 
Æ� is lo
ally a measure)Fo
us on a single b 2 B and let � be a smooth fun
tion of 
ompa
t support. Examine the quantityb b00b0 �(t(x� b))Figure 6: Pi
king out the distribution 
Æ� at b by applying it on �(t(x� b)). For large t the other points ofset B are left out and the behavior at b is isolated.I(t) = 
Æ� (�(t(x� b))) ; (t!1);as shown in Figure 6. For large t this equals(Pb(�)Æb) (�(t(x� b))) = 0� NXj=0 
jÆ(j)b 1A (�(t(x� b)))= NXj=1 
j(�1)j�(j)(0)tj :Choose �(j)(0) = (�1)j to get the above expression equal toNXj=1 
jtj :Next we will bound the growth of I(t).Let g(x) = �(t(x� b)); bg(�) = 1t e�2�ib�=tb���t� :By duality jI(t)j = ���
Æ�(g)���= jÆ�(bg)j� 1tX� ����b���t �����= 1t Xj�j�t+1t Xj�j>t� C +Cpt 1Xn=bt
n�3=2= O(pt):14



We used the bounded density of � for the 
onvergen
e of the sum Pj�j>t, and the fa
t that���b�(�)��� = O �j�j�M� (1.9)for any M > 0 we wish. We took M = 3=2.Sin
e I(t) 
annot even grow linearly it follows that the degree N is zero and we 
an now write
Æ� = Xb2B 
bÆb;for some 
onstants 
b.Step 2 The 
oeÆ
ients 
b are uniformly bounded.To prove this we are just a bit more 
areful in the last estimate and now use a � whi
h is 1 at 0. For large tthen 
b = 
Æ�(�(t(x � b)));and one 
an get a bound for this by duality whi
h does not involve t at all using the exponent M = 2 insteadof M = 3=2 in (1.9).Step 3 Use of Meyer's TheoremNow the 
ru
ial 
ondition ���
Æ����(�R;R) � CRin Meyer's Theorem holds (remember there is a linear number of zeros and at ea
h one we have a boundedmass), hen
e, by Rosenthal's Theorem 1.7,� = J[j=1(�jZ+ �j)4Ffor some real numbers �j; �j and �nite set F .Step 4 F is emptyOtherwise 
Æ� would have a 
ontinuous part, a trigonometri
 polynomial due to F . But it 
annot have su
ha 
ontinuous part as its support is dis
rete.Open Problem 1. Is the main theorem true if f is only supposed to be in L1 but not of 
ompa
t support?What if f is an indi
ator fun
tion?1.4 Stru
ture of some polygonal tilings in dimension 2The one-dimensional tiling problem treated in the previous se
tion is very parti
ular. One 
annot expe
tthis rigid stru
ture in higher dimension. For example, even when the tile is a square in two dimensions, one
annot expe
t every tiling of it to be fully-periodi
, in the sense of posessing a period latti
e of full-rank. One
an, after all, make verti
al 
olumns of squares whi
h 
an be shifted verti
ally, within themselves, arbitrarily,preserving the tiling property (see Figure 1 (a)). It is 
lear that there is no horizontal period here, in general.One might suspe
t that there is always, no matter what the tile, at least one period, but this phenomenon, iftrue, must happen only in dimension two. In dimension three one 
an 
onstru
t 
ube tilings with no periodsat all. First make horizontal layers of 
ubes some of whi
h have no period along the x-axis and some othershaving no period along the y-axis. Consider these tiled slabs as rigid bodies and move ea
h of them by anarbitrary horizontal ve
tor thereby destroying all verti
al periods as well.Open Problem 2. If E � R2, is it true that in any tiling E + � = R2 the set � must posess at least oneperiod-ve
tor? 15



The main diÆ
ulty in dimension two and higher is that the zero set of bf is not a dis
rete set any more,at least under no set of reasonable assumptions about f (su
h as 
ompa
t support was in dimension one).Therefore, from our basi
 
ondition (1.2) on obtains that 
Æ� is supported, in general, on a subset of theplane, whi
h, under some reasonable assumptions, is a 
olle
tion of submanifolds of 
odimension one. Thestru
ture of su
h distributions is mu
h ri
her of 
ourse than those supported at points, and this is the mainsour
e of diÆ
ulty, at least 
ompared with the one-dimensional problem.In this se
tion we will show the following result [K00a℄ in two-dimensions.Theorem 1.8. (Kolountzakis, 2000)Suppose that P is a symmetri
 
onvex polygon in the plane whi
h tiles (multiply) with the multiset �:P + � = mRdat some integer level m. If P is not a parallelogram then � is a �nite union of two-dimensional latti
es.The 
onvexity assumption here is only used to guarantee that ea
h edge-dire
tion appears in the polygonexa
tly twi
e. For a more general theorem see [K00a℄.If one tries to use (1.2) dire
tly, one en
ounters the problems mentioned above, mainly the fa
t that thezero set Z(
�P ) is not dis
rete, but rather a one-dimensional set.Let e1 and e2 be two edges of the polygon P of the same dire
tion u. By the symmetry of P they havethe same length. We 
an then write (here e1 and e2 are viewed as point-sets in R2 and � as a ve
tor)e2 = e1 + �;for some � 2 R2. (For ea
h set A and ve
tor x we write A + x = fa+ x : a 2 Ag.) Let then �u be themeasure whi
h is equal to ar
-length on e1 and negative ar
-length on e2 (see Figure 7). Sin
e every part ofe1 e2� u+ + ++ - - - - -Figure 7: The measure �u supported on two parallel edges of the polygon e1 and e2, with opposite sign onea
h edge.a translate of e1 in the tiling P + � has to be 
an
elled by part of a 
opy of e2 it follows thatX�2��u(x� �)is the zero measure in R2. It also intuitively obvious that the vanishing of the above measure for all relevantdire
tions (i.e. those appearing as edge-dire
tions) u also implies tiling at some integer level.So a 
onvex symmetri
 polygon P tiles multiply with a multiset � if and only if for ea
h pair e and e+ �of parallel edges of P X�2��e(x� �) = 0; (1.10)where �e is the measure in R2 that is ar
-length on e and negative ar
-length on e + � . Condition (1.10)then be
omes �e � Æ� = 0 or, taking Fourier Transforms (arguing as in x1.2),
�e �
Æ� = 0:16



and supp
Æ� � Z(
�e) (1.11)for all edge-dire
tions e.1.4.1 The shape of the zero-setHere we study the zero-set of 
�e and determine its stru
ture. We �rst 
al
ulate 
�e in the parti
ular 
asewhen e is parallel to the x-axis, for simpli
ity. Let � 2M (R2) be the measure de�ned by duality by�(�) = Z 1=2�1=2 �(x; 0) dx; 8� 2 C(R2):That is, � is ar
-length on the line segment joining the points (�1=2; 0) and (1=2; 0). Cal
ulation givesb�(�; �) = sin���� :Noti
e that b�(�; �) = 0 is equivalent to � 2Zn f0g.If �L is the ar
-length measure on the line segment joining (�L=2; 0) and (L=2; 0) we have
�L(�; �) = sin�L���and Z(
�L) = �(�; �) : � 2 L�1Zn f0g	:Write � = (a; b) and let �L;� be the measure whi
h is ar
-length on the segment joining (�L=2; 0) and(L=2; 0) translated by �=2 and negative ar
-length on the same segment translated by ��=2. That is, wehave �L;� = �L � (Æ�=2 � Æ��=2);and, taking Fourier Transforms, we getd�L;� (�; �) = �2sin�L��� sin�(a� + b�):De�ne u = �j�j2 and v = (1=L; 0). It follows that (u? is a unit ve
tor orthogonal to u)Z(d�L;� ) = (Zu+Ru?) [ (Zn f0gv +Rv?):(Ea
h of the two summands in the union above 
orresponds to ea
h of the fa
tors in the formula for d�L;� .)This a set of straight lines of dire
tion u? spa
ed by juj and 
ontaining 0 plus a similar set of lines of dire
tionv?, spa
ed by jvj and 
ontaining zero. However in the latter set of parallel lines the straight line through 0has been removed (see Figure 8). We state this as a theorem for later use, formulated in a 
oordinate-freeway.De�nition 1.5. (Geometri
 inverse of a ve
tor)The geometri
 inverse of a non-zero ve
tor u 2 R2 is the ve
toru� = ujuj2 :Theorem 1.9. Let e and e + � be two parallel line segments (translated by � , of magnitude and dire
tiondes
ribed by e, symmetri
 with respe
t to 0). Let also �e;� be the measure whi
h 
harges e with its ar
-lengthand e+ � with negative its ar
-length. ThenZ(d�e;� ) = (Z�� +R��?) [ (Zn f0ge� +Re�?): (1.12)17



0 missing lineuvFigure 8: The zero-set Z(d�L;� ) = (Zu+Ru?) [ (Zn f0gv +Rv?), with u = �j�j2 and v = (1=L; 0)1.4.2 Completion of the argumentThe interse
tion of all the relevantZ(
�e) is easily shown to be a dis
rete set, ex
ept when P is a parallelogram.To 
on
lude the argument we show that the tempered distribution 
Æ� is (a) lo
ally a measure, and (b)the point masses of 
Æ� are uniformly bounded. This is a

omplished using the following two Theorems.Theorem 1.10. Suppose that � 2 Rd is a multiset with density �, Æ� = P�2� Æ�, and that 
Æ� is a measurein a neighborhood of 0. Then 
Æ�(f0g) = �.Proof. Take � 2 C1 of 
ompa
t support with �(0) = 1. We have
Æ�(f0g) = limt!1
Æ�(�(tx))= limt!1 Æ�(t�d b�(�=t))= limt!1 t�dX�2� b�(�=t)= limt!1 Xn2Zd X�2Qn t�db�(�=t)where, for �xed and large T > 0, Qn = [0; T )d + Tn; n 2Zd:Sin
e � has density � it follows that for ea
h � > 0 we 
an 
hoose T large enough so that for all nj� \Qnj = �jQnj(1 + Æn);with jÆnj � �. For ea
h n and � 2 Qn we haveb�(�=t) = b�(Tn=t) + r�18



with jr�j � CTt�1


rb�


L1(t�1Qn). Hen
e
Æ�(f0g) = limt!1 Xn2Zd t�d X�2Qn(b�(Tn=t) + r�)= limt!1 Xn2Zd t�d�jQnj(1 + Æn)b�(Tn=t) +limt!1 Xn2Zd t�d X�2Qn r�= limt!1S1 + limt!1S2:We have �����S1 �Xn t�d�jQnjb�(Tn=t)����� � �Xn t�d�jQnj���b�(Tn=t)��� (1.13)The �rst sum in (1.13) is a Riemann sum for � RRd b� = � and the se
ond is a Riemann sum for � RRd ���b���� <1.For S2 we have jS2j � C Xn2Zd t�d�jQnj(1 + Æn)T t�1


rb�


L1(t�1Qn)� C�T t�1 Xn2Zd t�djQnj


rb�


L1(t�1Qn):The sum above is a Riemann sum for RRd ���rb����, whi
h is �nite, hen
e limt!1 S2 = 0.Sin
e � is arbitrary the proof is 
omplete.Remark 1.2. The same proof as that of Theorem 1.10 shows that, if� = X�2� 
�Æ�;with j
�j � C, � is of density 0 and the tempered distribution b� is lo
ally a measure in the neighborhood ofsome point a 2 R2, then we have b�(fag) = 0.Theorem 1.11. Suppose that the multiset � � Rd has density uniformly bounded by � and that, for somepoint a 2 Rd and R > 0, supp
Æ� \BR(a) = fag:Then, in BR(a), we have 
Æ� = wÆa, for some w 2 C with jwj � �.Proof. It is well known that the only tempered distributions supported at a point a are �nite linear
ombinations of the derivatives of Æa. So we may assume that, for � 2 C1(BR(a)),
Æ�(�) =X� 
�(D�Æa)(�) = X� (�1)j�j
�D��(a); (1.14)where the sum extends over all values of the multiindex � = (�1; : : : ; �d) with j�j = �1 + � � �+ �d � m (the�nite degree) and D� = ��11 � � ���dd as usual.We want to show that m = 0. Assume the 
ontrary and let �0 be a multiindex that appears in (1.14)with a non-zero 
oeÆ
ient and has j�0j = m. Pi
k a smooth fun
tion � supported in a neighborhood of 0whi
h is su
h that for ea
h multiindex � with j�j � m we have D��(0) = 0 if � 6= �0 and D�0�(0) = 1. (To
onstru
t su
h a �, multiply the polynomial (1=�0!)x�0 with a smooth fun
tion supported in a neighborhoodof 0, whi
h is identi
ally equal to 1 in a neighborhood of 0.)19



