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(a) (b) (c)Figure 1: Examples of tiling with the shaded objets. In () a tiling by a triangle is shown that is usingrotations as well as translations. We will not deal with suh tilings here. In (a) a tiling by a square is shownand in (b) a tiling by an L-shaped region. In (b) the set of translations is a lattie, but not in (a).ForwardIn this survey I will try to desribe how Fourier Analysis is used in the study of translational tiling. Rightaway I will emphasize two restritions that separate this area from the general theory of tilings.� There is only one tile. This is an objet that is moved around in spae (whatever spae we are tryingto tile, most generally an abelian group) in a way that there are no \overlaps" among the several opiesof it and almost nothing, in the sense of Lebesgue or ounting measure, is left unovered. This objetmay be a domain in spae or a funtion de�ned on spae, usually nonnegative. Examples are shownin Figure 1.� The only allowed motions of the tile are translations. No rotations or reetions of the objet areallowed. In fanier language, we are tiling abelian groups, not vetor spaes.This paper is broken up into three \letures", whih orrespond roughly to the three hour-long letures I gavein the Universit�a di Milano{Bioa, in June 2001, during the meeting on Fourier Analysis and Convexity.Leture 1 has to do with how Fourier Analysis is used to prove struture, or rigidity, in tilings. In Leture2, some problems are presented about lattie-tiling and in Leture 3 a tiling problem of Funtional Analysisis disussed, the Fuglede Conjeture on spetral domains.An advane apology: I will desribe mostly material with whih I am aquainted the most, through myown work.Finally, I would like to thank the organizers L. Brandolini, L. Colzani, A. Iosevih and G. Travaglini fororganizing this great meeting and giving me the hane to partiipate.4



1 Leture 1: Introdution to the method and struture of tilings.1.1 Tiling and densityIt's time for the �rst de�nition, of what tiling means. We speak mostly of tiling Rd and Zd in this paper,but tiling makes sense on all abeliean groups.
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������Figure 2: A triangle funtion tiling the real lineDe�nition 1.1. (Translational tiling)Suppose 0 � f 2 L1(Rd) and � � Rd is a disrete multiset. We say that f tiles Rd with � at level (orweight) ` if X�2� f(x � �) = `; a.e.(x):We write: f + � = `Rd.In Figure 2 a tiling by the triangle funtion f(x) = (1 � jxj)+ is shown with translation set � = Zandlevel 1. In the partiular ase when f = �
 is the indiator funtion of a measurable domain 
 � Rd of �nitemeasure, we write also 
 + � = mRd, where the positive integer m represents the level of the (generallymultiple) tiling.The tiling assumption f + � = `Rd has some immediate impliations about the density properties of themultiset �.De�nition 1.2. (Density)A multiset � � Rd has asymptoti density � iflimR!1 #(� \BR(x))jBR(x)j ! �uniformly in x 2 Rd. We write � = dens �.We say that � has (uniformly) bounded density if the fration above is bounded by a onstant � uniformlyfor x 2 R and R > 1. We say then that � has density (uniformly) bounded by �.Last, the upper density of a set � � Rd is de�ned aslim supR!1 supx2Rd #(� \BR(x))jBR(x)j :Remark 1.1. Aording to this de�nition a set � may have density uniformly bounded by a number � <1yet dens � may not exist.Lemma 1.1. If 0 � f 2 L1(Rd) is not the zero funtion and f + � = `Rd then � has bounded density.Proof. By hypothesis Xa2� f(x � a) = `; almost everywhere;5



and learly ` > 0. Choose R > 1 so that J = RBR(0) f > 0, where BR(0) is the ball entered at 0 with radiusR. Let t 2 Rd be arbitrary. We havejB2R(0)j � ` = ZB2R(t)Xa2� f(x � a) dx� ZB2R(t) Xja�tj<R f(x � a) dx� #(� \BR(t)) ZBR(0) f:Thus #(�\BR(t)) � jB2R(0)j`=J is bounded independent of t, whih implies that � has uniformly boundeddensity.Working similarly on easily gets the following lemma.Lemma 1.2. If 0 � f 2 L1(Rd) is not the zero funtion and f +� = `Rd then � density dens � = `(R f)�1.It is time also to de�ne paking.De�nition 1.3. (Paking)Suppose 0 � f 2 L1(Rd) and � � Rd is a disrete multiset. We say that f paks Rd with � at level ` ifX�2� f(x � �) � `; a.e.(x):We write: f + � � `Rd.The following lemma is almost trivial, yet useful.Lemma 1.3. If 0 � f 2 L1(Rd) is not the zero funtion and f + � � `Rd is a paking then � has densityuniformly bounded by `(R f)�1.Finally, one an easily prove the following about translation sets.Lemma 1.4. Suppose f + � � `Rd and esssup f = `. Theninf fj�� �j : �; � 2 �; � 6= �g > 0: (1.1)In partiular, if E + � = Rd is a tiling by the set E at level 1 then (1.1) holds.1.2 Tiling in Fourier spaeNext, we assoiate to any point multiset � the measureÆ� = X�2� Æ�;where Æ� is one unit point mass at the point � (see Figure 3). Generally, this measure is in�nite globallybut has �nite total variation in any bounded set, at least when the set � has bounded density. This is thease whenever � is involved in a tiling. It follows thatjÆ�j(BR(t)) � CRd;whih implies that the objet Æ� is a so-alled tempered distribution, a bounded linear funtional on theShwarz spae S of smooth funtions whih, along with all their partial derivatives, deay faster than anypower at in�nity. 6



Figure 3: The measure Æ� orresponding to some � in the plane.If T is a tempered distribution one de�nes its Fourier Transform bT by duality as follows:bT (�) = T (b�);for any � 2 S (it is easy to prove that the Fourier Transform b� is also in S). We normalize the FourierTransform for a funtion f 2 L1(Rd) as bf (t) = Z e�2�iht;xif(x) dx;whih leads to the inversion formula f(x) = Z e2�iht;xi bf (t) dt;whenever bf 2 L1, whih happens for all funtions f 2 S.We are now in the position to argue formally as follows. Suppose f + � = `Rd. This means thatX�2� f(x � �) = `; (a.e. x);whih we rewrite as a onvolution f � Æ� = `:Take the Fourier Transform of both sides to getbf �Æ� = `Æ0:As the support of the right hand side is just f0g we onlude thatsuppÆ� � f0g [ Z( bf ); (1.2)where we denote the zero-set of the ontinuous funtion g by Z(g):Z(g) = �x 2 Rd : g(x) = 0	:The inlusion in (1.2) is the starting point of the method of applying Fourier Analysis to translational tiling.Whenever we have tiling, we dedue (1.2). Sometimes we may be able to get tiling from (1.2), but we usuallyneed some extra onditions to make this onlusion.Having argued formally, let us now prove arefully the following theorem. Notie that we have essentiallyadded the ondition bf 2 C1 to make the argument go through. This ondition is automatially validwhenever f has ompat support, as, for instane, when f is the indiator funtion of a bounded domain(the lassial geometri situation), but will de�nitely not be there when we talk about the Fuglede problemin Leture 3. There we will need a di�erent theorem of this sort, with di�erent assumptions (see Theorem3.11). 7



Theorem 1.1. Suppose that f 2 L1(Rd) is nonnegative, bf 2 C1 and f + � = `Rd for some multiset �.Then (1.2) follows.Proof. Let K = f0g [ Z( bf ), whih is a losed set. Inlusion (1.2) means (by the de�nition of the supportof a tempered distribution) that Æ�( ) = 0 for all smooth  supported in K (see Figure 4). For suh a  nbf = 0o (x)0
Figure 4: A test funtion  supported away from f0g [ nbf = 0o�ebf  �^ (�) = Z bf(�x) (x)e�2�i�x dx= Z Z f(y)e�2�iyx (x)e�2�i�x dx dy= Z f(y) Z  (x)e�2�i(�+y)x dx dy= Z f(y) b (� + y) dy= Z f(�t) b (� � t) dt= ( ef � b )(�); (1.3)where we use the notation ef (x) = f(�x).We must show Æ�( ) = 0. We have Æ�( ) = Æ� ebf �  ebf ! :Notie that ebf and bf have the same zeros (sine f is real), so the quotient � =  =ebf is a C10 (K) funtion.
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We have Æ�( ) = Æ�(ebf �)= Æ��(ebf�)^� (by the de�nition of the Fourier Transform for distributions)= X�2�(ebf�)^(�) (by the de�nition of Æ�)= X� ( ef � b�)(�) (by (1.3))= X� Z ef (�� x)b�(x) dx= Z X� f(x � �)b�(x) dx= ` Z b�(x) dx (sine f + � = `Rd)= `�(0)= 0 (as 0 =2 supp�):1.2.1 The lattie ase and the suÆieny of the support ondition for tilingSuppose � = AZd, A 2 GL(d;R), is a lattie inRd (a disrete subgroup whih ontains d linearly independentvetors). The Fourier Transform of the tempered distribution Æ� takes a partiularly simple form as laimedby the Poisson Summation Formula: Æ� = 1detAÆ�� ; (1.4)where �� = �� 2 Rd : h�; �i 2Z; 8� 2 �	 = A�>Rdis the dual lattie of � (see Figure 5). 0
0

1
1 2

12 Æ�Æ�Figure 5: The \Dira omb" Æ� when � = 12Z, and its Fourier Transform, the omb 2Æ2Z.9



The Poisson Summation Formula is usually stated as the equalityX�2� b�(�) = 1detA X��2�� �(��);for all � 2 S, and this is exatly the ontent of (1.4), as the Fourier Transform of Æ� is de�ned by duality.Equation (1.2) now gives the impliation below, valid for any lattie �,f + � is a tiling) bf vanishes on �� n f0g:This is in fat easy to prove using ordinary multiple Fourier Series, after applying a linear transformationthat maps � to Zd. Working this way one gets easily that the above impliation is, in fat, an equivalene,so that f + � is a tiling, bf vanishes on �� n f0g: (1.5)We prefer however to stik to using (1.2) as our guiding tool and not mention Fourier Series. As to why thereverse impliation holds, the answer is in the following theorem.Theorem 1.2. Suppose that � is a multiset of bounded density and that f is a nonnegative integrablefuntion on Rd. Suppose also that Æ� is loally a measure and thatsuppÆ� � f0g [ nbf = 0o:Then � has density and f + � = `Rd, for ` = R f � dens �.Intuitively, to kill a tempered distribution whih is a measure any zero (of whatever order) suÆes.Proof. Let F (x) = P�2� f(x � �). We want to show that F is a onstant ` and for this it is enough toshow that for any nonnegative b� 2 S we have R F b� = ` R b� = `�(0). We haveZ F b� = X� Z f(x � �)b�(x) dx= Z f(y)X� b�(y + �) dy= Z f(y)Æ�(b�(y � �)) dy= Z f(y)Æ�(e2�iyx�(x)) dy= Z Z f(y)e2�iyx�(x) dÆ�(x) dy= Z bf (�x)�(x) dÆ�(x)= Æ�(f0g)�(0) bf (0);whih proves the desired equality with ` = R f �Æ�(f0g). The fat that � has density and the value for dens �follow from Lemma 1.2.1.3 Struture of tilings in dimension 1We an now show the following theorem [KL96℄.Theorem 1.3. (Kolountzakis and Lagarias, 1996)Suppose 0 � f 2 L1(R) and has ompat support. Suppose also thatf + � = `R;10



for some � 2 R. Then there are J 2 N, �j; �j 2 R, j = 1; : : : ; J , �j > 0, suh that� = J[j=1(�jR+ �j):That is, tiling sets for ompatly supported tiles in dimension 1 are �nite unions of omplete arithmetiprogressions.1.3.1 The idempotent theorem, the Bohr group and Meyer's theoremThis extreme struture is, in the end, a onsequene of P.J. Cohen's idempotent theorem on a general abeliangroup [Coh59℄.Theorem 1.4. (Cohen, 1959)If � 2M (G) is a �nite measure on a loally ompat abelian group G, suh that b� takes only �nitely manyvalues then, for any suh value , the set S = n 2 bG : b�() = o belongs to the open oset ring of bG.The (open) oset ring is de�ned below.De�nition 1.4. (The oset ring of a group)The oset ring of an abelian group G is the smallest olletion of subsets of G whih is losed under �niteunions, �nite intersetions and omplements and whih ontains all osets of G. For a topologial group Gthe smallest ring of subsets of G whih ontains all open osets is alled the open oset ring of G.Cohen's theorem therefore says that S an be onstruted with �nitely many set-theoreti operationsfrom the open osets of bG.The group bG is alled the dual group of G and is the group of ontinuous haraters on G, that is, thegroup of all group homomorphisms G ! C with the group operation beeing the pointwise multipliation.It an be proved that bbG is isomorphi (as a topologial group) with G (Pontryagin duality) and that bG isompat if and only if G is disrete. Further \G�H = bG � bH. Some dual group pairs are the following:(Z;T), (R;R), (Zn;Zn), (Rd;Rd), (Zd;Td).If � is a �nite measure on G its Fourier Transform is a ontinuous funtion on bG de�ned byb�(�) = ZG �(x) d�(x);the integration arried out with respet to the essentially unique translation invariant measure on G alledthe Haar measure. For example, when G = Rthe Haar measure is Lebesgue measure and �(x) = e2�I�x. (Thereader should onsult [R62℄ for the basi de�nitions and fats about Fourier Analysis on loally ompatabelian groups.)We do not use Cohen's theorem diretly, but rather a onsequene of it disovered by Y. Meyer [Mey70℄.Theorem 1.5. (Meyer, 1970)Let � � Rd be a disrete set and Æ� be the Radon measureÆ� = X�2� �Æ�; � 2 S;where S � C n f0g is a �nite set. Suppose that Æ� is tempered, and that Æ� is a Radon measure on Rd whihsatis�es ���Æ����(BR(0)) � C1Rd; as R!1; (1.6)11



