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Abstract

It is shown that with probability 1 on © resp. on gx the irrational rotation alge-
bra Mg with respect to the CAT map and the generalized Price-Powers shift Ay are
asymptotically highly anticommutative.



1 Introduction

In [NT] the concept of an automorphism that is asymptotically highly anticommutative
was introduced. In [AN] this property was shown to imply zero dynamical entropy. In
[NST] the concept was slightly generalized and it was found that for some system with
this property the dynamical entropy is not additive for the tensor product. In addition
an explicit example in the framework of the Price-Powers shift was constructed. In this
note we want to show that this example is not so exceptional but on the contrary for
generalized Price—Powers shifts as well as for the irrational rotation algebra the shift resp.
the CAT map are asymptotically highly anticommuative with probability 1.

2 The definition and its consequence

Definition 1: [NST] An automorphism « of a unital C* algebra A is asymptotically
highly anticommutative, if A contains a selfadjoint subset S of A such that S U {1} is
total in A and for which the following condition holds:

YVweS, Ve>0, VN €N there exists ky,....ky € N

such that for ¢ # j
[0, bl | < e )

Consequence: For such an automorphism there exists a unique invariant state [NT,
NST]. The dynamical entropy of the automorphism in the sense of [CS, CNT] or [ST] is
zero, since the stationary state in a coupling with an abelian system [ST] has to be of
product form.

3 The irrational rotation algebra

Definition 2: The irrational rotation algebra Mg is built by unitaries U, V which
obey UV = ¥ VU, © € [0,1) is irrational. An automorphism a : Mg — Mg is given
by

a(Unvm) _ Uan—l—bmvcn—l—dm (2)

with (a,b,¢,d) € Z, ad —bc =1, a+ d > 2. (Mg, @) is the C* dynamical system we are
considering here.

Remark: O was chosen to be irrational so that the center of the algebra is trivial. For
O rational the center is the classical function algebra over 72 and determines the ergodic
behaviour [BNS]. It was shown in [BNS] and [N] that « is for all © in the tracial state
weakly asymptotic abelian but only for a countable set of irrational ©’s it is also strongly
asymptotic abelian.



M is linearly spanned by the unitaries
W (i) = emmOmmzymy/mz = (ni,ny) € Z°. (3)
They obey the relations
W (i)W (m) = emeg(”’m)W(ﬁ +m), o(n,m) = nims — namy. (4)

In matrix notation (2) becomes

o(W(7i)) = W(T#), T:(Z 2). (5)

The eigenvalues A*! of T' depend only on the trace t = a+d > 2 and obey \> — Xt 41 = 0.
They are irrational and we take A > 1. The eigenvectors of T

b
A g

are orthogonal iff b = ¢ but in any case we can expand 77 = ¢y iy + ¢_fi_ such that

. 1
fix =
\/(a _ )\11)2 + b2

TR = ey Njiy + e X pu_. (6)

Since

(W (i), o* W (70)] = cos(nOac (77, T*i) )W (77 + T*7) (7)

and |[W(77)|| = 1, anticommutativity depends on the closeness of Qo (77, T*7) to 1/2 mod
Z. The rest of this section is devoted to studying when this happens.
iFrom (5) and (6) we deduce

o, TH) = (N = A™F), e = cpe_olii-, fiy). (8)

Since ¢ depends only 7 and T but not on k we note

1 o o
c= m o(n,Tn). 9)

With A*2 — tA*! + 1 = 0 we can write higher powers of A\*! as
)\ik = Ozk)\:tl + ﬁk (10)
where 0y := (ag, Br) € Z* obey the recursion relation

Bt = M, M:(_fé» 5 = (0,1). (11)



M has also eigenvalues A*'. With these notations and (8) and (9) we can write the
quantity of interest as

)\k o )\—k

where ¢ = (1,0). . )
At some instance we shall need the dependence of o(77, T*7*%) on k and k separately
which we get by the observation

ap = (A= ATHTIOENTE AR
= (A=A (arA 4 Be) (g A ™" + Br) — (A~ + Br)(apA + 5]

oy — agfy = <17k ( _(1) (1) ) ?7k>- (13)

After these elementary preparations we are ready for the

Lemma 1: V ¥ = (vy,vz) € Z*\ {0} the numbers O(¢|t;) (mod Z) are in k& € N*
uniformly distributed over 71 with probability 1 in ©.