For t!1 let �t(x) = �(t(x� a)). Equation (1.14) then gives that
Æ�(�t) = tm(�1)m
�0 : (1.15)On the other hand, using (�(t(x� a)))^ (�) = e�2�iha;�=tit�d b�(�=t);we get 
Æ�(�t) = X�2� e�2�iha;�=tit�db�(�=t): (1.16)Noti
e that (1.16) is a bounded quantity as t!1 by a proof similar to that of Theorem 1.10, while (1.15)in
reases like tm, a 
ontradi
tion.Hen
e 
Æ� = wÆa in a neighborhood of a. The proof of Theorem 1.10 again gives that jwj � �.We are now ready to prove the result [K00a℄ that �nishes the argument.Theorem 1.12. (Kolountzakis, 2000)Suppose that � � R2 is a dis
rete multiset of uniformly bounded density and that
Æ� =  X�2� Æ�!^is lo
ally a measure with ���
Æ����(BR(0)) � CR2;for some positive 
onstant C and R � 1. Assume also that 
Æ� has dis
rete support. Then � is a �nite unionof translated latti
es.Proof. De�ne the sets (not multisets)�k = f� 2 � : � has multipli
ity kg:By Meyer's Theorem 1.5 (applied for the base set of the multiset � with the 
oeÆ
ients 
� equal to the
orresponding multipli
ities) ea
h of the �k is in the 
oset ring of R2.By Theorem 1.6 it follows that the dis
rete set �k 
an be 
onstru
ted from latti
es inR2 (two-dimensional,one-dimensional or points) using �nitely many operations and one shows easily that the set �k has the form�k = 0� J[j=1Aj n (B(j)1 [ � � � [B(j)nj )1A [ L[l=1Ll 4 F; (1.17)where A1; : : : ; AJ are 2-dimensional translated latti
es, Ll and B(j)i are 1-dimensional translated latti
es andF is a �nite set (J; L � 0). The latti
es Aj may be assumed to be have pairwise interse
tions of dimensionat most 1.We may thus write �k = A4B; (1.18)with A = SJj=1Aj , where the 2-dimensional translated latti
es Aj have pairwise interse
tions of dimensionat most 1, and densB = 0.Hen
e Æ�k = JXj=1 ÆAj + �;where � = Pf2F 
fÆf , densF = 0 and j
f j � C(J). The set F 
onsists of B and all points 
ontained in atleast two of the Aj . 20



Combining for all k, and reusing the symbols Aj, � and F , we getÆ� = JXj=1 ÆAj + �:But 
Æ� and PJj=1dÆAj are both (by the assumption and the Poisson Summation Formula) dis
rete measures,and so is therefore b�. However densF = 0 and the boundedness of the 
oeÆ
ients 
f implies that b� has nopoint masses (see Remark 1.2), whi
h means that b� = 0 and so is �. Hen
e Æ� =PJj=1 ÆAj , or� = J[j=1Aj ; as multisets:Last, observe that the support of 
Æ� is 
ontained in the interse
tion of two grids of the type shownin Theorem 1.9, and has therefore (remember it's a dis
rete set) bounded density. This proves that���
Æ����(BR(0)) � CR2 and we 
an invoke Theorem 1.12.
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2 Le
ture 2: Problems of latti
e tiling.Here we will examine several latti
e tiling problems. The study of latti
e tilings in Fourier spa
e is parti
ularlysimple as explained in x1.2.1f + � is a tiling if and only if bf vanishes on the dual latti
e ��, ex
ept at zero.The study of latti
e tiling does not involve at all distributions whi
h are not measures. The Fourier Analysisinvolved is nothing more than the usual multi-dimensional Fourier Series plus a 
hange of variable to go fromthe integer to the arbitrary latti
e.2.1 A new equivalent form of a theorem of Haj�osLet us start by quoting a well known theorem of Minkowski in the Geometry of Numbers.Theorem 2.1. (Minkowski, 
a. 1900)Let A 2 GL(d;R) have detA = 1. Then there is x 2Zd n f0g with kAxk1 � 1.Proof. Let � = AZd and U = [�12 ; 12 ℄. We want to show that � \ (2U ) 
ontains something besides 0.Suppose, on the 
ontrary, that � \ (2U ) = f0g. Then, there is � > 0 su
h that forU� = [�12 � �; 12 + �℄we have � \ (2U�) = f0g. We 
an rewrite this as(�� �) \ (U� � U�) = f0g;whi
h means that the 
opies U� + �, � 2 �, are disjoint (we have a pa
king). But dens � = 1 and jU�j > 1,whi
h is a 
ontradi
tion, a

ording to Lemma 1.3.The following theorem of Haj�os [Haj41℄ proved a 
onje
ture of Minkowski some forty years after it wasposed. This 
onje
ture 
on
erned the 
ase when one 
ould have a stri
t inequality in Theorem 2.1.Theorem 2.2. (Haj�os, 1941)Let A 2 GL(d;R) have detA = 1. Then there is x 2Zd with kAxk1 < 1 unless A has an integral row.Haj�os a
tually worked on the following equivalent form of the Minkowski 
onje
ture, whi
h involves latti
etilings by a 
ube. This form was already known to Minkowski and most results on Minkowski's 
onje
tureleading up to Haj�os's eventual proof have used this form.Theorem 2.3. If Q = [�1=2; 1=2℄d is a 
ube of unit volume in Rd, � � Rd is a latti
e, andRd = Q+ �is a latti
e tiling of Rd then there are two 
ubes in the tiling that share a (d� 1)-dimensional fa
e. In otherwords, for some i = 1; : : : ; d, the standard basis ve
tor ei = (0; : : : ; 0; 1; 0; : : :; 0)> 2 �.Keller [Kel30℄ 
onje
tured that the same is true even without the latti
e assumption. That is, Keller
onje
tured that in any tiling of Eu
lidean spa
e by translates of a 
ube there are two 
ubes in the tilingwhi
h share a (d�1)-dimensional fa
e. This is indeed true up to dimension 6 but was disproved by Lagariasand Shor [LS92℄ for d � 10. The remaining 
ases 7 � d � 9 remain open.Theorem 2.2 =) Theorem 2.3.Let � = AZd with detA = 1, Q+ � = Rd. Then, either there is a non-zero �-point in the interior of 2Q orA has an integral row. The �rst 
annot happen be
ause of the tiling assumption. Therefore aij 2Zfor some22



i and for all j. Again be
ause of tiling it follows that g
d(ai1; : : : ; ai;d) = 1. Otherwise the i-th 
oordinatesof all �-points would be multiples of G = g
d(ai1; : : : ; ai;d) > 1, whi
h is impossible (there would be gaps inthe tiling). Let Rd�1 be the subspa
e spanned by all ej , j 6= i, and de�ne �0 = �\Rd�1 and Q0 = Q\Rd�1.It follows that Rd�1 = �0+Q0 is a tiling of Rd�1. By indu
tion then �0 
ontains some ve
tor of the standardbasis and so does �.Theorem 2.3 =) Theorem 2.2.Theorem 2.3 easily implies the seemingly stronger statement that, if AZd+Q = Rd is a tiling then, aftera permutation of the 
oordinate axes, the matrix A takes the form0BB� 1 0 0 : : : 0a2;1 1 0 0: : : : : : : : : : : : : : :ad;1 : : : : : : : : : 1 1CCA (2.1)Using this remark, if AZd\ (�1; 1)d = f0g we get, sin
e detA = 1, that AZd + Q = Rd and, therefore, A is(after permutation of the 
oordinate axes) of the type (2.1), and thus has an integral row (and this propertyis preserved under permutation similarity).We now prove that the following is equivalent to Theorems 2.2 and 2.3 [K98℄.Theorem 2.4. (Kolountzakis, 1998)Let B 2 GL(d;R) have detB = 1 and the property that for all x 2 Zd n f0g some 
oordinate of the ve
torBx is a non-zero integer. Then B has an integral row.Open Problem 3. Prove this 
ombinatorial statement dire
tly, thereby obtaining a new proof of theMinkowski Conje
ture.Remark 2.1. One might think that Theorem 2.4 
an be proved equivalent dire
tly to Theorem 2.2, whi
h itresembles most. It is, indeed, 
lear that Theorem 2.2 implies Theorem 2.4. However, the proof that is givenhere is that of the equivalen
e of Theorems 2.4 and 2.3. I do not know of a more dire
t proof of the fa
t thatTheorem 2.4 implies Theorem 2.2.We shall need the following simple lemma.Lemma 2.1. Let A 2 GL(d;R) be a non-singular matrix. The latti
e A�>Zd 
ontains the basis ve
tor ei ifand only if the i-th row of A is integral.Proof. Without loss of generality assume i = 1.If e1 2 A�>Zd then e1 = A�>x for some x 2Zd. Therefore, for all y 2Zd we have(Ay)1 = e>1 Ay = x>A�1Ay = x>y 2Z:It follows that (Ay)1 2Zfor all y 2Zd and the �rst row of A is integral.Conversely, if the �rst row of A is integral, then, for all y 2ZdZ3 (Ay)1 = x>y;where A�>x = e1 (x 2 Rd). It follows that x 2Zd and e1 2 A�>Zd.Proof of the equivalen
e of Theorems 2.3 and 2.4.Let f(x) = 1 (x 2 Q) be the indi
ator fun
tion of the unit-volume 
ube Q = [�1=2; 1=2℄d. A simple
al
ulation shows that bf (�) = dYj=1 sin��j��j ; (2.2)23



so that Z := n bf = 0o = �� 2 Rd : some �j is a non-zero integer	: (2.3)Therefore, if � = B�>Zd then (sin
e � has volume 1)Q+ � = Rd() �� n f0g � Z;where �� = BZd. In words, Q tiles with � = B�>Zd if and only if for every x 2Zd n f0g the ve
tor Bx hassome non-zero integral 
oordinate.Theorem 2.3 =) Theorem 2.4.Suppose x 2Zd n f0g implies some (Bx)i 2Zn f0g. Then Q + � = Rd and from Theorem 2.3, say, e1 2 �,whi
h, from Lemma 2.1, implies that the �rst row of B is integral.Theorem 2.4 =) Theorem 2.3.Assume Q + � = Rd. It follows that for every x 2 Zd n f0g the ve
tor Bx has some non-zero integral
oordinate. By Theorem 2.4 B must have an integral row, whi
h, by Lemma 2.1, implies that some ei 2 �.2.2 Tilings by not
hed and extended 
ubesIn this se
tion we prove that some simple shapes (like those in Figure 9) admit latti
e tilings.
(a) (b) (
)Figure 9: These shapes admit latti
e tilings2.2.1 The not
hed 
ubeWe 
onsider �rst the unit 
ube Q = ��12 ; 12�dfrom whose 
orner (say in the positive orthant) a re
tangle R has been removed with sides-lengths Æ1; : : : ; Æd(0 � Æj � 1). That is, we 
onsider the \not
hed 
ube":N = Q nRwhere R = dYj=1�12 � Æj ; 12� :24



