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ON DISTINGUISHED CURVES IN PARABOLIC GEOMETRIESANDREAS �CAP, JAN SLOV�AK, AND VOJT�ECH �Z�ADN�IKAbstra
t. All paraboli
 geometries, i.e. Cartan geometries with homoge-neous model a real generalized 
ag manifold, admit highly interesting 
lassesof distinguished 
urves. The geodesi
s of a proje
tive 
lass of 
onne
tions on amanifold, 
onformal 
ir
les on 
onformal Riemannian manifolds, and Chern{Moser 
hains on CR{manifolds of hypersurfa
e type are typi
al examples. Weshow that su
h distinguished 
urves are always determined by a �nite jet inone point, and study the properties of su
h jets. We also dis
uss the questionwhen distinguished 
urves agree up to reparametrization and dis
uss the dis-tinguished parametrizations in this 
ase. We give a 
omplete des
ription of alldistinguished 
urves for some examples of paraboli
 geometries.Elie Cartan's idea of `generalized spa
es' as 
urved analogs of Felix Klein's ge-ometries (i.e. homogeneous spa
es) is a well understood geometri
al 
on
ept, whi
h,for a Lie subgroup P � G, generalizes the Maurer{Cartan form on the total spa
eof the prin
ipal P{bundle G! G=P to Cartan 
onne
tions on prin
ipal P{bundles,see e.g. the introdu
tory book [17℄. The 
on
ept of paraboli
 geometries refers tothose 
ases where P is a paraboli
 subgroup in a (real or 
omplex) semisimple Liegroup G. In [9℄, Ch. Fe�erman initiated a program to exploit the representationtheory of paraboli
 subgroups in semisimple Lie groups in order to understand in-variants of geometri
 stru
tures like CR{geometries, proje
tive geometries, or 
on-formal Riemannian geometries. This approa
h has proved to be extremely powerful.First of all, all paraboli
 geometries 
an be des
ribed in terms of weaker analogiesof 
lassi
al G{stru
tures on smooth manifolds and, similarly to the examples men-tioned above, all su
h stru
tures give rise to 
anoni
al normal Cartan 
onne
tions,
f. [19, 14, 3℄. In fa
t, these 
onstru
tions express Cartan's method of equivalen
eusing the language of the modern representation theory and natural 
ohomologi
alreasoning. The existen
e of the Cartan 
onne
tion provides an e�e
tive 
al
ulus todeal with invariant obje
ts, see e.g. [5℄ and the referen
es therein. To large extent,the understanding of the general (
urved) geometries 
an be redu
ed to propertiesof the homogeneous model, and thus to purely algebrai
 questions.The goal of this paper is to use this approa
h in order to understand invari-antly de�ned systems of distinguished 
urves for paraboli
 geometries, whi
h we
all (generalized) geodesi
s. After re
alling basi
 
on
epts of paraboli
 geometries,geodesi
s are introdu
ed and dis
ussed along the lines of the 
lassi
al approa
hin aÆne geometry, whi
h uses the development of 
urves. This approa
h may befound in similar 
ontext already in [17℄ and in [13℄. In this way, many aspe
ts of thestudy of the 
urves are redu
ed to the 
ase of the homogeneous model. Thus theoriginal `smooth' question on 
urved manifolds 
an be transformed to an `algebrai
'problem, whi
h is dis
ussed in Se
tion 2. In parti
ular, we obtain estimates on theorder of jets ne
essary to determine a geodesi
, and this approa
h also leads to analgebrai
 des
ription of all jets of geodesi
s in a point. The third se
tion is devotedto the study of possible reparametrizations in the 
lass of geodesi
s. Spe
ializingthe general results to j1j{graded Lie algebras, we obtain generalizations of someDate: August 6, 2003.1991 Mathemati
s Subje
t Classi�
ation. 53C15, 53A40, 53A30, 53A55, 53C05.1



2 ANDREAS �CAP, JAN SLOV�AK, AND VOJT�ECH �Z�ADN�IKwell known results on 
onformal, proje
tive, and quaternioni
 geometries (see e.g.[1℄). The �nal se
tion provides further re�nements for spe
i�
 
lasses of 
urves, seein parti
ular Theorems 4.2 and 4.3.A
knowledgments. Part of the work was done during a stay of the se
ond authorat the University of Adelaide under an ARC �nan
ial support, and his dis
ussionswith Mi
hael Eastwood were most helpful and illuminating. First author supportedby proje
t P15747 of the FWF. The se
ond and third authors a
knowledge thesupport from GACR, Grant Nr. 201/02/1390.1. General 
on
epts1.1. Paraboli
 geometries. Let us brie
y re
all the basi
 fa
ts, more details 
anbe found in [4℄ or [17℄, and the referen
es therein. Let G be a real semisimple Liegroup with Lie algebra g, and P � G a paraboli
 subgroup with Lie algebra p. A(real) paraboli
 geometry (G; !) of type (G;P ) is a prin
ipal bundle G with stru
turegroup P over a manifoldM , equipped with a smooth one{form ! 2 
1(G; g), whi
hsatis�es(1) !(�Z)(u) = Z for all u 2 G and fundamental �elds �Z , Z 2 p � g, i.e. !reprodu
es the generators of fundamental ve
tor �elds,(2) (rb)�! = Ad(b�1) Æ ! for all b 2 P , i.e. ! is P{equivariant with respe
t tothe adjoint representation, and(3) !jTuG : TuG ! g is a linear isomorphism for all u 2 G, i.e. ! is an absoluteparallelism on G.The 
urvature of a paraboli
 geometry (G; !) is the horizontal two{form K 2
2(G; g) de�ned by the stru
ture equationsK = d! + 12 [!; !℄, i.e. K(�; �) = d!(�; �) + [!(�); !(�)℄:Clearly, the Maurer{Cartan form ! on the prin
ipal �ber bundle G! G=P is aparaboli
 geometry and the stru
ture equations say that this geometry is 
at, i.e. its
urvature vanishes identi
ally. (G ! G=P; !) is 
alled the homogeneous model forparaboli
 geometries of type (G;P ).Morphisms between Cartan geometries (G; !) and (G0; !0) are prin
ipal �berbundle morphisms ' : G ! G0 su
h that '�!0 = !. It is quite elementary to provethat a geometry is lo
ally isomorphi
 to its homogeneous model if and only if its
urvature vanishes identi
ally, 
f. [17℄.Ea
h smooth (left) a
tion of the stru
ture group P on a smooth manifold Sleads to a fun
tor S on the 
ategory of Cartan geometries of type (G;P ). The valueof S on (G; !) is the asso
iated �ber bundle G �P S with respe
t to the a
tionof P while a morphisms ' : (G; !) ! (G0; !0) indu
es the �ber bundle morphism' �P idS : G �P S ! G0 �P S0. We 
all these bundles natural bundles. Moreover,this 
onstru
tion is fun
torial in the smooth a
tion entry, be
ause ea
h equivariantmapping � : S ! S0 indu
es the �ber bundle mapping idG �P� : G�P S ! G�P S0.Thus we have got a bifun
tor on Cartan geometries and smooth left a
tions withvalues in �ber bundles.In parti
ular, linear representations of P lead to fun
tors valued in ve
tor bun-dles and their linear morphisms and the bifun
toriality of the 
onstru
tion extendsall natural 
onstru
tions like pairings, de
ompositions, and tensor produ
ts of rep-resentations to the natural bundles. Of 
ourse, all this is the obvious restri
tion ofthe usual fun
torial 
onstru
tions over all prin
ipal �ber bundles to the 
ategory ofCartan geometries.A 
entral example, whi
h also illustrates the role of the Cartan 
onne
tion, isgiven by the representation of P on g=p indu
ed by the adjoint representation.This leads to the fun
tor G�P g=p, and via the Cartan 
onne
tion ! this asso
iated



