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ON THE HILBERT TRANSFORMAND C1+� FAMILIES OF LINESMICHAEL LACEY AND XIAOCHUN LIAbstra
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le. We prove that if v has 1+� derivatives, thenHv extends toa bounded map from L2(R2) into itself. What is noteworthy is that this result holdsin the absen
e of some additional geometri
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2 MICHAEL LACEY AND XIAOCHUN LI1. Introdu
tionWe are interested in singular integral operators on fun
tions of two variables, whi
ha
t by performing a one dimensional transform along a parti
ular line in the plane.The 
hoi
e of lines is to be variable. Thus, for a measurable map, v from R2 to theunit 
ir
le in the plane, that is a ve
tor �eld, and a S
hwartz fun
tion f on R2, de�neHvf(x) := p.v.Z 1�1 f(x� yv(x)) dyy :This is a trun
ated Hilbert transform performed on the line segment fx+tv(x) : jtj <1g. We prove norm inequalities for Hv, requiring only that v has 1 + � derivatives.1.1. Theorem. Let v be C� map for � > 1. Then Hv maps L2(R2) into itself. Thenorm of the transform is at mostkHvk2!2 . (1 + log(1 + kvkC�))3=2:The essential step towards proving this Theorem is the next Proposition, in whi
hwe restri
t the frequen
y support of the fun
tions a
ted upon. Let �tf = �t �f where� is a S
hwartz fun
tion with b� supported in 1=2 � j�j � 3=2, and �t(y) = t�2�(y=t).1.2. Proposition. If v is Lips
hitz, then we have the estimate(1.3) kHv�tk2 . 1 + log(1 + tkvkLip):Constru
tions of the Besi
ovit
h set show that the Theorem is false under theassumption that v is H�older 
ontinuous for any index stri
tly less than 1. These
onstru
tions, known sin
e the 1920's, were the inspiration for A. Zygmund to askif integrals of, say, L2(R2) fun
tions 
ould be di�erentiated in a Lips
hitz 
hoi
e ofdire
tions. That is, for Lips
hitz v, and f 2 L2, is it the 
ase thatlim�!0(2�)�1 Z ��� f(x� yv(x)) dy = f(x) a.e.(x)Our Theorem gives a partial answer to the singular integral version of this question,as posed by E. M. Stein [15℄. The methods of this paper are not by themselves strongenough to answer the di�erentiation question.Prior results have a subtle relationship with these results. The form of our Theorempertain to, in the standard parlan
e, singular Radon transforms. Su
h results havebeen under investigation for roughly forty years, with a subtle exposition of thattheory being the work of Christ, Nagel, Stein and Wainger [5℄. The fo
us of thattheory 
on
erns results with singular integrals over hypersurfa
es of arbitrary 
o{dimension, whi
h vary in a smooth manner, and satisfy some minimal geometri

onditions. In 
ontrast, a primary interest of the 
urrent result is that the theorem isphrased in 
omplete absen
e of geometri
 
onditions. Our theorem is of 
o{dimensionone, and might rely in some 
riti
al way upon su
h a formulation. And �nally, wework in the arena of only 1 + � derivatives.



HILBERT TRANSFORM ON SMOOTH FAMILIES OF LINES 3The results of Christ, Nagel, Stein and Wainger [5℄ apply to 
ertain ve
tor �eldsv. Earlier, a positive result for analyti
 ve
tor �elds followed from Nagel, Stein andWainger [12℄. E.M. Stein [15℄ spe
i�
ally raised the question of the boundedness ofHv for smooth ve
tor �elds v. And the results of D. Phong and Stein [13,14℄ also giveresults about Hv. J. Bourgain [1℄ 
onsidered real{analyti
 ve
tor �eld. N. H. Katz[8℄ has made an interesting 
ontribution to maximal fun
tion question. Also see thepartial results of Carbery, Seeger, Wainger and Wright [2℄.An example pointed out to us by M. Christ [4℄ shows that under the assumptionthat the ve
tor �eld is measurable, the sharp 
on
lusion is that Hv�1 maps L2 intoL2;1. And a variant of the approa
h to Carleson's theorem by La
ey and Thiele[10℄ will prove this norm inequality. This method will also show that under only themeasurability assumption, that Hv�1 maps Lp into itself for p > 2, as is shown bythe 
urrent authors [9℄. The results and te
hniques of that paper are 
riti
al to thisone. Note that the Proposition is an essential strengthening of what is known in themeasurable ve
tor �eld 
ase. We do not know if the norm estimates above 
ontinuesto hold for 1 < p < 2.It is known that the Theorem and Proposition above have as a 
orollary Carleson'stheorem [3℄ on the pointwise 
onvergen
e of Fourier series. Set �(�) = R 1�1 ei�y dy=y.For a C2 fun
tion N : R ! R, we should dedu
e that the operator with symbol�(� � N(x)) maps L2(R) into itself, with norm that is independent of N , the C2norm of N . Take the ve
tor �eld to be v(x1; x2) = (1;�N(x1)=n). Then, Hv isbounded on L2(R2), with norm bounded by an absolute 
onstant. The symbol of Hvis �((�1; �2) � v(x1)) = �(�1 � �2N(x1)=n). The tra
e of this symbol along the line�2 = N de�nes a symbol of a bounded operator on L2(R), whi
h is the fa
t we neededto prove.A novel point of this paper is a parti
ular maximal fun
tion result, detailed inSe
tion 5. This is the key point at whi
h the Lips
hitz 
hara
ter of the ve
tor �eldis exploited. We use this inequality to 
arry out an interpolation argument to proveProposition 1.2, and �nd that this argument must be 
arried out with some 
are.The reason for this is that the logarithmi
 bound in the Lips
hitz norm we prove inthis Proposition fails utterly below L2.Our Theorem requires additional smoothness of the ve
tor �eld beyond Lips
hitz.This additional smoothness 
an be used to show that the spatial s
ales of the operatorHv de
ouple in a strong way. Namely, that Hv�2j are essentially orthogonal operatorsfor j 2 N, namely that for j 6= j 0 we have �2j0Hv�2j ' 0. This is quanti�ed byte
hni
al lemmas of Se
tion 6, and is largely an L2 estimate.



4 MICHAEL LACEY AND XIAOCHUN LI2. Definitions and Prin
iple LemmaWe begin with some 
onventions. We do not keep tra
k of the value of generi
absolute 
onstants, instead using the notation A . B i� A � KB for some 
onstantK. And A ' B i� A . B and B . A. We use the notation 1A to denote theindi
ator fun
tion of the set A. And the Fourier transform on R2 is denoted bybf(�) = RR2 e�2�ix��f(x) dx, with a similar de�nition on the real line. We use thenotation �ZA f dx := jAj�1 ZA f dx:For an operator T , kTkp denotes the norm of T as an operator from Lp(R2) to itself.Throughout this paper, � will denote a �xed small positive 
onstant, whose exa
tvalue need not 
on
ern us. � of the order of 10�3 would suÆ
e. The followingde�nitions are as in the authors' previous paper [9℄.2.1. De�nition. A grid is a 
olle
tion of intervals G so that for all I; J 2 G, we haveI \ J 2 f;; I; Jg. The dyadi
 intervals are a grid.Let � be rotation on T by an angle of �=2. Coordinate axes for R2 are a pair ofunit orthogonal ve
tors (e; e?) with �e = e?.2.2. De�nition. We say that ! � R2 is a re
tangle if it is a produ
t of intervals withrespe
t to a 
hoi
e of axes (e; e?) of R2. We will say that ! is an annular re
tangleif ! = (�2l�1; 2l�1) � (a; 2a) for an integer l with 2l < �a, with respe
t to the axes(e; e?). The dimensions of ! are said to be 2l�a. Noti
e that the fa
e (�2l�1; 2l�1)�ais tangent to the 
ir
le j�j = a at the midpoint to the fa
e, (0; a). We say that thes
ale of ! is s
l(!) := 2l and that the annular parameter of ! is ann(!) := a. Inreferring to the 
oordinate axes of an annular re
tangle, we shall always mean (e; e?)as above.Annular re
tangles will de
ompose our fun
tions in the frequen
y variables. Butour methods must be sensitive to spatial 
onsiderations; it is this and the un
ertaintyprin
iple that motivate the next de�nition.2.3. De�nition. Two re
tangles R and R are said to be dual if they are re
tangleswith respe
t to the same basis (e; e?), thus R = r1 � r2 and R = r1 � r2 for intervalsri; ri, i = 1; 2. Moreover, 1 � jrij � jrij � 4 for i = 1; 2. The produ
t of two dualre
tangles we shall refer to as a phase re
tangle. The �rst 
oordinate of a phasere
tangle we think of as a frequen
y 
omponent and the se
ond as a spatial 
omponent.We 
onsider 
olle
tions of phase re
tangles AT whi
h satisfy these 
onditions. Fors; s0 2 AT we write s = !s �Rs, and require that!s is an annular re
tangle,(2.4)



