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REFLECTION GROUPS ON RIEMANNIAN MANIFOLDSDMITRI ALEKSEEVSKY, ANDREAS KRIEGL, MARK LOSIK, PETER W. MICHORAbstra
t. We investigate dis
rete groups G of isometries of a 
omplete 
on-ne
ted Riemannian manifold M whi
h are generated by re
e
tions, in parti
-ular those generated by dise
ting re
e
tions. We show that these are Coxetergroups, and that the the orbit spa
e M=G is isometri
 to a Weyl 
hamberC whi
h is a Riemannian manifold with 
orners and 
ertain angle 
onditionsalong interse
tionsof fa
es. We 
an also re
onstru
t the manifoldand its a
tionfrom the Riemannian 
hamber and its equipment of istropy group data alongthe fa
es. We also dis
uss these results from the point of view of Riemannianorbifolds. 1. Introdu
tionThe aim of this paper is to study the dis
rete groups G generated by re
e
tionswith respe
t to hypersurfa
es (shortly, re
e
tion groups ) on a RiemannianmanifoldM . If M = En is the Eu
lidean spa
e, then the 
lassi�
ation of all re
e
tiongroups was given in a fundamental paper by Coxeter [11℄. This implies also the
lassi�
ation of re
e
tion groups on the sphere Sn. There are many results aboutre
e
tion groups in hyperboli
 spa
e, see Vinberg [32℄, [34℄, [33℄, and [35℄, but the
omplete 
lassi�
ation is missing. In all these 
ases the appropriate fundamentaldomain C of a re
e
tion group G (
alled Weyl 
hamber) is a Coxeter polyhedron,i.e., a 
onvex polyhedron where any two neighbour walls (
odimension 1 fa
es Fi,Fj with 
odimension 2 interse
tion) have angle �=ni;j for ni;j 2 N. We 
all thisthe Coxeter property. Conversely, any Coxeter polyhedron C in a spa
e of 
onstant
urvature M = Sn; En;Hn is the fundamental domain of the re
e
tion group Gwhi
h is generated by the re
e
tions si = sFi with respe
t to the walls Fi of C. Thegroup G is a Coxeter group, i.e., a group with a set S = fs1; : : : ; slg of generators,and relations s2i = 1, (sisj)ni;j = 1 for ni;j 2 N[ f1g. In our 
ase, ni;j is de�nedby the angle between the walls Fi and Fj as above.The manifoldM with the a
tion of G 
an be re
onstru
ted from the Weyl 
ham-ber C (whi
h is homeomorphi
 to the orbit spa
e M=G) by the universal 
onstru
-tion of Vinberg [32℄: De�ne the equivalen
e relation in G�C by(x; g) � (y; h) () x = y; g�1h 2 Gxwhere Gx = hsFi : x 2 Fii is the subgroup generated by all re
e
tions with respe
tto walls 
ontaining x. Then the quotient spa
eU(G;C) = G�C= �2000 Mathemati
s Subje
t Classi�
ation. Primary 51F15, 53C20, 20F55, 22E40.Key words and phrases. Re
e
tion groups, Isometries.P.W.M. and M.L. were supported by `Fonds zur F�orderung der wissens
haftli
hen Fors
hung,Projekt P 14195 MAT'. 1



2 ALEKSEEVSKI, KRIEGL, LOSIK, MICHORhas the stru
ture of a spa
e of 
onstant 
urvature su
h that the natural a
tion of Gon U(G;C) =M is isometri
 and G is the re
e
tion group of M with fundamentaldomain C.More generally, if G is a Coxeter group with a set S = fs1; : : : ; slg of standardgenerators, and relations s2i = 1, (sisj)ni;j = 1, where i; j = 1; : : : ; l and nij 2N[ f1g, and if C is a topologi
al spa
e with 
losed subspa
es P1; : : : ; Pl (
alledpanels), then the Vinberg 
onstru
tion with Gx = hsi : x 2 Pii gives a topologi
alspa
e U(G;C) with a 
ontinuous a
tion of the group G and orbit spa
e C. Thetopologi
al G-spa
e U(G;C) is 
alled the universal spa
e of the Coxeter group G,and it satis�es the following following universal property [32℄:If G a
ts in a topologi
al spa
e X and if ' : C ! X is a 
ontinuousmap su
h that si:'(x) = '(x) for x 2 Pi then there exists a uniqueextension of ' to a G-equivariant 
ontinuous map ~' : U(G;C)! Xsu
h that ~'[1; x℄ = '(x) for any x 2 C.Davis [12℄ found ne
essary and suÆ
ient 
onditions that U(G;C) is a topologi
almanifold and G is a topologi
al re
e
tion group of U(G;C), i.e., any generator sia
ts on U(G;C) as a topologi
al re
e
tion (an involutive transformation whose �xedpoint set U(G;C)si separates U(G;C)). These 
onditions are that C is a topologi
al`ni
e' manifold with 
orners and that ea
h panel Pi is a disjoint union of walls su
hthat for any x 2 C the subgroup Gx = hsi : x 2 Pii is �nite. Conversely, let Gbe a dis
rete group of transformations of a topologi
al manifold M generated bytopologi
al re
e
tions, and let C be its Weyl 
hamber (the 
losure of a 
onne
ted
omponent of the set Mreg = fx 2M : Gx = f1gg of regular points). Let s1; : : : slbe re
e
tions in G su
h that M si \C 
ontains a 
odimension 1 
omponent. Let Pibe the union of all 
odimension 1 
omponents M si \C. Then G is a Coxeter groupwith standard generators s1; : : : ; sl and the G-manifold M is G-homeomorphi
 tothe universal G-manifold U(G;C) de�ned by the panels P1; : : : ; Pl.One of the aims of this paper is to des
ribe the stru
ture of the Weyl 
hamberC �= M=G of a Riemannian manifold M with a dis
rete group G generated byre
e
tions, and to get a similar des
ription of su
h G-manifolds M in terms of`abstra
t Riemannian 
hambers' C, whi
h are Riemannian manifolds with 
ornerssu
h that any two neighbouring walls Fi; Fj satisfy the Coxeter property, i.e., the
orresponding angle has 
onstant value �=nij along Fi \ Fj.In se
tion (2) we �x terminology and des
ribe general properties of re
e
tions ofa Riemannian manifoldM and of a dis
rete group G generated by re
e
tions. Wedis
uss the relations between a Diri
hlet domain D of the group G and its Weyl
hamber C whi
h is de�ned as the 
losure of a 
onne
ted 
omponent of the set Mregof regular points of G. We give an example when a Weyl 
hamber is larger than aDiri
hlet domain. We prove that for a simply 
onne
ted manifoldM , any re
e
tions is dise
ting, i.e. its �xed point set M s is a 
onne
ted totally geodesi
 hypersurfa
ewhi
h de
omposes M into two parts. We observe that a re
e
tion group G on aRiemannian manifoldM 
an be lifted 
anoni
ally to a re
e
tion group ~G, whi
h isan extension of G, on the universal 
overing ~M of M . As an interesting exampleof Riemannian manifold with a group generated by non dise
ting re
e
tions, we
onsider the maximal torus of the group SU (n) for n > 2 with the a
tion of theWeyl group.Starting from se
tion (3), we mostly 
onsider a Riemannian manifoldM with are
e
tion group G generated by dise
ting re
e
tions. Su
h a G-manifold is 
alled



REFLECTION GROUPS ON RIEMANNIAN MANIFOLDS 3a Coxeter manifold. Following M. Davis [12℄, we derive from a lemma of Bourbaki[4℄ that the group G a
ts simply transitively on the set of Weyl 
hambers C of aCoxeter G-manifold M . This implies that Weyl 
hambers 
oin
ide with Diri
hletdomains of regular points and hen
e are homeomorphi
 to the orbit spa
e, and thatthe re
e
tion group G is a Coxeter group with re
e
tions si with respe
t to wallsFi of C as standard generators. Moreover, the Weyl 
hamber C has the stru
tureof a Riemannian manifold with 
orners and any two neighbouring walls Fi; Fj of Csatisfy the Coxeter property and yield a Coxeter relation (sisj)nij = 1. We provethat in the simply 
onne
ted 
ase these relations generate all relations of G. In thegeneral 
ase, we give a geometri
 des
ription of the fundamental group �1(M ).In se
tion (4) we re
all the notion and main the properties of a (smooth) mani-fold M with 
orners and we de�ne the 
on
ept of a Coxeter equipment of M . Thisis an order reversing mapping of the poset of fa
es of M into the poset of Cox-eter subgroups of a given Coxeter system (G;S) (where S is the set of standardgenerators of a Coxeter group G) whi
h satis�es the Vinberg �niteness 
ondition,see [34℄, [13℄. We de�ne a notion of Riemannian 
hamber C as a manifold with
orners C equipped with an appropriate Riemannian metri
 su
h that walls Wi ofC are totally geodesi
 and neighbouring walls satisfy the Coxeter property. AnyRiemannian 
hamber 
arries a universal Coxeter equipment.The Weyl 
hamber C of a Coxeter G-manifold M has the natural stru
tureof a Riemannian 
hamber with an admissible (in some rigorous sense) Coxeterequipment. Moreover, this equipment is universal if and only if �1(M ) = �1(C):Conversely, if C is a Riemmanian 
hamber with an admissible Coxeter (G;S)-equipment then the universal spa
e M = U(G;C) has the stru
ture of a CoxeterG-manifold with Weyl 
hamber C. We prove also that if C is a manifold with
orners and s is a Coxeter equipment of M then there exist a Riemannian metri

 su
h that (M;
) is a Riemannian 
hamber and the equipment s is admissible.Hen
e any manifoldwith 
orners C with a Coxeter equipment determines a CoxeterG-manifoldM , where the metri
 of M depends on the admissible metri
 on C andany Coxeter manifold 
an be obtained by this 
onstru
tion.In se
tion (5) and (6) we dis
uss another approa
h for re
onstru
ting the Coxetermanifold from its Weyl 
hamber C whi
h 
an be identi�ed with the orbit spa
eM=G based on the Thurston 
onstru
tion [31℄ of the universal 
overing orbifold.We re
all this 
onstru
tion in se
tion (5) and we derive from the main theorem of[23℄ that an orbifold stru
ture of a spa
e X 
an be re
onstru
ted from the sheaf SXof its smooth fun
tions. In se
tion (6) we de�ne the notion of a Coxeter orbifoldas an orbifold whose lo
al groups are �nite linear Coxeter groups. An exampleof Coxeter orbifold is the Weyl 
hamber C of a Coxeter manifold M . We provethat any Coxeter orbifold is su
h a Weyl 
hamber. More pre
isely, the universal
overingM = ~C of a Coxeter orbifold C admits a stru
ture of (smooth) Coxeter G-manifold su
h that C is isomorphi
 to the Weyl 
hamber of the isometry group G.In parti
ular, this shows that any Coxeter orbifold is good in the sense of Thurston.In the last se
tion we des
ribed all Coxeter equipments of an n-simplex �n.This gives a 
lassi�
ation of Coxeter orbifold stru
tures on � and a 
lassi�
ationof Coxeter manifolds with orbit spa
e �n up to a di�eomorphism.



