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Quasi, twisted, and all that...in Poisson geometry and Lie algebroid theoryYvette Kosmann-ShwarzbahDediated to Alan WeinsteinAbstratMotivated by questions from quantum group and �eld theories, we review stru-tures on manifolds that are weaker versions of Poisson strutures, and variants ofthe notion of Lie algebroid. We give a simple de�nition of the Courant algebroidsand introdue the notion of a deriving operator for the Courant braket of the dou-ble of a proto-bialgebroid. We then desribe and relate the various quasi-Poissonstrutures, whih have appeared in the literature sine 1991, and the twisted Poissonstrutures studied by �Severa and Weinstein.IntrodutionIn 1986, Drinfeld introdued both the quasi-Hopf algebras, that generalize the Hopfalgebras de�ning quantum groups, and their semi-lassial limits, the Lie quasi-bialgebras. This naturally led to the notion of quasi-Poisson Lie groups whih Iintrodued in [25℄ [26℄.A quasi-Hopf algebra is a bialgebra in whih the multipliation is assoiative butthe o-multipliation is only o-assoiative up to a defet measured by an element� in the triple tensor produt of the algebra. Similarly, the de�nitions of the Liequasi-bialgebras and the quasi-Poisson Lie groups involve a given element in V3 g,where g is the underlying Lie algebra, whih Drinfeld denoted by '. In a Lie quasi-bialgebra, the braket is a Lie braket beause it satis�es the Jaobi identity, butthe ompatible obraket is not a true Lie braket on the dual of g, beause itonly satis�es the Jaobi identity up to a defet measured by the element '. On aquasi-Poisson Lie group, there is a multipliative bivetor �eld, �, whose Shoutenbraket, [�; �℄, does not vanish, but is also expressed in terms of '. The desireto understand the group-valued moment maps and the quasi-hamiltonian spaes ofAlekseev, Malkin and Meinrenken [3℄ in terms of Poisson geometry led to the studyof the ation of quasi-Poisson Lie groups on manifolds equipped with a bivetor�eld [1℄. A speial ase of a quasi-Poisson struture on a Lie group ours whenthe bivetor vanishes and only ' remains, orresponding to a Lie quasi-bialgebrawith a trivial obraket. The quasi-Poisson manifolds studied in [2℄ are manifoldsequipped with a bivetor, on whih suh a quasi-Poisson Lie group ats.1



Reently, losed 3-form �elds appeared in Park's work on string theory [40℄,and in the work on topologial �eld theory of Klim�ik and Strobl, who reognizedthe appearane of a new geometrial struture whih they alled WZW-Poissonmanifolds [23℄. They hose this name beause the role of the bakground 3-formis analogous to that of the Wess-Zumino term introdued by Witten in a �eldtheory with target a group, and more reently they proposed to shorten the nameto WZ-Poisson manifolds. Shortly after these publiations irulated as preprints,�Severa and Weinstein studied suh strutures in the framework of Courant algebroidtheory, alling them Poisson strutures with a 3-form bakground. They are de�nedin terms of a bivetor �eld � and a losed 3-form, denoted by ' in [46℄, but whihwe shall denote by  to avoid onfusion with the above. Again � is not a Poissonbivetor { unless  vanishes, in whih ase the Poisson struture with bakgroundredues to a Poisson struture {, its Shouten braket is the image of the 3-form under the morphism of vetor bundles de�ned by �, mapping forms to vetors.�Severa and Weinstein also alled the Poisson strutures with bakground  -Poissonstrutures, or twisted Poisson strutures. This last term has sine been widely used[42℄[45℄[11℄[10℄, hene the word \twisted" in the title of this paper. It is justi�ed bya related usage in the theory of \twisted sheaves", and we shall oasionally use thisterm but we prefer Poisson struture with bakground beause, in Drinfeld's theoryof Lie quasi-bialgebras, the words \twist"and \twisting" have a di�erent and nowstandard meaning. Setion 4.1 of this paper is a generalization of Drinfeld's theoryto the Lie algebroid setting.The theory of Lie bialgebras, on the one hand, is a speial ase of that of the Liebialgebroids, introdued by Makenzie and Xu [37℄. It was shown by Roytenberg[42℄ that the \quasi" variant of this notion is the framework in whih the Poissonstrutures with bakground appear naturally. Lie algebras, on the other hand, area speial ase of the Loday algebras. Combining the two approahes, we enounterthe Courant algebroids of Liu, Weinstein and Xu [33℄, or rather their equivalentde�nition in terms of non-skew-symmetri brakets.We shall present these a priori di�erent notions, and shall show how they an berelated. In Setion 1, we give a brief overview of the various theories just mentioned.In partiular we de�ne the proto-bialgebroids and the Lie quasi-bialgebroids, whihgeneralize the Lie quasi-bialgebras, as well as their duals, the quasi-Lie bialgebroids.In Setion 2, we give a simple de�nition of the Courant algebroids, whih we proveto be equivalent to the usual de�nition [33℄ [41℄ (Theorem 2.1). Liu, Weinsteinand Xu [33℄ showed that the onstrution of the double of Lie bialgebroids an beaomplished in the framework of Courant algebroid theory by introduing Manintriples for Lie bialgebroids. Along the lines of [42℄, we extend these onsiderationsto the ase of proto-bialgebroids and, in partiular, to both \quasi" ases. Thus, westudy the more general Manin pairs for Lie quasi-bialgebroids. This is the subjetof Setion 3, where we also introdue the notion of a deriving operator (in the spiritof [28℄ and [30℄) for the double of a proto-bialgebroid, and we prove an existenetheorem (Theorem 3.2). Setion 4 is devoted to the study of examples. The twistingof Lie quasi-bialgebroids by bivetors generalizes Drinfeld's twisting of Lie quasi-bialgebras, and leads to the onsideration of the quasi-Maurer-Cartan equation,whih generalizes the quasi-Poisson ondition. One an twist a quasi-Lie bialgebroidwith a losed 3-form bakground by a bivetor, and the Poisson ondition with2



bakground appears as the ondition for the twisted objet to remain a quasi-Liebialgebroid.The world of the \quasi" strutures whih we explore here is ertainly nothingbut a small part of the realm of homotopy strutures, L1, G1, et. See, in partiu-lar, [51℄ and the leture of Stashe� [47℄. We hope to show that these are interestingobjets in themselves.AknowledgmentsIt is a pleasure to thank Henrique Bursztyn, James D. Stashe� and Thomas Stroblfor their omments on an earlier version of this text.1 A reviewBefore we mention the global objets suh as the generalizations of the Poisson Liegroups, we shall reall their in�nitesimal ounterparts.1.1 Lie quasi-bialgebras, quasi-Lie bialgebras and proto-bialgebrasWe shall not review all the details of the strutures that are weaker versions of theLie bialgebra struture, but we need to reall the de�nition of Lie quasi-bialgebras.It is due to Drinfeld [14℄, while in [26℄ and [7℄ the dual ase, that of a quasi-Liebialgebra, and the more general ase of proto-bialgebras (alled there \proto-Lie-bialgebras") are treated. A proto-bialgebra struture on a vetor spae F is de�nedby a quadruple of elements in V�(F � F �) ' C1T �(�F ), where � denotes thehange of parity. We denote suh a quadruple by (�; ; '; ), with � : V2 F ! F , : V2 F � ! F �, ' 2 V3 F ,  2 V3 F �. This quadruple de�nes a proto-bialgebra ifand only if f�+ +'+ ; �+ +'+ g = 0, where f ; g is the anonial Poissonbraket of the otangent bundle T �(�F ), whih oinides with the big braket ofV�(F � F �) [26℄. This ondition is equivalent to the �ve onditions whih we shallwrite below in the more general ase of the proto-bialgebroids (see Setion 1.5). Ifeither  or ' vanishes, there remain only four non-trivial onditions. When  = 0,the braket is a Lie braket, while the obraket only satis�es the Jaobi identityup to a term involving ', and we all the proto-bialgebra a Lie quasi-bialgebra.When ' = 0, the braket only satis�es the Jaobi identity up to a term involving  ,while the obraket is a Lie obraket, and we all the proto-bialgebra a quasi-Liebialgebra. Clearly, the dual of a Lie quasi-bialgebra is a quasi-Lie bialgebra, andonversely.Drinfeld only onsidered the ase  = 0. In the English translation of [14℄, whatwe all a Lie quasi-bialgebra in this paper was translated as a quasi-Lie bialgebra,a term whih we shall reserve for the objet dual to a Lie quasi-bialgebra. In fat,it is in the dual objet, where ' = 0 and  6= 0 that the algebra struture is only\quasi-Lie". As another potential soure of onfusion, we mention that in [41℄ and[42℄, the element in V3 F � that we denote by  is denoted by ', and vie-versa.Any proto-bialgebra ((F; F �); �; ; ';  ) has a double whih is d = F � F �, with3



