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2 MICHAEL LACEY AND XIAOCHUN LI1. IntrodutionWe are interested in singular integral operators on funtions of two variables, whihat by performing a one dimensional transform along a partiular line in the plane.The hoie of lines is to be variable. Thus, for a measurable map, v from R2 to theunit irle in the plane, that is a vetor �eld, and a Shwartz funtion f on R2, de�neHvf(x) := p.v.Z 1�1 f(x� yv(x)) dyy :This is a trunated Hilbert transform performed on the line segment fx+tv(x) : jtj <1g. We prove norm inequalities for Hv, requiring only that v has 1 + � derivatives.1.1. Theorem. Let v be C� map for � > 1. Then Hv maps L2(R2) into itself. Thenorm of the transform is at mostkHvk2!2 . (1 + log(1 + kvkC�))3=2:The essential step towards proving this Theorem is the next Proposition, in whihwe restrit the frequeny support of the funtions ated upon. Let �tf = �t �f where� is a Shwartz funtion with b� supported in 1=2 � j�j � 3=2, and �t(y) = t�2�(y=t).1.2. Proposition. If v is Lipshitz, then we have the estimate(1.3) kHv�tk2 . 1 + log(1 + tkvkLip):Construtions of the Besiovith set show that the Theorem is false under theassumption that v is H�older ontinuous for any index stritly less than 1. Theseonstrutions, known sine the 1920's, were the inspiration for A. Zygmund to askif integrals of, say, L2(R2) funtions ould be di�erentiated in a Lipshitz hoie ofdiretions. That is, for Lipshitz v, and f 2 L2, is it the ase thatlim�!0(2�)�1 Z ��� f(x� yv(x)) dy = f(x) a.e.(x)Our Theorem gives a partial answer to the singular integral version of this question,as posed by E. M. Stein [15℄. The methods of this paper are not by themselves strongenough to answer the di�erentiation question.Prior results have a subtle relationship with these results. The form of our Theorempertain to, in the standard parlane, singular Radon transforms. Suh results havebeen under investigation for roughly forty years, with a subtle exposition of thattheory being the work of Christ, Nagel, Stein and Wainger [5℄. The fous of thattheory onerns results with singular integrals over hypersurfaes of arbitrary o{dimension, whih vary in a smooth manner, and satisfy some minimal geometrionditions. In ontrast, a primary interest of the urrent result is that the theorem isphrased in omplete absene of geometri onditions. Our theorem is of o{dimensionone, and might rely in some ritial way upon suh a formulation. And �nally, wework in the arena of only 1 + � derivatives.



HILBERT TRANSFORM ON SMOOTH FAMILIES OF LINES 3The results of Christ, Nagel, Stein and Wainger [5℄ apply to ertain vetor �eldsv. Earlier, a positive result for analyti vetor �elds followed from Nagel, Stein andWainger [12℄. E.M. Stein [15℄ spei�ally raised the question of the boundedness ofHv for smooth vetor �elds v. And the results of D. Phong and Stein [13,14℄ also giveresults about Hv. J. Bourgain [1℄ onsidered real{analyti vetor �eld. N. H. Katz[8℄ has made an interesting ontribution to maximal funtion question. Also see thepartial results of Carbery, Seeger, Wainger and Wright [2℄.An example pointed out to us by M. Christ [4℄ shows that under the assumptionthat the vetor �eld is measurable, the sharp onlusion is that Hv�1 maps L2 intoL2;1. And a variant of the approah to Carleson's theorem by Laey and Thiele[10℄ will prove this norm inequality. This method will also show that under only themeasurability assumption, that Hv�1 maps Lp into itself for p > 2, as is shown bythe urrent authors [9℄. The results and tehniques of that paper are ritial to thisone. Note that the Proposition is an essential strengthening of what is known in themeasurable vetor �eld ase. We do not know if the norm estimates above ontinuesto hold for 1 < p < 2.It is known that the Theorem and Proposition above have as a orollary Carleson'stheorem [3℄ on the pointwise onvergene of Fourier series. Set �(�) = R 1�1 ei�y dy=y.For a C2 funtion N : R ! R, we should dedue that the operator with symbol�(� � N(x)) maps L2(R) into itself, with norm that is independent of N , the C2norm of N . Take the vetor �eld to be v(x1; x2) = (1;�N(x1)=n). Then, Hv isbounded on L2(R2), with norm bounded by an absolute onstant. The symbol of Hvis �((�1; �2) � v(x1)) = �(�1 � �2N(x1)=n). The trae of this symbol along the line�2 = N de�nes a symbol of a bounded operator on L2(R), whih is the fat we neededto prove.A novel point of this paper is a partiular maximal funtion result, detailed inSetion 5. This is the key point at whih the Lipshitz harater of the vetor �eldis exploited. We use this inequality to arry out an interpolation argument to proveProposition 1.2, and �nd that this argument must be arried out with some are.The reason for this is that the logarithmi bound in the Lipshitz norm we prove inthis Proposition fails utterly below L2.Our Theorem requires additional smoothness of the vetor �eld beyond Lipshitz.This additional smoothness an be used to show that the spatial sales of the operatorHv deouple in a strong way. Namely, that Hv�2j are essentially orthogonal operatorsfor j 2 N, namely that for j 6= j 0 we have �2j0Hv�2j ' 0. This is quanti�ed bytehnial lemmas of Setion 6, and is largely an L2 estimate.



4 MICHAEL LACEY AND XIAOCHUN LI2. Definitions and Priniple LemmaWe begin with some onventions. We do not keep trak of the value of generiabsolute onstants, instead using the notation A . B i� A � KB for some onstantK. And A ' B i� A . B and B . A. We use the notation 1A to denote theindiator funtion of the set A. And the Fourier transform on R2 is denoted bybf(�) = RR2 e�2�ix��f(x) dx, with a similar de�nition on the real line. We use thenotation �ZA f dx := jAj�1 ZA f dx:For an operator T , kTkp denotes the norm of T as an operator from Lp(R2) to itself.Throughout this paper, � will denote a �xed small positive onstant, whose exatvalue need not onern us. � of the order of 10�3 would suÆe. The followingde�nitions are as in the authors' previous paper [9℄.2.1. De�nition. A grid is a olletion of intervals G so that for all I; J 2 G, we haveI \ J 2 f;; I; Jg. The dyadi intervals are a grid.Let � be rotation on T by an angle of �=2. Coordinate axes for R2 are a pair ofunit orthogonal vetors (e; e?) with �e = e?.2.2. De�nition. We say that ! � R2 is a retangle if it is a produt of intervals withrespet to a hoie of axes (e; e?) of R2. We will say that ! is an annular retangleif ! = (�2l�1; 2l�1) � (a; 2a) for an integer l with 2l < �a, with respet to the axes(e; e?). The dimensions of ! are said to be 2l�a. Notie that the fae (�2l�1; 2l�1)�ais tangent to the irle j�j = a at the midpoint to the fae, (0; a). We say that thesale of ! is sl(!) := 2l and that the annular parameter of ! is ann(!) := a. Inreferring to the oordinate axes of an annular retangle, we shall always mean (e; e?)as above.Annular retangles will deompose our funtions in the frequeny variables. Butour methods must be sensitive to spatial onsiderations; it is this and the unertaintypriniple that motivate the next de�nition.2.3. De�nition. Two retangles R and R are said to be dual if they are retangleswith respet to the same basis (e; e?), thus R = r1 � r2 and R = r1 � r2 for intervalsri; ri, i = 1; 2. Moreover, 1 � jrij � jrij � 4 for i = 1; 2. The produt of two dualretangles we shall refer to as a phase retangle. The �rst oordinate of a phaseretangle we think of as a frequeny omponent and the seond as a spatial omponent.We onsider olletions of phase retangles AT whih satisfy these onditions. Fors; s0 2 AT we write s = !s �Rs, and require that!s is an annular retangle,(2.4)



