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Abstract: Pairs A C B of local quantum field theories are studied, where A
is a chiral conformal quantum field theory and B is a local extension, either
chiral or two-dimensional. The local correlation functions of fields from B
have an expansion with respect to A into conformal blocks, which are non-
local in general. Two methods of computing characteristic invariant ratios
of structure constants in these expansions are compared: (a) by constructing
the monodromy representation of the braid group in the space of solutions of
the Knizhnik-Zamolodchikov differential equation, and (b) by an analysis of
the local subfactors associated with the extension with methods from operator
algebra (Jones theory) and algebraic quantum field theory. Both approaches
apply also to the reverse problem: the characterization and (in principle)
classification of local extensions of a given theory.

1 Introduction

The relevance of V. Jones’ theory of (von Neumann) subfactors [1] for 2-dimensional
(2D) models of critical behaviour was first recognized in the work of V. Pasquier on
lattice models labelled by Dynkin diagrams [2]. A spectacular by-product of this real-
ization was the ensuing ADFE classification of su(2) current algebra models and minimal
conformal theories [3]. The above parallel was understood within the Haag-Kastler alge-
braic approach to local quantum field theory [4] in terms of the Doplicher-Haag-Roberts
(DHR) theory of superselection sectors and particle statistics [5] applied to chiral al-

gebras [6, 7], and provided an explanation for the Jones index as a measure for the
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violation of Haag duality (maximality of local observables) in a given representation,

and relating it numerically to the statistical dimension [8].

In the cited work on subfactors in quantum field theory, the emphasis for the use of
the theory of subfactors was its application to individual superselection sectors of a
given local theory, and the derivation of invariant ‘charge quantum numbers’ such as
statistical dimensions and Markov traces. In contrast, here we shall consider a pair of
local theories, one extending the other, as a subfactor (actually, a net of local subfactors)
and apply the properly adapted Jones theory to describe the ‘position’ of the subtheory
in its extension. This point of view opens the way to a detailed understanding of the
behaviour of superselection sectors when one passes from one theory to the other by a

generalized Mackey induction and restriction prescription [9].

In particular, given that the position of a subtheory in another theory is encoded and
characterized by a subfactor, then subfactor theoretical methods can be applied to
conformal models and their local extensions, and must give detailed answers comparable
with the ADE classification and related results obtained by conventional methods of

conformal quantum field theory.

The present article is a comparative study of conventional field theoretical methods on
the one hand and the theory of subfactors on the other hand in application to the same
problem: local extensions of local quantum field theories. A local extension is determined
by the correlation functions of the extending fields. In chiral current algebra models of
conformal field theory, the extending fields necessarily correspond to primary fields of
the unextended theory with bosonic, i.e., integer conformal dimension A. Their 4-point
functions are linear (for chiral extensions) or bilinear (for 2D extensions) combinations
of conformal block functions which are monodromy free inspite of the non-trivial braid
group transformation of the individual conformal blocks. Moreover, unlike the chiral
vertex operators of the unextended theory whose fusion rules coincide with the intrinsic
composition law of superselection charges provided by the DHR theory, the extending
local fields must satisty truncated fusion rules which involve only other bosonic fields,

and which are therefore only majorized by the DHR fusion.

Both the truncated fusion rules and the ratios of structure constants (amplitudes of
conformal block functions) in the said combinations are characteristic quantities for a
pair of a chiral current algebra and its extension. They are computed by both methods.
In the first part of the article (Sects. 2 and 3), we study the monodromy behaviour of the
solutions of the Knizhnik-Zamolodchikov (KZ) equation and compute the braid invari-
ant quadratic forms which determine the local 4-point functions of the two-dimensional
extensions. Apart from the generic two-dimensional extension (corresponding to the A
series of the ADFE classification), and the chiral D series extensions which correspond
to a global Z, symmetry, we concentrate on the exceptional chiral Fg and Eg extensions
of su(2) current algebras. We compute explicitly the relative amplitudes of the A and
E theories, which turn out to be rational numbers. In the second part (Sects. 4 and

5), we study the position of the operator algebra of the unextended subtheory within



its extension, in terms of the theory of subfactors. Remarkably, the relevant informa-
tion already resides in a single pair of local von Neumann algebras. We analyze which
quantities in the general theory of subfactors, when applied to a given local field exten-
sion, contain the desired information about the truncated fusion rules and the relevant
ratios of structure constants. We describe how to compute these data in terms of the

subtheory (interpreted as the physical observables) and its superselection structure.

While the first method will be easier to use in specific models and as long as one is in-
terested only in 4-point functions, the second method is part of a general theory of local
field extensions, confined neither to two dimensions nor to conformal quantum field the-
ories. It covers also the standard situation of four-dimensional theories with a compact
gauge group. (In this latter case, the method essentially reduces to harmonic analysis
and partial wave expansions based on the representation theory and Clebsch-Gordan
coefficients of the gauge group.) It has the advantage to treat all n-point functions at
one stroke. However, in practice it requires to solve in a first step a complicated non-
linear system for the ‘generalized Clebsch-Gordan coefficients’, which we have carried

out only for the simplest model of a field extension which is not due to a gauge group.

The local extensions of chiral su(2) current algebras studied in Sects. 2 and 3 are distin-
guished to have the same stress-energy tensor as the original theory, the stress-energy
tensor implicitly entering the analysis through the KZ equations. If the extending fields
are currents of dimension A = 1, this means that the extension is a ‘conformal embed-
ding’ [10]. On the other hand, in Sects. 4 and 5, we assume the index of the inclusion
to be finite. Indeed, for pairs of chiral current algebras, these two selection criteria
are equivalent. Namely, both the finiteness of the index and the triviality of the coset
stress-energy tensor are equivalent to the finiteness of the branching of the vacuum

representation of the extended theory upon restriction to the subtheory.

Let A C B be a conformal embedding [10] of two chiral quantum field theories like the
current algebras Ajo(A1) C A1(Bz) where A; = su(2) and By = spin(5) ~ sp(4) refer
to the Lie algebras underlying the current algebras, and the subscripts refer to the level
10 resp. 1 of the central extension. The embedding gives rise to a pair of braid-invariant
quadratic forms M and M in the space of 4-point conformal blocks of the subtheory
A with four given external quantum numbers (superselection charges) such as isospins
I <Fk/2for A= Ai(A1). The quadratic forms serve to express 2D correlation functions
in terms of chiral conformal blocks, and turn out to completely characterize the model.
The form M corresponds to the ‘diagonal” WZNW theory [11] over A, i.e., to the A4
theory in the ADFE classification of su(2) current algebra models at level k [3]. The
eigenvalues D(Ak’l) of M, in the case of 4 equal external isospins I, are the squares of the

structure constants
DV = N2 (A=0,1,...min(2], k — 2I) = my;) (1.1)

for the s-channel fusion of two of the isospin I charges into isospin A intermediate states.
We recall that for 41 > k, the subspace of 4-point blocks with A > my; corresponds to



‘unphysical’ correlations which violate positivity. Only the ‘physical” blocks contribute
to M and M.

The form M corresponds to the diagonal theory over the chiral extension B. Since
the local fields of the latter are in general non-diagonal with respect to A, the form
M is a non-diagonal matrix in the s-channel basis of conformal block functions which
diagonalizes M. The ratios of the diagonal elements of the form M to the corresponding
eigenvalues (1.1) of M are invariant under rescaling of the 4-point blocks and thus
provide a basis-independent characteristics of the non-diagonal theory associated with
the form M. Such ratios were already considered in the above-mentioned pioneer work
by Pasquier [2], and have later been computed for specific conformal embeddings [12].
We shall provide in Sect. 3 below an independent computation using previous work on

monodromy representations of the braid group [13, 14].

Let us turn to the subfactor point of view. As we shall see, one can characterize a local
field extension B of a given theory A in terms of a triple (o, W, X'). Here p is a localized
endomorphism of A equivalent to a reducible representation 7 of A (the restriction of
the vacuum representation of B), W is an isometric observable (i.e., W*W = 1) such
that £ = WW™ projects onto the vacuum representation my of A contained in 7, and
X is a second isometry satisfying a system of identities with W, involving o, which
guarantees the possibility to recover the local extension from these data. The states in
the non-trivial subsectors of 7 are created from the vacuum by the extending fields. The
operator X may be considered as a generating functional for all the relevant ‘generalized
Clebsch-Gordan coefficients’ associated with the inclusion. The mathematical concept
behind this notion is a ‘harmonic analysis’ for subfactors, which generalizes the ordinary
harmonic analysis in the case of a compact gauge symmetry. The coefficients determine
both the truncated operator product expansions and the amplitudes of ‘partial waves’
in correlation functions of local charged fields. These partial waves of the subfactor
harmonic analysis will be identified with the conformal blocks in chiral current alge-
bra models, and the Clebsch-Gordan coefficients coincide with the structure constants

entering the quadratic forms as discussed before.