It is shown in Figure 9 (a).We give a new [K98℄, Fourier-analyti
, proof of the following result of Stein [St90℄.Theorem 2.5. (Stein, 1990)The not
hed 
ube N admits a latti
e tiling of Rd.After a simple 
al
ulation we obtain
�N (�) = dYj=1 sin��j��j � F (�) dYj=1 sin�Æj�j��j ; (2.4)where F (�) = exp(�iK(�)) with K(�) = dXj=1(Æj � 1)�j : (2.5)Using (1.5) it is enough to exhibit a latti
e � � Rd, of volume equal tojN j = 1� Æ1 � � �Æd;su
h that 
�N vanishes on �� n f0g.2.2.2 Latti
es in the zero-setWe de�ne the latti
e �� as those points � for whi
h�1 � Æ2�2 = n1;�2 � Æ3�3 = n2;: : : (2.6)�d � Æ1�1 = nd;for some n1; : : : ; nd 2Z. That is, �� = A�1Zd, whereA = 0BBBBB� 1 �Æ21 �Æ3 . . . 1 �Æd�Æ1 1 1CCCCCA : (2.7)Therefore � = A>Zd and the volume of � is equal to jdetAj. Expanding A along the �rst 
olumn we geteasily that detA = 1� Æ1 � � �Æd, whi
h is the required volume.We now verify that 
�N vanishes on �� n f0g.Assume that 0 6= � 2 ��. Adding up the equations in (2.6) we getK = K(�) = �(n1 + � � �+ nd):If all the 
oordinates of � are non-zero we 
an write
�N (�) = 1�d�1 � � ��d 0� dYj=1 sin��j � (�1)K(�) dYj=1 sin�Æj�j1A : (2.8)Observe from (2.6) that sin��j = (�1)nj sin�Æj+1�j+1;25



where the subs
ript arithmeti
 is done modulo d, from whi
h we get 
�N (�) = 0, sin
e the fa
tors in the twoterms of (2.8) mat
h one by one.It remains to show that 
�N (�) = 0 even when � has some 
oordinate equal to 0, say �1 = 0.Consider the numbers �1; : : : ; �d arranged in a 
y
le and letI = f�m; �m+1; : : : ; �1; : : : ; �k�1; �kgbe an interval around �1 whi
h is maximal with the property that all its elements are 0. Then �m�1 6= 0 and�k+1 6= 0 and from (2.6) we get�m�1 � Æm�m = nm and �k � Æk+1�k+1 = nk: (2.9)We dedu
e that nm and nk are both non-zero and therefore that �m�1 and Æk+1�k+1 are both non-zerointegers and sin��m�1 = sin�Æk+1�k+1 = 0. This means that both terms in (2.4) vanish and so does 
�N (�).So we proved that for the latti
e � = A>Zd, where A is de�ned in (2.7), we have N + � = Rd. Clearly,if � is a 
y
li
 permutation of f1; : : : ; dg and if instead of the matrix A we have the matrix A0 whose i-throw has 1 on the diagonal, �Æ�i at 
olumn �i and 0 elsewhere, we get again a latti
e tiling with the latti
e(A0)>Zd. Stein [St90℄ as well as S
hmerl [S
h94℄ have shown that these (d�1)! latti
e tilings of the not
hed
ube (one for ea
h 
y
li
 permutation of f1:; : : : ; dg) are all non-isometri
 when the side-lengths Æj are alldistin
t.A deeper result of S
hmerl [S
h94℄ is that there are no other translational tilings of the not
hed 
ube,latti
e or not. This is something that 
annot apparently be proved with the Fourier Analysis approa
h.2.2.3 Extended 
ubesLet us now allow the parameters Æ1; : : : ; Æd to take on any non-zero real value subje
t only to the restri
tionÆ1 � � �Æd 6= 1; (2.10)and let the fun
tion '(�) be equal to the right-hand side of (2.4). Let again the matrix A be de�ned by(2.7) and � = A>Zd as before. We have again detA = 1� Æ1 � � � Æd.The 
al
ulations we did in x2.2.2 show that ' vanishes on �� n f0g, hen
e, if �' is the inverse FourierTransform of ', �' tiles Rd with � and weight'(0)j1� Æ1 � � � Ædj = sgn(1� Æ1 � � �Æd); (2.11)where sgn(x) = �1 is the sign of x.The fun
tion �' is given by �'(x) = �Q(x)� sgn(Æ1 � � � Æd) (x); (2.12)where  (x) = �Q�x1 � (1� Æ1)=2jÆ1j ; : : : ; xd � (1 � Æd)=2jÆdj � : (2.13)Noti
e that  (x) is the indi
ator fun
tion of a re
tangle R = R(Æ1; : : : ; Æd) with side-lengths jÆ1j; : : : ; jÆdj
entered at the point P = �12 ; : : : ; 12�� 12 (Æ1; : : : ; Æd) : (2.14)The re
tangle R interse
ts the interior of Q only in the 
ase Æ1 > 0; : : : ; Æd > 0 and when this happens �' isan indi
ator fun
tion only if we also have Æ1 � 1; : : : ; Æd � 1, whi
h is the 
ase of the not
hed 
ube that weexamined in x2.2.2. 26



Otherwise (not all the Æs are non-negative) �' is an indi
ator fun
tion only when sgn(Æ1 � � �Æd) = �1, i.e.,the number of negative Æs is odd. In this 
ase we have that�' = �Q[Rand from (2.11) we get that Q [R tiles with � and weight 1. We 
an now prove the following [K98℄.Theorem 2.6. (Kolountzakis, 1998)Let Q and R be two axis-aligned re
tangles in Rd with sides of arbitrary length and disjoint interiors. Assumealso that Q and R have a vertex K in 
ommon and interse
tion of odd 
odimension.Then Q [R admits a latti
e tiling of Rd of weight 1.For example, the extended 
ubes shown in Figure 9 (b),(
) admit latti
e tilings ofR3, as the 
orresponding
odimensions are 1 and 3.Proof. After a linear transformation we 
an assume that Q = [�1=2; 1=2℄d, that Q and R share the vertexK = (1=2; : : : ; 1=2) and that Q \R has 
odimension k (an odd number) andQ \R � �x 2 Q : x1 = � � � = xk = 12�:Let the side-lengths of R be 
1; : : : ; 
d > 0. De�neÆj = � �
j ; if 1 � j � k;
j ; if k + 1 � j � d.It follows that, with this assignment for the Æj , the indi
ator fun
tion of R is equal to the fun
tion�sgn(Æ1 � � �Æd) (x) of (2.12) and tiling follows from the previous dis
ussion.Most likely the extended 
ubes with an interse
tion of even 
odimension do not tile, at least not forgeneral side-lengths. This is 
lear in dimension two and it is 
on
eivable that some 
ombinatorial argument
ould easily show this in any dimension. The Fourier Analysis approa
h does not seem to be very helpfulwhen one tries to disprove that something is a translational tile.Open Problem 4. In the setting of Theorem 2.6 prove that if the 
odimension is even then the set Q [Ris not a tile.2.3 The Steinhaus tiling problem2.3.1 The original, two-dimensional 
aseSteinhaus [Mos81, problem 59℄ asked whether there is a planar set S whi
h, no matter how translated androtated, always 
ontains exa
tly one point with integer 
oordinates.De�nition 2.1. (Steinhaus property)A set S � R2 has the Steinhaus property if for every x 2 R2 and for every rotationA� = � 
os � � sin �sin � 
os � �we have # �Z2\ (A�S + x)� = 1; (2.15)where A�S + x = fA�s + x : s 2 Sg.Sierpi�nski [Sie59℄ �rst proved that a set whi
h is bounded and either open or 
losed 
annot have theSteinhaus property. Croft [Cro82℄ and Be
k [Be
89℄ proved the same of any set whi
h is bounded and27



measurable. (Croft's approa
h is more dire
t and geometri
. Be
k is using Fourier Analysis.) Ciu
u [Ciu96℄shows that any Steinhaus set must have empty interior, without assuming boundedness. Several variationsof the problem have been investigated by Komj�ath [Kom92℄ from a rather di�erent point a view, where onepla
es a di�erent subgroup of the plane in pla
e ofZ2.Very re
ently it was shown by Ja
kson and Mauldin [JM02℄ that Steinhaus sets do indeed exist. Butthe 
onstru
tion there does not furnish measurable su
h sets and it is pre
isely under the assumption ofmeasurability that we study the existen
e problem for Steinhaus sets here, using Fourier Analysis.To begin, noti
e that the question of Steinhaus 
an be rephrased as follows:(a) Is there a set E whi
h tiles the plane if translated at any rotated 
opy ofZ2?(b) Or, is there a 
ommon set of 
oset representatives (fundamental domain) of all groups R�Z2 in thegroup R2?We only 
are for measurable Steinhaus sets (if they exist) so tiling, above, is to be interpreted in the almosteverywhere sense, as it is normally interpreted throughout this survey.As �rst noti
ed by Be
k [Be
89℄, the Steinhaus question in the form (a), above, is equivalent to askingif there exists a measurable set E � R2, of measure 1, su
h that the Fourier Transform of its indi
atorfun
tion vanishes on all 
ir
les of the plane whi
h are 
entered at the origin and pass through some pointof the integer latti
e Z2. This is so sin
e for a set to have the Steinhaus property it must tile the planewhen translated by any rotation of Z2 (this alone implies of 
ourse that jEj = 1). These sets are latti
es,hen
e this is equivalent to 
�E vanishing on all these latti
es, whi
h are self-dual. The union of these rotatedlatti
es is pre
isely the set of 
ir
les mentioned above. We state this as a Theorem.Theorem 2.7. A measurable set E � R2 is simultaneously a tile for all rotations of Z2 if and only if it hasmeasure 1 and its Fourier Transform 
�E vanishes on all 
ir
les with 
enter at the origin and radius of theform pm2 + n2, with m;n 2 N, not both 0.It is now easy to see that su
h sets 
annot be bounded, if they exist. Indeed, the restri
tion onto anyline L through 0 of 
�E is nothing but the one-dimensional Fourier Transform of the fun
tion �E proje
tedonto L, i.e., of the fun
tion f(t) = ZL? �E(tu+ s) ds;where u is a unit ve
tor on L and L? is the line through 0 whi
h is orthogonal to L. But if E is boundedthe fun
tion f(t) has 
ompa
t support, hen
e 
�E(tu) is an entire fun
tion of exponential type, and, as su
h,it should have at most C �R zeros in the interval (�R;R), where C > 0 is a 
onstant. (See the dis
ussion inx1.3.2.) However, the number of zeros of 
�E(tu) is twi
e the number of 
ir
les out to radius R, or, in otherwords, twi
e the number of integers expressible as a sum of two integer squares and of size up to R2. Butthis number is almost quadrati
 in R. It is a well known result of Landau [Fri82℄ that it is � 
R2 log�1=2R.With a more 
areful and quantitative approa
h along similar lines, but not using entire fun
tions, it wasthen proved by the author [K96℄ that any set E with the Steinhaus property must be large at in�nity:ZE jxj� dx = 1; for any � > 103 :With mu
h more 
are it was obtained in [KW99℄ by the author and Tom Wol� thatTheorem 2.8. (Kolountzakis and Wol�, 1997)If E � R2 is a measurable Steinhaus set then RE jxj� = 1, for all � > 46=27.The number 46=27 
omes from the best known estimate known for the 
ir
le problem. This is the problemwhere one asks for the best upper estimates in the error term E(R) (as R!1) in the expressionN (R) = �R2 + E(R);28



