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ON DISTINGUISHED CURVES IN PARABOLIC GEOMETRIESANDREAS �CAP, JAN SLOV�AK, AND VOJT�ECH �Z�ADN�IKAbstrat. All paraboli geometries, i.e. Cartan geometries with homoge-neous model a real generalized ag manifold, admit highly interesting lassesof distinguished urves. The geodesis of a projetive lass of onnetions on amanifold, onformal irles on onformal Riemannian manifolds, and Chern{Moser hains on CR{manifolds of hypersurfae type are typial examples. Weshow that suh distinguished urves are always determined by a �nite jet inone point, and study the properties of suh jets. We also disuss the questionwhen distinguished urves agree up to reparametrization and disuss the dis-tinguished parametrizations in this ase. We give a omplete desription of alldistinguished urves for some examples of paraboli geometries.Elie Cartan's idea of `generalized spaes' as urved analogs of Felix Klein's ge-ometries (i.e. homogeneous spaes) is a well understood geometrial onept, whih,for a Lie subgroup P � G, generalizes the Maurer{Cartan form on the total spaeof the prinipal P{bundle G! G=P to Cartan onnetions on prinipal P{bundles,see e.g. the introdutory book [17℄. The onept of paraboli geometries refers tothose ases where P is a paraboli subgroup in a (real or omplex) semisimple Liegroup G. In [9℄, Ch. Fe�erman initiated a program to exploit the representationtheory of paraboli subgroups in semisimple Lie groups in order to understand in-variants of geometri strutures like CR{geometries, projetive geometries, or on-formal Riemannian geometries. This approah has proved to be extremely powerful.First of all, all paraboli geometries an be desribed in terms of weaker analogiesof lassial G{strutures on smooth manifolds and, similarly to the examples men-tioned above, all suh strutures give rise to anonial normal Cartan onnetions,f. [19, 14, 3℄. In fat, these onstrutions express Cartan's method of equivaleneusing the language of the modern representation theory and natural ohomologialreasoning. The existene of the Cartan onnetion provides an e�etive alulus todeal with invariant objets, see e.g. [5℄ and the referenes therein. To large extent,the understanding of the general (urved) geometries an be redued to propertiesof the homogeneous model, and thus to purely algebrai questions.The goal of this paper is to use this approah in order to understand invari-antly de�ned systems of distinguished urves for paraboli geometries, whih weall (generalized) geodesis. After realling basi onepts of paraboli geometries,geodesis are introdued and disussed along the lines of the lassial approahin aÆne geometry, whih uses the development of urves. This approah may befound in similar ontext already in [17℄ and in [13℄. In this way, many aspets of thestudy of the urves are redued to the ase of the homogeneous model. Thus theoriginal `smooth' question on urved manifolds an be transformed to an `algebrai'problem, whih is disussed in Setion 2. In partiular, we obtain estimates on theorder of jets neessary to determine a geodesi, and this approah also leads to analgebrai desription of all jets of geodesis in a point. The third setion is devotedto the study of possible reparametrizations in the lass of geodesis. Speializingthe general results to j1j{graded Lie algebras, we obtain generalizations of someDate: August 6, 2003.1991 Mathematis Subjet Classi�ation. 53C15, 53A40, 53A30, 53A55, 53C05.1



2 ANDREAS �CAP, JAN SLOV�AK, AND VOJT�ECH �Z�ADN�IKwell known results on onformal, projetive, and quaternioni geometries (see e.g.[1℄). The �nal setion provides further re�nements for spei� lasses of urves, seein partiular Theorems 4.2 and 4.3.Aknowledgments. Part of the work was done during a stay of the seond authorat the University of Adelaide under an ARC �nanial support, and his disussionswith Mihael Eastwood were most helpful and illuminating. First author supportedby projet P15747 of the FWF. The seond and third authors aknowledge thesupport from GACR, Grant Nr. 201/02/1390.1. General onepts1.1. Paraboli geometries. Let us briey reall the basi fats, more details anbe found in [4℄ or [17℄, and the referenes therein. Let G be a real semisimple Liegroup with Lie algebra g, and P � G a paraboli subgroup with Lie algebra p. A(real) paraboli geometry (G; !) of type (G;P ) is a prinipal bundle G with struturegroup P over a manifoldM , equipped with a smooth one{form ! 2 
1(G; g), whihsatis�es(1) !(�Z)(u) = Z for all u 2 G and fundamental �elds �Z , Z 2 p � g, i.e. !reprodues the generators of fundamental vetor �elds,(2) (rb)�! = Ad(b�1) Æ ! for all b 2 P , i.e. ! is P{equivariant with respet tothe adjoint representation, and(3) !jTuG : TuG ! g is a linear isomorphism for all u 2 G, i.e. ! is an absoluteparallelism on G.The urvature of a paraboli geometry (G; !) is the horizontal two{form K 2
2(G; g) de�ned by the struture equationsK = d! + 12 [!; !℄, i.e. K(�; �) = d!(�; �) + [!(�); !(�)℄:Clearly, the Maurer{Cartan form ! on the prinipal �ber bundle G! G=P is aparaboli geometry and the struture equations say that this geometry is at, i.e. itsurvature vanishes identially. (G ! G=P; !) is alled the homogeneous model forparaboli geometries of type (G;P ).Morphisms between Cartan geometries (G; !) and (G0; !0) are prinipal �berbundle morphisms ' : G ! G0 suh that '�!0 = !. It is quite elementary to provethat a geometry is loally isomorphi to its homogeneous model if and only if itsurvature vanishes identially, f. [17℄.Eah smooth (left) ation of the struture group P on a smooth manifold Sleads to a funtor S on the ategory of Cartan geometries of type (G;P ). The valueof S on (G; !) is the assoiated �ber bundle G �P S with respet to the ationof P while a morphisms ' : (G; !) ! (G0; !0) indues the �ber bundle morphism' �P idS : G �P S ! G0 �P S0. We all these bundles natural bundles. Moreover,this onstrution is funtorial in the smooth ation entry, beause eah equivariantmapping � : S ! S0 indues the �ber bundle mapping idG �P� : G�P S ! G�P S0.Thus we have got a bifuntor on Cartan geometries and smooth left ations withvalues in �ber bundles.In partiular, linear representations of P lead to funtors valued in vetor bun-dles and their linear morphisms and the bifuntoriality of the onstrution extendsall natural onstrutions like pairings, deompositions, and tensor produts of rep-resentations to the natural bundles. Of ourse, all this is the obvious restrition ofthe usual funtorial onstrutions over all prinipal �ber bundles to the ategory ofCartan geometries.A entral example, whih also illustrates the role of the Cartan onnetion, isgiven by the representation of P on g=p indued by the adjoint representation.This leads to the funtor G�P g=p, and via the Cartan onnetion ! this assoiated



ON DISTINGUISHED CURVES IN PARABOLIC GEOMETRIES 3bundle an be identi�ed with the tangent bundle TM . Indeed, sine ! de�nes anabsolute parallelism, there are the orresponding `onstant' vetor �elds !�1(X) 2X (G) for all X 2 g, de�ned by !(!�1(X)(u)) = X for all u 2 G. Denoting byJu;X + pK the lass in G �P g=p of (u;X + p) 2 G � g=p and by � : G ! Mthe bundle projetion, one immediately veri�es that Ju;X + pK 7! T�(!�1(X)(u))de�nes the laimed isomorphism.For any paraboli subalgebra p � g, there is a grading g�k � � � � � gk of g suhthat p = g0 � � � � � gk, and p+ = g1 � � � � � gk is the nilradial of g, see [20, 3℄.In partiular, this implies that g0 is a redutive Levi omponent for p. Hene weobtain an identi�ation n = g�k � � � � � g�1 with g=p, whih is an isomorphism ofP{modules if we endow n with the `trunated' adjoint ation Ad. Via the Killingform, one further obtains an identi�ation of n� with p+, whih indues the identi-�ation of the otangent bundle T �M with G �P n�. Thus all tensor bundles overM are identi�ed with the natural bundles oming from tensor produts of the rep-resentations n and n�. Moreover, the right hand ends gi = gi � � � � � gk de�ne aP{invariant �ltration of g. Hene we obtain natural subbundles T iM � TM for alli < 0. The resulting �ltrationTM = T�kM � T�k+1M � � � � � T�1M � 0is the most importing objet underlying a paraboli geometry. This �ltration istrivial for j1j{graded algebras and we all suh paraboli geometries irreduible.A very speial ase of the onstrution of natural bundles is the hoie S = Gwith the left ation of P on G given by the group multipliation. This leads to theprinipal �ber bundle ~G = G �P G with the prinipal ation given by the usualright multipliation in G and the anonial inlusion G � ~G, u 7! Ju; eK, wheree 2 G is the unit element. Now, the Cartan onnetion ! extends uniquely to aG{equivariant one{form ~! 2 
1( ~G; g) reproduing the fundamental vetor �elds.One easily veri�es that ~! is a prinipal onnetion on ~G. Whenever we have a leftation of P on some manifold S whih is the restrition of a left ation of G, thenwe may view the natural bundle G �P S also as ~G �G S. Hene on any naturalbundle of this type, there is a anonial onnetion indued by ~!. Of ourse, if weonsider restritions of G{representations to P , then the resulting natural vetorbundles, whih are usually alled trator bundles, are equipped with anonial linearonnetions.1.2. Development of urves. The notion of the development of urves is relatedto a partiular instane of natural bundles assoiated to restritions of G{ationsto P , namely the ase of the anonial left ation on G=P . The resulting spaeS = G �P G=P = ~G �G G=P is alled Cartan's spae over the underlying manifoldM of the Cartan geometry in question. Of ourse, S ! M is a �ber bundle withtypial �ber G=P , and from 1.1 we know that the paraboli geometry indues aanonial onnetion on this �ber bundle.Another remarkable fat about S is that for the point o = eP 2 G=P , anda point x 2 M , all points u 2 G with �(u) = x lead to the same lass O(x) =Ju; oK 2 G �P G=P . Hene we obtain a anonial smooth setion O of S ! M forevery paraboli geometry (G !M;!) of type (G;P ). Moreover, the vertial tangentbundle V S an be identi�ed with the assoiated bundle G�PT (G=P ). Sine the basepoint o 2 G=P is a �x point for the ation of P , we see that the restrition of V Sto the imageO(M ) of the anonial setion is the assoiated bundle G�P To(G=P ).Sine To(G=P ) is anonially isomorphi with g=p and G �P (g=p) is naturallyisomorphi to TM , we get a anonial isomorphism V SjO(x) �= TM . Thus we mayview the Cartan's spae S as a nonlinear version of the tangent bundle in whihthe geometry in question is enoded by means of the loal parallel transport of the