ON DISTINGUISHED CURVES IN PARABOLIC GEOMETRIES 3bundle 
an be identi�ed with the tangent bundle TM . Indeed, sin
e ! de�nes anabsolute parallelism, there are the 
orresponding `
onstant' ve
tor �elds !�1(X) 2X (G) for all X 2 g, de�ned by !(!�1(X)(u)) = X for all u 2 G. Denoting byJu;X + pK the 
lass in G �P g=p of (u;X + p) 2 G � g=p and by � : G ! Mthe bundle proje
tion, one immediately veri�es that Ju;X + pK 7! T�(!�1(X)(u))de�nes the 
laimed isomorphism.For any paraboli
 subalgebra p � g, there is a grading g�k � � � � � gk of g su
hthat p = g0 � � � � � gk, and p+ = g1 � � � � � gk is the nilradi
al of g, see [20, 3℄.In parti
ular, this implies that g0 is a redu
tive Levi 
omponent for p. Hen
e weobtain an identi�
ation n = g�k � � � � � g�1 with g=p, whi
h is an isomorphism ofP{modules if we endow n with the `trun
ated' adjoint a
tion Ad. Via the Killingform, one further obtains an identi�
ation of n� with p+, whi
h indu
es the identi-�
ation of the 
otangent bundle T �M with G �P n�. Thus all tensor bundles overM are identi�ed with the natural bundles 
oming from tensor produ
ts of the rep-resentations n and n�. Moreover, the right hand ends gi = gi � � � � � gk de�ne aP{invariant �ltration of g. Hen
e we obtain natural subbundles T iM � TM for alli < 0. The resulting �ltrationTM = T�kM � T�k+1M � � � � � T�1M � 0is the most importing obje
t underlying a paraboli
 geometry. This �ltration istrivial for j1j{graded algebras and we 
all su
h paraboli
 geometries irredu
ible.A very spe
ial 
ase of the 
onstru
tion of natural bundles is the 
hoi
e S = Gwith the left a
tion of P on G given by the group multipli
ation. This leads to theprin
ipal �ber bundle ~G = G �P G with the prin
ipal a
tion given by the usualright multipli
ation in G and the 
anoni
al in
lusion G � ~G, u 7! Ju; eK, wheree 2 G is the unit element. Now, the Cartan 
onne
tion ! extends uniquely to aG{equivariant one{form ~! 2 
1( ~G; g) reprodu
ing the fundamental ve
tor �elds.One easily veri�es that ~! is a prin
ipal 
onne
tion on ~G. Whenever we have a lefta
tion of P on some manifold S whi
h is the restri
tion of a left a
tion of G, thenwe may view the natural bundle G �P S also as ~G �G S. Hen
e on any naturalbundle of this type, there is a 
anoni
al 
onne
tion indu
ed by ~!. Of 
ourse, if we
onsider restri
tions of G{representations to P , then the resulting natural ve
torbundles, whi
h are usually 
alled tra
tor bundles, are equipped with 
anoni
al linear
onne
tions.1.2. Development of 
urves. The notion of the development of 
urves is relatedto a parti
ular instan
e of natural bundles asso
iated to restri
tions of G{a
tionsto P , namely the 
ase of the 
anoni
al left a
tion on G=P . The resulting spa
eS = G �P G=P = ~G �G G=P is 
alled Cartan's spa
e over the underlying manifoldM of the Cartan geometry in question. Of 
ourse, S ! M is a �ber bundle withtypi
al �ber G=P , and from 1.1 we know that the paraboli
 geometry indu
es a
anoni
al 
onne
tion on this �ber bundle.Another remarkable fa
t about S is that for the point o = eP 2 G=P , anda point x 2 M , all points u 2 G with �(u) = x lead to the same 
lass O(x) =Ju; oK 2 G �P G=P . Hen
e we obtain a 
anoni
al smooth se
tion O of S ! M forevery paraboli
 geometry (G !M;!) of type (G;P ). Moreover, the verti
al tangentbundle V S 
an be identi�ed with the asso
iated bundle G�PT (G=P ). Sin
e the basepoint o 2 G=P is a �x point for the a
tion of P , we see that the restri
tion of V Sto the imageO(M ) of the 
anoni
al se
tion is the asso
iated bundle G�P To(G=P ).Sin
e To(G=P ) is 
anoni
ally isomorphi
 with g=p and G �P (g=p) is naturallyisomorphi
 to TM , we get a 
anoni
al isomorphism V SjO(x) �= TM . Thus we mayview the Cartan's spa
e S as a nonlinear version of the tangent bundle in whi
hthe geometry in question is en
oded by means of the lo
al parallel transport of the
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ed 
onne
tion. This point of view goes ba
k to Cartan, and it was developedfurther in an abstra
t way in the se
ond half of the 20th 
entury (see e.g. [11℄).This 
anoni
al parallel transport provides a straightforward generalization ofthe 
lassi
al 
on
ept of the development of 
urves. By 
omposing with O, a 
urve
 : I ! M with I = (a; b) � Rmay be also viewed as a parametrized 
urve in S.Fixing t0 2 I we �nd a neighborhood J of t0 in I on whi
h the parallel transportalong 
 : I !M is well de�ned. Given s 2 J , we may follow the 
urve O Æ 
 fromt0 to s and then follow the parallel transport ba
kward for time t0 � s to return tothe �ber over t0. More formally, we de�ne a smooth 
urve dev(
; t0) from an openneighborhood of 0 in R to S
(t0) by dev(
; t0)(s) := ~
s(s), where ~
s is the parallel
urve in S lying over t 7! 
(t0 + s � t) with the initial point O(
(s)). This 
urve is
alled the development of 
 at t0. For a point u 2 G over 
(t0), there is a unique
urve �
(t) in G=P mapping 0 2 R to o 2 G=P su
h that dev(
; t0)(t) = Ju; �
(t)K.Any other 
hoi
e for the point in G has the form u�b for b 2 P , and for that 
hoi
ethe 
urve 
hanges to `b�1 Æ �
.Hen
e we 
on
lude that ea
h 
hoi
e of a P{invariant 
lass C of 
urves whi
hmap 0 2 R to o 2 G=P leads to a distinguished 
lass of 
urves on all manifoldsendowed with a Cartan geometry of type (G;P ). We say that a 
urve 
 on M is adistinguished 
urve of type C at a point 
(t0) 2M , if for some (and thus any) pointu 2 G the 
urve �
 
onstru
ted above lies in C.The natural 
hoi
es for su
h sets C of 
urves, of 
ourse 
ome from one{parametersubgroups in G: For a subset A � g, we 
an de�ne a 
lass CA as ft 7! b exp(tX)P :X 2 A; b 2 Pg. So we take the one{parametri
 subgroups with generators in A,allow them to be shifted by left multipli
ations with elements of P , and proje
tthe resulting 
urves to G=P . Of 
ourse, for X 2 p this always leads to the 
onstant
urve o, so we may assume A\p = ;. On the other hand, if we want to have 
urvesin all dire
tions in the 
lass CA, then we have to assume that the restri
tion ofthe proje
tion g ! g=p to A is surje
tive. The most obvious 
hoi
e for A whi
hsatis�es this requirement is A = n. It should be noted that for X 2 g n p the 
urvet 7! b exp(tX)P does not lie in Cn in general. Following the 
ase of aÆne geometryand sin
e we are mainly interested in having sets of distinguished 
urves whi
h areas small as possible, we shall always assume A � n in the sequel.The paraboli
 subgroup P � G always has a 
anoni
al 
losed subgroup G0whi
h 
orresponds to the Lie subalgebra g0 � p. This group turns out to be re-du
tive, and it 
an be 
hara
terized as the subgroup of those elements in G, whoseadjoint a
tion preserved the grading of g. In parti
ular, the subspa
e n is stableunder the adjoint a
tion of G0. Now for b 2 G0 and X 2 n, we of 
ourse haveb exp(tX) = exp(tAdbX)b, and thus b exp(tX)P = exp(tAdbX)P . Thus it is nat-ural to restri
t attention to G0{invariant subsets A � n, and the 
orrespondingdistinguished 
urves are 
alled (generalized) geodesi
s of type CA. We often do notmention the type if A = n.The generalized geodesi
s of type CA are easily des
ribed expli
itly by meansof the 
onstant ve
tor �elds !�1(X). Let us 
onsider the proje
tion 
(t) of the
ow line Fl!�1(X)t (u) 2 G to the manifold M . From the 
onstru
tion of the prin-
ipal 
onne
tion ~! on ~G one immediately 
on
ludes that the horizontal ve
torsfor ~! in points u 2 G are !�1(X)(u) � �X (u) for all X 2 n. Thus, the 
urvet 7! Fl!�1(X)t (u)� exp(�tX) must be the horizontal lift of 
 to ~G. Now, the indu
edparallel transport of an element Ju; exp tXK 2 S along 
 is given at time s byJFl!�1(X)s (u); exp(t � s)XK and it rea
hes exa
tly the point O(
(t)) in the 
anon-i
al embedding of M into S at time s = t. But this exa
tly means that for ea
hX 2 n the 
urve t 7! Ju; exp tXK is the development of the proje
tion of the 
ow



ON DISTINGUISHED CURVES IN PARABOLIC GEOMETRIES 5line through u of the 
onstant ve
tor �eld !�1(X) 2 X(G). Sin
e the allowed de-velopments for 
urves in CA have the form t 7! Ju; exp tXK for u 2 G and X 2 A,we have proved the �rst part of:1.3. Proposition. Let (p : G !M;!) be a paraboli
 geometry of type (G;P ) andlet A � n be a G0{invariant subset.(1) The geodesi
s of type CA on M are exa
tly the proje
tions of 
ow lines of the
onstant ve
tor �elds !�1(X) 2 X(G) with X 2 A.(2) Let (p0 : G0 !M 0; !0) be another paraboli
 geometry of type (G;P ), ' : G ! G0be a morphism of paraboli
 geometries 
overing '0 : M ! M 0, and 
 : I ! M asmooth 
urve. Then 
 is a geodesi
 of type CA if and only if '0 Æ 
 : I ! M 0 is ageodesi
 of type CA.Proof. The 
urve 
 in M is a geodesi
s if an only if 
(t) = p ÆFl!�1(X)t (u) for someX 2 A and u 2 G. Sin
e '�!0 = !, we getp0 Æ Fl!0�1(X)t ('(u)) = p0 Æ ' Æ Fl!�1(X)t (u) = '0 Æ p Æ Fl!�1(X)t (u)and the 
laim follows. �Remark. (1) Our de�nition of geodesi
s and their general des
ription is valid forarbitrary Cartan geometries. Though this is not a paraboli
 geometry, we may thusillustrate it in the 
ase of aÆne 
onne
tions on manifolds (i.e. G is the aÆne groupRm�GL(m;R) and P = GL(m;R)). Here the 
omplement n = Rm is P{invariant,and so any Cartan 
onne
tion ! on G splits into the soldering form !n 2 
1(G;Rm)and the prin
ipal 
onne
tion form !p 2 
1(G; p). Thus a Cartan geometry equipsthe underlying manifoldM with the linear frame bundle (G; !n) and the prin
ipal
onne
tion !p on G. The proje
tions of 
ow lines of the 
onstant ve
tor �eldsare exa
tly the geodesi
s of the linear 
onne
tion on TM indu
ed by !. Part (1)of the Proposition re
overs the 
lassi
al fa
t that the geodesi
s are those 
urveswhose developments are straight lines in Rm = G=P . On the other hand, if we
hoose A = g n p, then more 
urves appear. For example, the following 
urves areproje
tions of shifts of one{parametri
 subgroups in the aÆne group to the planeR2: y = x logx through (1; 0), y = ex through (0; 1), y = x� through (1; 1), 
f. [8℄.(2) Exa
tly as in the homogeneous 
ase, ea
h 
hoi
e of u 2 G de�nes lo
al 
oordi-nates around its proje
tion p(u) 2M . Consider the mapping X 7! p(Fl!�1(X)1 (u)),whi
h is well de�ned on some neighborhood U � n of 0. Choosing U suÆ
ientlysmall, this be
omes a di�eomorphism onto its image, thus gives rise to lo
al 
o-ordinates on M . These are 
alled normal 
oordinates for the Cartan geometry inquestion. Of 
ourse, in the setting of (1), we re
over exa
tly the usual normal 
o-ordinates for aÆne 
onne
tions on manifolds in this way. More information and a
hara
terization of the normal 
oordinates 
an be found in [4℄.We may rephrase our de�nition in terms of normal 
oordinates as follows: Thegeodesi
s of type CA are those 
urves whi
h are linearly parametrized straight linesthrough the origin with dire
tions in A � n in some normal 
oordinates. Again,this generalizes the standard fa
ts on aÆne 
onne
tions.1.4. Example. Let us mention four well known examples of distinguished 
urves inparaboli
 geometries:(1) G = SL(m+1;R),P is the stabilizer of a line inRm+1. Normal paraboli
 geome-tries of type (G;P ) are 
lassi
al proje
tive stru
tures on m{dimensional manifolds.Generalized geodesi
s (of type Cn) are exa
tly the geodesi
s of all 
onne
tions in theproje
tive 
lass. They are determined by their 2{jet in one point as parametrized
urves, but already determined by their dire
tion in one point as unparametrized
urves.