the Lie braket, [x; y℄ = �(x; y) + ix^y ;[x; �℄ = �[�; x℄ = �ad�� x+ ad��x � ;[�; �℄ = i�^�'+ (�; �) :Here x and y 2 F , and � and � 2 F �.Any Lie bialgebra has, assoiated with it, a pair of Batalin-Vilkovisky algebras induality. The extension of this property to Lie quasi-bialgebras, giving rise to quasi-Batalin-Vilkovisky algebras in the sense of Getzler [17℄, has been arried out byBangoura [5℄. There is a notion of quasi-Gerstenhaber algebra (Huebshmann, un-published, see [42℄), and Bangoura has further proved that quasi-Batalin-Vilkoviskyalgebras give rise to quasi-Gerstenhaber algebras [6℄. These \quasi" algebras arethe simplest examples of G1- and BV1-algebras, in whih all the higher-ordermultilinear maps vanish exept for the trilinear map.1.2 Quasi-Poisson Lie groups and moment maps withvalues in homogeneous spaesThe global objet orresponding to the Lie quasi-bialgebras we have just presentedwas introdued in [26℄ and alled a quasi-Poisson Lie group. It is a Lie group witha multipliative bivetor, �G, whose Shouten braket does not vanish (so that it isnot a Poisson bivetor), but is a oboundary, namely12[�G; �G℄ = 'L � 'R ;where 'L (resp., 'R) are the left- (resp., right-)invariant trivetors on the group withvalue ' 2 V3 g at the identity. In [1℄, we onsidered the ation of a quasi-Poisson Liegroup (G; �G; ') on a manifold M equipped with a G-invariant bivetor �. Whenthe Shouten braket of � satis�es the ondition(1.1) 12[�; �℄ = 'M ;we say that (M;�) is a quasi-Poisson G-spae. Here 'M is the image of the element' in V3 g under the in�nitesimal ation of the Lie algebra g of G on M . The quasi-Poisson G-spae (M;�) is alled a hamiltonian quasi-Poisson G-spae if there existsa moment map for the ation of G on M , whih takes values in D=G, where D isthe simply onneted Lie group whose Lie algebra is the double d = g � g� of theLie quasi-bialgebra g. See [1℄ for the preise de�nitions.Two extreme ases of this onstrution are of partiular interest. The �rstorresponds to the ase where the Lie quasi-bialgebra is atually a Lie bialgebra(' = 0), i.e., the Manin pair with a hosen isotropi omplement de�ning the Liequasi-bialgebra is in fat a Manin triple. Then G is a Poisson Lie group and D=Gan be identi�ed with a dual group G� of G. The moment maps for the quasi-hamiltonian G-spaes redue to the moment maps in the sense of Lu [35℄ that takevalues in the dual Poisson Lie group, G�. The seond ase is that of a Lie quasi-bialgebra with vanishing obraket ( = 0), to be desribed in the next subsetion.4



1.3 Quasi-Poisson manifolds and group-valued momentmapsAssume that G is a Lie group ating on a manifold M , and that g is a quadratiLie algebra, i.e., a Lie algebra with an invariant non-degenerate symmetri bilinearform. We onsider the bilinear form in g� g de�ned as the di�erene of the opiesof the given bilinear form on the two terms of the diret sum. Let g be diagonallyembedded into g � g. Then (g � g; g) is a Manin pair, and we hoose the anti-diagonal, f(x;�x)jx 2 gg, as a omplement of g � g � g. The orresponding Liequasi-bialgebra has vanishing obraket, beause the braket of two elements inthe anti-diagonal is in the diagonal, and therefore the bivetor of the quasi-Poissonstruture of G is trivial. With this hoie of a omplement, ' is the Cartan trivetorof g. In this way, we obtain the quasi-Poisson G-manifolds desribed in [2℄. Theyare pairs, (M;�), where � is a G-invariant bivetor on M that satis�es equation(1.1) with ' the Cartan trivetor of g. The group G ating on itself by means ofthe adjoint ation is a quasi-Poisson G-manifold, and so are its onjugay lasses.The bivetor �G on G isPa eRa ^eLa , where ea is an orthonormal basis of g. Beausethe homogeneous spae D=G of the general theory is the group G itself in this ase,the moment maps for the hamiltonian quasi-Poisson manifolds are group-valued.Those hamiltonian quasi-Poisson manifolds for whih the bivetor � satis�es a non-degeneray ondition are preisely the quasi-hamiltonian manifolds of Alekseev,Malkin and Meinrenken [3℄.1.4 Lie bialgebroids and their doublesLie bialgebroids were �rst de�ned by Makenzie and Xu [37℄. We state the de�nitionas we reformulated it in [27℄. To eah Lie algebroid A are assoiated� a Gerstenhaber braket, [ ; ℄A, on �(V�A),� a di�erential, dA, on �(V�A�).A Lie bialgebroid is a pair, (A;A�), of Lie algebroids in duality suh that dA� is aderivation of [ ; ℄A, or, equivalently, dA is a derivation of [ ; ℄A� .Extending the onstrution of the Drinfeld double of a Lie bialgebra to thease of a Lie bialgebroid is a non-trivial problem, and several solutions have beeno�ered, by Liu, Weinstein and Xu [33℄ in terms of the Courant algebroid A � A�,by Makenzie [36℄ in terms of the double vetor bundle T �A ' T �A�, and byVaintrob (unpublished) and Roytenberg [41℄ [42℄ in terms of supermanifolds. Weshall desribe some properties of the �rst and third onstrutions in Setion 3.1.5 Lie quasi-bialgebroids, quasi-Lie bialgebroids, proto-bialgebroids and their doublesWe all attention to the fat that we shall de�ne here both \Lie quasi-bialgebroids"and \quasi-Lie bialgebroids" and that, as we explain below, these terms are notsynonymous. We extend the notations of [14℄, [26℄, [7℄ to the ase of Lie algebroids.A proto-bialgebroid (A;A�) is de�ned by anhors �A and �A� , brakets [ ; ℄A and[ ; ℄A� , and elements ' 2 �(V3A) and  2 �(V3A�). By de�nition,5