HILBERT TRANSFORM ON SMOOTH FAMILIES OF LINES 5Rs and !s are dual,(2.5) fR : R� !s 2 AT g partitions R2, for all !s.(2.6) ann(!s) = 2j for some integer j,(2.7) ℄f!s : sl(s) = 2l; ann(s) = 2jg � 2j�l; j; l 2Z;(2.8) sl(s) � �ann(s):(2.9)We assume that there are auxiliary sets !s;!s1;!s2 � T assoiated to s|or morespei�ally !s|whih satisfy these properties.
 := f!s;!s1;!s2 : s 2 AT g is a grid in T,(2.10) !s1 \ !s2 = ;; j!sj � 32(j!s1j+ j!s2j+ dist(!s1;!s2))(2.11) !s1 lies lokwise from !s2 on T,(2.12) j!sj � K sl(!s)ann(!s) ;(2.13) f �j�j : � 2 !sg � �!s1:(2.14)In the top line, the intervals !s1 and !s2 are small subintervals of the unit irle,and we an de�ne their dilate by a fator of 2 in an obvious way. Reall that � is therotation that takes e into e?. Thus, e!s 2 !s1.Note that j!sj � j!s1j � sl(!s)=ann(!s). Thus, e!s is in !s1, and !s serves as \theangle of unertainty assoiated to Rs." Let us be more preise about the geometriinformation enoded into the angle of unertainty. Let Rs = rs � rs? be as above.Choose another set of oordinate axes (e0; e0?) with e0 2 !s and let R0 be the produtof the intervals rs and rs? in the new oordinate axes. Then K�10 R0 � Rs � K0R0for an absolute onstant K0 > 1.We say that annular tiles are olletionsAT satisfying the onditions (2.4)|(2.14)above. We extend the de�nition of e!, e!?, ann(!) and sl(!) to annular tiles in theobvious way, using the notation es, es?, ann(s) and sl(s).A phase retangle will have two distint funtions assoiated to it. In order tode�ne these funtions, setTy f(x) := f(x � y); y 2 R2 (Translation operator)Mod� f(x) := ei��xf(x); � 2 R2 (Modulation operator)DilpR1�R2 f(x1; x2) := 1(jR1jjR2j)1=pf� x1jR1j ; x2jR2j�;0 < p <1; (Dilation operator):In the last display, R1�R2 is a retangle, and the oordinates (x1; x2) are those of theretangle. Note that the de�nition depends only on the side lengths of the retangle,and not the loation. And that it preserves Lp norm.



6 MICHAEL LACEY AND XIAOCHUN LIFor a funtion ' and tile s 2 AT set(2.15) 's := Mod(!s)Dil2Rs T(Rs) 'We shall onsider ' to be a Shwartz funtion for whih b' � 0 is supported in asmall ball, of radius �, about the origin in R2, and is identially 1 on another smallerball around the origin. (Reall that � is a �xed small onstant.)We introdue the tool to deompose the singular integral kernels. Fix a Shwartzfuntion  on R with frequeny support in a small neighborhood of 1. More spei�-ally, we take b � 0, and supported on [1; 1 + �℄. Then, de�ne(2.16) �s(x) := ZR's(x� yv(x)) sl(s) (sl(s)y) dy:An essential feature of this de�nition is that the support of �s is ontained in the setfv(x) 2 !s2g, a fat whih is verify by restriting appropriately the Fourier support of' and  . That is we have �s(x) = 1!s2(v(x))�s(x). The set !s2 serves to loalize thevetor �eld, while !s1 serves to identify the loation of 's in the frequeny oordinate.The model operators we onsider at on a Shwartz funtions f , and sends it intoa sequenes of funtions. It is de�ned by(2.17) Cannf := Xs2AT (ann)sl(s)�1 hf; 'si�s:In this display, AT (ann) := fs 2 AT : ann(s) = anng. As muh of our analysisonentrated on a single annulus, this is a very ommonly used notation.2.18. Lemma. Assume that the vetor �eld is Lipshitz. The operator Cann extendsto a bounded map from L2 into itself. The norm Cann depend upon the vetor �eld vin the following way. kCannk2 . 1 + log(1 + ann�1kvkLip):We remind the readers that for 2 < p < 1 the only ondition needed for theboundedness of Cann is the measurability of the vetor �eld, a prinipal result ofLaey and Li [9℄. It is of ourse of great importane to add up the Cann over ann.The methods for doing this are purely L2 in nature, and lead to the estimate forC :=P1j=1 C2j .2.19. Lemma. Assume that the vetor �eld is C� for some � > 1. Then C maps L2into itself. And the norm depends upon v in the following way.kCk2 . (1 + log(1 + kvkC�))2:Moreover, the sum is unonditionally onvergent in s 2 AT .These are the prinipal steps towards the proof of Proposition 1.2 and Theorem 1.1.In the ourse of the proof, we shall not invoke the additional notation needed to



HILBERT TRANSFORM ON SMOOTH FAMILIES OF LINES 7aount for the unonditional onvergene, as it entirely notational. They an beadded in by the reader.The proof of Theorem 1.1 and Proposition 1.2 from these two lemmas is an argu-ment in whih one averages over translations, dilations and rotations of grids. Thespei�s of the approah are very lose to the orresponding argument in [9℄. Thedetails are omitted.3. Trunation and an Alternate Model SumThere are signi�ant obstales to proving the boundedness the model sum of Propo-sition 1.2 on an Lp spae, for 1 < p < 2. In this setion, we rely upon some naive L2estimates to de�ne a new model sum whih is bounded on Lp, for some 1 < p < 2.Our next Lemma is indiative of the estimates we need. For hoies of sl < �ann,set AT (ann; sl) := fs 2 AT (ann) : sl(s) = anng:3.1. Lemma. For measurable vetor �elds v and all hoies of ann and sl. Xs2AT (ann;sl)hf; 'si�s2 . kfk2Proof. The sale and annulus are �xed in this sum, making the Bessel inequalityXs2AT (ann;sl)jhf; 'sij2 . kfk22evident. For any two tiles s and s0 that ontribute to this sum, if !s 6= !s0 , then�s and �s0 are disjointly supported. And if !s = !s0 , then Rs and R0s are disjoint,but share the same dimensions and orientation in the plane. The rapid deay of thefuntions �s then gives us the estimate Xs2AT (ann;sl)hf; 'si�s2 ." Xs2AT (ann;sl)jhf; 'sij2#1=2. kfk2 �Consider the variant of the operator (2.17) given by(3.2) �f = Xs2AT (ann)sl(s)���1kvkLiphf; 'si�s:As ann is �xed, we shall begin to suppress it in our notations for operators. Thedi�erene between � and Cann is the absene of the initial . log(1+kvkLip) sales in



8 MICHAEL LACEY AND XIAOCHUN LIthe former. The L2 bound for these missing sales is learly provided by Lemma 3.1,and so it remains for us to establish(3.3) k�k2 . 1;the implied onstant being independent of ann, and the Lipshitz norm of v.It is an important fat, the main result of Laey and Li [9℄, that(3.4) k�kp . 1; 2 < p <1:This holds without the Lipshitz assumption.We are now at a point where we an be more diretly engaged with the onstrutionof our alternate model sum. We only onsider tiles with ��1kvkLip � sl(s) � �ann.Set(3.5) 2s := sl(s)kvkLipWrite 's = �s+�s where �s = (D0sRsT(Rs)�)'s, and � is a smooth Shwartz funtionsupported on jxj < 1=2, and equal to 1 on jxj < 1=4.Reall that the kernel funtion  is a Shwartz funtion on R with ompat fre-queny support. Write for hoies of tiles s,(3.6) sl(s) (sl(s)y) =  s�(y) +  s+(y)where  s�(y) is a Shwartz funtion on R, supported on jyj < 12s and equal tosl(s) (sl(s)y) for jyj < 14s. Then de�neas�(x) = 1!s2(v(x))Z �s(x� yv(x)) s�(y) dy:Thus, �s = as� + as+. Realling the notation �ann in Proposition 1.2, de�ne(3.7) A�f := Xs2AT (ann)sl(s)���1kvkLiph�annf; �sias�We will write � = ��ann = A+ +A� +B, where B is an operator de�ned in (3.10)* below. The main fat we need onerns A�.3.8. Lemma. There is a hoie of 1 < p0 < 2 so thatkA�kp . 1; p0 < p <1:The implied onstant is independent of the value of ann, and the Lipshitz norm ofv.The proof of this Lemma is given in the next setion, modulo three additionalLemmata stated there in. The following Lemma is important for our approah to theprevious Lemma. It is proved in Setion 4.



