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ON THE HILBERT TRANSFORM
AND (C'** FAMILIES OF LINES

MICHAEL LACEY AND XIAOCHUN LI

ABsTRACT. We study the operator

H, f(x) = p.V./_lf(x — yo(z)) %

defined for smooth functions on the plane and measurable vector fields v from the
plane into the unit circle. We prove that if v has 14¢ derivatives, then H, extends to
a bounded map from L?(R?) into itself. What is noteworthy is that this result holds
in the absence of some additional geometric condition imposed upon v, and that
the smoothness condition is nearly optimal. Whereas H, is a Radon transform, for
which there is an extensive theory, see e.g. [5], our methods of proof are necessarily
those associated to Carleson’s theorem on Fourier series [3], and the proof given
by Lacey and Thiele [10]. A previous paper of the authors [9], has shown how to
adapt these 1deas to H,; herein these ideas are combined with a crucial maximal
function estimate that is particular to the smooth vector field in question.
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1. INTRODUCTION

We are interested in singular integral operators on functions of two variables, which
act by performing a one dimensional transform along a particular line in the plane.
The choice of lines is to be variable. Thus, for a measurable map, v from R? to the
unit circle in the plane, that is a vector field, and a Schwartz function f on R?, define

Hofte)i=pov. [ (= yota)

This is a truncated Hilbert transform performed on the line segment {z+tv(x) : |{| <
1}. We prove norm inequalities for H,, requiring only that v has 1 4 ¢ derivatives.

1.1. Theorem. Let v be C* map for a > 1. Then H, maps L*(R?) into itself. The
norm of the transform is at most

1|22 S (1 +log(L + [[oflca))*2.

The essential step towards proving this Theorem is the next Proposition, in which
we restrict the frequency support of the functions acted upon. Let XA;f = A;* f where
A is a Schwartz function with A supported in 1/2 < |£| < 3/2, and A\(y) = ¢ A(y/1).

1.2. Proposition. If v is Lipschilz, then we have the estimate
(1.3) [HuAdl2 < 1+ log(1 + t|v]|Lip).

Constructions of the Besicovitch set show that the Theorem is false under the
assumption that v is Holder continuous for any index strictly less than 1. These
constructions, known since the 1920’s, were the inspiration for A. Zygmund to ask
if integrals of, say, L*(R?) functions could be differentiated in a Lipschitz choice of
directions. That is, for Lipschitz v, and f € L?, is it the case that
lim(2¢)™! / flz —yv(x)) dy = f(x) a.e.(x)

e—0

Our Theorem gives a partial answer to the singular integral version of this question,
as posed by E. M. Stein [15]. The methods of this paper are not by themselves strong
enough to answer the differentiation question.

Prior results have a subtle relationship with these results. The form of our Theorem
pertain to, in the standard parlance, singular Radon transforms. Such results have
been under investigation for roughly forty years, with a subtle exposition of that
theory being the work of Christ, Nagel, Stein and Wainger [5]. The focus of that
theory concerns results with singular integrals over hypersurfaces of arbitrary co—
dimension, which vary in a smooth manner, and satisfy some minimal geometric
conditions. In contrast, a primary interest of the current result is that the theorem is
phrased in complete absence of geometric conditions. Our theorem is of co-dimension
one, and might rely in some critical way upon such a formulation. And finally, we
work in the arena of only 1 4 ¢ derivatives.
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The results of Christ, Nagel, Stein and Wainger [5] apply to certain vector fields
v. Earlier, a positive result for analytic vector fields followed from Nagel, Stein and
Wainger [12]. E.M. Stein [15] specifically raised the question of the boundedness of
H, for smooth vector fields v. And the results of D. Phong and Stein [13,14] also give
results about H,. J. Bourgain [1] considered real-analytic vector field. N. H. Katz
[8] has made an interesting contribution to maximal function question. Also see the
partial results of Carbery, Seeger, Wainger and Wright [2].

An example pointed out to us by M. Christ [4] shows that under the assumption
that the vector field is measurable, the sharp conclusion is that H,A; maps L? into
L**>. And a variant of the approach to Carleson’s theorem by Lacey and Thiele
[10] will prove this norm inequality. This method will also show that under only the
measurability assumption, that H,A; maps L into itself for p > 2, as is shown by
the current authors [9]. The results and techniques of that paper are critical to this
one. Note that the Proposition is an essential strengthening of what is known in the
measurable vector field case. We do not know if the norm estimates above continues
to hold for 1 < p < 2.

It is known that the Theorem and Proposition above have as a corollary Carleson’s
theorem [3] on the pointwise convergence of Fourier series. Set o(¢{) = f_ll e dy /y.
For a C* function N : R — R, we should deduce that the operator with symbol
o(§ — N(x)) maps L*(R) into itself, with norm that is independent of N, the C?
norm of N. Take the vector field to be v(xy,25) = (1,—N(x1)/n). Then, H, is
bounded on L*(R?), with norm bounded by an absolute constant. The symbol of H,
is o((&1,&) - v(ay)) = 0(& — &N(x1)/n). The trace of this symbol along the line
£ = N defines a symbol of a bounded operator on L*(R), which is the fact we needed
to prove.

A novel point of this paper is a particular maximal function result, detailed in
Section 5. This is the key point at which the Lipschitz character of the vector field
is exploited. We use this inequality to carry out an interpolation argument to prove
Proposition 1.2, and find that this argument must be carried out with some care.
The reason for this is that the logarithmic bound in the Lipschitz norm we prove in
this Proposition fails utterly below L?2.

Our Theorem requires additional smoothness of the vector field beyond Lipschitz.
This additional smoothness can be used to show that the spatial scales of the operator
H, decouple in a strong way. Namely, that H,A,; are essentially orthogonal operators
for 7 € N, namely that for 7 # j' we have A,;y H,Ay; ~ 0. This is quantified by
technical lemmas of Section 6, and is largely an L? estimate.
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2. DEFINITIONS AND PRINCIPLE LEMMA

We begin with some conventions. We do not keep track of the value of generic
absolute constants, instead using the notation A < B iff A < K'B for some constant
K. And A~ Biff A < B and B < A. We use the notation 14 to denote the
indicator function of the set A. And the Fourier transform on R? is denoted by
]/C\(f) = [po e f(2) dx, with a similar definition on the real line. We use the

notation
][f da = |A|_1/ | dx.
A A

For an operator T, ||T']|, denotes the norm of T" as an operator from L?(R?) to itself.

Throughout this paper, £ will denote a fixed small positive constant, whose exact
value need not concern us. & of the order of 10™® would suffice. The following
definitions are as in the authors’ previous paper [9].

2.1. Definition. A grid is a collection of intervals G so that for all I,J € G, we have
INnJed{l,1,J}. The dyadic intervals are a grid.