HILBERT TRANSFORM ON SMOOTH FAMILIES OF LINES 5Rs and !s are dual,(2.5) fR : R� !s 2 AT g partitions R2, for all !s.(2.6) ann(!s) = 2j for some integer j,(2.7) ℄f!s : s
l(s) = 2l; ann(s) = 2jg � 
2j�l; j; l 2Z;(2.8) s
l(s) � �ann(s):(2.9)We assume that there are auxiliary sets !s;!s1;!s2 � T asso
iated to s|or morespe
i�
ally !s|whi
h satisfy these properties.
 := f!s;!s1;!s2 : s 2 AT g is a grid in T,(2.10) !s1 \ !s2 = ;; j!sj � 32(j!s1j+ j!s2j+ dist(!s1;!s2))(2.11) !s1 lies 
lo
kwise from !s2 on T,(2.12) j!sj � K s
l(!s)ann(!s) ;(2.13) f �j�j : � 2 !sg � �!s1:(2.14)In the top line, the intervals !s1 and !s2 are small subintervals of the unit 
ir
le,and we 
an de�ne their dilate by a fa
tor of 2 in an obvious way. Re
all that � is therotation that takes e into e?. Thus, e!s 2 !s1.Note that j!sj � j!s1j � s
l(!s)=ann(!s). Thus, e!s is in !s1, and !s serves as \theangle of un
ertainty asso
iated to Rs." Let us be more pre
ise about the geometri
information en
oded into the angle of un
ertainty. Let Rs = rs � rs? be as above.Choose another set of 
oordinate axes (e0; e0?) with e0 2 !s and let R0 be the produ
tof the intervals rs and rs? in the new 
oordinate axes. Then K�10 R0 � Rs � K0R0for an absolute 
onstant K0 > 1.We say that annular tiles are 
olle
tionsAT satisfying the 
onditions (2.4)|(2.14)above. We extend the de�nition of e!, e!?, ann(!) and s
l(!) to annular tiles in theobvious way, using the notation es, es?, ann(s) and s
l(s).A phase re
tangle will have two distin
t fun
tions asso
iated to it. In order tode�ne these fun
tions, setTy f(x) := f(x � y); y 2 R2 (Translation operator)Mod� f(x) := ei��xf(x); � 2 R2 (Modulation operator)DilpR1�R2 f(x1; x2) := 1(jR1jjR2j)1=pf� x1jR1j ; x2jR2j�;0 < p <1; (Dilation operator):In the last display, R1�R2 is a re
tangle, and the 
oordinates (x1; x2) are those of there
tangle. Note that the de�nition depends only on the side lengths of the re
tangle,and not the lo
ation. And that it preserves Lp norm.



6 MICHAEL LACEY AND XIAOCHUN LIFor a fun
tion ' and tile s 2 AT set(2.15) 's := Mod
(!s)Dil2Rs T
(Rs) 'We shall 
onsider ' to be a S
hwartz fun
tion for whi
h b' � 0 is supported in asmall ball, of radius �, about the origin in R2, and is identi
ally 1 on another smallerball around the origin. (Re
all that � is a �xed small 
onstant.)We introdu
e the tool to de
ompose the singular integral kernels. Fix a S
hwartzfun
tion  on R with frequen
y support in a small neighborhood of 1. More spe
i�-
ally, we take b � 0, and supported on [1; 1 + �℄. Then, de�ne(2.16) �s(x) := ZR's(x� yv(x)) s
l(s) (s
l(s)y) dy:An essential feature of this de�nition is that the support of �s is 
ontained in the setfv(x) 2 !s2g, a fa
t whi
h is verify by restri
ting appropriately the Fourier support of' and  . That is we have �s(x) = 1!s2(v(x))�s(x). The set !s2 serves to lo
alize theve
tor �eld, while !s1 serves to identify the lo
ation of 's in the frequen
y 
oordinate.The model operators we 
onsider a
t on a S
hwartz fun
tions f , and sends it intoa sequen
es of fun
tions. It is de�ned by(2.17) Cannf := Xs2AT (ann)s
l(s)�1 hf; 'si�s:In this display, AT (ann) := fs 2 AT : ann(s) = anng. As mu
h of our analysis
on
entrated on a single annulus, this is a very 
ommonly used notation.2.18. Lemma. Assume that the ve
tor �eld is Lips
hitz. The operator Cann extendsto a bounded map from L2 into itself. The norm Cann depend upon the ve
tor �eld vin the following way. kCannk2 . 1 + log(1 + ann�1kvkLip):We remind the readers that for 2 < p < 1 the only 
ondition needed for theboundedness of Cann is the measurability of the ve
tor �eld, a prin
ipal result ofLa
ey and Li [9℄. It is of 
ourse of great importan
e to add up the Cann over ann.The methods for doing this are purely L2 in nature, and lead to the estimate forC :=P1j=1 C2j .2.19. Lemma. Assume that the ve
tor �eld is C� for some � > 1. Then C maps L2into itself. And the norm depends upon v in the following way.kCk2 . (1 + log(1 + kvkC�))2:Moreover, the sum is un
onditionally 
onvergent in s 2 AT .These are the prin
ipal steps towards the proof of Proposition 1.2 and Theorem 1.1.In the 
ourse of the proof, we shall not invoke the additional notation needed to
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ount for the un
onditional 
onvergen
e, as it entirely notational. They 
an beadded in by the reader.The proof of Theorem 1.1 and Proposition 1.2 from these two lemmas is an argu-ment in whi
h one averages over translations, dilations and rotations of grids. Thespe
i�
s of the approa
h are very 
lose to the 
orresponding argument in [9℄. Thedetails are omitted.3. Trun
ation and an Alternate Model SumThere are signi�
ant obsta
les to proving the boundedness the model sum of Propo-sition 1.2 on an Lp spa
e, for 1 < p < 2. In this se
tion, we rely upon some naive L2estimates to de�ne a new model sum whi
h is bounded on Lp, for some 1 < p < 2.Our next Lemma is indi
ative of the estimates we need. For 
hoi
es of s
l < �ann,set AT (ann; s
l) := fs 2 AT (ann) : s
l(s) = anng:3.1. Lemma. For measurable ve
tor �elds v and all 
hoi
es of ann and s
l.


