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AbstractIn the present paper we give the general nondegenerate solution of thefunctional equation(f(x) + g(y) + h(z))2 = F (x) +G(y) +H(z);x+ y + z = 0;which is related to the exact factorized ground-state wave function for thequantum one-dimensional problem of three di�erent particles with pair in-teraction.
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Functional equations connecting several functions and admitting a gen-eral analytic solution have recently attracted much attention of mathemati-cians and also physicists (for recent researches see for example [BC 1990],[BP 1993], [BK 1993], [BFV 1994]).In modern mathematical physics such equations arise in considerationsof integrable systems of classical and quantum mechanics (for review see forexample [Pe 1990], [OP 1983]).In the present paper we investigate one such equation. Namely, we in-vestigate the functional equation connecting six unknown functions(f(x) + g(y) + h(z))2 = F (x) +G(y) +H(z); (1)x+ y + z = 0;which generalize the well{known Frobenius{Stickelberger equation [FS 1880]and is related to the exact factorized ground-state wave function for thequantum one-dimensional problem of three di�erent particles with pair in-teraction. We give the general nondegenerate solution of this equation.1 Let us recall �rst that an analogous (but simpler) equation for the spe-cial case of three identical particles was considered earlier by B. Sutherland[Su 1975]] and F. Calogero [Ca 1975]. Namely, in the paper [Su 1975] the one-dimensional many-body problem of n identical particles with pair interactionwas considered, whose exact ground-state wave function 	0(x1; x2; : : : ; xn)is factorized 	0(x1; x2; : : : ; xn) =Yj<k  (xj � xk): (2)It was shown that the logarithmic derivative of  (x)f(x) =  0(x)= (x) (3)should satisfy the functional equationf(x)f(y) + f(y)f(z) + f(z)f(x) = F (x) + F (y) + F (z);x+ y + z = 0; (4)3



where f(x) (F (x)) is odd (even) functionf(�x) = �f(x); F (�x) = F (x): (5)In [Su 1975], a partial solution of equations (4), (5) was also found.The general solution of equations (4), (5) was found in [Ca 1975] (seealso [OP 1983] for review of this and related problems). This solution hasthe form f(x) = ��(x; g2; g3) + �x; (6)where �(x) is the Weierstrass zeta-function (see for instance [WW 1927]).In the present paper we consider only the three-body problem, but in thegeneral case when all three particles are di�erent from each other.In this case the ground-state wave function has the form	0(x1; x2; x3) =  1(x2 � x3) 2(x3 � x1) 3(x1 � x2) (7)and satis�es the Schr�odinger equation�� 0 + U 0 = E0	0; (8)U = u1(x2 � x3) + u2(x3 � x1) + u3(x1 � x2): (9)Substituting 	0 from (7) into (8), we obtain	�10 �	0 = U �E0 = 3(f21 (x2 � x3) + f22 (x3 � x1) + f23 (x1 � x2))�(f1(x2 � x3) + f2(x3 � x1) + f3(x1 � x2))2+2(f 01(x2 � x3) + f 02(x3 � x1) + f 03(x1 � x2));fj =  0j= j : (10)Hence, for the potential energy U(x1; x2; x3) to have the form of pairinteractions (9), the three functionsf(x) = f1(x); g(y) = f2(y); h(z) = f3(z) (11)must satisfy the functional equation(f(x) + g(y) + h(z))2 = F (x) +G(y) +H(z);x+ y + z = 0: (12)The following expression for the potential energies results from (10){(12).u1(x) = 3f2(x) + 2f 0(x) � F (x) + "1;u2(x) = 3g2(x) + 2g0(x) �G(x) + "2; (13)u3(x) = 3h2(x) + 2h0(x) �H(x) + "3:"1 + "2 + "3 = E04