Let p be rotation on T by an angle of 7/2. Coordinate axes for R? are a pair of
unit orthogonal vectors (e, e, ) with pe =€,

2.2. Definition. We say that w C R? is a rectangle if it is a product of intervals with
respect to a choice of axves (e,e1) of R% We will say that w is an annular rectangle
if w = (=271 2171) x (a,2a) for an integer | with 2' < ka, with respect to the axes
(e,er). The dimensions of w are said to be 2" x a. Notice that the face (—2'71,2""1)xa
is tangent to the circle |£| = a at the midpoint to the face, (0,a). We say that the
scale of w is scl(w) := 2! and that the annular parameter of w is ann(w) := a. In
referring to the coordinate axes of an annular rectangle, we shall always mean (e, e, )
as above.

Annular rectangles will decompose our functions in the frequency variables. But
our methods must be sensitive to spatial considerations; it is this and the uncertainty
principle that motivate the next definition.

2.3. Definition. Two rectangles R and R are said to be dual if they are rectangles
with respect to the same basis (e,e1), thus R =ry X ry and R =1y X ry for intervals
riti, @ = 1,2, Moreover, 1 < |ri| - || < 4 for i = 1,2. The product of two dual
rectangles we shall refer to as a phase rectangle. The first coordinate of a phase
rectangle we think of as a frequency component and the second as a spatial component.

We consider collections of phase rectangles A7 which satisfy these conditions. For
8,8 € AT we write s = w,; X R, and require that

(2.4) w;, 1s an annular rectangle,
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(2.5) R, and w, are dual,

(2.6) {R: Rxw, € AT} partitions R? for all w,.
(2.7) ann(w,) = 2/ for some integer 7,

(2.8) f{w, : scl(s) =2, ann(s) = 27} > 2/, NS
(2.9) scl(s) < kann(s).

We assume that there are auxiliary sets w,, wg,ws, C T associated to s—or more
specifically w,—which satisfy these properties.

(2.10) Q:={w;,ws,wse : s€ AT} isagrid in T,

(2.11) Wy Nwg =0, |ws| > 32(|wsi| + |wsa| + dist(wst, ws2))
(2.12) w, lies clockwise from wg on T,

(2.13) lw,| < I(%,

(2.14) {é—| D€ Ews} Cpwgr.

In the top line, the intervals w,; and wy, are small subintervals of the unit circle,
and we can define their dilate by a factor of 2 in an obvious way. Recall that p is the
rotation that takes e into e;. Thus, e,, € wy;.

Note that |ws| > |wsi| > scl(ws)/ann(ws). Thus, e, is in wg, and w, serves as “the
angle of uncertainty associated to Rs.” Let us be more precise about the geometric
information encoded into the angle of uncertainty. Let Ry = r; X rs; be as above.
Choose another set of coordinate axes (¢, ¢/, ) with € € w; and let R’ be the product
of the intervals r, and r,; in the new coordinate axes. Then KO_IR’ C R, C Ko
for an absolute constant Ky > 1.

We say that annular tiles are collections AT satisfying the conditions (2.4)—(2.14)
above. We extend the definition of e, e, , ann(w) and scl(w) to annular tiles in the
obvious way, using the notation e, €51, ann(s) and scl(s).

A phase rectangle will have two distinct functions associated to it. In order to
define these functions, set

T, f(z) == f(x —y), y€R? (Translation operator)
Mod; f(z) := €€ f(x), ¢ €R?* (Modulation operator)

. 1 1 T2
Dil% X1, x9) 1= , ,
ruxrs /(1 2) (|Rl||32|)1/pf<|31| |R2|>

0 < p<oo, (Dilation operator).

In the last display, Ry x Ry is a rectangle, and the coordinates (21, x3) are those of the
rectangle. Note that the definition depends only on the side lengths of the rectangle,
and not the location. And that it preserves LP norm.
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For a function ¢ and tile s € AT set
(2.15) @s := Mod,(,) Dil%s Tor.y @

s

We shall consider ¢ to be a Schwartz function for which @ > 0 is supported in a
small ball, of radius #, about the origin in R?, and is identically 1 on another smaller
ball around the origin. (Recall that & is a fixed small constant.)

We introduce the tool to decompose the singular integral kernels. Fix a Schwartz
function ¥ on R with frequency support in a small neighborhood of 1. More specifi-

cally, we take 77//)\ > 0, and supported on [1,1+ &]. Then, define

(2.16) oa) = [ oo =yl sel(s)(scl(s)y) dy.

An essential feature of this definition is that the support of ¢, is contained in the set
{v(x) € ws}, afact which is verify by restricting appropriately the Fourier support of
@ and 1. That is we have ¢5(x) = 1o, (v(2))ds(x). The set wyy serves to localize the
vector field, while wy; serves to identify the location of ¢, in the frequency coordinate.

The model operators we consider act on a Schwartz functions f, and sends it into
a sequences of functions. It is defined by

(2.17) Canf = > {f1 050

s€AT (ann)
scl(s)>1

In this display, AT (ann) := {s € AT : ann(s) = ann}. As much of our analysis
concentrated on a single annulus, this is a very commonly used notation.

2.18. Lemma. Assume that the vector field is Lipschitz. The operator Cynn extends
to a bounded map from L* into itself. The norm Cann depend upon the vector field v
in the following way.

[Canll2 S 1+ log(1 + ann~"[[o]|uip).

We remind the readers that for 2 < p < oo the only condition needed for the
boundedness of Cn, 1s the measurability of the vector field, a principal result of
Lacey and Li [9]. It is of course of great importance to add up the Cany over ann.
The methods for doing this are purely L? in nature, and lead to the estimate for

C = E(])il CQ].

2.19. Lemma. Assume that the vector field is C°® for some o > 1. Then C maps L*
into itself. And the norm depends upon v in the following way.

€]l S (1 +1log(1 + [[v]le=))*.

Moreover, the sum is unconditionally convergent in s € AT .

These are the principal steps towards the proof of Proposition 1.2 and Theorem 1.1.
In the course of the proof, we shall not invoke the additional notation needed to
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account for the unconditional convergence, as it entirely notational. They can be
added in by the reader.

The proof of Theorem 1.1 and Proposition 1.2 from these two lemmas is an argu-
ment in which one averages over translations, dilations and rotations of grids. The
specifics of the approach are very close to the corresponding argument in [9]. The
details are omitted.

3. TRUNCATION AND AN ALTERNATE MODEL SUM

There are significant obstacles to proving the boundedness the model sum of Propo-
sition 1.2 on an L” space, for 1 < p < 2. In this section, we rely upon some naive L*
estimates to define a new model sum which is bounded on L?, for some 1 < p < 2.

Our next Lemma is indicative of the estimates we need. For choices of scl < xann,
set

AT (ann,scl) := {s € AT (ann) : scl(s) = ann}.

