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Quasi, twisted, and all that...in Poisson geometry and Lie algebroid theoryYvette Kosmann-S
hwarzba
hDedi
ated to Alan WeinsteinAbstra
tMotivated by questions from quantum group and �eld theories, we review stru
-tures on manifolds that are weaker versions of Poisson stru
tures, and variants ofthe notion of Lie algebroid. We give a simple de�nition of the Courant algebroidsand introdu
e the notion of a deriving operator for the Courant bra
ket of the dou-ble of a proto-bialgebroid. We then des
ribe and relate the various quasi-Poissonstru
tures, whi
h have appeared in the literature sin
e 1991, and the twisted Poissonstru
tures studied by �Severa and Weinstein.Introdu
tionIn 1986, Drinfeld introdu
ed both the quasi-Hopf algebras, that generalize the Hopfalgebras de�ning quantum groups, and their semi-
lassi
al limits, the Lie quasi-bialgebras. This naturally led to the notion of quasi-Poisson Lie groups whi
h Iintrodu
ed in [25℄ [26℄.A quasi-Hopf algebra is a bialgebra in whi
h the multipli
ation is asso
iative butthe 
o-multipli
ation is only 
o-asso
iative up to a defe
t measured by an element� in the triple tensor produ
t of the algebra. Similarly, the de�nitions of the Liequasi-bialgebras and the quasi-Poisson Lie groups involve a given element in V3 g,where g is the underlying Lie algebra, whi
h Drinfeld denoted by '. In a Lie quasi-bialgebra, the bra
ket is a Lie bra
ket be
ause it satis�es the Ja
obi identity, butthe 
ompatible 
obra
ket is not a true Lie bra
ket on the dual of g, be
ause itonly satis�es the Ja
obi identity up to a defe
t measured by the element '. On aquasi-Poisson Lie group, there is a multipli
ative bive
tor �eld, �, whose S
houtenbra
ket, [�; �℄, does not vanish, but is also expressed in terms of '. The desireto understand the group-valued moment maps and the quasi-hamiltonian spa
es ofAlekseev, Malkin and Meinrenken [3℄ in terms of Poisson geometry led to the studyof the a
tion of quasi-Poisson Lie groups on manifolds equipped with a bive
tor�eld [1℄. A spe
ial 
ase of a quasi-Poisson stru
ture on a Lie group o

urs whenthe bive
tor vanishes and only ' remains, 
orresponding to a Lie quasi-bialgebrawith a trivial 
obra
ket. The quasi-Poisson manifolds studied in [2℄ are manifoldsequipped with a bive
tor, on whi
h su
h a quasi-Poisson Lie group a
ts.1



Re
ently, 
losed 3-form �elds appeared in Park's work on string theory [40℄,and in the work on topologi
al �eld theory of Klim�
ik and Strobl, who re
ognizedthe appearan
e of a new geometri
al stru
ture whi
h they 
alled WZW-Poissonmanifolds [23℄. They 
hose this name be
ause the role of the ba
kground 3-formis analogous to that of the Wess-Zumino term introdu
ed by Witten in a �eldtheory with target a group, and more re
ently they proposed to shorten the nameto WZ-Poisson manifolds. Shortly after these publi
ations 
ir
ulated as preprints,�Severa and Weinstein studied su
h stru
tures in the framework of Courant algebroidtheory, 
alling them Poisson stru
tures with a 3-form ba
kground. They are de�nedin terms of a bive
tor �eld � and a 
losed 3-form, denoted by ' in [46℄, but whi
hwe shall denote by  to avoid 
onfusion with the above. Again � is not a Poissonbive
tor { unless  vanishes, in whi
h 
ase the Poisson stru
ture with ba
kgroundredu
es to a Poisson stru
ture {, its S
houten bra
ket is the image of the 3-form under the morphism of ve
tor bundles de�ned by �, mapping forms to ve
tors.�Severa and Weinstein also 
alled the Poisson stru
tures with ba
kground  -Poissonstru
tures, or twisted Poisson stru
tures. This last term has sin
e been widely used[42℄[45℄[11℄[10℄, hen
e the word \twisted" in the title of this paper. It is justi�ed bya related usage in the theory of \twisted sheaves", and we shall o

asionally use thisterm but we prefer Poisson stru
ture with ba
kground be
ause, in Drinfeld's theoryof Lie quasi-bialgebras, the words \twist"and \twisting" have a di�erent and nowstandard meaning. Se
tion 4.1 of this paper is a generalization of Drinfeld's theoryto the Lie algebroid setting.The theory of Lie bialgebras, on the one hand, is a spe
ial 
ase of that of the Liebialgebroids, introdu
ed by Ma
kenzie and Xu [37℄. It was shown by Roytenberg[42℄ that the \quasi" variant of this notion is the framework in whi
h the Poissonstru
tures with ba
kground appear naturally. Lie algebras, on the other hand, area spe
ial 
ase of the Loday algebras. Combining the two approa
hes, we en
ounterthe Courant algebroids of Liu, Weinstein and Xu [33℄, or rather their equivalentde�nition in terms of non-skew-symmetri
 bra
kets.We shall present these a priori di�erent notions, and shall show how they 
an berelated. In Se
tion 1, we give a brief overview of the various theories just mentioned.In parti
ular we de�ne the proto-bialgebroids and the Lie quasi-bialgebroids, whi
hgeneralize the Lie quasi-bialgebras, as well as their duals, the quasi-Lie bialgebroids.In Se
tion 2, we give a simple de�nition of the Courant algebroids, whi
h we proveto be equivalent to the usual de�nition [33℄ [41℄ (Theorem 2.1). Liu, Weinsteinand Xu [33℄ showed that the 
onstru
tion of the double of Lie bialgebroids 
an bea

omplished in the framework of Courant algebroid theory by introdu
ing Manintriples for Lie bialgebroids. Along the lines of [42℄, we extend these 
onsiderationsto the 
ase of proto-bialgebroids and, in parti
ular, to both \quasi" 
ases. Thus, westudy the more general Manin pairs for Lie quasi-bialgebroids. This is the subje
tof Se
tion 3, where we also introdu
e the notion of a deriving operator (in the spiritof [28℄ and [30℄) for the double of a proto-bialgebroid, and we prove an existen
etheorem (Theorem 3.2). Se
tion 4 is devoted to the study of examples. The twistingof Lie quasi-bialgebroids by bive
tors generalizes Drinfeld's twisting of Lie quasi-bialgebras, and leads to the 
onsideration of the quasi-Maurer-Cartan equation,whi
h generalizes the quasi-Poisson 
ondition. One 
an twist a quasi-Lie bialgebroidwith a 
losed 3-form ba
kground by a bive
tor, and the Poisson 
ondition with2



ba
kground appears as the 
ondition for the twisted obje
t to remain a quasi-Liebialgebroid.The world of the \quasi" stru
tures whi
h we explore here is 
ertainly nothingbut a small part of the realm of homotopy stru
tures, L1, G1, et
. See, in parti
u-lar, [51℄ and the le
ture of Stashe� [47℄. We hope to show that these are interestingobje
ts in themselves.A
knowledgmentsIt is a pleasure to thank Henrique Bursztyn, James D. Stashe� and Thomas Stroblfor their 
omments on an earlier version of this text.1 A reviewBefore we mention the global obje
ts su
h as the generalizations of the Poisson Liegroups, we shall re
all their in�nitesimal 
ounterparts.1.1 Lie quasi-bialgebras, quasi-Lie bialgebras and proto-bialgebrasWe shall not review all the details of the stru
tures that are weaker versions of theLie bialgebra stru
ture, but we need to re
all the de�nition of Lie quasi-bialgebras.It is due to Drinfeld [14℄, while in [26℄ and [7℄ the dual 
ase, that of a quasi-Liebialgebra, and the more general 
ase of proto-bialgebras (
alled there \proto-Lie-bialgebras") are treated. A proto-bialgebra stru
ture on a ve
tor spa
e F is de�nedby a quadruple of elements in V�(F � F �) ' C1T �(�F ), where � denotes the
hange of parity. We denote su
h a quadruple by (�; 
; '; ), with � : V2 F ! F ,
 : V2 F � ! F �, ' 2 V3 F ,  2 V3 F �. This quadruple de�nes a proto-bialgebra ifand only if f�+ 
+'+ ; �+ 
+'+ g = 0, where f ; g is the 
anoni
al Poissonbra
ket of the 
otangent bundle T �(�F ), whi
h 
oin
ides with the big bra
ket ofV�(F � F �) [26℄. This 
ondition is equivalent to the �ve 
onditions whi
h we shallwrite below in the more general 
ase of the proto-bialgebroids (see Se
tion 1.5). Ifeither  or ' vanishes, there remain only four non-trivial 
onditions. When  = 0,the bra
ket is a Lie bra
ket, while the 
obra
ket only satis�es the Ja
obi identityup to a term involving ', and we 
all the proto-bialgebra a Lie quasi-bialgebra.When ' = 0, the bra
ket only satis�es the Ja
obi identity up to a term involving  ,while the 
obra
ket is a Lie 
obra
ket, and we 
all the proto-bialgebra a quasi-Liebialgebra. Clearly, the dual of a Lie quasi-bialgebra is a quasi-Lie bialgebra, and
onversely.Drinfeld only 
onsidered the 
ase  = 0. In the English translation of [14℄, whatwe 
all a Lie quasi-bialgebra in this paper was translated as a quasi-Lie bialgebra,a term whi
h we shall reserve for the obje
t dual to a Lie quasi-bialgebra. In fa
t,it is in the dual obje
t, where ' = 0 and  6= 0 that the algebra stru
ture is only\quasi-Lie". As another potential sour
e of 
onfusion, we mention that in [41℄ and[42℄, the element in V3 F � that we denote by  is denoted by ', and vi
e-versa.Any proto-bialgebra ((F; F �); �; 
; ';  ) has a double whi
h is d = F � F �, with3