 Xs2AT (ann;s
l)hf; 'si�s


2 . kfk2Proof. The s
ale and annulus are �xed in this sum, making the Bessel inequalityXs2AT (ann;s
l)jhf; 'sij2 . kfk22evident. For any two tiles s and s0 that 
ontribute to this sum, if !s 6= !s0 , then�s and �s0 are disjointly supported. And if !s = !s0 , then Rs and R0s are disjoint,but share the same dimensions and orientation in the plane. The rapid de
ay of thefun
tions �s then gives us the estimate


 Xs2AT (ann;s
l)hf; 'si�s


2 ." Xs2AT (ann;s
l)jhf; 'sij2#1=2. kfk2 �Consider the variant of the operator (2.17) given by(3.2) �f = Xs2AT (ann)s
l(s)���1kvkLiphf; 'si�s:As ann is �xed, we shall begin to suppress it in our notations for operators. Thedi�eren
e between � and Cann is the absen
e of the initial . log(1+kvkLip) s
ales in



8 MICHAEL LACEY AND XIAOCHUN LIthe former. The L2 bound for these missing s
ales is 
learly provided by Lemma 3.1,and so it remains for us to establish(3.3) k�k2 . 1;the implied 
onstant being independent of ann, and the Lips
hitz norm of v.It is an important fa
t, the main result of La
ey and Li [9℄, that(3.4) k�kp . 1; 2 < p <1:This holds without the Lips
hitz assumption.We are now at a point where we 
an be more dire
tly engaged with the 
onstru
tionof our alternate model sum. We only 
onsider tiles with ��1kvkLip � s
l(s) � �ann.Set(3.5) 
2s := s
l(s)kvkLipWrite 's = �s+�s where �s = (D0
sRsT
(Rs)�)'s, and � is a smooth S
hwartz fun
tionsupported on jxj < 1=2, and equal to 1 on jxj < 1=4.Re
all that the kernel fun
tion  is a S
hwartz fun
tion on R with 
ompa
t fre-quen
y support. Write for 
hoi
es of tiles s,(3.6) s
l(s) (s
l(s)y) =  s�(y) +  s+(y)where  s�(y) is a S
hwartz fun
tion on R, supported on jyj < 12
s and equal tos
l(s) (s
l(s)y) for jyj < 14
s. Then de�neas�(x) = 1!s2(v(x))Z �s(x� yv(x)) s�(y) dy:Thus, �s = as� + as+. Re
alling the notation �ann in Proposition 1.2, de�ne(3.7) A�f := Xs2AT (ann)s
l(s)���1kvkLiph�annf; �sias�We will write � = ��ann = A+ +A� +B, where B is an operator de�ned in (3.10)* below. The main fa
t we need 
on
erns A�.3.8. Lemma. There is a 
hoi
e of 1 < p0 < 2 so thatkA�kp . 1; p0 < p <1:The implied 
onstant is independent of the value of ann, and the Lips
hitz norm ofv.The proof of this Lemma is given in the next se
tion, modulo three additionalLemmata stated there in. The following Lemma is important for our approa
h to theprevious Lemma. It is proved in Se
tion 4.



HILBERT TRANSFORM ON SMOOTH FAMILIES OF LINES 93.9. Lemma. For ea
h 
hoi
e of ��1kvkLip < s
l < �ann, we have the estimateXs2AT (ann;s
l)jh�annf; �sij2 . kfk22:De�ne(3.10) Bf := Xs2AT (ann)s
l(s)���1kvkLiph�annf; �si�s3.11. Lemma. For a Lips
hitz ve
tor �eld v, we havekBkp . 1; 2 � p <1:Proof. For 
hoi
es of integers ��1kvkLip � s
l < �ann, 
onsider the ve
tor valuedoperator Tj;kf := n h�annf; �sipjRsj : s 2 AT (ann; s
l)o:Re
all that �s is supported o� of 12
sRs. This is bounded linear operator from L1(R2)to `1(AT (ann; s
l)). It has norm . (s
l=kvkLip)�10. Routine 
onsiderations willverify that Tj;k maps L2(R2) into `2(AT (ann; s
l)) with a similarly favorable estimateon it's norm. By interpolation, we a
hieve the same estimate for Tj;k from Lp(R2)into `p(AT (ann; s
l)), 2 � p <1.It is now very easy to 
on
lude the Lemma by summing over s
ales in a brute for
eway, and using the methods of Lemma 3.1. �We turn to A+, as de�ned in (3.7).3.12. Lemma. We have the estimatekA+kp . 1 2 � p <1:Proof. We rede�ne the ve
tor valued operator Tj;k to beTj;kf := nh�annf; �sipjRsj : s 2 AT (ann; s
l)o:This is bounded Lp(R2) into `p(AT (ann; s
l)), 2 � p <1 with norm . 1.But, for s 2 AT (ann; s
l), we havejas+j . (s
l=kvkLip)�10jRsj�1=2M1Rs:Here M denotes the strong maximal fun
tion in the plane in the 
oordinates deter-mined by Rs. This permits one to again adapt the estimate of Lemma 3.1 to 
on
ludethe Lemma. �



10 MICHAEL LACEY AND XIAOCHUN LINow we wish to 
on
lude that k�k2 . 1. We have � = A� + A+ + B, so from(3.4), Lemma 3.11 and Lemma 3.12, we dedu
e that kA�kp . 1 for all 2 < p < 1.And A+ and B are also bounded on L2. It remains for us to verify that A� is ofrestri
ted weak type p0 for some 
hoi
e of 1 < p0 < 2. For then Lemma 3.8 will betrue. That is, we should verify that for all sets F;G � R2 of �nite measure(3.13) jhA�1F ;1Gij . jF j1=pjGj1�1=p; p0 < p < 2:Sin
e A� maps Lp into itself for 2 < p < 1, it suÆ
es to 
onsider the 
ase ofjF j < jGj. Sin
e we assume only that the ve
tor �eld is Lips
hitz, we 
an use adilation to assume that 1 < jGj < 2. We prove this inequality in the next se
tion.4. Proofs of Lemmata4.1. Proof of Lemma 3.8. We �x the data 0 < � < 1, F � R2 of �nite measure,ann, and ve
tor �eld v with kvkLip(1) � �ann. and take p0 = 2� �2.We need a set of de�nitions that are inspired by the approa
h of La
ey and Thiele[10℄, and are also used in La
ey and Li [9℄. For subsets S � Av := fs 2 AT (ann) :��1kvkLip � s
l(s) < �anng, setAS =Xs2S h�ann1F ; �sias�Set �(x) = (1 + jxj)�1=�. De�ne(4.1) �(p)Rs := �(p)s = T
(Rs)DpRs�; 0 � p � 1:And set e�(p)s = 1
sRs�s.As we are �xing attention to a single annulus, there is a natural partial order ontiles given by s < s0 i� !s � !s0 , Rs1 � Rs01, and Rs2 = Rs02. We are free to restri
tattention to a set of tiles for whi
h we have the 
on
lusion(4.2) If !s �Rs \ !s0 �Rs0 6= ;, then s and s0 are 
omparable under `<'.A tree is a 
olle
tion of tiles T � Av, for whi
h there is a (non{unique) tile!T �RT 2 AT (ann) with s < !T �RT for all s 2 T. For j = 1; 2, 
all T a i{tree ifthe tiles f!si �Rs : s 2 Tg are pairwise disjoint.Our proof is organized around these parameters and fun
tions asso
iated to tilesand sets of tiles. We note in parti
ular that the �rst de�nition is more restri
tivethan the 
orresponding de�nitions of La
ey and Thiele [10℄, whi
h were adapted tothe 
urrent setting by La
ey and Li [9℄.dense(s) := ZG\v�1(!s) e�(1)s dx;(4.3)