It is important to note that also in this general context, there is always a ‘standard’
extension (corresponding to the generic braid-invariant quadratic form M in the case of
chiral current algebras) which can be used to fix the normalizations, i.e., to absorb the
uncontrolled kinematical model characteristics, by computing invariant double ratios of

amplitudes.

Our article is organized as follows. We review in Sect. 2 the monodromy representation
of the mapping class group B, of the 2-sphere with 4 punctures in the space of solutions
of the K7 equation, and write down the generic braid invariant form corresponding to
the A series in the ADFE classification. In Sect. 3, the explicit computations are done for

two models of special interest, the Fqyen-series conformal embeddings labelled Eg and

Es.



In Sect. 4, we turn to the theory of subfactors (of finite index) and introduce some of
the basic concepts which are of particular relevance for the application to (local) field
extensions. In Sect. 5, the connection with chiral vertex operators is established, and
the general method to compute relative structure constants in terms of subfactors is
presented. The method is then applied to the Fg inclusion and reproduces the results
obtained in Sect. 3.

The two parts consisting of Sects. 2,3 and Sects. 4,5, respectively, are to a large extent
independent of each other. The reader may start with either part according to personal
preference. Our point is the comparison of the conceptually different guises under which

the same quantities arise in the two approaches.

2 Braid invariant positive forms in the space of 4-point blocks

We start with the algebra of observables A, = Ai(A1) generated by the level k chi-
ral su(2) currents. It includes the chiral Sugawara stress-energy tensor. The primary
chiral vertex operators V7 [15] which intertwine the vacuum sector with the superselec-
tion sector of charge I (= positive energy representation of A with lowest energy
eigenstates of isospin [) are assumed to have homogeneous local commutation relations
with the currents (‘local gauge covariance’) and with the stress-energy tensor tensor
(‘reparametrization covariance’). These assumptions imply the K7 equation [16] as well

as the relation between isospin and conformal (scaling) dimension Aj
(k+2)Ar=1(1+1) (21 =0,1,... k). (2.1)

2A. The mapping class group and its monodromy representations

We consider 4-point functions for four primary fields of isospin I. We first construct
the 2/ + 1 dimensional representation of the mapping class group B, of the 2-sphere
with 4 punctures acting in the (21 4+ 1)-dimensional space of all 4-point solutions of the

corresponding K7 equation, into which the level k enters only via the complex phase

a= e (kZ:—TZ)' (2:2)

Unless k 1s a positive integer, this space of solutions violates the positivity of correlation
functions, and the representation of B4 is not unitarizable. Yet, it is computationally
advantageous to deal with generic ¢ in a first step. At a given level k € N, positivity
is still violated for 41 > k, and one has therefore, in a second step, to restrict to the
(mgr+1)-dimensional invariant ‘physical’ subspace spanned by the s-channel blocks SE\I)
with A in the range of (1.1).

The (projectively represented) mapping class group B4 can be identified as the braid
group of 4 strands on the sphere with generators B;, ¢t = 1,2, 3, such that

B1B3 — BgBl 5 BZBZ-l—lBZ - Bi—l—lBiBi—I—l (Z - 1,2) (23)



B1 By BiBy By = By By B By By = ¢~ U+ (2.4)

satisfying the additional relation
(BiByBs)' = ¢~ ¥U*Y, (2.5)

(In the standard definition of By, the relations (2.4) and (2.5) are assumed to hold
with ¢ = 1; here we are dealing with a projective representation, or equivalently, with a
central extension of the mapping class group.) It can be proven, using only the above

relations, that the monodromy operators B} and B3 are equal. It then follows from
(2.4) that the ‘fusion’ matrix F' has square 1:

BiByBy = ByBy By =: (—1) g2+ g2, (2.6)

F plays the role of a 65 symbol (in general, for 4-point blocks of different isospins [, its
matrix elements require 6 labels F, = Fﬁblﬂ‘*).

An analysis of the solutions of the KZ equation shows that (in the case at hand with
four equal isospins ), actually the generators By and Bs coincide:

Bl — Bg. (27)

Moreover, there exists a basis of solutions [13] for which the fusion matrix has only

non-zero elements on the second diagonal,
FAM:(SA+M721 ()\,MZO,l,...QI), (28)

while Bj is upper triangular:

21 — A

Al (2.9)

I ]|

Here, [TZ] are the (real) ¢-binomial coefficients vanishing for n < m and otherwise given

by

[;] - % [t = [n][n = 1]t, [O]' =1, (2.10)
o= Lo Rk 2.11
i qg—q1 smﬁ ( )

We are using a non-unitary basis (even for 4/ < k when B is unitarizable) which has
the following advantages:

(1) it exhibits no singularities for 41 > k + 2 (21 < k, g given by (2.2));

(17) the entries of the braid matrices and of the invariant forms are elements of the
cyclotomic field Q(¢'/?) (or Q(q) for integer I; ¢"t? = —1).

We anticipate here, that the ratios of structure constants we are finally interested in
(egs. (3.8), (3.9), and (3.15) below) turn out rational and are therefore invariant under

Galois automorphisms ¢ — ¢" (n and 2k 4 4 coprime) of this field.



The second generator, By, of B4 is a conjugate to By by F":

and appears as a lower triangular matrix.

It is noteworthy that this monodromy representation of 8, can in fact be derived without
a detailed study of the solutions of the K7 equations. Indeed, the eigenvalues of B; are
already read off the 3-point block functions, which are just powers of the coordinate
differences. In a basis in which the fusion matrix F' has the form (2.8) and B is upper
triangular, the non-diagonal entries of By and the matrix B, are determined by (2.6)
up to a rescaling of the basis. As it was already noted, the ratios of interest will turn

out to be invariant under such a rescaling, too.

2B. The generic B, invariant symmetric form

The local 4-point function of the two-dimensional theory is defined by a hermitian braid

invariant form M in the space of 4-point blocks:

<(I)[(I)[(I)[(I)[> ox Gy = ZJE/\M/\MJCM with MT =M =B*MB (B € %4) (213)
Ap

where an appropriate power of the coordinate differences has been split off as usual, and

f resp. f depend only on the conformally invariant cross ratios of coordinate differences

on the left- resp. right-moving light-cone. (For further details on the choice of basis f\
see [13].)

The above non-unitary realization of B; has the advantage that the inverse generators

are just given by the complex conjugate matrices
B! =B; since q=q " (2.14)

The same is trivially true for F.

We are thus looking for a real symmetric form M = (M,,) = "M satisfying the braid
invariance condition

‘BAM =MB;, (i=1,2). (2.15)

Proposition 2.1: [14] For every ¢ # 0 there exists a diagonalizable B,
invariant symmetric form in the space of 4-point solutions of the KZ equation

with four isospins [/

M =1'SDS where Dy, = Dy)dy,. (2.16)

:

At the values ¢ = Pz

(k € N), the diagonal matrix D has my; + 1 non-zero
elements (with my; given by (1.1)):

RIS 2N 1 S DY A R B
Dy = D\ >_{ TR } DL (A=0,...mgr). (217

7



If 41 > k, then D) vanish for my; < A < 21. The transformation matrix S is

a real upper triangular matrix with elements
21 — AJ1[2A + 1]!

20 — pl[A 4 g+ 17!

and Sy, = 0y, for A > my;.

Sy = (—1)“_A [ﬁ] [ for 0<A<pu<my (2.18)

Sketch of a proof: We consider the similarity transformation

B— B®) .= 5BSL. (2.19)

!
The specific block form S = (% 2111

block ¥’ is only present when 41 > k — implies the block form of the inverse matrix

Yoo -y
_1 _ .
S = ( 0 1 ) with

) — where ¥ is given by (2.18) and the rectangular

[21 — AJU[A + ]!
(21 — p]![2p]!

