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Abstract

In the present paper we give the general nondegenerate solution of the
functional equation

(F(x) +9(y) + h(2))* = F(z) + G(y) + H(z),

r4+y+2=0,

which is related to the exact factorized ground-state wave function for the
quantum one-dimensional problem of three different particles with pair in-
teraction.



Functional equations connecting several functions and admitting a gen-
eral analytic solution have recently attracted much attention of mathemati-
cians and also physicists (for recent researches see for example [BC 1990],

[BP 1993], [BK 1993], [BFV 1994]).

In modern mathematical physics such equations arise in considerations
of integrable systems of classical and quantum mechanics (for review see for

example [Pe 1990], [OP 1983]).

In the present paper we investigate one such equation. Namely, we in-
vestigate the functional equation connecting six unknown functions

(f(z) +g(y) + h(2))* = F(x) + Gly) + H(=), (1)

r+y+z2=0,

which generalize the well-known Frobenius—Stickelberger equation [F'S 1880]
and is related to the exact factorized ground-state wave function for the
quantum one-dimensional problem of three different particles with pair in-
teraction. We give the general nondegenerate solution of this equation.

1 Let us recall first that an analogous (but simpler) equation for the spe-
cial case of three identical particles was considered earlier by B. Sutherland

[Su1975]] and F. Calogero [Ca 1975]. Namely, in the paper [Su 1975] the one-

dimensional many-body problem of n identical particles with pair interaction

was considered, whose exact ground-state wave function Wo(xy,22,...,2y)
is factorized
Uo(a1, 22, an) = [ vle; —p). (2)
1<k

It was shown that the logarithmic derivative of ()
flz) =)' (x) /() (3)
should satisfy the functional equation
F@)f(y) + F(9)f(2) + f(2)f(2) = F(x) + F(y) + F(2),
r+y+2z=0, (4)
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where f(z) (F(x)) is odd (even) function

fl=z) = =f(z), F(-z)=F(x). (3)
In [Su 1975], a partial solution of equations (4), (5) was also found.
The general solution of equations (4), (5) was found in [Ca 1975] (see

also [OP 1983] for review of this and related problems). This solution has
the form

f@) = aC(z; 92, 95) + B, (6)
where ((2) is the Weierstrass zeta-function (see for instance [WW 1927]).

In the present paper we consider only the three-body problem, but in the
general case when all three particles are different from each other.

In this case the ground-state wave function has the form

o(wr, w2, w3) = h1(w2 — w3 )a(ws — 21 )ibs(a1 — 22) (7)

and satisfies the Schridinger equation
—Atpg + Uthg = EyPy, (8)
U=u(xs —a3) + us(ws —x1) + us(x1 — x3). (9)

Substituting ¥y from (7) into (8), we obtain
ViAW = U — Ey = 3(f{ (22 — 23) + fi (w3 —a1) + f5 (21 — 22))
—(filxs —a3) + falxs —a1) + fo(ar — 22))°
+2(fi(z2 —23) + fo(es — 1) + fi(zr — x2));
fi =5 /;. (10)

Hence, for the potential energy U(xy,x2,x3) to have the form of pair
interactions (9), the three functions

fz) = fu(x),  g(y) = faly),  h(z) = fs(z) (11)
must satisfy the functional equation
(f(x) +g(y) + h(2))" = F(z) + Gly) + H(2),
r+y+z2=0. (12)

The following expression for the potential energies results from (10)—(12).
ur(2) = 3f%(2) + 2f'(x) = F(x) + 1,
us(2) = 3¢°(2) +2¢'(x) — G(2) + e2, (13)
us(x) = 3h2(:1;) + 2h'(:1;) — H(x) + e3.
€1+¢e2+e3=Ey



2. Let us consider the meromorphic solutions of the equation

(f(@) + g(y) + 1(2))* = F(x) + G(y) + H(2) (14)
satisfying the condition x + y + z = 0.

Let us call the solution of Eq. (14) nondegenerate, if the functions
f(x),g(x) and h(x) have the pole in finite domain of complex z-plane.

2. The main result of this paper is the following

Theorem. The general nondegenerate solution of the equation (14) in
the class of meromorphic functions has the form

flz) = af(z — a1;92,93) + B + 7, (15)

9(x) = al(x — az; g2, 93) + B + 72 (16)

W) = a(x — az; g2, 93) + B + 7. (17)
1

F(l‘) = 05273(1' — G1;92,g3) + 2’70[C($ — a1;927g3) + 572 (18)
1

G(l’) = 05273(1' — a2;927g3) + 2’70[C($ — Cl2;g27g3) + 572 (19)
1

H(l’) = 05273(1' — G3;92,g3) + 2’70[C($ — a3;92793) + 572 (20)

where
a1 +az +as =0 (21)

Proof . The proof of the theorem is divided on several steps.