4 ANDREAS �CAP, JAN SLOV�AK, AND VOJT�ECH �Z�ADN�IKindued onnetion. This point of view goes bak to Cartan, and it was developedfurther in an abstrat way in the seond half of the 20th entury (see e.g. [11℄).This anonial parallel transport provides a straightforward generalization ofthe lassial onept of the development of urves. By omposing with O, a urve : I ! M with I = (a; b) � Rmay be also viewed as a parametrized urve in S.Fixing t0 2 I we �nd a neighborhood J of t0 in I on whih the parallel transportalong  : I !M is well de�ned. Given s 2 J , we may follow the urve O Æ  fromt0 to s and then follow the parallel transport bakward for time t0 � s to return tothe �ber over t0. More formally, we de�ne a smooth urve dev(; t0) from an openneighborhood of 0 in R to S(t0) by dev(; t0)(s) := ~s(s), where ~s is the parallelurve in S lying over t 7! (t0 + s � t) with the initial point O((s)). This urve isalled the development of  at t0. For a point u 2 G over (t0), there is a uniqueurve �(t) in G=P mapping 0 2 R to o 2 G=P suh that dev(; t0)(t) = Ju; �(t)K.Any other hoie for the point in G has the form u�b for b 2 P , and for that hoiethe urve hanges to `b�1 Æ �.Hene we onlude that eah hoie of a P{invariant lass C of urves whihmap 0 2 R to o 2 G=P leads to a distinguished lass of urves on all manifoldsendowed with a Cartan geometry of type (G;P ). We say that a urve  on M is adistinguished urve of type C at a point (t0) 2M , if for some (and thus any) pointu 2 G the urve � onstruted above lies in C.The natural hoies for suh sets C of urves, of ourse ome from one{parametersubgroups in G: For a subset A � g, we an de�ne a lass CA as ft 7! b exp(tX)P :X 2 A; b 2 Pg. So we take the one{parametri subgroups with generators in A,allow them to be shifted by left multipliations with elements of P , and projetthe resulting urves to G=P . Of ourse, for X 2 p this always leads to the onstanturve o, so we may assume A\p = ;. On the other hand, if we want to have urvesin all diretions in the lass CA, then we have to assume that the restrition ofthe projetion g ! g=p to A is surjetive. The most obvious hoie for A whihsatis�es this requirement is A = n. It should be noted that for X 2 g n p the urvet 7! b exp(tX)P does not lie in Cn in general. Following the ase of aÆne geometryand sine we are mainly interested in having sets of distinguished urves whih areas small as possible, we shall always assume A � n in the sequel.The paraboli subgroup P � G always has a anonial losed subgroup G0whih orresponds to the Lie subalgebra g0 � p. This group turns out to be re-dutive, and it an be haraterized as the subgroup of those elements in G, whoseadjoint ation preserved the grading of g. In partiular, the subspae n is stableunder the adjoint ation of G0. Now for b 2 G0 and X 2 n, we of ourse haveb exp(tX) = exp(tAdbX)b, and thus b exp(tX)P = exp(tAdbX)P . Thus it is nat-ural to restrit attention to G0{invariant subsets A � n, and the orrespondingdistinguished urves are alled (generalized) geodesis of type CA. We often do notmention the type if A = n.The generalized geodesis of type CA are easily desribed expliitly by meansof the onstant vetor �elds !�1(X). Let us onsider the projetion (t) of theow line Fl!�1(X)t (u) 2 G to the manifold M . From the onstrution of the prin-ipal onnetion ~! on ~G one immediately onludes that the horizontal vetorsfor ~! in points u 2 G are !�1(X)(u) � �X (u) for all X 2 n. Thus, the urvet 7! Fl!�1(X)t (u)� exp(�tX) must be the horizontal lift of  to ~G. Now, the induedparallel transport of an element Ju; exp tXK 2 S along  is given at time s byJFl!�1(X)s (u); exp(t � s)XK and it reahes exatly the point O((t)) in the anon-ial embedding of M into S at time s = t. But this exatly means that for eahX 2 n the urve t 7! Ju; exp tXK is the development of the projetion of the ow



ON DISTINGUISHED CURVES IN PARABOLIC GEOMETRIES 5line through u of the onstant vetor �eld !�1(X) 2 X(G). Sine the allowed de-velopments for urves in CA have the form t 7! Ju; exp tXK for u 2 G and X 2 A,we have proved the �rst part of:1.3. Proposition. Let (p : G !M;!) be a paraboli geometry of type (G;P ) andlet A � n be a G0{invariant subset.(1) The geodesis of type CA on M are exatly the projetions of ow lines of theonstant vetor �elds !�1(X) 2 X(G) with X 2 A.(2) Let (p0 : G0 !M 0; !0) be another paraboli geometry of type (G;P ), ' : G ! G0be a morphism of paraboli geometries overing '0 : M ! M 0, and  : I ! M asmooth urve. Then  is a geodesi of type CA if and only if '0 Æ  : I ! M 0 is ageodesi of type CA.Proof. The urve  in M is a geodesis if an only if (t) = p ÆFl!�1(X)t (u) for someX 2 A and u 2 G. Sine '�!0 = !, we getp0 Æ Fl!0�1(X)t ('(u)) = p0 Æ ' Æ Fl!�1(X)t (u) = '0 Æ p Æ Fl!�1(X)t (u)and the laim follows. �Remark. (1) Our de�nition of geodesis and their general desription is valid forarbitrary Cartan geometries. Though this is not a paraboli geometry, we may thusillustrate it in the ase of aÆne onnetions on manifolds (i.e. G is the aÆne groupRm�GL(m;R) and P = GL(m;R)). Here the omplement n = Rm is P{invariant,and so any Cartan onnetion ! on G splits into the soldering form !n 2 
1(G;Rm)and the prinipal onnetion form !p 2 
1(G; p). Thus a Cartan geometry equipsthe underlying manifoldM with the linear frame bundle (G; !n) and the prinipalonnetion !p on G. The projetions of ow lines of the onstant vetor �eldsare exatly the geodesis of the linear onnetion on TM indued by !. Part (1)of the Proposition reovers the lassial fat that the geodesis are those urveswhose developments are straight lines in Rm = G=P . On the other hand, if wehoose A = g n p, then more urves appear. For example, the following urves areprojetions of shifts of one{parametri subgroups in the aÆne group to the planeR2: y = x logx through (1; 0), y = ex through (0; 1), y = x� through (1; 1), f. [8℄.(2) Exatly as in the homogeneous ase, eah hoie of u 2 G de�nes loal oordi-nates around its projetion p(u) 2M . Consider the mapping X 7! p(Fl!�1(X)1 (u)),whih is well de�ned on some neighborhood U � n of 0. Choosing U suÆientlysmall, this beomes a di�eomorphism onto its image, thus gives rise to loal o-ordinates on M . These are alled normal oordinates for the Cartan geometry inquestion. Of ourse, in the setting of (1), we reover exatly the usual normal o-ordinates for aÆne onnetions on manifolds in this way. More information and aharaterization of the normal oordinates an be found in [4℄.We may rephrase our de�nition in terms of normal oordinates as follows: Thegeodesis of type CA are those urves whih are linearly parametrized straight linesthrough the origin with diretions in A � n in some normal oordinates. Again,this generalizes the standard fats on aÆne onnetions.1.4. Example. Let us mention four well known examples of distinguished urves inparaboli geometries:(1) G = SL(m+1;R),P is the stabilizer of a line inRm+1. Normal paraboli geome-tries of type (G;P ) are lassial projetive strutures on m{dimensional manifolds.Generalized geodesis (of type Cn) are exatly the geodesis of all onnetions in theprojetive lass. They are determined by their 2{jet in one point as parametrizedurves, but already determined by their diretion in one point as unparametrizedurves.