The transformation (2.19) brings B in a reduced form for 47 > k and diagonalizes it
for 41 < k; in both cases

SA_MI = Z;j = [/ﬂ for 0< A< < myy. (2.20)

(B{s))/\M _ 5m(—1)21_A(]A(A+1)_21(I+1) for )‘7/“6 < mpg. (221)

In particular, the basis sy = 5, f, of conformal blocks has definite By monodromy on

the physical subspace 0 < A < my;. (For this reason we call sy the s-channel basis.)

It follows that B{S) commutes with D and hence (2.15) holds for i = 1. Verification of
invariance of M with respect to By or F' requires more work. One should either use the

explicit form of M:

(—1)MAA![)! w20 4 112[20 — )220 + 1]

Mo = T NI — pll2f 07 & Tt v 10 o D — o]l — 0]

(2.22)

or transform F' to the s-channel basis (F' — Fls) = SFS_I) — see below.

Remarks: > An expression of the type (2.16), (2.22) for the invariant form was first
derived in [14, Sect. 6] using quantum group techniques. The present formulae differ
slightly because of a different normalization of the basis. They are related by [2] +
1*M,, = [2;] [2;] Zyu. Such a change of basis does not affect the ratios of structure
constants to be computed below.

> The Proposition explicitly provides the transition matrix to the s-channel basis, from
which, together with the spectrum (2.21) of the braid matrix, all the basis-independent

quantities of interest in the sequel will be obtained by direct computations.

The braid invariant 2D 4-point function now assumes a diagonal form in the physical

s-channel basis s, with A < my;

mEr
Gy=> DIFDsys.. (2.23)
A=0

8



Summing up we see that, at the quantized values (2.2) of ¢, and more generally for any
q such that ¢"*? = —1, the (27 + 1)-dimensional representation B4 of the mapping class
group is reducible when 47 > k. It is also non-unitarizable, the generators B; being not
diagonalizable (for 41 > k+2). It is the kernel of the form M that carries a non-unitary
factor representation. The (myg; + 1)-dimensional subrepresentation ‘ng’l) preserves a
non-degenerate positive form (2.23) and is hence unitarizable. The resulting (my; + 1)-
dimensional representation may, in general, still be reducible. As we shall see in Sect.

3A., this fact is responsible for the possible existence of non-diagonal local extensions.

The s-channel reflection matrix F'*) (which is related to the exchange of the factors 1
and 3 in (2.13) and which, for four generic isospins, encodes the entire fusion informa-
tion of the model) is, not surprisingly, considerably more complicated than the original

expression (2.8). We have computed it from
PO =Sps™ =8U " =Us™

in terms of the above s-channel transition matrix S which diagonalizes By, and the

u-channel transition matrix /' = SF' which diagonalizes Bs:

Usy = Saar—y = (=1)2Aw [2[ - M] [ [2) + 1]1[21 — A]!

A e 20+ A —p+ 1!
giving
() _ (22 + 1121 = A] ¢ (=1 =M+ v)l20 — v
B = TRl - UZ:;)[V]!Q[M—V]![ZI—)\—y]![Ql—l-)\—l/—l-l]!' (2.24)

We note that, even if we use expressions (2.18) and (2.20) beyond the range of their
validity (i.e., for g > my; when 41 > k) where some of the entries of the transition
matrix S and S™! are ill defined at the value (2.2) of ¢, the F' matrix (2.24) is finite
in the physical range 0 < A, ;r < my;. Moreover, the restricted (myr 4+ 1) X (mgr + 1)
matrices B{S), F© and

BY = FOBWRE)  (pG2 Z (2.25)

still satisfy the relations (2.3) — (2.7). This is a non-trivial statement for 47 > k.

The braid invariance of the two-dimensional Green’s function (2.23) implies the relation

FA(Z)D(Ak,I) _ D(k,I)Fii) (2.26)

I

with the positive eigenvalues D of the form M given by (2.17). Hence on the one hand,
the s-channel F' matrix is symmetrizable, and on the other hand, the ratios of amplitudes

for the diagonal extension are given by

N2 7 D, FA(Z)



3 Ratios of structure constants for the F; and the Fgx models

The braid-invariant 4-point functions (2.13), (2.23) give the monodromy free Green’s
functions for the 2D local extensions of the chiral su(2) current algebras A; correspond-

ing to the Ay series in the ADFE classification.

There exists an infinite set of extensions of the su(2) current algebras for level k a
multiple of 4, corresponding to the Ds, series (2n = k/2 + 2). In these models, the
chiral algebras are extended by an Aj-primary simple current: a Bose field of isospin

and conformal dimension
k I(r+1) k&
I== d A= ——F = — : 1
5 an 7 1o 1 €N (3.1)
The inclusion of the (nets of) algebras Aj in the resulting field algebras are well under-
stood: it is of the DHR type [5, 17] with a global Z, gauge group which singles out the
‘observables’ Ay as the gauge invariant elements [18] (for a recent review and further

references see [19]).

Here we shall deal with the more interesting exceptional extensions corresponding to
conformal embeddings [10]. These are not of the DHR type, i.e., the Ay subalgebras are

not the gauge invariants with respect to some global gauge group.

3A. Pairs of braid invariant quadratic forms for exceptional embeddings

There are just two non-trivial chiral extensions of Ax( A1) corresponding to the conformal

embeddings
Ao = Aio(A1) C Ai(By) = Buo (Es)
Azs = Ags( A1) C Ai(Gy) = Bas (Es)
where the labels Fg and Eg refer to the E-series of the ADFE classification [3]. The

superselection structure of the observables in the ‘diagonal’ representation space of the

respective field extensions is encoded in the exceptional partition functions
Z(Es) = |x1 + x71* 4 [xa + xs* + x5 + xul? (3.2a)
Z(Es) = |x1+ x11 4 x19 + X20> + [x7 + x13 + x17 + xo3/* (3.2b)

where the subscripts on the modular characters y stand for the dimensions, 2741, of the
SU(2) representations labelling the superselection sectors of Aj. Every term in these
sums corresponds to a superselection sector of the extended chiral current algebra B,
and every sum of modular characters appearing in each term determines the branching
of the corresponding sector upon restriction to Aj. In particular, the first term added
to the vacuum character xy in (3.2) corresponds to the Ay = 1 sector of Ay generated
by the By, currents orthogonal to the Ay currents. These are the (7 component) [ =3
primary fields for the A;q theory in the Fg case, and the (11 component) I = 5 primary
fields for the A,g theory in the Fg case.

The fact that an Ag-primary field ¢; (with integer dimension Aj) is a local Bose field in

the extended By theory means that, in particular, there exists a braid invariant linear

10



combination of 4-point blocks of the associated chiral vertex operators. Namely, the
commutation of two fields ¢; corresponds to a monodromy operation on the conformal
block functions. In other words, the representation ‘ng’l) must be reducible and have

an invariant subspace of joint eigenvectors of B; with eigenvalue 1.

In the s-channel basis of eq. (2.23), these are combinations of the form

FEs (k=10): 583) + 503523) (3.3a)
Eg (k‘ == 28) : 885) + 5058(55) + 50985(35) (33[))

where EM = E(A]L’I) depend on the model, and 500 = 1 is chosen as a normalization.
Two-dimensional correlation functions then result as products of two chiral functions
(3.3), one for either chiral light-cone. They are thus bilinear in (s,,s,) corresponding

to a non-diagonal version of (2.23) with D replaced by D where
fDJAu = EOAEOM = Eux\- (34)

. k1) - . . . . .
The expressions (3.3) are ‘Bi ) invariant. Bj-invariance is automatic since all s-channel

functions SE\I) contributing to (3.3) correspond to the same B; eigenvalue 1(= —q"+?),
and it excludes by the same argument all other s-channel contributions with A different
from 0 or 3 (Fs) resp. 0,5,9, or 14 (Fs). The non-zero elements of D are determined

from F® invariance: 'F&D = DF®). Tt is sufficient to use the equation
(‘FD)o, = (DF)o, =0  for p=1,2. (3.5)
This gives for the isospin [ = 3 current in the £ = 10 model:

— i) 1 1
Dys=——==——=— k=10,1=3 3.6

and for the isospin [ = 5 current in the & = 28 model:

B FORY - RPES 5 RURD-FPRD
Dos = o nt PO T o aonm  (R=280=5) (3.7)
F51F92_F52F91 F51F92_F52F91

which can be computed from (2.24).