HILBERT TRANSFORM ON SMOOTH FAMILIES OF LINES 93.9. Lemma. For eah hoie of ��1kvkLip < sl < �ann, we have the estimateXs2AT (ann;sl)jh�annf; �sij2 . kfk22:De�ne(3.10) Bf := Xs2AT (ann)sl(s)���1kvkLiph�annf; �si�s3.11. Lemma. For a Lipshitz vetor �eld v, we havekBkp . 1; 2 � p <1:Proof. For hoies of integers ��1kvkLip � sl < �ann, onsider the vetor valuedoperator Tj;kf := n h�annf; �sipjRsj : s 2 AT (ann; sl)o:Reall that �s is supported o� of 12sRs. This is bounded linear operator from L1(R2)to `1(AT (ann; sl)). It has norm . (sl=kvkLip)�10. Routine onsiderations willverify that Tj;k maps L2(R2) into `2(AT (ann; sl)) with a similarly favorable estimateon it's norm. By interpolation, we ahieve the same estimate for Tj;k from Lp(R2)into `p(AT (ann; sl)), 2 � p <1.It is now very easy to onlude the Lemma by summing over sales in a brute foreway, and using the methods of Lemma 3.1. �We turn to A+, as de�ned in (3.7).3.12. Lemma. We have the estimatekA+kp . 1 2 � p <1:Proof. We rede�ne the vetor valued operator Tj;k to beTj;kf := nh�annf; �sipjRsj : s 2 AT (ann; sl)o:This is bounded Lp(R2) into `p(AT (ann; sl)), 2 � p <1 with norm . 1.But, for s 2 AT (ann; sl), we havejas+j . (sl=kvkLip)�10jRsj�1=2M1Rs:Here M denotes the strong maximal funtion in the plane in the oordinates deter-mined by Rs. This permits one to again adapt the estimate of Lemma 3.1 to onludethe Lemma. �



10 MICHAEL LACEY AND XIAOCHUN LINow we wish to onlude that k�k2 . 1. We have � = A� + A+ + B, so from(3.4), Lemma 3.11 and Lemma 3.12, we dedue that kA�kp . 1 for all 2 < p < 1.And A+ and B are also bounded on L2. It remains for us to verify that A� is ofrestrited weak type p0 for some hoie of 1 < p0 < 2. For then Lemma 3.8 will betrue. That is, we should verify that for all sets F;G � R2 of �nite measure(3.13) jhA�1F ;1Gij . jF j1=pjGj1�1=p; p0 < p < 2:Sine A� maps Lp into itself for 2 < p < 1, it suÆes to onsider the ase ofjF j < jGj. Sine we assume only that the vetor �eld is Lipshitz, we an use adilation to assume that 1 < jGj < 2. We prove this inequality in the next setion.4. Proofs of Lemmata4.1. Proof of Lemma 3.8. We �x the data 0 < � < 1, F � R2 of �nite measure,ann, and vetor �eld v with kvkLip(1) � �ann. and take p0 = 2� �2.We need a set of de�nitions that are inspired by the approah of Laey and Thiele[10℄, and are also used in Laey and Li [9℄. For subsets S � Av := fs 2 AT (ann) :��1kvkLip � sl(s) < �anng, setAS =Xs2S h�ann1F ; �sias�Set �(x) = (1 + jxj)�1=�. De�ne(4.1) �(p)Rs := �(p)s = T(Rs)DpRs�; 0 � p � 1:And set e�(p)s = 1sRs�s.As we are �xing attention to a single annulus, there is a natural partial order ontiles given by s < s0 i� !s � !s0 , Rs1 � Rs01, and Rs2 = Rs02. We are free to restritattention to a set of tiles for whih we have the onlusion(4.2) If !s �Rs \ !s0 �Rs0 6= ;, then s and s0 are omparable under `<'.A tree is a olletion of tiles T � Av, for whih there is a (non{unique) tile!T �RT 2 AT (ann) with s < !T �RT for all s 2 T. For j = 1; 2, all T a i{tree ifthe tiles f!si �Rs : s 2 Tg are pairwise disjoint.Our proof is organized around these parameters and funtions assoiated to tilesand sets of tiles. We note in partiular that the �rst de�nition is more restritivethan the orresponding de�nitions of Laey and Thiele [10℄, whih were adapted tothe urrent setting by Laey and Li [9℄.dense(s) := ZG\v�1(!s) e�(1)s dx;(4.3)



HILBERT TRANSFORM ON SMOOTH FAMILIES OF LINES 11dense(S) := sups2S dense(s);(4.4) sh(S) := [s2SRs (the shadow of S );(4.5) �(T)2 :=Xs2T jh�ann1F ; �sij2jRsj 1Rs; T is a 1{tree,(4.6) size(S) := supT�ST is a 1{tree�ZRT�(T) dx:(4.7)It is essential to note that if T is a 1{tree with �RRT�(T) � �, then(4.8) jF \min(T; ���)RTj & �1+�jRTj:Here, K is an absolute onstant, depending on any �xed hoie of � > 0, and by Twe mean the !T�RT, with s de�ned in (3.5). This follows, in part, from standard as-pets of Calder�on{Zygmund theory, and in part, to the fat that for all s 2 T, we haveas� supported on KTRT. We shall omment on it again in the proof of Lemma 4.14,whih is presented in Setion 4. One should also note that size(Av(ann)) . 1.Conerning the de�nition of density, we need to make this omment. Call a set oftiles S onvex if for all s; s00 2 S, one also has s0 2 S for any s < s0 < s00. We will ateah stage of the proof onsider only onvex sets of tiles.Given a onvex set of tiles, say that ount(S) < A i� S is a union of onvex treesT 2 T for whih XT2T jsh(T)j < A:We will also use the notation ount(S) . A, implying the existene of an absoluteonstant K for whih ount(S) � KA.The prinipal organizational Lemma is4.9. Lemma. Any �nite onvex olletion of tiles S � Av is a union of four onvexsubsets Slight; Ssmall; Sl̀arge; ` = 1; 2:They satisfy these properties. size(Ssmall) < 12 size(S);(4.10) dense(Slight) < 12 dense(S);(4.11)and both Sl̀arge are unions of onvex trees T 2 T `,for whih we have the estimatesount(S1large) . 8><>:size(S)�2��jF jsize(S)�1�� dense(S)�4��jF jdense(S)�1(4.12)



12 MICHAEL LACEY AND XIAOCHUN LIount(S2large) . (size(S)�2(log 1= size(S))3jF jsize(S)�=50 dense(S)�1(4.13)The estimates that involve size(S)�2jF j are those that follow from orthogonalityonsiderations. The estimates in dense(S)�1 are those that follow from density on-siderations. Of partiular note is the middle estimate of (4.12). For it we shall needthe ritial maximal funtion estimate for Lipshitz vetor �elds in Setion 5. Thereis a new estimate that needs to be invoked to obtain the seond estimate in (4.13).For individual trees, we need the estimate below, whih is essentially the treelemma of [9℄.4.14. Lemma. For onvex trees T we have the estimate(4.15) Xs2Tjh�ann1F ; �sihas�;1Gij . dense(T) size(T)jsh(T)j:Set Sum(S) :=Xs2Sjh�ann1F ; �sihas�;1GijWe want to bound Sum(Av) by . jF j1=p for p0 < p < 2. And we have the trivialbound(4.16) Sum(S) . dense(S) size(S) ount(S):By indutive appliation of this Lemma 4.9, Av is the union of SÆ̀;�, ` = 1; 2 forÆ; � 2 2 := f2n : n 2 Zg, satisfyingdense(SÆ̀;�) . Æ;(4.17) size(SÆ̀;�) . �;(4.18) ount(SÆ̀;�) . (min(��2��jF j; Æ�4��1��jF j; Æ�1) ` = 1;min(��2(log 1=�)3jF j; Æ�1��=50) ` = 2(4.19)Using (4.16), we see thatSum(SÆ̀;�) . (min(Æ��1��jF j; Æ�3���jF j; �) ` = 1;min(Æ��1(log 1=�)3jF j; �1+2�) ` = 2It is a routine exerise, left to the reader, to hek that for ` = 1; 2,XÆ;�22Sum(SÆ̀;�) . jF j1=p; p0 < p < 2:This ompletes the proof of Lemma 3.8, aside from the proof of Lemma 4.9.