the Lie bra
ket, [x; y℄ = �(x; y) + ix^y ;[x; �℄ = �[�; x℄ = �ad�
� x+ ad��x � ;[�; �℄ = i�^�'+ 
(�; �) :Here x and y 2 F , and � and � 2 F �.Any Lie bialgebra has, asso
iated with it, a pair of Batalin-Vilkovisky algebras induality. The extension of this property to Lie quasi-bialgebras, giving rise to quasi-Batalin-Vilkovisky algebras in the sense of Getzler [17℄, has been 
arried out byBangoura [5℄. There is a notion of quasi-Gerstenhaber algebra (Huebs
hmann, un-published, see [42℄), and Bangoura has further proved that quasi-Batalin-Vilkoviskyalgebras give rise to quasi-Gerstenhaber algebras [6℄. These \quasi" algebras arethe simplest examples of G1- and BV1-algebras, in whi
h all the higher-ordermultilinear maps vanish ex
ept for the trilinear map.1.2 Quasi-Poisson Lie groups and moment maps withvalues in homogeneous spa
esThe global obje
t 
orresponding to the Lie quasi-bialgebras we have just presentedwas introdu
ed in [26℄ and 
alled a quasi-Poisson Lie group. It is a Lie group witha multipli
ative bive
tor, �G, whose S
houten bra
ket does not vanish (so that it isnot a Poisson bive
tor), but is a 
oboundary, namely12[�G; �G℄ = 'L � 'R ;where 'L (resp., 'R) are the left- (resp., right-)invariant trive
tors on the group withvalue ' 2 V3 g at the identity. In [1℄, we 
onsidered the a
tion of a quasi-Poisson Liegroup (G; �G; ') on a manifold M equipped with a G-invariant bive
tor �. Whenthe S
houten bra
ket of � satis�es the 
ondition(1.1) 12[�; �℄ = 'M ;we say that (M;�) is a quasi-Poisson G-spa
e. Here 'M is the image of the element' in V3 g under the in�nitesimal a
tion of the Lie algebra g of G on M . The quasi-Poisson G-spa
e (M;�) is 
alled a hamiltonian quasi-Poisson G-spa
e if there existsa moment map for the a
tion of G on M , whi
h takes values in D=G, where D isthe simply 
onne
ted Lie group whose Lie algebra is the double d = g � g� of theLie quasi-bialgebra g. See [1℄ for the pre
ise de�nitions.Two extreme 
ases of this 
onstru
tion are of parti
ular interest. The �rst
orresponds to the 
ase where the Lie quasi-bialgebra is a
tually a Lie bialgebra(' = 0), i.e., the Manin pair with a 
hosen isotropi
 
omplement de�ning the Liequasi-bialgebra is in fa
t a Manin triple. Then G is a Poisson Lie group and D=G
an be identi�ed with a dual group G� of G. The moment maps for the quasi-hamiltonian G-spa
es redu
e to the moment maps in the sense of Lu [35℄ that takevalues in the dual Poisson Lie group, G�. The se
ond 
ase is that of a Lie quasi-bialgebra with vanishing 
obra
ket (
 = 0), to be des
ribed in the next subse
tion.4



1.3 Quasi-Poisson manifolds and group-valued momentmapsAssume that G is a Lie group a
ting on a manifold M , and that g is a quadrati
Lie algebra, i.e., a Lie algebra with an invariant non-degenerate symmetri
 bilinearform. We 
onsider the bilinear form in g� g de�ned as the di�eren
e of the 
opiesof the given bilinear form on the two terms of the dire
t sum. Let g be diagonallyembedded into g � g. Then (g � g; g) is a Manin pair, and we 
hoose the anti-diagonal, f(x;�x)jx 2 gg, as a 
omplement of g � g � g. The 
orresponding Liequasi-bialgebra has vanishing 
obra
ket, be
ause the bra
ket of two elements inthe anti-diagonal is in the diagonal, and therefore the bive
tor of the quasi-Poissonstru
ture of G is trivial. With this 
hoi
e of a 
omplement, ' is the Cartan trive
torof g. In this way, we obtain the quasi-Poisson G-manifolds des
ribed in [2℄. Theyare pairs, (M;�), where � is a G-invariant bive
tor on M that satis�es equation(1.1) with ' the Cartan trive
tor of g. The group G a
ting on itself by means ofthe adjoint a
tion is a quasi-Poisson G-manifold, and so are its 
onjuga
y 
lasses.The bive
tor �G on G isPa eRa ^eLa , where ea is an orthonormal basis of g. Be
ausethe homogeneous spa
e D=G of the general theory is the group G itself in this 
ase,the moment maps for the hamiltonian quasi-Poisson manifolds are group-valued.Those hamiltonian quasi-Poisson manifolds for whi
h the bive
tor � satis�es a non-degenera
y 
ondition are pre
isely the quasi-hamiltonian manifolds of Alekseev,Malkin and Meinrenken [3℄.1.4 Lie bialgebroids and their doublesLie bialgebroids were �rst de�ned by Ma
kenzie and Xu [37℄. We state the de�nitionas we reformulated it in [27℄. To ea
h Lie algebroid A are asso
iated� a Gerstenhaber bra
ket, [ ; ℄A, on �(V�A),� a di�erential, dA, on �(V�A�).A Lie bialgebroid is a pair, (A;A�), of Lie algebroids in duality su
h that dA� is aderivation of [ ; ℄A, or, equivalently, dA is a derivation of [ ; ℄A� .Extending the 
onstru
tion of the Drinfeld double of a Lie bialgebra to the
ase of a Lie bialgebroid is a non-trivial problem, and several solutions have beeno�ered, by Liu, Weinstein and Xu [33℄ in terms of the Courant algebroid A � A�,by Ma
kenzie [36℄ in terms of the double ve
tor bundle T �A ' T �A�, and byVaintrob (unpublished) and Roytenberg [41℄ [42℄ in terms of supermanifolds. Weshall des
ribe some properties of the �rst and third 
onstru
tions in Se
tion 3.1.5 Lie quasi-bialgebroids, quasi-Lie bialgebroids, proto-bialgebroids and their doublesWe 
all attention to the fa
t that we shall de�ne here both \Lie quasi-bialgebroids"and \quasi-Lie bialgebroids" and that, as we explain below, these terms are notsynonymous. We extend the notations of [14℄, [26℄, [7℄ to the 
ase of Lie algebroids.A proto-bialgebroid (A;A�) is de�ned by an
hors �A and �A� , bra
kets [ ; ℄A and[ ; ℄A� , and elements ' 2 �(V3A) and  2 �(V3A�). By de�nition,5