2. Let us consider the meromorphic solutions of the equation(f(x) + g(y) + h(z))2 = F (x) +G(y) +H(z) (14)satisfying the condition x + y + z = 0.Let us call the solution of Eq. (14) nondegenerate, if the functionsf(x); g(x) and h(x) have the pole in �nite domain of complex x-plane.2. The main result of this paper is the followingTheorem. The general nondegenerate solution of the equation (14) inthe class of meromorphic functions has the formf(x) = ��(x� a1; g2; g3) + �x+ 
1; (15)g(x) = ��(x� a2; g2; g3) + �x + 
2: (16)h(x) = ��(x � a3; g2; g3) + �x+ 
3: (17)F (x) = �2P(x� a1; g2; g3) + 2
��(x� a1; g2; g3) + 13
2: (18)G(x) = �2P(x� a2; g2; g3) + 2
��(x� a2; g2; g3) + 13
2: (19)H(x) = �2P(x � a3; g2; g3) + 2
��(x� a3; g2; g3) + 13
2: (20)where a1 + a2 + a3 = 0 (21)Proof . The proof of the theorem is divided on several steps.Let us begin withLemma 1. The functions (f(x); g(y); h(z)) satisfy equation (14) for thecorresponding functions (F (x); G(y);H(z)) if and only if the equation0@ f 00(x) g00(y) h00(z)f 0(x) g0(y) h0(z)1 1 1 1A = 0 (22)can be solved under condition: x + y + z = 0.5



Proof. Let us apply the operator @� � @@y � @@x , where @� = @@x � @@y toeq.(1). This gives:@@x : 2(f 0(x) � h0(z))(f(x) + g(y) + h(z)) = F 0(x) �H 0(z); (23)@@y @@x : 2h00(z)(f(x) + g(y) +h(z)) +2(f 0 (x)�h0(z))(g0(y)�h0(z)) = H 00(z);(24)@� @@y @@x :h00(z)(f 0 (x)�g0(y))+f 00(x)(g0(y)�h0(z))+g00(y)(h0(z)�f 0(x)) = 0:(25)Here we use the fact that @� is a di�erential operator , and that @�h0(z) =@�h00(z) = 0.Hence, if functions (f(x); g(y); h(z)) satisfy equation (1), then these func-tions satisfy also equation (25), that can be obviously rewritten in the form(22).Conversely, let the functions (f(x); g(y); h(z)) satisfy (22) and, conse-quently, (25). The equation (25) may be rewritten as@�[h00(z)(f(x) + g(y) + h(z)) + (f 0(x) � h0(z))(g0(y) � h0(z))] = 0;then there is a function H1(z) satisfying the following equation:h00(z)(f(x) + g(y) + h(z)) + (f 0(x) � h0(z))(g0(y) � h0(z)) = H1(z) (26)Let us note that eq.(26) is equivalent to the equation@@y [(f 0(x) � h0(z))(f(x) + g(y) + h(z))] = H1(z)Therefore, there are functions F1(x) and H2(z) such that H 02(z) = H1(z),and (f 0(x) � h0(z))(f(x) + g(y) + h(z)) = F1(x) �H2(z): (27)On the other hand, equation (27) is equivalent to@@x (f(x) + g(y) + h(z))2 = 2(F1(x) �H2(z));i. e. there are functions F (x); G(y) andH(z) such that F 0(x) = 2F1(x);H 0(z) =2H2(z), and (f(x) + g(y) + h(z))2 = F (x) +G(y) +H(z):6



Thus Lemma 1 is proved.Lemma 2. Equation (14) is invariant under the following transforma-tions: f(x) ! f0 + a1x + a2f(a3x+ �1);F (x)! F0 + a4x+ a22F (a3x+ �1) + 2a2cf(a3x + �1);g(y)! g0 + a1y + a2g(a3y + �2):G(y)! G0 + a4y + a22G(a3y + �2) + 2a2cg(a3y + �2);h(z)! h0 + a1z + a2h(a3z + �3);H(z)! H0 + a4z + a22H(a3z + �3) + 2a2c � h(a3z + �3);where ak(k = 1; : : : ; 4) and c are free parametersf0 + g0 + h0 = c; F0 +G0 +H0 = c2; �1 + �2 + �3 = 0: (28)This Lemma is proved by a direct calculation.Corollary 3. Taking corresponding values of the parameters �1; �2; �3,one can prove that all the functions(f(x); g(y); h(z)), (F (x); G(y);H(z)) are regular at x = 0; y = 0; z = 0,respectively.The proof follows from the fact that the set of poles of a meromorphicfunction of one complex variable is discrete. Thus in what follows we maysuppose that all the functions are regular at x = 0; y = 0; z = 0.De�nition 4. Let us call the solution of equation (14) degenerate, if atleast one of functions f(x); g(x); and h(x) is linear.The next Lemma describes all the degenerate solutions of equation (14).Lemma 5. Let (f(x); g(y); h(z)); (F (x); G(y);H(z)) is some degener-ate solution of the equation (14).Three cases are possible.1. All three functions f(x); g(y); h(z) are linear. Thenf(x) = f0 + f1x; g(y) = g0 + g1y; h(z) = h0 + h1z;F (x) = F0+F1x+(f1�g1)(f1�h1)x2; G(y) = G0+G1y+(g1�f1)(g1�h1)y2;H(z) = H0 +H1z + (h1 � g1)(h1 � f1)z2Here f0; f1; g0; g1; h0; h1 are free parameters.7