where C1 > 0 is a onstant. Then, for eah s 2 S, the set�s = f� 2 � : � = sgis in the oset ring of Rd.Proof. Let � 2 C1 (B1(0)), �(0) = 1, so that its Fourier Transform satis�es ���b�(�)��� � C�j�j�� for all � > 0.For positive integers n de�ne the funtions�n(x) = �(nx) � �(x):Their Fourier Transforms satisfy b�n(�) = 1nd b�(�=n)b�(�);hene the b�n are all measures. We laim that the measures �n are uniformly bounded measures, i.e.j�nj(Rd) � C, where C is independent of n. Indeedj�nj(Bn(0)) � 1nd jjb�jj1 jb�j(Bn(0)) � C1jjb�jj1; (1.7)by our assumption on the growth of jb�j(Bn(0)).Furthermore, if 2k � n we have (using the fat that ���b�(�)��� � Cj�j�d�1 as � !1)j�nj(B2k+1 (0) nB2k(0)) � C 1nd ���b����B2k+1=n(0)nB2k=n(0)jb�j(B2k+1 (0))� C 1nd �2kn ��d�1 2(k+1)d� Cn2�k:Hene j�nj(Bn(0)) � Xn�2k j�nj(B2k+1 (0) nB2k(0)) � Cn Xn�2k 2�k � C1;whih, together with (1.7), shows that the sequene j�nj(Rd) is bounded.Notie also that limn!1 �n(x) = x if x 2 � and is 0 otherwise. This is a onsequene of the fat that� is disrete and the support of �(nx) shrinks to 0.We now use the following properties of Rd, the Bohr ompati�ation of Rd, a loally ompat abeliangroup.1. Rd is the dual group of RdÆ, the d-dimensional Eulidean spae with the disrete topology. ThereforeRd is a ompat group being the dual group of a disrete group.2. Rd � Rd as topologial spaes and Rd is dense in Rd. Identifying the ontinuous funtions on Rd withbounded ontinuous funtions on Rd we get thatC(Rd) � C(Rd) \ L1(Rd)is a Banah spae inlusion.Sine the measures �n are uniformly bounded they at on all bounded ontinuous funtions on Rd, andonsequently also on all ontinuous funtions on Rd. That is they onstitute a uniformly bounded family oflinear funtionals on C(Rd). By the Banah-Alaoglu theorem there exists a measure � on Rd suh that forevery f 2 C(Rd) there is a subsequene of �n, all it again �n, suh that�n(f) ! �(f); as n!1:12



Applying this with eah harater of Rd in plae of f we obtain thatb�(x) = limn!1�n(x) = �x; if �x 2 �;and is 0 otherwise. Hene b� has the �nite range �S. By Theorem 1.4 the set ��, and thus �, belongs tothe open oset ring of RdÆ. Sine RdÆ has the disrete topology the open oset ring is the same as the osetring of Rd.Sine we need to know what kind of sets the elements of the oset ring of Rd are, we use the followinggeneral theorem [K00a℄, whih says that disrete elements of the oset ring an always be onstruted fromdisrete osets using �nitely many unions, intersetions and omplementations.Theorem 1.6. (Kolountzakis, 2000)Let G be a topologial abelian group and let R be the least ring of sets whih ontains the disrete osets ofG. Then R ontains all disrete elements of the oset ring of G.In dimension 1 this implies the following result by Rosenthal [Ros66℄.Theorem 1.7. (Rosenthal, 1966)The elements of the oset ring of Rwhih are disrete in the usual topology of R are preisely the sets of theform F 4 J[j=1(�jZ+ �j) ; (1.8)where F � R is �nite, J 2 N, �j > 0 and �j 2 R (4 denotes symmetri di�erene).1.3.2 Getting struture in dimension 1In this setion we prove Theorem 1.3. Assume that � � R is set of bounded density and that f + � = `Rfor a funtion f 2 L1 of ompat support, ontained in, say, (�A;A). We will use (1.2), so the �rst thing todo is to obtain information on the set Z( bf ) = nbf = 0o.We look at the Fourier Transform of f de�ned on the omplex numbersbf (z) = ZRe�2�izxf(x) dx; (z 2 C ):Sine f is supported in (�A;A) it follows that bf is entire so that Z( bf ) is a disrete subset of R. Furthermorebf satis�es the growth bound ��� bf(z)��� � Z A�A e2�xIm(z)jf(x)j dx � jjf jj1e2�Ajzj:If N (T ) ounts the number of zeros of bf (z) in the disk fz : jzj � Tg, an appliation of Jensen's formulagives lim supT!1 N (T )T � CA:Write B for the disrete set f0g[Z( bf ), so that by (1.2) the tempered distribution bÆ� is supported on B. Itis well known, and easy to prove, that a tempered distribution supported at a single point b is neessarily a�nite linear ombination of derivatives of Æb, and the same proof gives thatÆ� = Xb2BPb(�)Æb:13



Here Pb(�) = PNj=0 j �j�xj is di�erential polynomial operator applied on the Dira point mass at b. (Thedegree N an be taken the same for all b 2 B as any tempered distribution has �nite degree. This is notused below.)Step 1 All Pb are onstants (hene Æ� is loally a measure)Fous on a single b 2 B and let � be a smooth funtion of ompat support. Examine the quantityb b00b0 �(t(x� b))Figure 6: Piking out the distribution Æ� at b by applying it on �(t(x� b)). For large t the other points ofset B are left out and the behavior at b is isolated.I(t) = Æ� (�(t(x� b))) ; (t!1);as shown in Figure 6. For large t this equals(Pb(�)Æb) (�(t(x� b))) = 0� NXj=0 jÆ(j)b 1A (�(t(x� b)))= NXj=1 j(�1)j�(j)(0)tj :Choose �(j)(0) = (�1)j to get the above expression equal toNXj=1 jtj :Next we will bound the growth of I(t).Let g(x) = �(t(x� b)); bg(�) = 1t e�2�ib�=tb���t� :By duality jI(t)j = ���Æ�(g)���= jÆ�(bg)j� 1tX� ����b���t �����= 1t Xj�j�t+1t Xj�j>t� C +Cpt 1Xn=btn�3=2= O(pt):14



We used the bounded density of � for the onvergene of the sum Pj�j>t, and the fat that���b�(�)��� = O �j�j�M� (1.9)for any M > 0 we wish. We took M = 3=2.Sine I(t) annot even grow linearly it follows that the degree N is zero and we an now writeÆ� = Xb2B bÆb;for some onstants b.Step 2 The oeÆients b are uniformly bounded.To prove this we are just a bit more areful in the last estimate and now use a � whih is 1 at 0. For large tthen b = Æ�(�(t(x � b)));and one an get a bound for this by duality whih does not involve t at all using the exponent M = 2 insteadof M = 3=2 in (1.9).Step 3 Use of Meyer's TheoremNow the ruial ondition ���Æ����(�R;R) � CRin Meyer's Theorem holds (remember there is a linear number of zeros and at eah one we have a boundedmass), hene, by Rosenthal's Theorem 1.7,� = J[j=1(�jZ+ �j)4Ffor some real numbers �j; �j and �nite set F .Step 4 F is emptyOtherwise Æ� would have a ontinuous part, a trigonometri polynomial due to F . But it annot have suha ontinuous part as its support is disrete.Open Problem 1. Is the main theorem true if f is only supposed to be in L1 but not of ompat support?What if f is an indiator funtion?1.4 Struture of some polygonal tilings in dimension 2The one-dimensional tiling problem treated in the previous setion is very partiular. One annot expetthis rigid struture in higher dimension. For example, even when the tile is a square in two dimensions, oneannot expet every tiling of it to be fully-periodi, in the sense of posessing a period lattie of full-rank. Onean, after all, make vertial olumns of squares whih an be shifted vertially, within themselves, arbitrarily,preserving the tiling property (see Figure 1 (a)). It is lear that there is no horizontal period here, in general.One might suspet that there is always, no matter what the tile, at least one period, but this phenomenon, iftrue, must happen only in dimension two. In dimension three one an onstrut ube tilings with no periodsat all. First make horizontal layers of ubes some of whih have no period along the x-axis and some othershaving no period along the y-axis. Consider these tiled slabs as rigid bodies and move eah of them by anarbitrary horizontal vetor thereby destroying all vertial periods as well.Open Problem 2. If E � R2, is it true that in any tiling E + � = R2 the set � must posess at least oneperiod-vetor? 15



The main diÆulty in dimension two and higher is that the zero set of bf is not a disrete set any more,at least under no set of reasonable assumptions about f (suh as ompat support was in dimension one).Therefore, from our basi ondition (1.2) on obtains that Æ� is supported, in general, on a subset of theplane, whih, under some reasonable assumptions, is a olletion of submanifolds of odimension one. Thestruture of suh distributions is muh riher of ourse than those supported at points, and this is the mainsoure of diÆulty, at least ompared with the one-dimensional problem.In this setion we will show the following result [K00a℄ in two-dimensions.Theorem 1.8. (Kolountzakis, 2000)Suppose that P is a symmetri onvex polygon in the plane whih tiles (multiply) with the multiset �:P + � = mRdat some integer level m. If P is not a parallelogram then � is a �nite union of two-dimensional latties.The onvexity assumption here is only used to guarantee that eah edge-diretion appears in the polygonexatly twie. For a more general theorem see [K00a℄.If one tries to use (1.2) diretly, one enounters the problems mentioned above, mainly the fat that thezero set Z(�P ) is not disrete, but rather a one-dimensional set.Let e1 and e2 be two edges of the polygon P of the same diretion u. By the symmetry of P they havethe same length. We an then write (here e1 and e2 are viewed as point-sets in R2 and � as a vetor)e2 = e1 + �;for some � 2 R2. (For eah set A and vetor x we write A + x = fa+ x : a 2 Ag.) Let then �u be themeasure whih is equal to ar-length on e1 and negative ar-length on e2 (see Figure 7). Sine every part ofe1 e2� u+ + ++ - - - - -Figure 7: The measure �u supported on two parallel edges of the polygon e1 and e2, with opposite sign oneah edge.a translate of e1 in the tiling P + � has to be anelled by part of a opy of e2 it follows thatX�2��u(x� �)is the zero measure in R2. It also intuitively obvious that the vanishing of the above measure for all relevantdiretions (i.e. those appearing as edge-diretions) u also implies tiling at some integer level.So a onvex symmetri polygon P tiles multiply with a multiset � if and only if for eah pair e and e+ �of parallel edges of P X�2��e(x� �) = 0; (1.10)where �e is the measure in R2 that is ar-length on e and negative ar-length on e + � . Condition (1.10)then beomes �e � Æ� = 0 or, taking Fourier Transforms (arguing as in x1.2),�e �Æ� = 0:16



and suppÆ� � Z(�e) (1.11)for all edge-diretions e.1.4.1 The shape of the zero-setHere we study the zero-set of �e and determine its struture. We �rst alulate �e in the partiular asewhen e is parallel to the x-axis, for simpliity. Let � 2M (R2) be the measure de�ned by duality by�(�) = Z 1=2�1=2 �(x; 0) dx; 8� 2 C(R2):That is, � is ar-length on the line segment joining the points (�1=2; 0) and (1=2; 0). Calulation givesb�(�; �) = sin���� :Notie that b�(�; �) = 0 is equivalent to � 2Zn f0g.If �L is the ar-length measure on the line segment joining (�L=2; 0) and (L=2; 0) we have�L(�; �) = sin�L���and Z(�L) = �(�; �) : � 2 L�1Zn f0g	:Write � = (a; b) and let �L;� be the measure whih is ar-length on the segment joining (�L=2; 0) and(L=2; 0) translated by �=2 and negative ar-length on the same segment translated by ��=2. That is, wehave �L;� = �L � (Æ�=2 � Æ��=2);and, taking Fourier Transforms, we getd�L;� (�; �) = �2sin�L��� sin�(a� + b�):De�ne u = �j�j2 and v = (1=L; 0). It follows that (u? is a unit vetor orthogonal to u)Z(d�L;� ) = (Zu+Ru?) [ (Zn f0gv +Rv?):(Eah of the two summands in the union above orresponds to eah of the fators in the formula for d�L;� .)This a set of straight lines of diretion u? spaed by juj and ontaining 0 plus a similar set of lines of diretionv?, spaed by jvj and ontaining zero. However in the latter set of parallel lines the straight line through 0has been removed (see Figure 8). We state this as a theorem for later use, formulated in a oordinate-freeway.De�nition 1.5. (Geometri inverse of a vetor)The geometri inverse of a non-zero vetor u 2 R2 is the vetoru� = ujuj2 :Theorem 1.9. Let e and e + � be two parallel line segments (translated by � , of magnitude and diretiondesribed by e, symmetri with respet to 0). Let also �e;� be the measure whih harges e with its ar-lengthand e+ � with negative its ar-length. ThenZ(d�e;� ) = (Z�� +R��?) [ (Zn f0ge� +Re�?): (1.12)17