� The 
ase  = 0 is that of Lie quasi-bialgebroids (A is a true Lie algebroid,while A� is only \quasi"),� The 
ase ' = 0 is that of quasi-Lie bialgebroids (A� is a true Lie algebroid,while A is only \quasi").� The 
ase where both ' and  vanish is that of the Lie bialgebroids.While the dual of a Lie bialgebroid is itself a Lie bialgebroid, the dual of a Liequasi-bialgebroid is a quasi-Lie bialgebroid, and 
onversely.Whenever A is a ve
tor bundle, the spa
e of fun
tions on T ��A, where � denotesthe 
hange of parity, 
ontains the spa
e of se
tions of V�A, the A-multive
tors. Inparti
ular, the se
tions of A 
an be 
onsidered as fun
tions on T ��A. Given the
anoni
al isomorphism, T ��A� ' T ��A, the same 
on
lusion holds for the se
tionsof V�A�, in parti
ular for the se
tions of A�.A Lie algebroid bra
ket [ ; ℄A on a ve
tor bundle A over a manifold M is de�ned,together with an an
hor �A : A ! TM , by a fun
tion � on the supermanifoldT ��A ([41℄ [42℄ [49℄ [50℄). Let f ; g denote the 
anoni
al Poisson bra
ket of the
otangent bundle. The bra
ket of two se
tions x and y of A is the derived bra
ket,in the sense of [28℄, [x; y℄A = ffx; �g; yg ;and the an
hor satis�es �A(x)f = ffx; �g; fg ;for f 2 C1(M). When (A;A�) is a pair of Lie algebroids in duality, both [ ; ℄Atogether with �A, and [ ; ℄A� together with �A� 
orrespond to fun
tions, denoted by� and 
, on the same supermanifold T ��A, taking into a

ount the identi�
ationof T ��A� with T ��A. The three 
onditions in the de�nition of a Lie bialgebroidare equivalent to the single equationf�+ 
; �+ 
g = 0 :More generally, the �ve 
onditions for a proto-bialgebroid de�ned by (�; 
; '; )are obtained from a single equation. By de�nition, a proto-bialgebroid stru
ture on(A;A�) is a fun
tion of degree 3 and of Poisson square 0 on T ��A. As in the 
ase ofa proto-bialgebra, su
h a fun
tion 
an be written �+ 
 + '+  , where ' 2 �V3Aand  2 �V3A�, and satis�es(1.2) f�+ 
 + '+  ; �+ 
 + '+  g = 0 :The de�nition is equivalent to the 
onditions8>>>><>>>>: 12f�; �g+ f
;  g = 0 ;f�; 
g+ f';  g = 0 ;12f
; 
g+ f�; 'g = 0 ;f�;  g = 0 ;f
; 'g = 0 :� When ((A;A�); �; 
; '; 0) is a Lie quasi-bialgebroid, ((A;A�); �; 
) is a Liebialgebroid if and only if f�; 'g = 0.� Dually, when ((A;A�); �; 
; 0;  ) is a quasi-Lie bialgebroid, ((A;A�); �; 
) is aLie bialgebroid if and only if f
;  g= 0.6



Remark In the 
ase of a proto-bialgebra, (F; F �), the operator f�; : g generalizesthe Chevalley-Eilenberg 
oboundary operator on 
o
hains on F with values in V� F .In the term f�; 'g, ' should be viewed as a 0-
o
hain on F with values in V3 F ,and f�; 'g is an element in F � 
 V3 F . So is f
; 
g, whi
h is a trilinear form onF � with values in F � whose vanishing is equivalent to the Ja
obi identity for 
. Inthe term f�;  g,  should be viewed as a 3-
o
hain on F with s
alar values, andf�;  g is an element in V4 F �. Reversing the roles of F and F �, one obtains theinterpretation of the other terms in the above formulas.1.6 Poisson stru
tures with ba
kground (twisted Pois-son stru
tures)The WZW-Poisson stru
tures introdu
ed by Klim�
ik and Strobl [23℄ were studiedby �Severa and Weinstein in 2001 [46℄, who 
alled them Poisson stru
tures with ba
k-ground, and also twisted Poisson stru
tures. Roytenberg has subsequently shownthat they appear by a twisting of a quasi-Lie bialgebroid by a bive
tor [42℄. Weshall review this approa
h in Se
tion 4. The integration of Poisson stru
tures withba
kground into quasi-symple
ti
 groupoids is the subje
t of re
ent work of Bursz-tyn, Craini
, Weinstein and Zhu [10℄ and of Cattaneo and Xu [11℄. In addition, Xu[53℄ has very re
ently extended the theory of momentum maps to this setting.1.7 Other stru
tures: Loday algebras, omni-Lie alge-brasThere are essentially two ways of weakening the properties of Lie algebras. Onepossibility is to introdu
e a weakened version of the Ja
obi identity, e.g., an identityup to homotopy: this is the theory of L1-algebras. The relationship of the Courantalgebroids to L1-algebras was explored in [44℄.Another possibility is to 
onsider non-skew-symmetri
 bra
kets: this is the the-ory of Loday algebras, whi
h Loday introdu
ed and 
alled Leibniz algebras. A Lodayalgebra is a graded ve
tor spa
e with a bilinear bra
ket of degree n satisfying theJa
obi identity,(1.3) [x; [y; z℄ = [[x; y℄; z℄+ (�1)(jxj+n)(jyj+n)[y; [x; z℄℄ ;for all elements x, y and z, where jxj is the degree of x. In Se
tion 2, we shalldes
ribe the Loday algebra approa
h to Courant algebroids, in whi
h 
ase there isno grading.The \omni-Lie algebras" introdu
ed by Weinstein in [52℄ provide an elegant wayof 
hara
terizing the Lie algebra stru
tures on a ve
tor spa
e V in terms of the graphin V � gl(V ) of the adjoint operator. In the same paper, he de�ned the (R;A) C-algebras, the algebrai
 analogue of Courant algebroids, whi
h generalize the (R;A)Lie algebras (also 
alled Lie-Rinehart algebras or pseudo-Lie algebras), and he posedthe question of how to determine the global analogue of an \omni-Lie algebra". In[22℄, he and Kinyon explored this problem and initiated the sear
h for the globalobje
ts asso
iated to generalized Lie algebras, that would generalize Lie groups.They proved new properties of the Loday algebras, showing in what sense they 
anbe integrated to a homogeneous left loop, i.e., to a manifold with a non-asso
iative7




omposition law, and they showed that the Courant bra
kets of the doubles ofLie bialgebroids 
an be realized on the tangent spa
es of redu
tive homogeneousspa
es. These global 
onstru
tions are inspired by the 
orresponden
e betweengeneralized Lie triple systems and non-asso
iative multipli
ations on homogeneousspa
es. (Some of the results of Bertram [8℄ might prove useful in the sear
h forglobal obje
ts integrating generalized Lie algebras.) For re
ent developments, seeKinyon's le
ture [21℄.1.8 Generalized Poisson bra
kets for non-holonomi
 me-
hani
al systemsBra
kets of the Poisson or Dira
 type that do not satisfy the Ja
obi identity appear inmany geometri
 
onstru
tions des
ribing non-holonomi
 me
hani
al systems. Thereis a large literature on the subje
t; see for instan
e [20℄ [12℄ and their referen
es.It would be very interesting to study how these 
onstru
tions relate to the variousstru
tures whi
h we are now 
onsidering. In his le
ture [36℄, Marsden showed howto state the non-holonomi
 equations of Lagrangian me
hani
s in terms of isotropi
subbundles in the dire
t sum of the tangent and 
otangent bundles of the phasespa
e, T �Q, of the system under 
onsideration. He 
alls su
h subbundles Dira
stru
tures on T �Q. Yet, it is only when an integrability 
ondition is required thatthese stru
tures be
ome examples of the Dira
 stru
tures to be mentioned in thenext se
tion.2 Courant algebroidsThe 
onstru
tion of the double of a Lie bialgebra with the stru
ture of a Lie algebradoes not extend into a 
onstru
tion of the double of a Lie bialgebroid with thestru
ture of a Lie algebroid, be
ause the framework of Lie algebroid theory is toonarrow to permit it. While it is not the only solution available, the introdu
tion ofthe new notion of Courant algebroid permits the solution of this problem.The de�nition of Courant algebroids, based on Courant's earlier work [13℄, isdue to Liu, Weinstein and Xu [33℄. It was shown by Roytenberg [41℄ that a Courantalgebroid 
an be equivalently de�ned as a ve
tor bundle E ! M with a Lodaybra
ket on �E, an an
hor � : E ! TM and a �eld of non-degenerate, symmetri
bilinear forms ( j ) on the �bers of E, related by a set of four additional properties.It was further observed by U
hino [48℄ and by Grabowski and Marmo [18℄ thatthe number of independent 
onditions 
an be redu
ed. We now show that it 
anbe redu
ed to two properties whi
h are very natural generalizations of those of aquadrati
 Lie algebra. In fa
t, (i) and (ii) below are generalizations to algebroidsof the skew-symmetry of the Lie bra
ket, and of the 
ondition of ad-invarian
e fora bilinear form on a Lie algebra, respe
tively.De�nition 2.1 A Courant algebroid is a ve
tor bundle E ! M with a Lodaybra
ket on �E, i.e., an R-bilinear map satisfying the Ja
obi identity,[x; [y; z℄℄ = [[x; y℄; z℄+ [y; [x; z℄℄ ;8