� The ase  = 0 is that of Lie quasi-bialgebroids (A is a true Lie algebroid,while A� is only \quasi"),� The ase ' = 0 is that of quasi-Lie bialgebroids (A� is a true Lie algebroid,while A is only \quasi").� The ase where both ' and  vanish is that of the Lie bialgebroids.While the dual of a Lie bialgebroid is itself a Lie bialgebroid, the dual of a Liequasi-bialgebroid is a quasi-Lie bialgebroid, and onversely.Whenever A is a vetor bundle, the spae of funtions on T ��A, where � denotesthe hange of parity, ontains the spae of setions of V�A, the A-multivetors. Inpartiular, the setions of A an be onsidered as funtions on T ��A. Given theanonial isomorphism, T ��A� ' T ��A, the same onlusion holds for the setionsof V�A�, in partiular for the setions of A�.A Lie algebroid braket [ ; ℄A on a vetor bundle A over a manifold M is de�ned,together with an anhor �A : A ! TM , by a funtion � on the supermanifoldT ��A ([41℄ [42℄ [49℄ [50℄). Let f ; g denote the anonial Poisson braket of theotangent bundle. The braket of two setions x and y of A is the derived braket,in the sense of [28℄, [x; y℄A = ffx; �g; yg ;and the anhor satis�es �A(x)f = ffx; �g; fg ;for f 2 C1(M). When (A;A�) is a pair of Lie algebroids in duality, both [ ; ℄Atogether with �A, and [ ; ℄A� together with �A� orrespond to funtions, denoted by� and , on the same supermanifold T ��A, taking into aount the identi�ationof T ��A� with T ��A. The three onditions in the de�nition of a Lie bialgebroidare equivalent to the single equationf�+ ; �+ g = 0 :More generally, the �ve onditions for a proto-bialgebroid de�ned by (�; ; '; )are obtained from a single equation. By de�nition, a proto-bialgebroid struture on(A;A�) is a funtion of degree 3 and of Poisson square 0 on T ��A. As in the ase ofa proto-bialgebra, suh a funtion an be written �+  + '+  , where ' 2 �V3Aand  2 �V3A�, and satis�es(1.2) f�+  + '+  ; �+  + '+  g = 0 :The de�nition is equivalent to the onditions8>>>><>>>>: 12f�; �g+ f;  g = 0 ;f�; g+ f';  g = 0 ;12f; g+ f�; 'g = 0 ;f�;  g = 0 ;f; 'g = 0 :� When ((A;A�); �; ; '; 0) is a Lie quasi-bialgebroid, ((A;A�); �; ) is a Liebialgebroid if and only if f�; 'g = 0.� Dually, when ((A;A�); �; ; 0;  ) is a quasi-Lie bialgebroid, ((A;A�); �; ) is aLie bialgebroid if and only if f;  g= 0.6



Remark In the ase of a proto-bialgebra, (F; F �), the operator f�; : g generalizesthe Chevalley-Eilenberg oboundary operator on ohains on F with values in V� F .In the term f�; 'g, ' should be viewed as a 0-ohain on F with values in V3 F ,and f�; 'g is an element in F � 
 V3 F . So is f; g, whih is a trilinear form onF � with values in F � whose vanishing is equivalent to the Jaobi identity for . Inthe term f�;  g,  should be viewed as a 3-ohain on F with salar values, andf�;  g is an element in V4 F �. Reversing the roles of F and F �, one obtains theinterpretation of the other terms in the above formulas.1.6 Poisson strutures with bakground (twisted Pois-son strutures)The WZW-Poisson strutures introdued by Klim�ik and Strobl [23℄ were studiedby �Severa and Weinstein in 2001 [46℄, who alled them Poisson strutures with bak-ground, and also twisted Poisson strutures. Roytenberg has subsequently shownthat they appear by a twisting of a quasi-Lie bialgebroid by a bivetor [42℄. Weshall review this approah in Setion 4. The integration of Poisson strutures withbakground into quasi-sympleti groupoids is the subjet of reent work of Bursz-tyn, Craini, Weinstein and Zhu [10℄ and of Cattaneo and Xu [11℄. In addition, Xu[53℄ has very reently extended the theory of momentum maps to this setting.1.7 Other strutures: Loday algebras, omni-Lie alge-brasThere are essentially two ways of weakening the properties of Lie algebras. Onepossibility is to introdue a weakened version of the Jaobi identity, e.g., an identityup to homotopy: this is the theory of L1-algebras. The relationship of the Courantalgebroids to L1-algebras was explored in [44℄.Another possibility is to onsider non-skew-symmetri brakets: this is the the-ory of Loday algebras, whih Loday introdued and alled Leibniz algebras. A Lodayalgebra is a graded vetor spae with a bilinear braket of degree n satisfying theJaobi identity,(1.3) [x; [y; z℄ = [[x; y℄; z℄+ (�1)(jxj+n)(jyj+n)[y; [x; z℄℄ ;for all elements x, y and z, where jxj is the degree of x. In Setion 2, we shalldesribe the Loday algebra approah to Courant algebroids, in whih ase there isno grading.The \omni-Lie algebras" introdued by Weinstein in [52℄ provide an elegant wayof haraterizing the Lie algebra strutures on a vetor spae V in terms of the graphin V � gl(V ) of the adjoint operator. In the same paper, he de�ned the (R;A) C-algebras, the algebrai analogue of Courant algebroids, whih generalize the (R;A)Lie algebras (also alled Lie-Rinehart algebras or pseudo-Lie algebras), and he posedthe question of how to determine the global analogue of an \omni-Lie algebra". In[22℄, he and Kinyon explored this problem and initiated the searh for the globalobjets assoiated to generalized Lie algebras, that would generalize Lie groups.They proved new properties of the Loday algebras, showing in what sense they anbe integrated to a homogeneous left loop, i.e., to a manifold with a non-assoiative7



omposition law, and they showed that the Courant brakets of the doubles ofLie bialgebroids an be realized on the tangent spaes of redutive homogeneousspaes. These global onstrutions are inspired by the orrespondene betweengeneralized Lie triple systems and non-assoiative multipliations on homogeneousspaes. (Some of the results of Bertram [8℄ might prove useful in the searh forglobal objets integrating generalized Lie algebras.) For reent developments, seeKinyon's leture [21℄.1.8 Generalized Poisson brakets for non-holonomi me-hanial systemsBrakets of the Poisson or Dira type that do not satisfy the Jaobi identity appear inmany geometri onstrutions desribing non-holonomi mehanial systems. Thereis a large literature on the subjet; see for instane [20℄ [12℄ and their referenes.It would be very interesting to study how these onstrutions relate to the variousstrutures whih we are now onsidering. In his leture [36℄, Marsden showed howto state the non-holonomi equations of Lagrangian mehanis in terms of isotropisubbundles in the diret sum of the tangent and otangent bundles of the phasespae, T �Q, of the system under onsideration. He alls suh subbundles Dirastrutures on T �Q. Yet, it is only when an integrability ondition is required thatthese strutures beome examples of the Dira strutures to be mentioned in thenext setion.2 Courant algebroidsThe onstrution of the double of a Lie bialgebra with the struture of a Lie algebradoes not extend into a onstrution of the double of a Lie bialgebroid with thestruture of a Lie algebroid, beause the framework of Lie algebroid theory is toonarrow to permit it. While it is not the only solution available, the introdution ofthe new notion of Courant algebroid permits the solution of this problem.The de�nition of Courant algebroids, based on Courant's earlier work [13℄, isdue to Liu, Weinstein and Xu [33℄. It was shown by Roytenberg [41℄ that a Courantalgebroid an be equivalently de�ned as a vetor bundle E ! M with a Lodaybraket on �E, an anhor � : E ! TM and a �eld of non-degenerate, symmetribilinear forms ( j ) on the �bers of E, related by a set of four additional properties.It was further observed by Uhino [48℄ and by Grabowski and Marmo [18℄ thatthe number of independent onditions an be redued. We now show that it anbe redued to two properties whih are very natural generalizations of those of aquadrati Lie algebra. In fat, (i) and (ii) below are generalizations to algebroidsof the skew-symmetry of the Lie braket, and of the ondition of ad-invariane fora bilinear form on a Lie algebra, respetively.De�nition 2.1 A Courant algebroid is a vetor bundle E ! M with a Lodaybraket on �E, i.e., an R-bilinear map satisfying the Jaobi identity,[x; [y; z℄℄ = [[x; y℄; z℄+ [y; [x; z℄℄ ;8