Uniform distribution means [W, H] that V f € C(7*') we get
1Y e 1
Jim & 3 @) = [ de fla
This is equivalent to require that it holds ¥V f(z) = ¢**** h € Z or that
N

fN7® - Z 2mi©h(T|TL) —0 VYh - Z \ {0}

To see whether this holds for almost all ® we consider

/d(a\fN@ _N2 Z/de) 2mi©h{T| T 17’)

kk=1
Now
1 ) I 1 if 17|17k—77’ =0
/ dO eZ?m@h(v|vk—U;;> — < ) k> since <77|77k - 77]}> € Z.
0 0 otherwise
But

(8, — ) = (F(M* = M*)To) = 0 = |(M* — M")i) = el



U2

>, ¢ € Q. This can happen for k = k or for fixed k — k = d only
—v

once. First note that ¢ # 0 because (M*+? — M*)|ty) = 0 <= M%|vy) = |vh) but the
eigenvalues of M are also A\*!. If we also had for £ € Z \ {0}

with |0_) =

(MH* = M) = efii) = Z(M* — MF) i)
¢
then M’ were to have an eigenvalue ¢/c € Q but its eigenvalues At are irrational. Thus
(T|Ty, — T3) is zero for at most N + N — 1 values of (k, k) € (1,..., N)? and

— 0.

‘2 2N —1

1 _
d <
| do Jivel < =

This means that the set of ©’s for which fN@ — 0 1s of measure 1.

Lemma 2: For any sequence {ki,...,k,} € Z" and any 11 € Z*\ {0} the elements
of 7", Oc(#, T* % i) mod Z", 1 = 1,...,r, are in k € N* uniformly distributed on the
2—dimensional submanifold

Sy ={0€T"v; = zay,(modz) + 26k, (modz); (v, z) € R*i=1,... r} CT”

with probability 1 in O.

Proof: From (12) and (13) we infer
U(ﬁv Tk_klﬁ) = (akﬁkl - ﬁkaki)a(ﬁv Tﬁ)

and the claim is that V {h;} € o(7,T7) - Z" with j = 1,...,r we have

i=1

1 A
I > exp [2#@@ > hilarBr, — Bray, )] —
k=1

1 T
— / dxdz exp [27ri > hi( By, — ozij)]
0

i=1

{ L for 375y ki, =0 =327_) hjou,

0 otherwise.
With vy = 37, h;B,, v2 = — 32, hjay, this means

1

N
© Y ) 0 (1n,0) £ (0,0)

k=1

f@,N =

with probability 1 in ©. This is exactly the statement of Lemma 1.



Lemma 3: If oj/a;_1 >2/e, 0, e N*, j=1,...,r then & := {0 € T";v; = xa; mod
Z,x € R} C S; C 7" meets the open set

O={0eT"1/2—c<v;<1/24ecVj=1,...,r} CT".