We note that by a change of scale for the s-channel basis functions, D), and EM change
by the same factor, hence their ratios are invariant under rescaling. It is remarkable
that these invariant ratios are found to be rational numbers:

D3

— =9 E=10,1=3), 3.8
e ( ) (38)

Dss 9 Doy 5

== = _C k=281=5). 3.9
D55 47 D99 4 ( Y ) ( )
Remark: In a unitary basis in which Dy, = &), the matrix F'®) will become symmetric

(and unitary) due to (2.26). This unitarized F' can be obtained from our F setting

ﬁ/\u = (SignF/\M)\/F/\MFM/\. (310)

11



In such a unitary basis, the above ratios will coincide with Dy

3B. The braid group representation in the Ramond sector

The extended model Big = A;(Bz) (see Sect. 3A.) is parallel in many respects to the Ising
model and the su(2) level 2 current algebra theory. All three models have three super-
selection sectors with identical fusion rules, and involve a simple current of dimension

A= % For Big, this field is the SO(5) vector field ¢ which is also an irreducible A4
primary field of isospin 2.

The state space of the fermionic field ¢ splits into two irreducible representations with
respect to the extended ‘super current algebra’ generated by ¢ (z): the Neveu-Schwarz
sector Hy & Hs, and the Ramond sector Hy, where H, denote the level 1 spin(5) current
algebra representations labelled by the dimension d of their lowest energy subspace. The
correlation functions of ¢ are single-valued in the Neveu-Schwarz sector, and double

valued in the Ramond sector.

Furthermore, in all three models, the primary dimension in the Ramond sector is related
to the Virasoro central charge

A =L (3.11)

1
8
¢ being given as % times the number of components of ¥ (¢ = % for Bio).

We proceed to compute the 4 x 4 braid matrices in the s-channel basis of all Ajq
conformal blocks of four fields of isospin [ = % and dimension A = % which belong to
the Ramond sector of Big (see eq. (3.2a)). Then we determine the subrepresentation
acting in the subspace of conformal blocks of the extended theory 519 which constitute

the 2D local Ramond 4-point functions.
Applying (2.21) and (2.24) for I = 2, we obtain

1 0 0 0
) _ 2|0 —¢* 0 0 B _ i g
By =q 0 0 ¢ 0 (k=10,g =€, [ = 2), (3.12)
0 0 0 1
and
1—[3] [3]-1 _ﬂ 1 1-v3 1 _ﬁ 1
R I b
= 1 2 3-1  1-v3 3-1
F(S) — 3 (2] 0 3[2] — V3 V2 0 \/§ 3 (3 13)
B Bl Bl —L 1 1 '
2[2] 2[2] V2 V2 2\/5_
[3] [B]-1  4-[3] 1 2—/3
L g 55 Lov2 g R

The first matrix displayed here was computed with g-number identities valid for every
Galois transform of ¢. Evaluating [3] = v/2[2] = 1 4+ /3 at ¢ = ei2, one obtains the

second matrix (3.13).
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We are now looking for an Fs-type braid invariant s-channel quadratic form D = D1o.2)

1 0 0 N, _
—~ 00 0 0 ~  Nagy
D= 00 ZAV;Q 0 where N, = ZAVJ;;O' (3.14)

Ny 0 0 N2
The equality of the first and the last eigenvalue of B{S) (eq. (3.12)) ensures By-invariance
of D. The real parameters N, can be determined from F-invariance {FM = MF of the
quadratic form M = *“SDS, which implies
E 4 BN =0, FNG = BG4 No),
This yields Ny = —1/+/6 and N;z =1 for I = 2. We obtain the invariant ratios with the
structure constants Dy = N7 of the diagonal theory given by (2.17) or by (2.27):

NQ F(S)F(S) 1 NQ F(S)F(S)
. _22:1—M:§ (k=10,1=2). (3.15)
NG RRERY 2 N; FQFY 2 ?

The same result is obtained for the invariant ratio of structure constants for the isospin
I = % field, as expected since the latter is the ‘partner’ of the isospin [ = % field in the
partition function (3.2a), related by the simple current of isospin 5. Indeed, according
to (2.1),

A -AG) =5%—%=1

2 2 16 16
and hence the matrices B{S) (projected into the physical subspace of s-channel blocks

sy, 0 < A < myy) coincide for I = % and % It is instructive to verify that, although the

7

s-channel F-matrices do not coincide for [ = 5

and 2, the invariant ratios (3.15) are the

same.

In computing F'®) = US™! for I = % in terms of the s- and w-channel transition

matrices S and U (see Sect. 2), one encounters the problem of the reduction from
the 8-dimensional space of K7 solutions to the 4-dimensional physical subspace. It is
simplified by the observation that due to the triangular form of S and U, the reduced

matrix F'®) for 41 > k is obtained by just taking the first my;+1 =k —271 41 rows and

T
2

(unitary) matrices (3.10) corresponding to [ = 2 (eq. (3.13)) and to [ = % coincide.

columns of both U/ and S™!. In particular, for I = I we observe that the symmetrized

The 2-dimensional braid invariant subspace comprising the conformal blocks of local

Ramond fields of the By model is spanned by the pair of vectors

UO = (_%707 07 \/2)7 U2 = (07 07 170) (316)

which are ortho-normalized with respect to the metric (3.14):
L, Dvy = 8 (a,b=0,2). (3.17)

In this basis, we have the following reduced form of the s-channel generators

s 3 3 0 (s 2 _1 1
B{>:q2<% _q_3)7 F<>:_%<1 1) (k=101 =

13

N

). (3.18)



i

(At ¢ = €2, one has [3] = v/2[2]). Identical expressions are obtained for the reduced

generators acting in the invariant subspace of conformal blocks for [ = %

The resulting 2-dimensional representation of B, is a finite matrix group. It is a central
extension of the 24-element 2-fold covering of the tetrahedron group. This is worth
noticing, since the appearance of finite matrix groups among the monodromy represen-

tations of By is rather exceptional [20].

4 Subfactors for field extensions

We turn now to the treatment of the same problem: the determination of relative
amplitudes like (3.8), (3.9), in the algebraic (DHR) framework of quantum field theory.
A theory A is described by a local net of von Neumann algebras A(Q) of observables in
the space-time region O, which generate the global C* algebra A. These regions may

be double cones (O), or intervals ([J) on the light-cone in chiral conformal theories.

In the following, we consider a pair of local quantum field theories given by the nets of

local von Neumann algebras A(Q) and B(O) such that
A(O) C B(O) (4.1)

are irreducible inclusions with common unit. Our terminology will be ‘observables’ for

a € A and ‘charged fields’ for b € B. We have in mind two specific such nets, namely

1. the conformal inclusion [12, 21] of the chiral su(2) current algebra at level 10 into

the chiral sp(4) current algebra at level 1, denoted by
An(T) CBa(T) (4.2)
where J are intervals on the circle (= compactified conformal light-cone), and

2. the two-dimensional WZNW model [11] of the chiral su(2) currents at level 10
(on both light-cones) contained in the algebra of two-dimensional local fields con-

structed by diagonal contraction of chiral vertex operators (exchange fields):
AP(0) = Aa(T) © Aan(T) C FP(O) (4.3)

where a two-dimensional double cone O = J x J is the Cartesian product of two

chiral light-cone intervals.

Note that the model (4.3) is the one described by the standard diagonal form D in the

previous sections, while the form D corresponds to a combination of (4.2) and (4.3):

Here, the first inclusion is the tensor product of the chiral extensions (4.2) and the
second inclusion is the standard diagonal contraction of chiral vertex operators for Bg,.

(There will be said more about these ‘standard’ constructions in Sect. 5; see also [22, 9].)
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A subfactor A C B is irreducible if the relative commutant is trivial: A’'N B = C.
This requirement excludes from our analysis all chiral current subalgebras associated
with subgroups, unless the embedding is ‘conformal’ [10], since the coset stress-energy
tensor is contained in the relative commutant. However, including the coset stress-
energy tensor into the observables (which then have the structure of a tensor product

of two chiral theories), would again yield an irreducible inclusion [27, 9].