where N (R) is the number of integer latti
e points in the disk fjxj � Rg � R2. Even if the 
onje
turedbest possible upper bound E(R) = O(R1=2+�) gets proved the estimate for the Steinhaus tiling problem inTheorem 2.8 would only be
ome true for all � > 1. So it appears that if one is going to disprove the existen
eof measurable Steinhaus sets in dimension two one needs some rather di�erent approa
h.This seems to be the state of knowledge for the two-dimensional 
ase.2.3.2 The problem in dimension d � 3The Steinhaus problem generalizes very naturally to any dimension. One asks for a set E � Rd su
h thatno matter what orthogonal linear transformation you apply to it, it still tiles Rd when translated by Zd.With pre
isely the same reasoning as before, one is looking for a measurable set of measure 1 su
h that theFourier Transform of its indi
ator fun
tion vanishes on all spheres 
entered at the origin that 
ontain someinteger latti
e point.It is be
ause of the fa
t that we know pre
isely whi
h numbers are representable as sums of three squaresthat the following result [KW99℄ holds.Theorem 2.9. (Kolountzakis and Wol�, 1997)If f 2 L1(Rd), d � 3, and bf vanishes on all spheres 
entered at the origin through some latti
e point, thenf is a.e. equal to a 
ontinuous fun
tion.In parti
ular, there are no measurable Steinhaus sets in dimension d � 3.Here we show an alternative way [KP02℄ of proving that there are no sets with the Steinhaus propertyin dimension d � 3. We emphasize though that Theorem 2.9 is mu
h stronger than Theorem 2.10 givenbelow. See also some related results of Mauldin and Yingst [MY02℄.Theorem 2.10. (Kolountzakis and Papadimitrakis, 2000)There are no measurable Steinhaus sets in dimension d � 3.Proof. In any dimension d write B for the union of all spheres 
entered at the origin that go through atleast one latti
e point. The point 0 is in
luded in B.Assume from now on that the set E is a Steinhaus set in dimension d.Suppose now that we 
an �nd a latti
e �� � B with det �� not an integer. Sin
e 
�E vanishes on �� nf0git follows that E + � is a tiling at level ` = jEj � dens � = 1 � det ��, whi
h is not an integer. This is a
ontradi
tion as, obviously, any set may only tile at an integral level.Looking at the quadrati
 form hA>Ax; xi for ea
h latti
e �� = AZd we summarize the above observationsin the following lemmaLemma 2.2. If there exists a positive de�nite quadrati
 form Q(x) = Q(x1; : : : ; xd) = hBx; xi su
h that forall integral x1; : : : ; xd its value is the sum of d integer squares, and the determinant of Q, detB, is not thesquare of an integer, then there are no Steinhaus sets in dimension d.The 
ase d � 4:Consider the symmetri
 4 � 4 matrix B with 1 on the diagonal and 1=2 everywhere else. The matrix Bis positive de�nite (its eigenvalues are 1=2, 1=2, 1=2 and 5=2) and its determinant is 5=16. It de�nes thequadrati
 form Q(x) = Q(x1; : : : ; x4) = hBx; xi = 4Xi=1 x2i +Xi>j xixj;whi
h is obviously integer valued and has non-square determinant. Furthermore, every non-negative integermay be written as a sum of four squares (Lagrange). From Lemma 2.2 it follows that there are no Steinhaussets for d = 4. We easily see that this extends to all higher dimensions by taking as our matrix the identityin one 
orner of whi
h sits the 4� 4 matrix B des
ribed above.29



The 
ase d = 3:The determinant of the form that appears in the following Theorem is 2 � 11 � 6, whi
h is not a square, hen
ethere are no Steinhaus sets in dimension 3.Theorem 2.11. For ea
h x; y; z 2Zthe numberQ(x; y; z) = 2x2 + 11y2 + 6z2is a sum of three integer squares.Proof. Suppose this is false and that there are (x0; y0; z0) 6= (0; 0; 0) and(a) Q(x0; y0; z0) is not a sum of three squares, and(b) x20 + y20 + z20 is minimal.From (a), and the well known 
hara
terization of those natural numbers that 
annot be written as a sum ofthree squares, we have that Q(x0; y0; z0) = 4�(8k + 7); � � 0; k � 0:If all x0; y0; z0 are even, we have � � 1, and, setting x0 = 2x1, y0 = 2y1 and z0 = 2z1, we obtain thatQ(x1; y1; z1) is not a sum of three squares, whi
h 
ontradi
ts the minimality of the initial triple (x0; y0; z0).We 
on
lude that at least one of x0; y0; z0 is odd.Case No 1: � = 0.Then Q(x0; y0; z0) = 7 mod 8. But the quadrati
 residues mod 8 are 0, 1 and 4, and one 
he
ks byexamining all the possibilities that Q is never 7 mod 8.Case No 2: � = 1.Then Q(x0; y0; z0) = 32k + 28. Hen
e y0 is even, say y0 = 2y1. We getx20 + 22y21 + 3z20 = 16k+ 14;from whi
h we 
on
lude that x0 and z0 are odd, x0 = 2x1 + 1, z0 = 2z1 + 1. Substitution gives4x21 + 4x1 + 1 + 22y21 + 12z21 + 12z1 + 3 = 16k+ 142x1(x1 + 1) + 11y21 + 6z1(z1 + 1) + 2 = 8k + 72x1(x1 + 1) + 11y21 + 6z1(z1 + 1) = 5 mod 8:But �2 + � = 0 or 2 or 4 or 6 mod 8, for all �, hen
e, by applying this to the �rst and last term in the abovesum, and 
he
king all possibilities we get a 
ontradi
tion.Case No 3: � � 2.As in Case No 2: y0 = 2y1, z0 = 2z1 + 1, x0 = 2x1 + 1. Hen
e2x1(x1 + 1) + 11y21 + 6z1(z1 + 1) + 2 = 4��1(8k + 7); � � 1 � 1:So y1 is even, y1 = 2y2, whi
h givesx1(x1 + 1) + 22y22 + 3z1(z1 + 1) + 1 = 2 � 4��2(8k + 7);a 
ontradi
tion as the left hand side is odd while the right hand side is even. We point outhere that the a
tual quadrati
 form was only found by a semi-automated 
omputer sear
h. See [MY02℄ fora more systemati
 study of the method.It is also shown in [KP02℄ that the method shown above 
annot be applied in dimension 2 to show thenon-existen
e of measurable sets with the Steinhaus property.Theorem 2.12. (Kolountzakis and Papadimitrakis, 2002)Any positive-de�nite binary quadrati
 form whose values are always sums of two integer squares must havea determinant whi
h is the square of an integer. 30



2.4 Multi-latti
e tiles2.4.1 A \�nite" Steinhaus problemThe Steinhaus question essentially asks if there is a set in the plane whi
h is simultaneously a translationaltile for ea
h translation set in the 
olle
tion�R�Z2 : 0 � � < 2�	; (R� is rotation by �):Restri
ting ourselves to the measurable 
ase again it is easy to see, using, for example, the Fourier method,that it is suÆ
ient for a set to be a tile for a 
ountable dense (in the obvious sense) subset of these latti
es(groups) in order to be a tile for all of them.The problem only be
omes signi�
antly di�erent if one restri
ts oneself to a �nite 
olle
tion of latti
es�0; : : : ;�n � Rd;all of the same volume, say volume 1, and asks for a measurable subset of Rd whi
h tiles with all of them.It turns out [K97℄ that this is generi
ally feasible and we give here a 
onstru
tion.Theorem 2.13. (Kolountzakis, 1997)If the latti
es �0; : : : ;�n � Rd all have the same volume and if the sum of their dual latti
es��0 + � � �+ ��nis a dire
t sum (i.e. there are no non-trivial relations �0 + � � �+ �n = 0 with �i 2 ��i ) then they possess aBorel measurable 
ommon tile (whi
h is generally unbounded).Proof. The 
ommon tile 
 � Rd that we 
onstru
t is a 
ountable union of disjoint 
losed polyhedra (infa
t, re
tangles).De�nition 2.2. (Property A)We shall say that a 
olle
tion of latti
es �0; : : : ;�n � Rd has Property A if for ea
h � > 0 and for ea
hx0; : : : ; xn 2 Rd there exist �0 2 �0; : : : ; �n 2 �n, with j�j j arbitrarily large, su
h thatjxi � �i � (xj � �j)j � �; for all i; j = 0; : : : ; n: (2.16)That is, we 
an get any 
olle
tion of points x0; : : : ; xn 2 Rd arbitrarily 
lose to ea
h other by translatingxi by some �i 2 �i, i = 0; : : : ; n.We �rst show that if the given 
olle
tion of latti
es has Property A then it has a 
ommon tile. At theend of the proof we indi
ate why it is pre
isely the 
olle
tions of latti
es with their duals having a dire
tsum that have Property A.The letter C will stand in this se
tion for a positive 
onstant that may not depend on the parameterK !1 and this 
onstant is not ne
essarily the same in all its o

uren
es.The latti
es �j, j = 0; : : : ; n, are given by�j = AjZd; detAj = 1: (2.17)Let Dj be the standard tile for the latti
e �j, i.e.,Dj = Aj [0; 1)d; (2.18)whi
h is a parallelepiped of volume 1.Let 
0 = ;. In the end we shall have 
 = 1[k=1
k;31



where the K-th approximation AK = K[k=1
khas measure �(AK) ! 1, as K !1, and for ea
h j = 0; : : : ; n almost all 
osets x+ �j have no more thanone point in AK . It follows that 
 
ontains exa
tly one element from almost all the 
osets of �j , for ea
hj = 0; : : : ; n, and is therefore a 
ommon tile for the 
olle
tion �0; : : : ;�n. Assume that we have alreadyde�ned 
0; : : : ;
K. The set 
K+1 will be de�ned as follows. The \proje
tion" �j : Rd! Dj is de�ned bythe relation x� �j(x) 2 �j :The \leftover" after stage K is then de�ned byL(K)j = Dj n �j(AK); for j = 0; : : : ; n: (2.19)We have to ensure that ��L(K)j �! 0, as K !1.
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Figure 10: Constru
tion of the 
ommon tile for two latti
es, d = 2Our 
onstru
tion will guarantee that ea
h of the leftovers L(K)j 
onsists of a �nite 
olle
tion of polyhedra.Choose � > 0 to be so small so as to be able to writeL(K)j =  S[s=1Q(j;K)s ! [ R(j;K); (j = 0; : : : ; n) (2.20)where the Q(j;K)s , s = 1; : : : ; S = S(K), are axis-aligned, 
losed 
ubes with disjoint interiors of side �, and��R(j;K)� � 1K : (2.21)Noti
e that the same number S = S(K) of 
ubes is used independently of j. (The 
on
tru
tion is shown fortwo latti
es in Figure 10 in dimension d = 2.) 32