for all x; y; z 2 �E, an anhor, � : E ! TM , whih is a morphism of vetorbundles, and a �eld of non-degenerate symmetri bilinear forms ( j ) on the �bersof E, satisfying (i) �(x)(ujv) = (x j [u; v℄ + [v; u℄) ;(ii) �(x)(ujv) = ([x; u℄ j v) + (u j [x; v℄) ;for all x, u and v 2 �E.Remark Property (i) is equivalent to(i0) 12�(x)(yjy) = (xj[y; y℄)(whih is property 4 of De�nition 2.6.1 in [41℄, and property 5 of Setion 1 in [46℄).The onjuntion of properties (i) and (ii) is equivalent to property (ii) together with(i00) (xj[y; y℄) = ([x; y℄jy)(whih is property 5 in Appendix A in [45℄).We now prove two important onsequenes of properties (i) and (ii) whihhave been initially onsidered to be additional, independent de�ning properties ofCourant algebroids.Theorem 2.1 In any Courant algebroid,(iii) the Leibniz rule is satis�ed, i.e.,[x; fy℄ = f [x; y℄ + (�(x)f)y ;for all x and y 2 �E and all f 2 C1(M),(iv) the anhor, �, indues a morphism of Loday algebras from �E to �(TM), i.e.,it satis�es �([x; y℄) = [�x; �y℄ ;for all x and y 2 �E.Proof The proof of (iii), adapted from [48℄, is obtained by evaluating �(x)(fyjz) intwo ways. We �rst write, using the Leibniz rule for vetor �elds ating on funtions,�(x)(fyjz) = (�(x)f)(yjz)+ f�(x)(yjz) :Then, using property (ii) twie, we obtain([x; fy℄jz)+ (fyj[x; z℄) = (�(x)f)(yjz)+ f([x; y℄jz) + f(yj[x; z℄) :and (iii) follows by the non-degeneray of ( j ).The proof of (iv) is that of the analogous property for Lie algebroids (see, e.g.,[31℄). It is obtained by evaluating [x; [y; fz℄℄, for z 2 �E, in two ways, using boththe Jaobi identity for the Loday braket [ ; ℄ and (iii). �It follows from the Remark together with Theorem 2.1 and from the argumentsof Roytenberg in [41℄ that our de�nition of Courant algebroids is equivalent to thatof Liu, Weinstein and Xu in [33℄. 9



A Dira sub-bundle (also alled a Dira struture) in a Courant algebroid is amaximally isotropi sub-bundle whose spae of setions is losed under the braket.Courant algebroids with base a point are quadrati Lie algebras. More generally,Courant algebroids with a trivial anhor are bundles of quadrati Lie algebras witha smoothly varying struture.The notion of a Dira sub-bundle in a Courant algebroid with base a pointredues to that of a maximally isotropi Lie subalgebra in a quadrati Lie algebra,in other words, to a Manin pair. We shall show that a Courant algebroid togetherwith a Dira sub-bundle is an appropriate generalization of the notion of a Maninpair from the setting of Lie algebras to that of Lie algebroids.A deep understanding of the nature of Courant algebroids is provided by theonsideration of the non-negatively graded manifolds. This notion was de�ned andused by Kontsevih [24℄, �Severa [45℄ (who alled them N -manifolds) and T. Voronov[50℄. In [43℄, Roytenberg showed that the non-negatively graded sympleti man-ifolds of degree 2 are the pseudo-eulidian vetor bundles, and that the Courantalgebroids are de�ned by an additional struture, that of a homologial vetor �eld,assoiated to a ubi hamiltonian � of Poisson square 0, preserving the sympletistruture. The braket and the anhor of the Courant algebroid are reovered fromthis data as the derived brakets, [x; y℄ = ffx;�g; yg and �(x)f = ffx;�g; fg. T.Voronov [50℄ studied the double of the non-negatively graded QP -manifolds whihare a generalization of the Lie bialgebroids.3 The double of a proto-bialgebroidWe shall now explain how to generalize the onstrution of a double with a Courantalgebroid struture from Lie bialgebroids to proto-bialgebroids.3.1 The double of a Lie bialgebroidLiu, Weinstein and Xu [33℄ have shown that omplementary pairs of Dira sub-bundles in a Courant algebroid are in one-to-one orrespondene with Lie bialge-broids:If E is a Courant algebroid, if E = A�B, where A and B are maximally isotropisub-bundles, and if �A and �B are losed under the braket, then� A and B are in duality, B ' A�,� the braket of E indues Lie algebroid brakets on A and B ' A�, withrespetive anhors the restritions of the anhor of E to A and A�,� the pair (A;A�) is a Lie bialgebroid.Conversely, if (A;A�) is a Lie bialgebroid, the diret sum A � A� is equippedwith a Courant algebroid struture suh that A and A� are maximally isotropi sub-bundles, and �A and �(A�) are losed under the braket, the bilinear form beingthe anonial one, de�ned by(x+ �jy + �) =< �; y > + < �; x > ;for x and y 2 �A, � and � 2 �(A�). 10



3.2 The ase of proto-bialgebroidsThe onstrution whih we just realled an be extended to the proto-bialgebroids[42℄. Let A be a vetor bundle. Reall that a proto-bialgebroid struture on (A;A�)is a funtion of degree 3 and of Poisson square 0 on T ��A, that an be written� +  + ' +  , where ' 2 �(V3A) and  2 �(V3A�), and � (resp., ) de�nes abraket and anhor on A (resp., A�).The Courant braket of the double, A � A�, of a proto-bialgebroid, (A;A�),de�ned by (�; ; '; ;  ), is the derived braket,[x+ �; y + �℄ = ffx+ �; �+  + '+  g; y + �g :Here x and y are setions of A, � and � are setions of A�, and [x + �; y + �℄ is asetion of A� A�. (The right-hand side makes sense more generally when x and yare A-multivetors, and � and � are A�-multivetors, but the resulting quantity isnot neessarily a setion of V�(A�A�).)The anhor is de�ned byffx+ �; �+  + '+  g; fg = ffx; �g; fg+ ff�; g; fg= (�A(x) + �A�(�))(f) ;for f 2 C1(M). We set [x; y℄� = ffx; �g; yg and [�; �℄ = ff�; g; �g. The assoi-ated quasi-di�erentials, d� and d , on �(V�A�) and �(V�A) ared� = f�; � g and d = f; � g ;whih satisfy (d�)2 + fd ; � g = 0 ; (d)2 + fd�'; � g = 0 :We denote the interior produt of a form � by a multivetor x by ix�, with thesign onvention, ix^y = ix Æ iy ;and we use an analogous notation for the interior produt of a multivetor by aform. The Lie derivations are de�ned by L�x = [ix; d�℄ and L� = [i�; d ℄. We �nd,for x and y 2 �A, � and � 2 �(A�),[x; y℄ = [x; y℄� + ix^y ;(3.1) [x; �℄ = �i�dx+ L�x� ;(3.2) [�; x℄ = L�x� ixd�� ;(3.3) [�; �℄ = i�^�'+ [�; �℄ ;(3.4)that is,[x+ �; y + �℄ = [x; y℄� + L�y � i�dx+ i�^�'+ [�; �℄ + L�x� � iyd�� + ix^y :These formulas extend both the Lie braket of the Drinfeld double of a proto-bialgebra [7℄, realled in Setion 1.1, and the Courant braket of the double of a Liebialgebroid [33℄. 11