4 ALEKSEEVSKI, KRIEGL, LOSIK, MICHOR2. Groups of isometries generated by refle
tions2.1 Lemma. Let M be a 
onne
ted 
omplete Riemannian manifold, and let G �Isom(M ) be a group of isometries. Then G is a dis
rete subgroup in the Lie groupIsom(M ) if and only if ea
h orbit of G in M is dis
rete.We shall say that G a
ts dis
retely on M .Proof. The pointwise-open topology on the Lie group Isom(M ) of all isometries
oin
ides with the 
ompa
t open topology.If G is a dis
rete subgroup in Isom(M ) then it is 
losed and a
ts properly on Mso the a
tion admits sli
es, and the orbit G:x through x 2M is homeomorphi
 toG=Gx where Gx is the isotropy group of x. Thus ea
h orbit is dis
rete.Conversely, suppose that ea
h orbit is dis
rete. Sin
e G 
onsists of isometries,ea
h dis
rete orbit is 
losed. We 
onsider the 
losure �G of G in Isom(M ). Sin
eG-orbits are 
losed, �G:x = G:x for ea
h x 2 M . The a
tion of the 
losed group�G of isometries is proper, so there exist sli
es. Let x0 be a regular point for the�G-a
tion. Sin
e �G:x0 is dis
rete, the sli
e Sx0 through x0 is open in M , and theisotropy group �Gx0 a
ts trivial on Sx0 . Thus �Gx0 a
ts trivial on M and equals feg.Then G:x0 = �G:x0 �= �G, thus �G = G and is dis
rete in Isom(M ). �2.2. Diri
hlet domains and 
entral hypersurfa
es. Let G � Isom(M ) be agroup whi
h a
ts isometri
ally and dis
retely on a 
onne
ted 
omplete Riemannianmanifold. Let x0 be a regular point. The 
losed Diri
hlet domain for this point isthe set D(x0) := fy 2M : d(y; x0) � d(y; g:x0) for all g 2 Gg;where d is the geodesi
 distan
e on M . The open interior D(x0)o is 
alled the openDiri
hlet domain for the regular orbit G:x0, and we 
an �nd a fundamental domainF for the a
tion of G satisfying D(x0)o � F � D(x0), i.e., a set F whi
h meetsea
h orbit in exa
tly one point, sin
eM = [g2G g:D(x0):For any two di�erent points y0; y1 2M the 
entral hypersurfa
e is given byHy0;y1 := fy 2M : d(y; y0) = d(y; y1)g:It dise
ts M in the sense that M nHy0;y1 is the disjoint union of the two open setsfx 2M : d(x; y0) > d(x; ; y1)g and fx 2M : d(x; y0) < d(x; ; y1)g. Note that if Mis a simply 
onne
ted spa
e of 
onstant 
urvature then Hy0;y1 is a totally geodesi
submanifold, sin
e it is the �xed point set of a symmetry, but that in general Hy0;y1is not a submanifold: On an elongated 2-torus it 
an be a �gure 8.Lemma. For x 2 Hy0;y1 let 
0 be a minimal geodesi
 from y0 to x. Then 
0 meetsHy0;y1 only at x.Proof. Let 
0(tx) = x and suppose for 
ontradi
tion that 
0(t) 2 Hy0;y1 fort < tx. Let 
2 be a minimal geodesi
 from x to y1. Then tx = d(y0; 
0(t)) +d(
0(t); x) = d(y1; 
0(t)) + d(
0(t); x) < d(y1; x) = tx unless 
2 equals the minimalgeodesi
 s 7! 
1(t � s) and hen
e y0 = y1, both a 
ontradi
tion. �2.3. Lemma. Let D = D(x0) be the 
losed Diri
hlet domain of a regular point x0for a dis
rete a
tion of a group G � Isom(M ). Then we have:(1) If g:D = D then g = e in G.



REFLECTION GROUPS ON RIEMANNIAN MANIFOLDS 5(2) The open Diri
hlet domain D(x0)o is the 
onne
ted 
omponent 
ontainingx0 of M n [e6=g2GHx0;g:x0 �Mreg:Here Mreg denotes the set of all regular points, i.e. those points with trivialstabilizers.(3) G a
ts simply transitively on the set fD(g:x0) : g 2 Gg of all Diri
hletdomains.Proof. The isotropy group Gx0 is trivial: See the proof of (2.1).(1) If g:D = D then g:x0 2 Do, thus d(g:x0; x0) � d(g:x0; h:x0) for ea
h h 6= ein G. If g 6= e, putting h = g, we get g:x0 = x0, a 
ontradi
tion.(2) If x =2 Se6=g2GHx0;g:x0 then d(x; x0) 6= d(x; g:x0) for ea
h e 6= g 2 G.So if g:x = x for g 6= e then d(x; x0) = d(g:x; x0) = d(x; g�1:x0) 6= d(x; x0),a 
ontradi
tion. Thus the isotropy group Gx is trivial and x is regular. The
onne
ted 
omponent of M nSe6=g2GHx0;g:x0 
ontaining x0 is the set of all x 2Mwith d(x; x0) < d(x; g:x0) for all e 6= g 2 G whi
h is Do.(3) Transitivity was seen in (2.2) and simple transitivity follows from (1). �2.4. Walls of Diri
hlet domains. Let G � Isom(M ) be a dis
rete subgroup.For a regular point x0 2 M the set F := Hx0;g:x0 \D(x0) is 
alled a wall of the
losed Diri
hlet domain D(x0) if it 
ontains an open non-empty subset of Hx0;g:x0 .Two 
losed Diri
hlet domains are 
alled neighbors if they 
ontain a 
ommonwall.2.5. Lemma of Poin
ar�e. Let D = D(x0) be a 
losed Diri
hlet domain ofa regular point x0, and let g1:D; g2:D; : : : be all the neighbors of D. Then theelements g1; g2; : : : generate the group G.See �g. 4 for a Diri
hlet domain with 
ountably many walls.Proof. Claim. For ea
h g 2 G there exists a sequen
e e = h0; h1; : : : ; hn = gsu
h that D(hi:x0) and D(hi+1:x0) are neighbors for ea
h i. We 
all this a Diri
hletneighbors 
hain from x0 to g:x0.The 
laim proves the lemma as follows. Sin
e D(h1:x0) is a neighbor of D =D(x0) we have D(h1:x0) = gi1 :D for some i1. Then gi1 :gi2:D is the neighborD(h2:x0) of gi1 :D. Finally gi1 : : : gin :D is the neighbor D(hn:x0) = D(g:x0) ofgi1 : : : gin�1 :D = D(hn�1:x0). By (2.3) we have g = gi1 : : : gin .We prove the 
laim by indu
tion on fdg := d(x0; g:x0) : g 2 Gg whi
h is a lo
ally�nite set in R sin
e the orbit G:x0 is dis
rete and 
losed in M .Let g 2 G and assume that there exists a Diri
hlet neighbors 
hain from x0to h:x0 whenever dh < dg. Applying g1 we then also 
on
lude that there existsa Diri
hlet neighbors 
hain from g1:x0 to g2:x0 whenever d(g1:x0; g2:x0) < dg.Consider a minimal geodesi
 
 from x0 to g:x0 of length dg.Case 1. Suppose that 
meetsSe6=k2GHx0;k:x0 in x = 
(t1) 2 Hx0;k:x0 at distan
et1 < 12dg. See �g. 1. Then k 6= g. Consider a minimal geodesi
 
1 from x0 to k:x0.Then 
1 meets Hx0;k:x0 in 
1(12dk). The minimal geodesi
 
2 from x to k:x0 haslength t1. Thus dk � 2t1 < dg by the triangle inequality. By indu
tion there existsa Diri
hlet neighbors 
hain from x0 to k:x0. The minimal geodesi
 
3 from k:x0to g:x0 has lenght dk�1:g < t1 + d(x; g:x0) = dg sin
e otherwise k:x0 = x0. Byindu
tion there exists a Diri
hlet neighbors 
hain from k:x0 to g:x0. So we get aDiri
hlet neighbors 
hain from x0 via k:x0 to g:x0, as required.



6 ALEKSEEVSKI, KRIEGL, LOSIK, MICHORPSfrag repla
ements 
xx0 g:x0
1 
2 
3k:x0Hx0;k:x0 Figure 1.Case 2. Suppose that 
 meets Se6=k2GHx0;k:x0 for the �rst time at x = 
(12dg) 2Hx0;g:x0 and that x lies in no other 
entral hypersurfa
e. Then there exists an open
onvex ball U with 
enter x whi
h meets only Hx0;g:x0 from Se6=k2GHx0;k:x0. Bylemma (2.2) the 
entral hypersurfa
e Hx0;g:x0 
uts U in two 
onne
ted 
omponentsfy 2 U : d(x0; y) ? d(g:x0; y)g and is the boundary of both. One of them isin D(x0)o and the other is in the interior D(h:x0)o of a neighbor of D(x0). Soy = 
(12dg + ") 2 D(h:x0)o for some " > 0. Then d(y; h:x0) < d(y; x0) anddh�1g = d(h:x0; g:x0) � d(h:x0; y) + d(y; g:x0) < dg. By indu
tion there is aDiri
hlet neighbors 
hain from h:x0 to g:x0, thus also from x0 to g:x0.Case 3. Suppose that 
 meets Se6=k2GHx0;k:x0 for the �rst time at x = 
(12dg) 2Hx0;g:x0 \ Hx0;k:x0 for k 6= g. We have d(x; x0) = d(x; k:x0). Consider theminimal geodesi
 
1 from x0 to k:x0 whi
h meets Hx0;k:x0 in 
1(12dk). Thendk = d(x0; k:x0) < d(x0; x) + d(x; k:x0) sin
e otherwise the 
urve following 
 fromx0 to x and then the minimal geodesi
 from x to k:x0 would be a minimal geo-desi
 and 
ould not have an angle 6= 0 at x whi
h implies that k:x0 = g:x0. Byindu
tion there is Diri
hlet neighbors 
hain from x0 to k:x0. Moreover, dk�1g =d(k:x0; g:x0) < d(k:x0; x) + d(x; g:x0) = dg sin
e otherwise the pie
ewise minimalgeodesi
 from k:x0 via x to g:x0 would be a minimal geodesi
 and thus k:x0 = x0.By indu
tion again there is a Diri
hlet neighbor 
hain from k:x0 to g:x0 whi
htogether with the �rst 
hain gives a 
hain from x0 to g:x0, as required. �2.6. Re
e
tions. Let (M;
) be a 
onne
ted 
omplete Riemannian manifold. Are
e
tion inM is an isometry s 2 Isom(M ) su
h that for some �xed point x0 of s thetangent mapping Tx0s is a re
e
tion in the Eu
lidean spa
e (Tx0M;
x0), with repe
tto a hyperplane: For some ve
tor 0 6= Xx0 2 Tx0M we have Tx0s:Xx0 = �Xx0 ,whereas Tx0sjX?x0 = Id.Lemma. Let s be a re
e
tion on a 
omplete 
onne
ted Riemannian manifold M .Then we have:(1) Every 
onne
ted 
omponent N of the �xed point set M s is a totally geo-desi
 submanifold, and for ea
h x 2 N the tangent mapping Txs equals theidentity on TxN and � Id on TxN?.(2) Every 
onne
ted 
omponent N of M s determines s 
ompletely as follows:For y 2 M there exists x 2 N su
h that d(y; x) = dist(y;N ). Let t 7!exp(t:Yx) be a minimal geodesi
 whi
h rea
hes y at t = 1. Then s(y) =exp(�Yx).



REFLECTION GROUPS ON RIEMANNIAN MANIFOLDS 7(3) At least one 
onne
ted 
omponent of M s is of 
odimension 1. Any su
h
omponent is 
alled a re
e
tion hypersurfa
e for s.(4) For any y 2M nM s we have M s � Hy;s:y.Proof. (1) Let x0 2 M s be a point su
h that Tx0s is a Eu
lidean re
e
tion.Then Tx0s Æ Tx0s = IdTx0M , thus s is also an involution. Consequently Txs is anEu
lidean involution for ea
h �xed point x, thus it is diagonalizable with eigenvalues+1 on the eigenspa
e TxN and eigenvalue �1 on the eigenspa
e TxN? where N isthe 
onne
ted 
omponent N of M s 
ontaining x.(2) Note that Yx 2 TxN? and that s(exp(t:Yx)) = exp(t:Txs:Yx) = exp(�t:Yx).(3) The 
onne
ted 
omponent of M s 
ontaining x0 is of 
odimension 1.(4) For x 2M s let 
 be a minimal geodesi
 from x to y. Then s Æ 
 is a minimalgeodesi
 from s:x = x to s:y. Thus d(x; y) = d(x; s:y). �An example of a re
e
tion s whi
h is generated by two di�erent re
e
tion hy-persurfa
es H;H 0: Let M = S1, H = f1g, H 0 = f�1g, and let s be 
omplex
onjugation. Another 2-dimensional example with three re
e
ting hypersurfa
es isdrawn in �g. 2. The 2-dimensional example in �g. 2 also shows that two di�erentPSfrag repla
ements 1�1Figure 2. Re
e
tions generated by di�erent re
e
tion hypersurfa
es.re
e
tion hypersurfa
es H;H 0 for the same re
e
tion s need not be parallel, i.e.,dist(x;H 0) is not 
onstant in x 2 H.In [30℄ one �nds the following theorem: If an irredu
ible Riemannian symmetri
spa
e M of non
ompa
t type admits an involutory isometry whose �xed point sethas 
odimension one, then M is a real hyperboli
 spa
e. This extends a result ofIwahori [20℄ 
on
erning irredu
ible Riemannian symmetri
 spa
es of 
ompa
t type;however, the proofs of these two results are substantially di�erent.2.7. Dise
ting re
e
tions. An isometry s 2 Isom(M ) is 
alled dise
ting if the
omplement of the �xed point set M s is not 
onne
ted.Lemma.(1) A dise
ting isometry s is a re
e
tion.(2) For a dise
ting re
e
tion s the �xed point set M s dise
ts M into exa
tly 2pie
es. The re
e
tion s permutes these two pie
es.(3) For a dise
ting re
e
tion s the �xed point set M s is a disjoint union of
odimension 1 submanifolds.(4) For a dise
ting re
e
tion s and any y 2M nM s we have M s = Hy;s:y.Proof. (1) Sin
e M nM s is not empty and dis
onne
ted, the �xed point set M swhi
h is a disjoint union of 
losed totally geodesi
 submanifolds 
ontains at leastone 
onne
ted 
omponent of 
odimesion 1. For any x in a 
odimension 1 
omponent