Proof: We shall proceed inductively in j and use the quantities §; € (—¢,¢), z; € Z,
v; € (—&’/2,&7/2). The first component in 7" is in O if v; = za; = %—I—(Si orx = a%(%—l—(sl).
The next component requires

ag (1 1
U2:Oé2$:—2<—+51):—+52—|—22
anq 2 2
or | |
a
5:_<_ 5)——.
1 o 2-|-22—|- 2 5

Since by assumption aq/ay < €/2 we can choose z3 such that

« « «
=+ —152 € (71 — & —17’71 +¢ —1) C (—¢,¢).
(0% (0% (0%
The next step requires
a3 1 1
as (1 5) 46
o (2 + 01 5 + 03 + 23
or | |
aq
5= (— 5 ) _
1 o \2 + 23 + 03 5
Since — < | we can choose z3 such that
a3 2 (0%
« « «
& = ’71-|-’72—|-—153€ (’71+’72—5 —1,’71-|-’72—|-€ —1)
o) Qa3 as
anq anq
C (71—5—,714—5—).
(0% (0%

Proceeding in this way we see that the open subset of &7, where

1 71 Qq aq
x:—<§+5), de (71+72+...+%«_1—€a—,’yl+’yz+...+%«_1+€—)

anq r

is contained in ©.

Theorem 1: With probability 1 in © one can find for any ¢ > 0, 7 € Z*\ {0} and
N € N* a sequence k;, i = 1,2,..., N such that | cos 1Qc (7, T* " i) < e Vi # 5.



Proof: Having fixed ¢ and 7, we proceed by induction for k; since Lemma 1 guar-
antees the existence of a ky. Having found (kq,..., k) Lemma 2 tells us that the k.44
which qualify are uniformly distributed in & which by Lemma 3 meets the open set O.
The intersection is open in Sy and because of uniform distribution it contains infinitely
many qualifying k’s. Since aj goes with k£ to infinity we can find a k,.; which satisfies
Qg pr [, > 2/e. We denote the set of ©s for which this holds ¥, 7, C [0,1) and observe
w(Xen,) = 1. For © € Ny, Ye s we can find (kq,...,ky) and since finite intersections
of sets with probability 1 still have probability 1 we have proved Theorem 1.

Conclusion: With probability 1 in © the C*~dynamical system (Mg, a) is highly
anticimmutative and therefore has only one invariant state, zero dynamical entropy, the

latter not being additive for (Mo @ Mg, a @ a).

Proof: The first statement follows from Theorem 1 from which the next two were
deduced in [NT] and [AN, NST]. The last statement follows because Mg @ Mg contains
the subalgebra generated by W(ni,ny) @ W(ni, —ng) which is for all © abelian and
isomorphic to Mg = (C(7?), «). The latter hass dynamical entropy In A > 0 and therefore
only the general conclusion that the dynamical entropy is superadditive for the tensor
product remains.

Remarks

1. Voiculecu [V] has recently defined another dynamical entropy for C* systems which
is subadditive for the tensor product. In the abelian case it also agrees with the KS
entropy. Since for the dynamical entropy it is the large time behaviour which mat-
ters, one might think that also for asymptotic abelian system all definitions should
agree. Since (Me, ) is weakly asymptotic abelian we conclude that weak asymp-
totic abelianness is not enough. It is an open question which degree of asymptotic
abelianness is necessary for the definitions to agree. When they do then dynamical
entropy is necessarily additive for the tensor product.

2. The result shows how sensitive CS entropy is to the structure of the algebra. For
rational ©® = p/q, p,q € Z it equals the KS entropy of the center {W(n)}, n € ¢Z*
and therefore is In \.

3. Our result implies that for most ©’s the tracial state is the only invariant state for
(Mo, a). It exists for all ©’s and thus Mg is of type I;. Since Voiculescu’s entropy
is subadditive for the tensor product it is positive for (Mg, a) for all ®@’s and thus
different from the CS entropy and not only of its subsequent generalizations.

4 The Price—Powers Shift

In [NST] a special Proce-Powers shift was constructed as example of a system which
satisfies (1). Several generalizations of the construction are possible. In this note we want



to keep the probabilistic point of view as for the rotation algebra and show that it is also
highly anticommutative with probability 1. We repeat the definition of the Price—Powers
shift and keep the notation of [NST].