6 ANDREAS �CAP, JAN SLOV�AK, AND VOJT�ECH �Z�ADN�IK(2) G = SL(m + 1;H), P is the stabilizer of a quaternioni
 line. This 
hoi
e leadsto almost quaternioni
 geometries (the 
omplex version of whi
h is dealt with in[1℄). Again generalized geodesi
s are determined by their 2{jet in one point, butthey form more 
ompli
ated systems of 
urves than in the proje
tive 
ase, 
f. [1℄.(3) G = O(p + 1; q + 1), P is the stabilizer of a null line. This leads to 
onformalpseudo Riemannian geometries of signature (p; q). Here the (generalized) geodesi
sare the well known 
onformal 
ir
les, whi
h owe their name to the fa
t that for thehomogeneous model with signature (n; 0) one obtains all 
ir
les on the sphere. Forgeneral signatures, the geodesi
s in null dire
tions, whi
h behave similarly to theproje
tive 
ase, form an interesting sub
lass.(4) G = SU (p+ 1; q+ 1), P the stabilizer of a (
omplex) null line. This Hermitiananalog of (3) leads to non{degenerate CR{stru
tures of hypersurfa
e type withsignature (p; q). Here the Lie algebra is 2{graded and the geodesi
s of type Cg�2 arethe well known Chern{Moser 
hains.2. Jets of distinguished 
urves2.1. The bundles of CA{velo
ities. Let us re
all the natural bundles T rk of rthorder k{dimensional velo
ities on all smooth manifolds. By de�nition, T rkM =Jr0 (Rk;M ), so this is the bundle of r{jets of parametrized k{dimensional (singu-lar) submanifolds in M . In parti
ular, r{jets of 
urves are elements in T r1M . Thea
tion of all di�eomorphisms of M on T rkM is de�ned by jet 
omposition. Let us
onsider a 
ategory of Cartan geometries of �xed type (G;P ) and a 
lass of gener-alized geodesi
s CA, for a G0{invariant subset A of n. Then the jets of distinguished
urves of type CA form a natural subbundle T rCA � T r1 on paraboli
 geometries oftype (G;P ). Clearly, T rCA is a well de�ned fun
tor, 
f. Proposition 1.3(2) above,however their values are not smooth bundles in general, see the examples below. Inthe 
ases with G0{invariant subsets A � n we 
all the latter fun
tors the bundle ofrth order velo
ities of geodesi
s of type CA.Our next goal is to prove that there always is a �nite order r for whi
h the entiregeodesi
 is 
ompletely determined by a single value in T rCA .2.2. Jets of 
urves on G=P . Using Cartan's spa
e S, the development of 
urvesde�nes a bije
tion between smooth 
urves 
 : I !M de�ned on some neighborhoodI of 0 2 R su
h that 
(0) = x0, and smooth 
urves to G=P whi
h map 0 to o = eP .Of 
ourse, this bije
tion is 
ompatible with taking jets in x0, i.e. two 
urves havethe same `{jet in x0 if and only if the 
orresponding 
urves in G=P have the same`{jet in o. By de�nition, this bije
tion also respe
ts generalized geodesi
s of anytype. Thus to prove that geodesi
s of some type CA are determined by some jet inone point, it suÆ
es to 
onsider the homogeneous model G=P and the point o. Westart by 
onsidering A = n (whi
h of 
ourse provides an estimate for any A � n).Thus, we have to study the 
urves 
b;X(t) = b exp(tX)P , with b 2 P and X 2 n,
f. 1.2.Sin
e b exp(tX) = exp(tAdbX)b we see that 
b;X(t) = exp(tAdb �X)P . For anytwo 
urves 
(t) and d(t) in G, there is a uniquely determined 
urve u(t) in G su
hthat 
(t) = d(t)�u(t). The proje
tions of 
(t) and d(t) to G=P 
oin
ide if and onlyif u(t) 2 P for all t. Thus the 
urves 
b1;X1 and 
b2;X2 
oin
ide if and only if theuniquely determined 
urve u su
h that(1) exp(tAdb1 X1) = exp(tAdb2 X2)�u(t)has values in P . Sin
e exp is analyti
, the 
urve u must be analyti
, too, and hen
eit has values in P if and only if all derivatives u(i)(0) = ( ddt )iu(0) are tangent P . Toformulate this pre
isely, we use left logarithmi
 derivative Æu : R! g of the 
urveu : R! G, see e.g. [10, p. 39℄. In fa
t Æu : TR= R�R! g, Æu(t) = T�u(t)�1 ÆTtu,



ON DISTINGUISHED CURVES IN PARABOLIC GEOMETRIES 7but we shall identify the linear map Æu(t; ) : R ! g with its value at the unit1 2 TtR. Sin
e knowing Æu is equivalent to knowing Tu, the following Lemma is asimple observation.Lemma. For ea
h order k 2 N we have jk0
b1;X1 = jk0 
b2;X2 if and only if thederivatives (Æu)(i)(0) lie in p for all i � k � 1.2.3. Some te
hni
alities. In order to 
ompute the derivatives of Æu from formula2.2(1), we 
an use the Leibniz rule for the left logarithmi
 derivative,Æ(f �g)(x) = Æg(x) + Adg(x)�1 Æf(x);
f. [10, p. 39℄, so it remains to 
ompute the left logarithmi
 derivative of the 
urvet 7! exp tX. For later use, we shall 
ompute this expression with an arbitrary 
urveY : R! g instead of the line tX. By de�nition, the logarithmi
 derivative Æ(f Æ g)of the 
omposition of two smooth maps f : M ! G, g : N ! M is given byÆ(f Æ g) = (Æf) Æ Tg. Thus, the key ingredient is the formula for Æ(exp) : Tg ! g.The proof of this formula for the right logarithmi
 derivative in [10, p. 39℄ 
an beeasily adapted to our 
ase, leading toÆ(exp)(Y ) = 1Xp=0 1(p+ 1)! ad(�Y )p:This proves:Lemma. Let Y : R! g be a smooth 
urve with derivative Y 0 : R! g. ThenÆ(exp ÆY )(t) = 1Xp=0 1(p+ 1)! ad(�Y (t))p�Y 0(t):The �rst terms in the formula for Æ(exp Y (t)) read asY 0(t)� 12 [Y (t); Y 0(t)℄ + 16 [Y (t); [Y (t); Y 0(t)℄℄ + : : : :Noti
e that if Y has values in n, then also Y 0 has values in n, and 
ompatibility ofthe grading of g with the Lie bra
ket implies that at most k of these terms may benon{zero for jkj{graded g. Thus, for example,Æ(expY (t)) = Y 0(t); if k = 1;Æ(expY (t)) = Y 0(t) � 12 [Y (t); Y 0(t)℄; if k = 2;Æ(expY (t)) = Y 0(t) � 12 [Y (t); Y 0(t)℄ + 16 [Y (t); [Y (t); Y 0(t)℄℄; if k = 3:On the other hand, if Y (t) = '(t)Y for some �xed Y 2 g and a smooth fun
tion ',then [Y (t); Y 0(t)℄ = 0 and hen
e we always get(1) Æ(exp'(t)Y ) = '0(t)Y:Applying the left logarithmi
 derivative to equation 2.2(1) yields(2) Æu(t) = Adb1 X1 � Adu(t)�1 Adb2 X2:In parti
ular, Æu(0) = Adb1 X1 � Adb2 X2, and this lies in p if and only if Adb1X1and Adb2 X2 represent the same 
lass in g=p, i.e. if the 
urves have the same tangentve
tor at 0.Di�erentiating equation (2) at zero we obtain(Æu)0(0) = � ad(�u0(0))Adb2X2 = [u0(0);Adb2 X2℄;and u0(0) is the image of 1 2 T0R by Æu(0). Substituting (2) yields (Æu)0(0) =[Æu(0);Adb1 X1℄. Surprisingly, there is a general formula for (Æu)(i)(t) for all t 2 Rand all orders i:2.4. Lemma. For all i � 1, (Æu)(i)(t) = (ad(�Adb1 X1))i(Æu(t)).