for all x; y; z 2 �E, an an
hor, � : E ! TM , whi
h is a morphism of ve
torbundles, and a �eld of non-degenerate symmetri
 bilinear forms ( j ) on the �bersof E, satisfying (i) �(x)(ujv) = (x j [u; v℄ + [v; u℄) ;(ii) �(x)(ujv) = ([x; u℄ j v) + (u j [x; v℄) ;for all x, u and v 2 �E.Remark Property (i) is equivalent to(i0) 12�(x)(yjy) = (xj[y; y℄)(whi
h is property 4 of De�nition 2.6.1 in [41℄, and property 5 of Se
tion 1 in [46℄).The 
onjun
tion of properties (i) and (ii) is equivalent to property (ii) together with(i00) (xj[y; y℄) = ([x; y℄jy)(whi
h is property 5 in Appendix A in [45℄).We now prove two important 
onsequen
es of properties (i) and (ii) whi
hhave been initially 
onsidered to be additional, independent de�ning properties ofCourant algebroids.Theorem 2.1 In any Courant algebroid,(iii) the Leibniz rule is satis�ed, i.e.,[x; fy℄ = f [x; y℄ + (�(x)f)y ;for all x and y 2 �E and all f 2 C1(M),(iv) the an
hor, �, indu
es a morphism of Loday algebras from �E to �(TM), i.e.,it satis�es �([x; y℄) = [�x; �y℄ ;for all x and y 2 �E.Proof The proof of (iii), adapted from [48℄, is obtained by evaluating �(x)(fyjz) intwo ways. We �rst write, using the Leibniz rule for ve
tor �elds a
ting on fun
tions,�(x)(fyjz) = (�(x)f)(yjz)+ f�(x)(yjz) :Then, using property (ii) twi
e, we obtain([x; fy℄jz)+ (fyj[x; z℄) = (�(x)f)(yjz)+ f([x; y℄jz) + f(yj[x; z℄) :and (iii) follows by the non-degenera
y of ( j ).The proof of (iv) is that of the analogous property for Lie algebroids (see, e.g.,[31℄). It is obtained by evaluating [x; [y; fz℄℄, for z 2 �E, in two ways, using boththe Ja
obi identity for the Loday bra
ket [ ; ℄ and (iii). �It follows from the Remark together with Theorem 2.1 and from the argumentsof Roytenberg in [41℄ that our de�nition of Courant algebroids is equivalent to thatof Liu, Weinstein and Xu in [33℄. 9



A Dira
 sub-bundle (also 
alled a Dira
 stru
ture) in a Courant algebroid is amaximally isotropi
 sub-bundle whose spa
e of se
tions is 
losed under the bra
ket.Courant algebroids with base a point are quadrati
 Lie algebras. More generally,Courant algebroids with a trivial an
hor are bundles of quadrati
 Lie algebras witha smoothly varying stru
ture.The notion of a Dira
 sub-bundle in a Courant algebroid with base a pointredu
es to that of a maximally isotropi
 Lie subalgebra in a quadrati
 Lie algebra,in other words, to a Manin pair. We shall show that a Courant algebroid togetherwith a Dira
 sub-bundle is an appropriate generalization of the notion of a Maninpair from the setting of Lie algebras to that of Lie algebroids.A deep understanding of the nature of Courant algebroids is provided by the
onsideration of the non-negatively graded manifolds. This notion was de�ned andused by Kontsevi
h [24℄, �Severa [45℄ (who 
alled them N -manifolds) and T. Voronov[50℄. In [43℄, Roytenberg showed that the non-negatively graded symple
ti
 man-ifolds of degree 2 are the pseudo-eu
lidian ve
tor bundles, and that the Courantalgebroids are de�ned by an additional stru
ture, that of a homologi
al ve
tor �eld,asso
iated to a 
ubi
 hamiltonian � of Poisson square 0, preserving the symple
ti
stru
ture. The bra
ket and the an
hor of the Courant algebroid are re
overed fromthis data as the derived bra
kets, [x; y℄ = ffx;�g; yg and �(x)f = ffx;�g; fg. T.Voronov [50℄ studied the double of the non-negatively graded QP -manifolds whi
hare a generalization of the Lie bialgebroids.3 The double of a proto-bialgebroidWe shall now explain how to generalize the 
onstru
tion of a double with a Courantalgebroid stru
ture from Lie bialgebroids to proto-bialgebroids.3.1 The double of a Lie bialgebroidLiu, Weinstein and Xu [33℄ have shown that 
omplementary pairs of Dira
 sub-bundles in a Courant algebroid are in one-to-one 
orresponden
e with Lie bialge-broids:If E is a Courant algebroid, if E = A�B, where A and B are maximally isotropi
sub-bundles, and if �A and �B are 
losed under the bra
ket, then� A and B are in duality, B ' A�,� the bra
ket of E indu
es Lie algebroid bra
kets on A and B ' A�, withrespe
tive an
hors the restri
tions of the an
hor of E to A and A�,� the pair (A;A�) is a Lie bialgebroid.Conversely, if (A;A�) is a Lie bialgebroid, the dire
t sum A � A� is equippedwith a Courant algebroid stru
ture su
h that A and A� are maximally isotropi
 sub-bundles, and �A and �(A�) are 
losed under the bra
ket, the bilinear form beingthe 
anoni
al one, de�ned by(x+ �jy + �) =< �; y > + < �; x > ;for x and y 2 �A, � and � 2 �(A�). 10



3.2 The 
ase of proto-bialgebroidsThe 
onstru
tion whi
h we just re
alled 
an be extended to the proto-bialgebroids[42℄. Let A be a ve
tor bundle. Re
all that a proto-bialgebroid stru
ture on (A;A�)is a fun
tion of degree 3 and of Poisson square 0 on T ��A, that 
an be written� + 
 + ' +  , where ' 2 �(V3A) and  2 �(V3A�), and � (resp., 
) de�nes abra
ket and an
hor on A (resp., A�).The Courant bra
ket of the double, A � A�, of a proto-bialgebroid, (A;A�),de�ned by (�; 
; '; ;  ), is the derived bra
ket,[x+ �; y + �℄ = ffx+ �; �+ 
 + '+  g; y + �g :Here x and y are se
tions of A, � and � are se
tions of A�, and [x + �; y + �℄ is ase
tion of A� A�. (The right-hand side makes sense more generally when x and yare A-multive
tors, and � and � are A�-multive
tors, but the resulting quantity isnot ne
essarily a se
tion of V�(A�A�).)The an
hor is de�ned byffx+ �; �+ 
 + '+  g; fg = ffx; �g; fg+ ff�; 
g; fg= (�A(x) + �A�(�))(f) ;for f 2 C1(M). We set [x; y℄� = ffx; �g; yg and [�; �℄
 = ff�; 
g; �g. The asso
i-ated quasi-di�erentials, d� and d
 , on �(V�A�) and �(V�A) ared� = f�; � g and d
 = f
; � g ;whi
h satisfy (d�)2 + fd
 ; � g = 0 ; (d
)2 + fd�'; � g = 0 :We denote the interior produ
t of a form � by a multive
tor x by ix�, with thesign 
onvention, ix^y = ix Æ iy ;and we use an analogous notation for the interior produ
t of a multive
tor by aform. The Lie derivations are de�ned by L�x = [ix; d�℄ and L
� = [i�; d
 ℄. We �nd,for x and y 2 �A, � and � 2 �(A�),[x; y℄ = [x; y℄� + ix^y ;(3.1) [x; �℄ = �i�d
x+ L�x� ;(3.2) [�; x℄ = L
�x� ixd�� ;(3.3) [�; �℄ = i�^�'+ [�; �℄
 ;(3.4)that is,[x+ �; y + �℄ = [x; y℄� + L
�y � i�d
x+ i�^�'+ [�; �℄
 + L�x� � iyd�� + ix^y :These formulas extend both the Lie bra
ket of the Drinfeld double of a proto-bialgebra [7℄, re
alled in Se
tion 1.1, and the Courant bra
ket of the double of a Liebialgebroid [33℄. 11



