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REFLECTION GROUPS ON RIEMANNIAN MANIFOLDSDMITRI ALEKSEEVSKY, ANDREAS KRIEGL, MARK LOSIK, PETER W. MICHORAbstrat. We investigate disrete groups G of isometries of a omplete on-neted Riemannian manifold M whih are generated by reetions, in parti-ular those generated by diseting reetions. We show that these are Coxetergroups, and that the the orbit spae M=G is isometri to a Weyl hamberC whih is a Riemannian manifold with orners and ertain angle onditionsalong intersetionsof faes. We an also reonstrut the manifoldand its ationfrom the Riemannian hamber and its equipment of istropy group data alongthe faes. We also disuss these results from the point of view of Riemannianorbifolds. 1. IntrodutionThe aim of this paper is to study the disrete groups G generated by reetionswith respet to hypersurfaes (shortly, reetion groups ) on a RiemannianmanifoldM . If M = En is the Eulidean spae, then the lassi�ation of all reetiongroups was given in a fundamental paper by Coxeter [11℄. This implies also thelassi�ation of reetion groups on the sphere Sn. There are many results aboutreetion groups in hyperboli spae, see Vinberg [32℄, [34℄, [33℄, and [35℄, but theomplete lassi�ation is missing. In all these ases the appropriate fundamentaldomain C of a reetion group G (alled Weyl hamber) is a Coxeter polyhedron,i.e., a onvex polyhedron where any two neighbour walls (odimension 1 faes Fi,Fj with odimension 2 intersetion) have angle �=ni;j for ni;j 2 N. We all thisthe Coxeter property. Conversely, any Coxeter polyhedron C in a spae of onstanturvature M = Sn; En;Hn is the fundamental domain of the reetion group Gwhih is generated by the reetions si = sFi with respet to the walls Fi of C. Thegroup G is a Coxeter group, i.e., a group with a set S = fs1; : : : ; slg of generators,and relations s2i = 1, (sisj)ni;j = 1 for ni;j 2 N[ f1g. In our ase, ni;j is de�nedby the angle between the walls Fi and Fj as above.The manifoldM with the ation of G an be reonstruted from the Weyl ham-ber C (whih is homeomorphi to the orbit spae M=G) by the universal onstru-tion of Vinberg [32℄: De�ne the equivalene relation in G�C by(x; g) � (y; h) () x = y; g�1h 2 Gxwhere Gx = hsFi : x 2 Fii is the subgroup generated by all reetions with respetto walls ontaining x. Then the quotient spaeU(G;C) = G�C= �2000 Mathematis Subjet Classi�ation. Primary 51F15, 53C20, 20F55, 22E40.Key words and phrases. Reetion groups, Isometries.P.W.M. and M.L. were supported by `Fonds zur F�orderung der wissenshaftlihen Forshung,Projekt P 14195 MAT'. 1



2 ALEKSEEVSKI, KRIEGL, LOSIK, MICHORhas the struture of a spae of onstant urvature suh that the natural ation of Gon U(G;C) =M is isometri and G is the reetion group of M with fundamentaldomain C.More generally, if G is a Coxeter group with a set S = fs1; : : : ; slg of standardgenerators, and relations s2i = 1, (sisj)ni;j = 1, where i; j = 1; : : : ; l and nij 2N[ f1g, and if C is a topologial spae with losed subspaes P1; : : : ; Pl (alledpanels), then the Vinberg onstrution with Gx = hsi : x 2 Pii gives a topologialspae U(G;C) with a ontinuous ation of the group G and orbit spae C. Thetopologial G-spae U(G;C) is alled the universal spae of the Coxeter group G,and it satis�es the following following universal property [32℄:If G ats in a topologial spae X and if ' : C ! X is a ontinuousmap suh that si:'(x) = '(x) for x 2 Pi then there exists a uniqueextension of ' to a G-equivariant ontinuous map ~' : U(G;C)! Xsuh that ~'[1; x℄ = '(x) for any x 2 C.Davis [12℄ found neessary and suÆient onditions that U(G;C) is a topologialmanifold and G is a topologial reetion group of U(G;C), i.e., any generator siats on U(G;C) as a topologial reetion (an involutive transformation whose �xedpoint set U(G;C)si separates U(G;C)). These onditions are that C is a topologial`nie' manifold with orners and that eah panel Pi is a disjoint union of walls suhthat for any x 2 C the subgroup Gx = hsi : x 2 Pii is �nite. Conversely, let Gbe a disrete group of transformations of a topologial manifold M generated bytopologial reetions, and let C be its Weyl hamber (the losure of a onnetedomponent of the set Mreg = fx 2M : Gx = f1gg of regular points). Let s1; : : : slbe reetions in G suh that M si \C ontains a odimension 1 omponent. Let Pibe the union of all odimension 1 omponents M si \C. Then G is a Coxeter groupwith standard generators s1; : : : ; sl and the G-manifold M is G-homeomorphi tothe universal G-manifold U(G;C) de�ned by the panels P1; : : : ; Pl.One of the aims of this paper is to desribe the struture of the Weyl hamberC �= M=G of a Riemannian manifold M with a disrete group G generated byreetions, and to get a similar desription of suh G-manifolds M in terms of`abstrat Riemannian hambers' C, whih are Riemannian manifolds with ornerssuh that any two neighbouring walls Fi; Fj satisfy the Coxeter property, i.e., theorresponding angle has onstant value �=nij along Fi \ Fj.In setion (2) we �x terminology and desribe general properties of reetions ofa Riemannian manifoldM and of a disrete group G generated by reetions. Wedisuss the relations between a Dirihlet domain D of the group G and its Weylhamber C whih is de�ned as the losure of a onneted omponent of the set Mregof regular points of G. We give an example when a Weyl hamber is larger than aDirihlet domain. We prove that for a simply onneted manifoldM , any reetions is diseting, i.e. its �xed point set M s is a onneted totally geodesi hypersurfaewhih deomposes M into two parts. We observe that a reetion group G on aRiemannian manifoldM an be lifted anonially to a reetion group ~G, whih isan extension of G, on the universal overing ~M of M . As an interesting exampleof Riemannian manifold with a group generated by non diseting reetions, weonsider the maximal torus of the group SU (n) for n > 2 with the ation of theWeyl group.Starting from setion (3), we mostly onsider a Riemannian manifoldM with areetion group G generated by diseting reetions. Suh a G-manifold is alled



REFLECTION GROUPS ON RIEMANNIAN MANIFOLDS 3a Coxeter manifold. Following M. Davis [12℄, we derive from a lemma of Bourbaki[4℄ that the group G ats simply transitively on the set of Weyl hambers C of aCoxeter G-manifold M . This implies that Weyl hambers oinide with Dirihletdomains of regular points and hene are homeomorphi to the orbit spae, and thatthe reetion group G is a Coxeter group with reetions si with respet to wallsFi of C as standard generators. Moreover, the Weyl hamber C has the strutureof a Riemannian manifold with orners and any two neighbouring walls Fi; Fj of Csatisfy the Coxeter property and yield a Coxeter relation (sisj)nij = 1. We provethat in the simply onneted ase these relations generate all relations of G. In thegeneral ase, we give a geometri desription of the fundamental group �1(M ).In setion (4) we reall the notion and main the properties of a (smooth) mani-fold M with orners and we de�ne the onept of a Coxeter equipment of M . Thisis an order reversing mapping of the poset of faes of M into the poset of Cox-eter subgroups of a given Coxeter system (G;S) (where S is the set of standardgenerators of a Coxeter group G) whih satis�es the Vinberg �niteness ondition,see [34℄, [13℄. We de�ne a notion of Riemannian hamber C as a manifold withorners C equipped with an appropriate Riemannian metri suh that walls Wi ofC are totally geodesi and neighbouring walls satisfy the Coxeter property. AnyRiemannian hamber arries a universal Coxeter equipment.The Weyl hamber C of a Coxeter G-manifold M has the natural strutureof a Riemannian hamber with an admissible (in some rigorous sense) Coxeterequipment. Moreover, this equipment is universal if and only if �1(M ) = �1(C):Conversely, if C is a Riemmanian hamber with an admissible Coxeter (G;S)-equipment then the universal spae M = U(G;C) has the struture of a CoxeterG-manifold with Weyl hamber C. We prove also that if C is a manifold withorners and s is a Coxeter equipment of M then there exist a Riemannian metri suh that (M;) is a Riemannian hamber and the equipment s is admissible.Hene any manifoldwith orners C with a Coxeter equipment determines a CoxeterG-manifoldM , where the metri of M depends on the admissible metri on C andany Coxeter manifold an be obtained by this onstrution.In setion (5) and (6) we disuss another approah for reonstruting the Coxetermanifold from its Weyl hamber C whih an be identi�ed with the orbit spaeM=G based on the Thurston onstrution [31℄ of the universal overing orbifold.We reall this onstrution in setion (5) and we derive from the main theorem of[23℄ that an orbifold struture of a spae X an be reonstruted from the sheaf SXof its smooth funtions. In setion (6) we de�ne the notion of a Coxeter orbifoldas an orbifold whose loal groups are �nite linear Coxeter groups. An exampleof Coxeter orbifold is the Weyl hamber C of a Coxeter manifold M . We provethat any Coxeter orbifold is suh a Weyl hamber. More preisely, the universaloveringM = ~C of a Coxeter orbifold C admits a struture of (smooth) Coxeter G-manifold suh that C is isomorphi to the Weyl hamber of the isometry group G.In partiular, this shows that any Coxeter orbifold is good in the sense of Thurston.In the last setion we desribed all Coxeter equipments of an n-simplex �n.This gives a lassi�ation of Coxeter orbifold strutures on � and a lassi�ationof Coxeter manifolds with orbit spae �n up to a di�eomorphism.



