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AbstractIt is shown that with probability 1 on � resp. on gX the irrational rotation alge-bra M� with respect to the CAT map and the generalized Price{Powers shift AX areasymptotically highly anticommutative.



11 IntroductionIn [NT] the concept of an automorphism that is asymptotically highly anticommutativewas introduced. In [AN] this property was shown to imply zero dynamical entropy. In[NST] the concept was slightly generalized and it was found that for some system withthis property the dynamical entropy is not additive for the tensor product. In additionan explicit example in the framework of the Price{Powers shift was constructed. In thisnote we want to show that this example is not so exceptional but on the contrary forgeneralized Price{Powers shifts as well as for the irrational rotation algebra the shift resp.the CAT map are asymptotically highly anticommuative with probability 1.2 The de�nition and its consequenceDe�nition 1: [NST] An automorphism � of a unital C� algebra A is asymptoticallyhighly anticommutative, if A contains a selfadjoint subset S of A such that S [ f1g istotal in A and for which the following condition holds:8 w 2 S; 8 " > 0; 8 N 2 N there exists k1; : : : ; kN 2 Nsuch that for i 6= j k[�kiw;�kjw]+k < ": (1)Consequence: For such an automorphism there exists a unique invariant state [NT,NST]. The dynamical entropy of the automorphism in the sense of [CS, CNT] or [ST] iszero, since the stationary state in a coupling with an abelian system [ST] has to be ofproduct form.3 The irrational rotation algebraDe�nition 2: The irrational rotation algebra M� is built by unitaries U , V whichobey UV = e2�i�V U , � 2 [0; 1) is irrational. An automorphism � :M� !M� is givenby �(UnV m) = Uan+bmV cn+dm (2)with (a; b; c; d) 2 Z, ad� bc = 1, a+ d > 2. (M�; �) is the C� dynamical system we areconsidering here.Remark: � was chosen to be irrational so that the center of the algebra is trivial. For� rational the center is the classical function algebra over T 2 and determines the ergodicbehaviour [BNS]. It was shown in [BNS] and [N] that � is for all � in the tracial stateweakly asymptotic abelian but only for a countable set of irrational �'s it is also stronglyasymptotic abelian.



2 M� is linearly spanned by the unitariesW (~n) = e�i��n1n2Un1V n2 ; ~n = (n1; n2) 2 Z2: (3)They obey the relationsW (~n)W (~m) = ei���(n;m)W (~n+ ~m); �(~n; ~m) = n1m2 � n2m1: (4)In matrix notation (2) becomes�(W (~n)) = W (T~n); T =  a bc d ! : (5)The eigenvalues ��1 of T depend only on the trace t = a+d > 2 and obey �2��t+1 = 0.They are irrational and we take � > 1. The eigenvectors of T~�� = 1q(a� ��1)2 + b2 ����� b��1 � a +are orthogonal i� b = c but in any case we can expand ~n = c+~�+ + c�~�� such thatT k~n = c+�k~�+ + c���k��: (6)Since [W (~n); �kW (~n)] = cos(���(~n; T k~n))W (~n+ T k~n) (7)and kW (~n)k = 1, anticommutativity depends on the closeness of ��(~n; T k~n) to 1/2 modZ. The rest of this section is devoted to studying when this happens.>From (5) and (6) we deduce�(~n; T k~n) = c(�k � ��k); c = c+c��(~��; ~�+): (8)Since c depends only ~n and T but not on k we notec = 1�� 1=� �(~n; T~n): (9)With ��2 � t��1 + 1 = 0 we can write higher powers of ��1 as��k = �k��1 + �k (10)where ~vk := (�k; �k) 2 Z2 obey the recursion relation~vk+1 = M~vk; M =  t 1�1 0 ! ; ~v0 = (0; 1): (11)