3.3 Deriving operatorsIf � is a se
tion of A�, by e� we denote the operation of exterior multipli
ation by �on �(V�A�). In this subse
tion, the square bra
kets [ ; ℄ without a subs
ript denotethe graded 
ommutators of endomorphisms of �(V�A�).De�nition 3.1 We say that a di�erential operator D on �(V�A�) is a derivingoperator for the Courant bra
ket of A�A� if it satis�es the following relations,[[ix;D℄; iy℄ = i[x;y℄� + eix^y ;(3.5) [[ix;D℄; e�℄ = �ii�d
x + eL�x� ;(3.6) [[e�;D℄; ix℄ = iL
�x � eixd�� ;(3.7) [[e�;D℄; e�℄ = ii�^�' + e[�;�℄
 :(3.8)If we identify x 2 �A with ix 2 End(�(V�A�)), and � 2 �(A�) with e� 2End(�(V�A�)), the pre
eding relations be
ome[[x;D℄; y℄ = [x; y℄� + ix^y ;[[x;D℄; �℄ = �i�d
x+ L�x� ;[[�;D℄; x℄ = L
�x� ixd�� ;[[�;D℄; �℄ = i�^�'+ [�; �℄
 ;so that the Courant bra
ket de�ned in Se
tion 3.2 
an also be written as a derivedbra
ket [28℄ [30℄.Remark With the pre
eding identi�
ation, the relation ixe� + e�ix =< �; x >implies that (x+ �)(y + �) + (y + �)(x+ �) = (x+ �jy + �) :This shows that �(V�A�) is a Cli�ord module of the Cli�ord bundle of A�A�, thepoint of departure of Alekseev and Xu in [4℄.Does the Courant bra
ket of a proto-bialgebroid admit a deriving operator? We�rst treat the 
ase of a Lie bialgebroid. The spa
e �(V�A�) has the stru
ture of aGerstenhaber algebra de�ned by 
. We shall assume that this Gerstenhaber algebraadmits a generator in the following sense [32℄.De�nition 3.2 Let [ ; ℄A be any Gerstenhaber bra
ket on an asso
iative, graded
ommutative algebra (A;^). An operator, �, on A is a generator of the bra
ket if[u; v℄A = (�1)juj(�(u^ v)� �u ^ v � (�1)juju ^ �v) ;for all u and v 2 A. In parti
ular, a Batalin-Vilkovisky algebra is a Gerstenhaberalgebra whi
h admits a generator of square 0.Lemma 3.1 If � is a generator of bra
ket [ ; ℄A, then, for all u and v 2 A,(3.9) [eu; �℄ = e�u � [u; : ℄A ;and(3.10) [[eu; �℄; ev℄ = �e[u;v℄A ;where eu is left ^-multipli
ation by u 2 A.12



Proof The �rst relation follows from the de�nitions by a short 
omputation, and these
ond is a 
onsequen
e of the �rst, sin
e[[eu; �℄; ev℄ = [e�u � [u; � ℄A; ev℄ = �[[u; � ℄A; ev℄ = �e[u;v℄A ;for all u and v 2 A. �Theorem 3.1 If �� is a generator of the Gerstenhaber bra
ket of �(V�A�), thend� � �� is a deriving operator for the Courant bra
ket of A� A�.Proof We 
onsider various operators a
ting on se
tions of V�A�. We re
all from[29℄ (see [32℄ for the 
ase A = TM) that, for any x 2 �A,(3.11) [ix; ��℄ = �id
x :We shall also make use of the following relations,(3.12) [e�; d�℄ = ed�� ;for � 2 A�,(3.13) [iu; e�℄ = (�1)juj+1ii�u ;for any u 2 �(V�A), and(3.14) [e� ; ix℄ = (�1)j�j+1eix� ;for all � 2 �(V�A�).1) Let x and y be in �A. We 
ompute [ix; d� � ��℄ = L�x + id
x, when
e[[ix; d� � ��℄; iy℄ = i[x;y℄� + [id
x; iy℄ = i[x;y℄� :This proves (3.5), 
orresponding to (3.1).2) Let x be in �A and let � be in �(A�). We 
ompute[[ix; d� � ��℄; e�℄ = [L�x; e�℄ + [id
x; e�℄ = eL�x� � ii�d
x :This proves (3.6), 
orresponding to (3.2).3) Sin
e �� is a generating operator of [ ; ℄
 , (3.9) is valid and therefore(3.15) [e�; ��℄ = e��� � [�; � ℄
 :Sin
e ��� is of degree 0, e��� 
ommutes with ix. Therefore[[e�; d� � ��℄; ix℄ = [ed��; ix℄� [e���; ix℄ + [[�; � ℄
 ; ix℄ = �eixd�� + [[�; � ℄
 ; ix℄ :Let us now prove that the derivation [[�; � ℄
 ; ix℄ of �(V�A�) 
oin
ides with thederivation iL
�x. In fa
t, they both vanish on 0-forms, and on a 1-form �,[�; ix�℄
 � ix[�; �℄
 = �A�(�) < �; x > � < [�; �℄
; x > ;while iL
�x(�) = < �;L
�x >= < �; i�d
x > + < �; d
 < �; x >>13



= d
x(�; �) + d
 < �; x > (�) = �A�(�) < �; x > � < [�; �℄
; x > :Thus [[e�; d� � ��℄; ix℄ = �eixd�� + iL
�x ;and (3.7), 
orresponding to (3.3), is proved.4) Let � and � be se
tions of A�. Then[[e�; d�℄; e�℄ = [ed��; e�℄ = 0 ;while, by (3.10), [[e�; ��℄; e�℄ = �e[�;�℄
 ;proving (3.8), 
orresponding to (3.4). �We now turn to the 
ase of a proto-bialgebroid, de�ned by ' 2 �(V3A) and 2 �(V3A�). The additional terms in the four expressions to be evaluated are1) [[ix; i'℄; iy℄ = 0, and [[ix; e ℄; iy℄ = [eix ; iy℄ = eix^y .2) [[ix; i'℄; e�℄ = 0, and [[ix; e ℄; e�℄ = [eix ; e�℄ = 0.3) [[e�; i'℄; ix℄ = [ii�'; ix℄ = 0, and [[e�; e ℄; ix℄ = 0.4) [[e�; i'℄; e�℄ = [ii�'; e�℄ = ii�^�', and [[e�; e ℄; e�℄ = 0.Therefore, we 
an generalize Theorem 3.1 as follows.Theorem 3.2 If �� is a generator of the Gerstenhaber bra
ket of �(V�A�), thend����+i'+e is a deriving operator for the Courant bra
ket of the double, A�A�,of the proto-bialgebroid (A;A�) de�ned by ' 2 �(V3A) and  2 �(V3A�).It is 
lear that the addition to a deriving operator of derivations ix0 and e�0 ofthe asso
iative, graded 
ommutative algebra �(V�A�) will furnish a new derivingoperator. The importan
e of the notion of a deriving operator 
omes from the fa
tthat, if we 
an modi�y d� and �� by derivations of �(V�A�) in su
h a way that thederiving operator has square 0, then the Ja
obi identity for the resulting non-skew-symmetri
 bra
ket follows from the general properties of derived bra
kets that wereproved in [28℄.Let (A; �) be a Lie algebroid, let (A;A�) be the triangular Lie bialgebroid de�nedby a bive
tor � 2 �(V2A) satisfying [�; �℄� = 0, and let d� = [�; : ℄� be thedi�erential on �(V�A) (see Se
tion 4.1.1 below). We assume that there exists anowhere vanishing se
tion, �, of the top exterior power of the dual. Let �� be thegenerator of the Gerstenhaber bra
ket of �(V�A) de�ned by �, whi
h is a generatorof square 0. We set x� = ��� :Then, x� is a se
tion of A, whi
h is 
alled the modular �eld of (A;A�) asso
iatedwith � [29℄. We shall now give a short proof of the existen
e of a deriving operatorof square 0 for the Courant bra
ket of the dual of (A;A�).Theorem 3.3 The operator d� � �� + ex� is a deriving operator of square 0 of theCourant bra
ket of the double of the Lie bialgebroid (A�; A).14