0 missing lineuvFigure 8: The zero-set Z(d�L;� ) = (Zu+Ru?) [ (Zn f0gv +Rv?), with u = �j�j2 and v = (1=L; 0)1.4.2 Completion of the argumentThe intersetion of all the relevantZ(�e) is easily shown to be a disrete set, exept when P is a parallelogram.To onlude the argument we show that the tempered distribution Æ� is (a) loally a measure, and (b)the point masses of Æ� are uniformly bounded. This is aomplished using the following two Theorems.Theorem 1.10. Suppose that � 2 Rd is a multiset with density �, Æ� = P�2� Æ�, and that Æ� is a measurein a neighborhood of 0. Then Æ�(f0g) = �.Proof. Take � 2 C1 of ompat support with �(0) = 1. We haveÆ�(f0g) = limt!1Æ�(�(tx))= limt!1 Æ�(t�d b�(�=t))= limt!1 t�dX�2� b�(�=t)= limt!1 Xn2Zd X�2Qn t�db�(�=t)where, for �xed and large T > 0, Qn = [0; T )d + Tn; n 2Zd:Sine � has density � it follows that for eah � > 0 we an hoose T large enough so that for all nj� \Qnj = �jQnj(1 + Æn);with jÆnj � �. For eah n and � 2 Qn we haveb�(�=t) = b�(Tn=t) + r�18



with jr�j � CTt�1rb�L1(t�1Qn). HeneÆ�(f0g) = limt!1 Xn2Zd t�d X�2Qn(b�(Tn=t) + r�)= limt!1 Xn2Zd t�d�jQnj(1 + Æn)b�(Tn=t) +limt!1 Xn2Zd t�d X�2Qn r�= limt!1S1 + limt!1S2:We have �����S1 �Xn t�d�jQnjb�(Tn=t)����� � �Xn t�d�jQnj���b�(Tn=t)��� (1.13)The �rst sum in (1.13) is a Riemann sum for � RRd b� = � and the seond is a Riemann sum for � RRd ���b���� <1.For S2 we have jS2j � C Xn2Zd t�d�jQnj(1 + Æn)T t�1rb�L1(t�1Qn)� C�T t�1 Xn2Zd t�djQnjrb�L1(t�1Qn):The sum above is a Riemann sum for RRd ���rb����, whih is �nite, hene limt!1 S2 = 0.Sine � is arbitrary the proof is omplete.Remark 1.2. The same proof as that of Theorem 1.10 shows that, if� = X�2� �Æ�;with j�j � C, � is of density 0 and the tempered distribution b� is loally a measure in the neighborhood ofsome point a 2 R2, then we have b�(fag) = 0.Theorem 1.11. Suppose that the multiset � � Rd has density uniformly bounded by � and that, for somepoint a 2 Rd and R > 0, suppÆ� \BR(a) = fag:Then, in BR(a), we have Æ� = wÆa, for some w 2 C with jwj � �.Proof. It is well known that the only tempered distributions supported at a point a are �nite linearombinations of the derivatives of Æa. So we may assume that, for � 2 C1(BR(a)),Æ�(�) =X� �(D�Æa)(�) = X� (�1)j�j�D��(a); (1.14)where the sum extends over all values of the multiindex � = (�1; : : : ; �d) with j�j = �1 + � � �+ �d � m (the�nite degree) and D� = ��11 � � ���dd as usual.We want to show that m = 0. Assume the ontrary and let �0 be a multiindex that appears in (1.14)with a non-zero oeÆient and has j�0j = m. Pik a smooth funtion � supported in a neighborhood of 0whih is suh that for eah multiindex � with j�j � m we have D��(0) = 0 if � 6= �0 and D�0�(0) = 1. (Toonstrut suh a �, multiply the polynomial (1=�0!)x�0 with a smooth funtion supported in a neighborhoodof 0, whih is identially equal to 1 in a neighborhood of 0.)19



For t!1 let �t(x) = �(t(x� a)). Equation (1.14) then gives thatÆ�(�t) = tm(�1)m�0 : (1.15)On the other hand, using (�(t(x� a)))^ (�) = e�2�iha;�=tit�d b�(�=t);we get Æ�(�t) = X�2� e�2�iha;�=tit�db�(�=t): (1.16)Notie that (1.16) is a bounded quantity as t!1 by a proof similar to that of Theorem 1.10, while (1.15)inreases like tm, a ontradition.Hene Æ� = wÆa in a neighborhood of a. The proof of Theorem 1.10 again gives that jwj � �.We are now ready to prove the result [K00a℄ that �nishes the argument.Theorem 1.12. (Kolountzakis, 2000)Suppose that � � R2 is a disrete multiset of uniformly bounded density and thatÆ� =  X�2� Æ�!^is loally a measure with ���Æ����(BR(0)) � CR2;for some positive onstant C and R � 1. Assume also that Æ� has disrete support. Then � is a �nite unionof translated latties.Proof. De�ne the sets (not multisets)�k = f� 2 � : � has multipliity kg:By Meyer's Theorem 1.5 (applied for the base set of the multiset � with the oeÆients � equal to theorresponding multipliities) eah of the �k is in the oset ring of R2.By Theorem 1.6 it follows that the disrete set �k an be onstruted from latties inR2 (two-dimensional,one-dimensional or points) using �nitely many operations and one shows easily that the set �k has the form�k = 0� J[j=1Aj n (B(j)1 [ � � � [B(j)nj )1A [ L[l=1Ll 4 F; (1.17)where A1; : : : ; AJ are 2-dimensional translated latties, Ll and B(j)i are 1-dimensional translated latties andF is a �nite set (J; L � 0). The latties Aj may be assumed to be have pairwise intersetions of dimensionat most 1.We may thus write �k = A4B; (1.18)with A = SJj=1Aj , where the 2-dimensional translated latties Aj have pairwise intersetions of dimensionat most 1, and densB = 0.Hene Æ�k = JXj=1 ÆAj + �;where � = Pf2F fÆf , densF = 0 and jf j � C(J). The set F onsists of B and all points ontained in atleast two of the Aj . 20



Combining for all k, and reusing the symbols Aj, � and F , we getÆ� = JXj=1 ÆAj + �:But Æ� and PJj=1dÆAj are both (by the assumption and the Poisson Summation Formula) disrete measures,and so is therefore b�. However densF = 0 and the boundedness of the oeÆients f implies that b� has nopoint masses (see Remark 1.2), whih means that b� = 0 and so is �. Hene Æ� =PJj=1 ÆAj , or� = J[j=1Aj ; as multisets:Last, observe that the support of Æ� is ontained in the intersetion of two grids of the type shownin Theorem 1.9, and has therefore (remember it's a disrete set) bounded density. This proves that���Æ����(BR(0)) � CR2 and we an invoke Theorem 1.12.
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2 Leture 2: Problems of lattie tiling.Here we will examine several lattie tiling problems. The study of lattie tilings in Fourier spae is partiularlysimple as explained in x1.2.1f + � is a tiling if and only if bf vanishes on the dual lattie ��, exept at zero.The study of lattie tiling does not involve at all distributions whih are not measures. The Fourier Analysisinvolved is nothing more than the usual multi-dimensional Fourier Series plus a hange of variable to go fromthe integer to the arbitrary lattie.2.1 A new equivalent form of a theorem of Haj�osLet us start by quoting a well known theorem of Minkowski in the Geometry of Numbers.Theorem 2.1. (Minkowski, a. 1900)Let A 2 GL(d;R) have detA = 1. Then there is x 2Zd n f0g with kAxk1 � 1.Proof. Let � = AZd and U = [�12 ; 12 ℄. We want to show that � \ (2U ) ontains something besides 0.Suppose, on the ontrary, that � \ (2U ) = f0g. Then, there is � > 0 suh that forU� = [�12 � �; 12 + �℄we have � \ (2U�) = f0g. We an rewrite this as(�� �) \ (U� � U�) = f0g;whih means that the opies U� + �, � 2 �, are disjoint (we have a paking). But dens � = 1 and jU�j > 1,whih is a ontradition, aording to Lemma 1.3.The following theorem of Haj�os [Haj41℄ proved a onjeture of Minkowski some forty years after it wasposed. This onjeture onerned the ase when one ould have a strit inequality in Theorem 2.1.Theorem 2.2. (Haj�os, 1941)Let A 2 GL(d;R) have detA = 1. Then there is x 2Zd with kAxk1 < 1 unless A has an integral row.Haj�os atually worked on the following equivalent form of the Minkowski onjeture, whih involves lattietilings by a ube. This form was already known to Minkowski and most results on Minkowski's onjetureleading up to Haj�os's eventual proof have used this form.Theorem 2.3. If Q = [�1=2; 1=2℄d is a ube of unit volume in Rd, � � Rd is a lattie, andRd = Q+ �is a lattie tiling of Rd then there are two ubes in the tiling that share a (d� 1)-dimensional fae. In otherwords, for some i = 1; : : : ; d, the standard basis vetor ei = (0; : : : ; 0; 1; 0; : : :; 0)> 2 �.Keller [Kel30℄ onjetured that the same is true even without the lattie assumption. That is, Kelleronjetured that in any tiling of Eulidean spae by translates of a ube there are two ubes in the tilingwhih share a (d�1)-dimensional fae. This is indeed true up to dimension 6 but was disproved by Lagariasand Shor [LS92℄ for d � 10. The remaining ases 7 � d � 9 remain open.Theorem 2.2 =) Theorem 2.3.Let � = AZd with detA = 1, Q+ � = Rd. Then, either there is a non-zero �-point in the interior of 2Q orA has an integral row. The �rst annot happen beause of the tiling assumption. Therefore aij 2Zfor some22



i and for all j. Again beause of tiling it follows that gd(ai1; : : : ; ai;d) = 1. Otherwise the i-th oordinatesof all �-points would be multiples of G = gd(ai1; : : : ; ai;d) > 1, whih is impossible (there would be gaps inthe tiling). Let Rd�1 be the subspae spanned by all ej , j 6= i, and de�ne �0 = �\Rd�1 and Q0 = Q\Rd�1.It follows that Rd�1 = �0+Q0 is a tiling of Rd�1. By indution then �0 ontains some vetor of the standardbasis and so does �.Theorem 2.3 =) Theorem 2.2.Theorem 2.3 easily implies the seemingly stronger statement that, if AZd+Q = Rd is a tiling then, aftera permutation of the oordinate axes, the matrix A takes the form0BB� 1 0 0 : : : 0a2;1 1 0 0: : : : : : : : : : : : : : :ad;1 : : : : : : : : : 1 1CCA (2.1)Using this remark, if AZd\ (�1; 1)d = f0g we get, sine detA = 1, that AZd + Q = Rd and, therefore, A is(after permutation of the oordinate axes) of the type (2.1), and thus has an integral row (and this propertyis preserved under permutation similarity).We now prove that the following is equivalent to Theorems 2.2 and 2.3 [K98℄.Theorem 2.4. (Kolountzakis, 1998)Let B 2 GL(d;R) have detB = 1 and the property that for all x 2 Zd n f0g some oordinate of the vetorBx is a non-zero integer. Then B has an integral row.Open Problem 3. Prove this ombinatorial statement diretly, thereby obtaining a new proof of theMinkowski Conjeture.Remark 2.1. One might think that Theorem 2.4 an be proved equivalent diretly to Theorem 2.2, whih itresembles most. It is, indeed, lear that Theorem 2.2 implies Theorem 2.4. However, the proof that is givenhere is that of the equivalene of Theorems 2.4 and 2.3. I do not know of a more diret proof of the fat thatTheorem 2.4 implies Theorem 2.2.We shall need the following simple lemma.Lemma 2.1. Let A 2 GL(d;R) be a non-singular matrix. The lattie A�>Zd ontains the basis vetor ei ifand only if the i-th row of A is integral.Proof. Without loss of generality assume i = 1.If e1 2 A�>Zd then e1 = A�>x for some x 2Zd. Therefore, for all y 2Zd we have(Ay)1 = e>1 Ay = x>A�1Ay = x>y 2Z:It follows that (Ay)1 2Zfor all y 2Zd and the �rst row of A is integral.Conversely, if the �rst row of A is integral, then, for all y 2ZdZ3 (Ay)1 = x>y;where A�>x = e1 (x 2 Rd). It follows that x 2Zd and e1 2 A�>Zd.Proof of the equivalene of Theorems 2.3 and 2.4.Let f(x) = 1 (x 2 Q) be the indiator funtion of the unit-volume ube Q = [�1=2; 1=2℄d. A simplealulation shows that bf (�) = dYj=1 sin��j��j ; (2.2)23