3M has also eigenvalues ��1. With these notations and (8) and (9) we can write thequantity of interest as�(~n; T k~n) = �k � ��k� � ��1 �(~n; T~n) = �k �(~n; T~n) = h~vjMk~v0i �(~n; T~n) (12)where ~v = (1; 0).At some instance we shall need the dependence of �(~n; T k��k~n) on k and �k separatelywhich we get by the observation�k��k = (� � ��1)�1(�k���k � ��k��k)= (� � ��1)�1[(�k� + �k)(��k��1 + ��k)� (�k��1 + �k)(��k�+ ��k)]= �k��k � ��k�k = *~vk ����� 0 1�1 0 ! ~v�k+ : (13)After these elementary preparations we are ready for theLemma 1: 8 ~v = (v1; v2) 2 Z2 n f0g the numbers �h~vj~vki (mod Z) are in k 2 N�uniformly distributed over T 1 with probability 1 in �.Uniform distribution means [W, H] that 8 f 2 C(T 1) we getlimN!1 1N NXk=1 f(�h~vj~vki) = Z 10 dx f(x):This is equivalent to require that it holds 8 f(x) = e2�ihx, h 2 Z or that�fN;� := 1N NXk=1 e2�i�hh~vj~vki ! 0 8 h 2 Z n f0g:To see whether this holds for almost all � we considerZ 10 d� ��� �fN;����2 = 1N2 NXk;�k=1 Z 10 d� e2�i�hh~vj~vk�~v�ki:Now Z 10 d� e2�i�hh~vj~vk�~v�ki = 8<: 1 if h~vj~vk � ~v�ki = 00 otherwise since h~vj~vk � ~v�ki 2 Z:But h~vj~vk � ~v�ki = h~vj(Mk �M �k)~v0i = 0() j(Mk �M �k)~v0i = cj~v?i



4with j~v?i = ����� v2�v1 +, c 2 Q. This can happen for k = �k or for �xed k � �k = d onlyonce. First note that c 6= 0 because (Mk+d �Mk)j~v0i = 0 () Mdj~v0i = j~v0i but theeigenvalues of M are also ��1. If we also had for ` 2 Z n f0g(Mk+` �M �k+`)j~v0i = �cj~v?i = �cc(Mk �M �k)j~v0ithen M ` were to have an eigenvalue �c=c 2 Q but its eigenvalues ��` are irrational. Thush~vj~vk � ~v�ki is zero for at most N +N � 1 values of (k; �k) 2 (1; : : : ; N)2 andZ 10 d� ��� �fN;����2 � 2N � 1N2 ! 0:This means that the set of �'s for which �fN;� ! 0 is of measure 1.Lemma 2: For any sequence fk1; : : : ; krg 2 Zr and any ~n 2 Z2 n f0g the elementsof T r, ��(~n; T k�ki~n) mod Zr, i = 1; : : : ; r, are in k 2 N� uniformly distributed on the2{dimensional submanifoldS2 = f~v 2 T r; vi = x�ki(modz) + �x�ki(modz); (x; �x) 2 R2; i = 1; : : : ; rg � T rwith probability 1 in �.Proof: From (12) and (13) we infer�(~n; T k�ki~n) = (�k�ki � �k�ki)�(~n; T~n)and the claim is that 8 fhjg 2 �(~n; T~n) � Zr with j = 1; : : : ; r we have1N NXk=1 exp242�i� rXj=1 hj(�k�kj � �k�kj )35!! Z 10 dxd�x exp242�i rXj=1hj(�kjx� �kj �x)35= 8<: 1 for Prj=1 hj�kj = 0 = Prj=1 hj�kj0 otherwise:With v1 = Pj hj�kj , v2 = �Pj hj�kj this means�f�;N = 1N NXk=1 e2�i�(�kv1+�kv2) ! 0 8 (v1; v2) 6= (0; 0)with probability 1 in �. This is exactly the statement of Lemma 1.