Proof By de�nition, the Lapla
ian of the strong di�erential Batalin-Vilkovisky al-gebra (�(V�A); �� ; d�) is [d�; �� ℄, and we know that it satis�es the relation[d�; �� ℄ = L�x� :(See [29℄, and [32℄ for the 
ase of a Poisson manifold.) Sin
e, by Theorem 3.2, theoperator d���� is a deriving operator, and sin
e this property is not modi�ed by theaddition of the derivation ex� , it is enough to prove that the operator d� � �� + ex�is of square 0. In fa
t, sin
e both d� and �� are of square 0,12[d� � �� ; d� � �� ℄ = �L�x� = �[x� ; � ℄� :Therefore12[d� � �� + ex� ; d� � �� + ex� ℄ = �[x� ; � ℄� + [ex� ; d�℄� [ex� ; �� ℄ :By (3.12), [ex� ; d�℄ = ed�x� , whi
h vanishes sin
e x� leaves � invariant, while by(3.15), [ex� ; �� ℄ = e��x� � [x� ; � ℄�. In addition, ��x� = 0, sin
e x� = ��� and ��is of square 0. Therefore the square of d� � �� + ex� vanishes. �In parti
ular, if (M;�) is a Poisson manifold, we obtain a deriving operator ofsquare 0 of the Courant algebroid, double of the Lie bialgebroid (T �M;TM), dualto the triangular Lie bialgebroid (TM; T �M).More generally, Alekseev and Xu [4℄ 
onsider deriving operators of the Courantbra
ket of a Courant algebroid whose square is a s
alar fun
tion, whi
h they 
all\generating operators" (but whi
h should not be 
onfused with the generating op-erators of Batalin-Vilkovisky algebras). They show that there always exists su
h agenerating operator for the double of a Lie bialgebroid, (A;A�), and that its squareis expressible in terms of the modular �elds of A and A� (see Theorem 5.1 andCorollary 5.9 of [4℄). It is easily seen that the 
ase of a triangular Lie bialgebroid isa parti
ular 
ase of their theorem and 
orollary, in whi
h the generating operatoris equal to the deriving operator of Theorem 3.3, and the square of the generat-ing operator a
tually vanishes. In fa
t, in the 
ase of a triangular Lie bialgebroid(A;A�), the Lapla
ian [d�; ��℄ of the strong di�erential Batalin-Vilkovisky algebra(�(V�A�); ��; d�) vanishes be
ause �� = [i�; d�℄, and therefore the modular �eld ofA vanishes. In addition, x� = 12X0, where X0 is the modular �eld of A� [15℄ and��x� = 0. Hen
e, in the expression for the square of the generating operator givenin [4℄, both terms vanish.4 ExamplesWe shall �rst analyze various 
onstru
tions of Lie bialgebroids, Lie quasi-bialgebroidsand quasi-Lie bialgebroids, then we shall 
onsider the Courant bra
kets in the theoryof Poisson stru
tures with ba
kground. 15



4.1 Twisting by a bive
tor4.1.1 Triangular Lie bialgebroidsLet (A; �) be a Lie algebroid, and let � be a se
tion of V2A. On the one hand,su
h se
tions generalize the r-matri
es and twists of Lie bialgebra theory, and onthe other hand, when A = TM , su
h se
tions are bive
tor �elds on the manifold M .By extension, a se
tion of V2A is 
alled an A-bive
tor, or simply a bive
tor.Let �℄ be the ve
tor bundle map from �(A�) to �A de�ned by �℄(�) = i��, for� 2 �(A�). Consider the bra
ket on A� depending on both � and � de�ned by(4.1) [�; �℄�;� = L��℄�� � L��℄�� � d�(�(�; �)) ;for � and � 2 �(A�). The following relation generalizes the equation 
 = �d�rwhi
h is valid in a 
oboundary Lie bialgebra.Theorem 4.1 Set(4.2) 
�;� = f�; �g = �f�; �g :Then(i) the asso
iated quasi-di�erential on �(V�A) is(4.3) d� = [�; � ℄� ;(ii) bra
ket [�; �℄�;�; de�ned by formula (4.1), is equal to the derived bra
ket,ff�; 
�;�g; �g ;(iii) if, in addition,(4.4) ' = �12[�; �℄� ;then ((A;A�); �; 
�;�; '; 0) is a Lie quasi-bialgebroid.Proof The proof of (i) is a straightforward appli
ation of the Ja
obi identity. Toprove (ii) it suÆ
es to prove that the quasi-di�erential d� is given by the usualCartan formula in terms of the an
hor �℄ and the Koszul bra
ket (4.1). This now
lassi
 result was �rst proved by Bhaskara and Viswanath in [9℄, in the 
ase of aPoisson bive
tor on a manifold, when A = TM and [�; �℄� = 0. We proved itindependently, and in the general 
ase, in [31℄. To prove (iii), use the relationsf�; �g = 0, and f�; 
�;�g = 0 whi
h follows from (4.2) and the Ja
obi identity.Moreover ff�; �g; f�; �gg= f�; [�; �℄�g, when
e 12f
�;�; 
�;�g+ f�; 'g = 0, and�2f
�;�; 'g = ff�; �g; [�; �℄�g = [�; [�; �℄�℄� = 0 :Thus the four 
onditions equivalent to (1.2) are satis�ed. �The square of d� does not vanish in general,(d�)2 + ['; � ℄� = 0 :16



A ne
essary and suÆ
ient 
ondition for ((A;A�); �; 
�;�) to be a Lie bialgebroidis the generalized Poisson 
ondition,(4.5) d�([�; �℄�) = 0 ;whi
h in
ludes, as a spe
ial 
ase, the generalized 
lassi
al Yang-Baxter equation, andwhi
h is equivalent to the 
onditions to be found in [31℄, page 74, and in Theorem2.1 in [34℄.A suÆ
ient 
ondition is that � satisfy the Poisson 
ondition,(4.6) [�; �℄� = 0 ;whi
h generalizes both the 
lassi
al Yang-Baxter equation and the de�nition ofPoisson bive
tors. This 
ondition is satis�ed if and only if the graph of � is aDira
 sub-bundle of the standard Courant algebroid, A � A�, the double of theLie bialgebroid with trivial 
obra
ket, ((A;A�); �; 0). (See [13℄ for the 
ase whereA = TM , and [33℄.) The Lie bialgebroid de�ned by (A; �), where � satis�es (4.6)is 
alled a triangular Lie bialgebroid [34℄.By Theorem 3.2, a deriving operator for the Courant bra
ket of the double ofthe Lie quasi-bialgebroid ((A;A�); �; 
�;�;�12 [�; �℄�; 0) isd� � �� + i' ;where �� is the graded 
ommutator [i�; d�℄, and ' = �12 [�; �℄�. In fa
t [32℄ [27℄, ��generates the bra
ket [ ; ℄�;� of A�. If � satis�es the Poisson 
ondition (4.6), thend� � �� is a deriving operator.Dually, ((A�; A); 
�;�; �; 0;  ), with  = �12 [�; �℄�, is a quasi-Lie bialgebroid,and ((A�; A); 
�;�; �) is a Lie bialgebroid if and only if � satis�es equation (4.5).4.1.2 Twisting of a proto-bialgebroidThe Lie quasi-bialgebroid (A;A�) and the dual quasi-Lie bialgebroid (A�; A) are theresult of the twisting by the bive
tor � of the Lie bialgebroid with trivial 
obra
ket,((A;A�); �; 0). The operation of twisting, in this general setting of the theory of Liealgebroids, was de�ned and studied by Roytenberg in [42℄. He showed that one 
analso twist a proto-bialgebroid, ((A;A�); �; 
; '; ), by a bive
tor �. The result is aproto-bialgebroid de�ned by (�0�; 
 0�; '0�;  0�), where�0� = � + �℄ ;(4.7) 
0� = 
 + 
�;� + (^2�℄) ;(4.8) '0� = '� d
� � 12[�; �℄�+ (^3�℄) ;(4.9)  0� =  :(4.10)Here �℄ is the A-valued 2-form on A su
h that(�℄ )(x; y)(�) =  (x; y; �℄�) ;for all � 2 �(A�), and (V2 �℄) is the A�-valued 2-form on A� su
h that,((^2�℄) )(�; �)(x) =  (�℄�; �℄�; x) ;17