HILBERT TRANSFORM ON SMOOTH FAMILIES OF LINES 13It is interesting to note these points. The estimate for S2Æ;� will prove an Lp estimatefor (2+�)=(1+2�) < p. If one varies �, the estimates for S1Æ;� will prove an Lp estimatefor 7=4 < p. One may be able to avoid the use of the olletions S2Æ;�, but at the ostof a more sophistiated proof than the one given for Lemma 4.9.4.2. Proof of Lemma 3.9. We only onsider tiles s 2 AT (ann; sl), and sets! 2 
 whih are assoiated to one of these tiles. For an element a = fasg 2`2(AT (ann; sl)), T!a = Xs :!s=! as�ann�sFor !s = !s0 , note that dist(!s;!s0) is measured in units of sl=ann.By a lemma of Cotlar and Stein, it suÆes to provide the estimatekT!T �!0k2 . ��3; � = 1 + annsl dist(!;!0):Now, the estimate kT!k2 . 1 is obvious. For the ase ! 6= !0, by Shur's test, itsuÆes to see that(4.20) sups0 :!s0=!0 Xs :!s=!jh�ann�s;�ann�s0ij . ��3:For tiles s0 and s as above, reall that h's; 's0i = 0, note thatjRs0 \RsjjRsj . slann dist(!;!0) = ��1;and in partiular, for a �xed s0, let Ss0 be those s for whih �sRs \ �s0Rs0 6= ;.Clearly, ard(Ss0) . jRsjjRs0 \ Rsj2s0 ' �32s0If for r > 1, rsRs \ rs0Rs0 = ; but 2rsRs \ 2rs0Rs0 6= ;, then it is routine toshow that jh�ann�s;�ann�s0ij . (rs)�10And so we may diretly sum over those s 62 Ss0,Xs62Ss0jh�ann�s;�ann�s0ij . ��3:For those s 2 Ss0, we estimate the inner produt in frequeny variables. Reallingthe de�nition of �s = (D0sRsT(Rs)�)'s, we haveb�s = (Mod�(Rs)D1�1s !sb�) � b's:Reall that � is a smooth ompatly supported Shwartz funtion. We estimate theinner produt jh\�ann�s; \�ann�s0ij



14 MICHAEL LACEY AND XIAOCHUN LIwithout appealing to anellation. Sine we hoose the funtion � to be supportedin an annulus 12ann < j�j < 3ann, We an restrit our attention to this same range of�. In the region j�j > ann=4, suppose, without loss of generality, that � is loser to!s than !s0. Then sine !s and !s0 are separated by an amount & ann dist(!;!0),jb�s(�)b�s0(�)j . �(2)!s (�)�(2)!s0 (�)�s annsl dist(!;!)��20. �(2)!s (�)�(2)!s0 (�)(s�)�10:Here, � is the non{negative bump funtion in (4.1). Hene, we have the estimateZj�j>ann=4jb�s(�)b�s0 (�)jd� . jRs0 \RsjjRsj (s�)�10:This is summed over the . 2s0�3 possible hoies of s 2 Ss0, giving the estimate(s�)�10 . ��3:This is the proof of (4.20). And this onludes the proof of Lemma 3.9.4.3. Proof of the Key Organizational Lemma 4.9. Reall that S is onvex, andwe are to deompose it into distint onvex subsets. For the remainder of the proofset dense(S) := Æ and size(S) := �. Take Slight to be all those s 2 S for whihthere is no tile s0 of density at least Æ=2 for whih s < s0. It is lear that this setso onstruted has density at most Æ=2, that this is a onvex set of tiles , and thatS1 := S� Slight is also onvex.Issues related to orthogonality are important of the proof, and single out for adi�erent treatment of orthogonality those tiles(4.21) S0 := fs 2 S : s < C0[jh1F ; �sij=pjRsj℄��=5gwhere C0 is a onstant to be hosen. Sine the terms s inreases as does sl(s)1=2,tiles s 2 S0 an have only . 1+k log 1=� possible values of sale, whih is the deisivefeature of this ase. Observe that by lemma 3.9,� �2log 1=��2 Xs2S0jRsj . Xs2S00jh�ann1F ; �sij2. k(log 1=�)jF j:(4.22)We shall appeal to this below. We do not do so immediately, sine S0 is ertainly nota onvex set in general.The following de�nition will be of use to us. Suppose that T is a tree. We say thatharge(T) � � i� there is a 1{tree T0 � T for whih(4.23) �Zsh(T)�T0 � �:The tree T0 is said to ahieve the harge of T.



HILBERT TRANSFORM ON SMOOTH FAMILIES OF LINES 15We omment on the method we use to obtain the middle estimate in (4.12). Thisdepends upon the novel maximal funtion estimate of the next setion. Suppose wehave a olletion of trees T 2 T , eah ontained in S1, with harge(T) omparableto �1+�=100. Moreover, eah tree has top element s(T) := RT�!T of density at leastÆ. Set s(T) = !T � ���=5RT:Observe that we an regard ann(s(T)) ' ���=5ann as a onstant independent of T.And, we have ��1kvkLip � sl(s(T)) � �ann(s(T)); T 2 T ;sine C0���=5 < s. We have in addition,dense(s(T)) � Æ�2�=5;jF \Rs(T)j � �1+�=4jRs(T)j:The point of these observations is that our Lemma 5.1 applies to the maximal funtionformed over the set of tiles fs(T) : T 2 T g. In partiular, applying that Lemma fora hoie of Lp for p very lose to one, we have the estimate��� [T2T ���=5RT��� . Æ�3��1+�jF j:In the argument below, we shall in addition have at our disposal the assumption thatthe tops of the trees s(T) for T 2 T are pairwise disjoint. The sets RT\v�1(!T)\Gare then of measure & ÆjRTj. Hene,(4.24) XT2T jsh(T)j . Æ�4��1+�=2jF j:Observe that by maximality, and the fat that the measure of G is at most one, wean also onlude(4.25) XT2T jsh(T)j . Æ�1:We an now begin the prinipal line of reasoning.The Constrution of S1large. We use an orthogonality, or TT � argument that has beenused many times before, espeially in [10℄ and [9℄. (There is a feature of the urrentappliation of the argument that is present due to the fat that we are working onthe plane, and it is detailed by Laey and Li [9℄.)We may assume that all intervals !s are ontained in the upper half of the unitirle in the plane. Fix S � Av, and � = size(S).We onstrut a olletion of trees T 1large for the olletion S1, and a orrespondingolletion of 1{trees T 1;1large, with partiular properties. The we begin the reursion by