For ea
h s = 1; : : : ; S, let 
(j;K)s be the 
enter of the 
ube Q(j;K)s and, using Property A, de�ne �(j;K)s 2 �jto be su
h that all 
(j;K)s � �(j;K)s ; j = 0; : : : ; n;are at most �K apart. The �(j;K)s are also taken large enough so that, for �xed j, no two translated 
ubesQ(j;K)s � �(j;K)s overlap.Consider then the interse
tion of the n+ 1 translated 
ubeseQ(K)s = n\j=0�Q(j;K)s � �(j;K)s � (2.22)and noti
e that �( eQ(K)s ) � �d � C �dK : (2.23)De�ne 
K+1 = S[s=1 eQ(K)s :We have L(K+1)j = L(K)j n �j(
K+1) and ��L(K)j �! 0;as K ! 1. This is so be
ause L(K)j n �j(
K+1) 
onsists of the sets R(j;K), j = 0; : : : ; n, whi
h have totalmeasure � n+ 1K plus a set of measure C �dK for ea
h s = 1; : : : ; S, whi
h amounts to no more than CK ofmeasure, as 
learly �dS � 1.Open Problem 5. Can two latti
es in generi
 position have a bounded measurable 
ommon tile?2.4.2 Multi-latti
e tiles: an appli
ation to Weyl-Heisenberg basesDe�nition 2.3. (Gabor or Weyl-Heisenberg bases)A Gabor (or Weyl-Heisenberg) basis of Rd is a fun
tion g 2 L2(Rd), together with two latti
es K = AZd(the translation latti
e) and L = BZd (the modulation latti
e) su
h that the 
olle
tion�g(x � �)e�2�i�x; � 2 K; � 2 L	; (2.24)is an orthonormal basis of L2(Rd).It had been known for some time (see the introdu
tion and referen
es in [HW01℄) that if there is aWeyl-Heisenberg basis for the latti
es K and L then it must be true thatdensK � densL = 1: (2.25)Apart from dimension 1 though, the 
onverse had not been known until Han and Wang [HW01℄ used theidea of multi-latti
e tiles to prove that whenever (2.25) holds then there is a g su
h that 
olle
tion (2.24) isan orthonormal basis of L2(Rd).Han and Wang [HW01℄ �rst proved that the generi
ity 
ondition des
ribed in Theorem 2.13 is notne
essary when the number of latti
es is two.Theorem 2.14. (Han and Wang, 2001)Whenever the latti
es �0 and �1 in Rd have the same volume then there exists a measuarable set E � Rdwhi
h tiles with both of them 33



Thus, for two latti
es of the same volume there is always a measurable 
ommon tile. This is not true forthree or more latti
es without some 
ondition, as the following result [K97℄ shows.Theorem 2.15. (Kolountzakis, 1997)There are three latti
es in R2 whi
h have the same volume and do not admit a 
ommon tile.Proof. Let �0 = (2Z)�Z; �1 =Z� (2Z); and �2 = �(k; l) 2Z2 : k = l mod 2	:It is easy to see that Z2 = 2Xi=0 �i = 2[i=0�i:Suppose now that 
 � R2 is su
h that for all x 2 R2, outside a set E of measure 0, we have that x + �i
ontains exa
tly one point of 
, for all i = 0; 1; 2. (We do not assume that 
 is measurable.) It follows thatfor almost all x 2 R2 (with an ex
eptional set perhaps di�erent from E) we have��(x +Z2) \
�� = 2 and j(x+ �i) \
j = 1; i = 0; 1; 2:Indeed, Z2 is the disjoint union of �0 and �0 + (1; 0) and so are all its translates. We de�ne the setE0 = E [ (E � (1; 0));whi
h is 
learly still a null set. Then, for x =2 E0 the set x +Z2 
ontains exa
tly two points of 
, sin
e thetwo disjoint 
opies of �0 therein both 
ontain exa
tly one 
-point.By translating 
 we may assume that this holds for x = 0. Let thenfz; wg =Z2\
:It follows that z �w 2Z2 and, sin
e Z2 = S3j=1 �j, z �w belongs to some �j. But then the 
-points z andw belong to the same �j-
oset, a 
ontradi
tion. Hen
e the �i have no 
ommon tile in R2 in a strong sense.We 
ontinue now with proof of Han and Wang [HW01℄ that (2.25) suÆ
es for the existen
e of a fu
ntiong su
h that the 
olle
tion (2.24) is a Weyl-Heisenberg basis. Suppose then that (2.25) holds. It follows thatthe latti
es K and L� have the same volume. Hen
e, by Theorem 2.14, there is a 
ommon tile E � Rd forK and L�. Let g = �E :For any f 2 L2(Rd) write then f(x) = X�2K f�(x) := X�2K g(x� �)f(x)whi
h is an orthogonal de
omposition pre
isely be
ause E is a K-tile. For ea
h �, f�(x) is a fun
tion onE + � whi
h is a L�-tile. But if a set 
 tiles with a latti
e L� then the 
olle
tionnexp2�ih�;xi : � 2 Lois an orthogonal basis for L2(
) (this is merely multi-dimensional Fourier Series plus a 
hange of variable,but see also Theorem 3.2 below). For 
 = E + � we therefore obtain thatf�(x) = X�2L hf�; e2�ih�;xiie2�i�x (x 2 E + �)is an orthogonal de
omposition and so is thenf(x) = X�2K;�2L hf; g(x � �)e2�ih�;xiig(x� �)e2�i�x;as as we had to show. 34



2.5 The support of \soft" multi-latti
e tilesFix the dimension d and take any �nite 
olle
tion of latti
es �1; : : : ;�N . Then the fun
tionf = �D1 � � � � � �DN ; (2.26)where Dj is any tile for �j, tiles with the given latti
es, as one 
an see dire
tly from the de�nition of tiling(if f + � is a tiling then so is f � g + �, even for non-latti
e �).For this parti
ular f (and whatever 
hoi
e of Dj) we havediamsupp f � CN;with a 
onstant that dependes only on d. This is easy to see as at least 1=d of the sets Dj will be \long"along the same one of the d 
oordinate axes and the 
onvolution of all of them will therefore also be longalong that axis.If one 
hooses appropriate parallelograms for the Dj 's one gets more or less the best known (to me atleast) 
onstru
tion as regards the diameter of the 
ommon tile of the 
olle
tion �1; : : : ;�N , where, now,we do not insist that the tile be an indi
ator fun
tion, but rather any integrable fun
tion. One 
an in thismanner get a tile whose support has diameter � N .It is not obvious at all that this size has to grow as a fun
tion of N . In fa
t, the following theorem[KW99℄, whi
h provides a lower bound for the diameter of the support of a 
ommon tile, is the only one ofits kind, uses (multivariable) entire fun
tion theory (some times ine�e
tive in su
h matters) and is still farfrom the best known upper bound (� N ).Theorem 2.16. (Kolountzakis and Wol�, 1997)Suppose that �1; : : : ;�N are unimodular latti
es in Rd with �i \ �j = f0g for all i 6= j. Suppose also thatthe non-zero f 2 L1(Rd) is a 
ommon tile for the �j. Thendiamsupp f � CdN1=d:Proof. All 
onstants below may depend only on the dimension d. We note that �1 \�2 = f0g implies thatthe latti
e ��1 is uniformly distributed mod ��2. This 
an be proved using Weyl's lemma{see for example[K97℄.We shall make use of a theorem of Ronkin [Ron72℄ and Berndtsson [Ber78℄ whi
h 
on
erns the zeroset on the real plane of an entire fun
tion of several 
omplex variables whi
h is of exponential type. Weformulate it as a lemma:Lemma 2.3. (Ronkin 1972, Berndtsson 1978)Assume that E � Rd is a 
ountable set with any two points having distan
e at least h and letdE = lim supr!1 jE \D(0; r)jjD(0; r)jbe its upper density (see De�nition 1.2). Assume that g : Cd ! C is an entire fun
tion vanishing on E whi
his of exponential type � < A(d)hd�1dE :Then g is identi
ally 0. (Here A(d) is an expli
it fun
tion of the dimension d.)When d = 1 this is 
lassi
al and follows from Jensen's formula.Assume that f : Rd! C is as in Theorem 3 and write� = diam supp f35