8 ALEKSEEVSKI, KRIEGL, LOSIK, MICHORH the tangent mapping Txs equals IdTxH on TxH and is a nontrivial isometry onthe 1-dimensional subspa
e TxH?, thus equals multipli
ation by �1 there.(2) Let x0 2 M nM s. By (2.6.4) we have M s � Hx0;s:x0. By (2.3.2) for thegroup fId; sg, removing the set Hx0;s:x0 de
omposes M into exa
tly two 
onne
tedpie
es. Thus the subset M s � Hx0;s:x0 
annot de
ompose it into more than twopie
es.(3) The unionM s1 of all 
odimension 1 
onne
ted 
omponents ofM s also dise
tsM into two 
onne
ted 
omponents, sin
e removing also the 
omponents of higher
odimension does not 
hange 
onne
tedness any more. Let N be a 
onne
ted
omponent of 
odimension � 2 of M s. Then N is 
ontained in one 
omponent ofM nM s1 and s thus has to map it into the other 
omponent, by (2). Thus N isempty.(4) By (2.6.4) we have M s � Hy;s:y. Let z 2 Hy;s:y. If z =2 M s then z ands(z) lie in di�erent 
omponents of M nM s. Let 
1 be a minimal geodesi
 from yto z, and let 
2 be a minimal geodesi
 (of the same length) from s(y) to z. Thenthe broken geodesi
 
1
�12 from y to s(y) has to meet M s in some point x 2 M ssin
e y and s(y) lie in di�erent 
omponents of M nM s. If x is an inner point on
2, say, then the broken geodesi
 following s(
2) from y to s(x) = x and then 
2from x to z has the same length as 
2 and hen
e 
1. It has an angle at x (otherwisez = s(z) and we are done), thus there is a geodesi
 from y to z shorter than 
1, a
ontradi
tion. �2.8. Theorem. Let M be a simply 
onne
ted 
omplete Riemannian manifold.Then any re
e
tion � on M is dise
ting, and its �xed point setM� is a 
onne
tedorientable totally geodesi
 
losed hypersurfa
e.Proof. Let x 2 M nM� and let H be a 
onne
ted 
omponent of M� of 
odi-mension 1. Choose a minimal geodesi
 
+ from x to H. It hits H orthogonally byminimality, and thus we may 
ontinue it by 
� = �:
+ to obtain a geodesi
 
0 fromx to �(x) whi
h hits H in exa
tly one point.Suppose that M nH is 
onne
ted. Then there exists a smooth 
urve 
1 from xto �(x) in M nH. Sin
e M is simply 
onne
ted, there exists a smooth homotopyh : [0; 1℄� [0; 1℄!M with h(0; s) = x, h(1; s) = �:x, h(t; 0) = 
0(t), and h(t; 1) =
1(t). We 
an also assume that h is transversal to H. But then h�1(H) is a
losed 1-dimensional submanifold in [0; 1℄2 whi
h hits the boundary exa
tly on
ein [0; 1℄� f0g and never in f0g � [0; 1℄ or f1g� [0; 1℄. So the 
onne
ted 
omponenthitting on
e must hit again in [0; 1℄� f1g. Thus 
1 hits H, a 
ontradi
tion.Thus M n H is not 
onne
ted, and H 
uts M into two 
omponents, M+ andM�. Moreover, M� = H sin
e � inter
hanges M+ and M�. �2.9. Re
e
tion groups and 
hambers. Let G � Isom(M ) be a dis
rete sub-group of isometries of a 
onne
ted 
omplete Riemannian manifold M whi
h isgenerated by all re
e
tions 
ontained in G. We shall 
all any su
h group G a re
e
-tion group of M . By a (Weyl) 
hamber we mean the 
losure in M of a 
onne
ted
omponent of the (open) 
omplement of the union of all re
e
tion hypersurfa
es ofall re
e
tions in G. By an open (Weyl) 
hamber we mean the open interior Co of aWeyl 
hamber C. For a 
hamber C a wall is a 
onne
ted 
omponent of C \M s fora re
e
tion s if it 
ontains a non-empty open subset of M s of 
odimension 1 in M .Two walls Fi; Fj are 
alled neighbours is the interse
tion Fi \ Fj has a 
onne
ted
omponent of 
odimension 2.
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hamber C and any regular point x0 2 Co the Diri
hlet domainD(x0) is 
ontained in C. Thus C is a union of Diri
hlet domains of the formD(g:x0), for all g 2 NG(C).Moreover, G a
ts transitively on the set of all 
hambers.Proof. Sin
e the set Mreg of regular points is open and dense in M , we may
hoose a regular x0 2 C. We 
laim that C � D(x0).For x 2M 
onsider a minimal geodesi
 
 from x0 = 
(0) to x = 
(1). If 
 hits are
e
tion hypersurfa
e H in 
(t) for t < 1, we may 
onsider the minimal geodesi
from x0 to 
(t), followed by the minimal geodesi
 from 
(t) to sH (x), whi
h is abroken geodesi
 from x0 to sH (x) of length d(x0; 
(t))+d(
(t); sH(x)) = d(x0; 
(t))+d(
(t); x) = d(x0; x). Sin
e it has a proper angle at 
(t), a minimal geodesi
 from x0to sH (x) has length d(x0; sH(x)) < d(x0; x). Thus we see: Whenever the minimalgeodesi
 from x0 to a point x hits a re
e
tion hypersurfa
e H in an intermediatepoint, d(x0; sH(x)) < d(x0; x).Now let y 2 D(x0). Then d(x0; y) = dist(x0; G:y). By the statement above, anyminimal geodesi
 from x0 to y 
an hit a re
e
tion hypersurfa
e at most in y. Thusy 2 C.That G a
ts transitively on the set of all 
hambers follows from (2.3). �2.10. Examples of non-dise
ting re
e
tions. We 
onsider the real proje
tiveplane RP2, with the metri
 indu
ed from S2, and a re
e
tion s = sH on one lineH in it. Look at �g. 3 where the line at in�nity L is 
hosen orthogonal to H sothat L is invariant under s. On the line L one still has to identify antipodi
ally.The �xed point set of s 
onsists of H and the single point x on L farthest fromH. There is only one 
hamber C = RP2n (H [ fxg) whi
h is a pun
tured disk andis dense in RP2. But there are two Diri
hlet domains D(z) and D(sz) dependingon z whi
h for z on the line through x othogonal to L meet in H [ L. As anotherPSfrag repla
ements L Hx xsFigure 3. A re
e
tion on RP2.example, 
onsider M = SO(3) = RP3 with the biinvariant metri
. Then g 7! g�1is a non-dise
ting re
e
tion whose �xed point set is the disjoint union of feg andsome RP2. This re
e
tion generates a Coxeter group.2.11. Theorem. LetM be a 
omplete Riemannian manifold and let G � Isom(M )be a dis
rete group of isometries whi
h is generated by all its re
e
tions. Let C bea Weyl 
hamber in M for G. Let F1; F2; : : : be the walls of C and let si be there
e
tion with respe
t to the wall Fi.Then the re
e
tions s1; s2; : : : generate G, and they satisfy the following rela-tions:(1) (si)2 = 1



10 ALEKSEEVSKI, KRIEGL, LOSIK, MICHOR(2) If two walls Fi; Fj are neighbors then (sisj)nij = 1 for some natural numbernij.See �g. 4 for a Weyl 
hamber in the Poin
ar�e upper halfplane with in�nitelymany walls.
Figure 4.A Weyl 
hamber in the Poin
ar�e upper halfplane with in�nitely many walls.Proof. We prove that the re
e
tions s1; s2; : : : generate G. Let C 0 be anyother Weyl 
hamber in M . Then we 
hoose a smooth 
urve 
 : [0; 1℄ ! M froma regular point x0 2 C to a regular point x0 2 C 0 whi
h 
hanges Weyl 
hambersonly transversally through open interiors of walls. First the 
urve passes from Cthrough the interior of a wall Fi1 to a neighbor si1 (C), and then through a wall Fof this 
hamber to the next. For the re
e
tion sF in F we have sF = si1 :si2 :si1 forsome wall Fi2 of C. If we now follow the 
urve 
 through all interiors of walls wesee that C 0 is of the form C 0 = g(C) for g in the subgroup generated by s1; : : : ; sl.Any re
e
tion in G is of the form sF for some wall of some 
hamber C 0. But thenthe argument above shows that sF = g:sik :g�1, so G is generated by s1; s2; : : : as
laimed.Relations (1) and (2) follow, sin
e if x is an interior point of the fa
e f =Fi \Fj (i.e., there are no other walls through x) then the stabilizer Gx is faithfullyand orthogonally represented in the two-dimensional spa
e Tx(f)?, and any �nitesubgroup of O(2) whi
h 
ontains a re
e
tion is a dihedral group. �2.12. Remark. In the setting of theorem (2.11) there might be more relationsthan spe
i�ed in (2.11.1) and (2.11.2), see �g. 5. The left part of �g. 5 is a 
at 2-PSfrag repla
ements s1 s1 s2s2s3 s3s4s4 C CFigure 5. 2-tori with Z42 and Z22 as re
e
tion groups.torus with a 
hamber C spe
i�ed, with re
e
tions s1, s2, s3, s4 and angular relations



REFLECTION GROUPS ON RIEMANNIAN MANIFOLDS 11(sisi+1)2 = 1 for i = 1; : : : ; 4 mod (4) as de
ribed in (2.11.2). But moreover therelations (s2s4)2 = 1 and (s1s3)2 = 1 hold whi
h are not des
ribed by (2.11.2).In right hand part of �g. 5 we even have s1 = s3 and s2 = s4.2.13. Lifting re
e
tion groups to the universal 
overing. Let � : ~M !M bethe universal 
overing of a Riemannian manifoldM with a re
e
tion group G, andlet �1(M ) = � � Isom( ~M ) be the group of de
k transformations of �. Any isometryof M 
an be lifted to an isometry of ~M . A lift ~s of a re
e
tion s in G is a re
e
tionon ~M if and only if it has a �xed point ~x 2 ~M with �(~x) in a re
e
tion hypersurfa
eof s in M . The group ~G generated by all re
e
tions whi
h are lifts of re
e
tions inG, is a re
e
tion group in ~M whi
h is normalized by � in Isom( ~M ). Then ~G� isthe group of all lifts of transformations in G, and G = ( ~G�)=� = ~G=( ~G \ �). If ~Cis a 
hamber for ~G in ~M then �( ~C) is a 
hamber for G in M , sin
e the union of allre
e
tions hypersurfa
es of ~G equals the inverse image under � of the union of allre
e
tion hypersurfa
es of G.Let s be a re
e
tion in G, and let ~s be a re
e
tion 
overing s in ~G. A