3.3 Deriving operatorsIf � is a setion of A�, by e� we denote the operation of exterior multipliation by �on �(V�A�). In this subsetion, the square brakets [ ; ℄ without a subsript denotethe graded ommutators of endomorphisms of �(V�A�).De�nition 3.1 We say that a di�erential operator D on �(V�A�) is a derivingoperator for the Courant braket of A�A� if it satis�es the following relations,[[ix;D℄; iy℄ = i[x;y℄� + eix^y ;(3.5) [[ix;D℄; e�℄ = �ii�dx + eL�x� ;(3.6) [[e�;D℄; ix℄ = iL�x � eixd�� ;(3.7) [[e�;D℄; e�℄ = ii�^�' + e[�;�℄ :(3.8)If we identify x 2 �A with ix 2 End(�(V�A�)), and � 2 �(A�) with e� 2End(�(V�A�)), the preeding relations beome[[x;D℄; y℄ = [x; y℄� + ix^y ;[[x;D℄; �℄ = �i�dx+ L�x� ;[[�;D℄; x℄ = L�x� ixd�� ;[[�;D℄; �℄ = i�^�'+ [�; �℄ ;so that the Courant braket de�ned in Setion 3.2 an also be written as a derivedbraket [28℄ [30℄.Remark With the preeding identi�ation, the relation ixe� + e�ix =< �; x >implies that (x+ �)(y + �) + (y + �)(x+ �) = (x+ �jy + �) :This shows that �(V�A�) is a Cli�ord module of the Cli�ord bundle of A�A�, thepoint of departure of Alekseev and Xu in [4℄.Does the Courant braket of a proto-bialgebroid admit a deriving operator? We�rst treat the ase of a Lie bialgebroid. The spae �(V�A�) has the struture of aGerstenhaber algebra de�ned by . We shall assume that this Gerstenhaber algebraadmits a generator in the following sense [32℄.De�nition 3.2 Let [ ; ℄A be any Gerstenhaber braket on an assoiative, gradedommutative algebra (A;^). An operator, �, on A is a generator of the braket if[u; v℄A = (�1)juj(�(u^ v)� �u ^ v � (�1)juju ^ �v) ;for all u and v 2 A. In partiular, a Batalin-Vilkovisky algebra is a Gerstenhaberalgebra whih admits a generator of square 0.Lemma 3.1 If � is a generator of braket [ ; ℄A, then, for all u and v 2 A,(3.9) [eu; �℄ = e�u � [u; : ℄A ;and(3.10) [[eu; �℄; ev℄ = �e[u;v℄A ;where eu is left ^-multipliation by u 2 A.12



Proof The �rst relation follows from the de�nitions by a short omputation, and theseond is a onsequene of the �rst, sine[[eu; �℄; ev℄ = [e�u � [u; � ℄A; ev℄ = �[[u; � ℄A; ev℄ = �e[u;v℄A ;for all u and v 2 A. �Theorem 3.1 If �� is a generator of the Gerstenhaber braket of �(V�A�), thend� � �� is a deriving operator for the Courant braket of A� A�.Proof We onsider various operators ating on setions of V�A�. We reall from[29℄ (see [32℄ for the ase A = TM) that, for any x 2 �A,(3.11) [ix; ��℄ = �idx :We shall also make use of the following relations,(3.12) [e�; d�℄ = ed�� ;for � 2 A�,(3.13) [iu; e�℄ = (�1)juj+1ii�u ;for any u 2 �(V�A), and(3.14) [e� ; ix℄ = (�1)j�j+1eix� ;for all � 2 �(V�A�).1) Let x and y be in �A. We ompute [ix; d� � ��℄ = L�x + idx, whene[[ix; d� � ��℄; iy℄ = i[x;y℄� + [idx; iy℄ = i[x;y℄� :This proves (3.5), orresponding to (3.1).2) Let x be in �A and let � be in �(A�). We ompute[[ix; d� � ��℄; e�℄ = [L�x; e�℄ + [idx; e�℄ = eL�x� � ii�dx :This proves (3.6), orresponding to (3.2).3) Sine �� is a generating operator of [ ; ℄ , (3.9) is valid and therefore(3.15) [e�; ��℄ = e��� � [�; � ℄ :Sine ��� is of degree 0, e��� ommutes with ix. Therefore[[e�; d� � ��℄; ix℄ = [ed��; ix℄� [e���; ix℄ + [[�; � ℄ ; ix℄ = �eixd�� + [[�; � ℄ ; ix℄ :Let us now prove that the derivation [[�; � ℄ ; ix℄ of �(V�A�) oinides with thederivation iL�x. In fat, they both vanish on 0-forms, and on a 1-form �,[�; ix�℄ � ix[�; �℄ = �A�(�) < �; x > � < [�; �℄; x > ;while iL�x(�) = < �;L�x >= < �; i�dx > + < �; d < �; x >>13



= dx(�; �) + d < �; x > (�) = �A�(�) < �; x > � < [�; �℄; x > :Thus [[e�; d� � ��℄; ix℄ = �eixd�� + iL�x ;and (3.7), orresponding to (3.3), is proved.4) Let � and � be setions of A�. Then[[e�; d�℄; e�℄ = [ed��; e�℄ = 0 ;while, by (3.10), [[e�; ��℄; e�℄ = �e[�;�℄ ;proving (3.8), orresponding to (3.4). �We now turn to the ase of a proto-bialgebroid, de�ned by ' 2 �(V3A) and 2 �(V3A�). The additional terms in the four expressions to be evaluated are1) [[ix; i'℄; iy℄ = 0, and [[ix; e ℄; iy℄ = [eix ; iy℄ = eix^y .2) [[ix; i'℄; e�℄ = 0, and [[ix; e ℄; e�℄ = [eix ; e�℄ = 0.3) [[e�; i'℄; ix℄ = [ii�'; ix℄ = 0, and [[e�; e ℄; ix℄ = 0.4) [[e�; i'℄; e�℄ = [ii�'; e�℄ = ii�^�', and [[e�; e ℄; e�℄ = 0.Therefore, we an generalize Theorem 3.1 as follows.Theorem 3.2 If �� is a generator of the Gerstenhaber braket of �(V�A�), thend����+i'+e is a deriving operator for the Courant braket of the double, A�A�,of the proto-bialgebroid (A;A�) de�ned by ' 2 �(V3A) and  2 �(V3A�).It is lear that the addition to a deriving operator of derivations ix0 and e�0 ofthe assoiative, graded ommutative algebra �(V�A�) will furnish a new derivingoperator. The importane of the notion of a deriving operator omes from the fatthat, if we an modi�y d� and �� by derivations of �(V�A�) in suh a way that thederiving operator has square 0, then the Jaobi identity for the resulting non-skew-symmetri braket follows from the general properties of derived brakets that wereproved in [28℄.Let (A; �) be a Lie algebroid, let (A;A�) be the triangular Lie bialgebroid de�nedby a bivetor � 2 �(V2A) satisfying [�; �℄� = 0, and let d� = [�; : ℄� be thedi�erential on �(V�A) (see Setion 4.1.1 below). We assume that there exists anowhere vanishing setion, �, of the top exterior power of the dual. Let �� be thegenerator of the Gerstenhaber braket of �(V�A) de�ned by �, whih is a generatorof square 0. We set x� = ��� :Then, x� is a setion of A, whih is alled the modular �eld of (A;A�) assoiatedwith � [29℄. We shall now give a short proof of the existene of a deriving operatorof square 0 for the Courant braket of the dual of (A;A�).Theorem 3.3 The operator d� � �� + ex� is a deriving operator of square 0 of theCourant braket of the double of the Lie bialgebroid (A�; A).14