5Lemma 3: If �j=�j�1 > 2=", �j 2 N�, j = 1; : : : ; r then S1 := f~v 2 T r; vj = x�j modZ; x 2 Rg � S2 � T r meets the open setO = f~v 2 T r; 1=2 � " < vj < 1=2 + " 8 j = 1; : : : ; rg � T r:Proof: We shall proceed inductively in j and use the quantities �j 2 (�"; "), zj 2 Z,
j 2 (�"j=2; "j=2). The �rst component in T r is inO if vi = x�1 = 12+�i or x = 1�1 (12+�1).The next component requiresv2 = �2x = �2�1 �12 + �1� = 12 + �2 + z2or �1 = �1�2 �12 + z2 + �2�� 12 :Since by assumption �1=�2 < "=2 we can choose z2 such that�1 = 
1 + �1�2 �2 2 �
1 � " �1�2 ; 
1 + " �1�2� � (�"; "):The next step requires �3�1 �12 + �1� = 12 + �3 + z3or �1 = �1�3 �12 + z3 + �3�� 12 :Since �1�3 < "2 �1�2 we can choose z3 such that�1 = 
1 + 
2 + �1�3�3 2 �
1 + 
2 � " �1�3 ; 
1 + 
2 + " �1�3�� �
1 � " �1�2 ; 
1 + " �1�2� :Proceeding in this way we see that the open subset of S1, wherex = 1�1 �12 + �� ; � 2 �
1 + 
2 + : : :+ 
r�1 � " �1�r ; 
1 + 
2 + : : :+ 
r�1 + " �1�r�is contained in �.Theorem 1: With probability 1 in � one can �nd for any " > 0, ~n 2 Z2 n f0g andN 2 N� a sequence ki, i = 1; 2; : : : ; N such that j cos ���(~n; T ki�kj~n)j < " 8 i 6= j.



6Proof: Having �xed " and ~n, we proceed by induction for ki since Lemma 1 guar-antees the existence of a k1. Having found (k1; : : : ; kr) Lemma 2 tells us that the kr+1which qualify are uniformly distributed in S2 which by Lemma 3 meets the open set O.The intersection is open in S2 and because of uniform distribution it contains in�nitelymany qualifying k's. Since �k goes with k to in�nity we can �nd a kr+1 which satis�es�kr+1=�kr > 2=". We denote the set of �'s for which this holds �";~n;r � [0; 1) and observe�(�";~n;r) = 1. For � 2 TNr=1 �";~n;r we can �nd (k1; : : : ; kN ) and since �nite intersectionsof sets with probability 1 still have probability 1 we have proved Theorem 1.Conclusion: With probability 1 in � the C�{dynamical system (M�; �) is highlyanticimmutative and therefore has only one invariant state, zero dynamical entropy, thelatter not being additive for (M� 
M�; �
 �).Proof: The �rst statement follows from Theorem 1 from which the next two werededuced in [NT] and [AN, NST]. The last statement follows because M�
M� containsthe subalgebra generated by W (n1; n2) 
 W (n1;�n2) which is for all � abelian andisomorphic toM0 = (C(T 2); �). The latter hass dynamical entropy ln� > 0 and thereforeonly the general conclusion that the dynamical entropy is superadditive for the tensorproduct remains.Remarks1. Voiculecu [V] has recently de�ned another dynamical entropy for C� systems whichis subadditive for the tensor product. In the abelian case it also agrees with the KSentropy. Since for the dynamical entropy it is the large time behaviour which mat-ters, one might think that also for asymptotic abelian system all de�nitions shouldagree. Since (M�; �) is weakly asymptotic abelian we conclude that weak asymp-totic abelianness is not enough. It is an open question which degree of asymptoticabelianness is necessary for the de�nitions to agree. When they do then dynamicalentropy is necessarily additive for the tensor product.2. The result shows how sensitive CS entropy is to the structure of the algebra. Forrational � = p=q, p; q 2 Z it equals the KS entropy of the center fW (n)g, n 2 qZ2and therefore is ln�.3. Our result implies that for most �'s the tracial state is the only invariant state for(M�; �). It exists for all �'s and thus M� is of type II1. Since Voiculescu's entropyis subadditive for the tensor product it is positive for (M�; �) for all �'s and thusdi�erent from the CS entropy and not only of its subsequent generalizations.4 The Price{Powers ShiftIn [NST] a special Proce{Powers shift was constructed as example of a system whichsatis�es (1). Several generalizations of the construction are possible. In this note we want