16 MICHAEL LACEY AND XIAOCHUN LIinitializing T 1large := ;; T 1;1large := ;;S1large := ;; Sstok := S1:In the reursive step, if size(Sstok) < 12�1+�=100, then this reursion stops. Otherwise,we selet a tree T � Sstok suh that three onditions are met: (a) the top of the trees(T) (whih need not be in the tree) satis�es dense(s(T)) � Æ=4; (b) T has hargegreater than 12�1+�=100; () and that !T is both minimal and most ounterlokwiseamong all possible hoies of T. (Sine all !s are in the upper half of the unit irle,this ondition an be ful�lled.) We take T to be the maximal onvex tree in Sstokwhih satis�es these onditions. We take T1 � T to be a subtree that ahieves theharge of T.We then updateT 1large := fTg [ Tlarge; T 1;1large := fT1g [ T 1;1large; Sstok := Sstok �T:It is important to note that T is onvex, and maximal, hene Sstok and the olletionS1large so onstruted will also be onvex. The reursion then repeats. One thereursion stops, we update S1 := SstokIt is this olletion that we analyze in the next subsetion.The bottom estimate of (4.12) is then immediate from the onstrution and (4.25).We turn to the dedution of the �rst and middle estimates. The argument must besplit into two ases, depending upon the behavior with respet to the set S0 de�nedin (4.21). Let T 0 be those It fo T 2 T 1large so that T \S0 has harge at least 14�1+�=100.It follows from (4.22) thatXT2T 0jsh(T)j . ��2��=50(log 1=�)2jF j:This is the top estimate of (4.12). In addition, we must have��� [s2T\S0Rs��� � (log 1=�)�2jsh(T)j:And sine for eah s 2 S0 we neessarily have jF\���=5Rsj � �1+�=5jRsj, we onludethat jsh(T) \Rsj � �1+3�=5jsh(T)j:Therefore, we an follow the reasoning that leads to (4.24) to see the middle estimateof (4.12) in this ase.We hene forth assume that for eah T 2 T 1large that the tree T�S0 ahieves hargeat least 14�1+�=100. It is important to observe that by hoosing C0 in (4.21) suÆiently



HILBERT TRANSFORM ON SMOOTH FAMILIES OF LINES 17large, we an then onlude thatjRT1 j�1 Xs2T1jh1F ; 'sij2 > C2�2;for an absolute C2. The replaement of �s by 's in the inequality above is animportant point for us. That we an then drop the �ann is immediate.With this onstrution and observation, the argument for \size Lemma" in [9℄ thenshows that we have(4.26) XT2T 1largejsh(T)j . ��2��=50jF j:This is the �rst estimate of (4.12). By (4.24), we dedue the middle estimate of(4.12). And the last estimate of (4.12) follows from (4.25).The Constrution of S2large. We repeat the TT � onstrution of the previous step inthe proof, with two signi�ant hanges.We onstrut a olletion of trees T 1large from the olletion S1, and a orrespondingolletion of 1{trees T 2;1large, with partiular properties. The we begin the reursion byinitializing T 2large := ;; T 2;1large := ;;S2large := ;; Sstok := S1:In the reursive step, if size(Sstok) < �=2, then this reursion stops. Otherwise, weselet a tree T � Sstok suh that three onditions are met: (a) T has harge greaterthan Æ=2; (b) and that !T is both minimal and most ounterlokwise among allpossible hoies of T. We take T to be the maximal onvex tree in Sstok whihsatis�es these onditions. We take T1 � T to be a subtree that ahieves the hargeof T.We then updateT 2large := fTg [ Tlarge; T 2;1large := fT1g [ T 2;1large; Sstok := Sstok �T:The reursion then repeats.One the reursion stops, it is lear that the size of Sstok is at most �=2, and sowe take Ssmall := Sstok.The estimate XT2T 2largejsh(T)j . ��2(log 1=�)2jF jthen is a onsequene of the TT � method, as indiated in the previous step of theproof. That is the �rst estimate laimed in (4.13).



18 MICHAEL LACEY AND XIAOCHUN LIWhat is signi�ant is the seond estimate of (4.13). The point to observe is this.Consider any tile s of density at least Æ=2. Let Ts be those trees T 2 T 2large with tops(T) < s. By the onstrution of Slarge, we must have that the harge of ST2Ts Tis at most �1+�=100. But, in addition, the tops of the trees in T 2large are pairwiseinomparable with respet to <, hene we onlude that�24 XT2Tsjsh(T)j . �2+�=50jRsj:Moreover, by the onstrution of Slight, for eah T 2 T 2large we must be able to seletsome tile s with density at least Æ=2 and s(T) < s.Thus, we let S� be the maximal tiles of density at least Æ=2. Then, the inequality(4.25) applies to this olletion. And, therefore,XT2T 2largejsh(T)j � ��=50Xs2S�jRsj . Æ�=50Æ�1:This ompletes the proof of seond estimate of (4.13).5. The Maximal Funtion EstimateLet S � AT (ann) be a set of tiles satisfying jv�1(!s2) \Rsj � ÆjRsj for all s 2 S.De�ne a maximal funtion byMSg = sups2S 1Rs�ZRsjgj dx:Notie that we do not onern ourselves with the expansion fator s.5.1. Lemma. For any 1 < p < 1, the maximal funtion MS maps Lp into Lp;1with norm bounded by at most . Æ�3. As a onsequene, for all 1 < p < 1, andall � > 0, the maximal operator extends to a bounded operator on Lp into itself, withoperator norm is kMSkp . Æ�3=p+�. What is most important is that the norm boundis independent of ann.For the proof of our main theorem, it is important that this Lemma hold for some1 < p < 2, with any �nite power of Æ�1. A variant of the proof will apply to maximalfuntions onstruted from a riher lass of retangles, with the aveat that one onlygets the weak L2 estimate. We note it here beause of its potential use in subsequentinvestigations.5.2. Lemma. Assume that S is a set of tiles satisfying jv�1(!s2) \ Rsj � ÆjRsj forall s 2 S, and having varying values of ann, but always subjet to the onditions�ann � � sl(�)kvkLip. Then MS maps L2 into weak L2 with norm Æ�3.



HILBERT TRANSFORM ON SMOOTH FAMILIES OF LINES 19It suÆes to show that for any integer n > 1, and any �nite set of tiles S, withdense(s) & Æ for all s 2 S, there is a subset S0 � S for whihjsh(S)j . Æ�1jsh(S0)j;(5.3)  Xs2S0sl(s)�sl(s0)1Rs\Rs0n . Æ�2jRs0 j1=n s0 2 S0:(5.4)Indeed, this implies that Xs2S0 1Rsn+1n+1 . Æ�2nXs2S0 1Rs1. Æ�2(n+1)jsh(S)0j:The proof of the weak type bound for the maximal funtion is then straightforward.If f 2 Ln=(n�1) and � > 0, we an assume that for all s 2 S we have �RRs f > �. Thenjsh(S)j . Æ�1jsh(S)0j. Æ�1Xs2S0 1Rs1. Æ�1��1Xs2S0 Z f1Rs dy. Æ�1��1kfkn=(n�1)Xs2S0 1Rsn. Æ�3��1kfkn=(n�1)jsh(S)j1=n:And this proves the maximal funtion estimate from Ln=(n�1) to weak Ln=(n�1) withnorm bounded by. Æ�3. Interpolation gives the remaining onlusions of the Lemma.Let us speify the two ways in whih the Lipshitz nature of the vetor �eld entersinto our argument.5.5. Proposition. Suppose that there is a sl, tiles sj 2 S, j = 1; : : : ; n, for whihsl(sj) = sl for all j, andf!sj : 1 � j � ng are pairwise disjoint, n\j=1Rsj 6= ;:Then n � Æ�1.Proof. Suppose that the origin is ommon to all Rsj , and that n > Æ�1. Then thesets fr > 0 : 9x 2 v�1(!s) \ Rs; jxj = rg; 1 � j � nare ontained in [0; sl�1℄, pairwise disjoint, and have measure at least Æ sl�1. Asn > Æ�1, there are points x; x0 2 R2, and tiles sj 6= sj0 with jxj = jx0j, and v(x) 2 !s2,