We have to recall some subfactor theory. First, we note that we are dealing with type
111, subfactors, since under very general conditions, the local von Neumann algebras
in quantum field theory are hyperfinite type Ill; factors [23, 24]. Associated with an
(irreducible) type I subfactor A C B is a canonical endomorphism v € End(B) such
that v(B) C A is a dual subfactor [8, 25]. A C B has finite index if and only if [8] there
is a pair of isometries W € A and V € B such that the following operator identities

hold:
(a) Wa=e(a)W (a € A, 0:=1]a)
(b) Vb=~(b)V (be B) (4.4)
() WV =212 = Wy (V).
The real number A is called the index of the subfactor A C B. These relations express
the duality between A C B and v(B) C A. They also state that B is the Jones

extension [1] of A by its subfactor y(B). The Jones projection is £ = V'V*, satisfying
the Jones-Temperley-Lieb relation with its dual F' = WW™:

EFE =)\"E, FEF = )\'F.
Associated with these data, there is a conditional expectation p: B— A given by
p(b) = Wy (o)W (be B), (4.5)
and conversely the canonical endomorphism can be expressed in the form
y(b) = A pu(VoV™) (b€ B). (4.6)

( is a positive and A-linear map which generalizes the Haar average over a compact

group acting on B with fixpoints A. It satisfies the Pimsner-Popa bound

p(b) > A1 b (be B, b>0) (4.7)

as an operator estimate for every positive operator b € B. This lower bound for condi-
tional expectations was first introduced in [26] to define the index. It is optimal since
it is saturated by

p(VV*) = A7
We note also that W = A='/2. (V). The physical relevance of these objects will become

clear in due context.

The following results on quantum field theoretical nets of subfactors as in eq. (4.1)

will be proven (and qualified) elsewhere [9]. Let us just state the essentials. Let the
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vacuum vector  be cyclic and separating for every local von Neumann algebra B(O)
of the theory B, i.e. 7°(B(0))Q) are dense subspaces of the vacuum representation space
H°. This property holds, by the Reeh-Schlieder Theorem, quite generally for covariant
quantum field theories with positive energy. Let also Hy = m C H° be the vacuum
representation space of A such that £ is also cyclic and separating in Hy for every A(O).
Let furthermore the conditional expectation p preserve localizations, i.e., map B(O) onto
A(O). If the local subfactors are irreducible and therefore possess a unique conditional
expectation, then g must commute with the translations (= the rotations of the circle
in the case of a chiral conformal theory). If the vacuum state w = (2, 7%(-)Q) on B is

the unique translation invariant state, then it must also be invariant under p, i.e.,
wol = w on B. (4.8)

We shall assume the invariance property (4.8) in the sequel. The underlying structure
admits the interpretation as a generalized global unbroken gauge symmetry with p

generalizing the gauge group average [9].

Under these circumstances, the canonical endomorphism v defined above for a fixed local
subfactor A(Og) C B(Oy) extends to an endomorphism of the global C* algebra B, and
maps B into the global C* algebra of observables A. Restricted to the observables, v|4
turns out to be a localized endomorphism with localization in Ogp, denoted by p in the
sequel. It therefore describes a (reducible) superselection sector [5] of the theory A. Its
physical significance is given by the following

Proposition 4.1: [27, 9] Let 7y denote the vacuum representation of A on
Ho, and 7° the vacuum representation of B on H°. Then 7% considered as
a reducible representation of the subalgebra A is unitarily equivalent to the

representation mgoo of A.

In other words: the superselection sector ¢ comprises all the charged sectors of A which
are interpolated from the vacuum by fields in B. If, as endomorphisms, o ~ @, N;os,

then as representations,

704 ~ moop @ N, (4.9)

where N, are finite multiplicities, and 7y = mgop0,. As is well known, if the observables
A are the gauge invariants under a compact gauge symmetry group of B, then the de-
composition (4.9) is given by the representations of the gauge group, with multiplicities

N given by the dimensions of the latter.
Eq. (4.9) allows to compute the index A of the subfactor. It is given by the formula

A =d(o) = Y Nod(e,) (4.10)

in terms of the statistical dimensions d(ps) = d; of the superselection sectors [5] con-

tained in . In the gauge group case, d(ps) = N, and the index equals the order of the
group.
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In the models (4.2), (4.3), the branching of the vacuum sector of B is well known, leading
to 0 ~ po &b p3 for the inclusion (4.2) and p ~ @ or @ o7 for the inclusion (4.3), where
or are the isopin [ sectors of the chiral su(2) current algebra. gy = id corresponds
to the vacuum representation. In the former case, the formula (4.10) yields the index
A=dy+ds =14sin %/ sin 1”—2 =34+3. (For the coincidence of statistical dimensions

and ‘quantum dimensions’ d(pr) = [2] + 1] for su(2) current algebras see [27].)

The formulae (4.4) — (4.7) remain valid for v considered as an endomorphism of B and
for o as an endomorphism of A. Note that the isometries W and V are local operators
W e A(Op) and V € B(Ogp). We shall refer to the intertwining properties expressed by
eqs. (4.4(a,b)) by the notation V:id—~ and W:id— p in the sequel. The latter implies
that mo(WW™) is the projection in the representation space of mgop which projects onto

the vacuum subrepresentation contained in (4.9).

For every other subsector m, contained in (4.9) there are corresponding projections
of the form WO(WMW:’Z») where W ;: 0, — o are orthonormal isometric intertwiners in
A(Oy); the multiplicity index ¢ runs from 1 to N,. For simplicity, we shall in the
following consider only multiplicities Ny = 1 (covering abelian gauge groups, as well as
our models above). One has the orthogonality relation W W, = d,; (because otherwise,
the intertwiner W W;: o — o, would contradict the inequivalence of the representations
ms and m;), and the completeness relation >, W, W = 1. Clearly, W, = W.

Putting
s = WiV

we obtain charged intertwiners, i.e., elements of B which satisty the commutation rela-

tions with the observables

vea = gs(a),  (a € A). (4.11)

This equation means that ¢, € B make transitions (in the vacuum representation of B)

between the vacuum representation of A and the charged representations ;.

Conversely,

V=> Wb, (4.12)
and the commutation relation
Va=o(a)V (a € A) (4.13)

gives to V' the physical interpretation as a ‘master field” carrying the reducible charge o

from which the charged intertwiners s are projected out by means of Wi.
A particularly interesting object is the observable operator
X =~(V) € A(Oy). (4.14)

From the definitions it is clear that X is an isometric intertwiner X: p— o%. Indeed, we

can compute

X = ’Y(V) = )‘M(VVV*) = AZM(Wt¢tWS¢S¢ZWJ) = )\Z Wt@t(Ws) M(@/’t@/’s@/ﬁ) : WJ

stu stu
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where the expressions p(1:0s17) are observable intertwiners T o, — p:05. They are
therefore multiples of isometric basis intertwiners 7. which project onto the subrepre-

sentations m, contained in the DHR composition product m; X 7, = mge(0:0):

Mi(bebas) = Me) - T, (4.15)

with coefficients
Ne) 1= X Tou(bubntsd) (1.16)
(The multi-index e stands here and in the sequel for the fusion channel 7, < m; X 75.)

Denoting by Te = o(Ws)W;-T.- W the ‘lifts’ of intertwiners T.: o, — 005 to intertwiners

T.: 0— 0%, we obtain the expansion

X =Y Ae) 1. (4.17)

We note that only channels e contribute to (4.17) for which g, 04, 0, are all subsectors
of the canonical endomorphism p, in spite of the fact that in general g;0s will also
contain subsectors which are not contained in po. We shall relate this observation to the

“4runcated fusion rules’ in the next section.

The importance of the isometry X is due to the following result, while the relevance of

its expansion coefficients A(e) will reveal itself in the sequel.

Proposition 4.2: [28] The irreducible subfactor A C B is uniquely charac-
terized (up to unitary equivalence) by the triple (o, W, X), where o € End(A)
and W:id — p and X:p — p? are isometric intertwiners in A, satisfies the

following identities

(i) WX =XAY21=pW)HX  with X=d(o)
(47) XX~ =p(X")X (4.18)
(447) XX = o(X)X.

Clearly, the identities (4.18) follow from (4.4). Conversely, given a triple as in Prop. 4.2,
one recovers B as follows. Put A; := X*p(A)X and B := the Jones extension of A by
Ay. This extension is of the form B = AV where V' is an isometry with VV* = E. the
Jones projection. Define v € End(B) by y(aV) := po(a)X. Then =, satisfying (4.4), is
the canonical endomorphism for A C B and ¢ = v|4, A1 = v(B).