3.1. Lemma. For measurable vector fields v and all choices of ann and scl.

| X s, Sl
)

s€AT (ann,scl

Proof. The scale and annulus are fixed in this sum, making the Bessel inequality

Yo KL SIAIE

s€AT (ann,scl)

evident. For any two tiles s and s’ that contribute to this sum, if w, # wy, then
¢s and ¢y are disjointly supported. And if w, = wy, then Ry and R, are disjoint,
but share the same dimensions and orientation in the plane. The rapid decay of the
functions ¢, then gives us the estimate

H Y ()0

s€AT (ann,scl)

1/2
2 5[ > |<f,@s>|2]

s€AT (ann,scl)
S Al

Consider the variant of the operator (2.17) given by
(3.2) Of = Y (fipa)os

s€AT (ann)
sel(s) £ [vllLip

As ann is fixed, we shall begin to suppress it in our notations for operators. The
difference between @ and C,nn is the absence of the initial < log(1+ ||v||rip) scales in
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the former. The L? bound for these missing scales is clearly provided by Lemma 3.1,
and so it remains for us to establish

(3.3) 1]l < 1,

the implied constant being independent of ann, and the Lipschitz norm of v.

[t is an important fact, the main result of Lacey and Li [9], that
(3.4) 18], <1, 2<p<oco
This holds without the Lipschitz assumption.

We are now at a point where we can be more directly engaged with the construction
of our alternate model sum. We only consider tiles with £™!||v||Lip < scl(s) < rann.
Set

(3.5 o= 200)

vl

Write ¢, = a4+ s where oy = (DgSRSTc(RS)Oc,oS, and ( is a smooth Schwartz function
supported on || < 1/2, and equal to 1 on |z| < 1/4.

Recall that the kernel function v is a Schwartz function on R with compact fre-
quency support. Write for choices of tiles s,

(3.6) scl(s)y(scl(s)y) = ¥s—(y) + Pst-(y)

where t;_(y) is a Schwartz function on R, supported on |y| < %’ys and equal to
scl(s)i(scl(s)y) for [y| < $7s. Then define

() = Lo (0(0) [ e = yo())isly) dy.
Thus, ¢s = as_ + asy. Recalling the notation Agn, in Proposition 1.2, define
(3.7) Acfi= ) (amf 0u)ae

s€AT (ann)

scl(s)2x 7 [vllLip

We will write ® = @A, 0y = Ay + A_ + B, where B is an operator defined in (3.10)

below. The main fact we need concerns A_.
3.8. Lemma. There is a choice of 1 < pg < 2 so that
|AZ]l, <1, Po < p < .

The implied constant is independent of the value of ann, and the Lipschitz norm of
v.

The proof of this Lemma is given in the next section, modulo three additional
Lemmata stated there in. The following Lemma is important for our approach to the
previous Lemma. It is proved in Section 4.
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3.9. Lemma. For each choice of k™ '|v||Lip < scl < kann, we have the estimate

Yo e SIS

s€AT (ann,scl)

Define
(310) Bf = Z <Aannf7 6s>¢s

s€AT (ann)
scl(s)2x 7 [vllLip

3.11. Lemma. For a Lipschitz vector field v, we have

1B, <1,  2<p<ce.

Proof. For choices of integers £~ !|[v]|Lip < scl < kann, consider the vector valued

operator
Aal"ll"l b S
Tinf = {7< |J];|ﬁ ) D s € AT(ann,scI)}.

Recall that g; is supported off of %’ys Rs. This is bounded linear operator from L>(R?)
to (>°(AT (ann,scl)). It has norm < (scl/||v||Lip) "% Routine considerations will
verify that T}, maps L?*(R?) into (*(AT (ann,scl)) with a similarly favorable estimate
on it’s norm. By interpolation, we achieve the same estimate for 7 from L?(R?)
into ?( AT (ann,scl)), 2 < p < oo.

It is now very easy to conclude the Lemma by summing over scales in a brute force
way, and using the methods of Lemma 3.1.

O

We turn to Ay, as defined in (3.7).

3.12. Lemma. We have the estimate

Al ST 2<p <o

Proof. We redefine the vector valued operator T} to be
<Aannf7 Oé5>
pyef o (Pl

| |

This is bounded L?(R?) into ?(AT (ann,scl)), 2 < p < oo with norm < 1.

DS € AT(ann,scI)}.

But, for s € AT (ann,scl), we have
s+ | S (scl/|[v]luip) T Bl T2 M 1,

Here M denotes the strong maximal function in the plane in the coordinates deter-
mined by R,. This permits one to again adapt the estimate of Lemma 3.1 to conclude
the Lemma. O
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Now we wish to conclude that ||®|]; < 1. We have ® = A_ + A, + B, so from
(3.4), Lemma 3.11 and Lemma 3.12, we deduce that [|A_||, <1 for all 2 < p < co.
And A, and B are also bounded on L?. It remains for us to verify that A_ is of
restricted weak type pg for some choice of 1 < py < 2. For then Lemma 3.8 will be
true. That is, we should verify that for all sets I, G C R? of finite measure

(3.13) (A-1r 1) SIFMPIGIYP po<p <2,

Since A_ maps L? into itself for 2 < p < oo, it suffices to consider the case of
|F| < |G]. Since we assume only that the vector field is Lipschitz, we can use a
dilation to assume that 1 < |G| < 2. We prove this inequality in the next section.

4. PROOFS OF LEMMATA

4.1. Proof of Lemma 3.8. We fix the data 0 < A < 1, F' C R? of finite measure,
ann, and vector field v with ||v||rip) < ann. and take py = 2 — &2

We need a set of definitions that are inspired by the approach of Lacey and Thiele
[10], and are also used in Lacey and Li [9]. For subsets S C A, :={s € AT (ann) :
w7 HvllLip < scl(s) < kann}, set

AS = Z<)\annlp, Qg )s—

sES
Set x(z) = (1 + |z|)~"/*. Define
(4.1) X =W = Turg Dy x, 0<p< oo,

And set %gp) =1, R.Xs

As we are fixing attention to a single annulus, there is a natural partial order on
tiles given by s < 8’ iff wy, D wy, Ry C Ry1, and Ry = Ryae. We are free to restrict
attention to a set of tiles for which we have the conclusion

(4.2) If w, x RyNwgy x Ry # (), then s and s’ are comparable under ‘<.

A tree is a collection of tiles T C A,, for which there is a (non—unique) tile
wr X Rp € AT (ann) with s <wp x Ry for all s € T. For j = 1,2, call T a i—tree if
the tiles {wy x Ry : s € T} are pairwise disjoint.

Our proof is organized around these parameters and functions associated to tiles
and sets of tiles. We note in particular that the first definition is more restrictive
than the corresponding definitions of Lacey and Thiele [10], which were adapted to
the current setting by Lacey and Li [9].