for all x 2 �A, while (V3 �℄) is the se
tion ofV3A su
h that, for �; � and � 2 �(A�),((^3�℄) )(�; �; �) =  (�℄�; �℄�; �℄�) :A 
omputation shows that the tensors introdu
ed above satisfy the relations�℄ = f�;  g ;(^2�℄) = 12f�; f�;  gg ;(^3�℄) = 16f�; f�; f�; ggg :These relations are used to prove that ((A;A�); �0�; 
 0�; '0�;  ) is a proto-bialgebroid.This proto-bialgebroid is a Lie quasi-bialgebroid if and only if  = 0, that is, ifthe initial obje
t itself was a Lie quasi-bialgebroid.It is a quasi-Lie bialgebroid if and only if '0� = 0, that is,(4.11) '� d
� � 12[�; �℄�+ (^3�℄) = 0 :We now list the parti
ular 
ases of this 
onstru
tion that lead to the variousintegrability 
onditions to be found in the literature.(a) Twist of a Lie bialgebroid: (�; 
; 0; 0) 7! (�; 
 + 
�;�;�d
� � 12 [�; �℄�; 0).The result is a Lie quasi-bialgebroid, furthermore it is a Lie bialgebroid if and onlyif the bive
tor � satis�es the Maurer-Cartan equation,(4.12) d
� + 12[�; �℄� = 0 :This 
ondition is satis�ed if and only if the graph of � is a Dira
 sub-bundle of theCourant algebroid, A�A�, the double of the Lie bialgebroid ((A;A�); �; 
; 0; 0) [33℄.A ne
essary and suÆ
ient 
ondition for ((A;A�); �; 
+
�;�) to be a Lie bialgebroidis the weaker 
ondition, d�(d
� + 12 [�; �℄�) = 0.If the 
obra
ket 
 of (A;A�) is trivial, to (�; 0; 0; 0) there 
orresponds the quadru-ple (�; 
�;�;�12 [�; �℄�; 0): this is the 
ase studied in Se
tion 4.1.1. We know that theresult is a Lie quasi-bialgebroid, and it is a Lie bialgebroid if and only if � satis�esthe Poisson 
ondition (4.6), and that ((A;A�); �; 
�;�) is a Lie bialgebroid if andonly if the bive
tor � satis�es the generalized Poisson 
ondition (4.5).If the bra
ket � of (A;A�) is trivial, to (0; 
; 0; 0) there 
orresponds the quadruple(0; 
;�d
�; 0), whi
h gives rise to a Lie bialgebroid if and only if(4.13) d
� = 0;whi
h means that the bive
tor � on A is 
losed, when 
onsidered as a 2-form on A�.(b) Twist of a Lie quasi-bialgebroid: (�; 
; '; 0) 7! (�; 
 + 
�;�; '0�; 0), where'0� = '� d
� � 12 [�; �℄�. The result is a Lie quasi-bialgebroid, furthermore it is aLie bialgebroid if and only if the bive
tor � and the 3-ve
tor ' satisfy the quasi-Maurer-Cartan equation,(4.14) d
� + 12[�; �℄� = ' :18



A ne
essary and suÆ
ient 
ondition for the pair ((A;A�); �; 
 + 
�;�) to be a Liebialgebroid is the weaker 
ondition, d�'0� = 0.Assume that the 
obra
ket 
 of (A;A�) is trivial. Then, in order for (�; 0; '; 0)to de�ne a Lie quasi-bialgebroid, the 3-ve
tor ' must satisfy f�; 'g = 0. In this
ase, 
ondition (4.14) redu
es to(4.15) 12[�; �℄� = ' ;whi
h is a quasi-Poisson 
ondition, analogous to (1.1).(
) Twist of a quasi-Lie bialgebroid: (�; 
; 0;  ) 7! (�0�; 
 0�; '0�;  ), where �0� =�+�℄ , 
 0� = 
+
�;�+(V2 �℄) and '0� = �d
�� 12 [�; �℄�+(V3 �℄) . The resultis a proto-bialgebroid, furthermore it is a quasi-Lie bialgebroid if and only if thebive
tor � and the 3-form  satisfy the Maurer-Cartan equation with ba
kground  or  -Maurer-Cartan equation,(4.16) d
� + 12[�; �℄� = (^3�℄) :Assume that the 
obra
ket 
 of (A;A�) is trivial. Then, in order for (�; 0; 0;  )to de�ne a quasi-Lie bialgebroid, the 3-form  must be d�-
losed. In this 
ase,
ondition (4.16) redu
es to the Poisson 
ondition with ba
kground  or  -Poisson
ondition,(4.17) 12[�; �℄� = (^3�℄) ;to be found in [40℄, [23℄ and [46℄.We shall now 
onsider in greater detail two parti
ular 
ases of the above 
on-stru
tion of a Lie quasi-bialgebroid from a given Lie quasi-bialgebroid equipped witha bive
tor.4.1.3 Lie quasi-bialgebras and r-matri
esWhen the base manifold of a Lie algebroid is a point, it redu
es to a Lie algebra,g = (F; �). An element in V2 F 
an be viewed as aV2 F -valued 0-
o
hain on g. Thetriangular r-matri
es are those elements r in V2 F that satisfy [r; r℄� = 0. Let usexplain why the twisting de�ned by a bive
tor generalizes the operation of twistingde�ned on Lie bialgebras, and more generally on Lie quasi-bialgebras, by Drinfeld[14℄, and further studied in [26℄ and [7℄.In this 
ase, formula (4.1) redu
es to(4.18) [�; �℄�;r = �(d�r)(�; �) :Here d�r is the Chevalley-Eilenberg 
oboundary of r, a 1-
o
hain on g with valuesin V2 g. This formula is indeed that of the 
obra
ket on F , obtained by twistinga Lie bialgebra with vanishing 
obra
ket by an element r 2 V2 F (see [14℄ [26℄).Formulas (4.3) and (4.4) also redu
e to the known fomulas.Then ((F; F �); �;�d�r) is a Lie bialgebra if and only if d�[r; r℄� = 0, i.e., ifand only if r satis�es the generalized 
lassi
al Yang-Baxter equation. A suÆ
ient19




ondition is that r satisfy the 
lassi
al Yang-Baxter equation, [r; r℄� = 0, in whi
h
ase r is a triangular r-matrix.In this purely algebrai
 
ase, the Courant bra
ket of F �F � is skew-symmetri
,and therefore is a true Lie algebra bra
ket. It satis�es[x; �℄ = �[�; x℄ = �i�d
x+ ixd�� = �ad�
� x+ ad��x � ;and therefore 
oin
ides with the bra
ket of the Drinfeld double.A deriving operator for the Lie bra
ket of the Drinfeld double of a Lie proto-bialgebra ((F; F �); �; 
; '; ) is d���
+ i'+e , where d� (resp., �
) is the general-ization of the Chevalley-Eilenberg 
ohomology (resp., homology) operator of (F; �)(resp., (F �; 
)) to the 
ase where the bra
ket � (resp., 
) does not ne
essarily satisfythe Ja
obi identity.4.1.4 Tangent bundles and Poisson bive
torsWhen A = TM , the tangent bundle of a manifold M , a se
tion � of V2A isa bive
tor �eld on M . Let �Lie be the fun
tion de�ning the Lie bra
ket of ve
tor�elds, and more generally the S
houten bra
ket of multive
tor �elds. The asso
iateddi�erential is the de Rham di�erential of forms, whi
h we denote by d. In this
ase, we denote the bra
ket of forms, de�ned by formula (4.1) above, simply by[ ; ℄� and the fun
tion 
�;� simply by 
�. Thus ((TM; T �M); �Lie; 
�; '; 0), with' = �12 [�; �℄, is a Lie quasi-bialgebroid, and if [�; �℄ = 0, i.e., � is a Poissonbive
tor, then ((TM; T �M); �Lie; 
�) is a Lie bialgebroid. The bra
ket [ ; ℄� is thenthe Fu
hssteiner-Magri-Morosi bra
ket [16℄ [38℄, its extension to forms of all degreesbeing the Koszul bra
ket [32℄.A deriving operator for the Courant bra
ket of the double, TM � T �M , of theLie bialgebroid of a Poisson manifold is d � �� , where �� = [i�; d℄ is the Poissonhomology operator, de�ned by Koszul and studied by Huebs
hmann [19℄, and often
alled the Koszul-Brylinski operator. Indeed, it is well known that the operator ��generates the Koszul bra
ket of forms. This was in fa
t the original de�nition givenby Koszul in [32℄. This deriving operator is of square 0.We 
an also 
onsider the dual obje
t. Whenever � is a bive
tor �eld on M ,((T �M;TM); 
�; �Lie; 0;  ), with  = �12 [�; �℄, is a quasi-Lie bialgebroid, whi
h,when � is a Poisson bive
tor, is the Lie bialgebroid dual to (TM; T �M).If M is orientable with volume form �, a deriving operator for the Courantbra
ket of the double, T �M � TM , is d� � �� , where �� = � ��1 d � (here, � is theoperator on forms de�ned by �). In fa
t, the operator �� generates the S
houtenbra
ket of multive
tor �elds [32℄ [29℄. To obtain a deriving operator of square 0, wemust add to d� �� the derivation eX� , where X� is the modular ve
tor �eld of thePoisson manifold (M;�) asso
iated with the volume form �. In the non-orientable
ase, one should introdu
e densities as in [15℄. If � is invertible, with inverse 
, then� = [i
; d�℄ generates the S
houten bra
ket [27℄ and therefore d� � � is a derivingoperator of square 0 for the Courant bra
ket of T �M � TM .20