6 ANDREAS �CAP, JAN SLOV�AK, AND VOJT�ECH �Z�ADN�IK(2) G = SL(m + 1;H), P is the stabilizer of a quaternioni line. This hoie leadsto almost quaternioni geometries (the omplex version of whih is dealt with in[1℄). Again generalized geodesis are determined by their 2{jet in one point, butthey form more ompliated systems of urves than in the projetive ase, f. [1℄.(3) G = O(p + 1; q + 1), P is the stabilizer of a null line. This leads to onformalpseudo Riemannian geometries of signature (p; q). Here the (generalized) geodesisare the well known onformal irles, whih owe their name to the fat that for thehomogeneous model with signature (n; 0) one obtains all irles on the sphere. Forgeneral signatures, the geodesis in null diretions, whih behave similarly to theprojetive ase, form an interesting sublass.(4) G = SU (p+ 1; q+ 1), P the stabilizer of a (omplex) null line. This Hermitiananalog of (3) leads to non{degenerate CR{strutures of hypersurfae type withsignature (p; q). Here the Lie algebra is 2{graded and the geodesis of type Cg�2 arethe well known Chern{Moser hains.2. Jets of distinguished urves2.1. The bundles of CA{veloities. Let us reall the natural bundles T rk of rthorder k{dimensional veloities on all smooth manifolds. By de�nition, T rkM =Jr0 (Rk;M ), so this is the bundle of r{jets of parametrized k{dimensional (singu-lar) submanifolds in M . In partiular, r{jets of urves are elements in T r1M . Theation of all di�eomorphisms of M on T rkM is de�ned by jet omposition. Let usonsider a ategory of Cartan geometries of �xed type (G;P ) and a lass of gener-alized geodesis CA, for a G0{invariant subset A of n. Then the jets of distinguishedurves of type CA form a natural subbundle T rCA � T r1 on paraboli geometries oftype (G;P ). Clearly, T rCA is a well de�ned funtor, f. Proposition 1.3(2) above,however their values are not smooth bundles in general, see the examples below. Inthe ases with G0{invariant subsets A � n we all the latter funtors the bundle ofrth order veloities of geodesis of type CA.Our next goal is to prove that there always is a �nite order r for whih the entiregeodesi is ompletely determined by a single value in T rCA .2.2. Jets of urves on G=P . Using Cartan's spae S, the development of urvesde�nes a bijetion between smooth urves  : I !M de�ned on some neighborhoodI of 0 2 R suh that (0) = x0, and smooth urves to G=P whih map 0 to o = eP .Of ourse, this bijetion is ompatible with taking jets in x0, i.e. two urves havethe same `{jet in x0 if and only if the orresponding urves in G=P have the same`{jet in o. By de�nition, this bijetion also respets generalized geodesis of anytype. Thus to prove that geodesis of some type CA are determined by some jet inone point, it suÆes to onsider the homogeneous model G=P and the point o. Westart by onsidering A = n (whih of ourse provides an estimate for any A � n).Thus, we have to study the urves b;X(t) = b exp(tX)P , with b 2 P and X 2 n,f. 1.2.Sine b exp(tX) = exp(tAdbX)b we see that b;X(t) = exp(tAdb �X)P . For anytwo urves (t) and d(t) in G, there is a uniquely determined urve u(t) in G suhthat (t) = d(t)�u(t). The projetions of (t) and d(t) to G=P oinide if and onlyif u(t) 2 P for all t. Thus the urves b1;X1 and b2;X2 oinide if and only if theuniquely determined urve u suh that(1) exp(tAdb1 X1) = exp(tAdb2 X2)�u(t)has values in P . Sine exp is analyti, the urve u must be analyti, too, and heneit has values in P if and only if all derivatives u(i)(0) = ( ddt )iu(0) are tangent P . Toformulate this preisely, we use left logarithmi derivative Æu : R! g of the urveu : R! G, see e.g. [10, p. 39℄. In fat Æu : TR= R�R! g, Æu(t) = T�u(t)�1 ÆTtu,



ON DISTINGUISHED CURVES IN PARABOLIC GEOMETRIES 7but we shall identify the linear map Æu(t; ) : R ! g with its value at the unit1 2 TtR. Sine knowing Æu is equivalent to knowing Tu, the following Lemma is asimple observation.Lemma. For eah order k 2 N we have jk0b1;X1 = jk0 b2;X2 if and only if thederivatives (Æu)(i)(0) lie in p for all i � k � 1.2.3. Some tehnialities. In order to ompute the derivatives of Æu from formula2.2(1), we an use the Leibniz rule for the left logarithmi derivative,Æ(f �g)(x) = Æg(x) + Adg(x)�1 Æf(x);f. [10, p. 39℄, so it remains to ompute the left logarithmi derivative of the urvet 7! exp tX. For later use, we shall ompute this expression with an arbitrary urveY : R! g instead of the line tX. By de�nition, the logarithmi derivative Æ(f Æ g)of the omposition of two smooth maps f : M ! G, g : N ! M is given byÆ(f Æ g) = (Æf) Æ Tg. Thus, the key ingredient is the formula for Æ(exp) : Tg ! g.The proof of this formula for the right logarithmi derivative in [10, p. 39℄ an beeasily adapted to our ase, leading toÆ(exp)(Y ) = 1Xp=0 1(p+ 1)! ad(�Y )p:This proves:Lemma. Let Y : R! g be a smooth urve with derivative Y 0 : R! g. ThenÆ(exp ÆY )(t) = 1Xp=0 1(p+ 1)! ad(�Y (t))p�Y 0(t):The �rst terms in the formula for Æ(exp Y (t)) read asY 0(t)� 12 [Y (t); Y 0(t)℄ + 16 [Y (t); [Y (t); Y 0(t)℄℄ + : : : :Notie that if Y has values in n, then also Y 0 has values in n, and ompatibility ofthe grading of g with the Lie braket implies that at most k of these terms may benon{zero for jkj{graded g. Thus, for example,Æ(expY (t)) = Y 0(t); if k = 1;Æ(expY (t)) = Y 0(t) � 12 [Y (t); Y 0(t)℄; if k = 2;Æ(expY (t)) = Y 0(t) � 12 [Y (t); Y 0(t)℄ + 16 [Y (t); [Y (t); Y 0(t)℄℄; if k = 3:On the other hand, if Y (t) = '(t)Y for some �xed Y 2 g and a smooth funtion ',then [Y (t); Y 0(t)℄ = 0 and hene we always get(1) Æ(exp'(t)Y ) = '0(t)Y:Applying the left logarithmi derivative to equation 2.2(1) yields(2) Æu(t) = Adb1 X1 � Adu(t)�1 Adb2 X2:In partiular, Æu(0) = Adb1 X1 � Adb2 X2, and this lies in p if and only if Adb1X1and Adb2 X2 represent the same lass in g=p, i.e. if the urves have the same tangentvetor at 0.Di�erentiating equation (2) at zero we obtain(Æu)0(0) = � ad(�u0(0))Adb2X2 = [u0(0);Adb2 X2℄;and u0(0) is the image of 1 2 T0R by Æu(0). Substituting (2) yields (Æu)0(0) =[Æu(0);Adb1 X1℄. Surprisingly, there is a general formula for (Æu)(i)(t) for all t 2 Rand all orders i:2.4. Lemma. For all i � 1, (Æu)(i)(t) = (ad(�Adb1 X1))i(Æu(t)).



8 ANDREAS �CAP, JAN SLOV�AK, AND VOJT�ECH �Z�ADN�IKProof. Let us start with the �rst order derivative, so we have to prove (Æu)0(t) =[Æu(t);Adb1 X1℄. To do this, we have to ompute the derivative of t 7! Adu(t)�1 :R! GL(g). Clearly, ddt (t 7! Adu(t)�1) = (T Ad ÆT�)(u0(t)), where � is the inversionin G and Ttu = u0(t). First, we will express Tg� and Tg Ad in general.From �g Æ � Æ �g = � we have Tg�1�g Æ Tg� Æ Te�g = Te�, thus Tg� = �Te�g�1 ÆTg�g�1 . Similarly,Ad Æ�g = Adg ÆAd impliesTg Ad ÆTe�g = Adg ÆTeAd, so Tg Ad =Adg Æ ad ÆTg�g�1 . Altogether,ddt Adu(t)�1 = (Adu(t)�1 Æ ad ÆT�u(t)) Æ (�T�u(t)�1 Æ T�u(t)�1)(u0(t)):Sine Adg = Te(�g Æ �g�1 ) and Æu(t) = T�u(t)�1 Æ u0(t) the latter expression equals(�Adu(t)�1 Æ ad ÆAdu(t))(Æu(t)). Thus,(Æu)0(t) = Adu(t)�1 [Adu(t) Æu(t);Adb2X2℄ = [Æu(t);Adu(t)�1 Adb2 X2℄and substituting Adu(t)�1 Adb2 X2 = Adb1 X1� Æu(t) from 2.3(2) the laim follows.Now, let i > 1 and assume that the formula is valid for all orders less then i.Then (Æu)(i)(t) = ddt ��t (ad(�Adb1X)(i�1)Æu(t))and sine ad(�Adb1 X)(i�1) is a linear map and we have omputed (Æu(t))0 already,we arrive at(Æu)(i)(t) = ad(�Adb1 X)(i�1)(Æu(t))0 = ad(�Adb1 X)(i)Æu(t);whih is the required formula. �Let us notie that we have also derived the more general formula for the derivativeof Adu(t)�1 Y (t) with Y : R! n. From the proof above we onlude(1) ddt ��t (Adu(t)�1 Y (t)) = Adu(t)�1 Y 0(t) � [Æu(t);Adu(t)�1 Y (t)℄:As a simple onsequene of this Lemma, we an prove that any geodesi isdetermined by a �nite jet in one point:2.5. Proposition. Let g be a jkj{graded Lie algebra, and let A � n be any G0{invariant subset. If two geodesis of type CA have the same (k+2){jet in one point,then they oinide.Proof. As we have notied in 2.2 it suÆes to onsider A = n, an we an ompletethe proof by showing that two urves b1;X1 and b2;X2 oinide if they have thesame (k + 2){jet in 0. Denoting by u : R! G the urve determined by equation2.2(1), Lemma 2.4 tells us that (Æu)(i)(0) = (ad(�Adb1 X1))i(Æu(0)). By Lemma2.2, the assumption on the (k + 2){jet in 0 implies that ad(�Adb1 X1)i(Æu(0)) 2 pfor all i � k + 1. Sine b1 2 P , we may hit this element with Ad�1b1 , and theresult remains in p. Putting X = X1 2 n and Z = Adb�11 Æu(0) 2 p we onludethat ad(�X)i(Z) 2 p for all i = 1; : : : ; k + 1. Sine Z 2 p = g0 � � � � � gk and�X 2 n = g�k � � � � � g�1, ompatibility of the braket with the grading impliesthat ad(�X)i(Z) 2 g�k� � � �� gk�i. Putting i = k+1, we see that ad(�X)k+1(Z)has to lie both in n and in p, so it must be zero. This implies that Æu`(0) = 0 2 pfor all ` > k + 1, and thus b1;X1 = b2;X2 and the laim follows. �Let us remark at this point that the estimate r = k+ 2 on the jet needed to pindown a geodesi is not at all sharp and we will improve it heavily depending on apartiular hoie of the lass of geodesis.