In our present context, A = A(O) and B = B(0O), the point about this characteriza-
tion of (4.1) is that it entirely refers to the observables and their superselection sectors.
Finding such a triple in a given theory A amounts to find a field extension B of the
observables of the form (4.1). The problem involves the knowledge of the ‘fusion coef-
ficients” of the theory A, i.e., the coefficients of expressions like p,(7) (entering o(X))
in terms of a basis T,T),T7. These are the solutions to the Moore-Seiberg ‘pentagon
identities’ [29] which are intrinsically determined by the DHR theory of superselection

sectors [7] (but often tedious to compute).
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Let us briefly sketch the ‘reverse program’ of construction and classification of (local)

field extensions of finite index [9].

The main step is to decide which combinations ¢ ~ @, N0, of the irreducible localized
endomorphisms (sectors) of A are canonical endomorphisms of the local von Neumann
algebra A = A(Oy) with respect to some subfactor A; C A. This amounts [28] to verify
the existence of a pair of isometric intertwiners W:id — p and X: p— o? in A(QOyg) solving
(4.18). If the desired inclusion is required to be irreducible, then id < p with multiplicity
Ny = 1, and if the index is finite, then one can prove the bound N, < d;. Therefore,
if A is a ‘rational’ theory, i.e., has only finitely many sectors of finite statistics, then

the classification problem is a finite problem in the form of a non-linear system for the

k
ij

unknown coefficients A(e)?; (with multiplicities).

If we are interested in local field extensions, then we have to require in addition (see
below) that the solution X satisfies

e, X=X (4.19)

where ¢, € 0*(A)' N A(Oy) is the statistics operator for the localized endomorphism p
[5]. €, = U*o(U) can be computed in terms of a charge transporting intertwiner U: p— ¢

where ¢ is an equivalent endomorphism localized at space-like distance from p.

Every solution (o, W, X)) to the system (4.18) defines a field net B extending A with
finite index A = d(p) as follows. If p is localized in Oy, one reconstructs B = B(Oy) and
v € End(B) from A = A(Oy) as in the remark after Prop. 4.2. Thus B(Oy) = A(Oy)V
for an isometry V' € B(Oy) satisfying (4.4). Next, B(O) := A(O)UV are defined with the
help of charge transporters U € A, i.e., unitary intertwiners U: p — ¢ where 6 is localized
in O. Note that B(O) thus defined contains the identity operator 1 o W*V = WUv
since W = UW:id — 6 is in A(O). Consequently, B(O) contains and extends A(O).
This construction yields a net B which is relatively local with respect to A, since o is
localized; namely if O is at space-like distance from Op, then A(Op) commutes with
B(O):
UV-a=Up(a)V =p(a)UV =a-UV (a € A(Oy)).

The field extension B turns out to be local if and only if the solution X satisfies also
(4.19). Namely, the commutativity of V' € B(Oy) with UV € B(O) at space-like distance
is equivalent to V'V = U*VUV, and hence to

XV =yWVV=VV=UVUV =UU)VV = 4V)V =¢,XV.

We observe that the system (4.18) alone will have many solutions, e.g., those of the form
0 =00, X = o(W) where ¢ is any irreducible localized endomorphism of the theory A
with finite statisticss, W:id— oo an isometry. These solutions will, however, not satisfy

(4.19) in general, and will therefore not give rise to local field extensions.

Note that, actually, locality of the field net was not required for the general analysis
in the first part of this section, as long as it has the Reeh-Schlieder property, and
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fields commute with observables at space-like distance. However, since it is not clear
which physical principles should determine a ‘good choice’ of a non-local and therefore
a priori unobservable field algebra except that it generates the superselection sectors of
the observables, we prefer to consider only local field extensions which offer the option

to be regarded as observable theories of their own.

If A are the gauge invariants under a gauge group acting on B, then the system (4.18)
has a solution with multiplicities N, given by the dimensions of the representations of
the gauge group. The corresponding coefficients A(e); in the expansion (4.17) of X
are precisely the Clebsch-Gordan coefficients. Indeed, one may rephrase the content
of the Doplicher-Roberts (DR) reconstruction theorem [17] as follows: every system of
sectors of the observables which have finite permutation group statistics among each
other, closed under composition, reduction, and conjugation, admits a solution to (4.18)
with X given by (4.17) in terms of Clebsch-Gordan coefficients of some compact gauge
group. The DR solution is distinguished by the validity of (4.19) if there are only bosonic

sectors of A, and a graded variant of (4.19) in the presence of fermionic sectors.

We emphasize that, while our general theory above contains the case of a compact
gauge symmetry group, the models (4.2), (4.3) we are actually interested in are not
given by a gauge symmetry group. The sectors 7, contained in the restriction 7°|4
are not closed under composition, and their multiplicities differ from their statistical
dimensions. Although the fields are local, the sectors m; have braid group statistics.
None of these features could hold with a gauge group.

Displayed in terms of the coefficients )\(e)fj, the system (4.18) is converted into a system

of identities well-known to hold for Clebsch-Gordan coefficients (with the 65 symbols as
fusion coefficients). The absence of a completeness property in (4.18) is related to the

truncated fusion rules discussed in the next section.

5 Truncated fusion rules and partial wave decomposition

Let us now study multiplicative properties of the charged fields s (‘operator product
expansions’). For a generic charged operator b € B one has the expansion formula

(generalizing the harmonic analysis in the gauge symmetry case) implied by (4.4), (4.5)
b= Au(bV* )V = XD (bl ), (b€ B). (5.1)

In particular, by (4.15),
¢t¢s = Z )\(6) Te¢u (52)

where as before, e is the channel p, < 0;0s. We observe, that only charged fields with
charge p, < o contribute to this operator product expansion, even if there are other
sectors present in the DHR sector decomposition of g;0,. That this ‘truncation of the

fusion rules’ is consistent, can be retraced, e.g., to the identity (4.18(i17)) as follows.
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Obviously, 1,1, is a charged intertwiner : ¢d — p;05, so one might expect that all charges
0, contained in p;0, are interpolated by this composite field. But, in order to project
a field carrying charge o, out of ¥, we have to multiply the latter with 7 where

T.: 0, — 010s. Now, computing T¥1), or rather its image under g, we get
o(T2ibs) = o(TEWIVWIV) = o(TIWo(WD) - VV) = o(TE W o(W])) - XX
Using XX = (X)X, we obtain an expression involving o[TW;o(W;)X] where the

argument in square brackets is an intertwiner : o — p, in A which must vanish unless
0, < o. In other words, since the expansion (4.17) of X contains only T, for fusion
channels which are already contained in p, it is annihilated by all T, leading to other
channels. Therefore, the identity T ¢wp, = 0 following from identity (ii7) precisely
describes in the operator product expansion for charged fields the suppression of channels

0, not contained in g, i.e., the truncated fusion rules.

We now turn to our main result, the decomposition of correlation functions of charged
fields into ‘partial wave’ contributions, and the decomposition of charged fields ), into

‘chiral exchange fields’.

Applying the expansion (5.2) (and (4.11)) repeatedly, we find the following expansion

for vacuum correlations of generic charged fields of the form ¢ = ¢a
(Q@n o) =3 TTMer) (T 0, (an) -+ T7, 01, (2) T7, a2 2) (5.3)
€ i

where T¢.: 0., — 01,05, and the sum extends over all vacuum-to-vacuum ‘channels’ of
successive fusion ¢ = ¢,0---0¢; such that ¢;, = u;_; and u, = 0 = #;. The last step in
this computation, the evaluation of a single charged field of the form ¢}« in the vacuum

state, exploits the invariance of the vacuum state

w(W7a) = w(p(th,)"a) = 5,0~ 2w(a)

since p(vs) = Wy(W V)W = WW*XW = S0A"Y21. The factor A™/2 is absorbed
in the product in (5.3) in the guise of A(e1) (note that for o, = id, T. = 1, and
T. = WW W7, one obtains A(e) = W W*XW, = )\_1/2).

In the formula (5.3), the single ‘partial wave’ contributions
Ff = <Q7 Te*ngtn(an) e T;Qt2(a2)T;a1Q> (54)

are kinematically distinguished correlation functions which depend only on the sub-

theory A and its superselection structure, but bear no reference to the field extension

B.