20 MICHAEL LACEY AND XIAOCHUN LIand v(x0) 2 !s02. Reall the fat that es 2 !s1 for all tiles s. And the assumption(2.11). Hene for the point x, we have��v(x)� x=jxj�� � jv(x)� esj+ jes � x=jxjj � 18 j!sj:There is a similar inequality for x0. It follows thatjv(x)� v(x0)j � jx� x0jjxj � 18(j!sj+ j!s0j)� jx� x0j2jxjWe onlude that kvkLip � 12sl, a ontradition. �5.6. Proposition. Suppose that for s0; s; s0 2 S, we have Rs0 \Rs 6= ;, Rs0 \Rs0 6= ;and sl(s0) � sl(s) > sl(s0). Suppose that the oordinates for Rs0 are the anonialones, and the length of Rs0 is in the �rst oordinate. Suppose that there are points(x0; y0) 2 Rs0 ; (x0; y) 2 Rs \ v�1(!s); (x0; y0) 2 Rs0 \ v�1(!s0):Then dist(!s;!s0) � 4dist(!s;!s0)kvkLipsl(s)Proof. Observe that dist(!s;!s0) � 2jv(x0; y)� v(x0; y0)j� kvkLipjy � y0j� 4dist(!s;!s0)kvkLipsl(s) : �The priniple line of argument begins with the seletion of the subolletion S0.Let M100 be a maximal funtion omputed in 100 uniformly distributed diretions ofthe plane. Initialize Sstok := S; S0 = ;:While Sstok 6= ;, selet s0 2 Sstok with sl(s) minimal (so the length of Rs is maximal)and that ann(s) is minimal among those tiles with that value of sl(s). Update,S0 := S0 [ fs0g. Remove from Sstok any tile s suh thatRs � nM100 Xs02S0 1Rs � Æ�1o:Observe that jsh(S� S0)j . ���nM100 Xs02S0 1Rs � Æ�1o���



HILBERT TRANSFORM ON SMOOTH FAMILIES OF LINES 21. ÆXs2S0 1Rs1:We shall verify that S0 satis�es (5.4), so thatXs2S0 1Rs1 . jsh(S0)j1=2Xs2S0 1Rs2. Æ�2jsh(S0)j:Thus, (5.3) holds.Our prinipal ontention is (5.4). Fix an s0 2 S0, write Rs0 = Is0 � J andS0 = fs 2 S : sl(s) � sl(s0); Rs \Rs0 6= ;g:We may normalize s0 so that Rs0 is a retangle in the anonial oordinates of theplane. Then the intervals !s, for s 2 S0, an be identi�ed with intervals in say(1=4; 1=4) � R. In partiular, (!s) is identi�ed with a real number. Write Rs0 =I0�J , where jI0j ' sl(s0)�1, and J has an endpoint j. In what follows, the produtof intervals is to be understood in the anonial oordinates.For s 2 S0, reall that jRs \ v�1(!s)j � ÆjRsj. Denote by Is the minimal dyadisubinterval of Is0 that ontains the projetion of one of the long sides of Rs ontoIs0 � fjg. And denote the projetion of Rs \ v�1(!s) onto the interval Is0 � fjg byFs. Then jFsj & Æsl(s)�1 ' ÆjIsj.Selet a distinguished subset S1 of S0 by the following mehanism. InitializeSstok := S0; S1 := ;:While Sstok 6= ;, selet s 2 Sstok for whih sl(s) is minimal. UpdateS1 = fsg [ S1; Sstok = fs0 2 Sstok : Fs0 \ Fs = ;g:Then, for s1 2 S1, set S1(s1) to be the olletion of tiles s 2 S0 suh that Fs\Fs1 6= ;and Is � Is1. We have that S0 is a union of the tiles in S1(s1), for s1 2 S1. The nextproposition is a entral ontention in this proof.5.7. Proposition. For any subinterval I � Is0, we have the two estimatesXs12S1Is1�IjIs1 � J j . Æ�1jI � J j;(5.8) Xs2S1(s1)Rs\Rs0�I�JjRs \ Rs0j . Æ�1jI � J j; s1 2 S1:(5.9)



22 MICHAEL LACEY AND XIAOCHUN LIObserve that both bounds are of the type assoiated with Carleson measures. Inpartiular, a straightforward indutive argument, of the type assoiated to the John{Nirenberg inequality, then shows that Xs12S1Is1�Is0 1Is1�Jp . Æ�1jRs0 j1=p; 2 < p <1;Further observe that in the ase that the annular parameter of all tiles is �xed, wehave jRs \Rs0 j ' jIs � J j; and 1Rs\Rs0 . (M1Is�J)2 ;where M is the strong maximal funtion in the anonial oordinates. Thus, (5.4)follows from the Fe�erman{Stein maximal inequalities. It remains to prove Proposi-tion 5.7.Conerning the lemma 5.2, our argument will prove (5.9) in the ase when thevalue of ann(s) varies. But in this ase it does not seem that the John{Nirenbergarguments apply. That is why this Lemma only asserts the weak{type inequality forp = 2.Proof. The proof of (5.8) is nearly immediate. The projeted sets fFs1 : s1 2 S1gare disjoint, ontained in I, and have measure at least & ÆjIs1j. This gives (5.8), andwe turn to the more subtle inequality (5.9).Observe that by Proposition 5.6, we have(5.10) j(!s)� (!s1)j . j(!s1)j kvkLipsl(s1) ; s 2 S(s1):That is, the angle of s is very lose to the angle for s1.There is an essential geometri observation to make. Suppose that there is aninterval I � I0 and a hoie of s1 2 S1 suh that(5.11) Xs2S(s1)sl(s)�1�4jIjjRs \ I � J j � 103Æ�1jI � J j:Then, for either " = +1 or " = �1, there an be no s0 2 S(s1) with 2 sl(s0)�1 < jIjand Rs0 intersets 12(I + "jIj)� J .Indeed, let � be the projetion onto the �rst anonial oordinate. Choose " 2 f�1gso that Xs2S(s1)sl(s)�1�4jIj1fI+"jIj��(Rs)gjRs \ I � J j � 12103Æ�1jI � J jLet (e; e?) be the oordinate axes of Rs0 . Reall thatM100 is a maximal funtion over100 uniformly distributed diretions of the plane. Choose the diretions (e0; e0?) fromthese 100 that are losest to (e?;�e), in that order. Consider a retangle R0 in the



HILBERT TRANSFORM ON SMOOTH FAMILIES OF LINES 23
I � J R0 RsFigure 1: Proof of the essential geometri observation(e0; e0?) oordinates, of dimensions 10(!s1)jIj by jJ j, and whose enter is ontainedin I + "jIj � J . For any s 2 S(s1) with sl(s)�1 � jIj, and Rs \ I � J = ;, we havejRs \ (2I)� J j ' jJ jann(s)�1j(!s1)j ; jRs \R0j ' jJ jann(s)�1:The ratio between these two quantities is the ratio of jIj to the length of R0. This isthe main use of Proposition 5.6, and in partiular (5.10). HeneR0 � nM100Xs2S0 1Rs > Æ�1o:Letting R0 vary, we see that if there were an s0 2 S(s1) with 2 sl(s0) < jIj andRs0 \ 12(I + "jIj)� J = ;, we would have ontradited the onstrution of S0.Set S(s1; I) := fs 2 S1(s1) : Rs \Rs0 � I � Jg:We shall indutively deompose this olletion as follows. InitializeSstok := S(s1; I); I := ;:While there is a dyadi interval I � I0 for whih(5.12) Xs2Sstoksl(s)�1�4jIjjRs \ I � J j � 104Æ�1jI � J jlet I be a maximal dyadi interval satisfying this ondition. Note three points, (a)that the bound we are requiring is somewhat larger than what ours in (5.11), (b)with the power of Æ�1 that ours here, Proposition 5.5 implies that I � 6= I 0 � 6= I0 forsome I 0, and () therefore, we see that the sum above is at most � 2 � 104Æ�1jI � J j.De�ne S(I) := fs 2 Sstok : sl(s)�1 � jIj; Rs \ I � J 6= ;g, and updateSstok := Sstok � S(I); I := I [ fIg:If there is no suh interval I, set S2 := Sstok, and the proedure stops.