ON DISTINGUISHED CURVES IN PARABOLIC GEOMETRIES 92.6. Distinguished urves in a given diretion. The most natural way to ap-proah the problem of distinguished urves usually is to �x a point x 2 M and atangent vetor � 2 TxM , and look for geodesis emanating from x in diretion �.Given a G0{invariant subset A 2 n, the basi question then is how many geodesisof type CA pass through x in diretion �. Of ourse, it may happen that there areno suh geodesis. As before, one may restrit the disussion to the point o in thehomogeneous model G=P . Sine the above question is perfetly geometri, the an-swer for a tangent vetor � 2 To(G=P ) �= g=p will only depend on the P{orbit of �.Clearly, there is at least one geodesi of type CA in diretion X, if the image of Ain g=p meets the P{orbit of �. Otherwise put, if X 2 n � g is the unique elementsuh that � = X + p, then there is at least one geodesi of type CA in diretion � ifAdb(X) 2 A for some b 2 P .Seond, suppose that A;B � n are G0{invariant subsets, and that for eahX 2 Athere is an element b 2 P suh that AdbX 2 B, and vie versa. (Of ourse, this is avery restritive ondition, sine we are using Adb, whih does not leave n invariant,but it happens in interesting ases.) Then this gives rise to a bijetion between thesets CA and CB of urves in G=P , and onsequently, geodesis of type CA oinidewith geodesis of type CB .Fix a G0{invariant subset A � n and an element X 2 A, and onsider thetangent vetor � = X + p 2 To(G=P ). Clearly, e;X(t) = exp(tX) is a geodesiof type CA in diretion X, and any other geodesi of that type an be written asb;Y with b 2 P and Y 2 A. It is a general fat, see [3, 2.10℄ that there are uniqueelements b0 2 G0 and Z 2 p+ suh that b = b0 exp(Z) = exp(Adb0 Z)b0. From thede�nition of distinguished urves, we onlude thatb0 exp Z;Y = exp(Adb0 Z);Adb0 Y ;and Adb0 Y 2 A. Hene any geodesi of type CA may be written as exp(Z);Y forZ 2 p+ and Y 2 A. Hene we onlude that the set of geodesis of type CA indiretion � = X + p an be equivalently desribed asfexp(Z);Y : Z 2 p+; Y 2 A;Adexp(Z) �Y = Xg:Passing to a general urved geometry via developments as before, we obtainProposition. Let (p : G ! M;!) be a Cartan geometry of type (G;P ), x 2 M apoint, � 2 TxM a tangent vetor, and let A � n be a G0{invariant subset. Thenthere is a geodesi of type CA through x in diretion � if and only if there areelements u 2 p�1(x) � G and X 2 A suh that � = Tup�!�1(X). Moreover, forany suh pair (u;X), one obtains a bijetion between the set of geodesis of type CAthrough x in diretion � and the set fexp(Z);Y : Z 2 p+; Y 2 A;Adexp(Z) �Y = Xgof urves in G=P . This bijetion is ompatible with �nite jets in 0 in the obvioussense.Finally note that the urves exp(Z1);Y1 and exp(Z2);Y2 have the same `{jet in 0respetively oinide if and only if the same is true for e;Y1 and exp(Z1)�1 exp(Z2);Y2 ,and we an write exp(Z1)�1 exp(Z2) as exp(Z) for some Z 2 p+. Hene we onludethat if for some ` and eah X 2 A we an show that any urve exp(Z);Y with Y 2 Awhih has the same `{jet in 0 as e;X must atually equal e;X , then this impliesthat any geodesi of type CA is uniquely determined by its `{jet in a single point.2.7. The j1j{graded ase. For irreduible paraboli geometries we easily reaha omplete desription. So we assume g = g�1 � g0 � g1 and A = n. The mainsimpli�ation in the j1j{graded ase omes from the fat that in this ase p+ atstrivially on g=p, so the P ation on this quotient fatorizes over G0. In partiular,for Z 2 p+ = g1 and Y 2 n = g�1 we get Adexp(Z) Y = Y , so in view of Proposition



10 ANDREAS �CAP, JAN SLOV�AK, AND VOJT�ECH �Z�ADN�IK2.6 it remains to ompare the urves e;X and exp(Z);X with Z 2 g1. For theorresponding urve u, we obviously get Æu(0) = �[Z;X℄ � 12 [Z; [Z;X℄℄. For thetwo urves having the same two{jet in 0, we must have(Æu)0(0) = �[X1; Æu(0)℄ = [X1; [Z;X1℄℄ + 12 [X1; [Z; [Z;X1℄℄℄ 2 p;and thus [X1; [Z;X1℄℄ = 0. But this implies [X1; [Z; [Z;X1℄℄℄ = [Z; [X1; [Z;X1℄℄℄ = 0,and so (Æu)(i)(0) = 0 for all i � 2. Thus, we have proved:Proposition. Eah generalized geodesi in an irreduible paraboli geometry isuniquely determined by its 2{jet in one point.2.8. The distinguished jets. Using the proedures from above, one may omputeexpliitly the jets of all geodesis of type CA. For the sake of simpliity, we shallrestrit ourselves again to the ase of j1j{graded Lie algebras. Thus, the valuein T 21 (G=P ) over the origin will always determine a geodesi ompletely, and weshall ompute expliitly the algebrai desription of the standard �bers of T 2CA .Understanding the higher jets of geodesis is an interesting problem, however theomputations grow quikly out of hand.Let us desribe all distinguished urves in normal oordinates through the origin,i.e. we have to represent eah geodesi in the form t 7! exp(Y (t))P for a smoothurve Y : R ! g�1 with Y (0) = 0. This means, that rather than with formula2.2(1), we have to deal withexp(Y (t))�u(t) = exp(tAdexpZ X)for Z 2 g1 and X 2 A � g�1.Using the results in 2.3 and formula 2.4(1), straightforward omputations yieldÆu(t) = X + [Z;X℄ + 12 [Z; [Z;X℄℄� Adu(t)�1(Y 0(t))(Æu)0(t) = �X + [Z;X℄ + 12 [Z; [Z;X℄℄;Adu(t)�1 Y 0(t)�� Adu(t)�1 Y 00(t):The requirement (Æu)(i)(0) 2 p, for i = 0; 1 immediately impliesY 0(0) = XY 00(0) = [X; [X;Z℄℄:Now it is easy to desribe the standard �ber of T 2CA as follows. The standard�ber of T 21 is the smooth manifold J20 (R;g�1)0, whih is naturally identi�ed withg�1� g�1. Hene the standard �ber of T 2CA is a subset in g�1� g�1, whih we haveomputed to be S = �� X[X; [X;Z℄℄� : X 2 A;Z 2 g1� :Reall that A is assumed to be G0{invariant, but not neessarily a linear subspae.A good examples in whih it is not a subspae is given by the null one in Rp+q inthe setting of Example 1.4(3). In that ase, [X; [Z;X℄℄ happens to be a multiple ofX for eah Z, whih orresponds to the fat that geodesis in null diretions areonformally invariant up to parametrization.For every paraboli geometry of type (G;P ), there is the standard embeddingi : P ! G2m = inv J20 (Rm;Rm)0, see e.g. [15, 17℄. Further, the ation of the struturegroup G2m on J20 (R;Rm)0 transforms to the ation on g�1 � g�1, whose restritionto the subgroup i(P ) keeps the subset S invariant beause the set CA of all geodesisis P{invariant.In fat, the ation of G0 obviously is the produt of the adjoint ations ong�1 � g�1, while the ation of P+ = exp g1 omes by the very de�nition of the