so that Z := n bf = 0o = �� 2 Rd : some �j is a non-zero integer	: (2.3)Therefore, if � = B�>Zd then (sine � has volume 1)Q+ � = Rd() �� n f0g � Z;where �� = BZd. In words, Q tiles with � = B�>Zd if and only if for every x 2Zd n f0g the vetor Bx hassome non-zero integral oordinate.Theorem 2.3 =) Theorem 2.4.Suppose x 2Zd n f0g implies some (Bx)i 2Zn f0g. Then Q + � = Rd and from Theorem 2.3, say, e1 2 �,whih, from Lemma 2.1, implies that the �rst row of B is integral.Theorem 2.4 =) Theorem 2.3.Assume Q + � = Rd. It follows that for every x 2 Zd n f0g the vetor Bx has some non-zero integraloordinate. By Theorem 2.4 B must have an integral row, whih, by Lemma 2.1, implies that some ei 2 �.2.2 Tilings by nothed and extended ubesIn this setion we prove that some simple shapes (like those in Figure 9) admit lattie tilings.
(a) (b) ()Figure 9: These shapes admit lattie tilings2.2.1 The nothed ubeWe onsider �rst the unit ube Q = ��12 ; 12�dfrom whose orner (say in the positive orthant) a retangle R has been removed with sides-lengths Æ1; : : : ; Æd(0 � Æj � 1). That is, we onsider the \nothed ube":N = Q nRwhere R = dYj=1�12 � Æj ; 12� :24



It is shown in Figure 9 (a).We give a new [K98℄, Fourier-analyti, proof of the following result of Stein [St90℄.Theorem 2.5. (Stein, 1990)The nothed ube N admits a lattie tiling of Rd.After a simple alulation we obtain�N (�) = dYj=1 sin��j��j � F (�) dYj=1 sin�Æj�j��j ; (2.4)where F (�) = exp(�iK(�)) with K(�) = dXj=1(Æj � 1)�j : (2.5)Using (1.5) it is enough to exhibit a lattie � � Rd, of volume equal tojN j = 1� Æ1 � � �Æd;suh that �N vanishes on �� n f0g.2.2.2 Latties in the zero-setWe de�ne the lattie �� as those points � for whih�1 � Æ2�2 = n1;�2 � Æ3�3 = n2;: : : (2.6)�d � Æ1�1 = nd;for some n1; : : : ; nd 2Z. That is, �� = A�1Zd, whereA = 0BBBBB� 1 �Æ21 �Æ3 . . . 1 �Æd�Æ1 1 1CCCCCA : (2.7)Therefore � = A>Zd and the volume of � is equal to jdetAj. Expanding A along the �rst olumn we geteasily that detA = 1� Æ1 � � �Æd, whih is the required volume.We now verify that �N vanishes on �� n f0g.Assume that 0 6= � 2 ��. Adding up the equations in (2.6) we getK = K(�) = �(n1 + � � �+ nd):If all the oordinates of � are non-zero we an write�N (�) = 1�d�1 � � ��d 0� dYj=1 sin��j � (�1)K(�) dYj=1 sin�Æj�j1A : (2.8)Observe from (2.6) that sin��j = (�1)nj sin�Æj+1�j+1;25



where the subsript arithmeti is done modulo d, from whih we get �N (�) = 0, sine the fators in the twoterms of (2.8) math one by one.It remains to show that �N (�) = 0 even when � has some oordinate equal to 0, say �1 = 0.Consider the numbers �1; : : : ; �d arranged in a yle and letI = f�m; �m+1; : : : ; �1; : : : ; �k�1; �kgbe an interval around �1 whih is maximal with the property that all its elements are 0. Then �m�1 6= 0 and�k+1 6= 0 and from (2.6) we get�m�1 � Æm�m = nm and �k � Æk+1�k+1 = nk: (2.9)We dedue that nm and nk are both non-zero and therefore that �m�1 and Æk+1�k+1 are both non-zerointegers and sin��m�1 = sin�Æk+1�k+1 = 0. This means that both terms in (2.4) vanish and so does �N (�).So we proved that for the lattie � = A>Zd, where A is de�ned in (2.7), we have N + � = Rd. Clearly,if � is a yli permutation of f1; : : : ; dg and if instead of the matrix A we have the matrix A0 whose i-throw has 1 on the diagonal, �Æ�i at olumn �i and 0 elsewhere, we get again a lattie tiling with the lattie(A0)>Zd. Stein [St90℄ as well as Shmerl [Sh94℄ have shown that these (d�1)! lattie tilings of the nothedube (one for eah yli permutation of f1:; : : : ; dg) are all non-isometri when the side-lengths Æj are alldistint.A deeper result of Shmerl [Sh94℄ is that there are no other translational tilings of the nothed ube,lattie or not. This is something that annot apparently be proved with the Fourier Analysis approah.2.2.3 Extended ubesLet us now allow the parameters Æ1; : : : ; Æd to take on any non-zero real value subjet only to the restritionÆ1 � � �Æd 6= 1; (2.10)and let the funtion '(�) be equal to the right-hand side of (2.4). Let again the matrix A be de�ned by(2.7) and � = A>Zd as before. We have again detA = 1� Æ1 � � � Æd.The alulations we did in x2.2.2 show that ' vanishes on �� n f0g, hene, if �' is the inverse FourierTransform of ', �' tiles Rd with � and weight'(0)j1� Æ1 � � � Ædj = sgn(1� Æ1 � � �Æd); (2.11)where sgn(x) = �1 is the sign of x.The funtion �' is given by �'(x) = �Q(x)� sgn(Æ1 � � � Æd) (x); (2.12)where  (x) = �Q�x1 � (1� Æ1)=2jÆ1j ; : : : ; xd � (1 � Æd)=2jÆdj � : (2.13)Notie that  (x) is the indiator funtion of a retangle R = R(Æ1; : : : ; Æd) with side-lengths jÆ1j; : : : ; jÆdjentered at the point P = �12 ; : : : ; 12�� 12 (Æ1; : : : ; Æd) : (2.14)The retangle R intersets the interior of Q only in the ase Æ1 > 0; : : : ; Æd > 0 and when this happens �' isan indiator funtion only if we also have Æ1 � 1; : : : ; Æd � 1, whih is the ase of the nothed ube that weexamined in x2.2.2. 26



Otherwise (not all the Æs are non-negative) �' is an indiator funtion only when sgn(Æ1 � � �Æd) = �1, i.e.,the number of negative Æs is odd. In this ase we have that�' = �Q[Rand from (2.11) we get that Q [R tiles with � and weight 1. We an now prove the following [K98℄.Theorem 2.6. (Kolountzakis, 1998)Let Q and R be two axis-aligned retangles in Rd with sides of arbitrary length and disjoint interiors. Assumealso that Q and R have a vertex K in ommon and intersetion of odd odimension.Then Q [R admits a lattie tiling of Rd of weight 1.For example, the extended ubes shown in Figure 9 (b),() admit lattie tilings ofR3, as the orrespondingodimensions are 1 and 3.Proof. After a linear transformation we an assume that Q = [�1=2; 1=2℄d, that Q and R share the vertexK = (1=2; : : : ; 1=2) and that Q \R has odimension k (an odd number) andQ \R � �x 2 Q : x1 = � � � = xk = 12�:Let the side-lengths of R be 1; : : : ; d > 0. De�neÆj = � �j ; if 1 � j � k;j ; if k + 1 � j � d.It follows that, with this assignment for the Æj , the indiator funtion of R is equal to the funtion�sgn(Æ1 � � �Æd) (x) of (2.12) and tiling follows from the previous disussion.Most likely the extended ubes with an intersetion of even odimension do not tile, at least not forgeneral side-lengths. This is lear in dimension two and it is oneivable that some ombinatorial argumentould easily show this in any dimension. The Fourier Analysis approah does not seem to be very helpfulwhen one tries to disprove that something is a translational tile.Open Problem 4. In the setting of Theorem 2.6 prove that if the odimension is even then the set Q [Ris not a tile.2.3 The Steinhaus tiling problem2.3.1 The original, two-dimensional aseSteinhaus [Mos81, problem 59℄ asked whether there is a planar set S whih, no matter how translated androtated, always ontains exatly one point with integer oordinates.De�nition 2.1. (Steinhaus property)A set S � R2 has the Steinhaus property if for every x 2 R2 and for every rotationA� = � os � � sin �sin � os � �we have # �Z2\ (A�S + x)� = 1; (2.15)where A�S + x = fA�s + x : s 2 Sg.Sierpi�nski [Sie59℄ �rst proved that a set whih is bounded and either open or losed annot have theSteinhaus property. Croft [Cro82℄ and Bek [Be89℄ proved the same of any set whih is bounded and27



measurable. (Croft's approah is more diret and geometri. Bek is using Fourier Analysis.) Ciuu [Ciu96℄shows that any Steinhaus set must have empty interior, without assuming boundedness. Several variationsof the problem have been investigated by Komj�ath [Kom92℄ from a rather di�erent point a view, where oneplaes a di�erent subgroup of the plane in plae ofZ2.Very reently it was shown by Jakson and Mauldin [JM02℄ that Steinhaus sets do indeed exist. Butthe onstrution there does not furnish measurable suh sets and it is preisely under the assumption ofmeasurability that we study the existene problem for Steinhaus sets here, using Fourier Analysis.To begin, notie that the question of Steinhaus an be rephrased as follows:(a) Is there a set E whih tiles the plane if translated at any rotated opy ofZ2?(b) Or, is there a ommon set of oset representatives (fundamental domain) of all groups R�Z2 in thegroup R2?We only are for measurable Steinhaus sets (if they exist) so tiling, above, is to be interpreted in the almosteverywhere sense, as it is normally interpreted throughout this survey.As �rst notied by Bek [Be89℄, the Steinhaus question in the form (a), above, is equivalent to askingif there exists a measurable set E � R2, of measure 1, suh that the Fourier Transform of its indiatorfuntion vanishes on all irles of the plane whih are entered at the origin and pass through some pointof the integer lattie Z2. This is so sine for a set to have the Steinhaus property it must tile the planewhen translated by any rotation of Z2 (this alone implies of ourse that jEj = 1). These sets are latties,hene this is equivalent to �E vanishing on all these latties, whih are self-dual. The union of these rotatedlatties is preisely the set of irles mentioned above. We state this as a Theorem.Theorem 2.7. A measurable set E � R2 is simultaneously a tile for all rotations of Z2 if and only if it hasmeasure 1 and its Fourier Transform �E vanishes on all irles with enter at the origin and radius of theform pm2 + n2, with m;n 2 N, not both 0.It is now easy to see that suh sets annot be bounded, if they exist. Indeed, the restrition onto anyline L through 0 of �E is nothing but the one-dimensional Fourier Transform of the funtion �E projetedonto L, i.e., of the funtion f(t) = ZL? �E(tu+ s) ds;where u is a unit vetor on L and L? is the line through 0 whih is orthogonal to L. But if E is boundedthe funtion f(t) has ompat support, hene �E(tu) is an entire funtion of exponential type, and, as suh,it should have at most C �R zeros in the interval (�R;R), where C > 0 is a onstant. (See the disussion inx1.3.2.) However, the number of zeros of �E(tu) is twie the number of irles out to radius R, or, in otherwords, twie the number of integers expressible as a sum of two integer squares and of size up to R2. Butthis number is almost quadrati in R. It is a well known result of Landau [Fri82℄ that it is � R2 log�1=2R.With a more areful and quantitative approah along similar lines, but not using entire funtions, it wasthen proved by the author [K96℄ that any set E with the Steinhaus property must be large at in�nity:ZE jxj� dx = 1; for any � > 103 :With muh more are it was obtained in [KW99℄ by the author and Tom Wol� thatTheorem 2.8. (Kolountzakis and Wol�, 1997)If E � R2 is a measurable Steinhaus set then RE jxj� = 1, for all � > 46=27.The number 46=27 omes from the best known estimate known for the irle problem. This is the problemwhere one asks for the best upper estimates in the error term E(R) (as R!1) in the expressionN (R) = �R2 + E(R);28