(4.3) dense(s) := / YW da,
Grv—H(ws)
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(4.4) dense(S) := sup dense(s),
SES
(4.5) sh(S) := U R, (the shadow of S ),
SES
annl b S .
(4.6) Z i RF )’ 1g., T is a 1-tree,
seT | |
(4.7) size(S) :=  sup ][ A(T) dx.
T ierz‘iclsftree Fr

It is essential to note that if T is a 1-tree with fRT A(T) > o, then
(4.8) |F N min(yr, e ") Rr| = o't Ry

Here, K is an absolute constant, depending on any fixed choice of £ > 0, and by
we mean the v, xry, With v, defined in (3.5). This follows, in part, from standard as-
pects of Calderén—Zygmund theory, and in part, to the fact that for all s € T, we have
as— supported on K~ Ry. We shall comment on it again in the proof of Lemma 4.14,
which is presented in Section 4. One should also note that size(.A,(ann)) < 1.

Concerning the definition of density, we need to make this comment. Call a set of
tiles S convex if for all s,s” € S, one also has s’ € S for any s < s’ < s”. We will at
each stage of the proof consider only convex sets of tiles.

Given a convex set of tiles, say that count(S) < A iff S is a union of convex trees

T € 7 for which
> Ish(T)| < A.
TeT

We will also use the notation count(S) < A, implying the existence of an absolute
constant K for which count(S) < KA.

The principal organizational Lemma is

4.9. Lemma. Any finite convex collection of tiles S C A, is a union of four convex
subsets

Shight:  Ssmall,  Starger (= 1. 2.
They satisfy these properties.

(4.10) size(Semall) < %size(S),
(4.11) dense(Sjight) < %dense(S),
and both Sfarge are unions of convexr trees T € T*, for which we have the estimates

size(S) ¢ |F|
size(S) ™' dense(S) 7| F|
dense(S)~*

(4.12) count (S, ,.) <

~
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< {size(S)_Z(log1/size(S))3|F|

4.13 t(S?
( ) count( size(S)*‘/50 dense(S)™*

large

The estimates that involve size(S)~?|F'| are those that follow from orthogonality
considerations. The estimates in dense(S)™" are those that follow from density con-
siderations. Of particular note is the middle estimate of (4.12). For it we shall need
the critical maximal function estimate for Lipschitz vector fields in Section 5. There
is a new estimate that needs to be invoked to obtain the second estimate in (4.13).

For individual trees, we need the estimate below, which is essentially the tree
lemma of [9].

4.14. Lemma. For convex trees T we have the estimate

(4.15) Z|<)\annlp, as)(as—, 1g)| < dense(T)size(T)|sh(T)].

seT

Set
Sum(S) = Z|<Aann1F7 oz5><a5_, 1G>|

SES

We want to bound Sum(A,) by < |F|'? for py < p < 2. And we have the trivial
bound

(4.16) Sum(S) < dense(S) size(S) count(S).

By inductive application of this Lemma 4.9, A, is the union of Sgg, (=1,2 for
d,0 €2:={2" : n € Z}, satislying

(4.17) dense(Sgg) <0,
(4.18) size(Sgg) < o,

in(e 275 |F|,0 o7 F, 67 (=1
419 t Sf < mln(o- | ? Y Y
(4.19) count(Ss) 3 {mm(a—2(1og 1o )P|F),6710%) (=

Using (4.16), we see that

Sum(S5,) <

~

min(do ™ | F|, 60 | F|,0) (=1,
min(do~(log 1/0)*|F|, o' t?%) (=2

It is a routine exercise, left to the reader, to check that for / =1, 2,

> Sum(S§,) SIFIMP, po<p<2

5,062

This completes the proof of Lemma 3.8, aside from the proof of Lemma 4.9.
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It is interesting to note these points. The estimate for S;U will prove an LP estimate
for (24+r)/(142r) < p. If one varies &, the estimates for 8§ , will prove an L? estimate
for 7/4 < p. One may be able to avoid the use of the collections Sgﬂ, but at the cost
of a more sophisticated proof than the one given for Lemma 4.9.

4.2. Proof of Lemma 3.9. We only consider tiles s € AT (ann,scl), and sets
w € Q which are associated to one of these tiles. For an element a = {a;} €

(2(AT (ann, scl)),
Twa = Z asAannas

SiWs=w

For wy = wr, note that dist(ws,ws ) is measured in units of scl/ann.

By a lemma of Cotlar and Stein, it suffices to provide the estimate
ann
LTl S0 o= 1+ it w).

Now, the estimate ||7T,||2
suffices to see that

(4.20) sup Z |(Xann@s, Aannas)| < o

siw=w!

< 1 is obvious. For the case w # w', by Schur’s test, it

~

SiWe=w

For tiles s" and s as above, recall that (¢, ps) = 0, note that
|Rs N Ry - ‘scl —
|R;| ™ anndist(w,w’)
and in particular, for a fixed s', let Sy be those s for which py,R; N pyge Ry # (.
Clearly,

card(Sy) < &
~ Ry N Ryl

Ve PP
If for r > 1, ry,Rs N ryg Ry = () but 2rvy, Ry N 2ryy Ry # (), then it is routine to
show that

|<Aanna57Aannas’>| 5 (rﬂ)/s)_lo
And so we may directly sum over those s € Sy,

Z |<Aannasa Aann055/>| 5 ,0_3-
sES

For those s € S, we estimate the inner product in frequency variables. Recalling
the definition of oy, = (DY g Ti(r.)¢)ws, we have
Gy = (Mod_y(ny D' C) * 3.
Recall that ( is a smooth compactly supported Schwartz function. We estimate the
inner product

e —

| <Aanna57 Aann Oé5/> |
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without appealing to cancellation. Since we choose the function A to be supported
in an annulus Lann < |¢] < 3ann, We can restrict our attention to this same range of
£. In the region |£] > ann/4, suppose, without loss of generality, that ¢ is closer to
ws than wy. Then since w, and wy are separated by an amount > ann dist(w, w’),

@3] S DO (. dist(w. w))
)

—-20

b SC
SXDEND () (rap) 7"

Here, y is the non—negative bump function in (4.1). Hence, we have the estimate

/ @ (©)an(e))de < B DB 0
[€]>ann/4 |RS|

This is summed over the < ~vZp® possible choices of s € Sy, giving the estimate

(=)™ S P
This is the proof of (4.20). And this concludes the proof of Lemma 3.9.

4.3. Proof of the Key Organizational Lemma 4.9. Recall that S is convex, and
we are to decompose it into distinct convex subsets. For the remainder of the proof
set dense(S) := ¢ and size(S) := o. Take Syzn to be all those s € S for which
there is no tile s’ of density at least §/2 for which s < s’. It is clear that this set
so constructed has density at most §/2, that this is a convex set of tiles , and that
S1 :=S — Siign¢ 1s also convex.

Issues related to orthogonality are important of the proof, and single out for a
different treatment of orthogonality those tiles

(4.21) So:={s€S : v, <Coll(1r,a)|/VI|R|| 7}

where Cy is a constant to be chosen. Since the terms =, increases as does scl(s)l/z,
tiles s € Sy can have only < 14 klog 1/0 possible values of scale, which is the decisive
feature of this case. Observe that by lemma 3.9,

2

<10g01/g>2 Z|Rs| 5 Z|<Aann1F7a5>|2

sESg s€S|
(4.22) < k(log 1/a)|F.