ON DISTINGUISHED CURVES IN PARABOLIC GEOMETRIES 11urves from the left shift by the elements expW , W 2 g1. Sine g1 is an abeliansubalgebra, the ation by expW is given byexpW ��Y 0Y 00� = � Y 0Y 00 + [Y 0; [Y 0;W ℄℄� :Hene we obtain an alternative desription of the standard �ber as the P{orbit ofthe G0{invariant subspae A� f0g � g�1 � g�1.3. ReparametrizationsIn this setion we shall generalize our basi question to: When are two distin-guished urves equal up to a hange of parametrization? Thus we shall disuss thenon{parametrized geodesis together with their preferred parametrizations.3.1. Tehnialities. In order to deal with this question, we have to modify ourbasi equation 2.2(1). The answer is positive if and only if there exist mappingsu : R! P and ' : R! R suh that(1) exp('(t)Adb1 X1) = exp(tAdb2 X2)�u(t);where ' is a loal reparametrization, i.e. we require '0(t) 6= 0 and, for simpliity,'(0) = 0. As disussed in the Remark 2.6, we may restrit ourselves to G0{invariantsubsets A, b1 = e, b2 = expZ with Z 2 p+.The left logarithmi derivative of (1) gives, f. 2.3(1)(2) Æu(t) = '0(t)X1 �Adu(t)�1 �AdexpZ X2:In partiular, Æu(0) 2 p if and only if tangent vetors of the two distinguished urvesat 0 are equal up to a salar multiple.By formula 2.4(1), and the above equation (2), we get(3) (Æu)0(t) = '00(t)X1 � '0(t)[X1; Æu(t)℄:Now, similarly as in the parametrized ase we prove a general iterative formulafor (Æu)(i):3.2. Lemma. For all i � 1 and at every t 2 R, with the notation as above(Æu)(i) = '(i+1)X1 + iXk=1(�1)k�Xj;a j;a('(j1))a1: : : ('(js))as�(adX1 )k(Æu)where the internal sum runs over all s{tuples of natural numbers j = (j1; : : : ; js),j1 < j2 < � � � < js, and s{tuples of arbitrary natural numbers a = (a1; : : : ; as) suhthat a1j1 + � � �+ asjs = i and a1 + � � �+ as = k, and the oeÆients j;a arej;a = i!(j1!)a1 : : : (js!)asa1! : : :as! :Proof. In the ase i = 1, the entire sum in the formula has just one possible termfor k = 1, j1 = 1 and a1 = 1. As we have seen, this is the orret formula (3). Thegeneral ase is proved by a tedious indution. �Remark. As a hint for the indution mentioned in the proof above, let us desribein words, what the individual terms in the general formula mean. The value of ksays how many times ' ours in the term in question (and so many times X hitsÆu via the adjoint ation and the sign is set appropriately), while the oeÆientsj;a express in how many di�erent ways we may split i derivatives onto k opies of''s in order to ahieve the result ('(j1))a1: : : ('(js))as . Now, the di�erentiation ofthis formula and substitution from 3.1(3) means that we perform the last derivativeon one of the ''s in the individual terms in the formula, or we attah a new ' tothe existing terms whih is di�erentiated only one. But this is exatly how all



12 ANDREAS �CAP, JAN SLOV�AK, AND VOJT�ECH �Z�ADN�IKsplittings of i+1 (distinguishable) hits of k (indistinguishable) targets are obtainedfrom the answers to the same question for i derivatives and k or k � 1 targets.Either the last hit has been to some existing one among k targets, i.e. we use theanswer with i hits and k targets, or we have had to introdue a new target whihwas hit one, i.e. we used the answer with i hits and k � 1 targets.It is probably hard to dedue general results for all paraboli geometries and alllasses of distinguished urves from this formula, but let us see how to use it inmore spei� situations.3.3. Irreduible paraboli geometries. We are going to give a omplete answerto our question for j1j{graded algebras g. In order to deide when two distinguishedpaths b1;X1 , b2;X2 parametrize the same urve we have to ompute expliitly theonsequenes of (Æu)(i)(0) 2 p in relation to the neessary and suÆient onditionsfor the solution of the given problem. At the same time we shall get a omplete andexpliit desription of the reparametrizations.Lemma. With the notation as above, Æu(0) 2 p if and only if(1) '0(0)X1 = X2:If Æu(0) 2 p, then (Æu)0(0) 2 p if and only if(2) '00(0)'0(0)2X1 = [X1; [X1; Z℄℄;and if i � 2 and (Æu)(j)(0) 2 p for all j < i, then (Æu)(i)(0) 2 p if and only if(3) '(i+1)(0) = (i + 1)!2i '00(0)i'0(0)i�1 ; for all i � 2:Proof. Sine our algebra g is j1j{graded, all iterated adjoint ations by X1 on Æu(0)vanish if the order is more then two. Thus only terms with k � 2 in Lemma 3.2may survive and the general formula for i � 1 reads(Æu)(i)(0) = '(i+1)(0)X1 � '(i)(0)[X1; Æu(0)℄ +12 i�1X̀=1 i!`!(i�`)!'(`)(0)'(i�`)(0)�[X1; [X1; Æu(0)℄℄:Indeed, this an be either proved by inserting into the general formula from Lemma3.2 or diretly by indution.Next, reall Æu(0) = '0(0)X1 �X2 � [Z;X2℄� 12 [Z; [Z;X2℄℄. Thus (1) is obvious.We shall assume Æu(0) 2 p and thereforeÆu(0) = �'0(0)([Z;X1℄ + 12 [Z; [Z;X1℄℄):Now, (2) follows from the general formula with i = 1. The most interesting step isthe ase i = 2 (i.e. we deal with the third order jets of the urves, so that these mustbe determined by the lower order derivatives already). Indeed, the substitution ofequalities in (1) and (2) into the general formula yields(Æu)(i)(0) = '(i+1)(0)X1 + '(i)'0(0)[X1; [Z;X1℄℄�14 i�1X̀=1�ì�'(`)(0)'(i�`)(0)'0(0)[X1; [X1; [Z; [Z;X1℄℄℄℄ + term in g0= �'(i+1)(0) � '(i)(0)'00(0)'0(0) � 14 i�1X̀=1�ì�'(`)(0)'(i�`)(0)'00(0)2'0(0)3 �X1+ term in g0.



ON DISTINGUISHED CURVES IN PARABOLIC GEOMETRIES 13The struture of the latter equation implies that '(i+1)(0) is determined uniquelyin terms of the values '(k)(0) with k � i and a diret omputation heks that theformula in (3) is orret. �Let us summarize what we have ahieved so far. If the onditions of (1) and(2) are satis�ed, than '(0), '0(0) and '00(0) are determined by the hoie of thetangent vetors to the urve and by the element Z 2 g1 and we may de�ne all otherderivatives of ' by the formula (3). In partiular, the speial ase i = 2 yields(4) '000(0) = 32 '00(0)2'0(0)whih reminds the well known Shwartzian di�erential equation. We shall see thatthe formulae for '(i)(0) determine an analyti loal solution for this equation.If we denote a = '0(0) and b = '00(0), the Taylor development of the funtion 'at 0 must be'(t) = at+ 12bt2 + 16 32 b2a t3 + � � �+ 1(i+ 1)! (i + 1)!2i biai�1 ti+1 + � � � :Thus, we have obtained the geometri series '(t) = atP1i=0( bt2a)i whih onvergesloally around 0 and its value is'(t) = at(1� b2at)�1:If we want to allow the reparametrizations with '(0) 6= 0, we have just to replaeequation 3.1(1) by exp('(t) � '(0))Adb1X1 = exp(tAdb2X2)�u(t) and the resultdi�ers only by adding the value '(0) to the fration above. In suh a ase thereparametrization takes a form'(t) = At+ BCt+D ; where A = '0(0)� '00(0)2'0(0)'(0); B = '(0); C = � '00(0)2'0(0) ; D = 1:In partiular, the solution with '00(0) = 0 yields the aÆne reparametrization of theurve whih of ourse have to be geodesis, too. The determinant of the matrix(A BC D ) is '0(0) 6= 0, so we may normalize this to just 1 and we have proved:3.4. Proposition. Suppose that g is j1j{graded. If the urves b1;X1 and b2;X2oinide as unparametrized urves, then the orresponding loal reparametrization' has the form '(t) = At+BCt+D , where (A BC D ) 2 SL(2;R). Conversely, if  = b;X isa parametrized geodesi then all urves  Æ ' with reparametrizations ' : R! Rof the latter form are again geodesis if and only if there is Z 2 g1 suh that[X; [X;Z℄℄ = X.Proof. It remains to prove the seond statement. Obviously we may restrit our-selves to the ase when '(0) = 0. Then eah ' satis�es all onditions from Lemma3.3, provided there is a suitable Z for (2). �Reparametrizations of the above type are alled projetive, see [2℄, where theyare obtained as solutions of the Shwartzian di�erential equation '000 = 32 ('00)2'0 .Corollary. Suppose that g is j1j{graded. Then the urves e;X1 and expZ;X2 pa-rametrize the same unparametrized geodesi if and only if there are a 6= 0 and bsuh that X2 = aX1 and [X2; [X2; Z℄℄ = bX1. This is equivalent to the existene ofthe projetive loal reparametrization ' whih is uniquely determined by the initialondition '(0) = 0, '0(0) = a, and '00(0) = b.