ordingto (2.8) ea
h re
e
tion ~s in ~G is dise
ting, ~M ~s is one re
e
tion hypersurfa
e, and~M n ~M ~s 
onsists of exa
tly two 
onne
ted 
omponents ~M ~s+ and ~M ~s�.If G is generated by dise
ting re
e
tions then G a
ts simply transitively on theset of all 
hambers, see (3.5) below. The 
onverse is not true, even if G is a Coxetergroup, see �g. 7 in (2.15).Suppose that one (equivalently any) 
hamber is simply 
onne
ted. Then G a
tssimply transitively on the set of all 
hambers if and only if � � ~G. To see this,note that the universal 
over � : ~M ! M restri
ts to a di�eomorphism for ea
h
hamber ~C in ~M onto a 
hamber C = �( ~C) in M . If � 
ontains a nontrivial de
ktransformation 
, then for a 
hamber ~C 
overing C the set 
( ~C) is another 
hamber
overing C. By (2.10) and (3.5) there exists a unique ~g 2 ~G with ~g( ~C) = 
( ~C).But then ~g = 
 if and only if ~g 
overs IdM in G.2.14. Proposition. Let G be a re
e
tion group on a simply 
onne
ted 
ompleteRiemannian manifold M . Then ea
h 
hamber C is simply 
onne
ted.Proof. Suppose for 
ontradi
tion that some 
hamber C is not simply 
onne
ted:Let 
 : [0; 1℄! C be a 
losed smooth 
urve through a regular point x0 2 C whi
his not 
ontra
tible to the 
onstant 
urve through x0 in C with �xed ends at x0.Sin
e M is simply 
onne
ted there exists a smooth homotopy h : [0; 1℄� [0; 1℄!M with h(0; t) = 
(t), h(s; 0) = x0, h(s; 1) = x0, and h(1; t) = x0. We may assumethat h is transversal to ea
h re
e
tion hypersurfa
e and to ea
h interse
tion of su
hhypersurfa
es, sin
e these form a lo
ally �nite family by the dis
reteness of G. Thusfor ea
h interse
tion hypersurfa
e Hi the set h�1(Hi) is a 1 dimensional embeddedsubmanifold of [0; 1℄2 whi
h does not meet the boundary, so it is a disjoint set ofembedded 
ir
les in C whi
h may tou
h only the bottom boundary f0g � [0; 1℄.Moreover, the sets h�1(Hi) are all pairwise transversal 1-dimensional submanifoldsin (0; 1)2, or empty, sin
e this is the 
ase for the (geodesi
ally 
losed) Hi inM . Fig.6 is an illustration. See [25℄, se
tion 6, for transversality theorems on manifoldswith 
orners. Now h0 = 
 is 
ompletely 
ontained in �
 and we 
onsider the 
urvehs = hj(fsg� [0; 1℄) for s moving from 0 to 1. So we move fsg� [0; 1℄ upwards inside[0; 1℄2. If this line hits h�1(Hi) we start re
e
ting ba
k into C the point hs(t) forthose t whi
h lie inside h�1(Hi). If we meet another h�1(Hj) we add the re
e
tionsHj at the right, et
. Sin
e the di�erent h�1(Hi) are transversal to ea
h other
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ementss tFigure 6. The sets h�1(Hi) in [0; 1℄2.this is wellde�ned, in parti
ular at s = 0, where the sets (f0g � [0; 1℄) \ h�1(Hi)are disjoint by transversality. This pro
eedure transforms the smooth homotopyh : [0; 1℄2 !M to a 
ontinuous homotopy �h : [0; 1℄2 ! C whi
h 
ontra
ts 
 to x0.Thus C is simply 
onne
ted whi
h 
ontradi
ts our assumption. �2.15. Maximal torus of a 
ompa
t Lie group as manifold with re
e
tions.Let G be a semisimple 
ompa
t Lie group with Lie algebra g0 and let T be a maximaltorus in G. The Lie subalgebra t0 to T is then a Cartan subalgebra. Let � � t�be the set of roots where t = t0 
 C is the 
omplexi�
ation of t0 and where t� isthe dual spa
e of t. Ea
h root is purely imaginary on t0. We have the followingin
lusion of latti
es in t�:Z�� �anal � �alg; whereZ� is the root latti
e, generated by �,�anal is the latti
e of analyti
ally integral forms � 2 L(t0; iR); they are 
hara
-terized by the following property: whenever H 2 t0 satis�es exp(H) = 1then �(H) 2 2�iZ; equivalently: there exists a multipli
ative 
hara
ter�� : T ! S1 su
h that e�(H) = ��(exp(H)) for all H 2 t0.�alg is the weight latti
e 
onsisting of all � 2 L(t0; iR) su
h that that 2h�; �i=j�j2 2Zfor all roots � 2 �.Now exp : t0 ! T indu
es an isomorphism t0=��anal = T , where ��anal is the duallatti
e fX 2 t0 : �(X) 2 Zfor all � 2 �analg. Re
all that G has trivial 
enter ifand only if �anal = Z�, that G is simply 
onne
ted if and only if �anal = �alg,that in general �anal=Z� is the 
enter of G, and that the order of �alg=Z� equalsthe determinant of the Cartan matrix of g. The re
e
tions on T are indu
ed bythe re
e
tions in the Weyl group in t0; to visualize it we 
onsider the re
e
tionshyperplanes and the latti
e ��anal whi
h 
onsists of ve
tors orthogonal to the re
e
-tion hyperplanes. Then we 
onsider a standard fundamental domain of the additivea
tion of ��anal. We see that for Ak1 = SU (2)k all re
e
tions in T are dise
ting, butthat for semisimple nonabelian G we always get nondise
ting re
e
tions.See �g. 7 for an example: It shows for A2 = SU (3) the Cartan algebra t0 as theuniversal 
overing of T with the re
e
tion hyperplanes (bold) for W o ��anal, thelatti
e ��anal, and the fundamental domain (dashed). The re
e
tions on T are notdise
ting, and the re
e
tion group a
ts freely on the set of 
hambers in T , whi
hare numbered.
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ements 11 2 23 44 5 56Figure 7. t0 as universal 
overing of T for A2 = SU (3).3. Coxeter Riemannian manifolds3.1. Coxeter groups. [4℄ Re
all that a Coxeter group is a group G whi
h is aquotient of a free group G(S) with a set S of generators by the subgroup generatedby the relations s2 = 1 and (ss0)ns;s0 = 1 for all s; s0 2 S, where ns;s0 2 f1; 2; : : :;1gindi
ates the order of ss0 in G.The set S is 
alled a set of standard generators of G, and (G;S) is 
alled aCoxeter system for G. Any subset S0 � S generates a subgroup G(S0) � G su
hthat (G(S0); S0) is again a Coxeter system. G(S0) is 
alled a Coxeter subgroup. Theset of all Coxeter subgroups is a partially ordered set with respe
t to in
lusion. ACoxeter system is des
ribed by a Coxeter diagram with verti
es 
orresponding tothe elements of S, where s and s0 are 
onne
ted by ns;s0 � 2 edges if (ss0)nss0 = 1and 1 < nss0 < 1. The Coxeter diagram of a Coxeter subgroup (G(S0); S0) forS0 � S is obtained from the Coxeter diagram of (G;S) by deleting all verti
es inS n S0 and all edges leading to su
h verti
es.The length `(g) of an element g 2 G is the minimum number l su
h that g =si1 : : : sil for sik 2 S. It satis�es `(gg0) � `(g) + `(g0), `(g�1) = `(g), and j`(g0) �`(g)j � `(g0g�1).In a Coxeter group (G;S) let P+s := fg 2 G : `(sg) > `(g)g and P�s := sP+s .Then we have [4℄, iv, 1, 7:(1) Ts2S P+s = feg.(2) G = P+s t P�s (disjoint union) for ea
h s 2 S.(3) Let s; s0 2 S and g 2 G. If g 2 P+s and gs0 =2 P+s then s = gs0g�1.Conversely, let G be a group with a generating set S of idempotents. Let (Ps)s2Sbe a family of subset of G whi
h satis�es(4) e 2 Ps for all s 2 S.(5) Ps \ sPs = ; for all s 2 S.(6) Let s; s0 2 S and g 2 G. If g 2 Ps and gs0 =2 Ps then s = gs0g�1.Then (G;S) is a Coxeter system and Ps = P+s .3.2. Riemannian Coxeter manifold. Let G � Isom(M ) be a dis
rete subgroupof isometries of a 
omplete RiemannianmanifoldM whi
h is generated by dise
tingre
e
tions. Then (M;G) is 
alled a Riemannian Coxeter manifold.



14 ALEKSEEVSKI, KRIEGL, LOSIK, MICHOR3.3. Coxeter manifolds of 
onstant 
urvature. We re
all some 
lassi
al re-sults.Let (G;S) be a Coxeter system su
h that G is a �nite group and let S =fs1; : : : ; sng. Then there exists a unique orthogonal representation of G as a linearre
e
tion group on an Eu
lidean spa
e Rn su
h that the si are re
e
tions. The Weyl
hamber asso
iated to S is a simpli
ial 
one with walls F1; : : : ; Fn su
h that si isthe re
e
tion in Fi. Then the angle �ij between Fi and Fj is given by �ij = �=nijwhere (sisj)nij = 1 and nij is minimal. In the following table we give the list of all�nite Coxeter systems whi
h are irredu
ible in the sense that they are not a dire
tprodu
t of two (
ommuting) Coxeter subsystems.Al l � 1 s1� s2� � � � sl�Bl l � 2 s1� s2� � � � sl�1� sl�Dl l � 4 s1� s2� � � � � sl�2�� sl�1�� slE6 s1� s2� s3�� s4s5� s6�E7 s1� s2� s3� s4�� s5s6� s7�E8 s1� s2� s3� s4� s5�� s6 s7� s8�F4 s1� s2� s3� s4�Di(k + 2) k � 4 s1� k s2� G2 = Di(6)H3 m � 3 s1� 3 s2� s3�H4 m � 3 s1� 3 s2� s3� s4�If the Coxeter group has no dihedral group Di(k+2) as dire
t fa
tor, then the anglebetween two walls may only take the values � = �=n for n = 2; 3; 4; 5; 6.Conversely any simpli
ial 
one with walls F1; : : : ; Fn having angles �ij = �=nijbetween Fi and Fj where ni;j 2 N, is the Weyl 
hamber of a uniquely given Coxetersystem with �nite Coxeter group, by [32℄, theorem 1. The Coxeter diagram of (G;S)
ontains also all information about the Weyl 
hamber. The angle between the wallsFi and Fj is �ij = �=ni;j where nij�2 is the number of edges 
onne
ting the verti
essi and sj .If g 2 G preserves a 
odimension k fa
e (an interse
tion of k walls) F = Fi1 \� � � \ Fik whi
h does not 
ontain a line through 0, then it it preserves it pointwise.Namely, g has a �xed point x in the interior of F sin
e F is 
onvex. By the lemmaof Chevalley, g is 
ontained in the Coxeter subgroup generated by all re
e
tions si�xing x whi
h 
orrespond to all walls through x. Sin
e x is an inner point of F ,these walls also 
ontain F . Thus g �xes F pointwise.The angle in Fi1\� � �\Fik between Fi1\� � �\Fik\Fik+1 and Fi1\� � �\Fik\Fik+2 isin general not of the form �=n; nevertheless it is uniquely determined by the Coxetersystem.
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onstant 
urvature. Let G bea linear re
e
tion group on Rn.(1) Let S be the unit sphere of Rn. Then G a
ts on S and is generated byre
e
tions. Choose a 
hamber C in Rn and a (n� 1)-ball B in C \ S. By surgeryone may glue any 
ompa
t (n � 1)-dimensional manifold M to �B and do thisin ea
h 
hamber via the transformations of the group G. Obviously one 
an alsoput a G-invariant Riemannian metri
 on the resulting manifold, whi
h then has
ompli
ated topology but 
arries a �nite subgroup of the group of isometries whi
his generated by dise
ting re
e
tions.(2) Choose a 
hamber C in Rn and within C a regular point. Conne
t this pointby a smooth 
urve to some point in ea
h interior of ea
h wall of C. Distributingthis by G into all 
hambers of Rn yields a graph on whi
h G a
ts. Now repla
eea
h point in the walls by a S1 whi
h lies 
ompletely in the interior of the wall, andrepla
e the pie
e of the graph in the 
hamber C by a smooth 
ompa
t surfa
e whi
hall the S1's as boundary 
omponents, meeting the walls orthogonally. Distributethis to all 
hambers by the G-a
tion and obtain a smooth 
ompa
t surfa
e withindu
ed Riemannian metri
 on whi
h G a
ts as a group of isometries generated byre
e
tions.3.5. Theorem. Let (M;G) be a Riemannian Coxeter manifold. Then G is aCoxeter group and (G;S) is a Coxeter system for G, where S is the set of re
e
tionswith respe
t to the walls of C. Moreover, G a
ts simply transitively on the set of
hambers.Proof. We follow arguments from [12℄. Let Q be a 
hamber. For a re
e
tion swith respe
t to a wall F of Q we setPs := fg 2 G : gQ �M s+gwhere M s+ is the 
onne
ted 
omponet of M nM s whi
h 
ontains Q.Lemma. Ps = P+s =: fg 2 G : `(sg) > `(g)g:Proof. It is suÆ
ent to 
he
k the properties (3.1.4), (3.1.5), and (3.1.6). The�rst two properies are obvious. We 
he
k (3.1.6). Let s; s0 be re
e
tions withrespe
t to walls F; F 0 of the 
hamber Q and g 2 Ps but gs0 =2 Ps. The 
hambersQ; s0Q have a 
ommon wall W and the 
hambers gQ, gs0Q have a 
ommon wallgW . Sin
e they are on di�erent sides of the hypersurfa
e M s, the wall gW belongsto M s, see Fig. 8. Then s(gQ) = gs0Q and s0, g�1sg are two re
e
tions whi
h mapPSfrag repla
ements s0QWQ ss0 gQgWgs0Q M sM s0 M s+M s� = sM s+Figure 8.Q to s0Q. Moreover W � M s0 , and gW � M s implies W � g�1M s = M g�1sg, sothat M s0 = M g�1sg. Thus s0 = g�1sg. sg = gs0. �



16 ALEKSEEVSKI, KRIEGL, LOSIK, MICHORNow the theorem follows from (3.1). Indeed, by (2.9) the group G a
ts tran-sitively on the set of 
hambers. Assume that gQ = Q for some g 2 G. Theng 2 Ts2S Ps = Ts2S P+si = 1 by property (3.1.1). �3.6. Corollary. A dis
rete group G of isometries on a Riemannian manifold Mgenerated by re
e
tions is a quotient of a Coxeter group.Proof. This follows by (2.11), or by (2.13) and (3.5). �3.7. Question. Does there exist a dis
rete group of isometries whi
h is generatedby re
e
tions but is not a Coxeter group? If so, 
an one 
hara
terize those whi
hare Coxeter groups?3.8. Corollary. Let G be a re
e
tion group on a 
omplete 
onne
ted Riemannianmanifold M su
h that G a
ts freely and transitively on the set of all 
hambers, e.g.,a Coxeter manifold. Let C be a 
hamber. Then we have:(1) C is the Diri
hlet domain asso
iated with an interior point of C.(2) Ea
h 
hamber is 
onvex and its interior 
onsists of regular points.(3) Any 
entral hypersurfa
e Hx0;g:x0 of a regular point x0 and 1 6= g 2 G is are
e
tion hypersurfa
e.(4) M reg = Sg2G gCo.(5) Let F1 and F2 be two walls of the 
hamber C su
h that F1 = g:F2 for someg 2 G. Then F1 = F2.(6) The natural proje
tion � : M ! M=G indu
es a homeomorphism C !M=G.Proof. (1) By lemma (2.9) the 
hamber C is a union of Diri
hlet domains;but by (3.5) G a
ts simply transitively on the set of 
hambers, thus C is just oneDiri
hlet domain, by (2.3).(2) By (1) and (2.3.2) ea
h 
hamber 
onsists of regular points. For 
onvexity wehave to show that any minimal geodesi
 ar
 between two points in C is 
ontainedin C. This follows from [2℄, 3.5.(3) By (1), the union of all open 
hambers equals the union of all open Diri
hletdomains D(x) for all regular points x. Thus also their 
omplements in M are thesame: The union of all re
e
tion hypersurfa
es for G in M equals the union of all
entral hypersurfa
es with respe
t to some (ea
h) regular point. Thus the re
e
tionhypersurfa
es are exa
tly the 
entral hypersurfa
es Hg:x0;g0:x0 .(4) If x 2 Hx0;g:x0 then by (3) the isotropy group of x is not trivial, so x is notregular. Thus by (2.3.2) we have Mreg = Sg2G g:Co.(5) Let F o1 be the open interior of F1 in some 
entral hypersurfa
e H. F1 is
ontained in the interse
tion of exa
tly two 
hambers, namely F1 � C\h:C, whereh is the re
e
tion in the hypersurfa
e H. Also F2 = g:F1 = g:C \ g:h:C, but one ofthe two 
hambers must be C. Thus g = h�1 is the re
e
tion at H and so F1 = F2.(6) follows from (5) and from the fa
t that G a
ts simply transitively on the setof all 
hambers. �3.9. Let (M;G) be a 
onne
ted Riemannian Coxeter manifold and let C be a 
ham-ber. We denote by W the set of walls of C and by G(W ) the free group, generatedby involutive generators rF 
orresponding to all walls F 2 W . Sin
e G is gener-ated by re
e
tions with respe
t to walls in W , there is a natural homomorphism



REFLECTION GROUPS ON RIEMANNIAN MANIFOLDS 17G(W ) ! G. We denote its kernel by R. We de�ne the normal subgroup Ra ofangular relations of G(W )as follows:Let Fi; Fj 2 W be neighboring walls with non empty interse
tion f
ontaining a 
odimension 2 submanifold, and let Fi and Fj have an-gle �=n for a natural number n along some 
odimension 2 
onne
ted
omponent of f , then (rFirFj )n is a generator of Ra in G(W ).We denote by Mi, i = 2; 3 the 
omplement in M of the union of 
odimension � iinterse
tions of re
e
tion hypersurfa
es. Note that these interse
tions are totallygeodesi
 submanifolds as �xed point sets of �nitely many isometries.Theorem. In this situation, the group Ra of angular relations is a normal sub-group of the group R of all relations in G. Moreover, �1(M3; x0) = �1(M;x0) and�1(Co; x0) = �1(C; x0), and we have the following exa
t sequen
es of groups:f1g ! �1(Co; x0) �e G(W )! �1(M2; x0)! G(W )! G! f1gf1g ! �1(C; x0) �e G(W )=Ra ! �1(M;x0)! G(W )=Ra ! G! f1gwhere for groups H and G the group H �e G is the kernel of the proje
tion pG :H �G! G from the free produ
t to G. In parti
ular,�1(M2; x0)=(�1(Co; x0) �e G(W )) = R;�1(M;x0)=(�1(C; x0) �e G(W )=Ra) = R=Ra:Proof. By (3.8.6) the 
omposition C !M ! M=G is a homeomorphism thus�1(C; x0)! �1(M;x0) is inje
tive. By restri
tion C \M2 !M2 !M2=G is also ahomeomorphism thus �1(C \M2; x0)! �1(M2; x0) is inje
tive. By (3.8.5) we have�1(Co; x0) = �1(C; x0) sin
e a 
losed 
urve in C may be deformed into Co.Any element in �1(M;x0) 
an be represented by a 
losed smooth 
urve 
 throughx0 in M whi
h we may assume to be transversal to all interse
tions of walls. Bydimension, 
 lies in M2 and �rst meets a wall F1 of C transversally. Next it meetsa wall sF1 (F2) of sF1 (C) transversally. And so on until it 
omes ba
k to x0. Weassign to 
 the expression (word) rF1rF2 : : : rFk in G(W ). A homotopy moving 
 inM2 just allows 
an
ellations in this expression using r2F = 1. Repla
ing the rF inthis expression by the 
orresponding sF we get an element in the re
e
tion groupG whi
h maps C to C and thus is the identity, by theorem (3.5).Let fi be a �xed 
urve from x0 to sFi(x0) 2 sFi (C) hitting Fi on
e transversally.Any expression rF1 : : : rFk in G(W ) whi
h maps to the identity in G, is assigned tothe 
losed 
urve in M2 whi
h �rst follows f1 from x0 to sF1 (x0), then sF1 Æ f2 fromsF1 (x0) to sF1sF2(x0), et
., until it ends again in x0. Thus the sequen
e is exa
t atG(W ).A 
urve representing an element in �1(M2; x0) whi
h is transversal to walls 
anbe des
ribed, up to `transversal' homotopy, by a word 
0rF1
1rF2
2 : : : rFk
k where:� 
i 2 �1(sF1sF2 : : : sFi (Co); sF1sF2 : : : sFi (x0)) �= �1(Co; x0),� rFi stands for the 
urve sF1sF2 : : : sFi�1 (fi).� sF1sF2 : : : sFk = e in G sin
e the 
urve is 
losed.Thus the word des
ribes a unique element of the free produ
t �1(Co; x0) � G(W )whi
h is in the kernel of �1(Co; x0) �G(W )! G. The 
urve in �1(M2; x0) maps toe 2 G(W ) if and only if the word above also satis�es� rF1rF2 : : : rFk = e in G(W ).



18 ALEKSEEVSKI, KRIEGL, LOSIK, MICHORThese are the elements of �1(Co; x0) �e G(W ).So the �rst sequen
e is left exa
t, and surje
tivity at G follows from (2.11).The se
ond exa
t sequen
e follows from the �rst one: any homotopy in M be-tween smooth 
urves in M2 may be assumed to be transversal to all interse
tionsof re
e
tion hypersurfa
es of 
odimension � 2. Then it avoids all interse
tion of
odimension � 3, so it lies in M3. Thus �1(M;x0) = �1(M3; x0). If the homo-topy meets an interse
tion f = F1 \ F2 transversely, moving the 
urve through fmeans a 
an
ellation in the expression assigned to the 
urve whi
h is given by the
orresponding generator (rF1rF2)n of Ra. �3.10. Theorem. Let (M;G) be a simply 
onne
ted Riemannian Coxeter manifoldand let C be a 
hamber. Then we have:(1) In terms of (3.9) we have Ra = R. In other words, the relations (2.11.1)and (2.11.2) generate all relations of the Coxeter system (G;S).(2) The stabilizer Gx of a point x 2 C is a �nite Coxeter group generated byre
e
tions with respe
t to the walls Fi1 ; : : : ; Fik through x. Moreover, if Gxhas no fa
tor isomorphi
 to the dihedral group D(m) for m = 5 or > 6, thenthe angles between two walls through x take values �=n for n = 2; 3; 4; 6.For linear Coxeter groups this result was proved by Vinberg [32℄.Proof. (1) This follows from �1(M;x0) = R=Ra from (3.9).(2) Let g = sF1 : : : sFj 2 Gx. Sin
e any h 2 G preserves the union of allre
e
tion hypersurfa
es, g permutes the set of re
e
tion hypersurfa
es through x.Thus g(f) = f where f is the 
onne
ted 
omponent of Fi1 \ � � �\Fik 
ontaining x.Then C \ gC � f .We shall use the method of proof of theorem (3.9). Now 
hoose a regular pointx0 2 C near x and a 
urve 
1 in M2 from x0 to gx0 whi
h transverses the wallsFj, then sF1 (F2), et
. Choose a se
ond smooth 
urve 
2 in M2 from x0 to gx0 inM2 whi
h is near x so that it interse
ts only walls through x. Then we 
hoose ahomotopy in M between 
1 and 
2 whi
h we may assume to be transversal to all
odimension � 2 interse
tions of re
e
tion hypersurfa
es. Then it is in M3 and
uts interse
tions of two re
e
tion hypersurfa
es transversely. Moving 
1 to 
2 viathis homotopy amounts to do angular 
an
ellations (in Ra) in the representationof g. Thus g is represented also as a word in re
e
tions in hypersurfa
es through xa

ording to the transversing of 
2 of the 
orresponding walls. �4. Riemannian manifolds with 
orners of Coxeter type4.1. Manifolds with 
orners. For more details see [25℄, se
tion 2. A quadrantQ � Rn of index k is a subset of the form Q = fx 2 Rn : l1(x) � 0; : : : ; lk(x) � 0gwhere l1; : : : ; lk are independent linear fun
tionals on Rn. If x 2 Q and exa
tly j ofthe li vanish on x then x is 
alled a 
orner of index j. For an open subset U � Qa mapping f : U ! Rp is 
alled Cr (0 � r � 1) if all partial derivatives of f oforder � r exist and are 
ontinuous on U . By the Whitney extension theorem thisis the 
ase if and only if f 
an be extended to a Cr fun
tion ~f : ~U ! Rp, where~U � Rn is open and U = ~U \Q. If f : U ! U 0 is a di�eomorphism between opensubsets of quadrants in Rn then the index of x 2 U equals the index of f(x) 2 U 0.A smooth manifold with 
orners M is de�ned in the usual way: it is modelled onopen subsets of quadrants in Rn; a 
hart on M is a di�eomorphism u : U ! u(U )from an open subset U �M onto an open subset u(U ) of a quadrant in Rn, where