We may assume that suppf is 
ontained in a dis
 of radius . � 
entered at the origin, sin
e the assumptionsare una�e
ted by a translation of 
oordinates. Then bf 
an be extended to C d as an entire fun
tion ofexponential type C�, in fa
t ��� bf (x+ iy)��� � CfeC�jyj; for x+ iy 2 C d :Furthermore, sin
e f tiles with all �j, it follows that bf vanishes onZ = n[i=1��i n f0g:Observe that, sin
e every latti
e ��i is uniformly distributed mod every ��j , j 6= i, the density of points inea
h ��i whi
h are also in some ��j is 0 and therefore the density of the set Z is equal to n.In order to use Lemma 2.3 we have to sele
t a large (in terms of upper density), well-separated subsetof Z. Noti
e �rst that we 
an assume that for ea
h i all points of ��i are at least distan
e n� 1d apart. Forif u; v 2 ��i have ju� vj < n� 1d then, for a suitable 
onstant 
, the one-dimensional version of Lemma 2.3implies that the fun
tion bf on the subspa
e E = C (u � v) 
annot be of exponential type � 
n 1d . Indeed, bfwould have too many zeros on that subspa
e, namely all multiples of u � v, whi
h all belong to ��i . Notealso that bf does not vanish identi
ally on this subspa
e. But bf restri
ted to E is the Fourier Transform offE : E ! C de�ned by fE (x) = Rx+E? f(y) dy (here E? is the orthogonal 
omplement of E \Rn in Rn).Hen
e � � diam supp fE � Cn 1d , whi
h is what we want to 
on
lude about �.Suppose now that we want to extra
t a subset of Z whose elements are at least h distan
e apart, forsome h > 0 to be determined later. We shall say that point x of latti
e ��i is killed by point y of latti
e ��jif jx� yj < h. Then, we de�ne the subset Z 0 of Z as those points of Z whi
h are not killed by any point ofthe other latti
es. This set 
learly has all its points at distan
e at least h apart, provided thath � 12 minu;v2��i ju� vj � Cn� 1d ; (2.27)so that no point of a latti
e may kill a point of the same latti
e. Let us see how many points of ��2 are killedby some point of ��1. We use the uniform distribution of ��2 mod ��1.Fix a fundamental parallelepiped D1 of ��1. It is 
lear that only a fra
tion �(h) � Chd of D1 = Rd=��1has distan
e from 0 that is less than h (this distan
e is measured on the torus D1). As ��2 is uniformlydistributed mod ��1 the subset of points of ��2 whi
h are killed by some point of ��1 has density �(h). Hen
ethe density of those points of ��2 that are killed by any other latti
e is at most (n � 1)�(h) � Chdn. Wededu
e that the density of Z 0 is at least (1 � Cnhd)n. We now 
hoose h = 
n� 1d , for a suÆ
iently small
onstant 
, to ensure that the density of Z 0 is at least Cn. Applying Lemma 2.3 with g = bf and E = Z 0 weget � � CAhd�1n � Cn 1d :Open Problem 6. Bridge the gap between Theorem 2.16 and the upper bound � N .
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3 Le
ture 3: The Fuglede Conje
ture3.1 Spe
tral sets and tilingLet us write e�(x) = exp 2�ih�; xi.De�nition 3.1. (Spe
tral sets)Suppose that 
 is a bounded open set of measure 1. We 
all 
 spe
tral if L2(
) has an orthonormal basisE� = fe� : � 2 �gof exponentials. The set � is then 
alled a spe
trum for 
.(We only restri
t ourselves to sets of measure 1 to make our life simpler.)The inner produ
t and norm on L2(
) arehf; gi
 = Z
 fg; and kfk2
 = Z
 jf j2:We have he�; exi
 = 
�
(x� �):whi
h gives E(�) is orthogonal, 8�; � 2 �; � 6= � : 
�
(�� �) = 0For E(�) to be 
omplete as well we must in addition have8f 2 L2(
) : kfk22 = X�2� jhf; e�ij2: (3.1)It is suÆ
ient to have (3.1) for f(t) = ex(t), x 2 Rd, sin
e then we have it in the 
losed linear span of thesefun
tions, whi
h is all of L2(
).An equivalent reformulation for � to be a spe
trum of 
 is therefore the following, whi
h we state as atheorem.Theorem 3.1. The set � is a spe
trum of 
 if and only ifP�2� j
�
(x� �)j2 = 1, for almost every x 2 Rd.In tiling language � is a spe
trum of 
 , j
�
j2 + � = RdThe relevant fun
tions are shown in Figure 11, for the 
ase of 
 being an interval.It follows from Theorem 3.1 that the spe
trum � of domain 
, if it exists, has all the ni
e properties oftiling sets. In parti
ular, � has uniform density equal to 1 and its points are �-separated for some � > 0.We 
an now state Fuglede's Conje
ture [Fug74℄Conje
ture 3.1. (Fuglede 1974)Let 
 � Rd be a bounded, open domain of measure 1. Then 
 is spe
tral if and only if it 
an tile spa
e bytranslation.We should emphasize here that no relation is 
laimed in the 
onje
ture between the spe
trum of 
 andthe set of translations with whi
h 
 tiles.Remark 3.1. By the pre
eding dis
ussion Fuglede's Conje
ture states that 
 is a tile if and only if j
�
j2 isa tile (both tilings are at level 1).Despite a lot of work that has been done in the last 5-6 years the 
onje
ture remains open in all dimensionsand in both dire
tions. One easy and important 
ase though is given by the following [Fug74℄.37



�
 �
 � f�
 j
�
j2Figure 11: The fun
tions �
, �
 �f�
 and j
�
j2, when 
 is an interval. The last two fun
tions are a FourierTransform pair.Theorem 3.2. (Fuglede, 1974)Suppose 
 � Rd is a bounded open domain of measure 1 and � � Rd a latti
e of density 1. Then 
+� = Rdif and only if �� (the dual latti
e) is a spe
trum of 
.Proof. As remarked above, �� is a spe
trum of 
 if and only if (see x1.2.1)j
�
j2 + �� = Rd;whi
h is in turn equivalent to the Fourier Transform of the fun
tion j
�
j2 vanishing on the dual latti
e of�� ex
ept at 0. That is the fun
tion f = �
 � f�
 vanishes on � n f0g. But f is non-zero exa
tly on 
�
,hen
e the above vanishing is equivalent to (
 �
) \ � = f0gwhi
h means pre
isely that the 
opies 
+�, � 2 �, are non-overlapping. But j
j = 1 and dens � = 1, hen
ethe above pa
king is indeed a tiling. The argument is 
ompletely reversible.3.2 Impli
ations of the Brunn-Minkowski inequality for 
onvex tiles and spe
-tral bodiesLet us re
all a simple 
ase of the Brunn-Minkowski Inequality (see e.g. [S93℄).For a 
onvex body K we always havejK �Kj � 2djKj:We have equality above exa
tly when K is symmetri
, in whi
h 
ase K �K = 2K.Using the Brunn-Minkowski inequality one 
an show:Theorem 3.3. (Minkowski, 
a. 1900)If 
 is a 
onvex translational tile then it is symmetri
.Proof. Suppose K is 
onvex and K + � = Rd. By the pa
king 
ondition (non-overlaping of translates) onlywe get (K �K) \ (�� �) = f0g:De�ne the 
onvex set L = 12(K �K). One easily sees that L� L = K �K, so thatL+ � � Rd;38



is a pa
king. But this implies (see Lemma 1.3) jLj � 1;and by the equality 
ase in the Brunn-Minkowski inequality K is symmetri
.The following theorem [K00℄ is also a 
onsequen
e of the Brunn-Minkowski inequality.Theorem 3.4. (Kolountzakis, 2000)If 
 is 
onvex and spe
tral then it is symmetri
.This result is of 
ourse in agreement with the Fuglede Conje
ture as this would be false if there were anynon-symmetri
 
onvex spe
tral domains. We prove Theorem 3.4 in x3.2.1 and x3.2.2 below.3.2.1 Fourier-analyti
 
onditions for tilingWhen studying tiling by the fun
tion j
�
j2 Theorem 1.1 is not appli
able sin
e the Fourier Transform of thefun
tion, namely �
 �f�
, is never smooth. However, the positivity of the fun
tion and its Fourier Transformas well as the 
ompa
t support of the Fourier Transform 
ompensate for this la
k of smoothness and allowus to prove the following result [K00℄.Theorem 3.5. (Kolountzakis, 2000)Suppose that f � 0 is not identi
ally 0, that f 2 L1(Rd), bf � 0 has 
ompa
t support and � � Rd. If f + �is a tiling then supp
Æ� � nx 2 Rd : bf (x) = 0o [ f0g: (3.2)Proof. Assume that f + � = wRd and let K = nbf = 0o [ f0g:We have to show that 
Æ�(�) = 0; 8� 2 C1
 (K
):Sin
e 
Æ�(�) = Æ�(b�) this is equivalent to P�2� b�(�) = 0, for ea
h su
h �. Noti
e that h = �= bf is a
ontinuous fun
tion, but not ne
essarily smooth. We shall need that bh 2 L1. This is a 
onsequen
e of awell-known theorem of Wiener [R73, Ch. 11℄. We denote by Td = Rd=Zd the d-dimensional torus.Theorem 3.6. (Wiener)If g 2 C(Td) has an absolutely 
onvergent Fourier seriesg(x) = Xn2Zd bg(n)e2�ihn;xi; bg 2 `1(Zd);and if g does not vanish anywhere on Td then 1=g also has an absolutely 
onvergent Fourier series.Assume that supp�; supp bf � ��L2 ; L2�d :De�ne the fun
tion F to be:(i) periodi
 in Rd with period latti
e (LZ)d,(ii) to agree with bf on supp �,(iii) to be non-zero everywhere and,(iv) to have bF 2 `1(Zd), i.e., bF = Xn2Zd bF (n)ÆL�1n;39



is a �nite measure in Rd.One way to de�ne su
h an F is as follows. First, de�ne the (LZ)d-periodi
 fun
tion g � 0 to be bfperiodi
ally extended. The Fourier 
oeÆ
ients of g are bg(n) = L�df(�n=L) � 0. Sin
e g; bg � 0 and g is
ontinuous at 0 it is easy to prove thatPn2Zd bg(n) = g(0), and therefore that g has an absolutely 
onvergentFourier series.Let � be small enough to guarantee that bf (and hen
e g) does not vanish on (supp �) + B�(0). Let kbe a smooth (LZ)d-periodi
 fun
tion whi
h is equal to 1 on (supp�) + (LZd) and equal to 0 o� (supp � +B�(0)) + (LZd), and satis�es 0 � k � 1 everywhere. Finally, de�neF = kg + (1� k):Sin
e both k and g have absolutely summable Fourier series and this property is preserved under both sumsand produ
ts, it follows that F also has an absolutely summable Fourier series. And by the nonnegativityof g we get that F is never 0, sin
e k = 0 on nbf = 0o+ (LZd).By Wiener's Theorem 3.6, dF�1 2 `1(Zd), i.e., dF�1 is a �nite measure on Rd. We now have that��bf �^ =\�F�1 = b� � dF�1 2 L1(Rd):This justi�es the inter
hange of the summation and integration below:X�2� b�(�) = X�2���bf bf�^ (�)= X�2���bf�^ � bbf (�)= X�2� ZRd��bf �^ (y)f(y � �) dy= ZRd��bf �^ (y)X�2� f(y � �) dy= w ZRd��bf �^ (y) dy= w�bf (0)= 0;as we had to show.For a set A � Rd and Æ > 0 we writeAÆ = �x 2 Rd : dist (x;A) < Æ	:We shall need the following partial 
onverse to Theorem 3.5 (see Figure 12 for the assumptions of Theorem3.7).Theorem 3.7. Suppose that f 2 L1(Rd), and that � � Rd has uniformly bounded density. Suppose alsothat O � Rd is open and supp
Æ� n f0g � O and OÆ � n bf = 0o; (3.3)for some Æ > 0. Then f + � is a tiling at level bf (0) �
Æ�(f0g).40



0 nbf = 0oOÆ O
Æ� lives hereFigure 12: The sets appearing in Theorem 3.7. The sets O;OÆ;nbf = 0o all live outside the 
ontours.The assumptions of Theorem 3.7 ensure that the supports of 
Æ� (ex
ept at 0) and bf are well separated.In other words bf vanishes to in�nite order on the support of 
Æ�. This makes the formal impli
ationbf �
Æ� = `Æ0 =) f � Æ� = `
orre
t.Remark 3.2. By the assumptions of the theorem we know that 
Æ� is supported only at 0, in a neighborhoodof the origin. It follows from Theorem 1.11 that 
Æ� is a measure in some neighborhood of the origin so itmakes sense to speak of 
Æ�(f0g).Proof. Let  : Rd! Rbe smooth, have support in B1(0) and b (0) = 1 and for � > 0 de�ne the approximateidentity  �(x) = ��d (x=�). Let f� = 
 �f;whi
h has rapid de
ay.First we show that (R f�)�1f� + � is a tiling. That is, we show that the 
onvolution f� � Æ� is a 
onstant.Let � be any S
hwartz fun
tion. Thenf� � Æ�(�) = bf�
Æ�(b�(�x)) = 
Æ�(b�(�x) bf�):The fun
tion b�(�x) bf� is a S
hwartz fun
tion whose support interse
ts supp
Æ� only at 0, sin
e, for smallenough � > 0, supp b�bf� � supp bf� � (supp bf )� � O
:Hen
e, for ea
h S
hwartz fun
tion � f� � Æ�(�) = b�(0) bf�(0)
Æ�(f0g);whi
h implies f� � Æ�(x) = bf�(0)
Æ�(f0g); a.e.(x):We also have that P�2� jf(x � �)j is �nite a.e. (see the remark following the de�nition of tiling), hen
e, foralmost every x 2 Rd X�2� jf(x � �) � f�(x� �)j = X�2� jf(x� �)j � ���1�
 �(x� �)���;whi
h tends to 0 as �! 0. This provesX�2� f(x� �) = bf(0) �
Æ�(f0g); a.e.(x):41