4 ALEKSEEVSKI, KRIEGL, LOSIK, MICHOR2. Groups of isometries generated by refletions2.1 Lemma. Let M be a onneted omplete Riemannian manifold, and let G �Isom(M ) be a group of isometries. Then G is a disrete subgroup in the Lie groupIsom(M ) if and only if eah orbit of G in M is disrete.We shall say that G ats disretely on M .Proof. The pointwise-open topology on the Lie group Isom(M ) of all isometriesoinides with the ompat open topology.If G is a disrete subgroup in Isom(M ) then it is losed and ats properly on Mso the ation admits slies, and the orbit G:x through x 2M is homeomorphi toG=Gx where Gx is the isotropy group of x. Thus eah orbit is disrete.Conversely, suppose that eah orbit is disrete. Sine G onsists of isometries,eah disrete orbit is losed. We onsider the losure �G of G in Isom(M ). SineG-orbits are losed, �G:x = G:x for eah x 2 M . The ation of the losed group�G of isometries is proper, so there exist slies. Let x0 be a regular point for the�G-ation. Sine �G:x0 is disrete, the slie Sx0 through x0 is open in M , and theisotropy group �Gx0 ats trivial on Sx0 . Thus �Gx0 ats trivial on M and equals feg.Then G:x0 = �G:x0 �= �G, thus �G = G and is disrete in Isom(M ). �2.2. Dirihlet domains and entral hypersurfaes. Let G � Isom(M ) be agroup whih ats isometrially and disretely on a onneted omplete Riemannianmanifold. Let x0 be a regular point. The losed Dirihlet domain for this point isthe set D(x0) := fy 2M : d(y; x0) � d(y; g:x0) for all g 2 Gg;where d is the geodesi distane on M . The open interior D(x0)o is alled the openDirihlet domain for the regular orbit G:x0, and we an �nd a fundamental domainF for the ation of G satisfying D(x0)o � F � D(x0), i.e., a set F whih meetseah orbit in exatly one point, sineM = [g2G g:D(x0):For any two di�erent points y0; y1 2M the entral hypersurfae is given byHy0;y1 := fy 2M : d(y; y0) = d(y; y1)g:It disets M in the sense that M nHy0;y1 is the disjoint union of the two open setsfx 2M : d(x; y0) > d(x; ; y1)g and fx 2M : d(x; y0) < d(x; ; y1)g. Note that if Mis a simply onneted spae of onstant urvature then Hy0;y1 is a totally geodesisubmanifold, sine it is the �xed point set of a symmetry, but that in general Hy0;y1is not a submanifold: On an elongated 2-torus it an be a �gure 8.Lemma. For x 2 Hy0;y1 let 0 be a minimal geodesi from y0 to x. Then 0 meetsHy0;y1 only at x.Proof. Let 0(tx) = x and suppose for ontradition that 0(t) 2 Hy0;y1 fort < tx. Let 2 be a minimal geodesi from x to y1. Then tx = d(y0; 0(t)) +d(0(t); x) = d(y1; 0(t)) + d(0(t); x) < d(y1; x) = tx unless 2 equals the minimalgeodesi s 7! 1(t � s) and hene y0 = y1, both a ontradition. �2.3. Lemma. Let D = D(x0) be the losed Dirihlet domain of a regular point x0for a disrete ation of a group G � Isom(M ). Then we have:(1) If g:D = D then g = e in G.



REFLECTION GROUPS ON RIEMANNIAN MANIFOLDS 5(2) The open Dirihlet domain D(x0)o is the onneted omponent ontainingx0 of M n [e6=g2GHx0;g:x0 �Mreg:Here Mreg denotes the set of all regular points, i.e. those points with trivialstabilizers.(3) G ats simply transitively on the set fD(g:x0) : g 2 Gg of all Dirihletdomains.Proof. The isotropy group Gx0 is trivial: See the proof of (2.1).(1) If g:D = D then g:x0 2 Do, thus d(g:x0; x0) � d(g:x0; h:x0) for eah h 6= ein G. If g 6= e, putting h = g, we get g:x0 = x0, a ontradition.(2) If x =2 Se6=g2GHx0;g:x0 then d(x; x0) 6= d(x; g:x0) for eah e 6= g 2 G.So if g:x = x for g 6= e then d(x; x0) = d(g:x; x0) = d(x; g�1:x0) 6= d(x; x0),a ontradition. Thus the isotropy group Gx is trivial and x is regular. Theonneted omponent of M nSe6=g2GHx0;g:x0 ontaining x0 is the set of all x 2Mwith d(x; x0) < d(x; g:x0) for all e 6= g 2 G whih is Do.(3) Transitivity was seen in (2.2) and simple transitivity follows from (1). �2.4. Walls of Dirihlet domains. Let G � Isom(M ) be a disrete subgroup.For a regular point x0 2 M the set F := Hx0;g:x0 \D(x0) is alled a wall of thelosed Dirihlet domain D(x0) if it ontains an open non-empty subset of Hx0;g:x0 .Two losed Dirihlet domains are alled neighbors if they ontain a ommonwall.2.5. Lemma of Poinar�e. Let D = D(x0) be a losed Dirihlet domain ofa regular point x0, and let g1:D; g2:D; : : : be all the neighbors of D. Then theelements g1; g2; : : : generate the group G.See �g. 4 for a Dirihlet domain with ountably many walls.Proof. Claim. For eah g 2 G there exists a sequene e = h0; h1; : : : ; hn = gsuh that D(hi:x0) and D(hi+1:x0) are neighbors for eah i. We all this a Dirihletneighbors hain from x0 to g:x0.The laim proves the lemma as follows. Sine D(h1:x0) is a neighbor of D =D(x0) we have D(h1:x0) = gi1 :D for some i1. Then gi1 :gi2:D is the neighborD(h2:x0) of gi1 :D. Finally gi1 : : : gin :D is the neighbor D(hn:x0) = D(g:x0) ofgi1 : : : gin�1 :D = D(hn�1:x0). By (2.3) we have g = gi1 : : : gin .We prove the laim by indution on fdg := d(x0; g:x0) : g 2 Gg whih is a loally�nite set in R sine the orbit G:x0 is disrete and losed in M .Let g 2 G and assume that there exists a Dirihlet neighbors hain from x0to h:x0 whenever dh < dg. Applying g1 we then also onlude that there existsa Dirihlet neighbors hain from g1:x0 to g2:x0 whenever d(g1:x0; g2:x0) < dg.Consider a minimal geodesi  from x0 to g:x0 of length dg.Case 1. Suppose that meetsSe6=k2GHx0;k:x0 in x = (t1) 2 Hx0;k:x0 at distanet1 < 12dg. See �g. 1. Then k 6= g. Consider a minimal geodesi 1 from x0 to k:x0.Then 1 meets Hx0;k:x0 in 1(12dk). The minimal geodesi 2 from x to k:x0 haslength t1. Thus dk � 2t1 < dg by the triangle inequality. By indution there existsa Dirihlet neighbors hain from x0 to k:x0. The minimal geodesi 3 from k:x0to g:x0 has lenght dk�1:g < t1 + d(x; g:x0) = dg sine otherwise k:x0 = x0. Byindution there exists a Dirihlet neighbors hain from k:x0 to g:x0. So we get aDirihlet neighbors hain from x0 via k:x0 to g:x0, as required.



6 ALEKSEEVSKI, KRIEGL, LOSIK, MICHORPSfrag replaements xx0 g:x01 2 3k:x0Hx0;k:x0 Figure 1.Case 2. Suppose that  meets Se6=k2GHx0;k:x0 for the �rst time at x = (12dg) 2Hx0;g:x0 and that x lies in no other entral hypersurfae. Then there exists an openonvex ball U with enter x whih meets only Hx0;g:x0 from Se6=k2GHx0;k:x0. Bylemma (2.2) the entral hypersurfae Hx0;g:x0 uts U in two onneted omponentsfy 2 U : d(x0; y) ? d(g:x0; y)g and is the boundary of both. One of them isin D(x0)o and the other is in the interior D(h:x0)o of a neighbor of D(x0). Soy = (12dg + ") 2 D(h:x0)o for some " > 0. Then d(y; h:x0) < d(y; x0) anddh�1g = d(h:x0; g:x0) � d(h:x0; y) + d(y; g:x0) < dg. By indution there is aDirihlet neighbors hain from h:x0 to g:x0, thus also from x0 to g:x0.Case 3. Suppose that  meets Se6=k2GHx0;k:x0 for the �rst time at x = (12dg) 2Hx0;g:x0 \ Hx0;k:x0 for k 6= g. We have d(x; x0) = d(x; k:x0). Consider theminimal geodesi 1 from x0 to k:x0 whih meets Hx0;k:x0 in 1(12dk). Thendk = d(x0; k:x0) < d(x0; x) + d(x; k:x0) sine otherwise the urve following  fromx0 to x and then the minimal geodesi from x to k:x0 would be a minimal geo-desi and ould not have an angle 6= 0 at x whih implies that k:x0 = g:x0. Byindution there is Dirihlet neighbors hain from x0 to k:x0. Moreover, dk�1g =d(k:x0; g:x0) < d(k:x0; x) + d(x; g:x0) = dg sine otherwise the pieewise minimalgeodesi from k:x0 via x to g:x0 would be a minimal geodesi and thus k:x0 = x0.By indution again there is a Dirihlet neighbor hain from k:x0 to g:x0 whihtogether with the �rst hain gives a hain from x0 to g:x0, as required. �2.6. Reetions. Let (M;) be a onneted omplete Riemannian manifold. Areetion inM is an isometry s 2 Isom(M ) suh that for some �xed point x0 of s thetangent mapping Tx0s is a reetion in the Eulidean spae (Tx0M;x0), with repetto a hyperplane: For some vetor 0 6= Xx0 2 Tx0M we have Tx0s:Xx0 = �Xx0 ,whereas Tx0sjX?x0 = Id.Lemma. Let s be a reetion on a omplete onneted Riemannian manifold M .Then we have:(1) Every onneted omponent N of the �xed point set M s is a totally geo-desi submanifold, and for eah x 2 N the tangent mapping Txs equals theidentity on TxN and � Id on TxN?.(2) Every onneted omponent N of M s determines s ompletely as follows:For y 2 M there exists x 2 N suh that d(y; x) = dist(y;N ). Let t 7!exp(t:Yx) be a minimal geodesi whih reahes y at t = 1. Then s(y) =exp(�Yx).



REFLECTION GROUPS ON RIEMANNIAN MANIFOLDS 7(3) At least one onneted omponent of M s is of odimension 1. Any suhomponent is alled a reetion hypersurfae for s.(4) For any y 2M nM s we have M s � Hy;s:y.Proof. (1) Let x0 2 M s be a point suh that Tx0s is a Eulidean reetion.Then Tx0s Æ Tx0s = IdTx0M , thus s is also an involution. Consequently Txs is anEulidean involution for eah �xed point x, thus it is diagonalizable with eigenvalues+1 on the eigenspae TxN and eigenvalue �1 on the eigenspae TxN? where N isthe onneted omponent N of M s ontaining x.(2) Note that Yx 2 TxN? and that s(exp(t:Yx)) = exp(t:Txs:Yx) = exp(�t:Yx).(3) The onneted omponent of M s ontaining x0 is of odimension 1.(4) For x 2M s let  be a minimal geodesi from x to y. Then s Æ  is a minimalgeodesi from s:x = x to s:y. Thus d(x; y) = d(x; s:y). �An example of a reetion s whih is generated by two di�erent reetion hy-persurfaes H;H 0: Let M = S1, H = f1g, H 0 = f�1g, and let s be omplexonjugation. Another 2-dimensional example with three reeting hypersurfaes isdrawn in �g. 2. The 2-dimensional example in �g. 2 also shows that two di�erentPSfrag replaements 1�1Figure 2. Reetions generated by di�erent reetion hypersurfaes.reetion hypersurfaes H;H 0 for the same reetion s need not be parallel, i.e.,dist(x;H 0) is not onstant in x 2 H.In [30℄ one �nds the following theorem: If an irreduible Riemannian symmetrispae M of nonompat type admits an involutory isometry whose �xed point sethas odimension one, then M is a real hyperboli spae. This extends a result ofIwahori [20℄ onerning irreduible Riemannian symmetri spaes of ompat type;however, the proofs of these two results are substantially di�erent.2.7. Diseting reetions. An isometry s 2 Isom(M ) is alled diseting if theomplement of the �xed point set M s is not onneted.Lemma.(1) A diseting isometry s is a reetion.(2) For a diseting reetion s the �xed point set M s disets M into exatly 2piees. The reetion s permutes these two piees.(3) For a diseting reetion s the �xed point set M s is a disjoint union ofodimension 1 submanifolds.(4) For a diseting reetion s and any y 2M nM s we have M s = Hy;s:y.Proof. (1) Sine M nM s is not empty and disonneted, the �xed point set M swhih is a disjoint union of losed totally geodesi submanifolds ontains at leastone onneted omponent of odimesion 1. For any x in a odimension 1 omponent