Let f0 + g0 + h0 = c. ThenF0 +G0 +H0 = c2; F1 = b + 2cf1; G1 = b+ 2cg1; H1 = b+ 2ch1and b is a free parameter.2. Two of the functions f(x); g(y); h(z) are linear. For example, it isg(y) = g0 + g1y; h(z) = h0 + h1z. Then f(x) is an arbitrary function,g(y) = g0 + ay; h(z) = h0 + az; G(y) = G0 + by; H(z) = H0 + bz andF (x) = [g0 + h0 � ax + f(x)]2 � (G0 +H0 � bx):Here g0; h0; a; b;G0;H0 are free parameters.3. Only one of the functions f(x); g(y); h(z) is linear. For example,h(z) = h0 + h1z. Thenf(x) = f0+ax+c1 exp(�x); g(y) = g0+ay+c2 exp(�y); h(z) = h0+az;F (x) = F0 + bx + c1 exp(�x)(2c + c1 exp(�x));G(y) = G0 + by + c2 exp(�y)(2c + c2 exp(�y));H(z) = H0 + bz + 2c1c2 exp(��z):Here a; b; c; c1; c2; � are free parameters, andf0 + g0 + h0 = c; F0 +G0 +H0 = c2:Proof.Case 1. It follows from (22) that f(x); g(y); h(z) are arbitrary linearfunctions. A form of the functions F (x); G(y);H(z) can be reconstructeddirectly from (14), taking into account the identity 2xy = z2 � x2 � y2.Case 2 . We obtain from (22)f 00(x)(g1 � h1) = 0If f 00(x) 6= 0, then g1 = h1 and f(x) is arbitrary. The form of the func-tions F (x); G(y);H(z) can be reconstructed immediately.Case 3 . We get from (24):2(f 0(x) � h1)(g0(y) � h1) = H 00(�x � y):8



If f 0(x) and g0(y) are not constants, then according to the classicalCauchy{Pexider result [Ca 1821] (see also [Ab 1823]) we obtain:f 0(x) � h1 = ~c1 exp(�x); g0(y) � h1 = ~c2 exp(�x):where ~c1; ~c2 and � are free parameters.Thereforef(x) = f0 + h1x + c1 exp(�x); g(y) = g0 + h1y + c2 exp(�y);where ck = ~ck=�; k = 1; 2: The form of the functions F (x); G(y);H(z) canbe reconstructed easily. The Lemma is proved.The functions f(x); g(x); h(x) from eq. (1), will considered as nondegen-erate solutions of eq. (1).Lemma 6. On choosing the appropriate values of the parameters f0; g0; h0; a1; F0; G0(see Lemma 2) we obtainf(0) = g(0) = h(0) = 0; h0(0) = 0; F (0) = G(0): (29)The proof is easy.Lemma 7. An appropriate choice of the parameters �1 and �2 leads tothe relation f(x) 6= g(x).Proof. Suppose on the contrary thatf(x + �1) � f(�1) � g(x + �1)� g(�2) (30)for all �1 and �2 in any neighbourhood of the point x = 0 . On di�erentiating(30), we obtain @f(x + �1)@x = @f(x + �1)@�1 = f 0(�1);i. e. f(x + �1) = f 0(�1)x + f(�1):in contradiction to the assumption about the nondegeneracy of the solution.The Lemma is proved.Hence, it is su�cient to �nd all the nondegenerate solutions of eq. (1)under the following additional conditions: f(x) 6= g(x) and f(0) = g(0) =h(0); h0(0) = 0; F (0) = G(0) = 0:9