24 MICHAEL LACEY AND XIAOCHUN LINow, it is lear that Xs2S2jRs \Rs0 j � 104Æ�1jRs1j:By our geometri observation, observe that I annot ontain three dyadi intervalI; I 0; I 00, with I 00 � 6= I 0 � I + "jIj, where " 2 f�1g omes from our geometriobservation, and is permitted to depend upon I. This partiular ondition impliesthat XI2I jIj � 4jI0j:But then, it is follows that Xs2S(s1;I)jRs \Rs0 j . Æ�1jI � J j;with the implied onstant being absolute. Our proof is omplete. �6. Orthogonality Between AnnuliWe are to prove Lemma 2.19, and to do so rely upon a tehnial lemma on Fourierloalization in the next subsetion. We hange sales, to assume that the vetor �eldhas C� norm at most one. The inequality we are to establish is that Xann>ann0 Cannf2 . (1 + (log 1 + ann�10 ))3=2kfk2And, here the prinipal estimate is(6.1) Xann>1 Cannf2 . kfk2; kvkC� � 1:In the ase that ann0 < 1, we use Cauhy{Shwarz and Lemma 2.18 to see that Xann>ann0 Cannf2 .pjlog ann0jh Xann0�ann<1kCannk22i1=2. jlog ann0j2kfk2:To establish (6.1), let � be a Shwartz funtion on the plane with1f 12<j�j<4g � b�(�) < 1f14<j�j<8g;and set �ann = ann2�(ann y). Sine Cannf = Cann�ann � f , we need only show thatkCann;sl � �ann � Cann;slk2 . ann(1��)=2; 1 � sl < 18ann:Cann;slf := Xs2AT (ann)sl(s)=sl hf; 'si�s:



HILBERT TRANSFORM ON SMOOTH FAMILIES OF LINES 25Reall that � > 1, so the exponent on ann � 1 is negative and so this is just summedover the log(ann) values of sl to prove (6.1).The di�erene above is estimated by brute foreXsl(s)=sljhf; 'sijj�ann � 's � 'sjBy Lemma 6.2, the last di�erene is dominated by a sum of three terms, as spei�edin (6.3)|(6.5). Of these, the most deliate isann(1��)=2 Xsl(s)=sl jhf; 'sijjRsj1=2 [Max�(1)Rs 1!s(v(x))℄22where Max is the usual maximal funtion. The leading term is less than one, sine� > 1. One uses the Fe�erman{Stein maximal inequalities to estimate the norm as Xsl(s)=sl jhf; 'sijjRsj1=2 �(1)Rs 1!s(v(x))2 . h Xsl(s)=sljhf; 'sij2i1=2 . kfk2This follows from the fat that with the sale �xed, the intervals !s are either equalor disjoint, that the funtions f's : sl(s) = slg satisfy a Bessel inequality, and thedeay of �(1)Rs .There are still two more terms that arise from Lemma 6.2, but they are easier toontrol, and so the details are omitted.6.1. A tehnial estimate. The preise form of the inequalities quantifying theFourier loalization e�et follow.6.2. Lemma. Let 1 < � < 2, and v be a vetor �eld withkrvkC� � 1:Let s a tile with V � sl(s) = sl � ann(s) = ann < 1162k:Let fs = Mod�(!s) �sLet � be a smooth funtion with 1[0;2)(j�j) � b� � 1[0;3)(j�j) and set �2k(y) = 22k�(y2k).We have this inequality.jfs � �2k � fsj . jRsj�1=22(1��)k=2�Max�(1)s 1!s(v)�2(6.3) + 2�10k�(2)s(6.4) + jRsj�1=21Fs:(6.5)In this estimate, Max is the usual maximal funtion on the plane, and the sets Fs �R2 satisfy jFsj . 2�k=3jRsj;(6.6)



26 MICHAEL LACEY AND XIAOCHUN LI Xs : sl(s)=sl1Fs1 . 2k=200(6.7)We rely upon the obvious estimate(6.8) Zjyj>t2�k jy2kjj�2k(y)j dy . t�N ; t > 1:This estimate holds for all N > 1. Likewise,(6.9) Zjuj>tsljusljjsl (slu)j du . t�N ; t > 1:More signi�antly, we have(6.10) ZR2 ei�0�y'(2)Rs(x� y)�2k(y) dy = '(2)Rs(x) x 2 R2; j�0j < 2k+1:This is lear from the frequeny side. Likewise, for vetors v0 of unit length,ZReiu�0'(2)Rs(x� uv0)sl (slu) du 6= 0implies that(6.11) sl � �0 + �v0 � 98sl; for some � 2 supp(d'(2)Rs).At this point, it is useful to reall that we have spei�ed the frequeny support of' to be in a small ball of radius � in (2.15). This has the impliation that(6.12) j� � esj � �sl; j� � es?j � �ann � 2 supp(d'(2)Rs)We begin the main line of the argument. Let "1; "2 be stritly positive quantitiesto be hosen. We have the estimatejfs(x)j+ j�2k � fs(x)j . 2�10k�(2)Rs(x); x 62 2"1kRs:This follows from (6.8). And is as laimed in (6.4). We need only onsider x 2 2"1kRs.Let us de�ne the sets Fs, as in (6.5). Let(6.13) �s := (8 if annsl < 2(1�"1)k2"1k otherwiseLet �!s denote the interval on the unit irle with length �j!sj, and the same enteras !s. We take(6.14) Fs = 2"1kRs \ v�1(�s!s) \ n��� �v�es � es?��� > 2(1�"2)k slanno:It is lear that  Xs : sl(s)=sl1Fs1 . �s . 2"1k:



HILBERT TRANSFORM ON SMOOTH FAMILIES OF LINES 27And so to satisfy (6.7), we should take 2"1 < 1=600.Let us argue that the measure of Fs satis�es (6.6). Fix a line ` in the diretion ofes. We should see that(6.15) j` \ Fsj . 2�k(1=3+"1)sl�1:This set onsists of open intervals An = (an; bn), 1 � n � N . List them so thatbn < an+1 for all n. Partition the integers f1; 2; : : : ; Ng into sets of onseutiveintegers I� = [m�; n�℄\N so that for all points x between Am� and An� the derivative�v(x)=�es � es? has the same sign. Take the intervals I� to be maximal with respetto this property.For x 2 Fs, the partial derivative of v, in the diretion that is transverse to �s!s,is large with respet to the length of �s!s. HeneXm2I�jAmj . 2�(1�"1�"2)k for all �.Now onsider intervals An� and A1+n� = Am�+1. By de�nition, there must be ahange of sign of �v(x)=�es � es? between these two intervals. And so there is ahange in this derivative that is at least as big as 2(1�"2)k slann . The partial derivativeis also H�older ontinuous of index � � 1, whih implies thatdist(An� ; Am�+1) � �2(1�"2)k slann�1=(��1)As all of the intervals An lie in an interval of length 2"1ksl�1, it follows that therean be at most . 2"1ksl�1�2(1�"2)k slann��1=(��1)intervals I�. Consequently,j` \ Fsj . 2�(1�2"1�"2+(1�"2)=(��1))ksl�1�annsl �1=(��1). 2�(1�2"1�"2=(��1))ksl�1It is now lear that we an hoose "1 and "2 to ahieve the estimate (6.15). Thisompletes the proof of (6.6).For x 2 2"1kRs, we always have the boundjfs(x)� �2k � fs(x)j . 210"1NkjRsj�1=2�Max�(1)Rs 1!s�10:Here, N is only a funtion of � as appears in (4.1). Note that we are still free to take"1 quite small. We establish the bound(6.16) jfs(x)� �2k � fs(x)j . 2(1��)kjRsj�1=2; x 2 2"1kRs � Fs:These two bounds will prove (6.3).To ease the burden of notation, we sete(x) := e2�iu(!s)�v(x); �(x; x0) = '(2)Rs(x� uv(x0));