Proof By de�nition, the Laplaian of the strong di�erential Batalin-Vilkovisky al-gebra (�(V�A); �� ; d�) is [d�; �� ℄, and we know that it satis�es the relation[d�; �� ℄ = L�x� :(See [29℄, and [32℄ for the ase of a Poisson manifold.) Sine, by Theorem 3.2, theoperator d���� is a deriving operator, and sine this property is not modi�ed by theaddition of the derivation ex� , it is enough to prove that the operator d� � �� + ex�is of square 0. In fat, sine both d� and �� are of square 0,12[d� � �� ; d� � �� ℄ = �L�x� = �[x� ; � ℄� :Therefore12[d� � �� + ex� ; d� � �� + ex� ℄ = �[x� ; � ℄� + [ex� ; d�℄� [ex� ; �� ℄ :By (3.12), [ex� ; d�℄ = ed�x� , whih vanishes sine x� leaves � invariant, while by(3.15), [ex� ; �� ℄ = e��x� � [x� ; � ℄�. In addition, ��x� = 0, sine x� = ��� and ��is of square 0. Therefore the square of d� � �� + ex� vanishes. �In partiular, if (M;�) is a Poisson manifold, we obtain a deriving operator ofsquare 0 of the Courant algebroid, double of the Lie bialgebroid (T �M;TM), dualto the triangular Lie bialgebroid (TM; T �M).More generally, Alekseev and Xu [4℄ onsider deriving operators of the Courantbraket of a Courant algebroid whose square is a salar funtion, whih they all\generating operators" (but whih should not be onfused with the generating op-erators of Batalin-Vilkovisky algebras). They show that there always exists suh agenerating operator for the double of a Lie bialgebroid, (A;A�), and that its squareis expressible in terms of the modular �elds of A and A� (see Theorem 5.1 andCorollary 5.9 of [4℄). It is easily seen that the ase of a triangular Lie bialgebroid isa partiular ase of their theorem and orollary, in whih the generating operatoris equal to the deriving operator of Theorem 3.3, and the square of the generat-ing operator atually vanishes. In fat, in the ase of a triangular Lie bialgebroid(A;A�), the Laplaian [d�; ��℄ of the strong di�erential Batalin-Vilkovisky algebra(�(V�A�); ��; d�) vanishes beause �� = [i�; d�℄, and therefore the modular �eld ofA vanishes. In addition, x� = 12X0, where X0 is the modular �eld of A� [15℄ and��x� = 0. Hene, in the expression for the square of the generating operator givenin [4℄, both terms vanish.4 ExamplesWe shall �rst analyze various onstrutions of Lie bialgebroids, Lie quasi-bialgebroidsand quasi-Lie bialgebroids, then we shall onsider the Courant brakets in the theoryof Poisson strutures with bakground. 15



4.1 Twisting by a bivetor4.1.1 Triangular Lie bialgebroidsLet (A; �) be a Lie algebroid, and let � be a setion of V2A. On the one hand,suh setions generalize the r-matries and twists of Lie bialgebra theory, and onthe other hand, when A = TM , suh setions are bivetor �elds on the manifold M .By extension, a setion of V2A is alled an A-bivetor, or simply a bivetor.Let �℄ be the vetor bundle map from �(A�) to �A de�ned by �℄(�) = i��, for� 2 �(A�). Consider the braket on A� depending on both � and � de�ned by(4.1) [�; �℄�;� = L��℄�� � L��℄�� � d�(�(�; �)) ;for � and � 2 �(A�). The following relation generalizes the equation  = �d�rwhih is valid in a oboundary Lie bialgebra.Theorem 4.1 Set(4.2) �;� = f�; �g = �f�; �g :Then(i) the assoiated quasi-di�erential on �(V�A) is(4.3) d� = [�; � ℄� ;(ii) braket [�; �℄�;�; de�ned by formula (4.1), is equal to the derived braket,ff�; �;�g; �g ;(iii) if, in addition,(4.4) ' = �12[�; �℄� ;then ((A;A�); �; �;�; '; 0) is a Lie quasi-bialgebroid.Proof The proof of (i) is a straightforward appliation of the Jaobi identity. Toprove (ii) it suÆes to prove that the quasi-di�erential d� is given by the usualCartan formula in terms of the anhor �℄ and the Koszul braket (4.1). This nowlassi result was �rst proved by Bhaskara and Viswanath in [9℄, in the ase of aPoisson bivetor on a manifold, when A = TM and [�; �℄� = 0. We proved itindependently, and in the general ase, in [31℄. To prove (iii), use the relationsf�; �g = 0, and f�; �;�g = 0 whih follows from (4.2) and the Jaobi identity.Moreover ff�; �g; f�; �gg= f�; [�; �℄�g, whene 12f�;�; �;�g+ f�; 'g = 0, and�2f�;�; 'g = ff�; �g; [�; �℄�g = [�; [�; �℄�℄� = 0 :Thus the four onditions equivalent to (1.2) are satis�ed. �The square of d� does not vanish in general,(d�)2 + ['; � ℄� = 0 :16



A neessary and suÆient ondition for ((A;A�); �; �;�) to be a Lie bialgebroidis the generalized Poisson ondition,(4.5) d�([�; �℄�) = 0 ;whih inludes, as a speial ase, the generalized lassial Yang-Baxter equation, andwhih is equivalent to the onditions to be found in [31℄, page 74, and in Theorem2.1 in [34℄.A suÆient ondition is that � satisfy the Poisson ondition,(4.6) [�; �℄� = 0 ;whih generalizes both the lassial Yang-Baxter equation and the de�nition ofPoisson bivetors. This ondition is satis�ed if and only if the graph of � is aDira sub-bundle of the standard Courant algebroid, A � A�, the double of theLie bialgebroid with trivial obraket, ((A;A�); �; 0). (See [13℄ for the ase whereA = TM , and [33℄.) The Lie bialgebroid de�ned by (A; �), where � satis�es (4.6)is alled a triangular Lie bialgebroid [34℄.By Theorem 3.2, a deriving operator for the Courant braket of the double ofthe Lie quasi-bialgebroid ((A;A�); �; �;�;�12 [�; �℄�; 0) isd� � �� + i' ;where �� is the graded ommutator [i�; d�℄, and ' = �12 [�; �℄�. In fat [32℄ [27℄, ��generates the braket [ ; ℄�;� of A�. If � satis�es the Poisson ondition (4.6), thend� � �� is a deriving operator.Dually, ((A�; A); �;�; �; 0;  ), with  = �12 [�; �℄�, is a quasi-Lie bialgebroid,and ((A�; A); �;�; �) is a Lie bialgebroid if and only if � satis�es equation (4.5).4.1.2 Twisting of a proto-bialgebroidThe Lie quasi-bialgebroid (A;A�) and the dual quasi-Lie bialgebroid (A�; A) are theresult of the twisting by the bivetor � of the Lie bialgebroid with trivial obraket,((A;A�); �; 0). The operation of twisting, in this general setting of the theory of Liealgebroids, was de�ned and studied by Roytenberg in [42℄. He showed that one analso twist a proto-bialgebroid, ((A;A�); �; ; '; ), by a bivetor �. The result is aproto-bialgebroid de�ned by (�0�;  0�; '0�;  0�), where�0� = � + �℄ ;(4.7) 0� =  + �;� + (^2�℄) ;(4.8) '0� = '� d� � 12[�; �℄�+ (^3�℄) ;(4.9)  0� =  :(4.10)Here �℄ is the A-valued 2-form on A suh that(�℄ )(x; y)(�) =  (x; y; �℄�) ;for all � 2 �(A�), and (V2 �℄) is the A�-valued 2-form on A� suh that,((^2�℄) )(�; �)(x) =  (�℄�; �℄�; x) ;17