Then, using the transformations from Lemma 2 we obtain the generalnondegenerate solution. In what follows only the nondegenerate solutions of(14) satisfying the above additional conditions will be considered.Interchanging x and y in eq. (14), we obtain(f(y) + g(x) + h(z))2 = F (y) +G(x) +H(z): (31)'(x+ y) = �(x) + �(y)� 
(x) � 
(y)�(x) � �(y) ; (32)where '(0) = '0(0) = �(0) � 
(0) = �(0) = 0 and '00(x) 6= 0:De�nition 8. Let us call solution ('; �; �; 
) of the equation (32) nor-malized, if the following initial conditions are satis�ed:�0(0) = 1; �0(0) = 0:Lemma 9. The map('; �; �; 
)! ('; � + b1�; b2�; b2(
 + b1�2)); (33)where b1 and b2 are parameters, b2 6= 0, de�nes a group action. Each orbitof this group contains one and only one solution.Proof. The �rst statement may be checked by a direct computation. Toproof the second statement, let us di�erentiate eq. (32) with respect to y.At the point y = 0 we have:'0(x) = �0(0) + 
0(0)�(x) � �0(0) 
(x)�(x)2 ;Assuming '(x) is regular at x = 0 and '00(x) 6= 0, it is easy to check that�0(0) 6= 0.Applying the transformation (33) with b2 = (�0(0))�1; b1 = ��0(0)=�0(0)to the solution ('; �; �; 
), we obtain a normalized solution, and the Lemmais proved.In what follows solutions are assumed to be normalized, unless the con-trary is asserted. Let us now consider the functional equation'(x+ y) = '(x) + '(y) + � (x)� (y)A(x + y);10



'(0) = '0(0) = � (0) = � 00(0) = 0; � 0(0) = 1: (34)Lemma 10. For any solution ('; �; �; 
) of the eq. (32), there is a uniquesolution ('; �;A) of the eq. (34) such that�(x) = � (x)� 0(x) � b3� (x) ; (35)�(x) = '(x) � '0(x)�(x); (36)
(x) = �'0(x)�(x)2 ; (37)where b3 = �00(0) is a free parameter.Proof. Let ('; �;A) is some solution of the eq. (34). Then acting on(34) by the operator @� = ( @@x � @@y ) we obtain0 = '0(x) � '0(y) + (� 0(x)� (y) � � (x)� 0(y))A(x + y);i. e. A(x + y) = � '0(x) � '0(y)� 0(x)� (y) � � (x)� 0(y) : (38)Hence, we transform the eq. (34) to the equation'(x + y) = '(x) + '(y) + � (x)� (y) '0(x) � '0(y)� (x)� 0(y) � � 0(x)� (y) : (39)On the other hand,� (x)� (y)� (x)� 0(y) � � 0(x)� (y) = � (x)� 0(x) � (y)� 0(y) 1( �(x)� 0(x) � b3)� ( �(y)� 0(y) � b3) = �(x)�(y)�(x) � �(y) ;where the function �(x) may be expressed in terms of � (x) by the formula(35) with a free parameter b3.Therefore,'(x+ y) = '(x) + '(y) + �(x)�(y)'0(x) � '0(y)�(x) � �(y) :On substituting the expressions for �(x) and 
(x) from (36) and (37) weobtain a solution ('; �; �; 
) of the eq. (32).11