3.2.2 Convex spe
tral bodies must be symmetri
Proof of Theorem 3.4: Write K = 
 �
, whi
h is a symmetri
, open 
onvex set. Assume that (
;�) isa spe
tral pair. We 
an 
learly assume that 0 2 �. It follows that j
�
j2 + � is a tiling and hen
e that � hasuniformly bounded density, has density equal to 1 and 
Æ�(f0g) = 1:By Theorem 3.5 (with f = j
�
j2; bf = �
 � f�
(�x)) it follows thatsupp
Æ� � f0g [K
:Let H = K=2 and write f(x) = �H � f�H(x) = ZRd �H(y)�H (y � x) dy:The fun
tion f is supported in K and has nonnegative Fourier Transformbf = j
�H j2:We have ZRd bf = f(0) = volHand bf (0) = ZRd f = (volH)2:By the Brunn-Minkowski inequality for any 
onvex body 
,vol 12(
 �
) � vol
;with equality only in the 
ase of symmetri
 
. Sin
e 
 has been assumed to be non-symmetri
 it followsthat volH > 1:For 1 > � > � 1volH�1=d
onsider g(x) = f(x=�)whi
h is supported properly inside K, and hasg(0) = f(0) = volH; ZRd g = �d ZRd f = �d(volH)2:Sin
e supp g is properly 
ontained in K Theorem 3.7 implies that bg + � is a tiling at level R bg � dens � =R bg = g(0) = volH. However, the value of bg at 0 is R g = �d(volH)2 > volH, and, sin
e bg � 0 and bg is
ontinuous, this is a 
ontradi
tion.3.3 The spe
tra of the 
ubeIn this se
tion we prove the following [IP98, LRW00, K00b℄.Theorem 3.8. (Iosevi
h and Pedersen, 1998, Lagarias, Reeds and Wang 1998, Kolountzakis1999)Let Q = (�1=2; 1=2)d be the unit 
ube in Rd and � � Rd. Then� is a spe
trum of Q, Q+ � = Rd:This had been proved earlier by Jorgensen and Pedersen [JP99℄ for d = 3.42



3.3.1 A lemma for two di�erent tilesThe following simple result is rather unexpe
ted. It is intuitively 
lear when � is a periodi
 set but it is,perhaps, suprising that it holds without any assumptions on the set �.Lemma 3.1. If f; g � 0, R f(x)dx = R g(x)dx = 1 and both f + � and g+ � are pa
kings of Rd, then f + �is a tiling if and only if g + � is a tiling.Proof. We �rst show that, under the assumptions of the Theorem,f + � tiles �supp g =) g + � tiles �supp f : (3.4)Indeed, if f + � tiles �supp g then1 = Z g(�x)X�2� f(x � �) dx = X�2� Z g(�x)f(x � �) dx;whi
h, after the 
hange of variable y = �x + �, gives1 = Z f(�y)X�2� g(y � �) dy:This in turn implies, sin
e P�2� g(y � �) � 1, that P� g(y � �) = 1 for a.e. y 2 �supp f .To 
omplete the proof of the theorem, noti
e that if f + � is a tiling of Rd and a 2 Rd is arbitrary thenboth f(x� a) + � and g(x� a) + � are pa
kings and f + � tiles �supp g(x� a) = �supp g� a. We 
on
ludethat g(x� a) + � tiles �supp f , or g+ � tiles �supp f � a. Sin
e a 2 Rd is arbitrary we 
on
lude that g+ �tiles Rd.Example: Use Lemma 3.1 to prove that there is no measurable nonnegative fun
tion f that tiles with� =Zd n f0g (or even Zd minus a set of lower density 0, su
h as a line). Try to prove this otherwise.3.3.2 Failure of the lemma for non-translational tilingSuppose we study tiling where all rigid motions of the tile, and not just translations, are allowed. Theanalogue of the tiling set then is a set � of rigid motions. For x 2 Rd and � a rigid motion we denote by �(x)the a
tion of � on x. The following theorem shows that our Lemma 3.1 is very parti
ular to translations.Theorem 3.9. There are two polygons A and B in R2 of the same area and a set of rigid motions � su
hthat both 
olle
tions f�(A) : � 2 �g and f�(B) : � 2 �g are pa
king but only one of them is a tiling.Proof. Take A = (�1=2; 1=2)2 and B to be the parallelogram with verti
es (�1=2;�1=2), (1=2; 0), (1=2; 1)and (�1=2; 1=2). Take the set of rigid motions to be the set of translations byZ2 modi�ed as follows: insteadof translating by the elements (0; k), k < 0, we �rst re
e
t the domain with respe
t to the x-axis and thentranslate it by (0; k). For the elements (m;n) ofZ2 where either m 6= 0 or n � 0 we just translate.Sin
e the re
e
tion has no e�e
t on A the 
olle
tion f�(A) : � 2 �g 
learly 
onstitutes a tiling. On theother hand the 
olle
tion f�(B) : � 2 �g 
an be seen in Figure 13 and is 
learly not a tiling, although it isa pa
king.3.3.3 Dedu
ing tiling from the 
ondition on supportsAssume that we have supp
Æ� � n bf = 0o [ f0g (3.5)43



B0
Figure 13: Pa
king of set B, the parallelogram above the shaded triangle, with motions �. The shadedtriangle is not 
overed.for some non-zero f � 0 in L1 and that � is of bounded density. Sin
e bf(0) = R f > 0 it follows that insome neighborhood N of 0 we have (supp
Æ�) \N = f0g. Hen
e the setO = �supp
Æ� n f0g�
 (3.6)is open and nbf 6= 0o � O:We shall need the following result.Theorem 3.10. Suppose that 0 � f 2 L1(Rd), R f = 1, � (of uniformly bounded density) is of density 1,and that (3.5) holds. Suppose also that for the open set O of (3.6) and for ea
h � > 0 there exists f� � 0 inL1(Rd) su
h that bf� is in C1, supp bf� � O andkf � f�k1 � �:Then f + � is a tiling.Proof. Suppose that f� is as in the Theorem. First we show that (R f�)�1f� + � is a tiling. That is, weshow that the 
onvolution f� � Æ� is a 
onstant. Let � be C1
 fun
tion. Then(f� � Æ�)(�) = bf�
Æ�(b�) = 
Æ�(b�bf�):But the fun
tion b = b�bf� is a C1
 fun
tion whose support interse
ts supp
Æ� only at 0. And, it is not hardto show, be
ause � has density 1, that 
Æ� is equal to Æ0 in a neighborhood of 0 (see [K00a℄). Hen
e(f� � Æ�)(�) = �b� bf�� (0) = Z � Z f�;and, sin
e this is true for an arbitrary C1
 fun
tion �, we 
on
lude that f� � Æ� = R f�, as we had to show.44



For any set � of uniformly bounded density we have (B is any ball in Rd and g 2 L1(Rd))ZB �����X�2� g(x� �)����� dx � CB;� ZRd jgj;(See [KL96℄ for a proof of this in dimension 1, whi
h holds for any dimension.) Applying this for g = f � f�we obtain that X�2� f�(x� �) !X�2� f(x � �); in L1(B):Sin
e B is arbitrary this implies that P�2� f(x � �) = 1, a.e. in Rd.We write ef (x) = f(�x).Let 
 � Rd be a bounded open set of measure 1, �
 its indi
ator fun
tion and f be su
h that bf = �
�f�
.Then ef = j
�
j2 � 0, R f = 1 by Parseval's theorem. Clearly we have nbf 6= 0o = 
 �
.Write 
� = fx 2 
 : dist (x; �
) > �g;and de�ne f� by bf� =  � � �
� � ( � � �
�)e(or ef� = ���
 ����2jd�
� j2), where  � is a smooth, positive-de�nite approximate identity supported in B�=2(0).One 
an easily prove the following proposition.If gn ! g in L2 then jgnj2 ! jgj2 in L1.(For the proof just noti
e the identityjgj2 � jgnj2 = jg � gnj2 + 2 �Re (gn(g � gn)) ;integrate and use the triangle and Cau
hy-S
hwartz inequalities.)Sin
e  � � �
� ! �
 in L2 (dominated 
onvergen
e) we have (Parseval) that 
 �d�
� ! 
�
 in L2 and,using the proposition above, that ���
 ����2jd�
� j2 ! j
�
j2 in L1, whi
h means that f� ! f in L1.We also have that supp bf� � 
�=2 � 
�=2 � 
�
 = nbf 6= 0o:The assumptions of Theorem 3.10 are therefore satis�ed. Combining Theorems 3.5 and 3.10 with theabove observations we obtain the following 
hara
terization of tiling by the fun
tion j
�
j2. The spe
ial formof this fun
tion allows us to drop any 
onditions, that are otherwise needed, regarding the order (how manyderivatives it involves) of the tempered distribution 
Æ�.Theorem 3.11. Let 
 be a bounded open set, � a dis
rete set in Rd, and Æ� = P�2� Æ�. Then j
�
j2 + �is a tiling if and only if � has uniformly bounded density and(
� 
) \ supp
Æ� = f0g:Proof of Theorem 3.8. By a simple 
al
ulation we getZ(
�Q) = �� 2 Rd : some �j is a non-zero integer	� (2Q)
:Suppose �rst that Q+ � = Rd. From Theorem 3.5 it follows thatsupp
Æ� � f0g [ Z(
�Q)� f0g [ (Q� Q)
45