HILBERT TRANSFORM ON SMOOTH FAMILIES OF LINES 11dense(S) := sups2S dense(s);(4.4) sh(S) := [s2SRs (the shadow of S );(4.5) �(T)2 :=Xs2T jh�ann1F ; �sij2jRsj 1Rs; T is a 1{tree,(4.6) size(S) := supT�ST is a 1{tree�ZRT�(T) dx:(4.7)It is essential to note that if T is a 1{tree with �RRT�(T) � �, then(4.8) jF \min(
T; ���)RTj & �1+�jRTj:Here, K is an absolute 
onstant, depending on any �xed 
hoi
e of � > 0, and by 
Twe mean the 
!T�RT, with 
s de�ned in (3.5). This follows, in part, from standard as-pe
ts of Calder�on{Zygmund theory, and in part, to the fa
t that for all s 2 T, we haveas� supported on K
TRT. We shall 
omment on it again in the proof of Lemma 4.14,whi
h is presented in Se
tion 4. One should also note that size(Av(ann)) . 1.Con
erning the de�nition of density, we need to make this 
omment. Call a set oftiles S 
onvex if for all s; s00 2 S, one also has s0 2 S for any s < s0 < s00. We will atea
h stage of the proof 
onsider only 
onvex sets of tiles.Given a 
onvex set of tiles, say that 
ount(S) < A i� S is a union of 
onvex treesT 2 T for whi
h XT2T jsh(T)j < A:We will also use the notation 
ount(S) . A, implying the existen
e of an absolute
onstant K for whi
h 
ount(S) � KA.The prin
ipal organizational Lemma is4.9. Lemma. Any �nite 
onvex 
olle
tion of tiles S � Av is a union of four 
onvexsubsets Slight; Ssmall; Sl̀arge; ` = 1; 2:They satisfy these properties. size(Ssmall) < 12 size(S);(4.10) dense(Slight) < 12 dense(S);(4.11)and both Sl̀arge are unions of 
onvex trees T 2 T `,for whi
h we have the estimates
ount(S1large) . 8><>:size(S)�2��jF jsize(S)�1�� dense(S)�4��jF jdense(S)�1(4.12)
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ount(S2large) . (size(S)�2(log 1= size(S))3jF jsize(S)�=50 dense(S)�1(4.13)The estimates that involve size(S)�2jF j are those that follow from orthogonality
onsiderations. The estimates in dense(S)�1 are those that follow from density 
on-siderations. Of parti
ular note is the middle estimate of (4.12). For it we shall needthe 
riti
al maximal fun
tion estimate for Lips
hitz ve
tor �elds in Se
tion 5. Thereis a new estimate that needs to be invoked to obtain the se
ond estimate in (4.13).For individual trees, we need the estimate below, whi
h is essentially the treelemma of [9℄.4.14. Lemma. For 
onvex trees T we have the estimate(4.15) Xs2Tjh�ann1F ; �sihas�;1Gij . dense(T) size(T)jsh(T)j:Set Sum(S) :=Xs2Sjh�ann1F ; �sihas�;1GijWe want to bound Sum(Av) by . jF j1=p for p0 < p < 2. And we have the trivialbound(4.16) Sum(S) . dense(S) size(S) 
ount(S):By indu
tive appli
ation of this Lemma 4.9, Av is the union of SÆ̀;�, ` = 1; 2 forÆ; � 2 2 := f2n : n 2 Zg, satisfyingdense(SÆ̀;�) . Æ;(4.17) size(SÆ̀;�) . �;(4.18) 
ount(SÆ̀;�) . (min(��2��jF j; Æ�4��1��jF j; Æ�1) ` = 1;min(��2(log 1=�)3jF j; Æ�1��=50) ` = 2(4.19)Using (4.16), we see thatSum(SÆ̀;�) . (min(Æ��1��jF j; Æ�3���jF j; �) ` = 1;min(Æ��1(log 1=�)3jF j; �1+2�) ` = 2It is a routine exer
ise, left to the reader, to 
he
k that for ` = 1; 2,XÆ;�22Sum(SÆ̀;�) . jF j1=p; p0 < p < 2:This 
ompletes the proof of Lemma 3.8, aside from the proof of Lemma 4.9.



HILBERT TRANSFORM ON SMOOTH FAMILIES OF LINES 13It is interesting to note these points. The estimate for S2Æ;� will prove an Lp estimatefor (2+�)=(1+2�) < p. If one varies �, the estimates for S1Æ;� will prove an Lp estimatefor 7=4 < p. One may be able to avoid the use of the 
olle
tions S2Æ;�, but at the 
ostof a more sophisti
ated proof than the one given for Lemma 4.9.4.2. Proof of Lemma 3.9. We only 
onsider tiles s 2 AT (ann; s
l), and sets! 2 
 whi
h are asso
iated to one of these tiles. For an element a = fasg 2`2(AT (ann; s
l)), T!a = Xs :!s=! as�ann�sFor !s = !s0 , note that dist(!s;!s0) is measured in units of s
l=ann.By a lemma of Cotlar and Stein, it suÆ
es to provide the estimatekT!T �!0k2 . ��3; � = 1 + anns
l dist(!;!0):Now, the estimate kT!k2 . 1 is obvious. For the 
ase ! 6= !0, by S
hur's test, itsuÆ
es to see that(4.20) sups0 :!s0=!0 Xs :!s=!jh�ann�s;�ann�s0ij . ��3:For tiles s0 and s as above, re
all that h's; 's0i = 0, note thatjRs0 \RsjjRsj . s
lann dist(!;!0) = ��1;and in parti
ular, for a �xed s0, let Ss0 be those s for whi
h �
sRs \ �
s0Rs0 6= ;.Clearly, 
ard(Ss0) . jRsjjRs0 \ Rsj
2s0 ' �3
2s0If for r > 1, r
sRs \ r
s0Rs0 = ; but 2r
sRs \ 2r
s0Rs0 6= ;, then it is routine toshow that jh�ann�s;�ann�s0ij . (r
s)�10And so we may dire
tly sum over those s 62 Ss0,Xs62Ss0jh�ann�s;�ann�s0ij . ��3:For those s 2 Ss0, we estimate the inner produ
t in frequen
y variables. Re
allingthe de�nition of �s = (D0
sRsT
(Rs)�)'s, we haveb�s = (Mod�
(Rs)D1
�1s !sb�) � b's:Re
all that � is a smooth 
ompa
tly supported S
hwartz fun
tion. We estimate theinner produ
t jh\�ann�s; \�ann�s0ij



14 MICHAEL LACEY AND XIAOCHUN LIwithout appealing to 
an
ellation. Sin
e we 
hoose the fun
tion � to be supportedin an annulus 12ann < j�j < 3ann, We 
an restri
t our attention to this same range of�. In the region j�j > ann=4, suppose, without loss of generality, that � is 
loser to!s than !s0. Then sin
e !s and !s0 are separated by an amount & ann dist(!;!0),jb�s(�)b�s0(�)j . �(2)!s (�)�(2)!s0 (�)�
s anns
l dist(!;!)��20. �(2)!s (�)�(2)!s0 (�)(
s�)�10:Here, � is the non{negative bump fun
tion in (4.1). Hen
e, we have the estimateZj�j>ann=4jb�s(�)b�s0 (�)jd� . jRs0 \RsjjRsj (
s�)�10:This is summed over the . 
2s0�3 possible 
hoi
es of s 2 Ss0, giving the estimate(
s�)�10 . ��3:This is the proof of (4.20). And this 
on
ludes the proof of Lemma 3.9.4.3. Proof of the Key Organizational Lemma 4.9. Re
all that S is 
onvex, andwe are to de
ompose it into distin
t 
onvex subsets. For the remainder of the proofset dense(S) := Æ and size(S) := �. Take Slight to be all those s 2 S for whi
hthere is no tile s0 of density at least Æ=2 for whi
h s < s0. It is 
lear that this setso 
onstru
ted has density at most Æ=2, that this is a 
onvex set of tiles , and thatS1 := S� Slight is also 
onvex.Issues related to orthogonality are important of the proof, and single out for adi�erent treatment of orthogonality those tiles(4.21) S0 := fs 2 S : 
s < C0[jh1F ; �sij=pjRsj℄��=5gwhere C0 is a 
onstant to be 
hosen. Sin
e the terms 
s in
reases as does s
l(s)1=2,tiles s 2 S0 
an have only . 1+k log 1=� possible values of s
ale, whi
h is the de
isivefeature of this 
ase. Observe that by lemma 3.9,� �2log 1=��2 Xs2S0jRsj . Xs2S00jh�ann1F ; �sij2. k(log 1=�)jF j:(4.22)We shall appeal to this below. We do not do so immediately, sin
e S0 is 
ertainly nota 
onvex set in general.The following de�nition will be of use to us. Suppose that T is a tree. We say that
harge(T) � � i� there is a 1{tree T0 � T for whi
h(4.23) �Zsh(T)�T0 � �:The tree T0 is said to a
hieve the 
harge of T.
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omment on the method we use to obtain the middle estimate in (4.12). Thisdepends upon the novel maximal fun
tion estimate of the next se
tion. Suppose wehave a 
olle
tion of trees T 2 T , ea
h 
ontained in S1, with 
harge(T) 
omparableto �1+�=100. Moreover, ea
h tree has top element s(T) := RT�!T of density at leastÆ. Set s(T) = !T � ���=5RT:Observe that we 
an regard ann(s(T)) ' ���=5ann as a 
onstant independent of T.And, we have ��1kvkLip � s
l(s(T)) � �ann(s(T)); T 2 T ;sin
e C0���=5 < 
s. We have in addition,dense(s(T)) � Æ�2�=5;jF \Rs(T)j � �1+�=4jRs(T)j:The point of these observations is that our Lemma 5.1 applies to the maximal fun
tionformed over the set of tiles fs(T) : T 2 T g. In parti
ular, applying that Lemma fora 
hoi
e of Lp for p very 
lose to one, we have the estimate��� [T2T ���=5RT��� . Æ�3��1+�jF j:In the argument below, we shall in addition have at our disposal the assumption thatthe tops of the trees s(T) for T 2 T are pairwise disjoint. The sets RT\v�1(!T)\Gare then of measure & ÆjRTj. Hen
e,(4.24) XT2T jsh(T)j . Æ�4��1+�=2jF j:Observe that by maximality, and the fa
t that the measure of G is at most one, we
an also 
on
lude(4.25) XT2T jsh(T)j . Æ�1:We 
an now begin the prin
ipal line of reasoning.The Constru
tion of S1large. We use an orthogonality, or TT � argument that has beenused many times before, espe
ially in [10℄ and [9℄. (There is a feature of the 
urrentappli
ation of the argument that is present due to the fa
t that we are working onthe plane, and it is detailed by La
ey and Li [9℄.)We may assume that all intervals !s are 
ontained in the upper half of the unit
ir
le in the plane. Fix S � Av, and � = size(S).We 
onstru
t a 
olle
tion of trees T 1large for the 
olle
tion S1, and a 
orresponding
olle
tion of 1{trees T 1;1large, with parti
ular properties. The we begin the re
ursion by