Let now ('; �; �; 
) be a solution of eq. (32). On substituting y = 0 ineq. (32) we obtain '(x) = �(x) � 
(x)�(x) ;i.e. 
(x) = �(x)�(x), where �(x) = �(x) � '(x), and our initial conditions'0(0) = �0(0) = 0 = '(0) = �(0) are satis�ed.Hence, 
0(0) = 0, and from the formula for '0(x) obtained in the courseof the proof of Lemma 9 we have
(x) = �'0(x)�2(x);�(x) = '(x) � '0(x)�(x);as asserted in (36) and (37). Let us note that formula (35) may be consideredas the di�erential equation for the function � (x). Solving this equationat initial conditions � (0) = 0; � 0(0) = 1 we obtain the function � (x), if,moreover, we take b3 = �00(0) it will satisfy the condition � 00(0) = 0:Substituting now the expressions for �(x); �(x); 
(x) into eq. (32) weobtain eq. (39).Let us apply the operator @� to the eq. (39); we obtain@�( '0(x) � '0(y)� (x)� 0(y) � � 0(x)� (y) ) � 0:Thus it is shown that the functions '(x) and � (x) determine the functionA(x) given by the expression (38). The Lemma is proved.So it was shown, how it is possible to construct all the solutions of theeq. (32) using the solutions of eq. (32).Now we describe the general analytical solution of equation (14).Lemma 11. Let ('; �;A) be a solution of equation (34). (Let us remindthat '(0) = '0(0) = � (0) = � 00(0) = 0 and � 0(0) = 1.) Then the functionu(x) = '0(x) is a solution of the equation(u0)2 = c3u3 + 4c2u2 + 2c1u+ c20;u(0) = 0; u0(0) = c0; (40)and if c0 = 0 then c1 6= 0.The functions � (x) and A(x) satisfy the following equations:� 0(x)� (x) = 12 u0(x) + c0u(x) ; (41)12



A0(x)A(x) = 12 u0(x) � c0u(x) : (42)If c0 = 0 then u(x) = c12 � (x)2, and A(x) = c12 � (x).Proof. Let us consider the �rst three derivatives with respect to y ofthe eq. (34)'0(x + y) = '0(y) + � (x)[� 0(y)A(x + y) + � (y)A0(x + y)];'00(x+ y) = '00(y) + � (x)[� 00(y)A(x+ y) +2� 0(y)A0(x+ y) + � (y)A00(x+ y)];'000(x+y) = '000(y)+� (x)[� 000(y)A(x+y)+3� 00(y)A0(x+y)+3� 0(y)A00(x+y)+� (y)A000 (x+y)]:Taking y = 0 and making use of the initial conditions for '(x) and � (x),we obtain '0(x) = � (x)A(x); (43)'00(x) = '00(0) + 2� (x)A0(x); (44)'000(x) = '000(0) + � (x)[� 000(0)A(x) + 3A00(x)]: (45)Let 'k = '(k)(0) and �3 = � 000(0). >From (43) and (44) we obtain'00(x) � '2'0(x) = 2 A0(x)A(x) ; (46)from (45) and (43) it follows that'000(x) � '3'0(x) = �3A(x) + 3A00(x)A(x) : (47)Making use of the identityA00A = (A0A )0 + (A0A )2for the quantity '0(x) = u(x), we obtain the following equation (see eq. (46),(47)): u00 � '3u = �3 + 3(12 u0 � '2u )0 + 34 (u0 � '2u )2:This equation may be rewritten as follows:4(u00 � '3)u = 4�3u2 + 6[uu00 � u0(u0 � '2)] + 3(u0 � '2)2;2uu00 � 3(u0)2 + 4�3u2 + 4'3u+ 3'22 = 0: (48)13



Let �3 = c2; '3 = c1; '2 = c0:The equation (48) admit the integrable factor u�4u0 and may be reduced tothe equation (u�3(u0)2)0 = 4c2(u�1)0 + 2c1(u�2)0 + c20(u�3)0: (49)Integrating (49) and multiplying the result by u3 we obtain eq. (40), wherec3 is the integration constant. Equation (42) follows from (46). Then fromeq. (43) we obtain: u0(x) = � 0(x)A(x) + � (x)A0(x):It follows from (44) that � (x)A0(x) = u0(x) � c02Making use of this fact, we obtain� 0(x)A(x) = u0(x) + c02 :Let us divide this eq. to eq.(43) : � (x)A(x) = u(x) we come to theequation (41). Note that if c0 = 0 equations (41),(42), and conditions � (0) =0; � 0(0) = 1 imply u(x) = c12 � (x)2; A(x) = c12 � (x);and it follows, in particular, that c1 6= 0 if c0 = 0. The Lemma is proved.Consider the Weierstrass function }(x) with parameters g2 and g3. Wehave }0(x)2 = 4}(x)3 � g2}(x) � g3:Lemma 12. The general solution of the equation (40) may be written inone of the following equivalent forms:u(x) = 4c3 (}(x + �) � }(�)); (50)u(x) = c1 (x) + c20c32  (x)2 + c0 0(x); (51)14