REFLECTION GROUPS ON RIEMANNIAN MANIFOLDS 19n = dim(M ). The 
hart (U; u;Q) is 
alled 
entered on x if u(x) = 0. A pointx 2 M is 
alled a 
orner of index j if there is a 
hart (U; u;Q) of M with x 2 Uand and u(x) a 
orner of index j in Q.A subset N � M is 
alled a submanifold with 
orners of the manifold with
orners M , if for any y 2 N there is a 
hart (U; u;Q) of M 
entered at y and thereis a quadrant Q0 � Rk � Rn su
h that Q0 � Q and u(N \ U ) = u(U ) \ Q0. Asubmanifold with 
orners N of M is 
alled neat if the index in N of ea
h y 2 N
oin
ides with its index in M . Only neat submanfolds have tubular neigborhoods.Let us denote by �jM the set of all 
orners of index j ofM . Note that �0M = M .Then ea
h �jM is a submanifold without boundary of M . Let �M := Sj�1 �jM .Ea
h 
losure (in M ) of a 
onne
ted 
omponent of �jM is a submanifold with
ornes of M whi
h is 
alled a 
odimension j fa
e of M ; it is of dimension n� j. A
odimension 1 fa
e is also 
alled a wall. A fa
e is not neat. The set of all fa
es is apartially ordered set with respe
t to in
lusion.The tangent bundle of a manifold with 
orners M is 
onstru
ted in the follow-ing way: Let (U�; u�; Q�) be an atlas of M . Then TM is the quotient spa
e ofthe disjoint union F�(f�g � U� � Rn)= � by the following equivalen
e relation:(�; x; v) � (�; y; w) if x = y and d(u� Æ u�1� )(u�(x))v = w. Then �M : TM !M isa smooth ve
tor bundle, and the total spa
e TM is again a manifold with 
orners:the 
orners are all in the base.A tangent ve
tor X is 
alled inner (short for: not outer) if there is a smooth
urve 
 : [0; 1) ! M with _
(0) = X. If X 2 TxM and if (U; u;Q) is a 
hartwith x 2 U , and if the quadrant Q is given by the independent linear fun
tionalsl1; : : : ; lk, and if Tu(X) = (u(x); v) 2 u(U )�Rn, then X is inner if and only if thefollowing holds: If li(u(x)) = 0 then li(v) � 0, for all i. Let us 
all the tangentve
tor stri
tly inner if li(u(x)) = 0 implies li(v) > 0, for all i. Let us denote thespa
e of all inner ve
tors by iTM � TM . It is not a manifold with 
orners anymore. For example, iT [0;1) = f(x; v) : x � 0; x = 0 =) v � 0g.An inner ve
tor �eld on M is a smooth ve
tor �eld X :M ! TM whose valuesare all inner tangent ve
tors. By pasting lo
al solutions one 
an show that thereexists a smooth open semi
ow ofX in the following sense: There is a setW � R�M
ontaining f0g�M and [0; "x)�fxg for some "x > 0 for ea
h x 2M and a smoothmapping FlX : W !M with FlX0 (x) = x and ddt FlXt (x) = X(FlXt (x)). But FlXt isnot even a lo
al di�eomorphism (it may map a 
orner to an interior point).By a partition of unity argument one 
an show that there exists a smooth ve
tor�eld Y on M whi
h is stri
tly inner, and one may adapt it in su
h a way that its
ow FlYt is de�ned everywhere on M for 0 � t � " for " > 0. Then FlY" maps Minto its interior M n �M . Thus: Ea
h manifold with 
orners M is a submanifoldwith 
orners of a manifold without boundary of the same dimension. See also [18℄.Let X be a ve
tor �eld on M whi
h is tangential to the boundary: if x 2 �jMthen X(x) 2 Tx�jM for all j. Then there exists a lo
al 
ow for X for positive andfor negative time; the set W � R�M is open.4.2. Equipment of a manifold with 
orners. Let M be an n-dimensionalmanifold with 
orners. Consider a surje
tive mapping s from the set W of all walls(
odimension 1 fa
es) of M onto the set of generators S of a Coxeter system (G;S)(see (3.1)). Any fa
e f of M of 
odimension k is the interse
tion of k many wallsW1; : : :Wk (but not 
onversely). Then we extend the map s to a map s from the
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es of M into the set of Coxeter subgroups of G as follows :s : f = F1 \ :::\Fk 7! s(f) = G(s(F1); :::s(Fk))where G(s(F1); :::s(Fk) is the subgroup of G generated by s(F1); :::s(Fk).The mapping s is 
alled a Coxeter equipment ofM by the Coxeter system (G;S),if G(F ) is a �nite group for ea
h fa
e of 
odimension � 1. It follows that s is anpartial order reversing homomorphism of the poset of all fa
es of M into the posetof all Coxeter subgroups of the Coxeter system (G;S) if we also put s(;) = G. Notethat s(M ) = f1g.4.3. Riemannian manifolds with 
orners. A Riemannian metri
 on a man-ifold with 
orners M is as usual a smooth se
tion 
 : M ! S2+T �M . So it 
anbe smoothly extended to a Riemannian metri
 on a manifold without boundaryof the same dimension whi
h 
ontains M as a submanifold with 
orners. If theRiemannian metri
 has the property that ea
h 
losure of a fa
e is a totally geo-desi
 submanifold, then for ea
h ea
h inner tangent ve
tor Xx 2 iTxM the geodesi
t 7! expx(tXx) is de�ned for small nonnegative t.This 
an be expressed by the property of the geodesi
 spray to be `inner' and`tangential' to all boundary strata �jM , see [25℄, se
tion 2. In detail: A ve
tor� 2 TTM is 
alled an inner tangent ve
tor to iTM if there exists a smooth 
urve
 : [0; ")! TM with �TM(�) = 
(0), 
([0; ")) � iTM , and 
0(0) = �. For example,let Q = fx 2 Rn : l1(x) � 0; : : : ; lk(x) � 0g be a quadrant and let (x; u) 2 iTQ. Ave
tor (x; u; v; w) 2 T 2Q then is inner to iTM if and only if:(1) If x is inner, so u is arbitrary, then (v; w) is arbitrary.(2) If li(x) = 0 and li(u) > 0 then li(v) � 0 and w is arbitrary.(3) If li(x) = 0 and li(u) = 0 then li(v) � 0 and li(w) � 0.Let us denote by iT 2M the set of all ve
tors whi
h are inner to iTM . A spray Son the manifold with 
orners M is a smooth mapping S : TM ! T 2M su
h that(4) T (�M ) Æ S = IdTM .(5) �TM Æ S = IdTM .(6) T (mt):S(X) = 1tS(t:X) for 0 6= t 2 R, where mt : TM ! TM is s
alarmultipli
ation by t.The spray is 
alled inner if S(iTM ) � iT 2M and it is 
alled tangential if moreoverS is tantent to ea
h boundary stratum: S(T�jM ) � T 2(�jM ).If 
 is a smooth Riemannian metri
 on the manifold with 
orners M , then wemay extend 
 to a Riemannianmetri
 ~
 on a suitable open manifold ~M of the samedimension whi
h 
ontains M as submanifold with boundary. We may 
ompute thegeodesi
 (Levi-Civita) spray ~S of ~
 and restri
t it again to TM . This spray isan inner tangential spray if and only if in (M;
) all 
losures of fa
es are totallygeodesi
 submanifolds, and we have exp = �M Æ FlS1 .Thus we 
on
lude (see also [25℄, 2.10):Lemma. [25℄, 2.10 Let 
 be a Riemannian metri
 on a manifold with 
orners Msu
h that all fa
es are totally geodesi
. Then there exists a suitable open neigh-borhood V of the zero se
tion in T iM su
h that the geodesi
 exponential mappingexp : V !M is de�ned. If V is small enough then exp has the following properties:(1) exp(0x) = x for all x 2M .(2) expx : Vx := V \ T ixM ! M is a di�eomorphism of Vx onto an openneighborhood Wx of x in M .
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tion of an open ball Bx � (TxM;
x) with a quadrantQx � TxM .(4) The mapping (�M ; exp) : V ! M �M is a di�eomorphism onto an openneighborhood of the diagonal in M �M .(5) exp restri
ts to the exponential mapping of the indu
ed Riemannian metri
on ea
h 
losure of a fa
e.4.4. Riemannian 
hambers and their Coxeter equipment. An Riemannian
hamber is a manifold with 
orners C with a Riemannian metri
 
 su
h that ea
hfa
e is totally geodesi
 and su
h that the following two 
onditions (1) and (2) aresatis�ed.(1) The angle between neighboring walls Wi and Wj is a 
onstant of the form�=nij for nij 2 N along any 
odimension 2 
onne
ted 
omponent ofWi\Wj .Let V � T iC be small as in (4.3). Then expx : Vx = V \ T ixC ! Wx � C is adi�eomorphism. Re
all from (4.3) that Vx is the interse
tion of an open ball Bx in(TxC; 
x) with a quadrant Qx whose walls 
ontain the inverse images under expx ofthe 
losed walls of C 
ontaining x. The angles between the hyperplanes TxWi andTxWj in the Eu
lidean spa
e (TxC; 
x) are exa
tly �=nij, by (1). By [32℄, theorem1, this equivalent to the fa
t that the group Gx � O(TxC; gx) generated by there
e
tions in the hyperplanes TxWi is a �nite Coxeter group with fundamentalWeyl 
hamber R�0:Vx.Consider the pullba
k Riemannian metri
 (expx jVx)�
 on Vx. Now we 
an for-mulate the se
ond 
ondition:(2) If we extend the Riemannian metri
 (expx jVx)�
 on Vx to the ball Bx =Gx:Vx by using the elements of Gx as isometries, then the resulting Gx-invariant Riemannian metri
 ~
Bx on Bx is smooth.If G is a dis
rete group of isometries of a 
omplete Riemannian manifold (M;
)whi
h is generated by dise
ting re
e
tions, and if a 
hamber C is also a Diri
hletdomain, then obviously (C; 
) is a Riemannian 
hamber.Proposition. Any Riemannian 
hamber C 
arries a universal Coxeter equipment.Proof. Let fWig be the set of all walls of C. For ea
h wall Wi of C wetake a generator si. Then let G be the group generated by all si, with relations(sisj)nij = 1, whenever Wi \Wj 6= ; and where the angle between Wi and Wj is�=nij. Then G is a Coxeter group with Coxeter system (G; fsig). For ea
h x 2 Cwe 
onstru
ted in (4.4) a linear Coxeter group Gx � O(TxC; gx) whi
h is generatedby those si for whi
h x 2 Wi. Obviously, Gx is a �nite subgroup of G. Moreover,let F =W1\ : : :Wk be a nonempty fa
e. Then G(F ) is generated by the re
e
tionss1; : : : ; sk whi
h satisfy pairwise (sisj)nij = 1 for 2 � nij <1. Thus G(F ) is �nitefor ea
h nonempty fa
e. �The Coxeter equipment 
onstru
ted in this proposition is 
alled universal sin
ethe mapping s is inje
tive. Other Coxeter equipments are possible, if di�erent wallsare mapped to the same generator in su
h a way, that the isotropy group of ea
hfa
e F stay isomorphi
 to G(F ) as above, and the full group is still a Coxeter group.Thus we say that a Coxeter equipment s of the Riemannian 
hamber C is ad-missible, if for any two di�erent walls Wi and Wj with nonempty interse
tion theelement s(Wi)s(Wj ) has order exa
tly nij in G, where the angle between Wi and