Proposition 5.1: The (local) n-point functions of charged fields from a field

extension B have the partial wave expansions (5.3) where only the coefficients
Ne = H )‘(ei)v (55)

involving the factors A(e;) for every single transition in the channel of succes-

sive fusions, depend on B.
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On the Hilbert space of the representation 7% 4 = @, 7 (cf. Prop. 4.1) were also defined
the ‘reduced field bundle’ operators F'(e, a) as a bounded operator version of chiral vertex
operators [6, 7]. If e is the channel g, < 0;0s, then F(e,a) = F(e, 1)7%a) interpolates

from the subspace for m; to the subspace for m, by the formula
Fle,a)|t; U) := |u; mo(T 04(a))W).

These operators satisfy complicated ‘exchange algebra’ commutation relations (whence
the name ‘exchange fields’ [30, 22]) involving matrix elements of the relevant statistics
operators (braid matrices), and a multiplication law involving the fusion coefficients for
the sectors. The algebra spanned by F(e,a) is closed under multiplication and under

the adjoint operation.

By inspection of the partial wave contributions (5.4) one sees that the latter are just the
correlation functions of products of reduced field bundle operators F(e,a). Therefore
(5.3) implies the identification

Jia=Y"Me) Fle.a) (5.6)

where the sum extends over all fusion channels with fixed charge label s. This formula
is remarkable since the charged fields in B which satisfy local commutation relations
and truncated fusion rules as discussed above, arise as specific linear combinations of
reduced field bundle operators which satisfy exchange algebra commutation relations
and do not exhibit truncation. Similarly, while every single partial wave contribution
(5.4) is non-local, the sum (5.3) is a local n-point function. This is possible due to
cancellations among the relevant fusion coefficients, which can be seen to follow from
the system (4.18), (4.19) if written as a nonlinear system involving fusion coefficients
and braid matrices along with the Clebsch-Gordan coefficients A(e). A similar statement

applies to the identities
r = dY? R, (Rs:1d— 0505 isometric)
and

s = ds /A1

valid in B, which we have not discussed here, but which can be proven within the reduced
field bundle, with the identification (5.6), along the same lines. We refrain from working
out the details here.

Actually, the decomposition (5.6) can also be directly established in terms of the unitary

equivalence between @ 7, and 7°| 4.

It was argued in [7] that in a sufficiently regular theory with conformal covariance,
scaling limits of F(e, a) contracting the localization to a point = should exist, and yield

chiral vertex operators ¢.(x) interpolating between the sectors H; and H,:

pele) ~limA™ F(e,aldal (a))

22



where o(®) denotes the charge dependent effect of the translation () resp. scale trans-
formation (A) on the operator entry a [7]. It follows from these considerations that the
pointlike limits of ¢'}a yields local pointlike fields affiliated with B of the form

s(x) = Me) gelw) (5.7)

with the same coefficients as in (5.6). E.g., in the model (4.2) the heptuplett of primary
currents j(x) for the isospin 3 sector arise as linear combinations of vertex operators

with coefficients A(e) to be computed below, and the same holds in general for charged

local fields from B.

In the pointlike limit, the partial wave contributions tend to ‘conformal block functions’

Fe(@n, - w1) = (@00, (wn) - - pe, (21)0) (5.8)

to be identified with the s-channel blocks in the standard approach, determined from
Ward identities and Knizhnik-Zamolodchikov equations [16]. For n = 4, the label ¢
stands just for the intermediate sector due to s-channel fusion of the charges s; and
s9. Although the conformal blocks are non-local functions, their combinations with

coefficients as in (5.3) are local n-point functions of local fields like j*(x).

The limit behaviour of partial waves (5.4) tending to conformal blocks (5.8) is an intrinsic
property of the subtheory A. As in Prop. 5.1, n-point functions of local charged fields

Ys(x) depend on the field extension B only through the expansion coefficients N¢ given
by (5.5).

In practice, we don’t know the absolute normalizations of the limiting functions (5.8) in
order to identify them with a choice of s-channel solutions as in Sects. 2 and 3, nor do we
know the relative normalizations of different partial wave contributions with respect to
each other. This would require the control of the previously mentioned pointlike limits
which is in general a difficult problem. However, one can compute double ratios, which

compare two different field extensions, of the form
N{/N]

N./W, (5.9)

which are completely normalization independent ‘characteristic’ quantities. These dou-
ble ratios must in particular coincide with the corresponding double ratios comparing
relative amplitudes of s-channel conformal block functions contributing to n-point func-

tions of point-like fields from two different field extensions, as computed in Sects. 2 and

3.
Since the double ratios (5.9) are given by (5.5), we have established the desired rela-

tion between relative amplitudes of conformal blocks and the data of the relevant local
subfactors. This relation is based on the identification of the expansion coefficients in

(4.17) for the characteristic isometry and in (5.2) for operator products of charged fields
(reflected also in (5.6) for charged fields as elements of the reduced field bundle).
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Let us now compute the amplitudes (5.5) for our first model (4.2) from the characteristic
triple (o, W, X). From the branching of the vacuum representation of B upon restriction
to A, we know that o ~ po@ 03 (see Sect. 4). By (4.10), the index is A = d(p) = do+ds =
34+ /3. Actually, finite index type I1I; subfactors are isomorphic to type II; subfactors
tensored with a type [II factor [31]. The corresponding type [1; subfactor associated
with the model (4.2) is the well known subfactor of index A = 3 + /3 constructed in
[32].

Choosing g9 = id in its equivalence class, the isometry W:id — p is uniquely determined
up to an irrelevant phase. The coefficients A(e) for the isometry X can be computed
from X*X = 1 and the identity (4.18(¢)): there are only five fusion channels g, < 0:05

with all g, 01, 0, < 0, with which we associate isometric intertwiners as follows:

Ta: 00— 0000 Ty 03— 0300 1.1 03— 0003 Ty: 00— 0303 Te.: 03— 0303

Since g9 = td, we may choose T, = T, = T, = 1. According to standard notation
[5, 6, 7], we call R the isometry Ty:id — o3. We have therefore:

+A(e) - o(W3)WolW3 + A(d) - o(W3)Ws RWG + Ale) - o(W3)W5T. W3,

where Wy = W:iid — p and Wit p3 — p are orthonormal isometries, and Ey = WoWj
and Fs = W3W5 are complementary projections in the commutant of p onto the two
subsectors of . Then (4.18(¢)) reads

WX = Ma)Eo 4 Me)Es = X7V21

o(WX = Ma)Eo 4+ A(b)Es = X721

hence A(a) = AM(b) = A(c) = A™Y/2. We are free to choose the complex phases of R and
T. such that A(d) and A(e) are also positive. Now, the isometricity of X together with
the orthogonality of R and T, (i.e., R*T. = 0) implies

XX = [Ma)? + Md)?]Eo + [Mb)2 + M) + Me)|Es = 1

hence A(d) = v/1 — A7t and A(e) = /1 — 2A~1. We don’t need to verify the remaining
identities (4.18), (4.19) since we know that the extension is local and yields a subfactor
of index A = 3+ /3. (Unfortunately, the computation is much less trivial for the other,

Fs, extension treated in Sects. 2 and 3.)

For charged fields with o, = g3, only the channels ¢ = (30), d = (03), e = (33) are
relevant ((J1) stands for an exchange field of charge 3 acting on H; with values in H;.)

Therefore, we have

A(30) = A7Y2 X\(03) = (¥)1/27 A(33) = (%)m.
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This gives for the ratio of the amplitudes of the conformal blocks with intermediate

s-channel [ = 0,3 contributing to the 4-point function of the isospin 3 field

CA03ABIABIAB0) A -2
NafNo = A0)ABOA0D)AB0) — VA1 v

(5.10)

As discussed before, due to uncontrolled normalizations, one has to compute double
ratios like (5.9) of relative amplitudes comparing two different field extensions. Indeed,
there is always a ‘standard’ extension to compare with, which specializes for chiral
current algebras to the A-series of modular invariants [3], and therefore yield the diagonal

extensions as in our model (4.3).

Proposition 5.2: [33, 9] For rational chiral theories A, (i.e., theories with
only a finite number of superselection sectors 7, with finite statistics), o =~
@D, 0s ® 05 is a canonical endomorphism of AR = A, @ Aen, giving rise to a

local two-dimensional field extension B(2).