We shall appeal to this below. We do not do so immediately, since Sy is certainly not
a convex set in general.

The following definition will be of use to us. Suppose that T is a tree. We say that
charge(T) > 7 iff there is a 1-tree T C T for which

(4.23) ][ Ap > 7.
sh(T)

The tree T’ is said to achieve the charge of T.
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We comment on the method we use to obtain the middle estimate in (4.12). This
depends upon the novel maximal function estimate of the next section. Suppose we
have a collection of trees T € T, each contained in Sy, with charge(T) comparable
to o' T#/190 Moreover, each tree has top element s(T) := Ry x wr of density at least

d. Set
S(T) = wp X O'_H/5RT.

Observe that we can regard ann(s(T)) ~ o~*/%ann as a constant independent of T.
And, we have

5 ollp < scl(s(T)) < mann(s(T), T e T,
since Coo™ /5 < vs. We have in addition,
dense(s(T)) > do™/",
|[F' N Rypy| > 01+H/4|RS(T)|'
The point of these observations is that our Lemma 5.1 applies to the maximal function

formed over the set of tiles {s(T) : T € T}. In particular, applying that Lemma for
a choice of L? for p very close to one, we have the estimate

‘ U U_”/5RT‘ < 6P| R,
TeT

In the argument below, we shall in addition have at our disposal the assumption that
the tops of the trees s(T) for T € T are pairwise disjoint. The sets RrNov~ {wr) NG
are then of measure > ¢|Rr|. Hence,

(4.24) D Ish(T)| < 6772 F).
TeT

Observe that by maximality, and the fact that the measure of G is at most one, we
can also conclude

(4.25) > Ish(T)| <67
TeT

We can now begin the principal line of reasoning.

The Construction of Slarge
used many times before, especially in [10] and [9]. (There is a feature of the current

We use an orthogonality, or T argument that has been

application of the argument that is present due to the fact that we are working on
the plane, and it is detailed by Lacey and Li [9].)

We may assume that all intervals w; are contained in the upper half of the unit
circle in the plane. Fix S C A,, and o = size(S).

We construct a collection of trees for the collection Sy, and a corresponding

large

collection of 1-trees 7]1 ! with particular properties. The we begin the recursion by

arge’
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initializing

1 — —
large *— ®7 large ' ®7

Slige =0,  S¥H:=8,.

In the recursive step, if size(S*°*) < %0.1+H/1007 then this recursion stops. Otherwise,
we select a tree T C S*°% such that three conditions are met: (a) the top of the tree
s(T) (which need not be in the tree) satisfies dense(s(T)) > 6/4; (b) T has charge
greater than 201+”/100 (¢) and that wr is both minimal and most counterclockwise
among all possible choices of T. (Since all w; are in the upper half of the unit circle,
this condition can be fulfilled.) We take T to be the maximal convex tree in Sstock
which satisfies these conditions. We take T' C T to be a subtree that achieves the

charge of T.

We then update
large = {T} U Targe7 7l

arge °

{Tl} U Tl ,1 Sstock Sstock T.

large>

Sstock

It is important to note that T is convex, and maximal, hence and the collection

Sllarge so constructed will also be convex. The recursion then repeats. Once the

recursion stops, we update
Sl = Sstock

It is this collection that we analyze in the next subsection.

The bottom estimate of (4.12) is then immediate from the construction and (4.25).

We turn to the deduction of the first and middle estimates. The argument must be
split into two cases, depending upon the behavior with respect to the set Sy defined
n (4.21). Let T’ be those It fo T € so that T'N'Sg has charge at least 1o+%/100,

It follows from (4.22) that

S ()] S 072 (log 1/0)? ||
Te7"’

large

This is the top estimate of (4.12). In addition, we must have

> (log 1/0)7*[sh(T)].

SETOSO

1+k/5

And since for each s € Sy we necessarily have |[FNo™/°R,| > o | Rs|, we conclude

that
|sh(T) N Rs| > 01+3”/5|Sh(T)|.

Therefore, we can follow the reasoning that leads to (4.24) to see the middle estimate
of (4.12) in this case.

We hence forth assume that for each T € large
at least 5014—5/100‘ It is important to observe that by choosing Cy in (4.21) sufficiently

that the tree T — Sy achieves charge
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large, we can then conclude that

R S (rp ) > Cao?,

seT1

for an absolute (5. The replacement of a; by ¢ in the inequality above is an
important point for us. That we can then drop the A,nn is immediate.

With this construction and observation, the argument for “size Lemma” in [9] then
shows that we have

(4.26) > sh(T)| S o™ R

TeT!

large

This is the first estimate of (4.12). By (4.24), we deduce the middle estimate of
(4.12). And the last estimate of (4.12) follows from (4.25).

The Construction of Slarge We repeat the T'T™ construction of the previous step in
the proof, with two significant changes.

We construct a collection of trees 7.}, from the collection Sy, and a corresponding

large
2,1

large: With particular properties. The we begin the recursion by

collection of 1-trees
initializing

2 .=,

large

large = ®7
2 L stock
Slarge T ®7 S S

In the recursive step, if size(S**°°) < &/2, then this recursion stops. Otherwise, we
select a tree T C S*%°% such that three conditions are met: (a) T has charge greater
than §/2; (b) and that wr is both minimal and most counterclockwise among all
possible choices of T. We take T to be the maximal convex tree in S**°°¢ which
satisfies these conditions. We take T' C T to be a subtree that achieves the charge
of T.

We then update
large = {T} U Targe7 large - {Tl} U large7 Sstock Sstock T.

The recursion then repeats.

Once the recursion stops, it is clear that the size of S5°k is at most ¢ /2, and so
we take Ssmall = Sstock-

The estimate

Y h(T)| S o *(log1/0)?|F|

TeT?

large
then is a consequence of the T'T™ method, as indicated in the previous step of the
proof. That is the first estimate claimed in (4.13).
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What is significant is the second estimate of (4.13). The point to observe is this.
Consider any tile s of density at least 6/2. Let T, be those trees T & lzrge with top
s(T) < s. By the construction of Sjue, we must have that the charge of UTe7; T

14+/100 2

1s at most o large

But, in addition, the tops of the trees in are pairwise

incomparable with respect to <, hence we conclude that

2
D Ish(T)] S R,
TeT:

2

large WE must be able to select

Moreover, by the construction of Sjigp¢, for each T €
some tile s with density at least §/2 and s(T) < s.

Thus, we let S* be the maximal tiles of density at least §/2. Then, the inequality
(4.25) applies to this collection. And, therefore,

D Ish(T)| < o) "|R,| < 8%/

Te7?2 SES*

large

This completes the proof of second estimate of (4.13).

5. THE MAXIMAL FUNCTION ESTIMATE

Let S C AT (ann) be a set of tiles satisfying |v™ (ws) N Rs| > 6| Rs| for all s € S.
Define a maximal function by

M3g = sup IRS][ lg| dz.
SES R

Notice that we do not concern ourselves with the expansion factor ;.