4.2 The Courant bra
ket of Poisson stru
tures with ba
k-ground4.2.1 The Courant bra
ket with ba
kgroundLet (A; �) be a Lie algebroid and let  be a 3-form on A, a se
tion of V3A�. Then,as we remarked in Se
tion 4.1.2, ((A;A�); �; 0; 0;  ), is a quasi-Lie bialgebroid if andonly if the 3-form  is d�-
losed, d� = 0 :This is the most general quasi-Lie bialgebroid with trivial 
obra
ket. By de�nition,the fun
tions � and  satisfy f�; �g = 0 and f�;  g = 0, so that � de�nes a Liealgebroid bra
ket, but we obtain a Lie bialgebroid if and only if  = 0.The bra
ket of the double A � A� (in the 
ase of TM � T �M) was introdu
edby �Severa and Weinstein [46℄ who 
alled it the modi�ed Courant bra
ket or theCourant bra
ket with ba
kground  . This bra
ket satis�es[x; y℄ = [x; y℄� + ix^y ; [x; �℄ = L�x� ; [�; x℄ = �ixd�� ; [�; �℄ = 0 ;that is [x+ �; y + �℄ = [x; y℄� + L�x� � iyd�� + ix^y :By Theorem 3.2, d� + e is a deriving operator of the Courant bra
ket withba
kground  .In the 
ase of a Lie algebra, (F; �), [x; �℄ = �[�; x℄ = ad��x �.Remark In [7℄, we 
onsidered the 
ase of the most general Lie quasi-bialgebrawith trivial 
obra
ket. Similarly, one 
an 
onsider the Lie quasi-bialgebroids of theform (�; 0; '; 0), with f�; �g = 0 and f�; 'g = 0, and the Courant bra
ket withba
kground ', a 3-ve
tor in this 
ase,[x; y℄ = [x; y℄� ; [x; �℄ = L�x� ; [�; x℄ = �ixd�� ; [�; �℄ = ix^y' ;so that [x+ �; y + �℄ = [x; y℄� + ix^y'+ L�x� � iyd�� :This 
ase is not dual to the pre
eding one.4.2.2 Twisting of the Courant bra
ket with ba
kgroundLet ((A;A�); �; 0; 0;  ) be a quasi-Lie bialgebroid with trivial 
obra
ket, where  is the ba
kground d�-
losed 3-form. For the 
orresponding Courant bra
ket withba
kground, we shall des
ribe the twisting de�ned as above by a se
tion � of V2A.The twisting of this quasi-Lie bialgebroid, a spe
ial 
ase of the that des
ribed inSe
tion 4.1.2, yields a proto-bialgebroid whose stru
tural elements depend on �;  and �, and whi
h we shall denote by (e�;e
; e'; e ),e� = �+ �℄ ;e
 = 
�;� + (^2�℄) ;e' = �12[�; �℄�+ (^3�℄) ;e =  : 21



We have seen in Se
tion 4.1.2(
) that the resulting twisted obje
t is a quasi-Liebialgebroid if and only if e' = 0, i.e., � satis�es the  -Poisson 
ondition (4.17),12[�; �℄� = (^3�℄) :It was shown in [46℄ that this 
ondition is satis�ed if and only if the graph of � isa Dira
 sub-bundle in the Courant algebroid with ba
kground, A� A�, the doubleof the quasi-Lie bialgebroid ((A;A�); �; 0; 0;  ). This 
onstitutes a generalization ofthe property valid in the usual 
ase, reviewed in Se
tion 4.1.1, where  = 0 and
ondition (4.17) redu
es to the usual Poisson 
ondition.The asso
iated derivations, on �(V�A�) and on �(V�A), arede� = d� + i�℄ ;de
 = [�; � ℄� + i(V2 �℄) :Be
ause 12fe�; e�g = �fe
; e g, the derivation de� does not have vanishing square ingeneral. On the other hand, whenever � satis�es the  -Poisson 
ondition, de
 is atrue di�erential and e
 de�nes a true Lie bra
ket on �(A�), and a true Gerstenhaberbra
ket on �(V�A�), the modi�ed Koszul bra
ket.We now 
onsider the Courant bra
ket of the asso
iated double, the �-twistedCourant bra
ket with ba
kground  . The mixed terms are [x; �℄ = �i�de
x + Le�x�and [�; x℄ = Le
�x� ixde��, therefore[x; y℄ = [x; y℄�+ (�℄ )(x; y) ;(4.19) [x; �℄ = �i�[�; x℄� � (�℄ )(x; �℄�) + ixd�� + ix^�℄� + d� < �; x > ;(4.20) [�; x℄ = i�[�; x℄�+ (�℄ )(x; �℄�) + [�;< �; x >℄� � ixd�� � ix^�℄� ;(4.21) [�; �℄ = [�; �℄�;� + i�℄�^�℄� :(4.22)In parti
ular, for  = 0, we obtain the Courant bra
ket of the double of thetwist by � of the Lie bialgebroid with trivial 
obra
ket, ((A;A�); �; 0), 
onsideredin Se
tion 4.1.1. Therefore, whenever � satis�es the generalized Poisson 
ondition(4.5), the above formulas yield the Courant bra
ket of the double of the Lie bialge-broid ((A;A�); �; 
�;�). In the purely algebrai
 
ase, we re
over the Drinfeld doubleof a 
oboundary Lie bialgebra, de�ned by r, an r-matrix solution of the generalizedYang-Baxter equation. Setting r(�) = i�r, and using the relation ixd�� = ad��x �, weobtain [x; y℄ = [x; y℄� ;[x; �℄ = �[�; x℄ = �r(ad��x �) + ad�x(r�) + ad��x � ;[�; �℄ = ad��r� � � ad��r� � :To 
on
lude, we prove a property of the Lie bra
ket de�ned by e
 on �(A�).Proposition 4.1 If, � satis�es the  -Poisson 
ondition, the mapping �℄ is a mor-phism of Lie algebroids fom A� with the Lie bra
ket (4.22) to A with the Lie bra
ket[ ; ℄�. 22



Proof It is 
lear that the an
hor of A� is �A Æ �℄. To prove that �℄ satis�es(4.23) �℄[�; �℄ = [�℄�; �℄�℄� ;for all � and � 2 �(A�), we re
all the relation,(4.24) �℄[�; �℄�;� � [�℄�; �℄�℄� = 12[�; �℄�(�; �) ;proved in [31℄. In view of (4.22), where the bra
ket of A� is expressed in terms of[ ; ℄�;� and  , and of the equality,((^3�℄) )(�; �) = ��℄(i�℄�^�℄� ) ;we see that, when � satis�es the  -Poisson 
ondition (4.17), equation (4.23) followsfrom equation (4.24). �Con
lusionIn the pre
eding dis
ussion, we have en
ountered various weakenings and general-izations of the usual notions of Lie bialgebra, Lie algebroid and Poisson stru
turethat have appeared in the literature, starting with Drinfeld's semi-
lassi
al limit ofquasi-Hopf algebras, and up to the re
ent developments due in great part to AlanWeinstein, his 
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