8 ALEKSEEVSKI, KRIEGL, LOSIK, MICHORH the tangent mapping Txs equals IdTxH on TxH and is a nontrivial isometry onthe 1-dimensional subspae TxH?, thus equals multipliation by �1 there.(2) Let x0 2 M nM s. By (2.6.4) we have M s � Hx0;s:x0. By (2.3.2) for thegroup fId; sg, removing the set Hx0;s:x0 deomposes M into exatly two onnetedpiees. Thus the subset M s � Hx0;s:x0 annot deompose it into more than twopiees.(3) The unionM s1 of all odimension 1 onneted omponents ofM s also disetsM into two onneted omponents, sine removing also the omponents of higherodimension does not hange onnetedness any more. Let N be a onnetedomponent of odimension � 2 of M s. Then N is ontained in one omponent ofM nM s1 and s thus has to map it into the other omponent, by (2). Thus N isempty.(4) By (2.6.4) we have M s � Hy;s:y. Let z 2 Hy;s:y. If z =2 M s then z ands(z) lie in di�erent omponents of M nM s. Let 1 be a minimal geodesi from yto z, and let 2 be a minimal geodesi (of the same length) from s(y) to z. Thenthe broken geodesi 1�12 from y to s(y) has to meet M s in some point x 2 M ssine y and s(y) lie in di�erent omponents of M nM s. If x is an inner point on2, say, then the broken geodesi following s(2) from y to s(x) = x and then 2from x to z has the same length as 2 and hene 1. It has an angle at x (otherwisez = s(z) and we are done), thus there is a geodesi from y to z shorter than 1, aontradition. �2.8. Theorem. Let M be a simply onneted omplete Riemannian manifold.Then any reetion � on M is diseting, and its �xed point setM� is a onnetedorientable totally geodesi losed hypersurfae.Proof. Let x 2 M nM� and let H be a onneted omponent of M� of odi-mension 1. Choose a minimal geodesi + from x to H. It hits H orthogonally byminimality, and thus we may ontinue it by � = �:+ to obtain a geodesi 0 fromx to �(x) whih hits H in exatly one point.Suppose that M nH is onneted. Then there exists a smooth urve 1 from xto �(x) in M nH. Sine M is simply onneted, there exists a smooth homotopyh : [0; 1℄� [0; 1℄!M with h(0; s) = x, h(1; s) = �:x, h(t; 0) = 0(t), and h(t; 1) =1(t). We an also assume that h is transversal to H. But then h�1(H) is alosed 1-dimensional submanifold in [0; 1℄2 whih hits the boundary exatly onein [0; 1℄� f0g and never in f0g � [0; 1℄ or f1g� [0; 1℄. So the onneted omponenthitting one must hit again in [0; 1℄� f1g. Thus 1 hits H, a ontradition.Thus M n H is not onneted, and H uts M into two omponents, M+ andM�. Moreover, M� = H sine � interhanges M+ and M�. �2.9. Reetion groups and hambers. Let G � Isom(M ) be a disrete sub-group of isometries of a onneted omplete Riemannian manifold M whih isgenerated by all reetions ontained in G. We shall all any suh group G a ree-tion group of M . By a (Weyl) hamber we mean the losure in M of a onnetedomponent of the (open) omplement of the union of all reetion hypersurfaes ofall reetions in G. By an open (Weyl) hamber we mean the open interior Co of aWeyl hamber C. For a hamber C a wall is a onneted omponent of C \M s fora reetion s if it ontains a non-empty open subset of M s of odimension 1 in M .Two walls Fi; Fj are alled neighbours is the intersetion Fi \ Fj has a onnetedomponent of odimension 2.



REFLECTION GROUPS ON RIEMANNIAN MANIFOLDS 9Lemma. For a hamber C and any regular point x0 2 Co the Dirihlet domainD(x0) is ontained in C. Thus C is a union of Dirihlet domains of the formD(g:x0), for all g 2 NG(C).Moreover, G ats transitively on the set of all hambers.Proof. Sine the set Mreg of regular points is open and dense in M , we mayhoose a regular x0 2 C. We laim that C � D(x0).For x 2M onsider a minimal geodesi  from x0 = (0) to x = (1). If  hits areetion hypersurfae H in (t) for t < 1, we may onsider the minimal geodesifrom x0 to (t), followed by the minimal geodesi from (t) to sH (x), whih is abroken geodesi from x0 to sH (x) of length d(x0; (t))+d((t); sH(x)) = d(x0; (t))+d((t); x) = d(x0; x). Sine it has a proper angle at (t), a minimal geodesi from x0to sH (x) has length d(x0; sH(x)) < d(x0; x). Thus we see: Whenever the minimalgeodesi from x0 to a point x hits a reetion hypersurfae H in an intermediatepoint, d(x0; sH(x)) < d(x0; x).Now let y 2 D(x0). Then d(x0; y) = dist(x0; G:y). By the statement above, anyminimal geodesi from x0 to y an hit a reetion hypersurfae at most in y. Thusy 2 C.That G ats transitively on the set of all hambers follows from (2.3). �2.10. Examples of non-diseting reetions. We onsider the real projetiveplane RP2, with the metri indued from S2, and a reetion s = sH on one lineH in it. Look at �g. 3 where the line at in�nity L is hosen orthogonal to H sothat L is invariant under s. On the line L one still has to identify antipodially.The �xed point set of s onsists of H and the single point x on L farthest fromH. There is only one hamber C = RP2n (H [ fxg) whih is a puntured disk andis dense in RP2. But there are two Dirihlet domains D(z) and D(sz) dependingon z whih for z on the line through x othogonal to L meet in H [ L. As anotherPSfrag replaements L Hx xsFigure 3. A reetion on RP2.example, onsider M = SO(3) = RP3 with the biinvariant metri. Then g 7! g�1is a non-diseting reetion whose �xed point set is the disjoint union of feg andsome RP2. This reetion generates a Coxeter group.2.11. Theorem. LetM be a omplete Riemannian manifold and let G � Isom(M )be a disrete group of isometries whih is generated by all its reetions. Let C bea Weyl hamber in M for G. Let F1; F2; : : : be the walls of C and let si be thereetion with respet to the wall Fi.Then the reetions s1; s2; : : : generate G, and they satisfy the following rela-tions:(1) (si)2 = 1



10 ALEKSEEVSKI, KRIEGL, LOSIK, MICHOR(2) If two walls Fi; Fj are neighbors then (sisj)nij = 1 for some natural numbernij.See �g. 4 for a Weyl hamber in the Poinar�e upper halfplane with in�nitelymany walls.
Figure 4.A Weyl hamber in the Poinar�e upper halfplane with in�nitely many walls.Proof. We prove that the reetions s1; s2; : : : generate G. Let C 0 be anyother Weyl hamber in M . Then we hoose a smooth urve  : [0; 1℄ ! M froma regular point x0 2 C to a regular point x0 2 C 0 whih hanges Weyl hambersonly transversally through open interiors of walls. First the urve passes from Cthrough the interior of a wall Fi1 to a neighbor si1 (C), and then through a wall Fof this hamber to the next. For the reetion sF in F we have sF = si1 :si2 :si1 forsome wall Fi2 of C. If we now follow the urve  through all interiors of walls wesee that C 0 is of the form C 0 = g(C) for g in the subgroup generated by s1; : : : ; sl.Any reetion in G is of the form sF for some wall of some hamber C 0. But thenthe argument above shows that sF = g:sik :g�1, so G is generated by s1; s2; : : : aslaimed.Relations (1) and (2) follow, sine if x is an interior point of the fae f =Fi \Fj (i.e., there are no other walls through x) then the stabilizer Gx is faithfullyand orthogonally represented in the two-dimensional spae Tx(f)?, and any �nitesubgroup of O(2) whih ontains a reetion is a dihedral group. �2.12. Remark. In the setting of theorem (2.11) there might be more relationsthan spei�ed in (2.11.1) and (2.11.2), see �g. 5. The left part of �g. 5 is a at 2-PSfrag replaements s1 s1 s2s2s3 s3s4s4 C CFigure 5. 2-tori with Z42 and Z22 as reetion groups.torus with a hamber C spei�ed, with reetions s1, s2, s3, s4 and angular relations



REFLECTION GROUPS ON RIEMANNIAN MANIFOLDS 11(sisi+1)2 = 1 for i = 1; : : : ; 4 mod (4) as deribed in (2.11.2). But moreover therelations (s2s4)2 = 1 and (s1s3)2 = 1 hold whih are not desribed by (2.11.2).In right hand part of �g. 5 we even have s1 = s3 and s2 = s4.2.13. Lifting reetion groups to the universal overing. Let � : ~M !M bethe universal overing of a Riemannian manifoldM with a reetion group G, andlet �1(M ) = � � Isom( ~M ) be the group of dek transformations of �. Any isometryof M an be lifted to an isometry of ~M . A lift ~s of a reetion s in G is a reetionon ~M if and only if it has a �xed point ~x 2 ~M with �(~x) in a reetion hypersurfaeof s in M . The group ~G generated by all reetions whih are lifts of reetions inG, is a reetion group in ~M whih is normalized by � in Isom( ~M ). Then ~G� isthe group of all lifts of transformations in G, and G = ( ~G�)=� = ~G=( ~G \ �). If ~Cis a hamber for ~G in ~M then �( ~C) is a hamber for G in M , sine the union of allreetions hypersurfaes of ~G equals the inverse image under � of the union of allreetion hypersurfaes of G.Let s be a reetion in G, and let ~s be a reetion overing s in ~G. Aordingto (2.8) eah reetion ~s in ~G is diseting, ~M ~s is one reetion hypersurfae, and~M n ~M ~s onsists of exatly two onneted omponents ~M ~s+ and ~M ~s�.If G is generated by diseting reetions then G ats simply transitively on theset of all hambers, see (3.5) below. The onverse is not true, even if G is a Coxetergroup, see �g. 7 in (2.15).Suppose that one (equivalently any) hamber is simply onneted. Then G atssimply transitively on the set of all hambers if and only if � � ~G. To see this,note that the universal over � : ~M ! M restrits to a di�eomorphism for eahhamber ~C in ~M onto a hamber C = �( ~C) in M . If � ontains a nontrivial dektransformation , then for a hamber ~C overing C the set ( ~C) is another hamberovering C. By (2.10) and (3.5) there exists a unique ~g 2 ~G with ~g( ~C) = ( ~C).But then ~g =  if and only if ~g overs IdM in G.2.14. Proposition. Let G be a reetion group on a simply onneted ompleteRiemannian manifold M . Then eah hamber C is simply onneted.Proof. Suppose for ontradition that some hamber C is not simply onneted:Let  : [0; 1℄! C be a losed smooth urve through a regular point x0 2 C whihis not ontratible to the onstant urve through x0 in C with �xed ends at x0.Sine M is simply onneted there exists a smooth homotopy h : [0; 1℄� [0; 1℄!M with h(0; t) = (t), h(s; 0) = x0, h(s; 1) = x0, and h(1; t) = x0. We may assumethat h is transversal to eah reetion hypersurfae and to eah intersetion of suhhypersurfaes, sine these form a loally �nite family by the disreteness of G. Thusfor eah intersetion hypersurfae Hi the set h�1(Hi) is a 1 dimensional embeddedsubmanifold of [0; 1℄2 whih does not meet the boundary, so it is a disjoint set ofembedded irles in C whih may touh only the bottom boundary f0g � [0; 1℄.Moreover, the sets h�1(Hi) are all pairwise transversal 1-dimensional submanifoldsin (0; 1)2, or empty, sine this is the ase for the (geodesially losed) Hi inM . Fig.6 is an illustration. See [25℄, setion 6, for transversality theorems on manifoldswith orners. Now h0 =  is ompletely ontained in � and we onsider the urvehs = hj(fsg� [0; 1℄) for s moving from 0 to 1. So we move fsg� [0; 1℄ upwards inside[0; 1℄2. If this line hits h�1(Hi) we start reeting bak into C the point hs(t) forthose t whih lie inside h�1(Hi). If we meet another h�1(Hj) we add the reetionsHj at the right, et. Sine the di�erent h�1(Hi) are transversal to eah other