14 ANDREAS �CAP, JAN SLOV�AK, AND VOJT�ECH �Z�ADN�IK3.5. Example. In the following examples we use the obvious fat that in the aseof a j1j{grading, elements of P of the form exp(Z) for Z 2 g1 at trivially onTo(G=P ) = g=p. Then the P{ation on this spae fatorizes over G0.(1) Conformal Riemannian strutures orrespond to G = O(p + 1; q + 1) and theparaboli subgroup P as in 1.4(3). In an appropriate matrix representation, thegrading of the Lie algebra g has the formg�1 = n� 0 0 0X 0 00 �XtJ 0� : X 2 Rp+qo ; g0 = n� a 0 00 A 00 0 �a� : A 2 o(p; q); a 2 R;o ;g1 = n� 0 Z 00 0 �JZt0 0 0 � : Z 2 Rp+q�o :Here J is the matrix de�ning the standard pseudo{metri of signature (p; q) onRp+q = g�1.A diret alulation shows that [X; [X;Z℄℄ = �2Z(X)X � jjXjj2JZt, wherejjXjj2 = XtJX and Z(X) = ZX is a real number. Obviously, the spae g�1 splitsinto three di�erent orbits of the ation of G0 aording to the sign of kXk2. Theorbit of null{vetors is of partiular interest, sine [X; [X;Z℄℄ = �2Z(X)X in thatase. This just means that all distinguished urves with the ommon tangent null{vetor di�er by a reparametrization whih reovers the lassial result that the nullgeodesis of the metris in the onformal lass together with the lass of projetiveparametrizations are invariants of the onformal struture. Of ourse, these urveswill have their tangent vetors null in all their points.For all tangent vetors whih are not null, the seond derivative may be hosenarbitrarily. So that the standard �ber S in 2.8 has arbitrary entries in the bottomrow if X is not null, but only multiples of X if X is null. On the other hand, therealways is an element Z 2 g1 suh that [[Z;X℄; X℄ = X, so all geodesis arry anatural projetive struture.(2) Almost Grassmannian strutures. In this ase, G = SL(n + m;R) and theparaboli subgroup P is the stabilizer of Rn � Rn+m, so it onsists of blok uppertriangular matries with two bloks of sizes n and m. On the in�nitesimal level,g�1 = f( 0 0X 0 ) : X 2 Rmng; g0 = f(A 00 B ) : tr(A) + tr(B) = 0g;g1 = f( 0 Z0 0 ) : Z 2 Rnmg:First, it is easy to see that the subgroup G0 onsists of blok diagonal matries,and its ation on g�1 is given by X 7! TXS�1, (S; T ) 2 G0. Thus two elementsof g�1 lie in the same G0{orbit if and only if they have the same rank. Further,the omputation of the iterated braket yields [X; [X;Z℄℄ = �2XZX. In partiular,the hoie of the pseudoinverse matrix Z = Xy provides always a multiple of Xand so all generalized geodesis enjoy the distinguished projetive struture. If therank of X is one, then we may hoose X to be the matrix with the left upperelement x11 = 1 and all other 0. Then [X; [X;Z℄℄ equals to z11X for all Z andso this behavior must be shared by all matries of rank one. Thus, the diretionsorresponding to rank one matries behave like null diretions in pseudo{onformalgeometries. The other extreme is that X has maximal rank. Then one gets a lot offreedom in the available seond derivatives of the urves. The ase that all elementsof g�1 are possible seond derivatives ours only if m = n and X has rank n.(3) Projetive strutures are the speial ase n = 1 of Example (2) above. In thisase, the rank of X 6= 0 is always one. More expliitly, the produt ZX is a realnumber, so the braket [X; [X;Z℄℄ is always a multiple of X. From this it followsthat all unparametrized distinguished urves are determined by the diretion in agiven point. This agrees with the lassial de�nition of a projetive struture asa lass of aÆne onnetions sharing the same unparametrized geodesis. All suh



ON DISTINGUISHED CURVES IN PARABOLIC GEOMETRIES 15onnetions are parametrized by smooth one{forms on the base manifold and theyorrespond to the Weyl onnetions de�ned in [4℄.4. More refinementsIn this setion we improve the estimates on the jet in a point needed to pin downa geodesi for geodesis of ertain types. The most general results is Theorem 4.3but sine the proofs of these results are a bit tehnial, we prefer to disuss twosimpler speial ases �rst.4.1. Curves tangent to T�1M . LetM be anymanifold equipped with a paraboligeometry of some �xed type (G;P ). A (generalized) geodesis with development ofthe form b;X emanates in a diretion in T�1M if and only if X 2 g�1. Thus weare dealing with distinguished urves of type Cg�1 and from Proposition 1.3 we seethat they will be tangent to the distribution T�1M in all points.To disuss geodesis of type Cg�1 , by Proposition 2.6 we have to �x X 2 g�1and study the urves exp(Z);Y for Z 2 p+ = g1 � � � � � gk and Y 2 g�1 suh thatAd(exp(Z))(Y ) = X. Sine Y 2 g�1 we get Ad(exp(Z))(Y ) = Y for any Z, sowe have to onsider all urves of the form exp(Z);X with Z 2 p+. By [3, 2.10℄ weget a nier presentation of exp(Z). Namely, there are unique elements Zi 2 gi fori = 1; : : : ; k suh that exp(Z) = exp(Z1) � � � exp(Zk). Sine Ad(exp(W )) = ead(W )for eah W 2 g we getAdexpZ X = Xi1;:::;ik 1i1!���ik! (adZ1)i1 � � � (adZk)ikX:Moreover, sine X 2 g�1 a summand in the right hand side lies in g` if and only ifi1 + 2i2 + � � �+ kik = ` + 1.We need another observation for the proof: Suppose that Y 2 g is any element.The Jaobi identity reads as adX Æ adY = ad[X;Y ℄+adY Æ adX . Indutively, thisimplies that adnX Æ adY an be written as a linear ombination of terms of the formadadiX(Y ) Æ adjX with 0 � i; j and i+ j = n. In partiular, if ad`+1X (Y ) = 0 for some` � 0, then for eah n > ` there is a linear map ' suh that adnX Æ adY = 'Æadn�`X .Of ourse, it is not diÆult to ompute ' expliitly, but we will not need this expliitform.Proposition. A parametrized generalized geodesi of type Cg�1 in a paraboli ge-ometry orresponding to a jkj{grading of g is uniquely determined by its (k+1){jetin a single point.Proof. Of ourse, we have proved this for k = 1 in 2.7. In view of the above disus-sion and the last observation in 2.6 we have to show that for eah �xed X 2 g�1any urve of the form exp(Z1)��� exp(Zk);X with Zi 2 gi whih has the same k+1{jetin 0 as e;X atually equals e;X .Given Z1; : : : ; Zk de�ne W := Ad(exp(Z1) � � � exp(Zk))(X) � X 2 p. From theabove disussion we see that(1) W = Xi1;:::;ik 1i1!���ik! (adZ1)i1 � � � (adZk)ikX;where the sum is over all (i1; : : : ; ik) suh that 0 < i1 + 2i2 + � � �+ kik � k + 1.Considering the urve u(t) assoiated to e;X and exp(Z1)��� exp(Zk);X by equation2.2(1), we see from 2.3 that Æu(0) = �W and Lemma 2.4 implies that (Æu)(i)(0) =(�1)i+1 adiX(W ). Consequently by Lemma 2.2 proving the result boils down toshowing that adiX(W ) 2 p for all i � k implies adiX (W ) 2 p for all i 2 N.