16 MICHAEL LACEY AND XIAOCHUN LIinitializing T 1large := ;; T 1;1large := ;;S1large := ;; Ssto
k := S1:In the re
ursive step, if size(Ssto
k) < 12�1+�=100, then this re
ursion stops. Otherwise,we sele
t a tree T � Ssto
k su
h that three 
onditions are met: (a) the top of the trees(T) (whi
h need not be in the tree) satis�es dense(s(T)) � Æ=4; (b) T has 
hargegreater than 12�1+�=100; (
) and that !T is both minimal and most 
ounter
lo
kwiseamong all possible 
hoi
es of T. (Sin
e all !s are in the upper half of the unit 
ir
le,this 
ondition 
an be ful�lled.) We take T to be the maximal 
onvex tree in Ssto
kwhi
h satis�es these 
onditions. We take T1 � T to be a subtree that a
hieves the
harge of T.We then updateT 1large := fTg [ Tlarge; T 1;1large := fT1g [ T 1;1large; Ssto
k := Ssto
k �T:It is important to note that T is 
onvex, and maximal, hen
e Ssto
k and the 
olle
tionS1large so 
onstru
ted will also be 
onvex. The re
ursion then repeats. On
e there
ursion stops, we update S1 := Ssto
kIt is this 
olle
tion that we analyze in the next subse
tion.The bottom estimate of (4.12) is then immediate from the 
onstru
tion and (4.25).We turn to the dedu
tion of the �rst and middle estimates. The argument must besplit into two 
ases, depending upon the behavior with respe
t to the set S0 de�nedin (4.21). Let T 0 be those It fo T 2 T 1large so that T \S0 has 
harge at least 14�1+�=100.It follows from (4.22) thatXT2T 0jsh(T)j . ��2��=50(log 1=�)2jF j:This is the top estimate of (4.12). In addition, we must have��� [s2T\S0Rs��� � (log 1=�)�2jsh(T)j:And sin
e for ea
h s 2 S0 we ne
essarily have jF\���=5Rsj � �1+�=5jRsj, we 
on
ludethat jsh(T) \Rsj � �1+3�=5jsh(T)j:Therefore, we 
an follow the reasoning that leads to (4.24) to see the middle estimateof (4.12) in this 
ase.We hen
e forth assume that for ea
h T 2 T 1large that the tree T�S0 a
hieves 
hargeat least 14�1+�=100. It is important to observe that by 
hoosing C0 in (4.21) suÆ
iently
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an then 
on
lude thatjRT1 j�1 Xs2T1jh1F ; 'sij2 > C2�2;for an absolute C2. The repla
ement of �s by 's in the inequality above is animportant point for us. That we 
an then drop the �ann is immediate.With this 
onstru
tion and observation, the argument for \size Lemma" in [9℄ thenshows that we have(4.26) XT2T 1largejsh(T)j . ��2��=50jF j:This is the �rst estimate of (4.12). By (4.24), we dedu
e the middle estimate of(4.12). And the last estimate of (4.12) follows from (4.25).The Constru
tion of S2large. We repeat the TT � 
onstru
tion of the previous step inthe proof, with two signi�
ant 
hanges.We 
onstru
t a 
olle
tion of trees T 1large from the 
olle
tion S1, and a 
orresponding
olle
tion of 1{trees T 2;1large, with parti
ular properties. The we begin the re
ursion byinitializing T 2large := ;; T 2;1large := ;;S2large := ;; Ssto
k := S1:In the re
ursive step, if size(Ssto
k) < �=2, then this re
ursion stops. Otherwise, wesele
t a tree T � Ssto
k su
h that three 
onditions are met: (a) T has 
harge greaterthan Æ=2; (b) and that !T is both minimal and most 
ounter
lo
kwise among allpossible 
hoi
es of T. We take T to be the maximal 
onvex tree in Ssto
k whi
hsatis�es these 
onditions. We take T1 � T to be a subtree that a
hieves the 
hargeof T.We then updateT 2large := fTg [ Tlarge; T 2;1large := fT1g [ T 2;1large; Ssto
k := Ssto
k �T:The re
ursion then repeats.On
e the re
ursion stops, it is 
lear that the size of Ssto
k is at most �=2, and sowe take Ssmall := Ssto
k.The estimate XT2T 2largejsh(T)j . ��2(log 1=�)2jF jthen is a 
onsequen
e of the TT � method, as indi
ated in the previous step of theproof. That is the �rst estimate 
laimed in (4.13).
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ant is the se
ond estimate of (4.13). The point to observe is this.Consider any tile s of density at least Æ=2. Let Ts be those trees T 2 T 2large with tops(T) < s. By the 
onstru
tion of Slarge, we must have that the 
harge of ST2Ts Tis at most �1+�=100. But, in addition, the tops of the trees in T 2large are pairwisein
omparable with respe
t to <, hen
e we 
on
lude that�24 XT2Tsjsh(T)j . �2+�=50jRsj:Moreover, by the 
onstru
tion of Slight, for ea
h T 2 T 2large we must be able to sele
tsome tile s with density at least Æ=2 and s(T) < s.Thus, we let S� be the maximal tiles of density at least Æ=2. Then, the inequality(4.25) applies to this 
olle
tion. And, therefore,XT2T 2largejsh(T)j � ��=50Xs2S�jRsj . Æ�=50Æ�1:This 
ompletes the proof of se
ond estimate of (4.13).5. The Maximal Fun
tion EstimateLet S � AT (ann) be a set of tiles satisfying jv�1(!s2) \Rsj � ÆjRsj for all s 2 S.De�ne a maximal fun
tion byMSg = sups2S 1Rs�ZRsjgj dx:Noti
e that we do not 
on
ern ourselves with the expansion fa
tor 
s.5.1. Lemma. For any 1 < p < 1, the maximal fun
tion MS maps Lp into Lp;1with norm bounded by at most . Æ�3. As a 
onsequen
e, for all 1 < p < 1, andall � > 0, the maximal operator extends to a bounded operator on Lp into itself, withoperator norm is kMSkp . Æ�3=p+�. What is most important is that the norm boundis independent of ann.For the proof of our main theorem, it is important that this Lemma hold for some1 < p < 2, with any �nite power of Æ�1. A variant of the proof will apply to maximalfun
tions 
onstru
ted from a ri
her 
lass of re
tangles, with the 
aveat that one onlygets the weak L2 estimate. We note it here be
ause of its potential use in subsequentinvestigations.5.2. Lemma. Assume that S is a set of tiles satisfying jv�1(!s2) \ Rsj � ÆjRsj forall s 2 S, and having varying values of ann, but always subje
t to the 
onditions�ann � � s
l(�)kvkLip. Then MS maps L2 into weak L2 with norm Æ�3.
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es to show that for any integer n > 1, and any �nite set of tiles S, withdense(s) & Æ for all s 2 S, there is a subset S0 � S for whi
hjsh(S)j . Æ�1jsh(S0)j;(5.3) 