where N (R) is the number of integer lattie points in the disk fjxj � Rg � R2. Even if the onjeturedbest possible upper bound E(R) = O(R1=2+�) gets proved the estimate for the Steinhaus tiling problem inTheorem 2.8 would only beome true for all � > 1. So it appears that if one is going to disprove the existeneof measurable Steinhaus sets in dimension two one needs some rather di�erent approah.This seems to be the state of knowledge for the two-dimensional ase.2.3.2 The problem in dimension d � 3The Steinhaus problem generalizes very naturally to any dimension. One asks for a set E � Rd suh thatno matter what orthogonal linear transformation you apply to it, it still tiles Rd when translated by Zd.With preisely the same reasoning as before, one is looking for a measurable set of measure 1 suh that theFourier Transform of its indiator funtion vanishes on all spheres entered at the origin that ontain someinteger lattie point.It is beause of the fat that we know preisely whih numbers are representable as sums of three squaresthat the following result [KW99℄ holds.Theorem 2.9. (Kolountzakis and Wol�, 1997)If f 2 L1(Rd), d � 3, and bf vanishes on all spheres entered at the origin through some lattie point, thenf is a.e. equal to a ontinuous funtion.In partiular, there are no measurable Steinhaus sets in dimension d � 3.Here we show an alternative way [KP02℄ of proving that there are no sets with the Steinhaus propertyin dimension d � 3. We emphasize though that Theorem 2.9 is muh stronger than Theorem 2.10 givenbelow. See also some related results of Mauldin and Yingst [MY02℄.Theorem 2.10. (Kolountzakis and Papadimitrakis, 2000)There are no measurable Steinhaus sets in dimension d � 3.Proof. In any dimension d write B for the union of all spheres entered at the origin that go through atleast one lattie point. The point 0 is inluded in B.Assume from now on that the set E is a Steinhaus set in dimension d.Suppose now that we an �nd a lattie �� � B with det �� not an integer. Sine �E vanishes on �� nf0git follows that E + � is a tiling at level ` = jEj � dens � = 1 � det ��, whih is not an integer. This is aontradition as, obviously, any set may only tile at an integral level.Looking at the quadrati form hA>Ax; xi for eah lattie �� = AZd we summarize the above observationsin the following lemmaLemma 2.2. If there exists a positive de�nite quadrati form Q(x) = Q(x1; : : : ; xd) = hBx; xi suh that forall integral x1; : : : ; xd its value is the sum of d integer squares, and the determinant of Q, detB, is not thesquare of an integer, then there are no Steinhaus sets in dimension d.The ase d � 4:Consider the symmetri 4 � 4 matrix B with 1 on the diagonal and 1=2 everywhere else. The matrix Bis positive de�nite (its eigenvalues are 1=2, 1=2, 1=2 and 5=2) and its determinant is 5=16. It de�nes thequadrati form Q(x) = Q(x1; : : : ; x4) = hBx; xi = 4Xi=1 x2i +Xi>j xixj;whih is obviously integer valued and has non-square determinant. Furthermore, every non-negative integermay be written as a sum of four squares (Lagrange). From Lemma 2.2 it follows that there are no Steinhaussets for d = 4. We easily see that this extends to all higher dimensions by taking as our matrix the identityin one orner of whih sits the 4� 4 matrix B desribed above.29



The ase d = 3:The determinant of the form that appears in the following Theorem is 2 � 11 � 6, whih is not a square, henethere are no Steinhaus sets in dimension 3.Theorem 2.11. For eah x; y; z 2Zthe numberQ(x; y; z) = 2x2 + 11y2 + 6z2is a sum of three integer squares.Proof. Suppose this is false and that there are (x0; y0; z0) 6= (0; 0; 0) and(a) Q(x0; y0; z0) is not a sum of three squares, and(b) x20 + y20 + z20 is minimal.From (a), and the well known haraterization of those natural numbers that annot be written as a sum ofthree squares, we have that Q(x0; y0; z0) = 4�(8k + 7); � � 0; k � 0:If all x0; y0; z0 are even, we have � � 1, and, setting x0 = 2x1, y0 = 2y1 and z0 = 2z1, we obtain thatQ(x1; y1; z1) is not a sum of three squares, whih ontradits the minimality of the initial triple (x0; y0; z0).We onlude that at least one of x0; y0; z0 is odd.Case No 1: � = 0.Then Q(x0; y0; z0) = 7 mod 8. But the quadrati residues mod 8 are 0, 1 and 4, and one heks byexamining all the possibilities that Q is never 7 mod 8.Case No 2: � = 1.Then Q(x0; y0; z0) = 32k + 28. Hene y0 is even, say y0 = 2y1. We getx20 + 22y21 + 3z20 = 16k+ 14;from whih we onlude that x0 and z0 are odd, x0 = 2x1 + 1, z0 = 2z1 + 1. Substitution gives4x21 + 4x1 + 1 + 22y21 + 12z21 + 12z1 + 3 = 16k+ 142x1(x1 + 1) + 11y21 + 6z1(z1 + 1) + 2 = 8k + 72x1(x1 + 1) + 11y21 + 6z1(z1 + 1) = 5 mod 8:But �2 + � = 0 or 2 or 4 or 6 mod 8, for all �, hene, by applying this to the �rst and last term in the abovesum, and heking all possibilities we get a ontradition.Case No 3: � � 2.As in Case No 2: y0 = 2y1, z0 = 2z1 + 1, x0 = 2x1 + 1. Hene2x1(x1 + 1) + 11y21 + 6z1(z1 + 1) + 2 = 4��1(8k + 7); � � 1 � 1:So y1 is even, y1 = 2y2, whih givesx1(x1 + 1) + 22y22 + 3z1(z1 + 1) + 1 = 2 � 4��2(8k + 7);a ontradition as the left hand side is odd while the right hand side is even. We point outhere that the atual quadrati form was only found by a semi-automated omputer searh. See [MY02℄ fora more systemati study of the method.It is also shown in [KP02℄ that the method shown above annot be applied in dimension 2 to show thenon-existene of measurable sets with the Steinhaus property.Theorem 2.12. (Kolountzakis and Papadimitrakis, 2002)Any positive-de�nite binary quadrati form whose values are always sums of two integer squares must havea determinant whih is the square of an integer. 30



2.4 Multi-lattie tiles2.4.1 A \�nite" Steinhaus problemThe Steinhaus question essentially asks if there is a set in the plane whih is simultaneously a translationaltile for eah translation set in the olletion�R�Z2 : 0 � � < 2�	; (R� is rotation by �):Restriting ourselves to the measurable ase again it is easy to see, using, for example, the Fourier method,that it is suÆient for a set to be a tile for a ountable dense (in the obvious sense) subset of these latties(groups) in order to be a tile for all of them.The problem only beomes signi�antly di�erent if one restrits oneself to a �nite olletion of latties�0; : : : ;�n � Rd;all of the same volume, say volume 1, and asks for a measurable subset of Rd whih tiles with all of them.It turns out [K97℄ that this is generially feasible and we give here a onstrution.Theorem 2.13. (Kolountzakis, 1997)If the latties �0; : : : ;�n � Rd all have the same volume and if the sum of their dual latties��0 + � � �+ ��nis a diret sum (i.e. there are no non-trivial relations �0 + � � �+ �n = 0 with �i 2 ��i ) then they possess aBorel measurable ommon tile (whih is generally unbounded).Proof. The ommon tile 
 � Rd that we onstrut is a ountable union of disjoint losed polyhedra (infat, retangles).De�nition 2.2. (Property A)We shall say that a olletion of latties �0; : : : ;�n � Rd has Property A if for eah � > 0 and for eahx0; : : : ; xn 2 Rd there exist �0 2 �0; : : : ; �n 2 �n, with j�j j arbitrarily large, suh thatjxi � �i � (xj � �j)j � �; for all i; j = 0; : : : ; n: (2.16)That is, we an get any olletion of points x0; : : : ; xn 2 Rd arbitrarily lose to eah other by translatingxi by some �i 2 �i, i = 0; : : : ; n.We �rst show that if the given olletion of latties has Property A then it has a ommon tile. At theend of the proof we indiate why it is preisely the olletions of latties with their duals having a diretsum that have Property A.The letter C will stand in this setion for a positive onstant that may not depend on the parameterK !1 and this onstant is not neessarily the same in all its ourenes.The latties �j, j = 0; : : : ; n, are given by�j = AjZd; detAj = 1: (2.17)Let Dj be the standard tile for the lattie �j, i.e.,Dj = Aj [0; 1)d; (2.18)whih is a parallelepiped of volume 1.Let 
0 = ;. In the end we shall have 
 = 1[k=1
k;31



where the K-th approximation AK = K[k=1
khas measure �(AK) ! 1, as K !1, and for eah j = 0; : : : ; n almost all osets x+ �j have no more thanone point in AK . It follows that 
 ontains exatly one element from almost all the osets of �j , for eahj = 0; : : : ; n, and is therefore a ommon tile for the olletion �0; : : : ;�n. Assume that we have alreadyde�ned 
0; : : : ;
K. The set 
K+1 will be de�ned as follows. The \projetion" �j : Rd! Dj is de�ned bythe relation x� �j(x) 2 �j :The \leftover" after stage K is then de�ned byL(K)j = Dj n �j(AK); for j = 0; : : : ; n: (2.19)We have to ensure that ��L(K)j �! 0, as K !1.
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Figure 10: Constrution of the ommon tile for two latties, d = 2Our onstrution will guarantee that eah of the leftovers L(K)j onsists of a �nite olletion of polyhedra.Choose � > 0 to be so small so as to be able to writeL(K)j =  S[s=1Q(j;K)s ! [ R(j;K); (j = 0; : : : ; n) (2.20)where the Q(j;K)s , s = 1; : : : ; S = S(K), are axis-aligned, losed ubes with disjoint interiors of side �, and��R(j;K)� � 1K : (2.21)Notie that the same number S = S(K) of ubes is used independently of j. (The ontrution is shown fortwo latties in Figure 10 in dimension d = 2.) 32



For eah s = 1; : : : ; S, let (j;K)s be the enter of the ube Q(j;K)s and, using Property A, de�ne �(j;K)s 2 �jto be suh that all (j;K)s � �(j;K)s ; j = 0; : : : ; n;are at most �K apart. The �(j;K)s are also taken large enough so that, for �xed j, no two translated ubesQ(j;K)s � �(j;K)s overlap.Consider then the intersetion of the n+ 1 translated ubeseQ(K)s = n\j=0�Q(j;K)s � �(j;K)s � (2.22)and notie that �( eQ(K)s ) � �d � C �dK : (2.23)De�ne 
K+1 = S[s=1 eQ(K)s :We have L(K+1)j = L(K)j n �j(
K+1) and ��L(K)j �! 0;as K ! 1. This is so beause L(K)j n �j(
K+1) onsists of the sets R(j;K), j = 0; : : : ; n, whih have totalmeasure � n+ 1K plus a set of measure C �dK for eah s = 1; : : : ; S, whih amounts to no more than CK ofmeasure, as learly �dS � 1.Open Problem 5. Can two latties in generi position have a bounded measurable ommon tile?2.4.2 Multi-lattie tiles: an appliation to Weyl-Heisenberg basesDe�nition 2.3. (Gabor or Weyl-Heisenberg bases)A Gabor (or Weyl-Heisenberg) basis of Rd is a funtion g 2 L2(Rd), together with two latties K = AZd(the translation lattie) and L = BZd (the modulation lattie) suh that the olletion�g(x � �)e�2�i�x; � 2 K; � 2 L	; (2.24)is an orthonormal basis of L2(Rd).It had been known for some time (see the introdution and referenes in [HW01℄) that if there is aWeyl-Heisenberg basis for the latties K and L then it must be true thatdensK � densL = 1: (2.25)Apart from dimension 1 though, the onverse had not been known until Han and Wang [HW01℄ used theidea of multi-lattie tiles to prove that whenever (2.25) holds then there is a g suh that olletion (2.24) isan orthonormal basis of L2(Rd).Han and Wang [HW01℄ �rst proved that the generiity ondition desribed in Theorem 2.13 is notneessary when the number of latties is two.Theorem 2.14. (Han and Wang, 2001)Whenever the latties �0 and �1 in Rd have the same volume then there exists a measuarable set E � Rdwhih tiles with both of them 33