5.1. Lemma. For any 1 < p < oo, the mazximal function M® maps LP into LP
with norm bounded by at most < §73. As a consequence, for all 1 < p < oo, and
all € > 0, the mazimal operator extends to a bounded operator on LP into itself, with
operator norm is ||MS||, < §73/P¥¢. What is most important is that the norm bound
is independent of ann.

For the proof of our main theorem, it is important that this Lemma hold for some
1 < p < 2, with any finite power of §~!. A variant of the proof will apply to maximal
functions constructed from a richer class of rectangles, with the caveat that one only
gets the weak L? estimate. We note it here because of its potential use in subsequent
investigations.

5.2. Lemma. Assume that S is a set of tiles satisfying [v™ (ws2) N Rs| > 6| Rs| for
all s € S, and having varying values of ann, but always subject to the conditions
wann > kscl(>)|[v]| 1. Then M® maps L? into weak L? with norm §=5.
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It suffices to show that for any integer n > 1, and any finite set of tiles S, with
dense(s) 2 ¢ for all s € S, there is a subset S" C S for which

(5.3) sh(S)| < 67" [sh(S")],
(5.4) H Y lrer, H <R,V s e

seS’
scl(s)>scl(so)

Indeed, this implies that

+1 9
—2n
155

n
n+ 1

H lRS lRS
ses’ ses’

< 672D si(SY.

The proof of the weak type bound for the maximal function is then straightforward.
If fe L= and A > 0, we can assume that for all s € S we have fRQ f > A. Then

[sh(S)| < 07 '[sh(S)'

|
seS!
ST Z/fle dy
seS!
ol

S TN f gy
sEeS!

S SN lapumny Ish(S)["

<ot

And this proves the maximal function estimate from L") to weak L™/ "= with
norm bounded by < §72. Interpolation gives the remaining conclusions of the Lemma.

Let us specify the two ways in which the Lipschitz nature of the vector field enters
into our argument.

5.5. Proposition. Suppose that there is a scl, tiles s; € S, 7 = 1,...,n, for which
scl(s;) = scl for all 7, and

{ws, + 1 < g < n} are pairwise disjoint, ﬂ R, #0.
j=1
Then n < §71.

Proof. Suppose that the origin is common to all R, , and that n > §='. Then the
sets

{r>0:3zcv N (w,)NR,, |z|=rl, 1<7<n
are contained in [0, scl™'], pairwise disjoint, and have measure at least dscl™'. As
n > 6! there are points x, 2’ € R? and tiles s; # s;; with |z| = |2/], and v(z) € wgy,
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and v(2') € wgy. Recall the fact that e, € wy for all tiles s. And the assumption
(2.11). Hence for the point x, we have

[o(@) — /[a]| < [o(e) = eu] + le, — /]2l < Lo, .

There is a similar inequality for z’. It follows that

oo
o(a) = o(a) 2 E = b + o)
oo
2z
We conclude that ||v]|Lip > %scl, a contradiction. O

5.6. Proposition. Suppose that for sg,s,s' € S, we have R, N Ry, # (0, Ry, N Ry £ ()
and scl(s') > scl(s) > scl(sg). Suppose that the coordinates for Ry, are the canonical
ones, and the length of Ry, is in the first coordinate. Suppose that there are points

(20,%0) € Rs,, (x0,y) € Rs N v_l(ws), (z0,y’) € Ry N v_l(wsl).
Then
dist(ws, wg) < Adist(ws, ws )HvHLip
’ - T scl(s)

Proof. Observe that
diSt(wsvwsl) < 2|U($07 y) - U(l‘(), y/)|
< [vlluiply — ¥/l

< Adist(ws, ws, ) v ip

scl(s)

The principle line of argument begins with the selection of the subcollection S’
Let Migg be a maximal function computed in 100 uniformly distributed directions of
the plane. Initialize

Sstock — S7 S — @
While Sstock =£ () select s’ € S**°°K with scl(s) minimal (so the length of R, is maximal)

and that ann(s) is minimal among those tiles with that value of scl(s). Update,
S’ :=S' U {s'}. Remove from S**°° any tile s such that

R, C {Mmo > 1 > 5—1}.

s'es’!

Observe that

sh(S = 81 5 [{ Moo 3 1. 2071}

s'eS!
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S

ses’

We shall verify that S’ satisfies (5.4), so that
|32 1 < smesnp
seS! !

< 572sh(S)].

1

Z Lr. Hz
seS’

Thus, (5.3) holds.

Our principal contention is (5.4). Fix an s € S', write Ry, = [, x J and
So={s €8S :scl(s) >scl(sg), RsN Ry, # 0}

We may normalize sp so that R, is a rectangle in the canonical coordinates of the
plane. Then the intervals wy, for s € Sg, can be identified with intervals in say
(1/4,1/4) C R. In particular, ¢(wy) is identified with a real number. Write R, =
Iy x J, where |Iy| ~ scl(s) ", and J has an endpoint j. In what follows, the product
of intervals is to be understood in the canonical coordinates.

For s € Sy, recall that |R, N v~ (wy)| > §|Rs|. Denote by I, the minimal dyadic
subinterval of [, that contains the projection of one of the long sides of Ry onto
I, x {7}. And denote the projection of R; N v~!(w;) onto the interval I, x {j} by
F,. Then |F,| > dscl(s)™" ~ §|1,].

Select a distinguished subset Sy of Sy by the following mechanism. Initialize
gstock .— g, S, := 0.
While Sstock =£ ) select s € Sk for which scl(s) is minimal. Update
S ={s}us,, SF={s e F,nF =0}
Then, for s; € Sy, set S1(s1) to be the collection of tiles s € Sg such that F,N Iy, # ()

and I, C I;,. We have that Sg is a union of the tiles in S(s1), for s; € S1. The next
proposition is a central contention in this proof.

5.7. Proposition. For any subinterval I C I, we have the two estimates

0’

(5.8) > Moy x IS5 x|,
51€S;
I, Cl
(5.9) > RN R, ST x|, s €Sy
s€S1(s1)

R.NRsCIxJ
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Observe that both bounds are of the type associated with Carleson measures. In
particular, a straightforward inductive argument, of the type associated to the John—
Nirenberg inequality, then shows that

H Z 17«7

51€S81
I, Clg

SR, 2<p <,
P

Further observe that in the case that the annular parameter of all tiles is fixed, we
have
|Rs N Ryy| 2 |1, x J|, and 1gar, S (M1p,)?,

where M is the strong maximal function in the canonical coordinates. Thus, (5.4)
follows from the Fefferman—Stein maximal inequalities. It remains to prove Proposi-
tion 5.7.

Concerning the lemma 5.2, our argument will prove (5.9) in the case when the
value of ann(s) varies. But in this case it does not seem that the John—Nirenberg
arguments apply. That is why this Lemma only asserts the weak—type inequality for
p=2.