8 ANDREAS �CAP, JAN SLOV�AK, AND VOJT�ECH �Z�ADN�IKProof. Let us start with the �rst order derivative, so we have to prove (Æu)0(t) =[Æu(t);Adb1 X1℄. To do this, we have to 
ompute the derivative of t 7! Adu(t)�1 :R! GL(g). Clearly, ddt (t 7! Adu(t)�1) = (T Ad ÆT�)(u0(t)), where � is the inversionin G and Ttu = u0(t). First, we will express Tg� and Tg Ad in general.From �g Æ � Æ �g = � we have Tg�1�g Æ Tg� Æ Te�g = Te�, thus Tg� = �Te�g�1 ÆTg�g�1 . Similarly,Ad Æ�g = Adg ÆAd impliesTg Ad ÆTe�g = Adg ÆTeAd, so Tg Ad =Adg Æ ad ÆTg�g�1 . Altogether,ddt Adu(t)�1 = (Adu(t)�1 Æ ad ÆT�u(t)) Æ (�T�u(t)�1 Æ T�u(t)�1)(u0(t)):Sin
e Adg = Te(�g Æ �g�1 ) and Æu(t) = T�u(t)�1 Æ u0(t) the latter expression equals(�Adu(t)�1 Æ ad ÆAdu(t))(Æu(t)). Thus,(Æu)0(t) = Adu(t)�1 [Adu(t) Æu(t);Adb2X2℄ = [Æu(t);Adu(t)�1 Adb2 X2℄and substituting Adu(t)�1 Adb2 X2 = Adb1 X1� Æu(t) from 2.3(2) the 
laim follows.Now, let i > 1 and assume that the formula is valid for all orders less then i.Then (Æu)(i)(t) = ddt ��t (ad(�Adb1X)(i�1)Æu(t))and sin
e ad(�Adb1 X)(i�1) is a linear map and we have 
omputed (Æu(t))0 already,we arrive at(Æu)(i)(t) = ad(�Adb1 X)(i�1)(Æu(t))0 = ad(�Adb1 X)(i)Æu(t);whi
h is the required formula. �Let us noti
e that we have also derived the more general formula for the derivativeof Adu(t)�1 Y (t) with Y : R! n. From the proof above we 
on
lude(1) ddt ��t (Adu(t)�1 Y (t)) = Adu(t)�1 Y 0(t) � [Æu(t);Adu(t)�1 Y (t)℄:As a simple 
onsequen
e of this Lemma, we 
an prove that any geodesi
 isdetermined by a �nite jet in one point:2.5. Proposition. Let g be a jkj{graded Lie algebra, and let A � n be any G0{invariant subset. If two geodesi
s of type CA have the same (k+2){jet in one point,then they 
oin
ide.Proof. As we have noti
ed in 2.2 it suÆ
es to 
onsider A = n, an we 
an 
ompletethe proof by showing that two 
urves 
b1;X1 and 
b2;X2 
oin
ide if they have thesame (k + 2){jet in 0. Denoting by u : R! G the 
urve determined by equation2.2(1), Lemma 2.4 tells us that (Æu)(i)(0) = (ad(�Adb1 X1))i(Æu(0)). By Lemma2.2, the assumption on the (k + 2){jet in 0 implies that ad(�Adb1 X1)i(Æu(0)) 2 pfor all i � k + 1. Sin
e b1 2 P , we may hit this element with Ad�1b1 , and theresult remains in p. Putting X = X1 2 n and Z = Adb�11 Æu(0) 2 p we 
on
ludethat ad(�X)i(Z) 2 p for all i = 1; : : : ; k + 1. Sin
e Z 2 p = g0 � � � � � gk and�X 2 n = g�k � � � � � g�1, 
ompatibility of the bra
ket with the grading impliesthat ad(�X)i(Z) 2 g�k� � � �� gk�i. Putting i = k+1, we see that ad(�X)k+1(Z)has to lie both in n and in p, so it must be zero. This implies that Æu`(0) = 0 2 pfor all ` > k + 1, and thus 
b1;X1 = 
b2;X2 and the 
laim follows. �Let us remark at this point that the estimate r = k+ 2 on the jet needed to pindown a geodesi
 is not at all sharp and we will improve it heavily depending on aparti
ular 
hoi
e of the 
lass of geodesi
s.



ON DISTINGUISHED CURVES IN PARABOLIC GEOMETRIES 92.6. Distinguished 
urves in a given dire
tion. The most natural way to ap-proa
h the problem of distinguished 
urves usually is to �x a point x 2 M and atangent ve
tor � 2 TxM , and look for geodesi
s emanating from x in dire
tion �.Given a G0{invariant subset A 2 n, the basi
 question then is how many geodesi
sof type CA pass through x in dire
tion �. Of 
ourse, it may happen that there areno su
h geodesi
s. As before, one may restri
t the dis
ussion to the point o in thehomogeneous model G=P . Sin
e the above question is perfe
tly geometri
, the an-swer for a tangent ve
tor � 2 To(G=P ) �= g=p will only depend on the P{orbit of �.Clearly, there is at least one geodesi
 of type CA in dire
tion X, if the image of Ain g=p meets the P{orbit of �. Otherwise put, if X 2 n � g is the unique elementsu
h that � = X + p, then there is at least one geodesi
 of type CA in dire
tion � ifAdb(X) 2 A for some b 2 P .Se
ond, suppose that A;B � n are G0{invariant subsets, and that for ea
hX 2 Athere is an element b 2 P su
h that AdbX 2 B, and vi
e versa. (Of 
ourse, this is avery restri
tive 
ondition, sin
e we are using Adb, whi
h does not leave n invariant,but it happens in interesting 
ases.) Then this gives rise to a bije
tion between thesets CA and CB of 
urves in G=P , and 
onsequently, geodesi
s of type CA 
oin
idewith geodesi
s of type CB .Fix a G0{invariant subset A � n and an element X 2 A, and 
onsider thetangent ve
tor � = X + p 2 To(G=P ). Clearly, 
e;X(t) = exp(tX) is a geodesi
of type CA in dire
tion X, and any other geodesi
 of that type 
an be written as
b;Y with b 2 P and Y 2 A. It is a general fa
t, see [3, 2.10℄ that there are uniqueelements b0 2 G0 and Z 2 p+ su
h that b = b0 exp(Z) = exp(Adb0 Z)b0. From thede�nition of distinguished 
urves, we 
on
lude that
b0 exp Z;Y = 
exp(Adb0 Z);Adb0 Y ;and Adb0 Y 2 A. Hen
e any geodesi
 of type CA may be written as 
exp(Z);Y forZ 2 p+ and Y 2 A. Hen
e we 
on
lude that the set of geodesi
s of type CA indire
tion � = X + p 
an be equivalently des
ribed asf
exp(Z);Y : Z 2 p+; Y 2 A;Adexp(Z) �Y = Xg:Passing to a general 
urved geometry via developments as before, we obtainProposition. Let (p : G ! M;!) be a Cartan geometry of type (G;P ), x 2 M apoint, � 2 TxM a tangent ve
tor, and let A � n be a G0{invariant subset. Thenthere is a geodesi
 of type CA through x in dire
tion � if and only if there areelements u 2 p�1(x) � G and X 2 A su
h that � = Tup�!�1(X). Moreover, forany su
h pair (u;X), one obtains a bije
tion between the set of geodesi
s of type CAthrough x in dire
tion � and the set f
exp(Z);Y : Z 2 p+; Y 2 A;Adexp(Z) �Y = Xgof 
urves in G=P . This bije
tion is 
ompatible with �nite jets in 0 in the obvioussense.Finally note that the 
urves 
exp(Z1);Y1 and 
exp(Z2);Y2 have the same `{jet in 0respe
tively 
oin
ide if and only if the same is true for 
e;Y1 and 
exp(Z1)�1 exp(Z2);Y2 ,and we 
an write exp(Z1)�1 exp(Z2) as exp(Z) for some Z 2 p+. Hen
e we 
on
ludethat if for some ` and ea
h X 2 A we 
an show that any 
urve 
exp(Z);Y with Y 2 Awhi
h has the same `{jet in 0 as 
e;X must a
tually equal 
e;X , then this impliesthat any geodesi
 of type CA is uniquely determined by its `{jet in a single point.2.7. The j1j{graded 
ase. For irredu
ible paraboli
 geometries we easily rea
ha 
omplete des
ription. So we assume g = g�1 � g0 � g1 and A = n. The mainsimpli�
ation in the j1j{graded 
ase 
omes from the fa
t that in this 
ase p+ a
tstrivially on g=p, so the P a
tion on this quotient fa
torizes over G0. In parti
ular,for Z 2 p+ = g1 and Y 2 n = g�1 we get Adexp(Z) Y = Y , so in view of Proposition



10 ANDREAS �CAP, JAN SLOV�AK, AND VOJT�ECH �Z�ADN�IK2.6 it remains to 
ompare the 
urves 
e;X and 
exp(Z);X with Z 2 g1. For the
orresponding 
urve u, we obviously get Æu(0) = �[Z;X℄ � 12 [Z; [Z;X℄℄. For thetwo 
urves having the same two{jet in 0, we must have(Æu)0(0) = �[X1; Æu(0)℄ = [X1; [Z;X1℄℄ + 12 [X1; [Z; [Z;X1℄℄℄ 2 p;and thus [X1; [Z;X1℄℄ = 0. But this implies [X1; [Z; [Z;X1℄℄℄ = [Z; [X1; [Z;X1℄℄℄ = 0,and so (Æu)(i)(0) = 0 for all i � 2. Thus, we have proved:Proposition. Ea
h generalized geodesi
 in an irredu
ible paraboli
 geometry isuniquely determined by its 2{jet in one point.2.8. The distinguished jets. Using the pro
edures from above, one may 
omputeexpli
itly the jets of all geodesi
s of type CA. For the sake of simpli
ity, we shallrestri
t ourselves again to the 
ase of j1j{graded Lie algebras. Thus, the valuein T 21 (G=P ) over the origin will always determine a geodesi
 