for all x 2 �A, while (V3 �℄) is the setion ofV3A suh that, for �; � and � 2 �(A�),((^3�℄) )(�; �; �) =  (�℄�; �℄�; �℄�) :A omputation shows that the tensors introdued above satisfy the relations�℄ = f�;  g ;(^2�℄) = 12f�; f�;  gg ;(^3�℄) = 16f�; f�; f�; ggg :These relations are used to prove that ((A;A�); �0�;  0�; '0�;  ) is a proto-bialgebroid.This proto-bialgebroid is a Lie quasi-bialgebroid if and only if  = 0, that is, ifthe initial objet itself was a Lie quasi-bialgebroid.It is a quasi-Lie bialgebroid if and only if '0� = 0, that is,(4.11) '� d� � 12[�; �℄�+ (^3�℄) = 0 :We now list the partiular ases of this onstrution that lead to the variousintegrability onditions to be found in the literature.(a) Twist of a Lie bialgebroid: (�; ; 0; 0) 7! (�;  + �;�;�d� � 12 [�; �℄�; 0).The result is a Lie quasi-bialgebroid, furthermore it is a Lie bialgebroid if and onlyif the bivetor � satis�es the Maurer-Cartan equation,(4.12) d� + 12[�; �℄� = 0 :This ondition is satis�ed if and only if the graph of � is a Dira sub-bundle of theCourant algebroid, A�A�, the double of the Lie bialgebroid ((A;A�); �; ; 0; 0) [33℄.A neessary and suÆient ondition for ((A;A�); �; +�;�) to be a Lie bialgebroidis the weaker ondition, d�(d� + 12 [�; �℄�) = 0.If the obraket  of (A;A�) is trivial, to (�; 0; 0; 0) there orresponds the quadru-ple (�; �;�;�12 [�; �℄�; 0): this is the ase studied in Setion 4.1.1. We know that theresult is a Lie quasi-bialgebroid, and it is a Lie bialgebroid if and only if � satis�esthe Poisson ondition (4.6), and that ((A;A�); �; �;�) is a Lie bialgebroid if andonly if the bivetor � satis�es the generalized Poisson ondition (4.5).If the braket � of (A;A�) is trivial, to (0; ; 0; 0) there orresponds the quadruple(0; ;�d�; 0), whih gives rise to a Lie bialgebroid if and only if(4.13) d� = 0;whih means that the bivetor � on A is losed, when onsidered as a 2-form on A�.(b) Twist of a Lie quasi-bialgebroid: (�; ; '; 0) 7! (�;  + �;�; '0�; 0), where'0� = '� d� � 12 [�; �℄�. The result is a Lie quasi-bialgebroid, furthermore it is aLie bialgebroid if and only if the bivetor � and the 3-vetor ' satisfy the quasi-Maurer-Cartan equation,(4.14) d� + 12[�; �℄� = ' :18



A neessary and suÆient ondition for the pair ((A;A�); �;  + �;�) to be a Liebialgebroid is the weaker ondition, d�'0� = 0.Assume that the obraket  of (A;A�) is trivial. Then, in order for (�; 0; '; 0)to de�ne a Lie quasi-bialgebroid, the 3-vetor ' must satisfy f�; 'g = 0. In thisase, ondition (4.14) redues to(4.15) 12[�; �℄� = ' ;whih is a quasi-Poisson ondition, analogous to (1.1).() Twist of a quasi-Lie bialgebroid: (�; ; 0;  ) 7! (�0�;  0�; '0�;  ), where �0� =�+�℄ ,  0� = +�;�+(V2 �℄) and '0� = �d�� 12 [�; �℄�+(V3 �℄) . The resultis a proto-bialgebroid, furthermore it is a quasi-Lie bialgebroid if and only if thebivetor � and the 3-form  satisfy the Maurer-Cartan equation with bakground  or  -Maurer-Cartan equation,(4.16) d� + 12[�; �℄� = (^3�℄) :Assume that the obraket  of (A;A�) is trivial. Then, in order for (�; 0; 0;  )to de�ne a quasi-Lie bialgebroid, the 3-form  must be d�-losed. In this ase,ondition (4.16) redues to the Poisson ondition with bakground  or  -Poissonondition,(4.17) 12[�; �℄� = (^3�℄) ;to be found in [40℄, [23℄ and [46℄.We shall now onsider in greater detail two partiular ases of the above on-strution of a Lie quasi-bialgebroid from a given Lie quasi-bialgebroid equipped witha bivetor.4.1.3 Lie quasi-bialgebras and r-matriesWhen the base manifold of a Lie algebroid is a point, it redues to a Lie algebra,g = (F; �). An element in V2 F an be viewed as aV2 F -valued 0-ohain on g. Thetriangular r-matries are those elements r in V2 F that satisfy [r; r℄� = 0. Let usexplain why the twisting de�ned by a bivetor generalizes the operation of twistingde�ned on Lie bialgebras, and more generally on Lie quasi-bialgebras, by Drinfeld[14℄, and further studied in [26℄ and [7℄.In this ase, formula (4.1) redues to(4.18) [�; �℄�;r = �(d�r)(�; �) :Here d�r is the Chevalley-Eilenberg oboundary of r, a 1-ohain on g with valuesin V2 g. This formula is indeed that of the obraket on F , obtained by twistinga Lie bialgebra with vanishing obraket by an element r 2 V2 F (see [14℄ [26℄).Formulas (4.3) and (4.4) also redue to the known fomulas.Then ((F; F �); �;�d�r) is a Lie bialgebra if and only if d�[r; r℄� = 0, i.e., ifand only if r satis�es the generalized lassial Yang-Baxter equation. A suÆient19