16 ANDREAS �CAP, JAN SLOV�AK, AND VOJT�ECH �Z�ADN�IKFor eah ` = 1; : : : ; k de�ne W 0̀ to be the sum of those terms in the expression(1) forW for whih all ij with j > ` are zero, and put W 00` = W �W 0̀. In partiular,we have W 00k = 0, i.e. W 0k = W .Claim: If adiX (W ) 2 p for all i � `, then for eah j � ` we have adj+1X (Zj) = 0,and for eah n > ` we get adnX (W 0̀) 2 p.We prove this laim by indution on `. If ` = 1, we know that adX (W ) 2 p.Looking at formula (1) for W and taking into aount that X 2 g�1 we see thatadX(W ) 2 p implies (and is atually equivalent to) [X; [Z1; X℄℄ = 0 and thus toad2X(Z1) = 0. Hene it remains to show that adnX (W 01) 2 p for all n > 1. By de�ni-tion, W 01 = Pk+1i=1 1i! adiZ1 X. Thus adnX (W 01) 2 p is equivalent to adnX Æ adiZ1 X = 0for i � n. From above we know that ad2X(Z1) = 0 implies that adnX Æ adZ1 ='Æadn�1X , so indutively we onlude that adnX Æ adiZ1 =  Æadn�i+1X Æ adZ for somelinear map  and by assumption n� i + 1 > 0. Hene applying this element to Xwe get  Æ adn�i+2X (Z) whih vanishes sine n� i+2 � 2. This ompletes the proofof the ase ` = 1.Assume indutively that ` > 1 and we have proved the result for ` � 1. Giventhat adiX (W ) 2 p for all i � `, we by indution onlude that adj+1X (Zj) = 0for j = 1; : : : ; ` � 1. Moreover, we know by indution that adX̀(W ) 2 p impliesadX̀(W 00`�1) 2 p. By de�nition of W 00`�1 the only term in adX̀ (W 00`�1) whih does notautomatially lie in p is adX̀ ([Z`; X℄), so we onlude that ad`+1X (Z`) = 0. Hene itremains to show that adnX (W 0̀) 2 p for all n > `. Sine we know by indution thatadnX(W 0̀�1) 2 p, it suÆes to onsider adnX (W 0̀ �W 0̀�1). Now from the expression(1) for W we onlude thatW 0̀ �W 0̀�1 = Xi1;:::;i` 1i1!���i`! (adZ1)i1 � � � (adZ`)i`X;with the sum going over i` > 0 and i1+2i2+ � � �+`i` � k+1. Obviously, adnX (W 0̀�W 0̀�1) 2 p is equivalent to vanishing of adnX Æ adi1Z1 Æ : : : Æ adiZ̀` for all multi{indies(i1; : : : ; i`) suh that i1+2i2+ � � �+`i` � n. Sine adj+1X (Zj) = 0, we see from abovethat admX Æ adZj = ' Æ adm�jX for m > j. Indutively we onlude that for m > jijwe get admX Æ adijZj =  Æ adm�jijX for some linear map  . Thus we onlude thatadnX Æ adi1Z1 Æ : : : Æ adiZ̀` = ~ Æ adn�i1�2i2�����`(i`�1)X Æ adZ` ;and by assumption n� i1 � 2i2 � � � � � `(i` � 1) � `. Thus applying the right handside to X, we obtain adrX (Z`), and by onstrution r � ` + 1, so this vanishes.Hene the proof of the laim is omplete.But taking the laim in the ase ` = k, we see that adiX (W ) = 0 for all i � kimplies that adnX(W 0k) 2 p for all n > k. Sine we have observed above thatW 0k = W ,this ompletes the proof. �4.2. The ase A = g�k. The other extreme lass of geodesis on a manifolds Mequipped with a paraboli geometry of type (G;P ) with jkj{graded g is providedby the generalized geodesis of type Cg�k . Of ourse, for a point x 2 M and atangent vetor � 2 TxM one must have � 2 TxM n T�k+1x M in order to have anontrivial geodesi of type Cg�k in diretion �. On the other hand, this ondition isnot suÆient for suh a geodesi, and the diretions of these geodesis usually forma smaller one in eah tangent spae.An important speial ase is paraboli ontat geometries, i.e. those geometriesorresponding to j2j{gradings, suh that g�2 has dimension one and the braketg�1 � g�1 ! g�2 is non{degenerate. These geometries always have an underlyingontat struture. In these ases geodesis of type Cg�2 always exist for all diretions



ON DISTINGUISHED CURVES IN PARABOLIC GEOMETRIES 17in TM nT�1M . A very well known instane of this type of generalized geodesis isprovided by the Chern{Moser hains on hypersurfae type CR{strutures. A slightlymore general example of this type was studied for 6{dimensional CR{strutures ofodimension 2, in [16℄.Let us reall that reparametrizations of the form '(t) = At+BCt+D with A 6= 0 andAD �BC = 1 are alled projetive.Theorem. Eah generalized geodesi of type Cg�k in a paraboli geometry of type(G;P ) orresponding to a jkj{grading on g is uniquely determined by its 2{jet in asingle point. Moreover, if two of suh urves oinide up to parametrization, thenthis reparametrization is projetive. Conversely, given a generalized geodesi of typeCg�k orresponding to (u;X) 2 G�g�k, every projetive hange of parametrizationde�nes a geodesi of the same type if and only if there exists a Z 2 gk suh that[X; [X;Z℄℄ = X.Proof. From 2.6 and 4.1 we know that for eah X 2 g�k we have to ompare e;Xto all urves of the form b;Y with b = exp(Z1) � � �exp(Zk) for Zi 2 gi, Y 2 g�k andAd(b)(Y ) = X. The last ondition immediately implies that Y = X. ExpandingW = Ad(b)(X) �X as in equation 4.1(1), we onlude that if this expression hastrivial omponent in g�k+1, then [Z1; X℄ = 0. Hene we may omit all terms in theexpansion for whih i1 is the only nonzero index. Vanishing of the omponent ing�k+2 then implies [Z2; X℄ = 0, so we may omit terms in whih only i1 and i2 arenonzero. Indutively, we get [Z`; X℄ = 0 for all ` = 1; : : : ; k� 1. Hene we onludethat Æu(0) = �[Zk; X℄ � 12 [[Zk; [Zk; X℄℄. Now (Æu)0(0) 2 p implies [X; [Zk; X℄℄ = 0and so (Æu)0(0) = 0 exatly as in 2.7.Conerning reparametrizations, we may adapt the proofs of Lemma 3.3 andProposition 3.4 along the same lines. Using the notation from there, the onditionÆu(0) 2 p implies X2 = '0(0)X1 and moreover [Z`; X2℄ = 0 for all ` � k � 1,indutively as above, and this is the only di�erene to the j1j{graded ase. Further,(Æu)0(0) 2 p if and only if '00(0)X1 = '0(0)2[X2; [X2; Z2℄℄ and we �nish the proofexatly as in the j1j{graded ase. �More generally, let us onsider generalized geodesis of type Cg�j with arbitraryj. Geodesis of this type are always urves with tangents in T�jM and they emanatefrom a given point in M in ertain diretions in T�jM n T�j+1M .4.3. Theorem. Eah generalized geodesi of type Cg�j in a paraboli geometry oftype (G;P ) with a jkj{graded g, 1 � j � k is uniquely determined by its r{jet in asingle point provided that rj � k + 1.Proof. This is a ombination of the proofs of Theorem 4.2 and of Proposition 4.1with minor generalizations, so we just outline the basi steps: For X 2 g�j we haveto ompare e;X to b;Y for b = exp(Z1) � � �exp(Zk) with Zi 2 gi and Y 2 g�j andAd(b)(Y ) = X. This immediately implies Y = X, and we put W = Ad(b)(X) �Xand expand this as in 4.1(1). The proof boils down to showing that adiX (W ) 2 pfor i � r implies the same result for all i. As in 4.2,W 2 p implies that [Z`; X℄ = 0for all ` < j, so in the notation of the proof of Proposition 4.1 we obtain W 0j�1 = 0.The analog of the laim in the proof of Proposition 4.1 is that if adiX(W ) 2 pfor all i � `, then for eah s � ` and m < (s + 1)j, we get ads+1X (Zm) = 0, andfurther adnX (W 0j`�1) = 0 for all n > `. This is proved by indution using the samearguments as in 4.1.For ` = r, we obtain jr � k + 1, and as in 4.1, W 0k = W , and we onlude thatadiX(W ) 2 p for all i � r implies the same property for all i as required. �The following two examples expose the diversity of the possible behavior ofvarious lasses of distinguished urves in spei� paraboli geometries. All laims



18 ANDREAS �CAP, JAN SLOV�AK, AND VOJT�ECH �Z�ADN�IKmay be heked by diret omputations following the results above and their moredetailed version may be also found in [21℄.4.4. Example. Let us briey illustrate the general results in the simplest ases ofparaboli ontat strutures, so we are dealing with j2j{gradings suh that g�2 isone{dimensional and the braket g�1 � g�1 ! g�2 is non{degenerate. As we havementioned in 4.2, we get in eah diretion outside the ontat subbundle geodesisof type Cg�2 whih generalize the Chern{Moser hains for CR{struture. From 4.3we know that they are determined by their two{jet in a point as parametrizedurves, and it follows that they are uniquely determined by their diretion in onepoint up to parametrization, by dimension reasons. Moreover, eah suh geodesiarries a natural projetive struture of distinguished parametrizations.Apart of these types of generalized geodesis, there are several other possibilitiesfor non{equivalent types of geodesis as we may observe already at the simplestexample of G being a real form of SL(3; C ) and P the Borel subgroup:(1) G = SL(3;R). The orresponding geometries are the Lagrangian ontat stru-tures on 3{dimensionalmanifolds, i.e. three dimensional ontat strutures endowedwith a deomposition of the ontat subbundle into a diret sum of two line sub-bundles, f. [18℄. Geometrially, there are four di�erent lasses of tangent vetors.First, we have vetors tangent to one of the two subbundles (two lasses), thenthere are the remaining vetors in the ontat subbundle, and �nally those outsideof the ontat subbundle.The subgroup P onsist of all elements of G whih are upper triangular, so on theLie algebra level, we obtain n as the subalgebra of stritly lower triangular matries,with the two entries diretly below the main diagonal orresponding to g�1 and theentry in the lower left orner orresponding to g�2. The ation of the subgroup G0resales eah entry of a matrix in n by a nonzero fator, so the G0{orbits in n aredetermined simply by the nonzero entries of a matrix.First, there are two anonial invariant subspaes in g�1 whih orrespond tothe Lagrange subspaes of the ontat distribution. They are A1 = n� 0 0 0� 0 00 0 0�o andA2 = n� 0 0 00 0 00 � 0�o, respetively, where the star denotes a nonzero entry. Generalizedgeodesis of these types exist exatly in diretions tangent to one of the two linesubbundles, so the two lasses are disjoint but have the same properties. In bothases they behave just like null{geodesis in onformal geometry, i.e. eah suh urveis determined by its 2{jet in one point and with a given tangent vetor there is a1{dimensional family of parametrized generalized geodesis determined by elementsof the form � 0 � 00 0 00 0 0� and � 0 0 00 0 �0 0 0� 2 p+, respetively. Moreover, all urves from thisfamily oinide up to a projetive reparametrization.For A = g�1 we get diretions in the ontat distribution. From 4.1 we know thatsuh urves are determined by their 3{jet in one point. There is a 3{dimensionalfamily of parametrized generalized geodesis (orresponding to all elements in p+)sharing a given tangent vetor, whih is not tangent to one of the two line sub-bundles. Admissible reparametrizations are the projetive ones, so the dimensionof the spae of unparametrized generalized geodesis with the ommon diretion inT�1M but outside of the Lagrange subspaes is two.Now we disuss the urves emanating in diretions whih do not belong to theontat distribution. For A = g�2 we obtain the analog of CR{hains as desribedin Theorem 4.3.Besides these hains, there are another urves going in all diretions exept thosein the ontat distribution; this lass of urves orresponds to the generi hoieof A = n� 0 0 0� 0 0� � 0�o. Curves of this type are determined by a 2{jet and to any