 Xs2S0s
l(s)�s
l(s0)1Rs\Rs0


n . Æ�2jRs0 j1=n s0 2 S0:(5.4)Indeed, this implies that 


Xs2S0 1Rs


n+1n+1 . Æ�2n


Xs2S0 1Rs


1. Æ�2(n+1)jsh(S)0j:The proof of the weak type bound for the maximal fun
tion is then straightforward.If f 2 Ln=(n�1) and � > 0, we 
an assume that for all s 2 S we have �RRs f > �. Thenjsh(S)j . Æ�1jsh(S)0j. Æ�1


Xs2S0 1Rs


1. Æ�1��1Xs2S0 Z f1Rs dy. Æ�1��1kfkn=(n�1)


Xs2S0 1Rs


n. Æ�3��1kfkn=(n�1)jsh(S)j1=n:And this proves the maximal fun
tion estimate from Ln=(n�1) to weak Ln=(n�1) withnorm bounded by. Æ�3. Interpolation gives the remaining 
on
lusions of the Lemma.Let us spe
ify the two ways in whi
h the Lips
hitz nature of the ve
tor �eld entersinto our argument.5.5. Proposition. Suppose that there is a s
l, tiles sj 2 S, j = 1; : : : ; n, for whi
hs
l(sj) = s
l for all j, andf!sj : 1 � j � ng are pairwise disjoint, n\j=1Rsj 6= ;:Then n � Æ�1.Proof. Suppose that the origin is 
ommon to all Rsj , and that n > Æ�1. Then thesets fr > 0 : 9x 2 v�1(!s) \ Rs; jxj = rg; 1 � j � nare 
ontained in [0; s
l�1℄, pairwise disjoint, and have measure at least Æ s
l�1. Asn > Æ�1, there are points x; x0 2 R2, and tiles sj 6= sj0 with jxj = jx0j, and v(x) 2 !s2,



20 MICHAEL LACEY AND XIAOCHUN LIand v(x0) 2 !s02. Re
all the fa
t that es 2 !s1 for all tiles s. And the assumption(2.11). Hen
e for the point x, we have��v(x)� x=jxj�� � jv(x)� esj+ jes � x=jxjj � 18 j!sj:There is a similar inequality for x0. It follows thatjv(x)� v(x0)j � jx� x0jjxj � 18(j!sj+ j!s0j)� jx� x0j2jxjWe 
on
lude that kvkLip � 12s
l, a 
ontradi
tion. �5.6. Proposition. Suppose that for s0; s; s0 2 S, we have Rs0 \Rs 6= ;, Rs0 \Rs0 6= ;and s
l(s0) � s
l(s) > s
l(s0). Suppose that the 
oordinates for Rs0 are the 
anoni
alones, and the length of Rs0 is in the �rst 
oordinate. Suppose that there are points(x0; y0) 2 Rs0 ; (x0; y) 2 Rs \ v�1(!s); (x0; y0) 2 Rs0 \ v�1(!s0):Then dist(!s;!s0) � 4dist(!s;!s0)kvkLips
l(s)Proof. Observe that dist(!s;!s0) � 2jv(x0; y)� v(x0; y0)j� kvkLipjy � y0j� 4dist(!s;!s0)kvkLips
l(s) : �The prin
iple line of argument begins with the sele
tion of the sub
olle
tion S0.Let M100 be a maximal fun
tion 
omputed in 100 uniformly distributed dire
tions ofthe plane. Initialize Ssto
k := S; S0 = ;:While Ssto
k 6= ;, sele
t s0 2 Ssto
k with s
l(s) minimal (so the length of Rs is maximal)and that ann(s) is minimal among those tiles with that value of s
l(s). Update,S0 := S0 [ fs0g. Remove from Ssto
k any tile s su
h thatRs � nM100 Xs02S0 1Rs � Æ�1o:Observe that jsh(S� S0)j . ���nM100 Xs02S0 1Rs � Æ�1o���
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Xs2S0 1Rs


1:We shall verify that S0 satis�es (5.4), so that


Xs2S0 1Rs


1 . jsh(S0)j1=2


Xs2S0 1Rs


2. Æ�2jsh(S0)j:Thus, (5.3) holds.Our prin
ipal 
ontention is (5.4). Fix an s0 2 S0, write Rs0 = Is0 � J andS0 = fs 2 S : s
l(s) � s
l(s0); Rs \Rs0 6= ;g:We may normalize s0 so that Rs0 is a re
tangle in the 
anoni
al 
oordinates of theplane. Then the intervals !s, for s 2 S0, 
an be identi�ed with intervals in say(1=4; 1=4) � R. In parti
ular, 
(!s) is identi�ed with a real number. Write Rs0 =I0�J , where jI0j ' s
l(s0)�1, and J has an endpoint j. In what follows, the produ
tof intervals is to be understood in the 
anoni
al 
oordinates.For s 2 S0, re
all that jRs \ v�1(!s)j � ÆjRsj. Denote by Is the minimal dyadi
subinterval of Is0 that 
ontains the proje
tion of one of the long sides of Rs ontoIs0 � fjg. And denote the proje
tion of Rs \ v�1(!s) onto the interval Is0 � fjg byFs. Then jFsj & Æs
l(s)�1 ' ÆjIsj.Sele
t a distinguished subset S1 of S0 by the following me
hanism. InitializeSsto
k := S0; S1 := ;:While Ssto
k 6= ;, sele
t s 2 Ssto
k for whi
h s
l(s) is minimal. UpdateS1 = fsg [ S1; Ssto
k = fs0 2 Ssto
k : Fs0 \ Fs = ;g:Then, for s1 2 S1, set S1(s1) to be the 
olle
tion of tiles s 2 S0 su
h that Fs\Fs1 6= ;and Is � Is1. We have that S0 is a union of the tiles in S1(s1), for s1 2 S1. The nextproposition is a 
entral 
ontention in this proof.5.7. Proposition. For any subinterval I � Is0, we have the two estimatesXs12S1Is1�IjIs1 � J j . Æ�1jI � J j;(5.8) Xs2S1(s1)Rs\Rs0�I�JjRs \ Rs0j . Æ�1jI � J j; s1 2 S1:(5.9)



22 MICHAEL LACEY AND XIAOCHUN LIObserve that both bounds are of the type asso
iated with Carleson measures. Inparti
ular, a straightforward indu
tive argument, of the type asso
iated to the John{Nirenberg inequality, then shows that