This result is a corollary to the computation in [33] of the associated characteristic
isometry X?) satisfying the system of identities (4.18), (4.19). The vacuum represen-
tation of this extension contains all ‘diagonal’ sectors of A?) of the form m, @5 precisely

once.

It is more convenient to deviate from the basis conventions in [33] and choose a C'PT
conjugate pair of bases of isometric intertwiners 7, and 7tz = j(7.) on the two chiral light-
cones (cf. [9]). The anti-linear C'PT conjugation j is an appropriate Tomita-Takesaki
modular conjugation [24, 34]. It acts like a reflection © «» —z on the algebras of chiral
intervals, and relates conjugate sectors g < p = jogoj. In such a basis, the isometry

X® is simply
0 — gy [ g g
X :A d— T6®Tg (511)

where Te are local intertwiners in Ag, as in (4.17) corresponding to the fusion channels
0w < 01005 as before, T = ](Te) correspond to the C'PT conjugate channel g, < g;00;,
and d, are the statistical dimensions of p,. The index equals A = Y, d?. The fusion
channels contributing to the isometry X for the two-dimensional subtheory (4.3) are
of the form e ® €, and the coefficients )\(2)(6 @ €) are read off eq. (5.11). The fact that

the corresponding two-dimensional fields

o, =3 d;d“’ Fleoglaol =Y
eRe w €

dyd,
L P, 1) 0 Fle, 1)

contracted from chiral exchange fields of fixed charge [s], [s] are indeed local fields acting
on the Hilbert space H?) = @, H; @ Hz, was established in [22]. Although the diagonal
sectors are not closed under composition whenever there are non-simple fusion rules
among the chiral sectors 7, the operator product of the diagonal fields ®; contains only
other diagonal fields due to cancellations among the fusion coefficients. This is another

instance of truncated fusion rules.
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From

ds |d
M ewe) =Ty @

it is obvious that the amplitudes for the 2D partial waves contributing to a given n-point
function of integer isospin fields (€2, @, --- 1) = 3, Ng(;)g Fe - Fg are all equal:

Nioe =TT /do /A o 1. (5.12)

Given the diagonal standard extension, we can predict characteristic invariants for every
other extension which can be read off the respective n-point functions, independent of

all normalizations of partial waves and conformal blocks, by taking double ratios of

amplitudes (5.5) and (5.12)

(NN )Ne/Ny)  r Medhe) oy e
veune - g = Lage

Here we have used the fact that the coefficients of X and j(X) in C'PT conjugate bases
are complex conjugates, A(e) = A(e). E.g., for the 4-point function of the isospin 3 field

in the Eg model (4.2), we get
(Ns/No)®

N
in agreement with the result obtained previously (eq. (3.8) and [12]) by the analysis

(5.13)

of locality in terms of explicit conformal blocks functions given as solutions to KZ

differential equations.

We emphasize that this method works for every ‘non-diagonal’ extension of a given
chiral theory without controlling the actual pointlike limits F'(e, a)— @.(x), since there
is always the ‘diagonal’ one to compare with. Moreover, it immediately applies to mixed

and higher n-point functions.

We conclude this section with another instructive (albeit almost trivial) example giving
rise to anyonic field extensions. We consider a local theory A with N simple superselec-
tion sectors ps with Zy fusion rules [s][t] = [s + ¢ (modNV)]. For simplicity, assume that
the automorphisms ps can be chosen to satisfy ps0; = s+ (understood mod N), by
which all intertwiners T, of the general analysis are trivial = 1. This choice is always
possible for odd N, and for even N provided the fractional spin of o, satisfies NA; € Z
(cf. [22]). The sector structure is that of the simple sectors in su(/N) current algebras.
It also occurs in the models constructed in [35], where, however, the violation of the
spin condition leads to a minor complication which we want to ignore here. The case

N = 2 includes the D,, series of chiral su(2) current algebra extensions.
We choose a complete system of orthonormal isometries W, and construct the reducible

endomorphism p(a) := 3, Wsos(a)Wr. Then the triple (o, W, X') where W = W, and

X = N7VES o(Wy)W, W7, (5.14)

st
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(with trivial Clebsch-Gordan coefficients for an abelian group) solves the system (4.18).
The charged fields v, are obtained (up to a normalization factor N'/2) as the unitary
shift operators |t; W) — [t 4+ s; W) on @, H:. They satisfy ¢ = 1540 and implement

the endomorphisms g, (in the representation 7° = @ ;)

os(a) = Ysap;  (a € A). (5.15)
The gauge group Zy acts by v, (1,) = e2™"/Nop with average u(ip,) = ,01. Putting

V= NTVES Wb, (5.16)

and defining v by (4.6) with index A = |Zxy| = N, then 4(V) = X and the triple (v, V, W)
satisfies the identities (4.4). Adjoining the charged fields s to the local algebras, we

obtain an anyonic field extension B by the simple sectors of A.

6 Concluding remarks

The old hope that the ‘germ of the observable algebra’ generated by the internal sym-
metry currents and the stress-energy tensor completely determines a local quantum field
theory turns out to require some qualifications. Two-dimensional conformal current al-
gebra models tell us that depending on the value of the level k (which characterizes both
the algebra Ay and the vacuum state of the theory), there may be several — one, two, or
three for Ag(su(2)) — local conformal field theories corresponding to the same vacuum

representation of Ay.

The different theories are distinguished by different maximal local chiral extensions By,
and by different braid invariant quadratic forms M. The primary local chiral fields
which extend A, obey fusion rules which are majorized by the intrinsic DHR fusion
rules of superselection sectors. Both the invariant ratios of structure constants which
are characteristic quantities for local field extensions, and the truncated fusion rules are
understood and computed in conventional field theoretical terms and in terms of the
theory of subfactors applied to a single local subfactor A(J) C B(J).

Our field theoretical computation uses a closed expression for the s-channel fusion matrix
(that is already implicit in [13]) which has the virtue of displaying their invariance under
Galois automorphisms (the individual structure constants as well as the matrix elements
of the monodromy representation of the mapping class group belonging to the same
algebraic number field). The relevance of such arithmetic properties has been recently
exhibited in a study of the Schwarz problem (‘When is the representation of the braid
group a finite matrix group?’) for the KZ equation [20].

On the other hand, the application of the theory of finite index subfactors to local field
extensions gives a natural interpretation of the field theoretical structures in terms of
a generalized ‘harmonic analysis’. The ‘irreducible tensor operators’ of this analysis

are the quantum field theoretical charged intertwiners. This approach is very close to

27



the spirit of Ocneanu who first considered subfactors as ‘generalized groups’, but gives
more evidence to this view than the combinatorial description in terms of bi-partite
graphs and connections [36]. Part of Ocneanu’s induction-restriction graph is reflected
in the ‘truncated fusion rules” which in turn derive from harmonic analysis in the form of
operator product expansions for charged fields. Through Longo’s theorem relating the
truncation to the depth of the inclusion [28], it is nicely exhibited that the generalized
symmetry associated with conformal embeddings is not given by a Hopf C* algebra
in general. Longo’s characterization of a subfactor in terms of a triple (o, W, X) gives
rise to a notion of generalized Clebsch-Gordan coefficients which does not refer to any
assumed linear transformation law of the irreducible tensor operators. We note that the
interpretation of these structures as a generalized symmetry is not imposed but emerges

naturally from the theory of subfactors.

When one compares our two different approaches, one can also observe some unbalance.
E.g., the role of the Galois automorphisms is not yet understood in terms of the subfactor
approach. In particular, the Galois group acting on the structure constants does not
map a unitary theory into another unitary theory, nor are there any ‘Galois relatives’
of a subfactor. Indeed, the characteristic ratios of structure constants like (3.8), (3.9),

(3.15) resp. (5.13) turn out to be rational numbers and are, therefore, Galois invariants.

The characterization of a local extension in terms of a triple (o, W, X) as in Prop.
4.2 logically proceeds in two steps: first, one has to solve the system (4.18) which,
among other things, controls the consistent truncated operator product expansions.
This already yields field extensions which, however, may be non-local. E.g.. a fermionic
field theory as an extension of its even (bosonic) subtheory arises in this way. The
locality condition (4.19) is only imposed in a second step. On the other hand, in the
conformal block approach the locality condition seems to be the only vital step. In
fact, we consider the analogue of the first step to be hidden in the KZ equation, whose

solutions automatically give rise to a consistent fusion.
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