ompletely, and weshall 
ompute expli
itly the algebrai
 des
ription of the standard �bers of T 2CA .Understanding the higher jets of geodesi
s is an interesting problem, however the
omputations grow qui
kly out of hand.Let us des
ribe all distinguished 
urves in normal 
oordinates through the origin,i.e. we have to represent ea
h geodesi
 in the form t 7! exp(Y (t))P for a smooth
urve Y : R ! g�1 with Y (0) = 0. This means, that rather than with formula2.2(1), we have to deal withexp(Y (t))�u(t) = exp(tAdexpZ X)for Z 2 g1 and X 2 A � g�1.Using the results in 2.3 and formula 2.4(1), straightforward 
omputations yieldÆu(t) = X + [Z;X℄ + 12 [Z; [Z;X℄℄� Adu(t)�1(Y 0(t))(Æu)0(t) = �X + [Z;X℄ + 12 [Z; [Z;X℄℄;Adu(t)�1 Y 0(t)�� Adu(t)�1 Y 00(t):The requirement (Æu)(i)(0) 2 p, for i = 0; 1 immediately impliesY 0(0) = XY 00(0) = [X; [X;Z℄℄:Now it is easy to des
ribe the standard �ber of T 2CA as follows. The standard�ber of T 21 is the smooth manifold J20 (R;g�1)0, whi
h is naturally identi�ed withg�1� g�1. Hen
e the standard �ber of T 2CA is a subset in g�1� g�1, whi
h we have
omputed to be S = �� X[X; [X;Z℄℄� : X 2 A;Z 2 g1� :Re
all that A is assumed to be G0{invariant, but not ne
essarily a linear subspa
e.A good examples in whi
h it is not a subspa
e is given by the null 
one in Rp+q inthe setting of Example 1.4(3). In that 
ase, [X; [Z;X℄℄ happens to be a multiple ofX for ea
h Z, whi
h 
orresponds to the fa
t that geodesi
s in null dire
tions are
onformally invariant up to parametrization.For every paraboli
 geometry of type (G;P ), there is the standard embeddingi : P ! G2m = inv J20 (Rm;Rm)0, see e.g. [15, 17℄. Further, the a
tion of the stru
turegroup G2m on J20 (R;Rm)0 transforms to the a
tion on g�1 � g�1, whose restri
tionto the subgroup i(P ) keeps the subset S invariant be
ause the set CA of all geodesi
sis P{invariant.In fa
t, the a
tion of G0 obviously is the produ
t of the adjoint a
tions ong�1 � g�1, while the a
tion of P+ = exp g1 
omes by the very de�nition of the
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urves from the left shift by the elements expW , W 2 g1. Sin
e g1 is an abeliansubalgebra, the a
tion by expW is given byexpW ��Y 0Y 00� = � Y 0Y 00 + [Y 0; [Y 0;W ℄℄� :Hen
e we obtain an alternative des
ription of the standard �ber as the P{orbit ofthe G0{invariant subspa
e A� f0g � g�1 � g�1.3. ReparametrizationsIn this se
tion we shall generalize our basi
 question to: When are two distin-guished 
urves equal up to a 
hange of parametrization? Thus we shall dis
uss thenon{parametrized geodesi
s together with their preferred parametrizations.3.1. Te
hni
alities. In order to deal with this question, we have to modify ourbasi
 equation 2.2(1). The answer is positive if and only if there exist mappingsu : R! P and ' : R! R su
h that(1) exp('(t)Adb1 X1) = exp(tAdb2 X2)�u(t);where ' is a lo
al reparametrization, i.e. we require '0(t) 6= 0 and, for simpli
ity,'(0) = 0. As dis
ussed in the Remark 2.6, we may restri
t ourselves to G0{invariantsubsets A, b1 = e, b2 = expZ with Z 2 p+.The left logarithmi
 derivative of (1) gives, 
f. 2.3(1)(2) Æu(t) = '0(t)X1 �Adu(t)�1 �AdexpZ X2:In parti
ular, Æu(0) 2 p if and only if tangent ve
tors of the two distinguished 
urvesat 0 are equal up to a s
alar multiple.By formula 2.4(1), and the above equation (2), we get(3) (Æu)0(t) = '00(t)X1 � '0(t)[X1; Æu(t)℄:Now, similarly as in the parametrized 
ase we prove a general iterative formulafor (Æu)(i):3.2. Lemma. For all i � 1 and at every t 2 R, with the notation as above(Æu)(i) = '(i+1)X1 + iXk=1(�1)k�Xj;a 
j;a('(j1))a1: : : ('(js))as�(adX1 )k(Æu)where the internal sum runs over all s{tuples of natural numbers j = (j1; : : : ; js),j1 < j2 < � � � < js, and s{tuples of arbitrary natural numbers a = (a1; : : : ; as) su
hthat a1j1 + � � �+ asjs = i and a1 + � � �+ as = k, and the 
oeÆ
ients 
j;a are
j;a = i!(j1!)a1 : : : (js!)asa1! : : :as! :Proof. In the 
ase i = 1, the entire sum in the formula has just one possible termfor k = 1, j1 = 1 and a1 = 1. As we have seen, this is the 
orre
t formula (3). Thegeneral 
ase is proved by a tedious indu
tion. �Remark. As a hint for the indu
tion mentioned in the proof above, let us des
ribein words, what the individual terms in the general formula mean. The value of ksays how many times ' o

urs in the term in question (and so many times X hitsÆu via the adjoint a
tion and the sign is set appropriately), while the 
oeÆ
ients
j;a express in how many di�erent ways we may split i derivatives onto k 
opies of''s in order to a
hieve the result ('(j1))a1: : : ('(js))as . Now, the di�erentiation ofthis formula and substitution from 3.1(3) means that we perform the last derivativeon one of the ''s in the individual terms in the formula, or we atta
h a new ' tothe existing terms whi
h is di�erentiated only on
e. But this is exa
tly how all



12 ANDREAS �CAP, JAN SLOV�AK, AND VOJT�ECH �Z�ADN�IKsplittings of i+1 (distinguishable) hits of k (indistinguishable) targets are obtainedfrom the answers to the same question for i derivatives and k or k � 1 targets.Either the last hit has been to some existing one among k targets, i.e. we use theanswer with i hits and k targets, or we have had to introdu
e a new target whi
hwas hit on
e, i.e. we used the answer with i hits and k � 1 targets.It is probably hard to dedu
e general results for all paraboli
 geometries and all
lasses of distinguished 
urves from this formula, but let us see how to use it inmore spe
i�
 situations.3.3. Irredu
ible paraboli
 geometries. We are going to give a 
omplete answerto our question for j1j{graded algebras g. In order to de
ide when two distinguishedpaths 
b1;X1 , 
b2;X2 parametrize the same 
urve we have to 
ompute expli
itly the
onsequen
es of (Æu)(i)(0) 2 p in relation to the ne
essary and suÆ
ient 
onditionsfor the solution of the given problem. At the same time we shall get a 
omplete andexpli
it des
ription of the reparametrizations.Lemma. With the notation as above, Æu(0) 2 p if and only if(1) '0(0)X1 = X2:If Æu(0) 2 p, then (Æu)0(0) 2 p if and only if(2) '00(0)'0(0)2X1 = [X1; [X1; Z℄℄;and if i � 2 and (Æu)(j)(0) 2 p for all j < i, then (Æu)(i)(0) 2 p if and only if(3) '(i+1)(0) = (i + 1)!2i '00(0)i'0(0)i�1 ; for all i � 2:Proof. Sin
e our algebra g is j1j{graded, all iterated adjoint a
tions by X1 on Æu(0)vanish if the order is more then two. Thus only terms with k � 2 in Lemma 3.2may survive and the general formula for i � 1 reads(Æu)(i)(0) = '(i+1)(0)X1 � '(i)(0)[X1; Æu(0)℄ +12 i�1X̀=1 i!`!(i�`)!'(`)(0)'(i�`)(0)�[X1; [X1; Æu(0)℄℄:Indeed, this 
an be either proved by inserting into the general formula from Lemma3.2 or dire
tly by indu
tion.Next, re
all Æu(0) = '0(0)X1 �X2 � [Z;X2℄� 12 [Z; [Z;X2℄℄. Thus (1) is obvious.We shall assume Æu(0) 2 p and thereforeÆu(0) = �'0(0)([Z;X1℄ + 12 [Z; [Z;X1℄℄):Now, (2) follows from the general formula with i = 1. The most interesting step isthe 
ase i = 2 (i.e. we deal with the third order jets of the 
urves, so that these mustbe determined by the lower order derivatives already). Indeed, the substitution ofequalities in (1) and (2) into the general formula yields(Æu)(i)(0) = '(i+1)(0)X1 + '(i)'0(0)[X1; [Z;X1℄℄�14 i�1X̀=1�ì�'(`)(0)'(i�`)(0)'0(0)[X1; [X1; [Z; [Z;X1℄℄℄℄ + term in g0= �'(i+1)(0) � '(i)(0)'00(0)'0(0) � 14 i�1X̀=1�ì�'(`)(0)'(i�`)(0)'00(0)2'0(0)3 �X1+ term in g0.
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ture of the latter equation implies that '(i+1)(0) is determined uniquelyin terms of the values '(k)(0) with k � i and a dire
t 
omputation 
he
ks that theformula in (3) is 
orre
t. �Let us summarize what we have a
hieved so far. If the 
onditions of (1) and(2) are satis�ed, than '(0), '0(0) and '00(0) are determined by the 
hoi
e of thetangent ve
tors to the 
urve and by the element Z 2 g1 and we may de�ne all otherderivatives of ' by the formula (3). In parti
ular, the spe
ial 
ase i = 2 yields(4) '000(0) = 32 '00(0)2'0(0)whi
h reminds the well known S
hwartzian di�erential equation. We shall see thatthe formulae for '(i)(0) determine an analyti
 lo
al solution for this equation.If we denote a = '0(0) and b = '00(0), the Taylor development of the fun
tion 'at 0 must be'(t) = at+ 12bt2 + 16 32 b2a t3 + � � �+ 1(i+ 1)! (i + 1)!2i biai�1 ti+1 + � � � :Thus, we have obtained the geometri
 series '(t) = atP1i=0( bt2a)i whi
h 
onvergeslo
ally around 0 and its value is'(t) = at(1� b2at)�1:If we want to allow the reparametrizations with '(0) 6= 0, we have just to repla
eequation 3.1(1) by exp('(t) � '(0))Adb1X1 = exp(tAdb2X2)�u(t) and the resultdi�ers only by adding the value '(0) to the fra
tion above. In su
h a 
ase thereparametrization takes a form'(t) = At+ BCt+D ; where A = '0(0)� '00(0)2'0(0)'(0); B = '(0); C = � '00(0)2'0(0) ; D = 1:In parti
ular, the solution with '00(0) = 0 yields the aÆne reparametrization of the
urve whi
h of 
ourse have to be geodesi
s, too. The determinant of the matrix(A BC D ) is '0(0) 6= 0, so we may normalize this to just 1 and we have proved:3.4. Proposition. Suppose that g is j1j{graded. If the 
urves 
b1;X1 and 
b2;X2
oin
ide as unparametrized 
urves, then the 
orresponding lo
al reparametrization' has the form '(t) = At+BCt+D , where (A BC D ) 2 SL(2;R). Conversely, if 
 = 
b;X isa parametrized geodesi
 then all 
urves 
 Æ ' with reparametrizations ' : R! Rof the latter form are again geodesi
s if and only if there is Z 2 g1 su
h that[X; [X;Z℄℄ = X.Proof. It remains to prove the se
ond statement. Obviously we may restri
t our-selves to the 
ase when '(0) = 0. Then ea
h ' satis�es all 
onditions from Lemma3.3, provided there is a suitable Z for (2). �Reparametrizations of the above type are 
alled proje
tive, see [2℄, where theyare obtained as solutions of the S
hwartzian di�erential equation '000 = 32 ('00)2'0 .Corollary. Suppose that g is j1j{graded. Then the 
urves 
e;X1 and 
expZ;X2 pa-rametrize the same unparametrized geodesi
 if and only if there are a 6= 0 and bsu
h that X2 = aX1 and [X2; [X2; Z℄℄ = bX1. This is equivalent to the existen
e ofthe proje
tive lo
al reparametrization ' whi
h is uniquely determined by the initial
ondition '(0) = 0, '0(0) = a, and '00(0) = b.