12 ALEKSEEVSKI, KRIEGL, LOSIK, MICHORPSfrag replaementss tFigure 6. The sets h�1(Hi) in [0; 1℄2.this is wellde�ned, in partiular at s = 0, where the sets (f0g � [0; 1℄) \ h�1(Hi)are disjoint by transversality. This proeedure transforms the smooth homotopyh : [0; 1℄2 !M to a ontinuous homotopy �h : [0; 1℄2 ! C whih ontrats  to x0.Thus C is simply onneted whih ontradits our assumption. �2.15. Maximal torus of a ompat Lie group as manifold with reetions.Let G be a semisimple ompat Lie group with Lie algebra g0 and let T be a maximaltorus in G. The Lie subalgebra t0 to T is then a Cartan subalgebra. Let � � t�be the set of roots where t = t0 
 C is the omplexi�ation of t0 and where t� isthe dual spae of t. Eah root is purely imaginary on t0. We have the followinginlusion of latties in t�:Z�� �anal � �alg; whereZ� is the root lattie, generated by �,�anal is the lattie of analytially integral forms � 2 L(t0; iR); they are hara-terized by the following property: whenever H 2 t0 satis�es exp(H) = 1then �(H) 2 2�iZ; equivalently: there exists a multipliative harater�� : T ! S1 suh that e�(H) = ��(exp(H)) for all H 2 t0.�alg is the weight lattie onsisting of all � 2 L(t0; iR) suh that that 2h�; �i=j�j2 2Zfor all roots � 2 �.Now exp : t0 ! T indues an isomorphism t0=��anal = T , where ��anal is the duallattie fX 2 t0 : �(X) 2 Zfor all � 2 �analg. Reall that G has trivial enter ifand only if �anal = Z�, that G is simply onneted if and only if �anal = �alg,that in general �anal=Z� is the enter of G, and that the order of �alg=Z� equalsthe determinant of the Cartan matrix of g. The reetions on T are indued bythe reetions in the Weyl group in t0; to visualize it we onsider the reetionshyperplanes and the lattie ��anal whih onsists of vetors orthogonal to the ree-tion hyperplanes. Then we onsider a standard fundamental domain of the additiveation of ��anal. We see that for Ak1 = SU (2)k all reetions in T are diseting, butthat for semisimple nonabelian G we always get nondiseting reetions.See �g. 7 for an example: It shows for A2 = SU (3) the Cartan algebra t0 as theuniversal overing of T with the reetion hyperplanes (bold) for W o ��anal, thelattie ��anal, and the fundamental domain (dashed). The reetions on T are notdiseting, and the reetion group ats freely on the set of hambers in T , whihare numbered.



REFLECTION GROUPS ON RIEMANNIAN MANIFOLDS 13PSfrag replaements 11 2 23 44 5 56Figure 7. t0 as universal overing of T for A2 = SU (3).3. Coxeter Riemannian manifolds3.1. Coxeter groups. [4℄ Reall that a Coxeter group is a group G whih is aquotient of a free group G(S) with a set S of generators by the subgroup generatedby the relations s2 = 1 and (ss0)ns;s0 = 1 for all s; s0 2 S, where ns;s0 2 f1; 2; : : :;1gindiates the order of ss0 in G.The set S is alled a set of standard generators of G, and (G;S) is alled aCoxeter system for G. Any subset S0 � S generates a subgroup G(S0) � G suhthat (G(S0); S0) is again a Coxeter system. G(S0) is alled a Coxeter subgroup. Theset of all Coxeter subgroups is a partially ordered set with respet to inlusion. ACoxeter system is desribed by a Coxeter diagram with verties orresponding tothe elements of S, where s and s0 are onneted by ns;s0 � 2 edges if (ss0)nss0 = 1and 1 < nss0 < 1. The Coxeter diagram of a Coxeter subgroup (G(S0); S0) forS0 � S is obtained from the Coxeter diagram of (G;S) by deleting all verties inS n S0 and all edges leading to suh verties.The length `(g) of an element g 2 G is the minimum number l suh that g =si1 : : : sil for sik 2 S. It satis�es `(gg0) � `(g) + `(g0), `(g�1) = `(g), and j`(g0) �`(g)j � `(g0g�1).In a Coxeter group (G;S) let P+s := fg 2 G : `(sg) > `(g)g and P�s := sP+s .Then we have [4℄, iv, 1, 7:(1) Ts2S P+s = feg.(2) G = P+s t P�s (disjoint union) for eah s 2 S.(3) Let s; s0 2 S and g 2 G. If g 2 P+s and gs0 =2 P+s then s = gs0g�1.Conversely, let G be a group with a generating set S of idempotents. Let (Ps)s2Sbe a family of subset of G whih satis�es(4) e 2 Ps for all s 2 S.(5) Ps \ sPs = ; for all s 2 S.(6) Let s; s0 2 S and g 2 G. If g 2 Ps and gs0 =2 Ps then s = gs0g�1.Then (G;S) is a Coxeter system and Ps = P+s .3.2. Riemannian Coxeter manifold. Let G � Isom(M ) be a disrete subgroupof isometries of a omplete RiemannianmanifoldM whih is generated by disetingreetions. Then (M;G) is alled a Riemannian Coxeter manifold.



14 ALEKSEEVSKI, KRIEGL, LOSIK, MICHOR3.3. Coxeter manifolds of onstant urvature. We reall some lassial re-sults.Let (G;S) be a Coxeter system suh that G is a �nite group and let S =fs1; : : : ; sng. Then there exists a unique orthogonal representation of G as a linearreetion group on an Eulidean spae Rn suh that the si are reetions. The Weylhamber assoiated to S is a simpliial one with walls F1; : : : ; Fn suh that si isthe reetion in Fi. Then the angle �ij between Fi and Fj is given by �ij = �=nijwhere (sisj)nij = 1 and nij is minimal. In the following table we give the list of all�nite Coxeter systems whih are irreduible in the sense that they are not a diretprodut of two (ommuting) Coxeter subsystems.Al l � 1 s1� s2� � � � sl�Bl l � 2 s1� s2� � � � sl�1� sl�Dl l � 4 s1� s2� � � � � sl�2�� sl�1�� slE6 s1� s2� s3�� s4s5� s6�E7 s1� s2� s3� s4�� s5s6� s7�E8 s1� s2� s3� s4� s5�� s6 s7� s8�F4 s1� s2� s3� s4�Di(k + 2) k � 4 s1� k s2� G2 = Di(6)H3 m � 3 s1� 3 s2� s3�H4 m � 3 s1� 3 s2� s3� s4�If the Coxeter group has no dihedral group Di(k+2) as diret fator, then the anglebetween two walls may only take the values � = �=n for n = 2; 3; 4; 5; 6.Conversely any simpliial one with walls F1; : : : ; Fn having angles �ij = �=nijbetween Fi and Fj where ni;j 2 N, is the Weyl hamber of a uniquely given Coxetersystem with �nite Coxeter group, by [32℄, theorem 1. The Coxeter diagram of (G;S)ontains also all information about the Weyl hamber. The angle between the wallsFi and Fj is �ij = �=ni;j where nij�2 is the number of edges onneting the vertiessi and sj .If g 2 G preserves a odimension k fae (an intersetion of k walls) F = Fi1 \� � � \ Fik whih does not ontain a line through 0, then it it preserves it pointwise.Namely, g has a �xed point x in the interior of F sine F is onvex. By the lemmaof Chevalley, g is ontained in the Coxeter subgroup generated by all reetions si�xing x whih orrespond to all walls through x. Sine x is an inner point of F ,these walls also ontain F . Thus g �xes F pointwise.The angle in Fi1\� � �\Fik between Fi1\� � �\Fik\Fik+1 and Fi1\� � �\Fik\Fik+2 isin general not of the form �=n; nevertheless it is uniquely determined by the Coxetersystem.



REFLECTION GROUPS ON RIEMANNIAN MANIFOLDS 153.4. Example of Coxeter manifolds of non-onstant urvature. Let G bea linear reetion group on Rn.(1) Let S be the unit sphere of Rn. Then G ats on S and is generated byreetions. Choose a hamber C in Rn and a (n� 1)-ball B in C \ S. By surgeryone may glue any ompat (n � 1)-dimensional manifold M to �B and do thisin eah hamber via the transformations of the group G. Obviously one an alsoput a G-invariant Riemannian metri on the resulting manifold, whih then hasompliated topology but arries a �nite subgroup of the group of isometries whihis generated by diseting reetions.(2) Choose a hamber C in Rn and within C a regular point. Connet this pointby a smooth urve to some point in eah interior of eah wall of C. Distributingthis by G into all hambers of Rn yields a graph on whih G ats. Now replaeeah point in the walls by a S1 whih lies ompletely in the interior of the wall, andreplae the piee of the graph in the hamber C by a smooth ompat surfae whihall the S1's as boundary omponents, meeting the walls orthogonally. Distributethis to all hambers by the G-ation and obtain a smooth ompat surfae withindued Riemannian metri on whih G ats as a group of isometries generated byreetions.3.5. Theorem. Let (M;G) be a Riemannian Coxeter manifold. Then G is aCoxeter group and (G;S) is a Coxeter system for G, where S is the set of reetionswith respet to the walls of C. Moreover, G ats simply transitively on the set ofhambers.Proof. We follow arguments from [12℄. Let Q be a hamber. For a reetion swith respet to a wall F of Q we setPs := fg 2 G : gQ �M s+gwhere M s+ is the onneted omponet of M nM s whih ontains Q.Lemma. Ps = P+s =: fg 2 G : `(sg) > `(g)g:Proof. It is suÆent to hek the properties (3.1.4), (3.1.5), and (3.1.6). The�rst two properies are obvious. We hek (3.1.6). Let s; s0 be reetions withrespet to walls F; F 0 of the hamber Q and g 2 Ps but gs0 =2 Ps. The hambersQ; s0Q have a ommon wall W and the hambers gQ, gs0Q have a ommon wallgW . Sine they are on di�erent sides of the hypersurfae M s, the wall gW belongsto M s, see Fig. 8. Then s(gQ) = gs0Q and s0, g�1sg are two reetions whih mapPSfrag replaements s0QWQ ss0 gQgWgs0Q M sM s0 M s+M s� = sM s+Figure 8.Q to s0Q. Moreover W � M s0 , and gW � M s implies W � g�1M s = M g�1sg, sothat M s0 = M g�1sg. Thus s0 = g�1sg. sg = gs0. �



16 ALEKSEEVSKI, KRIEGL, LOSIK, MICHORNow the theorem follows from (3.1). Indeed, by (2.9) the group G ats tran-sitively on the set of hambers. Assume that gQ = Q for some g 2 G. Theng 2 Ts2S Ps = Ts2S P+si = 1 by property (3.1.1). �3.6. Corollary. A disrete group G of isometries on a Riemannian manifold Mgenerated by reetions is a quotient of a Coxeter group.Proof. This follows by (2.11), or by (2.13) and (3.5). �3.7. Question. Does there exist a disrete group of isometries whih is generatedby reetions but is not a Coxeter group? If so, an one haraterize those whihare Coxeter groups?3.8. Corollary. Let G be a reetion group on a omplete onneted Riemannianmanifold M suh that G ats freely and transitively on the set of all hambers, e.g.,a Coxeter manifold. Let C be a hamber. Then we have:(1) C is the Dirihlet domain assoiated with an interior point of C.(2) Eah hamber is onvex and its interior onsists of regular points.(3) Any entral hypersurfae Hx0;g:x0 of a regular point x0 and 1 6= g 2 G is areetion hypersurfae.(4) M reg = Sg2G gCo.(5) Let F1 and F2 be two walls of the hamber C suh that F1 = g:F2 for someg 2 G. Then F1 = F2.(6) The natural projetion � : M ! M=G indues a homeomorphism C !M=G.Proof. (1) By lemma (2.9) the hamber C is a union of Dirihlet domains;but by (3.5) G ats simply transitively on the set of hambers, thus C is just oneDirihlet domain, by (2.3).(2) By (1) and (2.3.2) eah hamber onsists of regular points. For onvexity wehave to show that any minimal geodesi ar between two points in C is ontainedin C. This follows from [2℄, 3.5.(3) By (1), the union of all open hambers equals the union of all open Dirihletdomains D(x) for all regular points x. Thus also their omplements in M are thesame: The union of all reetion hypersurfaes for G in M equals the union of allentral hypersurfaes with respet to some (eah) regular point. Thus the reetionhypersurfaes are exatly the entral hypersurfaes Hg:x0;g0:x0 .(4) If x 2 Hx0;g:x0 then by (3) the isotropy group of x is not trivial, so x is notregular. Thus by (2.3.2) we have Mreg = Sg2G g:Co.(5) Let F o1 be the open interior of F1 in some entral hypersurfae H. F1 isontained in the intersetion of exatly two hambers, namely F1 � C\h:C, whereh is the reetion in the hypersurfae H. Also F2 = g:F1 = g:C \ g:h:C, but one ofthe two hambers must be C. Thus g = h�1 is the reetion at H and so F1 = F2.(6) follows from (5) and from the fat that G ats simply transitively on the setof all hambers. �3.9. Let (M;G) be a onneted Riemannian Coxeter manifold and let C be a ham-ber. We denote by W the set of walls of C and by G(W ) the free group, generatedby involutive generators rF orresponding to all walls F 2 W . Sine G is gener-ated by reetions with respet to walls in W , there is a natural homomorphism



REFLECTION GROUPS ON RIEMANNIAN MANIFOLDS 17G(W ) ! G. We denote its kernel by R. We de�ne the normal subgroup Ra ofangular relations of G(W )as follows:Let Fi; Fj 2 W be neighboring walls with non empty intersetion fontaining a odimension 2 submanifold, and let Fi and Fj have an-gle �=n for a natural number n along some odimension 2 onnetedomponent of f , then (rFirFj )n is a generator of Ra in G(W ).We denote by Mi, i = 2; 3 the omplement in M of the union of odimension � iintersetions of reetion hypersurfaes. Note that these intersetions are totallygeodesi submanifolds as �xed point sets of �nitely many isometries.Theorem. In this situation, the group Ra of angular relations is a normal sub-group of the group R of all relations in G. Moreover, �1(M3; x0) = �1(M;x0) and�1(Co; x0) = �1(C; x0), and we have the following exat sequenes of groups:f1g ! �1(Co; x0) �e G(W )! �1(M2; x0)! G(W )! G! f1gf1g ! �1(C; x0) �e G(W )=Ra ! �1(M;x0)! G(W )=Ra ! G! f1gwhere for groups H and G the group H �e G is the kernel of the projetion pG :H �G! G from the free produt to G. In partiular,�1(M2; x0)=(�1(Co; x0) �e G(W )) = R;�1(M;x0)=(�1(C; x0) �e G(W )=Ra) = R=Ra:Proof. By (3.8.6) the omposition C !M ! M=G is a homeomorphism thus�1(C; x0)! �1(M;x0) is injetive. By restrition C \M2 !M2 !M2=G is also ahomeomorphism thus �1(C \M2; x0)! �1(M2; x0) is injetive. By (3.8.5) we have�1(Co; x0) = �1(C; x0) sine a losed urve in C may be deformed into Co.Any element in �1(M;x0) an be represented by a losed smooth urve  throughx0 in M whih we may assume to be transversal to all intersetions of walls. Bydimension,  lies in M2 and �rst meets a wall F1 of C transversally. Next it meetsa wall sF1 (F2) of sF1 (C) transversally. And so on until it omes bak to x0. Weassign to  the expression (word) rF1rF2 : : : rFk in G(W ). A homotopy moving  inM2 just allows anellations in this expression using r2F = 1. Replaing the rF inthis expression by the orresponding sF we get an element in the reetion groupG whih maps C to C and thus is the identity, by theorem (3.5).Let fi be a �xed urve from x0 to sFi(x0) 2 sFi (C) hitting Fi one transversally.Any expression rF1 : : : rFk in G(W ) whih maps to the identity in G, is assigned tothe losed urve in M2 whih �rst follows f1 from x0 to sF1 (x0), then sF1 Æ f2 fromsF1 (x0) to sF1sF2(x0), et., until it ends again in x0. Thus the sequene is exat atG(W ).A urve representing an element in �1(M2; x0) whih is transversal to walls anbe desribed, up to `transversal' homotopy, by a word 0rF11rF22 : : : rFkk where:� i 2 �1(sF1sF2 : : : sFi (Co); sF1sF2 : : : sFi (x0)) �= �1(Co; x0),� rFi stands for the urve sF1sF2 : : : sFi�1 (fi).� sF1sF2 : : : sFk = e in G sine the urve is losed.Thus the word desribes a unique element of the free produt �1(Co; x0) � G(W )whih is in the kernel of �1(Co; x0) �G(W )! G. The urve in �1(M2; x0) maps toe 2 G(W ) if and only if the word above also satis�es� rF1rF2 : : : rFk = e in G(W ).



18 ALEKSEEVSKI, KRIEGL, LOSIK, MICHORThese are the elements of �1(Co; x0) �e G(W ).So the �rst sequene is left exat, and surjetivity at G follows from (2.11).The seond exat sequene follows from the �rst one: any homotopy in M be-tween smooth urves in M2 may be assumed to be transversal to all intersetionsof reetion hypersurfaes of odimension � 2. Then it avoids all intersetion ofodimension � 3, so it lies in M3. Thus �1(M;x0) = �1(M3; x0). If the homo-topy meets an intersetion f = F1 \ F2 transversely, moving the urve through fmeans a anellation in the expression assigned to the urve whih is given by theorresponding generator (rF1rF2)n of Ra. �3.10. Theorem. Let (M;G) be a simply onneted Riemannian Coxeter manifoldand let C be a hamber. Then we have:(1) In terms of (3.9) we have Ra = R. In other words, the relations (2.11.1)and (2.11.2) generate all relations of the Coxeter system (G;S).(2) The stabilizer Gx of a point x 2 C is a �nite Coxeter group generated byreetions with respet to the walls Fi1 ; : : : ; Fik through x. Moreover, if Gxhas no fator isomorphi to the dihedral group D(m) for m = 5 or > 6, thenthe angles between two walls through x take values �=n for n = 2; 3; 4; 6.For linear Coxeter groups this result was proved by Vinberg [32℄.Proof. (1) This follows from �1(M;x0) = R=Ra from (3.9).(2) Let g = sF1 : : : sFj 2 Gx. Sine any h 2 G preserves the union of allreetion hypersurfaes, g permutes the set of reetion hypersurfaes through x.Thus g(f) = f where f is the onneted omponent of Fi1 \ � � �\Fik ontaining x.Then C \ gC � f .We shall use the method of proof of theorem (3.9). Now hoose a regular pointx0 2 C near x and a urve 1 in M2 from x0 to gx0 whih transverses the wallsFj, then sF1 (F2), et. Choose a seond smooth urve 2 in M2 from x0 to gx0 inM2 whih is near x so that it intersets only walls through x. Then we hoose ahomotopy in M between 1 and 2 whih we may assume to be transversal to allodimension � 2 intersetions of reetion hypersurfaes. Then it is in M3 anduts intersetions of two reetion hypersurfaes transversely. Moving 1 to 2 viathis homotopy amounts to do angular anellations (in Ra) in the representationof g. Thus g is represented also as a word in reetions in hypersurfaes through xaording to the transversing of 2 of the orresponding walls. �4. Riemannian manifolds with orners of Coxeter type4.1. Manifolds with orners. For more details see [25℄, setion 2. A quadrantQ � Rn of index k is a subset of the form Q = fx 2 Rn : l1(x) � 0; : : : ; lk(x) � 0gwhere l1; : : : ; lk are independent linear funtionals on Rn. If x 2 Q and exatly j ofthe li vanish on x then x is alled a orner of index j. For an open subset U � Qa mapping f : U ! Rp is alled Cr (0 � r � 1) if all partial derivatives of f oforder � r exist and are ontinuous on U . By the Whitney extension theorem thisis the ase if and only if f an be extended to a Cr funtion ~f : ~U ! Rp, where~U � Rn is open and U = ~U \Q. If f : U ! U 0 is a di�eomorphism between opensubsets of quadrants in Rn then the index of x 2 U equals the index of f(x) 2 U 0.A smooth manifold with orners M is de�ned in the usual way: it is modelled onopen subsets of quadrants in Rn; a hart on M is a di�eomorphism u : U ! u(U )from an open subset U �M onto an open subset u(U ) of a quadrant in Rn, where