and from Theorem 3.11 we dedu
e that � is a spe
trum of Q.Conversely assume that � is a spe
trum ofQ, so that j
�Qj2+� = Rd. It follows that (Q�Q)\(���) = f0gas we have j
�Qj2(0) = 1 and j
�Qj2 > 0 on Q � Q. But this means that we have a pa
king Q + � � Rd.However, � is a tiling set, be
ause it is a spe
trum, and there is another obje
t that tiles with �, namelyj
�Qj2, and this obje
t has the same integral as �Q (that is, 1). It follows from Lemma 3.1 that Q+ � = Rdis also a tiling, as we had to prove.3.4 A proof that the disk is not spe
tral, whi
h just makes itHere we present a proof of why the disk D = njxj < 1p�o in the plane is not a spe
tral domain. The radiusis taken equal to 1=p� to make the disk have area 1, as we usually do in this survey.The proof is simple but relies on two not-so-easy fa
ts.1. The �rst is the upper bound �p12 , due to Thue, on the density of any pa
king of the plane with 
opiesof the same disk (see, for example, [PA95, Ch. 3℄).2. The se
ond is that the �rst zero of the Fourier Transform of the indi
ator fun
tion of D is at distan
eapproximately 1.08098 from the origin. This may either be looked up in tables of the Bessel fun
tionJ1 (whi
h, up to s
aling, is the Fourier Transform of the indi
ator fun
tion of D restri
ted on a line) ormay be 
omputed in a straightforward way using a 
omputer. (The Fourier Transform of the unit-areadisk, de�ned by 
�D(�) = RD exp(�2�i�x) dx, is equal to a 
onstant times J1(2p�j�j) and the �rst zeroof J1 is at 3:832 � � � .)Fuglede [Fug74℄ was the �rst to suggest that the disk is not spe
tral, but the argument was un
lear. Thesituation has sin
e been 
lari�ed in the papers of Iosevi
h, Katz and Pedersen [IKP99℄, who proved that theball in any dimension is not spe
tral, and of Iosevi
h, Katz and Tao [IKT01℄, in whi
h a mu
h more generalresult is proved: every smooth 
onvex hypersurfa
e 
annot have an interior whi
h is a spe
tral domain. Itwas also shown by Fuglede [Fug01℄ (for the Eu
lidean ball in Rd) and by Iosevi
h and Rudnev [IR02℄ (forany smooth 
onvex body in Rd, for d 6= 1 mod 4) that there 
an only be a �nite number of orthogonalexponentials in the 
orresponding L2 spa
es.The method shown in this se
tion is still interesting be
ause of its simpli
ity and, perhaps, entertainingas the fa
t that it works appears to be an a

ident.The Fourier Transform of D is radial, as is the fun
tion itself, hen
e the set of zeros of the FourierTransform is a set of 
ir
les 
entered at the origin. Let r0 be the radius of the smallest su
h 
ir
le. By asimple numeri
al 
al
ulation we lo
ate r0 = 1:08098 � � � . Suppose now that the disk is spe
tral with spe
trum�. Sin
e ��� � f
�D = 0g[f0g it follows that j�� �j � r0 for any �; � 2 �, � 6= �, and hen
e, if we 
entera 
opy of a disk of radius r0=2, 
all it D1, at ea
h point of �, we have a pa
king of the plane with 
ongruentdisks (see Figure 14). The density of su
h a pa
king is at most �=p12, by Fa
t 1 above.Sin
e the integral of the power spe
trum j
�Dj2 of �D is 1 (Parseval), and the power spe
trum tiles with� it follows that the density of � is equal to 1 as well, hen
e the density of the pa
king D1 + � is equal tothe area of D1, whi
h is �r20=4. So we have the inequality�r204 � �p12 ;whi
h implies r0 � 2(12)1=4 = 1:0745699 � � � ;whi
h is in 
ontradi
tion with Fa
t 2 above whi
h states that r0 is approximately 1.08098.46



r0=2�3
r0=2�1 r0=2�4r0=2�2

Figure 14: The pa
king by disks of radius r0=2 
entered at the points of the spe
trum. Thue's result meansthat the area outside the disks has density � 1� �=p123.5 More results on the Fuglede Conje
ture3.5.1 Convex domainsThe 
onvex bodies whi
h tile spa
e have long been known [V54, M80℄ to be pre
isely the polytopes whi
hare symmetri
, have symmetri
 
o-dimension one fa
ets and their 
o-dimension two fa
ets ea
h have a \belt"whi
h 
onsists of four or six fa
ets (the belt of a fa
et is the 
olle
tion of all fa
ets of the polytope whi
hare translates of the given fa
et). It is also known [M80℄ that whenever a 
onvex body 
 tiles spa
e bytranslation it 
an also tile by latti
e translation. It follows from Theorem 3.2 that 
onvex bodies whi
h tileare also spe
tral, and possess a latti
e spe
trum (the dual latti
e of their translation latti
e).Our knowledge is mu
h less 
omplete for 
onvex bodies whi
h are spe
tral. In parti
ular we do not knowyet that spe
tral 
onvex bodies are also tiles, but we are getting there. Most of the results des
ribed in thisse
tion are in the general dire
tion of showing that well known fa
ts whi
h hold for 
onvex tiles are also trueof 
onvex spe
tral bodies.In [IKT01℄ it was proved that smooth 
onvex bodies 
annot be spe
tral, a fa
t whi
h is 
learly true of
onvex bodies whi
h tile, even if one has not heard of the Venkov-M
Mullen theorem.Theorem 3.12. (Iosevi
h, Katz and Tao, 1999)Suppose that 
 is a symmetri
 
onvex body in Rd, d � 2. If the boundary of 
 is smooth, then it does notadmit a spe
trum. The same 
on
lusion holds in R2 if the boundary is pie
ewise smooth, and has at leastone point of non-vanishing Gaussian 
urvature.The starting point of the proof is the fa
t that the zero setZ = f
�
 = 0gis known, asymptoti
ally, to an ever-higher degree of a

ura
y. For example, it is a well known fa
t (see e.g.[IKT01℄) that if � is a zero of 
�
 and � !1 su
h that � remains inside a 
oneC = �� : h�; uij�j > 1� ��;where u 2 Sd�1 is the unit outward normal ve
tor at some point x 2 �
 of positive 
urvature and � > 0 is47



suÆ
iently small, then k�k
o = ��2 + d�4 �+ k� + o(1); (� !1);where 
o is the dual body (whi
h is also smooth), d is the dimension and k is an integer. One then uses thefa
t that if � is a spe
trum then �� � � Z in order to rea
h a 
ontradi
tion.It turns out [IR02℄ that for smooth 
onvex bodies with nowhere vanishing Gaussian 
urvature (su
h asthe Eu
lidean ball) mu
h more is true than the fa
t that there is no 
omplete orthogonal set of exponentialsfor their L2 spa
e.Theorem 3.13. (Iosevi
h and Rudnev, 2002)Suppose that 
 is a smooth symmetri
 
onvex body in Rd, d � 2, with nowhere vanishing Gaussian 
urvature.If d 6= 1 mod 4 then any set of orthogonal exponentials in L2(
) is �nite. If d = 1 mod 4 su
h a set may bein�nite only if it is a subset of a one-dimensional latti
e.This has also been proved for the ball in any dimension by Fuglede [Fug01℄.Finally, in dimension d = 2 the Fuglede Conje
ture may be 
onsidered settled for 
onvex bodies [IKT02℄.Theorem 3.14. (Iosevi
h, Katz and Tao, 2002)The only 
onvex domains in R2 whi
h are spe
tral are the parallelograms and the symmetri
 hexagons (theseare the only 
onvex tiles as well).3.5.2 Polytopes with unbalan
ed fa
etsSuppose that 
 is a polytope, not ne
essarily 
onvex, that tiles spa
e by translation. Suppose also that u isone of its fa
e normals and let F+1 ; : : : ; F+k be all its fa
ets with outward normal in the dire
tion of u andlet F�1 ; : : : ; F�l be the fa
ets with outward normal in the dire
tion of �u. One 
an easily see that we musthave ��F+1 ��+ � � �+ ��F+k �� = ��F�1 ��+ � � �+ ��F�l ��:The reason is that in any tiling by translates of 
 the fa
ets F+j 
an only be \
ountered" by translates ofthe fa
ets F�j . Applying this for a large region in spa
e one dedu
es that the total area of the plus-fa
etsmust equal that of the minus-fa
ets.The following result [KP03℄ 
laims that spe
tral polytopes have the same property.Theorem 3.15. (Kolountzakis and Papadimitrakis, 2000)If 
 is a polytope in Rd whi
h, for some dire
tion u normal to a fa
et, has more area with outward normalu than it has with outward normal �u, then 
 is not spe
tral. Clearly it 
an also not be a tile.We do not present the proof of this result here. However, the following toy-
ase is rather instru
tive.Suppose that we have a polytope 
 whi
h has pre
isely two fa
ets A and B (see the example in Figure 15)with normals parallel to a 
ertain u 2 Sd�1. Assume that fa
et A has outward normal u and fa
et B has�u, and that the area of A is not equal to that of B.We 
laim that in any semi-in�nite tube whose axis is the line Ru and any bounded domain as base thereare only �nitely many points of any spe
trum. This is impossible as for any spe
trum there is a numberR su
h that in any ball of radius R we 
an �nd some point of the spe
trum. To show the above 
laim itis enough to show that any su
h tube is eventually (that is, near in�nity) free from zeros of 
�
, or, whatamounts to the same thing, free from zeros of\ru�
(�) = 2�ih�; ui
�
(�):Observe now that ru�
 is a measure supported on the fa
ets of the polytope, whi
h is a 
onstant fun
tionon every fa
et, a 
onstant whi
h depends on the angle the fa
et is forming with u.48



Punbalan
ed pair of fa
esA BFigure 15: A polytope P with many dire
tions of unbalan
ed fa
es. The two fa
ets shown are the onlyones perpendi
ular to their normal, yet there is more fa
e measure looking left than looking right. Su
h apolytope 
an neither tile by translation nor be spe
tral.Look then at what happens to the Fourier Transform \ru�
 along the line Ru. Along that line the valuesof the Fourier Transform that we are reading are just the values of the one-dimensional Fourier Transformof the proje
tion of the measure ru�
 on the line Ru. This is the measure � de�ned by�(E) = ru�
(E + u?); (E � R);and it is 
lear that � has a 
ontinuous part 
oming from all the fa
ets whi
h are non-orthogonal to u andalso 
ontains the two point masses jAjÆa and �jBjÆb, where a; b 2 Rare the points on Ruwhere the fa
ets Aand B proje
t. By the Riemann-Lebesgue lemma the 
ontribution to b� of the 
ontinuous part of � fades to0 as we tend to 1 and it is the Fourier Transform of the atomi
 part that dominates b�, namely (as t!1)b�(t) � jAje2�iha;ti � jBje2�ihb;tiwhose absolute value is � jjAj � jBjj. So, for large t, there are no zeros on the line, and with a little more
are, we 
an show that the same (albeit farther away) is true in any tube around this line.3.5.3 Dimension 1Even in dimension 1 the Fuglede Conje
ture appears to be rather hard. The number-theoreti
 aspe
t of theproblem is seen more 
learly here, espe
ially if one looks just at sets of the type
 = A+ (0; 1); (A a �nite subset ofZ):The 
onje
ture is still open for this 
lass of sets.The following are interesting partial results.1.  Laba [ Lab01℄ showed that whenever jAj = 2 the 
onje
ture is true.2. This is improved to jAj = 3 by  Laba in [ Lab02℄. In the same paper it is also shown that if jAj has atmost two prime fa
tors then if 
 is a tile it is also spe
tral.3.  Laba also shows in [ Lab02℄ that if jAj > 3=2(maxA � minA) then the 
 is a tile if and only if it isspe
tral. This is generalized by Kolountzakis and  Laba [K L01℄ to any set 
 of measure 1 whi
h isa subset of (0; 3=2� �), for some � > 0. In fa
t what is really shown in [K L01℄ is that su
h \tight"domains 
an only be spe
tral or tiles of they tile by the latti
e Z.49
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