14 ANDREAS �CAP, JAN SLOV�AK, AND VOJT�ECH �Z�ADN�IK3.5. Example. In the following examples we use the obvious fa
t that in the 
aseof a j1j{grading, elements of P of the form exp(Z) for Z 2 g1 a
t trivially onTo(G=P ) = g=p. Then the P{a
tion on this spa
e fa
torizes over G0.(1) Conformal Riemannian stru
tures 
orrespond to G = O(p + 1; q + 1) and theparaboli
 subgroup P as in 1.4(3). In an appropriate matrix representation, thegrading of the Lie algebra g has the formg�1 = n� 0 0 0X 0 00 �XtJ 0� : X 2 Rp+qo ; g0 = n� a 0 00 A 00 0 �a� : A 2 o(p; q); a 2 R;o ;g1 = n� 0 Z 00 0 �JZt0 0 0 � : Z 2 Rp+q�o :Here J is the matrix de�ning the standard pseudo{metri
 of signature (p; q) onRp+q = g�1.A dire
t 
al
ulation shows that [X; [X;Z℄℄ = �2Z(X)X � jjXjj2JZt, wherejjXjj2 = XtJX and Z(X) = ZX is a real number. Obviously, the spa
e g�1 splitsinto three di�erent orbits of the a
tion of G0 a

ording to the sign of kXk2. Theorbit of null{ve
tors is of parti
ular interest, sin
e [X; [X;Z℄℄ = �2Z(X)X in that
ase. This just means that all distinguished 
urves with the 
ommon tangent null{ve
tor di�er by a reparametrization whi
h re
overs the 
lassi
al result that the nullgeodesi
s of the metri
s in the 
onformal 
lass together with the 
lass of proje
tiveparametrizations are invariants of the 
onformal stru
ture. Of 
ourse, these 
urveswill have their tangent ve
tors null in all their points.For all tangent ve
tors whi
h are not null, the se
ond derivative may be 
hosenarbitrarily. So that the standard �ber S in 2.8 has arbitrary entries in the bottomrow if X is not null, but only multiples of X if X is null. On the other hand, therealways is an element Z 2 g1 su
h that [[Z;X℄; X℄ = X, so all geodesi
s 
arry anatural proje
tive stru
ture.(2) Almost Grassmannian stru
tures. In this 
ase, G = SL(n + m;R) and theparaboli
 subgroup P is the stabilizer of Rn � Rn+m, so it 
onsists of blo
k uppertriangular matri
es with two blo
ks of sizes n and m. On the in�nitesimal level,g�1 = f( 0 0X 0 ) : X 2 Rmng; g0 = f(A 00 B ) : tr(A) + tr(B) = 0g;g1 = f( 0 Z0 0 ) : Z 2 Rnmg:First, it is easy to see that the subgroup G0 
onsists of blo
k diagonal matri
es,and its a
tion on g�1 is given by X 7! TXS�1, (S; T ) 2 G0. Thus two elementsof g�1 lie in the same G0{orbit if and only if they have the same rank. Further,the 
omputation of the iterated bra
ket yields [X; [X;Z℄℄ = �2XZX. In parti
ular,the 
hoi
e of the pseudoinverse matrix Z = Xy provides always a multiple of Xand so all generalized geodesi
s enjoy the distinguished proje
tive stru
ture. If therank of X is one, then we may 
hoose X to be the matrix with the left upperelement x11 = 1 and all other 0. Then [X; [X;Z℄℄ equals to z11X for all Z andso this behavior must be shared by all matri
es of rank one. Thus, the dire
tions
orresponding to rank one matri
es behave like null dire
tions in pseudo{
onformalgeometries. The other extreme is that X has maximal rank. Then one gets a lot offreedom in the available se
ond derivatives of the 
urves. The 
ase that all elementsof g�1 are possible se
ond derivatives o

urs only if m = n and X has rank n.(3) Proje
tive stru
tures are the spe
ial 
ase n = 1 of Example (2) above. In this
ase, the rank of X 6= 0 is always one. More expli
itly, the produ
t ZX is a realnumber, so the bra
ket [X; [X;Z℄℄ is always a multiple of X. From this it followsthat all unparametrized distinguished 
urves are determined by the dire
tion in agiven point. This agrees with the 
lassi
al de�nition of a proje
tive stru
ture asa 
lass of aÆne 
onne
tions sharing the same unparametrized geodesi
s. All su
h
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onne
tions are parametrized by smooth one{forms on the base manifold and they
orrespond to the Weyl 
onne
tions de�ned in [4℄.4. More refinementsIn this se
tion we improve the estimates on the jet in a point needed to pin downa geodesi
 for geodesi
s of 
ertain types. The most general results is Theorem 4.3but sin
e the proofs of these results are a bit te
hni
al, we prefer to dis
uss twosimpler spe
ial 
ases �rst.4.1. Curves tangent to T�1M . LetM be anymanifold equipped with a paraboli
geometry of some �xed type (G;P ). A (generalized) geodesi
s with development ofthe form 
b;X emanates in a dire
tion in T�1M if and only if X 2 g�1. Thus weare dealing with distinguished 
urves of type Cg�1 and from Proposition 1.3 we seethat they will be tangent to the distribution T�1M in all points.To dis
uss geodesi
s of type Cg�1 , by Proposition 2.6 we have to �x X 2 g�1and study the 
urves 
exp(Z);Y for Z 2 p+ = g1 � � � � � gk and Y 2 g�1 su
h thatAd(exp(Z))(Y ) = X. Sin
e Y 2 g�1 we get Ad(exp(Z))(Y ) = Y for any Z, sowe have to 
onsider all 
urves of the form 
exp(Z);X with Z 2 p+. By [3, 2.10℄ weget a ni
er presentation of exp(Z). Namely, there are unique elements Zi 2 gi fori = 1; : : : ; k su
h that exp(Z) = exp(Z1) � � � exp(Zk). Sin
e Ad(exp(W )) = ead(W )for ea
h W 2 g we getAdexpZ X = Xi1;:::;ik 1i1!���ik! (adZ1)i1 � � � (adZk)ikX:Moreover, sin
e X 2 g�1 a summand in the right hand side lies in g` if and only ifi1 + 2i2 + � � �+ kik = ` + 1.We need another observation for the proof: Suppose that Y 2 g is any element.The Ja
obi identity reads as adX Æ adY = ad[X;Y ℄+adY Æ adX . Indu
tively, thisimplies that adnX Æ adY 
an be written as a linear 
ombination of terms of the formadadiX(Y ) Æ adjX with 0 � i; j and i+ j = n. In parti
ular, if ad`+1X (Y ) = 0 for some` � 0, then for ea
h n > ` there is a linear map ' su
h that adnX Æ adY = 'Æadn�`X .Of 
ourse, it is not diÆ
ult to 
ompute ' expli
itly, but we will not need this expli
itform.Proposition. A parametrized generalized geodesi
 of type Cg�1 in a paraboli
 ge-ometry 
orresponding to a jkj{grading of g is uniquely determined by its (k+1){jetin a single point.Proof. Of 
ourse, we have proved this for k = 1 in 2.7. In view of the above dis
us-sion and the last observation in 2.6 we have to show that for ea
h �xed X 2 g�1any 
urve of the form 
exp(Z1)��� exp(Zk);X with Zi 2 gi whi
h has the same k+1{jetin 0 as 
e;X a
tually equals 
e;X .Given Z1; : : : ; Zk de�ne W := Ad(exp(Z1) � � � exp(Zk))(X) � X 2 p. From theabove dis
ussion we see that(1) W = Xi1;:::;ik 1i1!���ik! (adZ1)i1 � � � (adZk)ikX;where the sum is over all (i1; : : : ; ik) su
h that 0 < i1 + 2i2 + � � �+ kik � k + 1.Considering the 
urve u(t) asso
iated to 
e;X and 
exp(Z1)��� exp(Zk);X by equation2.2(1), we see from 2.3 that Æu(0) = �W and Lemma 2.4 implies that (Æu)(i)(0) =(�1)i+1 adiX(W ). Consequently by Lemma 2.2 proving the result boils down toshowing that adiX(W ) 2 p for all i � k implies adiX (W ) 2 p for all i 2 N.
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h ` = 1; : : : ; k de�ne W 0̀ to be the sum of those terms in the expression(1) forW for whi
h all ij with j > ` are zero, and put W 00` = W �W 0̀. In parti
ular,we have W 00k = 0, i.e. W 0k = W .Claim: If adiX (W ) 2 p for all i � `, then for ea
h j � ` we have adj+1X (Zj) = 0,and for ea
h n > ` we get adnX (W 0̀) 2 p.We prove this 
laim by indu
tion on `. If ` = 1, we know that adX (W ) 2 p.Looking at formula (1) for W and taking into a