22 ALEKSEEVSKI, KRIEGL, LOSIK, MICHORWj is �=nij. The right hand side of �g. 2 gives an example of a not universalequipment.4.5. The Coxeter Riemannian manifolds asso
iated with a Riemannian
hamber. Note that by (2.11) and (3.9) the Weyl 
hamber C of a Coxeter G-manifoldM has the natural stru
ture of a Riemannian 
hamber with the admissibleequipment s : F 7! s(F ) = hs 2 S : M s � F i. In the non-dise
ting 
ase this is nottrue: In (2.10) the 
hamber of the non-dise
ting re
e
tion on RP2 equals RP2 andthe generating re
e
tion is not asso
iated to a wall sin
e RP2 has no boundary.For Coxeter manifolds the 
onverse statement is also true as the following theo-rem shows.Theorem. Let C be a Riemannian 
hamber.Then to ea
h admissible Coxeter equipment G of C there exists a smooth Rie-mannian manifold U(G;C) without boundary and a dis
rete subgroup G of isome-tries whi
h is generated by re
e
tions su
h that C is isometri
 to a 
hamber of Mwhi
h is also a Diri
hlet domain.If C is 
onne
ted then also M is 
onne
ted. If the equipment G = Guniv isthe universal one then G is generated by dise
ting re
e
tions and �1(U(G;C)) =�1(C) �e Guniv. In general we have an exa
t sequen
e:f1g ! �1(C) �e Guniv ! �1(U(G;C))! Guniv ! G! f1g:Proof. We use �rst the universal equipment. Let fFig be the set of all 
losuresof walls of C. We 
onstru
t �rst the group G, as follows. For ea
h wall Fi of Cwe take a generator si of G. Then G = Guniv is the group generated by all si andwith relations (sisj)nij = 1, when Fi \ Fj 6= ; and where the angle between Fiand Fj is �=nij. For ea
h x 2 C we 
onstru
ted in (4.4) a linear Coxeter groupGx � O(TxC; gx) whi
h is generated by those si for whi
h x 2 Fi. Obviously, Gxis a subgroup of G.Now we 
onstru
t M = U(G;C) as topologi
al spa
e by putting U(G;C) :=G�C= � where(g:si; x) � (g; si(x)) = (g; x) for x 2 Fi; or equivalently(g; x) � (h; y)() x = y and g�1h 2 Gx:So U(G;C) is a quotient of the disjoint union of jGj 
opies of C whi
h are gluedtogether only along walls.We 
onstru
t an atlas for U(G;C) as follows, using the arguments from (4.4).For a 
orner x of C 
onsider the Riemannian metri
 ~
Bx on the open ball Bx � TxCwhi
h is smooth by 
ondition (4.4.2), and the smooth exponential mapping expx :Vx = Bx \Qx !Wx � C. We extend it to a Gx-equivariant homeomorphism ~expxfrom Bx to the open neighborhood Ux = Sg2Gx (fgg �Wx) of x in M by putting~expx(g:X) = (g; expx(X)) for X 2 Vx and g 2 Gx. Then (Ux; ux := ~expx�1 : Ux !Bx 2 TxC) is a 
hart on M .If x 2 C is a regular point we use the inverse of the exponential mapping on su
ha small neigborhood of 0 in TxC that its image does not meet any wall. These 
hartswe the distribute fromC = fIdg�C to the whole ofM by using the transformationsfrom g.We 
laim that this gives a smooth atlas for U(G;C): Suppose that x and y are
orners of C su
h that Wx \Wy 6= ;. We have to show that ux Æ u�1y is smooth.
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e we may 
onne
t x and y by �nitely many
hart 
hangings with this property. But then this is a 
hart 
hange of exponentialmappings at di�erent base points of the smooth Riemannian metri
 in Bx � TxC.Finally, G a
ts on the smooth manifold U(G;C) by 
onstru
tion: g:(g1; x) =(gg1; x), and it 
onsists of isometries. By 
onstru
tion G a
ts freely and transitivelyon the set of all 
hambers of U(C;G). We 
laim that the generators si of G aredise
ting. Suppose for 
ontradi
tion that a generator s is not dise
ting. Chooseregular point x0 2 Co and a smooth 
urve 
 in U(C;G) n U(C;G)s from x0 to s:x0whi
h is transversal to all interse
tions of re
e
tion hypersurfa
es. Then 
 passesfrom C to a neighbor si1C, then to a neighbor si1si2C of si1C, and so on, till itrea
hes the 
hamber si1 : : : sikC = sC 
ontaining s:x0. None of the sij equals ssin
e 
 does not meet U(C;G)s. Sin
e G a
ts freely and transitively on the set of
hambers we have s = si1 : : : sik in G, a 
ontradi
tion. (WHY??)Finally, for a general admissible equipment we have a normal subgroup R � Gof further relations whi
h by the des
ription of an admissible equipment a
ts freelyand dis
retely on the universalM whi
h thus is a 
overing of the resulting manifold.The statement on fundamental groups follows from (3.9). �4.6. Remark. We 
an also 
onsider manifold with 
orners C with a smooth Rie-mannian metri
 g whi
h satis�es only 
ondition (4.4.1). Then we 
an 
onstru
t atopologi
al manifold M whi
h is smooth o� the union of all re
e
tion hypersur-fa
es, with a Riemannian metri
 whi
h is only 
ontinuous along the the re
e
tionhypersurfa
es, in general. It might be worthwile to study this obje
t.4.7. Theorem. Let C be a manifold with 
orners with a Coxeter equipments :W 7! s(W ) 2 S where (G;S) is a Coxeter system.Then there exists a Riemannian metri
 
 su
h that (C; 
) is a Riemannian 
ham-ber and s is an admissible equipment for it.Proof. We 
onstru
t the metri
 indu
tively starting from fa
es whi
h are man-ifolds without boundary. On ea
h su
h fa
e F we put an arbitrary Riemannianmetri
 
F .Now let F be a fa
e whi
h 
ontains 
orners of index (in F ) at most 1, i.e., F is amanifold with boundary �F whi
h is a disjoint union of fa
es F1 without boundary.Along ea
h boundary 
omponent F1 of F we 
onsider an open 
ollar F1� [0; 1) � Fand extend the metri
 by 
(x; t) = dt2+
F1 (x) where x 2 F1 and t is the 
oordinatefun
tion on [0; 1). With a partition of unity we may extend this metri
 to the wholeof F in su
h a way that near ea
h F1 it is not 
hanged. Note that F1 is totallygeodesi
 in F , and that the metri
 is 
onstant in the dire
tion t normal to F1.Now let F be a fa
e whi
h 
ontains 
orners of index (in F ) at most 2, i.e., �F
ontains walls F i1 of F whi
h are manifolds with boundary. We already de�nedRiemannian metri
s 
F i1 on F i1. If F2 is a boundary 
omponent of F 11 \ F 21 we
onsider an open tubular wedge neigbourhood F2�D of F2 in F with the followingproperty. Ea
h �ber fxg �D interse
ts F i1 exa
tly in the �ber fxg � [0; 1) of that
ollar of F2 in F i1 for ea
h x 2 F2 whi
h was used above to 
onstru
t the Riemannianmetri
 on F i1. The �ber D � R2 is an open 0-neighborhood in a quadrant with angle�F (F 11 ; F 21 ) as in �g. 9. Here �F (F 11 ; F 21 ) is determined by the Coxeter equipment:If in terms of walls Wi of C we haveF = Wi1 \ � � � \Win�2 ;
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ements F 11 F 21F2 D�Figure 9. The tubular wedge neigborhood F2 �D and its �ber D.F 11 = Wi1 \ � � � \Win�2 \Win�1 ; F 21 = Wi1 \ � � � \Win�2 \Win ;F2 = Wi1 \ � � � \Win�2 \Win�1 \Win ;then �F (F 11 ; F 21 ) is determined by the (�nite) Coxeter system (G(F2) = G(S0); S0)where S0 = fsi1 ; : : : ; sing, by 
onsidering the angle between and in the 
orrespond-ing fa
es in the Weyl 
hamber of (G(S0); S0), as de
ribed in (3.3).We now put the produ
t metri
 
D(u) + 
F2(x) for (x; u) 2 F2 � D on thetubular wedge neigbourhood F2 � D, where 
D is the standard Eu
lidean metri
on R2 restri
ted to D. This gives a metri
 on F2 � D whi
h indu
es the already
onstru
ted metri
 
F i1 on the interse
tion with F i1 sin
e F2�D interse
ts F i1 in the
ollar used to 
onstru
t 
F i1 . Moreover F2 and the parts of F i1 are totally geodesi
,and the metri
 is 
onstant in dire
tions normal to any relevant fa
e, near that fa
e.We do this 
onstru
tion near any fa
e of 
odimension 2 of F . Then we use a
ollar (F i1 n �F i1)� [0; 1) of the interior of the fa
e F i1 in F su
h that the �ber nearany F2 
oin
ides with the normal geodesi
 in F2�D in the metri
 
onstru
ted there.Put the metri
 dt2 + 
F i1 (x) for (x; t) 2 (F i1 n �F i1) � [0; 1) on this 
ollar, and usea partition of unity on the union of all these 
ollars and the wedge neighborhoodswhi
h is 
onstant in the normals near any fa
e to glue the metri
s in su
h a waythat the resulting metri
 is 
onstant in the normal dire
tions near any fa
e andea
h fa
e is totally geodesi
. With another partition of unity we extend this metri
into the interior of F and not 
hanging it near any fa
e.We pro
eed indu
tively. We assume that we have already 
onstru
ted in thisway metri
s on ea
h fa
e whi
h 
onsists of 
orners of index � k in C and 
onsidernow a fa
e F whi
h 
onsists of 
orners of index � k � 1 in C. Then the boundary�F is a union of fa
es where we alredy 
onstru
ted the metri
. Let Fk be a minimalfa
e in �F , i.e., Fk does not 
ontain any other fa
e. Then Fk is a manifold withoutboundary where we already have a metri
 
Fk . Moreover Fk is the transversalinterse
tion of k walls F 11 ; : : : ; F k1 of F , where k is the 
odimension of Fk in F . Wethen 
hoose a tubular wedge neighbourhood Fk � Dk of Fk in F whi
h interse
ts�ber respe
tingly ea
h interse
tion of k � 1 of the walls F 11 ; : : : ; F k1 of F in thetubular wedge neighborhood whi
h was used previously to 
onstru
t the metri

F i1 on ea
h of the walls. Here Dk is an open 0-neighborhood in a quadrant in Rkwith walls whose angles �F (F i1; F j1 ) are determined by the Coxeter equipment asdes
ribed above. We now put the metri
 
Dk(u) + 
Fk (x) for (x; u) 2 Fk �Dk onthe tubular wedge neigbourhood Fk � Dk, where 
Dk is the standard Eu
lideanmetri
 on Rk restri
ted to Dk. This gives a metri
 on Fk �Dk whi
h indu
es thealready 
onstru
ted metri
 
F i1 on the interse
tion with F i1 sin
e Fk�Dk interse
tsF i1 in the tubular wedge neighborhood used to 
onstru
t 
F i1 . Moreover Fk and the
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, and the metri
 is 
onstant in dire
tions normal toany fa
e near that fa
e.We do this 
onstru
tion near any minimal fa
e of F . Then we use a 
ollar(F i1 n �F i1) � [0; 1) of the interior of the fa
e F i1 in F su
h that the �ber nearany minimal fa
e Fl 
oin
ides with the normal geodesi
 in Fl � Dl in the metri

onstru
ted there. Put the metri
 dt2 + 
F i1 (x) for (x; t) 2 (F i1 n �F i1) � [0; 1) onthis 
ollar, and use a partition of unity on the union of all these 
ollars and thewedge neighborhoods whi
h is 
onstant in the normals near any fa
e, to glue themetri
s in su
h a way that the resulting metri
 is 
onstant in the normal dire
tionsnear any fa
e and ea
h fa
e is totally geodesi
. With another partition of unity weextend this metri
 into the interior of F .Eventually we exhaust ea
h 
onne
ted 
omponent of C. �4.8. Proposition. Let C be a manifold with 
orners with a Coxeter equipment s :W 7! s(W ) 2 S where (G;S) is a Coxeter system. Let 
 and 
0 be two Riemannianmetri
s on C su
h that (C; 
) and (C; 
0) are both Riemannian 
hambers and s isan admissible equipment for both.Then the smooth manifolds U(G;C; 
) and U(G;C; 
0) 
onstru
ted via (4.5) aredi�eomorphi
.Proof. Sin
e the 
onstru
tion as a topologi
al spa
e des
ribed in the proof of(4.5) depends only on the equipment, the two manifolds are 
anoni
ally homeo-morphi
. For a 
orner x 2 C let ux : Ux ! Bx � TxC and u0x : U 0x ! Bx � TxCbe two 
harts as des
ribed in the proof of (4.5) for the two Riemannian metri
s
 and 
0. But then the 
hart 
hange u0x Æ u�1x , 
onsidered in a manifold withoutboundary whi
h 
ontains C as a submanifoldwith 
orners (see (4.1)), 
onsists of theexponential mapping of the extended Riemannian metri
 ~
 followed by the inverseof the exponential mapping of ~
0, whi
h is obviously smooth. Thus the 
anoni
alhomeomorphism between U(G;C; 
) and U(G;C; 
0) is a di�eomorphism. �5. Orbifolds5.1. Smooth orbifolds. We re
all the de�nition of orbifold. Let X be a se
ond
ountable Hausdor� spa
e. An atlas of a smooth n-dimensional orbifold (or V -manifold) on X is a family fUigi2I of open sets that satisfy:(1) fUigi2I is an open 
over of X.(2) For ea
h i 2 I a lo
al uniformizing system 
onsisting of a triple f ~Ui; Gi; 'ig,where ~Ui is a 
onne
ted open subset of Rn 
ontaining the origin, Gi is a�nite group of di�eomorphisms a
ting e�e
tively and properly on ~Ui, and'i : ~Ui ! Ui is a 
ontinuous map of ~Ui onto Ui su
h that 'i Æ g = 'i for allg 2 Gi and the indu
ed map of ~Ui=Gi onto Ui is a homeomorphism. The�nite group Gi is 
alled a lo
al uniformizing group.(3) Given ~xi 2 ~Ui and ~xj 2 ~Uj su
h that 'i(~xi) = 'j(~xj), there is a di�eomor-phism 'ij : ~Vj ! ~Vi from a neighborhood ~Vi � ~Ui of ~xi onto a neighborhood~Vj � ~Uj of ~xj su
h that 'i = 'j Æ 'ji.Two atlases are equivalent if their union is again an atlas of a smooth orbifold onX.An orbifold is the spa
e X with an equivalen
e 
lass of atla
es of smooth orbifoldson X.