Thus, for two latties of the same volume there is always a measurable ommon tile. This is not true forthree or more latties without some ondition, as the following result [K97℄ shows.Theorem 2.15. (Kolountzakis, 1997)There are three latties in R2 whih have the same volume and do not admit a ommon tile.Proof. Let �0 = (2Z)�Z; �1 =Z� (2Z); and �2 = �(k; l) 2Z2 : k = l mod 2	:It is easy to see that Z2 = 2Xi=0 �i = 2[i=0�i:Suppose now that 
 � R2 is suh that for all x 2 R2, outside a set E of measure 0, we have that x + �iontains exatly one point of 
, for all i = 0; 1; 2. (We do not assume that 
 is measurable.) It follows thatfor almost all x 2 R2 (with an exeptional set perhaps di�erent from E) we have��(x +Z2) \
�� = 2 and j(x+ �i) \
j = 1; i = 0; 1; 2:Indeed, Z2 is the disjoint union of �0 and �0 + (1; 0) and so are all its translates. We de�ne the setE0 = E [ (E � (1; 0));whih is learly still a null set. Then, for x =2 E0 the set x +Z2 ontains exatly two points of 
, sine thetwo disjoint opies of �0 therein both ontain exatly one 
-point.By translating 
 we may assume that this holds for x = 0. Let thenfz; wg =Z2\
:It follows that z �w 2Z2 and, sine Z2 = S3j=1 �j, z �w belongs to some �j. But then the 
-points z andw belong to the same �j-oset, a ontradition. Hene the �i have no ommon tile in R2 in a strong sense.We ontinue now with proof of Han and Wang [HW01℄ that (2.25) suÆes for the existene of a funtiong suh that the olletion (2.24) is a Weyl-Heisenberg basis. Suppose then that (2.25) holds. It follows thatthe latties K and L� have the same volume. Hene, by Theorem 2.14, there is a ommon tile E � Rd forK and L�. Let g = �E :For any f 2 L2(Rd) write then f(x) = X�2K f�(x) := X�2K g(x� �)f(x)whih is an orthogonal deomposition preisely beause E is a K-tile. For eah �, f�(x) is a funtion onE + � whih is a L�-tile. But if a set 
 tiles with a lattie L� then the olletionnexp2�ih�;xi : � 2 Lois an orthogonal basis for L2(
) (this is merely multi-dimensional Fourier Series plus a hange of variable,but see also Theorem 3.2 below). For 
 = E + � we therefore obtain thatf�(x) = X�2L hf�; e2�ih�;xiie2�i�x (x 2 E + �)is an orthogonal deomposition and so is thenf(x) = X�2K;�2L hf; g(x � �)e2�ih�;xiig(x� �)e2�i�x;as as we had to show. 34



2.5 The support of \soft" multi-lattie tilesFix the dimension d and take any �nite olletion of latties �1; : : : ;�N . Then the funtionf = �D1 � � � � � �DN ; (2.26)where Dj is any tile for �j, tiles with the given latties, as one an see diretly from the de�nition of tiling(if f + � is a tiling then so is f � g + �, even for non-lattie �).For this partiular f (and whatever hoie of Dj) we havediamsupp f � CN;with a onstant that dependes only on d. This is easy to see as at least 1=d of the sets Dj will be \long"along the same one of the d oordinate axes and the onvolution of all of them will therefore also be longalong that axis.If one hooses appropriate parallelograms for the Dj 's one gets more or less the best known (to me atleast) onstrution as regards the diameter of the ommon tile of the olletion �1; : : : ;�N , where, now,we do not insist that the tile be an indiator funtion, but rather any integrable funtion. One an in thismanner get a tile whose support has diameter � N .It is not obvious at all that this size has to grow as a funtion of N . In fat, the following theorem[KW99℄, whih provides a lower bound for the diameter of the support of a ommon tile, is the only one ofits kind, uses (multivariable) entire funtion theory (some times ine�etive in suh matters) and is still farfrom the best known upper bound (� N ).Theorem 2.16. (Kolountzakis and Wol�, 1997)Suppose that �1; : : : ;�N are unimodular latties in Rd with �i \ �j = f0g for all i 6= j. Suppose also thatthe non-zero f 2 L1(Rd) is a ommon tile for the �j. Thendiamsupp f � CdN1=d:Proof. All onstants below may depend only on the dimension d. We note that �1 \�2 = f0g implies thatthe lattie ��1 is uniformly distributed mod ��2. This an be proved using Weyl's lemma{see for example[K97℄.We shall make use of a theorem of Ronkin [Ron72℄ and Berndtsson [Ber78℄ whih onerns the zeroset on the real plane of an entire funtion of several omplex variables whih is of exponential type. Weformulate it as a lemma:Lemma 2.3. (Ronkin 1972, Berndtsson 1978)Assume that E � Rd is a ountable set with any two points having distane at least h and letdE = lim supr!1 jE \D(0; r)jjD(0; r)jbe its upper density (see De�nition 1.2). Assume that g : Cd ! C is an entire funtion vanishing on E whihis of exponential type � < A(d)hd�1dE :Then g is identially 0. (Here A(d) is an expliit funtion of the dimension d.)When d = 1 this is lassial and follows from Jensen's formula.Assume that f : Rd! C is as in Theorem 3 and write� = diam supp f35



We may assume that suppf is ontained in a dis of radius . � entered at the origin, sine the assumptionsare una�eted by a translation of oordinates. Then bf an be extended to C d as an entire funtion ofexponential type C�, in fat ��� bf (x+ iy)��� � CfeC�jyj; for x+ iy 2 C d :Furthermore, sine f tiles with all �j, it follows that bf vanishes onZ = n[i=1��i n f0g:Observe that, sine every lattie ��i is uniformly distributed mod every ��j , j 6= i, the density of points ineah ��i whih are also in some ��j is 0 and therefore the density of the set Z is equal to n.In order to use Lemma 2.3 we have to selet a large (in terms of upper density), well-separated subsetof Z. Notie �rst that we an assume that for eah i all points of ��i are at least distane n� 1d apart. Forif u; v 2 ��i have ju� vj < n� 1d then, for a suitable onstant , the one-dimensional version of Lemma 2.3implies that the funtion bf on the subspae E = C (u � v) annot be of exponential type � n 1d . Indeed, bfwould have too many zeros on that subspae, namely all multiples of u � v, whih all belong to ��i . Notealso that bf does not vanish identially on this subspae. But bf restrited to E is the Fourier Transform offE : E ! C de�ned by fE (x) = Rx+E? f(y) dy (here E? is the orthogonal omplement of E \Rn in Rn).Hene � � diam supp fE � Cn 1d , whih is what we want to onlude about �.Suppose now that we want to extrat a subset of Z whose elements are at least h distane apart, forsome h > 0 to be determined later. We shall say that point x of lattie ��i is killed by point y of lattie ��jif jx� yj < h. Then, we de�ne the subset Z 0 of Z as those points of Z whih are not killed by any point ofthe other latties. This set learly has all its points at distane at least h apart, provided thath � 12 minu;v2��i ju� vj � Cn� 1d ; (2.27)so that no point of a lattie may kill a point of the same lattie. Let us see how many points of ��2 are killedby some point of ��1. We use the uniform distribution of ��2 mod ��1.Fix a fundamental parallelepiped D1 of ��1. It is lear that only a fration �(h) � Chd of D1 = Rd=��1has distane from 0 that is less than h (this distane is measured on the torus D1). As ��2 is uniformlydistributed mod ��1 the subset of points of ��2 whih are killed by some point of ��1 has density �(h). Henethe density of those points of ��2 that are killed by any other lattie is at most (n � 1)�(h) � Chdn. Wededue that the density of Z 0 is at least (1 � Cnhd)n. We now hoose h = n� 1d , for a suÆiently smallonstant , to ensure that the density of Z 0 is at least Cn. Applying Lemma 2.3 with g = bf and E = Z 0 weget � � CAhd�1n � Cn 1d :Open Problem 6. Bridge the gap between Theorem 2.16 and the upper bound � N .
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3 Leture 3: The Fuglede Conjeture3.1 Spetral sets and tilingLet us write e�(x) = exp 2�ih�; xi.De�nition 3.1. (Spetral sets)Suppose that 
 is a bounded open set of measure 1. We all 
 spetral if L2(
) has an orthonormal basisE� = fe� : � 2 �gof exponentials. The set � is then alled a spetrum for 
.(We only restrit ourselves to sets of measure 1 to make our life simpler.)The inner produt and norm on L2(
) arehf; gi
 = Z
 fg; and kfk2
 = Z
 jf j2:We have he�; exi
 = �
(x� �):whih gives E(�) is orthogonal, 8�; � 2 �; � 6= � : �
(�� �) = 0For E(�) to be omplete as well we must in addition have8f 2 L2(
) : kfk22 = X�2� jhf; e�ij2: (3.1)It is suÆient to have (3.1) for f(t) = ex(t), x 2 Rd, sine then we have it in the losed linear span of thesefuntions, whih is all of L2(
).An equivalent reformulation for � to be a spetrum of 
 is therefore the following, whih we state as atheorem.Theorem 3.1. The set � is a spetrum of 
 if and only ifP�2� j�
(x� �)j2 = 1, for almost every x 2 Rd.In tiling language � is a spetrum of 
 , j�
j2 + � = RdThe relevant funtions are shown in Figure 11, for the ase of 
 being an interval.It follows from Theorem 3.1 that the spetrum � of domain 
, if it exists, has all the nie properties oftiling sets. In partiular, � has uniform density equal to 1 and its points are �-separated for some � > 0.We an now state Fuglede's Conjeture [Fug74℄Conjeture 3.1. (Fuglede 1974)Let 
 � Rd be a bounded, open domain of measure 1. Then 
 is spetral if and only if it an tile spae bytranslation.We should emphasize here that no relation is laimed in the onjeture between the spetrum of 
 andthe set of translations with whih 
 tiles.Remark 3.1. By the preeding disussion Fuglede's Conjeture states that 
 is a tile if and only if j�
j2 isa tile (both tilings are at level 1).Despite a lot of work that has been done in the last 5-6 years the onjeture remains open in all dimensionsand in both diretions. One easy and important ase though is given by the following [Fug74℄.37



�
 �
 � f�
 j�
j2Figure 11: The funtions �
, �
 �f�
 and j�
j2, when 
 is an interval. The last two funtions are a FourierTransform pair.Theorem 3.2. (Fuglede, 1974)Suppose 
 � Rd is a bounded open domain of measure 1 and � � Rd a lattie of density 1. Then 
+� = Rdif and only if �� (the dual lattie) is a spetrum of 
.Proof. As remarked above, �� is a spetrum of 
 if and only if (see x1.2.1)j�
j2 + �� = Rd;whih is in turn equivalent to the Fourier Transform of the funtion j�
j2 vanishing on the dual lattie of�� exept at 0. That is the funtion f = �
 � f�
 vanishes on � n f0g. But f is non-zero exatly on 
�
,hene the above vanishing is equivalent to (
 �
) \ � = f0gwhih means preisely that the opies 
+�, � 2 �, are non-overlapping. But j
j = 1 and dens � = 1, henethe above paking is indeed a tiling. The argument is ompletely reversible.3.2 Impliations of the Brunn-Minkowski inequality for onvex tiles and spe-tral bodiesLet us reall a simple ase of the Brunn-Minkowski Inequality (see e.g. [S93℄).For a onvex body K we always havejK �Kj � 2djKj:We have equality above exatly when K is symmetri, in whih ase K �K = 2K.Using the Brunn-Minkowski inequality one an show:Theorem 3.3. (Minkowski, a. 1900)If 
 is a onvex translational tile then it is symmetri.Proof. Suppose K is onvex and K + � = Rd. By the paking ondition (non-overlaping of translates) onlywe get (K �K) \ (�� �) = f0g:De�ne the onvex set L = 12(K �K). One easily sees that L� L = K �K, so thatL+ � � Rd;38