 Xs12S1Is1�Is0 1Is1�J


p . Æ�1jRs0 j1=p; 2 < p <1;Further observe that in the 
ase that the annular parameter of all tiles is �xed, wehave jRs \Rs0 j ' jIs � J j; and 1Rs\Rs0 . (M1Is�J)2 ;where M is the strong maximal fun
tion in the 
anoni
al 
oordinates. Thus, (5.4)follows from the Fe�erman{Stein maximal inequalities. It remains to prove Proposi-tion 5.7.Con
erning the lemma 5.2, our argument will prove (5.9) in the 
ase when thevalue of ann(s) varies. But in this 
ase it does not seem that the John{Nirenbergarguments apply. That is why this Lemma only asserts the weak{type inequality forp = 2.Proof. The proof of (5.8) is nearly immediate. The proje
ted sets fFs1 : s1 2 S1gare disjoint, 
ontained in I, and have measure at least & ÆjIs1j. This gives (5.8), andwe turn to the more subtle inequality (5.9).Observe that by Proposition 5.6, we have(5.10) j
(!s)� 
(!s1)j . j
(!s1)j kvkLips
l(s1) ; s 2 S(s1):That is, the angle of s is very 
lose to the angle for s1.There is an essential geometri
 observation to make. Suppose that there is aninterval I � I0 and a 
hoi
e of s1 2 S1 su
h that(5.11) Xs2S(s1)s
l(s)�1�4jIjjRs \ I � J j � 103Æ�1jI � J j:Then, for either " = +1 or " = �1, there 
an be no s0 2 S(s1) with 2 s
l(s0)�1 < jIjand Rs0 interse
ts 12(I + "jIj)� J .Indeed, let � be the proje
tion onto the �rst 
anoni
al 
oordinate. Choose " 2 f�1gso that Xs2S(s1)s
l(s)�1�4jIj1fI+"jIj��(Rs)gjRs \ I � J j � 12103Æ�1jI � J jLet (e; e?) be the 
oordinate axes of Rs0 . Re
all thatM100 is a maximal fun
tion over100 uniformly distributed dire
tions of the plane. Choose the dire
tions (e0; e0?) fromthese 100 that are 
losest to (e?;�e), in that order. Consider a re
tangle R0 in the
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I � J R0 RsFigure 1: Proof of the essential geometri
 observation(e0; e0?) 
oordinates, of dimensions 10
(!s1)jIj by jJ j, and whose 
enter is 
ontainedin I + "jIj � J . For any s 2 S(s1) with s
l(s)�1 � jIj, and Rs \ I � J = ;, we havejRs \ (2I)� J j ' jJ jann(s)�1j
(!s1)j ; jRs \R0j ' jJ jann(s)�1:The ratio between these two quantities is the ratio of jIj to the length of R0. This isthe main use of Proposition 5.6, and in parti
ular (5.10). Hen
eR0 � nM100Xs2S0 1Rs > Æ�1o:Letting R0 vary, we see that if there were an s0 2 S(s1) with 2 s
l(s0) < jIj andRs0 \ 12(I + "jIj)� J = ;, we would have 
ontradi
ted the 
onstru
tion of S0.Set S(s1; I) := fs 2 S1(s1) : Rs \Rs0 � I � Jg:We shall indu
tively de
ompose this 
olle
tion as follows. InitializeSsto
k := S(s1; I); I := ;:While there is a dyadi
 interval I � I0 for whi
h(5.12) Xs2Ssto
ks
l(s)�1�4jIjjRs \ I � J j � 104Æ�1jI � J jlet I be a maximal dyadi
 interval satisfying this 
ondition. Note three points, (a)that the bound we are requiring is somewhat larger than what o

urs in (5.11), (b)with the power of Æ�1 that o

urs here, Proposition 5.5 implies that I � 6= I 0 � 6= I0 forsome I 0, and (
) therefore, we see that the sum above is at most � 2 � 104Æ�1jI � J j.De�ne S(I) := fs 2 Ssto
k : s
l(s)�1 � jIj; Rs \ I � J 6= ;g, and updateSsto
k := Ssto
k � S(I); I := I [ fIg:If there is no su
h interval I, set S2 := Ssto
k, and the pro
edure stops.
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lear that Xs2S2jRs \Rs0 j � 104Æ�1jRs1j:By our geometri
 observation, observe that I 
annot 
ontain three dyadi
 intervalI; I 0; I 00, with I 00 � 6= I 0 � I + "jIj, where " 2 f�1g 
omes from our geometri
observation, and is permitted to depend upon I. This parti
ular 
ondition impliesthat XI2I jIj � 4jI0j:But then, it is follows that Xs2S(s1;I)jRs \Rs0 j . Æ�1jI � J j;with the implied 
onstant being absolute. Our proof is 
omplete. �6. Orthogonality Between AnnuliWe are to prove Lemma 2.19, and to do so rely upon a te
hni
al lemma on Fourierlo
alization in the next subse
tion. We 
hange s
ales, to assume that the ve
tor �eldhas C� norm at most one. The inequality we are to establish is that


 Xann>ann0 Cannf


2 . (1 + (log 1 + ann�10 ))3=2kfk2And, here the prin
ipal estimate is(6.1) 


Xann>1 Cannf


2 . kfk2; kvkC� � 1:In the 
ase that ann0 < 1, we use Cau
hy{S
hwarz and Lemma 2.18 to see that


 Xann>ann0 Cannf


2 .pjlog ann0jh Xann0�ann<1kCannk22i1=2. jlog ann0j2kfk2:To establish (6.1), let � be a S
hwartz fun
tion on the plane with1f 12<j�j<4g � b�(�) < 1f14<j�j<8g;and set �ann = ann2�(ann y). Sin
e Cannf = Cann�ann � f , we need only show thatkCann;s
l � �ann � Cann;s
lk2 . ann(1��)=2; 1 � s
l < 18ann:Cann;s
lf := Xs2AT (ann)s
l(s)=s
l hf; 'si�s:
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all that � > 1, so the exponent on ann � 1 is negative and so this is just summedover the log(ann) values of s
l to prove (6.1).The di�eren
e above is estimated by brute for
eXs
l(s)=s
ljhf; 'sijj�ann � 's � 'sjBy Lemma 6.2, the last di�eren
e is dominated by a sum of three terms, as spe
i�edin (6.3)|(6.5). Of these, the most deli
ate isann(1��)=2


 Xs
l(s)=s
l jhf; 'sijjRsj1=2 [Max�(1)Rs 1!s(v(x))℄2


2where Max is the usual maximal fun
tion. The leading term is less than one, sin
e� > 1. One uses the Fe�erman{Stein maximal inequalities to estimate the norm as


 Xs
l(s)=s
l jhf; 'sijjRsj1=2 �(1)Rs 1!s(v(x))


2 . h Xs
l(s)=s
ljhf; 'sij2i1=2 . kfk2This follows from the fa
t that with the s
ale �xed, the intervals !s are either equalor disjoint, that the fun
tions f's : s
l(s) = s
lg satisfy a Bessel inequality, and thede
ay of �(1)Rs .There are still two more terms that arise from Lemma 6.2, but they are easier to
ontrol, and so the details are omitted.6.1. A te
hni
al estimate. The pre
ise form of the inequalities quantifying theFourier lo
alization e�e
t follow.6.2. Lemma. Let 1 < � < 2, and v be a ve
tor �eld withkrvkC� � 1:Let s a tile with V � s
l(s) = s
l � ann(s) = ann < 1162k:Let fs = Mod�
(!s) �sLet � be a smooth fun
tion with 1[0;2)(j�j) � b� � 1[0;3)(j�j) and set �2k(y) = 22k�(y2k).We have this inequality.jfs � �2k � fsj . jRsj�1=22(1��)k=2�Max�(1)s 1!s(v)�2(6.3) + 2�10k�(2)s(6.4) + jRsj�1=21Fs:(6.5)In this estimate, Max is the usual maximal fun
tion on the plane, and the sets Fs �R2 satisfy jFsj . 2�k=3jRsj;(6.6)
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 Xs : s
l(s)=s
l1Fs