where  (x) = 12 1}(x) � 13c2 (52)Here }(x) is the Weierstrass function with parameters:g2 = 3(2c23 )2 � c1c32 ; g3 = �(2c23 )3 + c1c2c36 � (c0c34 )2; (53)and }(�) = c23 ; }0(�) = c0c34 :Proof. Formula (50) gives:(u0(x))2 = 16c23 [4}(x + �)3 � g2}(x + �)� g3]:On the other hand,(u0(x))2 = c3[ 4c3 (}(x+�)�}(�))]3+4c2[ 4c3 (}(x+�)�}(�)]2+2c1[ 4c3 (}(x+�)�}(�))]+c20:Hence 16[4}(x+ �)3 � g2}(x + �)� g3] =43[}(x+�)�}(�)]3+43c2[}(x+�)�}(�)]2+8c1c3[}(x+�)�}(�)]+c20c23:Let us compare the coe�cients of the terms of the same degree in }(x+�).This shows that formula (50) with parameters g2, g3 follows from (53). Todeduce (51) from (50) one makes use of the addition theorem for the }-function (cf., e.g., [WW 1927]).}(x + �)� }(�) = �(}(x) + 2}(�)) + 14(}0(x) � }0(�)}(x) � }(�) )2:therefore(}(x+�)�}(�))(}(x)�}(�))2 = �(}(x)+2}(�))(}(x)2�2}(x)}(�)+}(�)2)+14(4}(x)3 � g2}(x) � g3 � 2}0(x)}0(�) + }0(�)2) =3}(x)}(�)2 � 2}(�)3 � g24 }(x) � 14g3 � 12}0(x)}0(�) + (}0(�)2 )2 =(3}(�)2 � 14g2)(}(x) � }(�)) � 12}0(x)}0(�) + }0(�)22 :15



Hence,}(x+�)�}(�)� 12 }0(x)(}(x) � }(�))2}0(�)+ 3}(�)2 � 14g2}(x) � }(�) + 12( }0(�)}(x) � }(�) )2:(54)This gives: }0(�) = c0c34 ; 3}(�)2 � 14g2 = c1c38 :Formula (51) follows from eq.(54) on dividing by 14c3. The Lemma isproved.Corollary 13. The general solution of eq. (40) takes the shapeu�(x) = c1(cosh 2pc2x� 1(2pc2)2 ) + c0 sinh2pc2x2pc2 : (55)as c3 ! 0.Proof. Letu�(x) = limc3!1u(x);  �(x) = limc3!0 (x); }�(x) = limc3!0}(x):By Lemma 12, the function }�(x) satis�es the equation(}0�(x))2 = 4}�(x)3�3(2c23 )2}�(x)+(2c03 )3 = 4(}�(x)� c23 )2(}�(x)+ 23c2):Therefore( 0�(x))2 = 14 ( �}0�(x)(}�(x) � 13c2)2 )2 = }�(x) + 23c2(}�(x) � 13c2)2 = 2 �(x) + 4c2 �(x)2:(56)Di�erentiating (56) with respect to x, one obtains 00� (x) = 4c2 �(x) + 1; �(0) = 0; 0�(0) = 0:Therefore  �(x) = cosh 2pc2x� 1(2pc2)216



In view of (51), it follows thatu�(x) = c1 �(x) + c0 0�(x):The Lemma 13 is proved.Note that according to the Lemma 11, if the functions ('; �;A) satisfyequation (14) then the function � (x) is determined uniquely by the equation� 0(x)� (x) = 12 u0(x) + c0u(x) ;subject to the initial conditions � (0) = 0; � 0(0) = 1, and the function A(x)is determined by the equation (43):A(x) = u(x)� (x) :Hence we may reqard the functions '(x) as solutions of the equation (14).Theorem 14. The general solution of the equation (14)'(x+ y) = '(x) + '(y) + � (x)� (y)A(x + y)is given by the function'(x) = 4c3 (�(�) � �(x+ �) � }(�)x);'(0) = '0(0) = 0where �(x) and }(x) are the Weierstrass �-function and }-function with theparameters g2 and g3 ( see Lemma 12).Proof. According to the Lemmas (11) and (12) it is su�cient to provethat any function '(x) given by the formula (57) is a solution of equation(14). It is convenient to consider two di�erent cases.Case 1. c3 = 0: '�(x) = limc3!0'(x)In this case '�(x) = R10 u�(x)dx and hence, using the Corollary 13,weobtain '�(x) = c1 sinh2pc2x � 2pc2x(2pc2)3 + c0 cosh 2pc2x � 1(2pc2)2 : (58)17