26 ALEKSEEVSKI, KRIEGL, LOSIK, MICHORProposition. [31℄ If M is an n-dimensional smooth manifold and G is a groupa
ting smoothly and dis
retely on M , then X =M=G has a stru
ture of orbifold.Proof. Let x 2 X. Choose ~x 2 M proje
ting to x, and denote by Gx theisotropy group of ~x. Choose a neigborhood of ~Ux invariant by Gx and disjoint fromg(Ux) for all g 2 G n Gx su
h that there is a lo
al 
hart k : Ux ! ~Ux � Rn onM with k(x) = 0. We take ( ~Ux; Gx; 'x), where 'x is a 
omposition of k�1 withthe proje
tion ~U ! ~U=Gx, for a lo
al uniformizing system. It is easily 
he
kedsu
h lo
al uniformizing systems form an atlas of a smooth n-dimensional orbifoldon M=G. �In the de�nition of atlas of a smooth orbifold on X we 
an always take the �nitesubgroups Gi to be subgroups of the orthogonal group O(n) a
ting naturally onRn. Condition (3) implies that for ea
h gi 2 Gi there exists gj 2 Gj su
h that'ji Æ gi = gj Æ 'ji.Let f ~Ui; Gi; 'ig be a unifomizing system su
h that ~Ui 
ontains the origin, thegroup Gi is a subgroup of O(n), and x = 'i(0). Then the group Gx = Gi isindependent of the uniformizing system f ~Ui; Gi; 'ig. More pre
isely, this group isde�ned up to isomorphism and its a
tion on Rn is de�ned up to isomorphism aswell. The point x 2 X is 
alled regular if the 
orresponding group Gx is trivial andotherwise singular.5.2. Re
onstru
tion of the orbifold stru
ture from the stru
ture sheaf.Let again f ~Ui; Gi; 'ig be a unifomizing system su
h that ~Ui 
ontains the origin,the group Gi is a subgroup of O(n), and x = 'i(0). Then there is a representation� : Gi ! O(n), a ball B in Rn 
entered at the origin, and a map ' : B ! X su
hthat '(0) = x and fB;Gi; 'g is a uniformizing system of the orbifold X.A fun
tion f : Ui ! R is 
alled smooth if f Æ'i is a smooth fun
tion on ~U . Thegerms of smooth fun
tions on X de�ne a sheaf SX on X.5.3. De�nition. Let X and ~X be two smooth orbifolds. The orbifold ~X is 
alleda 
overing orbifold for X with a proje
tion p : ~X ! X if p is a 
ontinuous map ofunderlying topologi
al spa
es and ea
h point x 2 X has a neighborhood U = ~U=G(where ~U is an open subset of Rn) for whi
h ea
h 
omponent Vi of p�1(U ) isisomorphi
 to ~U=Gi, where Gi � G is some subgroup. The above isomorphismsU = ~U=G and Vi = ~U=Gi must respe
t the proje
tions.Note that the proje
tion p in the above de�nition is not a 
over of underlyingtopologi
al spa
es.Hereafter we suppose that all orbifolds and their 
overing orbifolds are 
onne
ted.5.4. Theorem. [31℄ An orbifold X has a universal 
overing orbifold p : ~X ! X.More pre
isely, if x 2 X, ~x 2 ~X are regular points and p(~x) = x, for any other
overing orbifold p0 : ~X 0 ! X and ~x0 2 ~X 0 su
h that p0(~x0) = x there is a 
overq : ~X ! ~X 0 su
h that p = p0 Æ q and q(~x) = ~x0. For any points ~x; ~x0 2 p�1(x) thereis a de
k transformation of ~X taking ~x to ~x0.Suppose � : G! O(n) is a representation of a �nite group G, Rn=G is the 
or-responding orbifold, and SRn=G is the 
orresponding sheaf. By the Hilbert theoremthe ring R[Rn℄G is �nitely generated. Let �1; : : : ; �m be a system of homogeneousgenerators of R[Rn℄G and y1; : : : ; ym the 
orresponding fun
tions on Rn=G. Con-sider the map � = (�1; : : : ; �m) : Rn ! Rm 
alled the orbit map. It is known
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es a homeomorphism between �(Rn) and the orbit spa
eRn=G whi
h establishes an isomorphism between the restri
tion of the sheaf C1m ofsmooth fun
tions on Rm to �(Rn) and the sheaf SRn=G.It is 
lear that for ea
h orbifold X and x 2 X there is a neghborhood Ux and arepresentation � : Gx ! O(n) su
h that the restri
tion of SX to Ux is isomorphi
to the restri
tion of the sheaf SRn=Gx to some ball 
entered at the origin.For a representation � : G ! O(n) a di�eomorphism of the orbit spa
e Rn=Gis an automorphism of the sheaf SRn=G by de�nition. Let f : Rn=G! Rn=G be adi�eomorphism and h1; : : : ; hm a system of generators of SRn=G. Then f is uniquelyde�ned by the images of generators hi and these images are the generators of SRn=Gagain. Denote by R the set of all re
e
tions 
ontained in G and by A(G;R) the setof all automorphisms of the group G whi
h preserves the set R.5.5. Theorem. [23℄ For ea
h di�eomorphism f of the orbit spa
e Rn=G thereis a smooth lift F : Rn ! Rn. For ea
h su
h lift F there is an automorphisma 2 A(G;R) su
h that for all g 2 G and x 2 Rn=G we have F (gx) = a(g)F (x).The lo
al version of this theorem is also true, i.e. if B is a ball in Rn 
enteredat the origin and f is a di�eomorphism of the sheaf SB=G, then there is a smoothlift F : B ! B with the same property as above.5.6. Theorem. An orbifold X is de�ned uniquely by its sheaf SX .Proof. Note that for a regular point x 2 X the ring SX (x) of the germs ofSX at x is isomorphi
 to the ring of germs at 0 of smooth fun
tions on Rn. Thenthe dimension of the orbifold X is de�ned by the sheaf SX . Next note that if� : G! O(n) is a representation of a �nite group G, then the group preserving allsmooth G-invariant fun
tions on Rn 
oin
ides with �(G). If this group is in�nitethere is a regular point with non trivial stabilizer, whi
h is impossible. The resultthen follows from the fa
t that the order of G equals the 
ardinality of a regularorbit.It is suÆ
ient to prove that for ea
h a �nite group G, a representation G! O(n),a ball B in Rn, and the map ' : B ! X whi
h indu
es an isomorphism of the sheafSB=G and the restri
tion SU of the sheaf SX to some open subset U ofX, fB;G; 'gis a uniformizing system on X.Let fB1; G1; '1g be su
h a uniformizing system, 
orresponding to the represen-tation �1 : G1 ! O(n), '(0) = x, and fB2; G2; '2g a uniformizing system of theorbifold X whi
h is indu
ed by some representation �2 : G2 ! O(n) su
h that'2(0) = x. We may assume that B1 = B2 = B and '1(B) = '2(B) = U . Then therings of fun
tions on B whi
h are 
ompositions of '1 and '2 with the se
tions ofSX on U 
oin
ides. By the above remark �1(G1) = �2(G2) = G.For i = 1; 2 denote by �'i the di�eomorphism B=G ! U indu
ed by 'i. Then�'�12 Æ �'1 is a di�eomorphism of B=G. By Theorem (5.5) there is a smooth liftB ! B of this di�eomorphism. But this means that fB1; G1; '1g is a uniformizingsystem of the orbifold X. �5.7. Corollary. Let a group G a
ts dis
retely on a smooth simply 
onne
tedmanifold M and SX the 
orresponding sheaf on X = M=G. Then M is a universal
overing orbifold for X.Proof. Evidently manifold M is a 
overing orbifold for X. If ~X is universal
overing orbifold for X, then there is a 
over q : ~X ! M . By the de�nition
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over ~X should be a manifold and q a 
over of mani�lds. Therefore q is adi�eomorphism. �Theorems (5.6) and (5.7) imply the following statement.5.8. Corollary. Let a group G a
t dis
retely on a smooth simply 
onne
ted mani-fold M and SX the 
orresponding sheaf on X = M=G. Then ea
h di�eomorphismof the orbit spa
e X, i.e. an automorphism of the sheaf SX has a smooth lift to M .6. Coxeter orbifold6.1. Coxeter orbifolds. A smooth orbifold X is 
alled a Coxeter orbifold if forea
h lo
al uniformizing system ( ~Ui � Rn; Gi � O(n); 'i) the group Gi is a �nitelinear Coxeter group.6.2. Example. Let M be a Coxeter Riemannian manifolds with re
e
tion groupG. Then any Weyl 
hamber is a Coxeter orbifold. This follows from proposition(5.1) and (2.11).6.3. Coxeter orbifold as a manifoldwith 
orners and its universal Coxeterequipment. Let X be a Coxeter orbifold. Let ( ~Ui; Gi; 'i)i2I be an atlas of lo
aluniformizing systems on X su
h that (Ui) is an open 
over of X. Then ~Ui � Rn isan open neighborhood of 0 whi
h is invariant under the Coxeter group Gi. Thusthe orbit spa
e ~Ui=Gi is an open neighborhood of 0 in a linear Weyl 
hamber of thegroup Gi. The (equivariant) 
hart 
hangings 'ij indu
e smooth 
hart 
hangingsbetween open subsets of ~Uj=Gj and ~Ui=Gi. These respe
t the indi
es of 
orners(see (4.1)). Thus they des
ribe a smooth atlas for the stru
ture of a manifold with
orners on X. So walls and fa
es are de�ned and to ea
h wallW one 
an asso
iate agenerator s(W ) of the Coxeter system with the following property: IfW\Ui 6= ; fora lo
al uniformizing system ( ~Ui; Gi; 'i), then s(W ) equals the generator ofGi whi
his given by the re
e
tion in the wall '�1i (W ) � ~Ui. Then (s(W )s(W 0))n(W;W 0) = 1if '�1i (W ); '�1i (W 0) 6= ; the generators 
orresponding to them in Gi satisfy thesame relation.6.4. Theorem. Any Coxeter orbifold is the Weyl 
hamber of a RiemannianCoxeter manifold.Proof. This follows from (6.3) and (4.7). �6.5. Corollary. Any Coxeter orbifold is good in the sense of Thurston [31℄.6.6. Coxeter orbifold stru
tures on a simplex. Let �n be the standard n-simplex with verti
es 0; 1; : : : ; n. If s is a Coxeter (G;S)-equipment of �n, thenthere exist a Riemannian metri
 
 on �n, su
h that (�n; 
) is a Riemannian 
ham-ber and the equipment s is admissible. We denote byM = U(G;�n; s; 
) the asso
i-ated Coxeter G-manifold. It is simply 
onne
ted. The homeomorphismM=G �= �nde�ne on �n a stru
ture of Coxeter orbifold, with the universal 
overing manifoldM , whi
h depends only on the equipment s, by (4.8). Hen
e, a des
ription of Cox-eter orbifold stru
tures on �n and also Coxeter G-manifolds with the orbit spa
e�n up to a G-di�eomorphism redu
es to a des
ription of Coxeter equipments of �.For any �nite Coxeter group G with the generators S = fs0; : : : ; sng there exista unique natural equipment su
h that the wallWi = (0; 1; : : : ;bi; : : : ; n) 
orrespondsto si for i = 0; : : : ; n. The 
orresponding Coxeter manifoldM is the sphere Sn with
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tion of G indu
ed by the standard representation of G in Rn+1. Letnow G be an in�nite Coxeter group with system of generators S. There exists aCoxeter (G;S)-equipment of �n if and only if jSj = n+1 and the Coxeter subgroupgenerated by S n fsg is �nite for any s 2 S. In term of the Coxeter diagram � ofthe group G, this means that all 
onne
ted 
omponents of � with ex
eption ofone 
omponent �0 
orrespond to �nite Coxeter groups, and the 
omponent �0
orresponds to an in�nite Coxeter group, but after deleting any node it be
omea Coxeter diagram of a �nite Coxeter group. One 
an easily 
he
k that su
h aCoxeter diagram �0 is either a 
onne
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