1 . 2k=200(6.7)We rely upon the obvious estimate(6.8) Zjyj>t2�k jy2kjj�2k(y)j dy . t�N ; t > 1:This estimate holds for all N > 1. Likewise,(6.9) Zjuj>ts
ljus
ljjs
l (s
lu)j du . t�N ; t > 1:More signi�
antly, we have(6.10) ZR2 ei�0�y'(2)Rs(x� y)�2k(y) dy = '(2)Rs(x) x 2 R2; j�0j < 2k+1:This is 
lear from the frequen
y side. Likewise, for ve
tors v0 of unit length,ZReiu�0'(2)Rs(x� uv0)s
l (s
lu) du 6= 0implies that(6.11) s
l � �0 + �v0 � 98s
l; for some � 2 supp(d'(2)Rs).At this point, it is useful to re
all that we have spe
i�ed the frequen
y support of' to be in a small ball of radius � in (2.15). This has the impli
ation that(6.12) j� � esj � �s
l; j� � es?j � �ann � 2 supp(d'(2)Rs)We begin the main line of the argument. Let "1; "2 be stri
tly positive quantitiesto be 
hosen. We have the estimatejfs(x)j+ j�2k � fs(x)j . 2�10k�(2)Rs(x); x 62 2"1kRs:This follows from (6.8). And is as 
laimed in (6.4). We need only 
onsider x 2 2"1kRs.Let us de�ne the sets Fs, as in (6.5). Let(6.13) �s := (8 if anns
l < 2(1�"1)k2"1k otherwiseLet �!s denote the interval on the unit 
ir
le with length �j!sj, and the same 
enteras !s. We take(6.14) Fs = 2"1kRs \ v�1(�s!s) \ n��� �v�es � es?��� > 2(1�"2)k s
lanno:It is 
lear that 


 Xs : s
l(s)=s
l1Fs


1 . �s . 2"1k:



HILBERT TRANSFORM ON SMOOTH FAMILIES OF LINES 27And so to satisfy (6.7), we should take 2"1 < 1=600.Let us argue that the measure of Fs satis�es (6.6). Fix a line ` in the dire
tion ofes. We should see that(6.15) j` \ Fsj . 2�k(1=3+"1)s
l�1:This set 
onsists of open intervals An = (an; bn), 1 � n � N . List them so thatbn < an+1 for all n. Partition the integers f1; 2; : : : ; Ng into sets of 
onse
utiveintegers I� = [m�; n�℄\N so that for all points x between Am� and An� the derivative�v(x)=�es � es? has the same sign. Take the intervals I� to be maximal with respe
tto this property.For x 2 Fs, the partial derivative of v, in the dire
tion that is transverse to �s!s,is large with respe
t to the length of �s!s. Hen
eXm2I�jAmj . 2�(1�"1�"2)k for all �.Now 
onsider intervals An� and A1+n� = Am�+1. By de�nition, there must be a
hange of sign of �v(x)=�es � es? between these two intervals. And so there is a
hange in this derivative that is at least as big as 2(1�"2)k s
lann . The partial derivativeis also H�older 
ontinuous of index � � 1, whi
h implies thatdist(An� ; Am�+1) � �2(1�"2)k s
lann�1=(��1)As all of the intervals An lie in an interval of length 2"1ks
l�1, it follows that there
an be at most . 2"1ks
l�1�2(1�"2)k s
lann��1=(��1)intervals I�. Consequently,j` \ Fsj . 2�(1�2"1�"2+(1�"2)=(��1))ks
l�1�anns
l �1=(��1). 2�(1�2"1�"2=(��1))ks
l�1It is now 
lear that we 
an 
hoose "1 and "2 to a
hieve the estimate (6.15). This
ompletes the proof of (6.6).For x 2 2"1kRs, we always have the boundjfs(x)� �2k � fs(x)j . 210"1NkjRsj�1=2�Max�(1)Rs 1!s�10:Here, N is only a fun
tion of � as appears in (4.1). Note that we are still free to take"1 quite small. We establish the bound(6.16) jfs(x)� �2k � fs(x)j . 2(1��)kjRsj�1=2; x 2 2"1kRs � Fs:These two bounds will prove (6.3).To ease the burden of notation, we sete(x) := e2�iu
(!s)�v(x); �(x; x0) = '(2)Rs(x� uv(x0));
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y on u being suppressed, and de�new(du; dy) := s
l (s
lu)�2k(y) du dy:In this notation, the di�eren
e we are to estimate is a linear 
ombination ofDi�1(x) := ZR2 ZRe(x)�(x; x)� e(x� y)�(x� y; x)w(du; dy)Di�2(x) := ZR2 ZRe(x)f�(x� y; x� y)��(x� y; x)gw(du; dy)The analysis of both terms is quite similar. We begin with the �rst term.Note that by (6.10), we haveDi�1(x) = ZR2 ZRfe(x)� e(x� y)g�(x� y; x)w(du; dy):Observe that e(x)� e(x� y) = e(x)f1� e(x� y)e(x)g= e(x)f1� eiu
(!s)rv(x)yg+O(jujannjyj�):(6.17)In the Big{Oh term, juj is typi
ally of the order s
l�1, and jyj is of the order 2�k.Hen
e, dire
t integration leads to the estimate of this term by. (s
l 2�k)�1jRsj�1=2:This is better than in (6.16).The term left to estimate isDi� 01(x) := ZR2 ZRe(x)(1� eiu
(!s)rv(x)y)�(x� y; x)w(du; dy):Observe that by (6.10), the integral in y is zero ifju
(!s)rv(x)j = 32 jujann��� �v�es? (x)��� � 2k:Here we re
all that 
(!s) = 32ann es?. If v(x) 2 �s!s, we 
on
lude by the de�nitionof Fs that ��� �v�es? (x)��� � 2(1�"1)k s
lann :Hen
e, the integral in y in Di� 01(x) 
an be non{zero only fors
ljuj & 2"1k:By (6.9), it follows that in this 
ase we have the estimatejDi� 01(x)j . 2�2kjRsj�1=2This estimate holds for x 2 2"1kRs \ v�1(�s!s)� Fs.
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onsider the 
ase of x 2 2"1kRs� v�1(�s!s). Observe that by (6.11),the integral in u in Di� 01(x) will be zero unless there is a � 2 supp(d'(2)Rs ) for whi
hs
l . 
(!s)fv(x)�rv(x)yg+ �v(x) � 98s
l:Re
alling (6.12), we see that for any su
h �, we have j(
(!s)+�)v(x)j & �ss
l. Hen
e,this 
ondition 
an only be satis�ed forjyj & �s s
lann & 2�(1�"1)kby the de�nition of �s in (6.13). But then, we 
an appeal to (6.8) to see that Di� 01satis�es (6.16).We 
onsider the termDi�2. The term v(x�y) o

urs twi
e in this term, in e(x�y),and in �(x� y; x� y). We will use the approximation (6.17), and similarly,�(x� y; x� y)� �(x� y; x) = '(2)Rs(x� y � uv(x� y))� '(2)Rs (x� y � uv(x))= '(2)Rs(x� y � uv(x)� urv(x)y)� '(2)Rs(x� y � uv(x))+O(ann jujjyj�):= ��(x; y) +O(ann jujjyj�)The Big{Oh term gives us, upon integration in u and y,. jRsj�1=2anns
l 2��k . jRsj�1=22�(��1)k:This is as required by (6.16). We are left with estimatingDi� 02(x) := ZR2 ZReiu
(!s)(v(x)�urv(x)y)��(x; y)w(du; dy):By (6.10), the integral in y is zero if both of these 
onditions hold.ju
(!s)rv(x)j < 2k+1;ju
(!s)rv(x)� � � u�rv(x)j < 2k+1; � 2 supp(d'(2)Rs)Just as in the analysis of Di�1, assuming that x 2 2�"1kRs \ v�1(�s!s), the �rst
ondition is satis�ed for juj . 2"1k. Re
alling the 
onditions (6.12), the se
ond
ondition is also satis�ed for the same set of values for u. The appli
ation of (6.9)then yields a very small bound after integrating juj & 2"1k.We 
an 
onsider x 2 2�"1kRs� v�1(�s!s)�Fs. By (6.11), the integral in u is zeroif both of these 
onditions hold.s
l < 
(!s)(v(x)�rv(x)y) + �(v(x)�rv(x)y) � 98s
l;s
l < 
(!s)(v(x)�rv(x)y) + �v(x) � 98 s
l:



30 MICHAEL LACEY AND XIAOCHUN LIThe se
ond 
ondition is as arose in the analysis of Di� 01, and it leads to the 
ondition2kjyj & 2�"1k:The �rst 
ondition leads to the same 
on
lusion, so that by appeal to (6.8), we 
an
on
lude the proof that Di�2 obeys the estimate (6.16). This 
ompletes the proof ofour Lemma. Referen
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