Definition 3: Let X be a subset of N* and let gx be its characteristic function. Let
(8;), © € Z be a sequence of selfadjoint unitaries satisfying the commutation relations

Denote by Ayx the C* algebra generated by the set of s; € Z. It is linearly generated by
the words

wy = Hsi, I'={i1 <iz<...it}, card I = k < 0.
i€ICZ

a € Aut Ay is defined by a(s;) = s;41.
It follows that a word wy is either hermitian or antihermitian and two words either
commute or anticommute. In fact

wWrwy = waI(_)ZiEI Z]GJgX(“_ﬂ) = waI(_)CaI‘d(|I—J|O)F‘|X (14)

where we define | — J|, = {|i — j|,2 € 1,7 € J, which occur as odd time} C N*.

To assign a probability to the set of X’s for which (Ax, «) is highly anticommutative
we map those elements of P(P(IN*)), the second power set of N*, which are cylindrical
subsets of P(N*) onto the Ising algebra

B:= H D, = diag M,
=1

10 0 0
PZ:(OO) and QZ:(Ol)

The mapping v associates bijectively to

generated by

Xom = {X CN*: {ny,....n1} C X, {ms,....,ms} C X'} € P(P(N")),

the element L

i=17=1
The probability p for x, ., is given by the pull-back with v of the standard product state
wover B, w(P)=1/2, y=wo~yor

) = o) = g7 B2 (15)

otherwise.



Lemma 4: For all [ ¢ N*

p{X :card X NI =odd} = %

Proof: First consider the case where [ has only one element [ = {i}. Then y{X :
card X N[ = odd} = P; and the result follows from w(F;) = 1/2 (15). Next let [ have ¢
elements, I = {i1,1,...,1,}. Consider all possible partitions [ = I, U I_. Then

p{X :card X NI =o0dd} =w ( > I1 2 11 Qk) = 27197,

card Iy = odd t€l kel_

Corollary: The probability that two words w; and w; commute (or anticommute) is

1/2.
Proof: |
p{X :card X N |I — J|, = even (or odd} = 5

according to Lemma 4.

Lemma 5: For a given set of words wy,,...,wy, the probability that a word w; with
|J — Ll,N|J =L, =0, # ( anticommutes with all wy, is 27°.

Proof: Denote K; = |J — I;|, = K" UK

(2

p{X :card XN K, =odd Vr e (1 0} =

:w(n S I @h)

=1 card Ixr = odd ZTEIXT ]TEIXT

:ﬁw( S I @]r):

r=1 card KF = odd i, eK} jreK,”

because w is a product state and we required K, N Ky =0 V r # s.

Theorem 2: Assume for a word w;j there exist numbers nq,...,n, such that
[I—T+ns—nplo VI —=1T4+ns—n;l,=0Vn <np<nj <ns <n,.
Then with probability 1 there exists an n,,; such that
[@"wr, o™ w]y =0 V1<s<n,

and
I —T+nq0—nglo N =14+ n41—n4l,=0Vn <np <n; <n,.



Proof: Consider the shifted word a‘w; with £ such that [[— [+ —ng|,N|[[—I+{—n;|, =
0V n <np <ny <n,. There are infinitely many such (’s, say, {1,0s,..., g,.... The
probability that w;i, commutes with at least one of the o™ w;, s = 1,...,r equals
1 — 27" < 1. Because of the disjointness assumption the shifted words o%w; correspond
to independent variables P;, ();. Because of the product structure of the state w the
probability that among k shifts /1,... /; at least once the shifted word anticommutes
with all given a™<w; is therefore 1 — (1 —27")*. Since k can be arbitrarily big we can with
certainty find an ¢ which qualifies for the n,;; in Theorem 2.

Corollary: (Ax, ) is with probability 1 in X highly anticommutative.
Proof: For each word w; start with ny = 0 and follow the proof of Theorem 2 to find

an ng such that [wy, a™wy]y =0 and |[I—1I|,N|[] =4 nz|o = 0. Then proceed inductively
in r with Theorem 2.
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