Proof. The proof of (5.8) is nearly immediate. The projected sets {Fs, : s1 € Si}
are disjoint, contained in /, and have measure at least > §|[;,|. This gives (5.8), and

we turn to the more subtle inequality (5.9).

Observe that by Proposition 5.6, we have

(5.10) o) = i )| S e | 525, s € S

That is, the angle of s is very close to the angle for s;.

There is an essential geometric observation to make. Suppose that there is an
interval I C [y and a choice of s; € S| such that

(5.11) Y RN X J| = 10°67 ] x ).
sES(s1)
scl(s)~1>4|1]
Then, for either ¢ = +1 or ¢ = —1, there can be no s’ € S(s;) with 2scl(s)™' < |I|
and R, intersects $(1 +¢|I]) x J.

Indeed, let 7 be the projection onto the first canonical coordinate. Choose ¢ € {41}
so that
Z 1{I—|—s|I|C7r(RS)}|Rs NI x J| > %1035_1|] X J|

sES(s1)
scl(s)~1>4]|]]

Let (e, ey) be the coordinate axes of Ry . Recall that Mg is a maximal function over
100 uniformly distributed directions of the plane. Choose the directions (€', ¢/, ) from
these 100 that are closest to (e, —e), in that order. Consider a rectangle R’ in the
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I x.J R’

Figure 1: Proof of the essential geometric observation

(¢’,€'|) coordinates, of dimensions 10¢(ws, )|I| by |.J|, and whose center is contained

in I 4¢&|l| x J. For any s € S(sy) with scl(s)™" > |I|, and R, N I x J =, we have

|J|ann(s) ™"
|e(ws, )]

The ratio between these two quantities is the ratio of || to the length of R'. This is
the main use of Proposition 5.6, and in particular (5.10). Hence

R c {MIOOZ 1n, > 5—1}.
seS’

Letting R’ vary, we see that if there were an s’ € S(s1) with 2scl(s’) < || and
Ry N (I +¢|l|) x J =0, we would have contradicted the construction of §’.

|Rs N (21) x J| ~ ) |R, N R'| ~ |J]ann(s) "

Set
S(s1,1):={s €8S1(s1) : RsN Ry, C 1 xJ}.

We shall inductively decompose this collection as follows. Initialize
Sstock .= S(sy; 1), 7:=10.

While there is a dyadic interval I C I for which

(5.12) Y RN x J| = 1047 x |

Sesstock
scl(s) =1 >41|
let I be a maximal dyadic interval satisfying this condition. Note three points, (a)
that the bound we are requiring is somewhat larger than what occurs in (5.11), (b)
with the power of 6! that occurs here, Proposition 5.5 implies that [ Cx I’ C I, for
some [, and (c) therefore, we see that the sum above is at most < 2-10*67Y 1 x J|.

Define S(7) := {s € Sk : scl(s)™* > |I|, R,N [ x J # 0}, and update
gtk = gtek _§(1),  T:=TuU{l}.

— Sstock

If there is no such interval I, set S, : , and the procedure stops.
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Now, it is clear that

D IR0 Ry | < 10%67Y R, .

SESQ

By our geometric observation, observe that Z cannot contain three dyadic interval
L 1" with 1" Cx I' C I+ ¢|l|, where ¢ € {£1} comes from our geometric
observation, and is permitted to depend upon [I. This particular condition implies

that
> 1| < 4l1ol.

1eT
But then, it is follows that

Y RN Ry | ST x ],
s€S(s1,1)

with the implied constant being absolute. Our proof is complete. g

6. ORTHOGONALITY BETWEEN ANNULI

We are to prove Lemma 2.19, and to do so rely upon a technical lemma on Fourier
localization in the next subsection. We change scales, to assume that the vector field
has C'* norm at most one. The inequality we are to establish is that

> Com|, S (1+ (ogL+anng! )2 7]

ann>anng

And, here the principal estimate is

(6.1) | > Camd|| S WAL Wl <.

ann>1

In the case that anng < 1, we use Cauchy—Schwarz and Lemma 2.18 to see that

/
| > o], < Viogamml| 3 feaml]

ann>anng anng <ann<1

< [loganno|*|[ f1l2-

To establish (6.1), let A be a Schwartz function on the plane with

Litcieen S A < 1{1<|s|<8}’

and set Agnn = ann?A(anny). Since Cannf = CannAann * [, we need only show that

1
Hcann,scl - )\ann * Cann,sclHZ 5 ann(l_a)/2, 1 S scl < gann.
Cann,sclf = Z <f7 S‘Qs>¢s-
s€AT (ann)

scl(s)=scl
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Recall that o > 1, so the exponent on ann > 1 is negative and so this is just summed
over the log(ann) values of scl to prove (6.1).

The difference above is estimated by brute force
D 1@l * 05 — @4
scl(s)=scl

By Lemma 6.2, the last difference is dominated by a sum of three terms, as specified

in (6.3)—(6.5). Of these, the most delicate is

5 e a1 oo

scl(s)=scl

1-a)/2

ann(

where Max is the usual maximal function. The leading term is less than one, since
a > 1. One uses the Fefferman—Stein maximal inequalities to estimate the norm as

| 5 Mo, <[ ¥ ] s

scl(s)=scl scl(s)=scl

2

This follows from the fact that with the scale fixed, the intervals w; are either equal

or disjoint, that the functions {¢, : scl(s) = scl} satisfy a Bessel inequality, and the

decay of ngoj).

There are still two more terms that arise from Lemma 6.2, but they are easier to
control, and so the details are omitted.

6.1. A technical estimate. The precise form of the inequalities quantifying the
Fourier localization effect follow.

6.2. Lemma. Let 1 < a < 2, and v be a vector field with
[Vollos < 1.
Let s a tile with
V <scl(s) = scl < ann(s) = ann < L2".
Let
Js = Mod_.(,) ¢s

Let ¢ be a smooth function with 15 (|¢]) < Eg Ljo,3)(€]) and set (i (y) = 225 ((y2").
We have this inequality.

_ —a o 2
(6.3) o = Cor o fol S [RS|7220 792 (Max v )1, (v))
(6.4) + 2710k ()
(6.5) + |R, |71,

In this estimate, Max is the usual mazximal function on the plane, and the sets Fy C
R? satisfy

(6.6) | S 27 R,
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s :scl(s)=scl -
We rely upon the obvious estimate
(69 [ Il s ey, s
ly|>t2=+
This estimate holds for all N > 1. Likewise,
(6.9) / |luscl||scl ¢ (sclu)| du < 7, t>1.
[u|>tscl

More significantly, we have
(6.10) / e D — y)Cn(y) dy = 9 (2) @ € R || < 25,
R2

This is clear from the frequency side. Likewise, for vectors vy of unit length,

/ eiu/\og‘ogz(l‘ — UUO)SCI ¢(SC| u) du % 0
R

implies that

e

(6.11) scl < X + vp < 3scl,  for some £ € supp(c,ogs)).