ondition is that r satisfy the lassial Yang-Baxter equation, [r; r℄� = 0, in whihase r is a triangular r-matrix.In this purely algebrai ase, the Courant braket of F �F � is skew-symmetri,and therefore is a true Lie algebra braket. It satis�es[x; �℄ = �[�; x℄ = �i�dx+ ixd�� = �ad�� x+ ad��x � ;and therefore oinides with the braket of the Drinfeld double.A deriving operator for the Lie braket of the Drinfeld double of a Lie proto-bialgebra ((F; F �); �; ; '; ) is d���+ i'+e , where d� (resp., �) is the general-ization of the Chevalley-Eilenberg ohomology (resp., homology) operator of (F; �)(resp., (F �; )) to the ase where the braket � (resp., ) does not neessarily satisfythe Jaobi identity.4.1.4 Tangent bundles and Poisson bivetorsWhen A = TM , the tangent bundle of a manifold M , a setion � of V2A isa bivetor �eld on M . Let �Lie be the funtion de�ning the Lie braket of vetor�elds, and more generally the Shouten braket of multivetor �elds. The assoiateddi�erential is the de Rham di�erential of forms, whih we denote by d. In thisase, we denote the braket of forms, de�ned by formula (4.1) above, simply by[ ; ℄� and the funtion �;� simply by �. Thus ((TM; T �M); �Lie; �; '; 0), with' = �12 [�; �℄, is a Lie quasi-bialgebroid, and if [�; �℄ = 0, i.e., � is a Poissonbivetor, then ((TM; T �M); �Lie; �) is a Lie bialgebroid. The braket [ ; ℄� is thenthe Fuhssteiner-Magri-Morosi braket [16℄ [38℄, its extension to forms of all degreesbeing the Koszul braket [32℄.A deriving operator for the Courant braket of the double, TM � T �M , of theLie bialgebroid of a Poisson manifold is d � �� , where �� = [i�; d℄ is the Poissonhomology operator, de�ned by Koszul and studied by Huebshmann [19℄, and oftenalled the Koszul-Brylinski operator. Indeed, it is well known that the operator ��generates the Koszul braket of forms. This was in fat the original de�nition givenby Koszul in [32℄. This deriving operator is of square 0.We an also onsider the dual objet. Whenever � is a bivetor �eld on M ,((T �M;TM); �; �Lie; 0;  ), with  = �12 [�; �℄, is a quasi-Lie bialgebroid, whih,when � is a Poisson bivetor, is the Lie bialgebroid dual to (TM; T �M).If M is orientable with volume form �, a deriving operator for the Courantbraket of the double, T �M � TM , is d� � �� , where �� = � ��1 d � (here, � is theoperator on forms de�ned by �). In fat, the operator �� generates the Shoutenbraket of multivetor �elds [32℄ [29℄. To obtain a deriving operator of square 0, wemust add to d� �� the derivation eX� , where X� is the modular vetor �eld of thePoisson manifold (M;�) assoiated with the volume form �. In the non-orientablease, one should introdue densities as in [15℄. If � is invertible, with inverse 
, then� = [i
; d�℄ generates the Shouten braket [27℄ and therefore d� � � is a derivingoperator of square 0 for the Courant braket of T �M � TM .20



4.2 The Courant braket of Poisson strutures with bak-ground4.2.1 The Courant braket with bakgroundLet (A; �) be a Lie algebroid and let  be a 3-form on A, a setion of V3A�. Then,as we remarked in Setion 4.1.2, ((A;A�); �; 0; 0;  ), is a quasi-Lie bialgebroid if andonly if the 3-form  is d�-losed, d� = 0 :This is the most general quasi-Lie bialgebroid with trivial obraket. By de�nition,the funtions � and  satisfy f�; �g = 0 and f�;  g = 0, so that � de�nes a Liealgebroid braket, but we obtain a Lie bialgebroid if and only if  = 0.The braket of the double A � A� (in the ase of TM � T �M) was introduedby �Severa and Weinstein [46℄ who alled it the modi�ed Courant braket or theCourant braket with bakground  . This braket satis�es[x; y℄ = [x; y℄� + ix^y ; [x; �℄ = L�x� ; [�; x℄ = �ixd�� ; [�; �℄ = 0 ;that is [x+ �; y + �℄ = [x; y℄� + L�x� � iyd�� + ix^y :By Theorem 3.2, d� + e is a deriving operator of the Courant braket withbakground  .In the ase of a Lie algebra, (F; �), [x; �℄ = �[�; x℄ = ad��x �.Remark In [7℄, we onsidered the ase of the most general Lie quasi-bialgebrawith trivial obraket. Similarly, one an onsider the Lie quasi-bialgebroids of theform (�; 0; '; 0), with f�; �g = 0 and f�; 'g = 0, and the Courant braket withbakground ', a 3-vetor in this ase,[x; y℄ = [x; y℄� ; [x; �℄ = L�x� ; [�; x℄ = �ixd�� ; [�; �℄ = ix^y' ;so that [x+ �; y + �℄ = [x; y℄� + ix^y'+ L�x� � iyd�� :This ase is not dual to the preeding one.4.2.2 Twisting of the Courant braket with bakgroundLet ((A;A�); �; 0; 0;  ) be a quasi-Lie bialgebroid with trivial obraket, where  is the bakground d�-losed 3-form. For the orresponding Courant braket withbakground, we shall desribe the twisting de�ned as above by a setion � of V2A.The twisting of this quasi-Lie bialgebroid, a speial ase of the that desribed inSetion 4.1.2, yields a proto-bialgebroid whose strutural elements depend on �;  and �, and whih we shall denote by (e�;e; e'; e ),e� = �+ �℄ ;e = �;� + (^2�℄) ;e' = �12[�; �℄�+ (^3�℄) ;e =  : 21



We have seen in Setion 4.1.2() that the resulting twisted objet is a quasi-Liebialgebroid if and only if e' = 0, i.e., � satis�es the  -Poisson ondition (4.17),12[�; �℄� = (^3�℄) :It was shown in [46℄ that this ondition is satis�ed if and only if the graph of � isa Dira sub-bundle in the Courant algebroid with bakground, A� A�, the doubleof the quasi-Lie bialgebroid ((A;A�); �; 0; 0;  ). This onstitutes a generalization ofthe property valid in the usual ase, reviewed in Setion 4.1.1, where  = 0 andondition (4.17) redues to the usual Poisson ondition.The assoiated derivations, on �(V�A�) and on �(V�A), arede� = d� + i�℄ ;de = [�; � ℄� + i(V2 �℄) :Beause 12fe�; e�g = �fe; e g, the derivation de� does not have vanishing square ingeneral. On the other hand, whenever � satis�es the  -Poisson ondition, de is atrue di�erential and e de�nes a true Lie braket on �(A�), and a true Gerstenhaberbraket on �(V�A�), the modi�ed Koszul braket.We now onsider the Courant braket of the assoiated double, the �-twistedCourant braket with bakground  . The mixed terms are [x; �℄ = �i�dex + Le�x�and [�; x℄ = Le�x� ixde��, therefore[x; y℄ = [x; y℄�+ (�℄ )(x; y) ;(4.19) [x; �℄ = �i�[�; x℄� � (�℄ )(x; �℄�) + ixd�� + ix^�℄� + d� < �; x > ;(4.20) [�; x℄ = i�[�; x℄�+ (�℄ )(x; �℄�) + [�;< �; x >℄� � ixd�� � ix^�℄� ;(4.21) [�; �℄ = [�; �℄�;� + i�℄�^�℄� :(4.22)In partiular, for  = 0, we obtain the Courant braket of the double of thetwist by � of the Lie bialgebroid with trivial obraket, ((A;A�); �; 0), onsideredin Setion 4.1.1. Therefore, whenever � satis�es the generalized Poisson ondition(4.5), the above formulas yield the Courant braket of the double of the Lie bialge-broid ((A;A�); �; �;�). In the purely algebrai ase, we reover the Drinfeld doubleof a oboundary Lie bialgebra, de�ned by r, an r-matrix solution of the generalizedYang-Baxter equation. Setting r(�) = i�r, and using the relation ixd�� = ad��x �, weobtain [x; y℄ = [x; y℄� ;[x; �℄ = �[�; x℄ = �r(ad��x �) + ad�x(r�) + ad��x � ;[�; �℄ = ad��r� � � ad��r� � :To onlude, we prove a property of the Lie braket de�ned by e on �(A�).Proposition 4.1 If, � satis�es the  -Poisson ondition, the mapping �℄ is a mor-phism of Lie algebroids fom A� with the Lie braket (4.22) to A with the Lie braket[ ; ℄�. 22
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