28 MICHAEL LACEY AND XIAOCHUN LIwith the dependeny on u being suppressed, and de�new(du; dy) := sl (slu)�2k(y) du dy:In this notation, the di�erene we are to estimate is a linear ombination ofDi�1(x) := ZR2 ZRe(x)�(x; x)� e(x� y)�(x� y; x)w(du; dy)Di�2(x) := ZR2 ZRe(x)f�(x� y; x� y)��(x� y; x)gw(du; dy)The analysis of both terms is quite similar. We begin with the �rst term.Note that by (6.10), we haveDi�1(x) = ZR2 ZRfe(x)� e(x� y)g�(x� y; x)w(du; dy):Observe that e(x)� e(x� y) = e(x)f1� e(x� y)e(x)g= e(x)f1� eiu(!s)rv(x)yg+O(jujannjyj�):(6.17)In the Big{Oh term, juj is typially of the order sl�1, and jyj is of the order 2�k.Hene, diret integration leads to the estimate of this term by. (sl 2�k)�1jRsj�1=2:This is better than in (6.16).The term left to estimate isDi� 01(x) := ZR2 ZRe(x)(1� eiu(!s)rv(x)y)�(x� y; x)w(du; dy):Observe that by (6.10), the integral in y is zero ifju(!s)rv(x)j = 32 jujann��� �v�es? (x)��� � 2k:Here we reall that (!s) = 32ann es?. If v(x) 2 �s!s, we onlude by the de�nitionof Fs that ��� �v�es? (x)��� � 2(1�"1)k slann :Hene, the integral in y in Di� 01(x) an be non{zero only forsljuj & 2"1k:By (6.9), it follows that in this ase we have the estimatejDi� 01(x)j . 2�2kjRsj�1=2This estimate holds for x 2 2"1kRs \ v�1(�s!s)� Fs.



HILBERT TRANSFORM ON SMOOTH FAMILIES OF LINES 29We must also onsider the ase of x 2 2"1kRs� v�1(�s!s). Observe that by (6.11),the integral in u in Di� 01(x) will be zero unless there is a � 2 supp(d'(2)Rs ) for whihsl . (!s)fv(x)�rv(x)yg+ �v(x) � 98sl:Realling (6.12), we see that for any suh �, we have j((!s)+�)v(x)j & �ssl. Hene,this ondition an only be satis�ed forjyj & �s slann & 2�(1�"1)kby the de�nition of �s in (6.13). But then, we an appeal to (6.8) to see that Di� 01satis�es (6.16).We onsider the termDi�2. The term v(x�y) ours twie in this term, in e(x�y),and in �(x� y; x� y). We will use the approximation (6.17), and similarly,�(x� y; x� y)� �(x� y; x) = '(2)Rs(x� y � uv(x� y))� '(2)Rs (x� y � uv(x))= '(2)Rs(x� y � uv(x)� urv(x)y)� '(2)Rs(x� y � uv(x))+O(ann jujjyj�):= ��(x; y) +O(ann jujjyj�)The Big{Oh term gives us, upon integration in u and y,. jRsj�1=2annsl 2��k . jRsj�1=22�(��1)k:This is as required by (6.16). We are left with estimatingDi� 02(x) := ZR2 ZReiu(!s)(v(x)�urv(x)y)��(x; y)w(du; dy):By (6.10), the integral in y is zero if both of these onditions hold.ju(!s)rv(x)j < 2k+1;ju(!s)rv(x)� � � u�rv(x)j < 2k+1; � 2 supp(d'(2)Rs)Just as in the analysis of Di�1, assuming that x 2 2�"1kRs \ v�1(�s!s), the �rstondition is satis�ed for juj . 2"1k. Realling the onditions (6.12), the seondondition is also satis�ed for the same set of values for u. The appliation of (6.9)then yields a very small bound after integrating juj & 2"1k.We an onsider x 2 2�"1kRs� v�1(�s!s)�Fs. By (6.11), the integral in u is zeroif both of these onditions hold.sl < (!s)(v(x)�rv(x)y) + �(v(x)�rv(x)y) � 98sl;sl < (!s)(v(x)�rv(x)y) + �v(x) � 98 sl:



30 MICHAEL LACEY AND XIAOCHUN LIThe seond ondition is as arose in the analysis of Di� 01, and it leads to the ondition2kjyj & 2�"1k:The �rst ondition leads to the same onlusion, so that by appeal to (6.8), we anonlude the proof that Di�2 obeys the estimate (6.16). This ompletes the proof ofour Lemma. Referenes[1℄ J. Bourgain, A remark on the maximal funtion assoiated to an analyti vetor �eld , Analysisat Urbana, Vol. I (Urbana, IL, 1986{1987), London Math. So. Leture Note Ser., vol. 137,Cambridge Univ. Press, Cambridge, 1989, pp. 111{132. MR 90h:42028[2℄ Anthony Carbery, Andreas Seeger, Stephen Wainger, and James Wright, Classes of singularintegral operators along variable lines, J. Geom. Anal. 9 (1999), 583{605. MR 2001g:42026[3℄ Lennart Carleson, On onvergene and growth of partial sumas of Fourier series, Ata Math.116 (1966), 135{157. MR 33 #7774[4℄ Mihael Christ, Personal Communiation.[5℄ Mihael Christ, Alexander Nagel, Elias M. Stein, and Stephen Wainger, Singular and maxi-mal Radon transforms: analysis and geometry , Ann. of Math. (2) 150 (1999), 489{577. MR2000j:42023[6℄ Charles Fe�erman, Pointwise onvergene of Fourier series, Ann. of Math. (2) 98 (1973), 551{571. MR 49 #5676[7℄ Nets Hawk Katz,Maximal operators over arbitrary sets of diretions, Duke Math. J. 97 (1999),67{79. MR 2000a:42036[8℄ , A partial result on Lipshitz di�erentiation.[9℄ Mihael Laey and Xiaohun Li, Maximal Theorems for Diretional Hilbert Transform on thePlane, Preprint.[10℄ Mihael Laey and Christoph Thiele, A proof of boundedness of the Carleson operator , Math.Res. Lett. 7 (2000), 361{370. MR 2001m:42009[11℄ Camil Musalu, Terene Tao, and Christoph Thiele, Multi-linear operators given by singularmultipliers, J. Amer. Math. So. 15 (2002), 469{496 (eletroni). MR 2003b:42017[12℄ Alexander Nagel, Elias M. Stein, and Stephen Wainger, Hilbert transforms and maximal fun-tions related to variable urves, Harmoni Analysis in Eulidean Spaes (Pro. Sympos. PureMath., Williams Coll., Williamstown, Mass., 1978), Part 1, Pro. Sympos. Pure Math., XXXV,Part, Amer. Math. So., Providene, R.I., 1979, pp. 95{98. MR 81a:42027[13℄ D. H. Phong and Elias M. Stein, Hilbert integrals, singular integrals, and Radon transforms.II , Invent. Math. 86 (1986), 75{113. MR 88i:42028b[14℄ , Hilbert integrals, singular integrals, and Radon transforms. I , Ata Math. 157 (1986),99{157. MR 88i:42028a[15℄ Elias M. Stein, Problems in harmoni analysis related to urvature and osillatory integrals,Proeedings of the International Congress of Mathematiians, Vol. 1, 2 (Berkeley, Calif., 1986),Amer. Math. So., Providene, RI, 1987, pp. 196{221. MR 89d:42028
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