ON DISTINGUISHED CURVES IN PARABOLIC GEOMETRIES 19tangent vetor there is a 3{dimensional family of generalized geodesis. This setis parametrized by elements of p+. In ontrast to the previous ases, there are notwo urves with the ommon tangent vetor, whih would be the same up to areparametrization. So here only aÆne reparametrizations are allowed.The two G0{orbits in n, whih have not yet been mentioned are n� 0 0 0� 0 0� 0 0�o andn� 0 0 00 0 0� � 0�o. Any element of either of these an by mapped to g�2 by some Adb withb 2 P , and vie versa. Hene from 2.6 we know that these lead to the same urvesas A = g�2, and thus the disussion is omplete.(2) G = SU (2; 1). The orresponding geometries are non{degenerated stritlypseudoonvex 3{dimensional CR{strutures. In ontrast to the Lagrangian ontatstrutures, there is no distinguished G0{invariant subset in g�1, so the disussionis similar as above, but easier, so we skip the details.4.5. Example. Let us �nish the paper with the disussion of generalized geodesisin the so alled x{x{dot geometries (the name omes from the shape of the Dynkindiagram with rosses desribing the orresponding paraboli subgroup in sl(4; C )).Suh strutures appear as orrespondene spaes in lassial twistor theory, andthey are related to the geometri theory of ODE's.Let us onsider the group G = SL(4;R) with the paraboli subgroup P whihmay be indiated as P = �� � � � �0 � � �0 0 � �0 0 � ���. The following disussion may be also un-derstood as a blok{wise generalization of the disussion of the matries in theexample 4.4(1) whih we shall all the `x{x' ase. The examples with more `dots'in the Dynkin diagram and just two rosses over the �rst two nods on the left willbehave quite similarly to the x{x{dot ase.The Lie algebra g� is desribed by blok matries of the form g� = n� 0 0 0x1 0 0X2 X1 0�o,where the bloks x1, X1 generate the subalgebra g�1 and X2 belongs to g�2. Thetrunated adjoint ation of an element exp� 0 z1 Z20 0 Z10 0 0 � 2 P+ is given by the formula� 0 0 0x1 0 0X2 X1 0� 7! � 0 0 0x1+Z1(X2) 0 0X2 X1�z1X2 0�.In aordane with the x{x ase, there are two distinguished G0{invariant sub-spaes in g�1 orresponding to the bloks x1 and X1, respetively. The generalizedgeodesis emanating in the appropriate diretions of the distribution T�1M havegot the same properties as above. In partiular, urves of this type are determinedby a 2{jet but as unparametrized urves they are given by a diretion. Parametrizedgeodesis of this type with the ommon tangent vetor form a 1{dimensional familyparametrized by the elements of the form n� 0 z1 00 0 00 0 0�o and n� 0 0 00 0 Z10 0 0 �o.K, respe-tively, where K = n� 0 0 00 0 Z10 0 0 � : Z1(X1) = 0o, briey written as K = fZ1(X1) = 0g.In the latter ase, what really a�ets on the 2{jet is the value Z1(X1) instead ofZ1, that is why the quotient appears.Generalized geodesis with the generi diretions in T�1M are determined bya 3{jet and to any tangent vetor there is a 3{dimensional family of (proje-tively) parametrized geodesis desribed by elements of p+=K, where K = fz1 =0; Z1(X1) = 0; Z2(X1) = 0g.The only ontrast with the x{x ase appears in the diretions not belongingto T�1M . The analogy of hains, i.e. the urves from Cg�2 , does not exhaustall diretions out of the distribution T�1M but only a 4{dimensional `ylinder'�� 0 0 0Z1(X2) 0 0X2 �z1X2 0�� � g� (at eah point) aording to the orbit of g�2 with re-spet to the trunated adjoint ation of P . Obviously, the omplement is formed



20 ANDREAS �CAP, JAN SLOV�AK, AND VOJT�ECH �Z�ADN�IKby all elements of g� suh that vetors X1 and X2 are linearly independent; thisset is G0{invariant. Now, the disussion splits into two branhes where the �rst onefollows the x{x ase, but the seond one brings something new.Let us start with the diretions given by hains. First of all, it is easy to verifythat the sets of urves given by the invariant subsets A1 = n� 0 0 00 0 0X2 aX2 0�o andA2 = n� 0 0 0x1 0 0X2 0 0�o are the same and both of these hoies oinide with hainsde�ned by A = g�2. Of ourse, all hains depend on 2{jets in one point. For anytangent vetor of this type there is a 1{dimensional family of parametrized hains,desribed by the elements of g2=fZ2(X2) = 0g, all parameterizing the same urve.Besides the hains, there is a 3{dimensional family of generalized geodesis em-anating in the same diretions as hains from a given point, de�ned by the subsetA = n� 0 0 0x1 0 0X2 aX2 0�o. This family is parametrized by the quotient p+=K, whereK = fz1 = 0; Z1(X2) = 0; Z2(X2) = 0g. Curves of this type are also determined bya 2{jet and the admissible reparametrizations are aÆne.Finally, we �x a tangent vetor whih does not belong to T�1M and is not tan-gent to a hain. By analogy to the previous ase, there are two disjunt lassesof generalized geodesis emanating in suh diretions, but having rather di�erentproperties than above. The �rst lass orresponds to the invariant subset A =n� 0 0 00 0 0X2 X1 0�o, where X1 and X2 are supposed to be linearly independent (we as-sume this in the rest of the example). Curves of this type are determined by a2{jet, they allow projetive reparametrizations, and to the given tangent vetorthere is a 3{dimensional family of parametrized geodesis desribed by elementsof the form n� 0 0 Z20 0 Z10 0 0 � : Z1(X2) = 0o. The last distinguished lass of urves or-responds to the generi hoie of A = n� 0 0 0x1 0 0X2 X1 0�o. Again, urves of this typeare determined by a 2{jet and allow the projetive lass of reparametrizations.The family of parametrized geodesis with the ommon tangent vetor has got themaximal dimension 5 and it is desribed by all elements of p+.Referenes[1℄ T.N. Bailey, M.G. Eastwood, Complex paraonformal manifolds: their di�erential geometryand twistor theory, Forum Math. 3 (1991), 61{103.[2℄ T.N. Bailey, M.G. Eastwood, Conformal irles and parametrizations of urves in onformalmanifolds, Pro. of AMS 108 (1990), 215{221.[3℄ A. �Cap, H. Shihl, Paraboli Geometries and Canonial Cartan Connetions, HokkaidoMath. J. 29 No.3 (2000) 453{505.[4℄ A. �Cap, J. Slov�ak, Weyl strutures for paraboli geometries, to appear in Math. Sand. 93(2003),eletronially available as Preprint ESI 801 at www.esi.a.at[5℄ A. �Cap, J. Slov�ak, V. Sou�ek, Bernstein{Gelfand{Gelfand sequenes, Annals of Mathematis154 (2001), 97{113.[6℄ E. Cartan, Les espaes �a onnexion onforme, Ann. So. Pol. Math. 2 (1923), 171{202.[7℄ S.S. Chern, J. Moser, Real hypersurfaes in omplex manifolds, Ata Math. 133 (1974),219{271.[8℄ M.G. Eastwood, V. Ezhov, On aÆne normal forms and a lassi�ation of homogeneoussurfaes in aÆne three{spae, Geometriae Dediata bf 77 (1999), 11{69.[9℄ C. Fe�erman, Paraboli invariant theory in omplex analysis, Adv. in Math. 31 (1979),131{262.[10℄ I. Kol�a�r, P.W. Mihor, J. Slov�ak, Natural Operations in Di�erential Geometry, Springer1993.[11℄ I. Kol�a�r, Higher order torsions of spaes with Cartan Connetion, Cahiers Topologie G�eom.Di��erentielle, 12 (1971), 137{146.[12℄ L.K. Koh, Chains, null-hains, and CR geometry, Trans. Amer. Math. So. 338 (1993),245{261.[13℄ L.K. Koh, Development and distinguished urves, Preprint, 1993.
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