REFLECTION GROUPS ON RIEMANNIAN MANIFOLDS 19n = dim(M ). The hart (U; u;Q) is alled entered on x if u(x) = 0. A pointx 2 M is alled a orner of index j if there is a hart (U; u;Q) of M with x 2 Uand and u(x) a orner of index j in Q.A subset N � M is alled a submanifold with orners of the manifold withorners M , if for any y 2 N there is a hart (U; u;Q) of M entered at y and thereis a quadrant Q0 � Rk � Rn suh that Q0 � Q and u(N \ U ) = u(U ) \ Q0. Asubmanifold with orners N of M is alled neat if the index in N of eah y 2 Noinides with its index in M . Only neat submanfolds have tubular neigborhoods.Let us denote by �jM the set of all orners of index j ofM . Note that �0M = M .Then eah �jM is a submanifold without boundary of M . Let �M := Sj�1 �jM .Eah losure (in M ) of a onneted omponent of �jM is a submanifold withornes of M whih is alled a odimension j fae of M ; it is of dimension n� j. Aodimension 1 fae is also alled a wall. A fae is not neat. The set of all faes is apartially ordered set with respet to inlusion.The tangent bundle of a manifold with orners M is onstruted in the follow-ing way: Let (U�; u�; Q�) be an atlas of M . Then TM is the quotient spae ofthe disjoint union F�(f�g � U� � Rn)= � by the following equivalene relation:(�; x; v) � (�; y; w) if x = y and d(u� Æ u�1� )(u�(x))v = w. Then �M : TM !M isa smooth vetor bundle, and the total spae TM is again a manifold with orners:the orners are all in the base.A tangent vetor X is alled inner (short for: not outer) if there is a smoothurve  : [0; 1) ! M with _(0) = X. If X 2 TxM and if (U; u;Q) is a hartwith x 2 U , and if the quadrant Q is given by the independent linear funtionalsl1; : : : ; lk, and if Tu(X) = (u(x); v) 2 u(U )�Rn, then X is inner if and only if thefollowing holds: If li(u(x)) = 0 then li(v) � 0, for all i. Let us all the tangentvetor stritly inner if li(u(x)) = 0 implies li(v) > 0, for all i. Let us denote thespae of all inner vetors by iTM � TM . It is not a manifold with orners anymore. For example, iT [0;1) = f(x; v) : x � 0; x = 0 =) v � 0g.An inner vetor �eld on M is a smooth vetor �eld X :M ! TM whose valuesare all inner tangent vetors. By pasting loal solutions one an show that thereexists a smooth open semiow ofX in the following sense: There is a setW � R�Montaining f0g�M and [0; "x)�fxg for some "x > 0 for eah x 2M and a smoothmapping FlX : W !M with FlX0 (x) = x and ddt FlXt (x) = X(FlXt (x)). But FlXt isnot even a loal di�eomorphism (it may map a orner to an interior point).By a partition of unity argument one an show that there exists a smooth vetor�eld Y on M whih is stritly inner, and one may adapt it in suh a way that itsow FlYt is de�ned everywhere on M for 0 � t � " for " > 0. Then FlY" maps Minto its interior M n �M . Thus: Eah manifold with orners M is a submanifoldwith orners of a manifold without boundary of the same dimension. See also [18℄.Let X be a vetor �eld on M whih is tangential to the boundary: if x 2 �jMthen X(x) 2 Tx�jM for all j. Then there exists a loal ow for X for positive andfor negative time; the set W � R�M is open.4.2. Equipment of a manifold with orners. Let M be an n-dimensionalmanifold with orners. Consider a surjetive mapping s from the set W of all walls(odimension 1 faes) of M onto the set of generators S of a Coxeter system (G;S)(see (3.1)). Any fae f of M of odimension k is the intersetion of k many wallsW1; : : :Wk (but not onversely). Then we extend the map s to a map s from the



20 ALEKSEEVSKI, KRIEGL, LOSIK, MICHORset of faes of M into the set of Coxeter subgroups of G as follows :s : f = F1 \ :::\Fk 7! s(f) = G(s(F1); :::s(Fk))where G(s(F1); :::s(Fk) is the subgroup of G generated by s(F1); :::s(Fk).The mapping s is alled a Coxeter equipment ofM by the Coxeter system (G;S),if G(F ) is a �nite group for eah fae of odimension � 1. It follows that s is anpartial order reversing homomorphism of the poset of all faes of M into the posetof all Coxeter subgroups of the Coxeter system (G;S) if we also put s(;) = G. Notethat s(M ) = f1g.4.3. Riemannian manifolds with orners. A Riemannian metri on a man-ifold with orners M is as usual a smooth setion  : M ! S2+T �M . So it anbe smoothly extended to a Riemannian metri on a manifold without boundaryof the same dimension whih ontains M as a submanifold with orners. If theRiemannian metri has the property that eah losure of a fae is a totally geo-desi submanifold, then for eah eah inner tangent vetor Xx 2 iTxM the geodesit 7! expx(tXx) is de�ned for small nonnegative t.This an be expressed by the property of the geodesi spray to be `inner' and`tangential' to all boundary strata �jM , see [25℄, setion 2. In detail: A vetor� 2 TTM is alled an inner tangent vetor to iTM if there exists a smooth urve : [0; ")! TM with �TM(�) = (0), ([0; ")) � iTM , and 0(0) = �. For example,let Q = fx 2 Rn : l1(x) � 0; : : : ; lk(x) � 0g be a quadrant and let (x; u) 2 iTQ. Avetor (x; u; v; w) 2 T 2Q then is inner to iTM if and only if:(1) If x is inner, so u is arbitrary, then (v; w) is arbitrary.(2) If li(x) = 0 and li(u) > 0 then li(v) � 0 and w is arbitrary.(3) If li(x) = 0 and li(u) = 0 then li(v) � 0 and li(w) � 0.Let us denote by iT 2M the set of all vetors whih are inner to iTM . A spray Son the manifold with orners M is a smooth mapping S : TM ! T 2M suh that(4) T (�M ) Æ S = IdTM .(5) �TM Æ S = IdTM .(6) T (mt):S(X) = 1tS(t:X) for 0 6= t 2 R, where mt : TM ! TM is salarmultipliation by t.The spray is alled inner if S(iTM ) � iT 2M and it is alled tangential if moreoverS is tantent to eah boundary stratum: S(T�jM ) � T 2(�jM ).If  is a smooth Riemannian metri on the manifold with orners M , then wemay extend  to a Riemannianmetri ~ on a suitable open manifold ~M of the samedimension whih ontains M as submanifold with boundary. We may ompute thegeodesi (Levi-Civita) spray ~S of ~ and restrit it again to TM . This spray isan inner tangential spray if and only if in (M;) all losures of faes are totallygeodesi submanifolds, and we have exp = �M Æ FlS1 .Thus we onlude (see also [25℄, 2.10):Lemma. [25℄, 2.10 Let  be a Riemannian metri on a manifold with orners Msuh that all faes are totally geodesi. Then there exists a suitable open neigh-borhood V of the zero setion in T iM suh that the geodesi exponential mappingexp : V !M is de�ned. If V is small enough then exp has the following properties:(1) exp(0x) = x for all x 2M .(2) expx : Vx := V \ T ixM ! M is a di�eomorphism of Vx onto an openneighborhood Wx of x in M .



REFLECTION GROUPS ON RIEMANNIAN MANIFOLDS 21(3) Vx is the intersetion of an open ball Bx � (TxM;x) with a quadrantQx � TxM .(4) The mapping (�M ; exp) : V ! M �M is a di�eomorphism onto an openneighborhood of the diagonal in M �M .(5) exp restrits to the exponential mapping of the indued Riemannian metrion eah losure of a fae.4.4. Riemannian hambers and their Coxeter equipment. An Riemannianhamber is a manifold with orners C with a Riemannian metri  suh that eahfae is totally geodesi and suh that the following two onditions (1) and (2) aresatis�ed.(1) The angle between neighboring walls Wi and Wj is a onstant of the form�=nij for nij 2 N along any odimension 2 onneted omponent ofWi\Wj .Let V � T iC be small as in (4.3). Then expx : Vx = V \ T ixC ! Wx � C is adi�eomorphism. Reall from (4.3) that Vx is the intersetion of an open ball Bx in(TxC; x) with a quadrant Qx whose walls ontain the inverse images under expx ofthe losed walls of C ontaining x. The angles between the hyperplanes TxWi andTxWj in the Eulidean spae (TxC; x) are exatly �=nij, by (1). By [32℄, theorem1, this equivalent to the fat that the group Gx � O(TxC; gx) generated by thereetions in the hyperplanes TxWi is a �nite Coxeter group with fundamentalWeyl hamber R�0:Vx.Consider the pullbak Riemannian metri (expx jVx)� on Vx. Now we an for-mulate the seond ondition:(2) If we extend the Riemannian metri (expx jVx)� on Vx to the ball Bx =Gx:Vx by using the elements of Gx as isometries, then the resulting Gx-invariant Riemannian metri ~Bx on Bx is smooth.If G is a disrete group of isometries of a omplete Riemannian manifold (M;)whih is generated by diseting reetions, and if a hamber C is also a Dirihletdomain, then obviously (C; ) is a Riemannian hamber.Proposition. Any Riemannian hamber C arries a universal Coxeter equipment.Proof. Let fWig be the set of all walls of C. For eah wall Wi of C wetake a generator si. Then let G be the group generated by all si, with relations(sisj)nij = 1, whenever Wi \Wj 6= ; and where the angle between Wi and Wj is�=nij. Then G is a Coxeter group with Coxeter system (G; fsig). For eah x 2 Cwe onstruted in (4.4) a linear Coxeter group Gx � O(TxC; gx) whih is generatedby those si for whih x 2 Wi. Obviously, Gx is a �nite subgroup of G. Moreover,let F =W1\ : : :Wk be a nonempty fae. Then G(F ) is generated by the reetionss1; : : : ; sk whih satisfy pairwise (sisj)nij = 1 for 2 � nij <1. Thus G(F ) is �nitefor eah nonempty fae. �The Coxeter equipment onstruted in this proposition is alled universal sinethe mapping s is injetive. Other Coxeter equipments are possible, if di�erent wallsare mapped to the same generator in suh a way, that the isotropy group of eahfae F stay isomorphi to G(F ) as above, and the full group is still a Coxeter group.Thus we say that a Coxeter equipment s of the Riemannian hamber C is ad-missible, if for any two di�erent walls Wi and Wj with nonempty intersetion theelement s(Wi)s(Wj ) has order exatly nij in G, where the angle between Wi and