At this point, it is useful to recall that we have specified the frequency support of
@ to be in a small ball of radius « in (2.15). This has the implication that

e

(6.12) |€ - es| < ksel, |€-es1| < kann e supp(c,ogs))

We begin the main line of the argument. Let ¢q,e5 be strictly positive quantities
to be chosen. We have the estimate

@)+ 1 x @) S 27 RD(@), @ @27 R,
This follows from (6.8). And is as claimed in (6.4). We need only consider x € 2% R,

Let us define the sets Fj, as in (6.5). Let
3 i {8 if 2 < 200k

cl
215 otherwise

(6.13)

Let Aws denote the interval on the unit circle with length Aw;|, and the same center
as ws. We take

- 2(1—e2>k5_c'}‘
ann

ov
(6.14) F, =29 R, Ao~ (Aw,) N {‘a_e eyl

It is clear that
|5 wlsnse

)
s :scl(s)=scl



HILBERT TRANSFORM ON SMOOTH FAMILIES OF LINES 27

And so to satisfy (6.7), we should take 25y < 1/600.

Let us argue that the measure of Fj satisfies (6.6). Fix a line ¢ in the direction of
es. We should see that

(6.15) 100 F,| < 2 k03 4=t
This set consists of open intervals A, = (a,,b,), 1 < n < N. List them so that
b, < any; for all n. Partition the integers {1,2,..., N} into sets of consecutive

integers I, = [m,,n,] N so that for all points x between A,,, and A, the derivative
Jv(x)/0es - €5, has the same sign. Take the intervals I, to be maximal with respect
to this property.

For x € F;, the partial derivative of v, in the direction that is transverse to A;ws,
is large with respect to the length of A;w,. Hence

Z A, | < 27 0maim=2)k for all o.

mé€ly
Now consider intervals A,, and Ay,, = A, ,,. By definition, there must be a
change of sign of dv(x)/de, - €51 between these two intervals. And so there is a
change in this derivative that is at least as big as 2(!==2)¥ <L " The partial derivative

ann’
is also Holder continuous of index o — 1, which implies that

) > <2(1—52)ks_d>1/(0‘—1)
ann

As all of the intervals A, lie in an interval of length 2%scI™", it follows that there
can be at most

dist(A,,, A

Ma41

< 261kscl—1 <2(1—62)ks_c'> —1/(a=1)
~ ann
intervals I,. Consequently,

|£ N Fs| < 2—(1—251—52+(1—62)/(a—1))kscl—1<ﬂ>1/(a—1)

scl
< 2—(1—261 —62/(a—1))kscl—1

It is now clear that we can choose ¢; and £y to achieve the estimate (6.15). This
completes the proof of (6.6).

For = € 2% R, we always have the bound
[Folw) = G )] S 207 BT (Max 1)

Here, N is only a function of x as appears in (4.1). Note that we are still free to take
g1 quite small. We establish the bound

(6.16) |fo(@) = G * fola)| S 2079 R V2w e 29FR, — F,.
These two bounds will prove (6.3).

To ease the burden of notation, we set

e(w) = LD (e, a) = o) (x — uv(e)),
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with the dependency on u being suppressed, and define
w(du, dy) 1= scl(sclu)(or(y) dudy.

In this notation, the difference we are to estimate is a linear combination of

DIff, (« /R / — e — y)®(x — y, 2 )w(du, dy)
Diy(e)i= [ [ ela) (0 = y0 =) = 0o~y )bl d)

The analysis of both terms is quite similar. We begin with the first term.

Note that by (6.10), we have

Difi(e) = [ [ {e(e) = el =y}l — )l dy).
Observe that

() - ez — y) = e(x){1 - ela — y)ele)}
(6.17) = e(a){1 — TV, L O ufann]y]”).

In the Big-Oh term, |u| is typically of the order scI™", and |y| is of the order 27,
Hence, direct integration leads to the estimate of this term by

< (scl2°F)~1 R, 7V2,
This is better than in (6.16).

The term left to estimate is

Diff’ (x / / eI VUENG (2 — g, 2 )w(du, dy).
R2

Observe that by (6.10), the integral in y is zero if

Jv
B ()

luc(ws)Vo(z)| = 3|ulann

Here we recall that ¢(w;) = %ann esi. If v(x) € Asws, we conclude by the definition
of F, that
ov

aesL

scl

()] < 2070k

ann’

Hence, the integral in y in Diff} () can be non-zero only for
sclju| > 271%,
By (6.9), it follows that in this case we have the estimate
IDifE} ()] < 272 |2
This estimate holds for x € 2°* R, N v~ (A w,) — Fj.
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We must also consider the case of x € 221 R, — v~ (\,w,). Observe that by (6.11),

the integral in v in Diff}(x) will be zero unless there is a ¢ € supp(c,ogz) for which

scl < c(ws){v(z) — Vo(z)y} + Ev(x) < Zscl.
Recalling (6.12), we see that for any such £, we have |(¢(ws)+&)v(x)| 2 Asscl. Hence,
this condition can only be satisfied for

lyl > A S_Cl>2 (1—e1)k
ann

by the definition of A in (6.13). But then, we can appeal to (6.8) to see that Diff
satisfies (6.16).

We consider the term Diffy. The term v(x—y) occurs twice in this term, in e(z—y),
and in ®(x —y,x —y). We will use the approximation (6.17), and similarly,

O(x —yx —y) = la —y.x) = gz —y —wv(w — y)) ~ i) (x —y — wo(r))
= ¢l =y = wo(e) = uVo(e)y)
— el (e =y = uo(a))
+ O(ann |ully[")
= Ad(z,y) + O(ann |ul[y|")
The Big—Oh term gives us, upon integration in u and y,

A e

This is as required by (6.16). We are left with estimating

DlleI / / uc(ws)(v(z) uVU(l’)y)Aq)(x7 y) w(du, dy)
R2

By (6.10), the integral in y is zero if both of these conditions hold.
luc(w,)Vo(z)| < 28,

m—

Jue(w,) Vo(z) — € — utVo(z)| < 21, € € supp(pl))

Just as in the analysis of Diff;, assuming that € 279FR, N v=1(\w,), the first
condition is satisfied for |u| < 271%. Recalling the conditions (6.12), the second
condition is also satisfied for the same set of values for u. The application of (6.9)
then yields a very small bound after integrating |u| > 2%,

We can consider z € 2751 R, — v} (\w,) — F,. By (6.11), the integral in u is zero
if both of these conditions hold.

scl < e(ws)(v(z) — Vo(z)y) + E(v(z) — Vo(a)y) < gscl,

scl < c(w,)(v() — Vo(a)y) + £olx) < gscl.
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The second condition is as arose in the analysis of Diff}, and it leads to the condition

2k|y| Z 2—61]6‘

The first condition leads to the same conclusion, so that by appeal to (6.8), we can
conclude the proof that Diff; obeys the estimate (6.16). This completes the proof of
our Lemma.
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