Using the elementary identity(e(x+y) � 1) = (ex � 1) + (ey � 1) + (e x2 � e�x2 )(e y2 � e�y2 )e x+y2 : (59)we obtainsinh2pc2(x+y) = sinh2pc2x+sinh 2pc2y+4 sinhpc2x sinhpc2y sinhpc2(x+y);cosh 2pc2(x+y) = cosh2pc2x+cosh2pc2y+4 sinhpc2x sinhpc2y coshpc2(x+y)Hence '�(x + y) = '�(x) + '�(y) + ��(x)��(y)A�(x + y);where��(x) = sinhpc2xpc2 ; A�(x) = c12 sinhpc2xpc2 + c0 coshpc2x: (60)Case 2. c3 6= 0.Then without any restriction we may take C3 = 2. According to Frobenius-Stickelberger formula [FS 1880] the functions f(x); g(y); h(z) are the solutionthe eq. (1): f(x) = �(�1 � �2 � x) � 
(�)x� �(�1 � �2 ); (61)g(y) = �(��1 � �2 � y) � 
(�)y + �(�1 + �2 ); (62)h(z) = �(�� z) � 
(�)z � �(�): (63)Using the considered above reduction of the (1) to the eq.(14) we obtain'(x) = �2h(�x) = 2(�(�) � �(x + �)� 
(�)x)that gives the solution of eq. (14). The theorem is proved.Corollary 15. The general normalized solution of eq. (12) is given bythe formulae '(x) = 4c3 (�(�) � �(x+ �)� 
(�)x);18



�(x) = 2u(x)c0 � 2b3u(x) + u0(x) ; (64)where u(x) = '0(x) = 4c3 (}(x + �)� }(�)) and b3 is free parameter.�(x) = '(x) � '0(x)�(x);
(x) = �'0(x)�(x)2 :The proof is follows from the theorem 14, formula (61) and Lemma 10.Let us remind that at the proof of Lemma 10 we will give the explicit con-struction of the solution eq. (12) on the solution of eq. (14).So,it was proved already that if (f(x); g(y); h(z)) is the nondegeneratesolution of eq. (1) with additional conditionsf(x) = g(x): f(0) = g(0) = h(0) = h0(0): (65)than it is necessary thath(x) = 2c3 (�(�� x) � 
(�)x � �(�)); (66)where c3; � and the parameters g2; g3 of the }- Weierstrass function shouldsatisfy the condition of the Lemma (12). Moreover, if c3 6= 0, then for thefunctions f(x) = 2c3 (�(�1 � �2 � x) � 
(�)x� �(�1 � �2 )); (67)g(x) = 2c3 (�(��1 � �2 � x) � 
(�)x + �(�1 + �2 )); (68)where � is free parameter, the function h(x) of type (66) is given the solutionof eq. (1). Hence, there are two unsolved problems.1. Does the functions f(x) and g(x) at c3 6= 0 are unique functions,which give the solution of eq. (1) at �xed function h(x)?2. To �nd the su�cient conditions at c3 = 0 on the parameters of thefunction h�(x) = limc3!0 h(x), that there are the functions f(x) and g(x),such that (f(x); g(x); h� (x)) are the solution of the equation (1) and to �ndall such functions (f(x); g(x)).Let us note, that at the case c3 = 0 the main problem is that we cannotconsider the limit c3 ! 0 at the formulae (67),(68) (in the distinction offunction (66)). 19