22 ALEKSEEVSKI, KRIEGL, LOSIK, MICHORWj is �=nij. The right hand side of �g. 2 gives an example of a not universalequipment.4.5. The Coxeter Riemannian manifolds assoiated with a Riemannianhamber. Note that by (2.11) and (3.9) the Weyl hamber C of a Coxeter G-manifoldM has the natural struture of a Riemannian hamber with the admissibleequipment s : F 7! s(F ) = hs 2 S : M s � F i. In the non-diseting ase this is nottrue: In (2.10) the hamber of the non-diseting reetion on RP2 equals RP2 andthe generating reetion is not assoiated to a wall sine RP2 has no boundary.For Coxeter manifolds the onverse statement is also true as the following theo-rem shows.Theorem. Let C be a Riemannian hamber.Then to eah admissible Coxeter equipment G of C there exists a smooth Rie-mannian manifold U(G;C) without boundary and a disrete subgroup G of isome-tries whih is generated by reetions suh that C is isometri to a hamber of Mwhih is also a Dirihlet domain.If C is onneted then also M is onneted. If the equipment G = Guniv isthe universal one then G is generated by diseting reetions and �1(U(G;C)) =�1(C) �e Guniv. In general we have an exat sequene:f1g ! �1(C) �e Guniv ! �1(U(G;C))! Guniv ! G! f1g:Proof. We use �rst the universal equipment. Let fFig be the set of all losuresof walls of C. We onstrut �rst the group G, as follows. For eah wall Fi of Cwe take a generator si of G. Then G = Guniv is the group generated by all si andwith relations (sisj)nij = 1, when Fi \ Fj 6= ; and where the angle between Fiand Fj is �=nij. For eah x 2 C we onstruted in (4.4) a linear Coxeter groupGx � O(TxC; gx) whih is generated by those si for whih x 2 Fi. Obviously, Gxis a subgroup of G.Now we onstrut M = U(G;C) as topologial spae by putting U(G;C) :=G�C= � where(g:si; x) � (g; si(x)) = (g; x) for x 2 Fi; or equivalently(g; x) � (h; y)() x = y and g�1h 2 Gx:So U(G;C) is a quotient of the disjoint union of jGj opies of C whih are gluedtogether only along walls.We onstrut an atlas for U(G;C) as follows, using the arguments from (4.4).For a orner x of C onsider the Riemannian metri ~Bx on the open ball Bx � TxCwhih is smooth by ondition (4.4.2), and the smooth exponential mapping expx :Vx = Bx \Qx !Wx � C. We extend it to a Gx-equivariant homeomorphism ~expxfrom Bx to the open neighborhood Ux = Sg2Gx (fgg �Wx) of x in M by putting~expx(g:X) = (g; expx(X)) for X 2 Vx and g 2 Gx. Then (Ux; ux := ~expx�1 : Ux !Bx 2 TxC) is a hart on M .If x 2 C is a regular point we use the inverse of the exponential mapping on suha small neigborhood of 0 in TxC that its image does not meet any wall. These hartswe the distribute fromC = fIdg�C to the whole ofM by using the transformationsfrom g.We laim that this gives a smooth atlas for U(G;C): Suppose that x and y areorners of C suh that Wx \Wy 6= ;. We have to show that ux Æ u�1y is smooth.



REFLECTION GROUPS ON RIEMANNIAN MANIFOLDS 23We may assume that y 2 Wx sine we may onnet x and y by �nitely manyhart hangings with this property. But then this is a hart hange of exponentialmappings at di�erent base points of the smooth Riemannian metri in Bx � TxC.Finally, G ats on the smooth manifold U(G;C) by onstrution: g:(g1; x) =(gg1; x), and it onsists of isometries. By onstrution G ats freely and transitivelyon the set of all hambers of U(C;G). We laim that the generators si of G arediseting. Suppose for ontradition that a generator s is not diseting. Chooseregular point x0 2 Co and a smooth urve  in U(C;G) n U(C;G)s from x0 to s:x0whih is transversal to all intersetions of reetion hypersurfaes. Then  passesfrom C to a neighbor si1C, then to a neighbor si1si2C of si1C, and so on, till itreahes the hamber si1 : : : sikC = sC ontaining s:x0. None of the sij equals ssine  does not meet U(C;G)s. Sine G ats freely and transitively on the set ofhambers we have s = si1 : : : sik in G, a ontradition. (WHY??)Finally, for a general admissible equipment we have a normal subgroup R � Gof further relations whih by the desription of an admissible equipment ats freelyand disretely on the universalM whih thus is a overing of the resulting manifold.The statement on fundamental groups follows from (3.9). �4.6. Remark. We an also onsider manifold with orners C with a smooth Rie-mannian metri g whih satis�es only ondition (4.4.1). Then we an onstrut atopologial manifold M whih is smooth o� the union of all reetion hypersur-faes, with a Riemannian metri whih is only ontinuous along the the reetionhypersurfaes, in general. It might be worthwile to study this objet.4.7. Theorem. Let C be a manifold with orners with a Coxeter equipments :W 7! s(W ) 2 S where (G;S) is a Coxeter system.Then there exists a Riemannian metri  suh that (C; ) is a Riemannian ham-ber and s is an admissible equipment for it.Proof. We onstrut the metri indutively starting from faes whih are man-ifolds without boundary. On eah suh fae F we put an arbitrary Riemannianmetri F .Now let F be a fae whih ontains orners of index (in F ) at most 1, i.e., F is amanifold with boundary �F whih is a disjoint union of faes F1 without boundary.Along eah boundary omponent F1 of F we onsider an open ollar F1� [0; 1) � Fand extend the metri by (x; t) = dt2+F1 (x) where x 2 F1 and t is the oordinatefuntion on [0; 1). With a partition of unity we may extend this metri to the wholeof F in suh a way that near eah F1 it is not hanged. Note that F1 is totallygeodesi in F , and that the metri is onstant in the diretion t normal to F1.Now let F be a fae whih ontains orners of index (in F ) at most 2, i.e., �Fontains walls F i1 of F whih are manifolds with boundary. We already de�nedRiemannian metris F i1 on F i1. If F2 is a boundary omponent of F 11 \ F 21 weonsider an open tubular wedge neigbourhood F2�D of F2 in F with the followingproperty. Eah �ber fxg �D intersets F i1 exatly in the �ber fxg � [0; 1) of thatollar of F2 in F i1 for eah x 2 F2 whih was used above to onstrut the Riemannianmetri on F i1. The �ber D � R2 is an open 0-neighborhood in a quadrant with angle�F (F 11 ; F 21 ) as in �g. 9. Here �F (F 11 ; F 21 ) is determined by the Coxeter equipment:If in terms of walls Wi of C we haveF = Wi1 \ � � � \Win�2 ;



24 ALEKSEEVSKI, KRIEGL, LOSIK, MICHORPSfrag replaements F 11 F 21F2 D�Figure 9. The tubular wedge neigborhood F2 �D and its �ber D.F 11 = Wi1 \ � � � \Win�2 \Win�1 ; F 21 = Wi1 \ � � � \Win�2 \Win ;F2 = Wi1 \ � � � \Win�2 \Win�1 \Win ;then �F (F 11 ; F 21 ) is determined by the (�nite) Coxeter system (G(F2) = G(S0); S0)where S0 = fsi1 ; : : : ; sing, by onsidering the angle between and in the orrespond-ing faes in the Weyl hamber of (G(S0); S0), as deribed in (3.3).We now put the produt metri D(u) + F2(x) for (x; u) 2 F2 � D on thetubular wedge neigbourhood F2 � D, where D is the standard Eulidean metrion R2 restrited to D. This gives a metri on F2 � D whih indues the alreadyonstruted metri F i1 on the intersetion with F i1 sine F2�D intersets F i1 in theollar used to onstrut F i1 . Moreover F2 and the parts of F i1 are totally geodesi,and the metri is onstant in diretions normal to any relevant fae, near that fae.We do this onstrution near any fae of odimension 2 of F . Then we use aollar (F i1 n �F i1)� [0; 1) of the interior of the fae F i1 in F suh that the �ber nearany F2 oinides with the normal geodesi in F2�D in the metri onstruted there.Put the metri dt2 + F i1 (x) for (x; t) 2 (F i1 n �F i1) � [0; 1) on this ollar, and usea partition of unity on the union of all these ollars and the wedge neighborhoodswhih is onstant in the normals near any fae to glue the metris in suh a waythat the resulting metri is onstant in the normal diretions near any fae andeah fae is totally geodesi. With another partition of unity we extend this metriinto the interior of F and not hanging it near any fae.We proeed indutively. We assume that we have already onstruted in thisway metris on eah fae whih onsists of orners of index � k in C and onsidernow a fae F whih onsists of orners of index � k � 1 in C. Then the boundary�F is a union of faes where we alredy onstruted the metri. Let Fk be a minimalfae in �F , i.e., Fk does not ontain any other fae. Then Fk is a manifold withoutboundary where we already have a metri Fk . Moreover Fk is the transversalintersetion of k walls F 11 ; : : : ; F k1 of F , where k is the odimension of Fk in F . Wethen hoose a tubular wedge neighbourhood Fk � Dk of Fk in F whih intersets�ber respetingly eah intersetion of k � 1 of the walls F 11 ; : : : ; F k1 of F in thetubular wedge neighborhood whih was used previously to onstrut the metriF i1 on eah of the walls. Here Dk is an open 0-neighborhood in a quadrant in Rkwith walls whose angles �F (F i1; F j1 ) are determined by the Coxeter equipment asdesribed above. We now put the metri Dk(u) + Fk (x) for (x; u) 2 Fk �Dk onthe tubular wedge neigbourhood Fk � Dk, where Dk is the standard Eulideanmetri on Rk restrited to Dk. This gives a metri on Fk �Dk whih indues thealready onstruted metri F i1 on the intersetion with F i1 sine Fk�Dk intersetsF i1 in the tubular wedge neighborhood used to onstrut F i1 . Moreover Fk and the



REFLECTION GROUPS ON RIEMANNIAN MANIFOLDS 25parts of F i1 are totally geodesi, and the metri is onstant in diretions normal toany fae near that fae.We do this onstrution near any minimal fae of F . Then we use a ollar(F i1 n �F i1) � [0; 1) of the interior of the fae F i1 in F suh that the �ber nearany minimal fae Fl oinides with the normal geodesi in Fl � Dl in the metrionstruted there. Put the metri dt2 + F i1 (x) for (x; t) 2 (F i1 n �F i1) � [0; 1) onthis ollar, and use a partition of unity on the union of all these ollars and thewedge neighborhoods whih is onstant in the normals near any fae, to glue themetris in suh a way that the resulting metri is onstant in the normal diretionsnear any fae and eah fae is totally geodesi. With another partition of unity weextend this metri into the interior of F .Eventually we exhaust eah onneted omponent of C. �4.8. Proposition. Let C be a manifold with orners with a Coxeter equipment s :W 7! s(W ) 2 S where (G;S) is a Coxeter system. Let  and 0 be two Riemannianmetris on C suh that (C; ) and (C; 0) are both Riemannian hambers and s isan admissible equipment for both.Then the smooth manifolds U(G;C; ) and U(G;C; 0) onstruted via (4.5) aredi�eomorphi.Proof. Sine the onstrution as a topologial spae desribed in the proof of(4.5) depends only on the equipment, the two manifolds are anonially homeo-morphi. For a orner x 2 C let ux : Ux ! Bx � TxC and u0x : U 0x ! Bx � TxCbe two harts as desribed in the proof of (4.5) for the two Riemannian metris and 0. But then the hart hange u0x Æ u�1x , onsidered in a manifold withoutboundary whih ontains C as a submanifoldwith orners (see (4.1)), onsists of theexponential mapping of the extended Riemannian metri ~ followed by the inverseof the exponential mapping of ~0, whih is obviously smooth. Thus the anonialhomeomorphism between U(G;C; ) and U(G;C; 0) is a di�eomorphism. �5. Orbifolds5.1. Smooth orbifolds. We reall the de�nition of orbifold. Let X be a seondountable Hausdor� spae. An atlas of a smooth n-dimensional orbifold (or V -manifold) on X is a family fUigi2I of open sets that satisfy:(1) fUigi2I is an open over of X.(2) For eah i 2 I a loal uniformizing system onsisting of a triple f ~Ui; Gi; 'ig,where ~Ui is a onneted open subset of Rn ontaining the origin, Gi is a�nite group of di�eomorphisms ating e�etively and properly on ~Ui, and'i : ~Ui ! Ui is a ontinuous map of ~Ui onto Ui suh that 'i Æ g = 'i for allg 2 Gi and the indued map of ~Ui=Gi onto Ui is a homeomorphism. The�nite group Gi is alled a loal uniformizing group.(3) Given ~xi 2 ~Ui and ~xj 2 ~Uj suh that 'i(~xi) = 'j(~xj), there is a di�eomor-phism 'ij : ~Vj ! ~Vi from a neighborhood ~Vi � ~Ui of ~xi onto a neighborhood~Vj � ~Uj of ~xj suh that 'i = 'j Æ 'ji.Two atlases are equivalent if their union is again an atlas of a smooth orbifold onX.An orbifold is the spae X with an equivalene lass of atlaes of smooth orbifoldson X.