7to keep the probabilistic point of view as for the rotation algebra and show that it is alsohighly anticommutative with probability 1. We repeat the de�nition of the Price{Powersshift and keep the notation of [NST].De�nition 3: Let X be a subset of N� and let gX be its characteristic function. Let(si), i 2 Z be a sequence of selfadjoint unitaries satisfying the commutation relationssi sj = (�)gX(ji�jj)sj si:Denote by AX the C� algebra generated by the set of si 2 Z. It is linearly generated bythe words wI = Yi2I�Z si; I = fi1 < i2 < : : : ikg; card I = k <1:� 2 Aut AX is de�ned by �(si) = si+1.It follows that a word wI is either hermitian or antihermitian and two words eithercommute or anticommute. In factwIwJ = wJwI(�)Pi2IPj2J gX(ji�jj) = wJwI(�)card(jI�Jjo)\X (14)where we de�ne jI � J jo = fji� jj; i 2 I; j 2 J , which occur as odd timeg �N�.To assign a probability to the set of X's for which (AX ; �) is highly anticommutativewe map those elements of P (P (N�)), the second power set of N�, which are cylindricalsubsets of P (N�) onto the Ising algebraB := 1Yi=1Di; = diag M2generated by Pi =  1 00 0 ! and Qi =  0 00 1 ! :The mapping 
 associates bijectively to�n;m := fX � N� : fn1; : : : ; nkg � X; fmi; : : : ;m`g � X`g 2 P (P (N�));the element 
(�n;m) = kYi=1 Ỳj=1PniQmj :The probability � for �n;m is given by the pull{back with 
 of the standard product state! over B, !(Pi) = 1=2, � = ! � 
 or�(�n;m) = !(
(�n;m)) = ( 2�k�` if ni 6= mj0 otherwise. (15)



8Lemma 4: For all I � N� �fX : card X \ I = oddg = 12 :Proof: First consider the case where I has only one element I = fig. Then 
fX :card X \ I = oddg = Pi and the result follows from !(Pi) = 1=2 (15). Next let I have `elements, I = fi1; i2; : : : ; i`g. Consider all possible partitions I = I+ [ I�. Then�fX : card X \ I = oddg = !0@ Xcard I+= odd Yi2I+ Pi Yk2I�Qk1A = 2`�12�`:Corollary: The probability that two words wI and wJ commute (or anticommute) is1/2.Proof: �fX : card X \ jI � J jo = even (or oddg = 12according to Lemma 4.Lemma 5: For a given set of words wI1; : : : ; wI` the probability that a word wJ withjJ � Iijo \ jJ � I`jo = ;, i 6= ` anticommutes with all wIi is 2�`.Proof: Denote Ki = jJ � Iijo = K+i [K�i ,�fX : card X \Kr = odd 8 r 2 (1; : : : ; `)g == ! 0@Ỳr=1 XcardK+r = odd Yir2K+r Yjr2K�r PirQjr1A= Ỳr=1 !0@ XcardK+r = odd Yir2K+r Yjr2K�r PirQjr1A = 2�`because ! is a product state and we required Kr \Ks = ; 8 r 6= s.Theorem 2: Assume for a word wI there exist numbers n1; : : : ; nr such thatjI � I + ns � nkjo \ jI � I + ns � nj jo = ; 8 n1 � nk < nj < ns � nr:Then with probability 1 there exists an nr+1 such that[�nswI; �nr+1wI ]+ = 0 8 1 � s � nrand jI � I + nr+1 � nkjo \ jI � I + nr+1 � njjo = ; 8 n1 � nk < nj � nr:



9Proof: Consider the shifted word �`wI with ` such that jI�I+`�nk jo\jI�I+`�nj jo =; 8 n1 � nk < n` � nr. There are in�nitely many such `'s, say, `1; `2; : : : ; `k; : : :. Theprobability that wI+` commutes with at least one of the �nswI, s = 1; : : : ; r equals1 � 2�r < 1. Because of the disjointness assumption the shifted words �`jwI correspondto independent variables Pi, Qj. Because of the product structure of the state ! theprobability that among k shifts `1; : : : ; `k at least once the shifted word anticommuteswith all given �nswI is therefore 1� (1�2�r)k. Since k can be arbitrarily big we can withcertainty �nd an ` which quali�es for the nr+1 in Theorem 2.Corollary: (AX; �) is with probability 1 in X highly anticommutative.Proof: For each word wI start with n1 = 0 and follow the proof of Theorem 2 to �ndan n2 such that [wI; �n2wI ]+ = 0 and jI�Ijo\jI�I+n2j0 = ;. Then proceed inductivelyin r with Theorem 2.AcknowledgementWe thank H. Rindler for a stimulating discussion.
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