To solve these two problems we will consider �rst the reduction of theeq. (1) to the eq. (12) and will use the general analytic solution of eq. (12)(see Lemma 9 and Corollary 15).Let us begin to the consideration of the case c3 6= 0.Lemma 16. Let the functions (f1(x); g1(x); h1(x)) satisfy the equation(1) and the initial conditions under cinsideration. Then, if h1(x) = H(x) isthe function from eq. (66), thenf1(x) = s1f(x) + s2g(x); (69)g1(x) = t1f(x) + t2g(x); (70)where f(x) and g(x) are given by eqs. (47) and (48), and s1+s2 = 1; t1+t2 =1. Proof.For the functions, given by eqs. (47) and (48) we have:�(x) = f(x)�g(x) = 2c3 [�(�1��2�x)+�(�1+�2 +x)��(�1��2 )��(�1+�2 )]:(71)Then �0(x) = 2c3 [
(�1 � �2 � x) � 
(�1 + �2 + x)];�00(x) = 2c3 [�
0(�1 � �2 � x) � 
0(�1 + �2 + x)]We have that if the quantities � and �1 are su�ciently close to the pointx = 0, then �0(0) 6= 0, and the quantity �00(0) gives the free parameter b3to construct the general normalized solution of eq. (12). Therefore, in thiscase the general solution of the equation has the form'(x) = �2h(�x); �(x) + b1�(x); b2�(x)where h(x) is the function (46), �(x) is the function (49) and �(x) = f(x) +g(x) for the functions (47) and (48).Let us introduce nowf1(x) + g1(x) = �(x) + b1�(x);f1(x) � g1(x) = b2�(x);we have f1(x) = 12�(x) + b1 + b22 �(x) = s1f(x) + s1g(x);20



g1(x) = 12�(x) + b1 � b22 �(x) = t1f(x) + t2g(x);wheres1 = 12 + b1 + b22 ; s2 = 12 � b1 + b22 ; t1 = 12 + b1 � b22 ; t2 = 12 � b1 � b22The Lemma is proved.Now we need just �nd the values of parameters s1 and t1, for which theset of functions (f1(x); g(x); h(x)) from the Lemma 16 gives the solution ofeq. (1).Let us introduce the notationdet(f; g; h) = 0@ f 00(x) g00(y) h00(z)f 0(x) g0(y) h0(z)1 1 1 1Aand let us use the following formula (see [WW 1927], p.458)12 det(}(x); }(y); }(z)) = �(x + y + z)�(x � y)�(y � z)�(z � x)�3(x)�3(y)�3(z)If the conditions of the Lemma 16 are sutis�ed, we havedet(s1f(x) + s2g(x); t1f(x) + t2g(x); h(z)) =s1t1 det(f(x); f (y); h(z)) + s2t2 det(g(x); g(y); h(z)) (72)Therefore,c338 det(f(x); f (y); h(z)) = c338 det(}(�1� �2 �x); }(�1� �2 �y); }(��z))= c334 �(2�1)�(y � x)�(z � y + �1 � 32�)�(x � z + 32�� �1)�3(�1 � �2 � x)�3(�1 � �2 � y)�3(� � z) ; (73)c338 det(g(x); g(y); h(z)) = c38 det(}(��1��2�x); }(��1��2�y); }(�1�2)= c334 �(2�1)�(y � x)�(y � z + �1 + 32�)�(x � z + �1 + 32�)�3(�1 + �2 + x)�3(�1 + �2 + y)�3(� � z) : (74)Comparison of expressions (71) and (72) shows that if �1 = !k is theone of the three halfperiods of the Weierstrass-function }(x), then det ( ),21



given by the formula (70) is equal to zero identically for any values s1 andt1. If, however, �1 6= !k; k = 1:2:3, then the det is equal to zero if and onlyif s1 = t1 = 0.Let us consider now the case c3 = 0.The general normalized solution in this case is given by the function (78).Let us denote'��(x) = limc2!0'�(x); ���(x) = limc2!0 ��(x); A��(x) = limc2!0A�(x)>From (78) we obtain '��(x) = c1x33! + c0x22 ; (75)and according to the formulae (40) we have���(x) = x; A��(x) = c1x2 + c0:We have: ���(x) = x1� b3x; (76)���(x) = c1x33! + c0x22 � (c1x22 + c0x) x1 � b3x : (77)Hence, the general solution of the equation (12) is given by the functions'��(x); ��� + b1���; b2���:AcknowledgementsOne of authors ( A.P.) would like to thank Erwin Schr�odinger Institutefor warm hospitality.
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