26 ALEKSEEVSKI, KRIEGL, LOSIK, MICHORProposition. [31℄ If M is an n-dimensional smooth manifold and G is a groupating smoothly and disretely on M , then X =M=G has a struture of orbifold.Proof. Let x 2 X. Choose ~x 2 M projeting to x, and denote by Gx theisotropy group of ~x. Choose a neigborhood of ~Ux invariant by Gx and disjoint fromg(Ux) for all g 2 G n Gx suh that there is a loal hart k : Ux ! ~Ux � Rn onM with k(x) = 0. We take ( ~Ux; Gx; 'x), where 'x is a omposition of k�1 withthe projetion ~U ! ~U=Gx, for a loal uniformizing system. It is easily hekedsuh loal uniformizing systems form an atlas of a smooth n-dimensional orbifoldon M=G. �In the de�nition of atlas of a smooth orbifold on X we an always take the �nitesubgroups Gi to be subgroups of the orthogonal group O(n) ating naturally onRn. Condition (3) implies that for eah gi 2 Gi there exists gj 2 Gj suh that'ji Æ gi = gj Æ 'ji.Let f ~Ui; Gi; 'ig be a unifomizing system suh that ~Ui ontains the origin, thegroup Gi is a subgroup of O(n), and x = 'i(0). Then the group Gx = Gi isindependent of the uniformizing system f ~Ui; Gi; 'ig. More preisely, this group isde�ned up to isomorphism and its ation on Rn is de�ned up to isomorphism aswell. The point x 2 X is alled regular if the orresponding group Gx is trivial andotherwise singular.5.2. Reonstrution of the orbifold struture from the struture sheaf.Let again f ~Ui; Gi; 'ig be a unifomizing system suh that ~Ui ontains the origin,the group Gi is a subgroup of O(n), and x = 'i(0). Then there is a representation� : Gi ! O(n), a ball B in Rn entered at the origin, and a map ' : B ! X suhthat '(0) = x and fB;Gi; 'g is a uniformizing system of the orbifold X.A funtion f : Ui ! R is alled smooth if f Æ'i is a smooth funtion on ~U . Thegerms of smooth funtions on X de�ne a sheaf SX on X.5.3. De�nition. Let X and ~X be two smooth orbifolds. The orbifold ~X is alleda overing orbifold for X with a projetion p : ~X ! X if p is a ontinuous map ofunderlying topologial spaes and eah point x 2 X has a neighborhood U = ~U=G(where ~U is an open subset of Rn) for whih eah omponent Vi of p�1(U ) isisomorphi to ~U=Gi, where Gi � G is some subgroup. The above isomorphismsU = ~U=G and Vi = ~U=Gi must respet the projetions.Note that the projetion p in the above de�nition is not a over of underlyingtopologial spaes.Hereafter we suppose that all orbifolds and their overing orbifolds are onneted.5.4. Theorem. [31℄ An orbifold X has a universal overing orbifold p : ~X ! X.More preisely, if x 2 X, ~x 2 ~X are regular points and p(~x) = x, for any otherovering orbifold p0 : ~X 0 ! X and ~x0 2 ~X 0 suh that p0(~x0) = x there is a overq : ~X ! ~X 0 suh that p = p0 Æ q and q(~x) = ~x0. For any points ~x; ~x0 2 p�1(x) thereis a dek transformation of ~X taking ~x to ~x0.Suppose � : G! O(n) is a representation of a �nite group G, Rn=G is the or-responding orbifold, and SRn=G is the orresponding sheaf. By the Hilbert theoremthe ring R[Rn℄G is �nitely generated. Let �1; : : : ; �m be a system of homogeneousgenerators of R[Rn℄G and y1; : : : ; ym the orresponding funtions on Rn=G. Con-sider the map � = (�1; : : : ; �m) : Rn ! Rm alled the orbit map. It is known



REFLECTION GROUPS ON RIEMANNIAN MANIFOLDS 27[2℄ that the map � indues a homeomorphism between �(Rn) and the orbit spaeRn=G whih establishes an isomorphism between the restrition of the sheaf C1m ofsmooth funtions on Rm to �(Rn) and the sheaf SRn=G.It is lear that for eah orbifold X and x 2 X there is a neghborhood Ux and arepresentation � : Gx ! O(n) suh that the restrition of SX to Ux is isomorphito the restrition of the sheaf SRn=Gx to some ball entered at the origin.For a representation � : G ! O(n) a di�eomorphism of the orbit spae Rn=Gis an automorphism of the sheaf SRn=G by de�nition. Let f : Rn=G! Rn=G be adi�eomorphism and h1; : : : ; hm a system of generators of SRn=G. Then f is uniquelyde�ned by the images of generators hi and these images are the generators of SRn=Gagain. Denote by R the set of all reetions ontained in G and by A(G;R) the setof all automorphisms of the group G whih preserves the set R.5.5. Theorem. [23℄ For eah di�eomorphism f of the orbit spae Rn=G thereis a smooth lift F : Rn ! Rn. For eah suh lift F there is an automorphisma 2 A(G;R) suh that for all g 2 G and x 2 Rn=G we have F (gx) = a(g)F (x).The loal version of this theorem is also true, i.e. if B is a ball in Rn enteredat the origin and f is a di�eomorphism of the sheaf SB=G, then there is a smoothlift F : B ! B with the same property as above.5.6. Theorem. An orbifold X is de�ned uniquely by its sheaf SX .Proof. Note that for a regular point x 2 X the ring SX (x) of the germs ofSX at x is isomorphi to the ring of germs at 0 of smooth funtions on Rn. Thenthe dimension of the orbifold X is de�ned by the sheaf SX . Next note that if� : G! O(n) is a representation of a �nite group G, then the group preserving allsmooth G-invariant funtions on Rn oinides with �(G). If this group is in�nitethere is a regular point with non trivial stabilizer, whih is impossible. The resultthen follows from the fat that the order of G equals the ardinality of a regularorbit.It is suÆient to prove that for eah a �nite group G, a representation G! O(n),a ball B in Rn, and the map ' : B ! X whih indues an isomorphism of the sheafSB=G and the restrition SU of the sheaf SX to some open subset U ofX, fB;G; 'gis a uniformizing system on X.Let fB1; G1; '1g be suh a uniformizing system, orresponding to the represen-tation �1 : G1 ! O(n), '(0) = x, and fB2; G2; '2g a uniformizing system of theorbifold X whih is indued by some representation �2 : G2 ! O(n) suh that'2(0) = x. We may assume that B1 = B2 = B and '1(B) = '2(B) = U . Then therings of funtions on B whih are ompositions of '1 and '2 with the setions ofSX on U oinides. By the above remark �1(G1) = �2(G2) = G.For i = 1; 2 denote by �'i the di�eomorphism B=G ! U indued by 'i. Then�'�12 Æ �'1 is a di�eomorphism of B=G. By Theorem (5.5) there is a smooth liftB ! B of this di�eomorphism. But this means that fB1; G1; '1g is a uniformizingsystem of the orbifold X. �5.7. Corollary. Let a group G ats disretely on a smooth simply onnetedmanifold M and SX the orresponding sheaf on X = M=G. Then M is a universalovering orbifold for X.Proof. Evidently manifold M is a overing orbifold for X. If ~X is universalovering orbifold for X, then there is a over q : ~X ! M . By the de�nition



28 ALEKSEEVSKI, KRIEGL, LOSIK, MICHORof over ~X should be a manifold and q a over of mani�lds. Therefore q is adi�eomorphism. �Theorems (5.6) and (5.7) imply the following statement.5.8. Corollary. Let a group G at disretely on a smooth simply onneted mani-fold M and SX the orresponding sheaf on X = M=G. Then eah di�eomorphismof the orbit spae X, i.e. an automorphism of the sheaf SX has a smooth lift to M .6. Coxeter orbifold6.1. Coxeter orbifolds. A smooth orbifold X is alled a Coxeter orbifold if foreah loal uniformizing system ( ~Ui � Rn; Gi � O(n); 'i) the group Gi is a �nitelinear Coxeter group.6.2. Example. Let M be a Coxeter Riemannian manifolds with reetion groupG. Then any Weyl hamber is a Coxeter orbifold. This follows from proposition(5.1) and (2.11).6.3. Coxeter orbifold as a manifoldwith orners and its universal Coxeterequipment. Let X be a Coxeter orbifold. Let ( ~Ui; Gi; 'i)i2I be an atlas of loaluniformizing systems on X suh that (Ui) is an open over of X. Then ~Ui � Rn isan open neighborhood of 0 whih is invariant under the Coxeter group Gi. Thusthe orbit spae ~Ui=Gi is an open neighborhood of 0 in a linear Weyl hamber of thegroup Gi. The (equivariant) hart hangings 'ij indue smooth hart hangingsbetween open subsets of ~Uj=Gj and ~Ui=Gi. These respet the indies of orners(see (4.1)). Thus they desribe a smooth atlas for the struture of a manifold withorners on X. So walls and faes are de�ned and to eah wallW one an assoiate agenerator s(W ) of the Coxeter system with the following property: IfW\Ui 6= ; fora loal uniformizing system ( ~Ui; Gi; 'i), then s(W ) equals the generator ofGi whihis given by the reetion in the wall '�1i (W ) � ~Ui. Then (s(W )s(W 0))n(W;W 0) = 1if '�1i (W ); '�1i (W 0) 6= ; the generators orresponding to them in Gi satisfy thesame relation.6.4. Theorem. Any Coxeter orbifold is the Weyl hamber of a RiemannianCoxeter manifold.Proof. This follows from (6.3) and (4.7). �6.5. Corollary. Any Coxeter orbifold is good in the sense of Thurston [31℄.6.6. Coxeter orbifold strutures on a simplex. Let �n be the standard n-simplex with verties 0; 1; : : : ; n. If s is a Coxeter (G;S)-equipment of �n, thenthere exist a Riemannian metri  on �n, suh that (�n; ) is a Riemannian ham-ber and the equipment s is admissible. We denote byM = U(G;�n; s; ) the assoi-ated Coxeter G-manifold. It is simply onneted. The homeomorphismM=G �= �nde�ne on �n a struture of Coxeter orbifold, with the universal overing manifoldM , whih depends only on the equipment s, by (4.8). Hene, a desription of Cox-eter orbifold strutures on �n and also Coxeter G-manifolds with the orbit spae�n up to a G-di�eomorphism redues to a desription of Coxeter equipments of �.For any �nite Coxeter group G with the generators S = fs0; : : : ; sng there exista unique natural equipment suh that the wallWi = (0; 1; : : : ;bi; : : : ; n) orrespondsto si for i = 0; : : : ; n. The orresponding Coxeter manifoldM is the sphere Sn with
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