ount that X 2 g�1 we see thatadX(W ) 2 p implies (and is a
tually equivalent to) [X; [Z1; X℄℄ = 0 and thus toad2X(Z1) = 0. Hen
e it remains to show that adnX (W 01) 2 p for all n > 1. By de�ni-tion, W 01 = Pk+1i=1 1i! adiZ1 X. Thus adnX (W 01) 2 p is equivalent to adnX Æ adiZ1 X = 0for i � n. From above we know that ad2X(Z1) = 0 implies that adnX Æ adZ1 ='Æadn�1X , so indu
tively we 
on
lude that adnX Æ adiZ1 =  Æadn�i+1X Æ adZ for somelinear map  and by assumption n� i + 1 > 0. Hen
e applying this element to Xwe get  Æ adn�i+2X (Z) whi
h vanishes sin
e n� i+2 � 2. This 
ompletes the proofof the 
ase ` = 1.Assume indu
tively that ` > 1 and we have proved the result for ` � 1. Giventhat adiX (W ) 2 p for all i � `, we by indu
tion 
on
lude that adj+1X (Zj) = 0for j = 1; : : : ; ` � 1. Moreover, we know by indu
tion that adX̀(W ) 2 p impliesadX̀(W 00`�1) 2 p. By de�nition of W 00`�1 the only term in adX̀ (W 00`�1) whi
h does notautomati
ally lie in p is adX̀ ([Z`; X℄), so we 
on
lude that ad`+1X (Z`) = 0. Hen
e itremains to show that adnX (W 0̀) 2 p for all n > `. Sin
e we know by indu
tion thatadnX(W 0̀�1) 2 p, it suÆ
es to 
onsider adnX (W 0̀ �W 0̀�1). Now from the expression(1) for W we 
on
lude thatW 0̀ �W 0̀�1 = Xi1;:::;i` 1i1!���i`! (adZ1)i1 � � � (adZ`)i`X;with the sum going over i` > 0 and i1+2i2+ � � �+`i` � k+1. Obviously, adnX (W 0̀�W 0̀�1) 2 p is equivalent to vanishing of adnX Æ adi1Z1 Æ : : : Æ adiZ̀` for all multi{indi
es(i1; : : : ; i`) su
h that i1+2i2+ � � �+`i` � n. Sin
e adj+1X (Zj) = 0, we see from abovethat admX Æ adZj = ' Æ adm�jX for m > j. Indu
tively we 
on
lude that for m > jijwe get admX Æ adijZj =  Æ adm�jijX for some linear map  . Thus we 
on
lude thatadnX Æ adi1Z1 Æ : : : Æ adiZ̀` = ~ Æ adn�i1�2i2�����`(i`�1)X Æ adZ` ;and by assumption n� i1 � 2i2 � � � � � `(i` � 1) � `. Thus applying the right handside to X, we obtain adrX (Z`), and by 
onstru
tion r � ` + 1, so this vanishes.Hen
e the proof of the 
laim is 
omplete.But taking the 
laim in the 
ase ` = k, we see that adiX (W ) = 0 for all i � kimplies that adnX(W 0k) 2 p for all n > k. Sin
e we have observed above thatW 0k = W ,this 
ompletes the proof. �4.2. The 
ase A = g�k. The other extreme 
lass of geodesi
s on a manifolds Mequipped with a paraboli
 geometry of type (G;P ) with jkj{graded g is providedby the generalized geodesi
s of type Cg�k . Of 
ourse, for a point x 2 M and atangent ve
tor � 2 TxM one must have � 2 TxM n T�k+1x M in order to have anontrivial geodesi
 of type Cg�k in dire
tion �. On the other hand, this 
ondition isnot suÆ
ient for su
h a geodesi
, and the dire
tions of these geodesi
s usually forma smaller 
one in ea
h tangent spa
e.An important spe
ial 
ase is paraboli
 
onta
t geometries, i.e. those geometries
orresponding to j2j{gradings, su
h that g�2 has dimension one and the bra
ketg�1 � g�1 ! g�2 is non{degenerate. These geometries always have an underlying
onta
t stru
ture. In these 
ases geodesi
s of type Cg�2 always exist for all dire
tions
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e of this type of generalized geodesi
s isprovided by the Chern{Moser 
hains on hypersurfa
e type CR{stru
tures. A slightlymore general example of this type was studied for 6{dimensional CR{stru
tures of
odimension 2, in [16℄.Let us re
all that reparametrizations of the form '(t) = At+BCt+D with A 6= 0 andAD �BC = 1 are 
alled proje
tive.Theorem. Ea
h generalized geodesi
 of type Cg�k in a paraboli
 geometry of type(G;P ) 
orresponding to a jkj{grading on g is uniquely determined by its 2{jet in asingle point. Moreover, if two of su
h 
urves 
oin
ide up to parametrization, thenthis reparametrization is proje
tive. Conversely, given a generalized geodesi
 of typeCg�k 
orresponding to (u;X) 2 G�g�k, every proje
tive 
hange of parametrizationde�nes a geodesi
 of the same type if and only if there exists a Z 2 gk su
h that[X; [X;Z℄℄ = X.Proof. From 2.6 and 4.1 we know that for ea
h X 2 g�k we have to 
ompare 
e;Xto all 
urves of the form 
b;Y with b = exp(Z1) � � �exp(Zk) for Zi 2 gi, Y 2 g�k andAd(b)(Y ) = X. The last 
ondition immediately implies that Y = X. ExpandingW = Ad(b)(X) �X as in equation 4.1(1), we 
on
lude that if this expression hastrivial 
omponent in g�k+1, then [Z1; X℄ = 0. Hen
e we may omit all terms in theexpansion for whi
h i1 is the only nonzero index. Vanishing of the 
omponent ing�k+2 then implies [Z2; X℄ = 0, so we may omit terms in whi
h only i1 and i2 arenonzero. Indu
tively, we get [Z`; X℄ = 0 for all ` = 1; : : : ; k� 1. Hen
e we 
on
ludethat Æu(0) = �[Zk; X℄ � 12 [[Zk; [Zk; X℄℄. Now (Æu)0(0) 2 p implies [X; [Zk; X℄℄ = 0and so (Æu)0(0) = 0 exa
tly as in 2.7.Con
erning reparametrizations, we may adapt the proofs of Lemma 3.3 andProposition 3.4 along the same lines. Using the notation from there, the 
onditionÆu(0) 2 p implies X2 = '0(0)X1 and moreover [Z`; X2℄ = 0 for all ` � k � 1,indu
tively as above, and this is the only di�eren
e to the j1j{graded 
ase. Further,(Æu)0(0) 2 p if and only if '00(0)X1 = '0(0)2[X2; [X2; Z2℄℄ and we �nish the proofexa
tly as in the j1j{graded 
ase. �More generally, let us 
onsider generalized geodesi
s of type Cg�j with arbitraryj. Geodesi
s of this type are always 
urves with tangents in T�jM and they emanatefrom a given point in M in 
ertain dire
tions in T�jM n T�j+1M .4.3. Theorem. Ea
h generalized geodesi
 of type Cg�j in a paraboli
 geometry oftype (G;P ) with a jkj{graded g, 1 � j � k is uniquely determined by its r{jet in asingle point provided that rj � k + 1.Proof. This is a 
ombination of the proofs of Theorem 4.2 and of Proposition 4.1with minor generalizations, so we just outline the basi
 steps: For X 2 g�j we haveto 
ompare 
e;X to 
b;Y for b = exp(Z1) � � �exp(Zk) with Zi 2 gi and Y 2 g�j andAd(b)(Y ) = X. This immediately implies Y = X, and we put W = Ad(b)(X) �Xand expand this as in 4.1(1). The proof boils down to showing that adiX (W ) 2 pfor i � r implies the same result for all i. As in 4.2,W 2 p implies that [Z`; X℄ = 0for all ` < j, so in the notation of the proof of Proposition 4.1 we obtain W 0j�1 = 0.The analog of the 
laim in the proof of Proposition 4.1 is that if adiX(W ) 2 pfor all i � `, then for ea
h s � ` and m < (s + 1)j, we get ads+1X (Zm) = 0, andfurther adnX (W 0j`�1) = 0 for all n > `. This is proved by indu
tion using the samearguments as in 4.1.For ` = r, we obtain jr � k + 1, and as in 4.1, W 0k = W , and we 
on
lude thatadiX(W ) 2 p for all i � r implies the same property for all i as required. �The following two examples expose the diversity of the possible behavior ofvarious 
lasses of distinguished 
urves in spe
i�
 paraboli
 geometries. All 
laims
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he
ked by dire
t 
omputations following the results above and their moredetailed version may be also found in [21℄.4.4. Example. Let us brie
y illustrate the general results in the simplest 
ases ofparaboli
 
onta
t stru
tures, so we are dealing with j2j{gradings su
h that g�2 isone{dimensional and the bra
ket g�1 � g�1 ! g�2 is non{degenerate. As we havementioned in 4.2, we get in ea
h dire
tion outside the 
onta
t subbundle geodesi
sof type Cg�2 whi
h generalize the Chern{Moser 
hains for CR{stru
ture. From 4.3we know that they are determined by their two{jet in a point as parametrized
urves, and it follows that they are uniquely determined by their dire
tion in onepoint up to parametrization, by dimension reasons. Moreover, ea
h su
h geodesi