is a paking. But this implies (see Lemma 1.3) jLj � 1;and by the equality ase in the Brunn-Minkowski inequality K is symmetri.The following theorem [K00℄ is also a onsequene of the Brunn-Minkowski inequality.Theorem 3.4. (Kolountzakis, 2000)If 
 is onvex and spetral then it is symmetri.This result is of ourse in agreement with the Fuglede Conjeture as this would be false if there were anynon-symmetri onvex spetral domains. We prove Theorem 3.4 in x3.2.1 and x3.2.2 below.3.2.1 Fourier-analyti onditions for tilingWhen studying tiling by the funtion j�
j2 Theorem 1.1 is not appliable sine the Fourier Transform of thefuntion, namely �
 �f�
, is never smooth. However, the positivity of the funtion and its Fourier Transformas well as the ompat support of the Fourier Transform ompensate for this lak of smoothness and allowus to prove the following result [K00℄.Theorem 3.5. (Kolountzakis, 2000)Suppose that f � 0 is not identially 0, that f 2 L1(Rd), bf � 0 has ompat support and � � Rd. If f + �is a tiling then suppÆ� � nx 2 Rd : bf (x) = 0o [ f0g: (3.2)Proof. Assume that f + � = wRd and let K = nbf = 0o [ f0g:We have to show that Æ�(�) = 0; 8� 2 C1 (K):Sine Æ�(�) = Æ�(b�) this is equivalent to P�2� b�(�) = 0, for eah suh �. Notie that h = �= bf is aontinuous funtion, but not neessarily smooth. We shall need that bh 2 L1. This is a onsequene of awell-known theorem of Wiener [R73, Ch. 11℄. We denote by Td = Rd=Zd the d-dimensional torus.Theorem 3.6. (Wiener)If g 2 C(Td) has an absolutely onvergent Fourier seriesg(x) = Xn2Zd bg(n)e2�ihn;xi; bg 2 `1(Zd);and if g does not vanish anywhere on Td then 1=g also has an absolutely onvergent Fourier series.Assume that supp�; supp bf � ��L2 ; L2�d :De�ne the funtion F to be:(i) periodi in Rd with period lattie (LZ)d,(ii) to agree with bf on supp �,(iii) to be non-zero everywhere and,(iv) to have bF 2 `1(Zd), i.e., bF = Xn2Zd bF (n)ÆL�1n;39



is a �nite measure in Rd.One way to de�ne suh an F is as follows. First, de�ne the (LZ)d-periodi funtion g � 0 to be bfperiodially extended. The Fourier oeÆients of g are bg(n) = L�df(�n=L) � 0. Sine g; bg � 0 and g isontinuous at 0 it is easy to prove thatPn2Zd bg(n) = g(0), and therefore that g has an absolutely onvergentFourier series.Let � be small enough to guarantee that bf (and hene g) does not vanish on (supp �) + B�(0). Let kbe a smooth (LZ)d-periodi funtion whih is equal to 1 on (supp�) + (LZd) and equal to 0 o� (supp � +B�(0)) + (LZd), and satis�es 0 � k � 1 everywhere. Finally, de�neF = kg + (1� k):Sine both k and g have absolutely summable Fourier series and this property is preserved under both sumsand produts, it follows that F also has an absolutely summable Fourier series. And by the nonnegativityof g we get that F is never 0, sine k = 0 on nbf = 0o+ (LZd).By Wiener's Theorem 3.6, dF�1 2 `1(Zd), i.e., dF�1 is a �nite measure on Rd. We now have that��bf �^ =\�F�1 = b� � dF�1 2 L1(Rd):This justi�es the interhange of the summation and integration below:X�2� b�(�) = X�2���bf bf�^ (�)= X�2���bf�^ � bbf (�)= X�2� ZRd��bf �^ (y)f(y � �) dy= ZRd��bf �^ (y)X�2� f(y � �) dy= w ZRd��bf �^ (y) dy= w�bf (0)= 0;as we had to show.For a set A � Rd and Æ > 0 we writeAÆ = �x 2 Rd : dist (x;A) < Æ	:We shall need the following partial onverse to Theorem 3.5 (see Figure 12 for the assumptions of Theorem3.7).Theorem 3.7. Suppose that f 2 L1(Rd), and that � � Rd has uniformly bounded density. Suppose alsothat O � Rd is open and suppÆ� n f0g � O and OÆ � n bf = 0o; (3.3)for some Æ > 0. Then f + � is a tiling at level bf (0) �Æ�(f0g).40



0 nbf = 0oOÆ OÆ� lives hereFigure 12: The sets appearing in Theorem 3.7. The sets O;OÆ;nbf = 0o all live outside the ontours.The assumptions of Theorem 3.7 ensure that the supports of Æ� (exept at 0) and bf are well separated.In other words bf vanishes to in�nite order on the support of Æ�. This makes the formal impliationbf �Æ� = `Æ0 =) f � Æ� = `orret.Remark 3.2. By the assumptions of the theorem we know that Æ� is supported only at 0, in a neighborhoodof the origin. It follows from Theorem 1.11 that Æ� is a measure in some neighborhood of the origin so itmakes sense to speak of Æ�(f0g).Proof. Let  : Rd! Rbe smooth, have support in B1(0) and b (0) = 1 and for � > 0 de�ne the approximateidentity  �(x) = ��d (x=�). Let f� =  �f;whih has rapid deay.First we show that (R f�)�1f� + � is a tiling. That is, we show that the onvolution f� � Æ� is a onstant.Let � be any Shwartz funtion. Thenf� � Æ�(�) = bf�Æ�(b�(�x)) = Æ�(b�(�x) bf�):The funtion b�(�x) bf� is a Shwartz funtion whose support intersets suppÆ� only at 0, sine, for smallenough � > 0, supp b�bf� � supp bf� � (supp bf )� � O:Hene, for eah Shwartz funtion � f� � Æ�(�) = b�(0) bf�(0)Æ�(f0g);whih implies f� � Æ�(x) = bf�(0)Æ�(f0g); a.e.(x):We also have that P�2� jf(x � �)j is �nite a.e. (see the remark following the de�nition of tiling), hene, foralmost every x 2 Rd X�2� jf(x � �) � f�(x� �)j = X�2� jf(x� �)j � ���1� �(x� �)���;whih tends to 0 as �! 0. This provesX�2� f(x� �) = bf(0) �Æ�(f0g); a.e.(x):41



3.2.2 Convex spetral bodies must be symmetriProof of Theorem 3.4: Write K = 
 �
, whih is a symmetri, open onvex set. Assume that (
;�) isa spetral pair. We an learly assume that 0 2 �. It follows that j�
j2 + � is a tiling and hene that � hasuniformly bounded density, has density equal to 1 and Æ�(f0g) = 1:By Theorem 3.5 (with f = j�
j2; bf = �
 � f�
(�x)) it follows thatsuppÆ� � f0g [K:Let H = K=2 and write f(x) = �H � f�H(x) = ZRd �H(y)�H (y � x) dy:The funtion f is supported in K and has nonnegative Fourier Transformbf = j�H j2:We have ZRd bf = f(0) = volHand bf (0) = ZRd f = (volH)2:By the Brunn-Minkowski inequality for any onvex body 
,vol 12(
 �
) � vol
;with equality only in the ase of symmetri 
. Sine 
 has been assumed to be non-symmetri it followsthat volH > 1:For 1 > � > � 1volH�1=donsider g(x) = f(x=�)whih is supported properly inside K, and hasg(0) = f(0) = volH; ZRd g = �d ZRd f = �d(volH)2:Sine supp g is properly ontained in K Theorem 3.7 implies that bg + � is a tiling at level R bg � dens � =R bg = g(0) = volH. However, the value of bg at 0 is R g = �d(volH)2 > volH, and, sine bg � 0 and bg isontinuous, this is a ontradition.3.3 The spetra of the ubeIn this setion we prove the following [IP98, LRW00, K00b℄.Theorem 3.8. (Iosevih and Pedersen, 1998, Lagarias, Reeds and Wang 1998, Kolountzakis1999)Let Q = (�1=2; 1=2)d be the unit ube in Rd and � � Rd. Then� is a spetrum of Q, Q+ � = Rd:This had been proved earlier by Jorgensen and Pedersen [JP99℄ for d = 3.42



3.3.1 A lemma for two di�erent tilesThe following simple result is rather unexpeted. It is intuitively lear when � is a periodi set but it is,perhaps, suprising that it holds without any assumptions on the set �.Lemma 3.1. If f; g � 0, R f(x)dx = R g(x)dx = 1 and both f + � and g+ � are pakings of Rd, then f + �is a tiling if and only if g + � is a tiling.Proof. We �rst show that, under the assumptions of the Theorem,f + � tiles �supp g =) g + � tiles �supp f : (3.4)Indeed, if f + � tiles �supp g then1 = Z g(�x)X�2� f(x � �) dx = X�2� Z g(�x)f(x � �) dx;whih, after the hange of variable y = �x + �, gives1 = Z f(�y)X�2� g(y � �) dy:This in turn implies, sine P�2� g(y � �) � 1, that P� g(y � �) = 1 for a.e. y 2 �supp f .To omplete the proof of the theorem, notie that if f + � is a tiling of Rd and a 2 Rd is arbitrary thenboth f(x� a) + � and g(x� a) + � are pakings and f + � tiles �supp g(x� a) = �supp g� a. We onludethat g(x� a) + � tiles �supp f , or g+ � tiles �supp f � a. Sine a 2 Rd is arbitrary we onlude that g+ �tiles Rd.Example: Use Lemma 3.1 to prove that there is no measurable nonnegative funtion f that tiles with� =Zd n f0g (or even Zd minus a set of lower density 0, suh as a line). Try to prove this otherwise.3.3.2 Failure of the lemma for non-translational tilingSuppose we study tiling where all rigid motions of the tile, and not just translations, are allowed. Theanalogue of the tiling set then is a set � of rigid motions. For x 2 Rd and � a rigid motion we denote by �(x)the ation of � on x. The following theorem shows that our Lemma 3.1 is very partiular to translations.Theorem 3.9. There are two polygons A and B in R2 of the same area and a set of rigid motions � suhthat both olletions f�(A) : � 2 �g and f�(B) : � 2 �g are paking but only one of them is a tiling.Proof. Take A = (�1=2; 1=2)2 and B to be the parallelogram with verties (�1=2;�1=2), (1=2; 0), (1=2; 1)and (�1=2; 1=2). Take the set of rigid motions to be the set of translations byZ2 modi�ed as follows: insteadof translating by the elements (0; k), k < 0, we �rst reet the domain with respet to the x-axis and thentranslate it by (0; k). For the elements (m;n) ofZ2 where either m 6= 0 or n � 0 we just translate.Sine the reetion has no e�et on A the olletion f�(A) : � 2 �g learly onstitutes a tiling. On theother hand the olletion f�(B) : � 2 �g an be seen in Figure 13 and is learly not a tiling, although it isa paking.3.3.3 Deduing tiling from the ondition on supportsAssume that we have suppÆ� � n bf = 0o [ f0g (3.5)43



B0
Figure 13: Paking of set B, the parallelogram above the shaded triangle, with motions �. The shadedtriangle is not overed.for some non-zero f � 0 in L1 and that � is of bounded density. Sine bf(0) = R f > 0 it follows that insome neighborhood N of 0 we have (suppÆ�) \N = f0g. Hene the setO = �suppÆ� n f0g� (3.6)is open and nbf 6= 0o � O:We shall need the following result.Theorem 3.10. Suppose that 0 � f 2 L1(Rd), R f = 1, � (of uniformly bounded density) is of density 1,and that (3.5) holds. Suppose also that for the open set O of (3.6) and for eah � > 0 there exists f� � 0 inL1(Rd) suh that bf� is in C1, supp bf� � O andkf � f�k1 � �:Then f + � is a tiling.Proof. Suppose that f� is as in the Theorem. First we show that (R f�)�1f� + � is a tiling. That is, weshow that the onvolution f� � Æ� is a onstant. Let � be C1 funtion. Then(f� � Æ�)(�) = bf�Æ�(b�) = Æ�(b�bf�):But the funtion b = b�bf� is a C1 funtion whose support intersets suppÆ� only at 0. And, it is not hardto show, beause � has density 1, that Æ� is equal to Æ0 in a neighborhood of 0 (see [K00a℄). Hene(f� � Æ�)(�) = �b� bf�� (0) = Z � Z f�;and, sine this is true for an arbitrary C1 funtion �, we onlude that f� � Æ� = R f�, as we had to show.44