arries a natural proje
tive stru
ture of distinguished parametrizations.Apart of these types of generalized geodesi
s, there are several other possibilitiesfor non{equivalent types of geodesi
s as we may observe already at the simplestexample of G being a real form of SL(3; C ) and P the Borel subgroup:(1) G = SL(3;R). The 
orresponding geometries are the Lagrangian 
onta
t stru
-tures on 3{dimensionalmanifolds, i.e. three dimensional 
onta
t stru
tures endowedwith a de
omposition of the 
onta
t subbundle into a dire
t sum of two line sub-bundles, 
f. [18℄. Geometri
ally, there are four di�erent 
lasses of tangent ve
tors.First, we have ve
tors tangent to one of the two subbundles (two 
lasses), thenthere are the remaining ve
tors in the 
onta
t subbundle, and �nally those outsideof the 
onta
t subbundle.The subgroup P 
onsist of all elements of G whi
h are upper triangular, so on theLie algebra level, we obtain n as the subalgebra of stri
tly lower triangular matri
es,with the two entries dire
tly below the main diagonal 
orresponding to g�1 and theentry in the lower left 
orner 
orresponding to g�2. The a
tion of the subgroup G0res
ales ea
h entry of a matrix in n by a nonzero fa
tor, so the G0{orbits in n aredetermined simply by the nonzero entries of a matrix.First, there are two 
anoni
al invariant subspa
es in g�1 whi
h 
orrespond tothe Lagrange subspa
es of the 
onta
t distribution. They are A1 = n� 0 0 0� 0 00 0 0�o andA2 = n� 0 0 00 0 00 � 0�o, respe
tively, where the star denotes a nonzero entry. Generalizedgeodesi
s of these types exist exa
tly in dire
tions tangent to one of the two linesubbundles, so the two 
lasses are disjoint but have the same properties. In both
ases they behave just like null{geodesi
s in 
onformal geometry, i.e. ea
h su
h 
urveis determined by its 2{jet in one point and with a given tangent ve
tor there is a1{dimensional family of parametrized generalized geodesi
s determined by elementsof the form � 0 � 00 0 00 0 0� and � 0 0 00 0 �0 0 0� 2 p+, respe
tively. Moreover, all 
urves from thisfamily 
oin
ide up to a proje
tive reparametrization.For A = g�1 we get dire
tions in the 
onta
t distribution. From 4.1 we know thatsu
h 
urves are determined by their 3{jet in one point. There is a 3{dimensionalfamily of parametrized generalized geodesi
s (
orresponding to all elements in p+)sharing a given tangent ve
tor, whi
h is not tangent to one of the two line sub-bundles. Admissible reparametrizations are the proje
tive ones, so the dimensionof the spa
e of unparametrized generalized geodesi
s with the 
ommon dire
tion inT�1M but outside of the Lagrange subspa
es is two.Now we dis
uss the 
urves emanating in dire
tions whi
h do not belong to the
onta
t distribution. For A = g�2 we obtain the analog of CR{
hains as des
ribedin Theorem 4.3.Besides these 
hains, there are another 
urves going in all dire
tions ex
ept thosein the 
onta
t distribution; this 
lass of 
urves 
orresponds to the generi
 
hoi
eof A = n� 0 0 0� 0 0� � 0�o. Curves of this type are determined by a 2{jet and to any
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tor there is a 3{dimensional family of generalized geodesi
s. This setis parametrized by elements of p+. In 
ontrast to the previous 
ases, there are notwo 
urves with the 
ommon tangent ve
tor, whi
h would be the same up to areparametrization. So here only aÆne reparametrizations are allowed.The two G0{orbits in n, whi
h have not yet been mentioned are n� 0 0 0� 0 0� 0 0�o andn� 0 0 00 0 0� � 0�o. Any element of either of these 
an by mapped to g�2 by some Adb withb 2 P , and vi
e versa. Hen
e from 2.6 we know that these lead to the same 
urvesas A = g�2, and thus the dis
ussion is 
omplete.(2) G = SU (2; 1). The 
orresponding geometries are non{degenerated stri
tlypseudo
onvex 3{dimensional CR{stru
tures. In 
ontrast to the Lagrangian 
onta
tstru
tures, there is no distinguished G0{invariant subset in g�1, so the dis
ussionis similar as above, but easier, so we skip the details.4.5. Example. Let us �nish the paper with the dis
ussion of generalized geodesi
sin the so 
alled x{x{dot geometries (the name 
omes from the shape of the Dynkindiagram with 
rosses des
ribing the 
orresponding paraboli
 subgroup in sl(4; C )).Su
h stru
tures appear as 
orresponden
e spa
es in 
lassi
al twistor theory, andthey are related to the geometri
 theory of ODE's.Let us 
onsider the group G = SL(4;R) with the paraboli
 subgroup P whi
hmay be indi
ated as P = �� � � � �0 � � �0 0 � �0 0 � ���. The following dis
ussion may be also un-derstood as a blo
k{wise generalization of the dis
ussion of the matri
es in theexample 4.4(1) whi
h we shall 
all the `x{x' 
ase. The examples with more `dots'in the Dynkin diagram and just two 
rosses over the �rst two nods on the left willbehave quite similarly to the x{x{dot 
ase.The Lie algebra g� is des
ribed by blo
k matri
es of the form g� = n� 0 0 0x1 0 0X2 X1 0�o,where the blo
ks x1, X1 generate the subalgebra g�1 and X2 belongs to g�2. Thetrun
ated adjoint a
tion of an element exp� 0 z1 Z20 0 Z10 0 0 � 2 P+ is given by the formula� 0 0 0x1 0 0X2 X1 0� 7! � 0 0 0x1+Z1(X2) 0 0X2 X1�z1X2 0�.In a

ordan
e with the x{x 
ase, there are two distinguished G0{invariant sub-spa
es in g�1 
orresponding to the blo
ks x1 and X1, respe
tively. The generalizedgeodesi
s emanating in the appropriate dire
tions of the distribution T�1M havegot the same properties as above. In parti
ular, 
urves of this type are determinedby a 2{jet but as unparametrized 
urves they are given by a dire
tion. Parametrizedgeodesi
s of this type with the 
ommon tangent ve
tor form a 1{dimensional familyparametrized by the elements of the form n� 0 z1 00 0 00 0 0�o and n� 0 0 00 0 Z10 0 0 �o.K, respe
-tively, where K = n� 0 0 00 0 Z10 0 0 � : Z1(X1) = 0o, brie
y written as K = fZ1(X1) = 0g.In the latter 
ase, what really a�e
ts on the 2{jet is the value Z1(X1) instead ofZ1, that is why the quotient appears.Generalized geodesi
s with the generi
 dire
tions in T�1M are determined bya 3{jet and to any tangent ve
tor there is a 3{dimensional family of (proje
-tively) parametrized geodesi
s des
ribed by elements of p+=K, where K = fz1 =0; Z1(X1) = 0; Z2(X1) = 0g.The only 
ontrast with the x{x 
ase appears in the dire
tions not belongingto T�1M . The analogy of 
hains, i.e. the 
urves from Cg�2 , does not exhaustall dire
tions out of the distribution T�1M but only a 4{dimensional `
ylinder'�� 0 0 0Z1(X2) 0 0X2 �z1X2 0�� � g� (at ea
h point) a

ording to the orbit of g�2 with re-spe
t to the trun
ated adjoint a
tion of P . Obviously, the 
omplement is formed
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h that ve
tors X1 and X2 are linearly independent; thisset is G0{invariant. Now, the dis
ussion splits into two bran
hes where the �rst onefollows the x{x 
ase, but the se
ond one brings something new.Let us start with the dire
tions given by 
hains. First of all, it is easy to verifythat the sets of 
urves given by the invariant subsets A1 = n� 0 0 00 0 0X2 aX2 0�o andA2 = n� 0 0 0x1 0 0X2 0 0�o are the same and both of these 
hoi
es 
oin
ide with 
hainsde�ned by A = g�2. Of 
ourse, all 
hains depend on 2{jets in one point. For anytangent ve
tor of this type there is a 1{dimensional family of parametrized 
hains,des
ribed by the elements of g2=fZ2(X2) = 0g, all parameterizing the same 
urve.Besides the 
hains, there is a 3{dimensional family of generalized geodesi
s em-anating in the same dire
tions as 
hains from a given point, de�ned by the subsetA = n� 0 0 0x1 0 0X2 aX2 0�o. This family is parametrized by the quotient p+=K, whereK = fz1 = 0; Z1(X2) = 0; Z2(X2) = 0g. Curves of this type are also determined bya 2{jet and the admissible reparametrizations are aÆne.Finally, we �x a tangent ve
tor whi
h does not belong to T�1M and is not tan-gent to a 
hain. By analogy to the previous 
ase, there are two disjun
t 
lassesof generalized geodesi
s emanating in su
h dire
tions, but having rather di�erentproperties than above. The �rst 
lass 
orresponds to the invariant subset A =n� 0 0 00 0 0X2 X1 0�o, where X1 and X2 are supposed to be linearly independent (we as-sume this in the rest of the example). Curves of this type are determined by a2{jet, they allow proje
tive reparametrizations, and to the given tangent ve
torthere is a 3{dimensional family of parametrized geodesi
s des
ribed by elementsof the form n� 0 0 Z20 0 Z10 0 0 � : Z1(X2) = 0o. The last distinguished 
lass of 
urves 
or-responds to the generi
 
hoi
e of A = n� 0 0 0x1 0 0X2 X1 0�o. Again, 
urves of this typeare determined by a 2{jet and allow the proje
tive 
lass of reparametrizations.The family of parametrized geodesi
s with the 
ommon tangent ve
tor has got themaximal dimension 5 and it is des
ribed by all elements of p+.Referen
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