For any set � of uniformly bounded density we have (B is any ball in Rd and g 2 L1(Rd))ZB �����X�2� g(x� �)����� dx � CB;� ZRd jgj;(See [KL96℄ for a proof of this in dimension 1, whih holds for any dimension.) Applying this for g = f � f�we obtain that X�2� f�(x� �) !X�2� f(x � �); in L1(B):Sine B is arbitrary this implies that P�2� f(x � �) = 1, a.e. in Rd.We write ef (x) = f(�x).Let 
 � Rd be a bounded open set of measure 1, �
 its indiator funtion and f be suh that bf = �
�f�
.Then ef = j�
j2 � 0, R f = 1 by Parseval's theorem. Clearly we have nbf 6= 0o = 
 �
.Write 
� = fx 2 
 : dist (x; �
) > �g;and de�ne f� by bf� =  � � �
� � ( � � �
�)e(or ef� = ��� ����2jd�
� j2), where  � is a smooth, positive-de�nite approximate identity supported in B�=2(0).One an easily prove the following proposition.If gn ! g in L2 then jgnj2 ! jgj2 in L1.(For the proof just notie the identityjgj2 � jgnj2 = jg � gnj2 + 2 �Re (gn(g � gn)) ;integrate and use the triangle and Cauhy-Shwartz inequalities.)Sine  � � �
� ! �
 in L2 (dominated onvergene) we have (Parseval) that  �d�
� ! �
 in L2 and,using the proposition above, that ��� ����2jd�
� j2 ! j�
j2 in L1, whih means that f� ! f in L1.We also have that supp bf� � 
�=2 � 
�=2 � 
�
 = nbf 6= 0o:The assumptions of Theorem 3.10 are therefore satis�ed. Combining Theorems 3.5 and 3.10 with theabove observations we obtain the following haraterization of tiling by the funtion j�
j2. The speial formof this funtion allows us to drop any onditions, that are otherwise needed, regarding the order (how manyderivatives it involves) of the tempered distribution Æ�.Theorem 3.11. Let 
 be a bounded open set, � a disrete set in Rd, and Æ� = P�2� Æ�. Then j�
j2 + �is a tiling if and only if � has uniformly bounded density and(
� 
) \ suppÆ� = f0g:Proof of Theorem 3.8. By a simple alulation we getZ(�Q) = �� 2 Rd : some �j is a non-zero integer	� (2Q):Suppose �rst that Q+ � = Rd. From Theorem 3.5 it follows thatsuppÆ� � f0g [ Z(�Q)� f0g [ (Q� Q)45



and from Theorem 3.11 we dedue that � is a spetrum of Q.Conversely assume that � is a spetrum ofQ, so that j�Qj2+� = Rd. It follows that (Q�Q)\(���) = f0gas we have j�Qj2(0) = 1 and j�Qj2 > 0 on Q � Q. But this means that we have a paking Q + � � Rd.However, � is a tiling set, beause it is a spetrum, and there is another objet that tiles with �, namelyj�Qj2, and this objet has the same integral as �Q (that is, 1). It follows from Lemma 3.1 that Q+ � = Rdis also a tiling, as we had to prove.3.4 A proof that the disk is not spetral, whih just makes itHere we present a proof of why the disk D = njxj < 1p�o in the plane is not a spetral domain. The radiusis taken equal to 1=p� to make the disk have area 1, as we usually do in this survey.The proof is simple but relies on two not-so-easy fats.1. The �rst is the upper bound �p12 , due to Thue, on the density of any paking of the plane with opiesof the same disk (see, for example, [PA95, Ch. 3℄).2. The seond is that the �rst zero of the Fourier Transform of the indiator funtion of D is at distaneapproximately 1.08098 from the origin. This may either be looked up in tables of the Bessel funtionJ1 (whih, up to saling, is the Fourier Transform of the indiator funtion of D restrited on a line) ormay be omputed in a straightforward way using a omputer. (The Fourier Transform of the unit-areadisk, de�ned by �D(�) = RD exp(�2�i�x) dx, is equal to a onstant times J1(2p�j�j) and the �rst zeroof J1 is at 3:832 � � � .)Fuglede [Fug74℄ was the �rst to suggest that the disk is not spetral, but the argument was unlear. Thesituation has sine been lari�ed in the papers of Iosevih, Katz and Pedersen [IKP99℄, who proved that theball in any dimension is not spetral, and of Iosevih, Katz and Tao [IKT01℄, in whih a muh more generalresult is proved: every smooth onvex hypersurfae annot have an interior whih is a spetral domain. Itwas also shown by Fuglede [Fug01℄ (for the Eulidean ball in Rd) and by Iosevih and Rudnev [IR02℄ (forany smooth onvex body in Rd, for d 6= 1 mod 4) that there an only be a �nite number of orthogonalexponentials in the orresponding L2 spaes.The method shown in this setion is still interesting beause of its simpliity and, perhaps, entertainingas the fat that it works appears to be an aident.The Fourier Transform of D is radial, as is the funtion itself, hene the set of zeros of the FourierTransform is a set of irles entered at the origin. Let r0 be the radius of the smallest suh irle. By asimple numerial alulation we loate r0 = 1:08098 � � � . Suppose now that the disk is spetral with spetrum�. Sine ��� � f�D = 0g[f0g it follows that j�� �j � r0 for any �; � 2 �, � 6= �, and hene, if we entera opy of a disk of radius r0=2, all it D1, at eah point of �, we have a paking of the plane with ongruentdisks (see Figure 14). The density of suh a paking is at most �=p12, by Fat 1 above.Sine the integral of the power spetrum j�Dj2 of �D is 1 (Parseval), and the power spetrum tiles with� it follows that the density of � is equal to 1 as well, hene the density of the paking D1 + � is equal tothe area of D1, whih is �r20=4. So we have the inequality�r204 � �p12 ;whih implies r0 � 2(12)1=4 = 1:0745699 � � � ;whih is in ontradition with Fat 2 above whih states that r0 is approximately 1.08098.46
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Figure 14: The paking by disks of radius r0=2 entered at the points of the spetrum. Thue's result meansthat the area outside the disks has density � 1� �=p123.5 More results on the Fuglede Conjeture3.5.1 Convex domainsThe onvex bodies whih tile spae have long been known [V54, M80℄ to be preisely the polytopes whihare symmetri, have symmetri o-dimension one faets and their o-dimension two faets eah have a \belt"whih onsists of four or six faets (the belt of a faet is the olletion of all faets of the polytope whihare translates of the given faet). It is also known [M80℄ that whenever a onvex body 
 tiles spae bytranslation it an also tile by lattie translation. It follows from Theorem 3.2 that onvex bodies whih tileare also spetral, and possess a lattie spetrum (the dual lattie of their translation lattie).Our knowledge is muh less omplete for onvex bodies whih are spetral. In partiular we do not knowyet that spetral onvex bodies are also tiles, but we are getting there. Most of the results desribed in thissetion are in the general diretion of showing that well known fats whih hold for onvex tiles are also trueof onvex spetral bodies.In [IKT01℄ it was proved that smooth onvex bodies annot be spetral, a fat whih is learly true ofonvex bodies whih tile, even if one has not heard of the Venkov-MMullen theorem.Theorem 3.12. (Iosevih, Katz and Tao, 1999)Suppose that 
 is a symmetri onvex body in Rd, d � 2. If the boundary of 
 is smooth, then it does notadmit a spetrum. The same onlusion holds in R2 if the boundary is pieewise smooth, and has at leastone point of non-vanishing Gaussian urvature.The starting point of the proof is the fat that the zero setZ = f�
 = 0gis known, asymptotially, to an ever-higher degree of auray. For example, it is a well known fat (see e.g.[IKT01℄) that if � is a zero of �
 and � !1 suh that � remains inside a oneC = �� : h�; uij�j > 1� ��;where u 2 Sd�1 is the unit outward normal vetor at some point x 2 �
 of positive urvature and � > 0 is47



suÆiently small, then k�k
o = ��2 + d�4 �+ k� + o(1); (� !1);where 
o is the dual body (whih is also smooth), d is the dimension and k is an integer. One then uses thefat that if � is a spetrum then �� � � Z in order to reah a ontradition.It turns out [IR02℄ that for smooth onvex bodies with nowhere vanishing Gaussian urvature (suh asthe Eulidean ball) muh more is true than the fat that there is no omplete orthogonal set of exponentialsfor their L2 spae.Theorem 3.13. (Iosevih and Rudnev, 2002)Suppose that 
 is a smooth symmetri onvex body in Rd, d � 2, with nowhere vanishing Gaussian urvature.If d 6= 1 mod 4 then any set of orthogonal exponentials in L2(
) is �nite. If d = 1 mod 4 suh a set may bein�nite only if it is a subset of a one-dimensional lattie.This has also been proved for the ball in any dimension by Fuglede [Fug01℄.Finally, in dimension d = 2 the Fuglede Conjeture may be onsidered settled for onvex bodies [IKT02℄.Theorem 3.14. (Iosevih, Katz and Tao, 2002)The only onvex domains in R2 whih are spetral are the parallelograms and the symmetri hexagons (theseare the only onvex tiles as well).3.5.2 Polytopes with unbalaned faetsSuppose that 
 is a polytope, not neessarily onvex, that tiles spae by translation. Suppose also that u isone of its fae normals and let F+1 ; : : : ; F+k be all its faets with outward normal in the diretion of u andlet F�1 ; : : : ; F�l be the faets with outward normal in the diretion of �u. One an easily see that we musthave ��F+1 ��+ � � �+ ��F+k �� = ��F�1 ��+ � � �+ ��F�l ��:The reason is that in any tiling by translates of 
 the faets F+j an only be \ountered" by translates ofthe faets F�j . Applying this for a large region in spae one dedues that the total area of the plus-faetsmust equal that of the minus-faets.The following result [KP03℄ laims that spetral polytopes have the same property.Theorem 3.15. (Kolountzakis and Papadimitrakis, 2000)If 
 is a polytope in Rd whih, for some diretion u normal to a faet, has more area with outward normalu than it has with outward normal �u, then 
 is not spetral. Clearly it an also not be a tile.We do not present the proof of this result here. However, the following toy-ase is rather instrutive.Suppose that we have a polytope 
 whih has preisely two faets A and B (see the example in Figure 15)with normals parallel to a ertain u 2 Sd�1. Assume that faet A has outward normal u and faet B has�u, and that the area of A is not equal to that of B.We laim that in any semi-in�nite tube whose axis is the line Ru and any bounded domain as base thereare only �nitely many points of any spetrum. This is impossible as for any spetrum there is a numberR suh that in any ball of radius R we an �nd some point of the spetrum. To show the above laim itis enough to show that any suh tube is eventually (that is, near in�nity) free from zeros of �
, or, whatamounts to the same thing, free from zeros of\ru�
(�) = 2�ih�; ui�
(�):Observe now that ru�
 is a measure supported on the faets of the polytope, whih is a onstant funtionon every faet, a onstant whih depends on the angle the faet is forming with u.48



Punbalaned pair of faesA BFigure 15: A polytope P with many diretions of unbalaned faes. The two faets shown are the onlyones perpendiular to their normal, yet there is more fae measure looking left than looking right. Suh apolytope an neither tile by translation nor be spetral.Look then at what happens to the Fourier Transform \ru�
 along the line Ru. Along that line the valuesof the Fourier Transform that we are reading are just the values of the one-dimensional Fourier Transformof the projetion of the measure ru�
 on the line Ru. This is the measure � de�ned by�(E) = ru�
(E + u?); (E � R);and it is lear that � has a ontinuous part oming from all the faets whih are non-orthogonal to u andalso ontains the two point masses jAjÆa and �jBjÆb, where a; b 2 Rare the points on Ruwhere the faets Aand B projet. By the Riemann-Lebesgue lemma the ontribution to b� of the ontinuous part of � fades to0 as we tend to 1 and it is the Fourier Transform of the atomi part that dominates b�, namely (as t!1)b�(t) � jAje2�iha;ti � jBje2�ihb;tiwhose absolute value is � jjAj � jBjj. So, for large t, there are no zeros on the line, and with a little moreare, we an show that the same (albeit farther away) is true in any tube around this line.3.5.3 Dimension 1Even in dimension 1 the Fuglede Conjeture appears to be rather hard. The number-theoreti aspet of theproblem is seen more learly here, espeially if one looks just at sets of the type
 = A+ (0; 1); (A a �nite subset ofZ):The onjeture is still open for this lass of sets.The following are interesting partial results.1.  Laba [ Lab01℄ showed that whenever jAj = 2 the onjeture is true.2. This is improved to jAj = 3 by  Laba in [ Lab02℄. In the same paper it is also shown that if jAj has atmost two prime fators then if 
 is a tile it is also spetral.3.  Laba also shows in [ Lab02℄ that if jAj > 3=2(maxA � minA) then the 
 is a tile if and only if it isspetral. This is generalized by Kolountzakis and  Laba [K L01℄ to any set 
 of measure 1 whih isa subset of (0; 3=2� �), for some � > 0. In fat what is really shown in [K L01℄ is that suh \tight"domains an only be spetral or tiles of they tile by the lattie Z.49
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