Let us begin with

corresponding functions (F(x),G(y), H(z)) if and only if the equation

fl/(x) gll(y) h”(Z)
fl(z) ¢'(y) R(2) | =0 (22)
1 1 1

Lemma 1. The functions (f(x),g(y), h(z)) satisfy equation (14) for the

can be solved under condition: v +y + z = 0.
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Proof. Let us apply the operator 0_ - a% . %, where 0 = % — a% to

eq.(1). This gives:

%‘ 2f'(x) = W'(2))(f(x) +9(y) + h(z)) = F'(x) = H'(z),  (23)

8%6%‘ 20" (2)(f(x) + g(y) + h(2)) +2(f' (2) = ' (2))g'(y) = h'(2)) = H" (=),
(24)

a_a%a%‘ R (2)(f (@) =g" ()" (2)(g' (y)=h'(2)+g" (y) (W ()= f'(2)) = 0.
(25)

Here we use the fact that 0_ is a differential operator , and that _h'(z) =
0_h"(z)=0.

Hence, if functions (f(x), g(y), h(z)) satisfy equation (1), then these func-
tions satisfy also equation (25), that can be obviously rewritten in the form

(22).

Conversely, let the functions (f(x),g(y), h(z)) satisfy (22) and, conse-
quently, (25). The equation (25) may be rewritten as

O_[A"(2)(f(x) + g(y) + h(2)) + (f'(x) = K (2)(g'(y) = B'(2))] = 0;

then there is a function Hy(z) satisfying the following equation:

W' (2)(f(@) + 9(y) + h(2)) + (f'(x) = h'(2))(g"(y) = 1'(2)) = Hi(z)  (26)

Let us note that eq.(26) is equivalent to the equation

0

a—y[(f'(w) = W) (f(x) + g(y) + h(=))] = Hi(2)

Therefore, there are functions Fy(«) and Ha(z) such that Hi(z) = Hy(2),

and

(f'(x) = B'(2))(f(x) + g(y) + h(2)) = Fi(x) — Ha(z). (27)
On the other hand, equation (27) is equivalent to

() 4 al) + (=) = 2 Fy(e) — Ho(2))

i. e. there are functions F(x), G(y) and H(z) such that F'(x) = 2F(x), H'(z)
2H5(z), and

(F(x) +9(y) + h(2))* = F(z) + G(y) + H(z).
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Thus Lemma 1 is proved.

Lemma 2. Equation (14) is invariant under the following transforma-

trons:
flz) = fo+ax+axflaze + ay),
F(z) = Fy + asx + agF(ag:L' + a1) + 2azef(asx + aq),
9(y) = go + a1y + azg(asy + az).
G(y) — Go + asy + a3G(azy + a2) + 2azcg(azy + az),
h(z) — ho + a1z + azh(asz + as),
H(z)— Ho+asz+ a%H(agz + as) + 2azc - hlazz + as),
where ap(k=1,...,4) and ¢ are free parameters
fotgot+ho=c, Fo+Go+Hy=c", a1+az+asz=0. (28)

This Lemma is proved by a direct calculation.

Corollary 3. Taking corresponding values of the parameters aq,as, g,
one can prove that all the functions

(f(x),9(y),h(2)), (F(x),G(y),H(z)) are regular at « = 0,y = 0,z = 0,

respectively.

The proof follows from the fact that the set of poles of a meromorphic
function of one complex variable is discrete. Thus in what follows we may
suppose that all the functions are regular at + = 0,y = 0,2z = 0.

Definition 4. Let us call the solution of equation (14) degenerate, if at
least one of functions f(x),g(x), and h(x) is linear.

The next Lemma describes all the degenerate solutions of equation (14).

Lemma 5. Let (f(x),¢(y),h(2)), (F(x),G(y),H(z)) is some degener-
ate solution of the equation (14).

Three cases are possible.
1. All three functions f(x),¢(y), h(z) are linear. Then

f(x):fO‘l’fll', g(y):go—l_glyv h(Z):hO—I_hlZv
F(z) = Fp+Fia+(fi—g)(fi—h)a?,  Gly) = Go+Gry+(gi—fi)(g1 —T)y?,
H(z) = Ho+ Hiz + (h1 — g1)(h1 — f1)2°
Here fo, f1, 90,91, ho, h1 are free parameters.
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Let fo + go + ho = ¢. Then
Fo+Go+Hy=¢" Fi=b+2cfi, Gi=b+2cqi, Hi=0b+2ch
and b is a free parameter.

2. Two of the functions f(x),g(y), h(z) are linear. For example, it is
g(y) = g0 + 1y, h(z) = ho + h1z. Then f(x) is an arbitrary function,
g(y) =90+ ay, h(z)=ho+az, Gy)=Go+by, H(z)= Hy+ bz and

F(x) = [go + ho — ax + f(2)]* — (Go + Hy — ba).
Here g¢, ho,a,b, Gy, Hy are free parameters.

3. Ounly one of the functions f(x),¢(y),h(z) is linear. For example,
h(z) = ho 4+ h1z. Then

f(x) = fo+ax+ciexp(Az), g(y) = go+ay+caexp(Ay), h(z) = ho+az,

F(x) = Fy 4 bz + ¢y exp(Az)(2¢ + ¢1 exp(Ax)),
G(y) = Go + by + c2 exp(Ay)(2¢ + ez exp(Ay)),
H(z) = Hy+ bz + 2ci1c2 exp(—Az).

Here a, b, ¢, cq,cq, A are free parameters, and

fo+ g0+ ho =c, Fy+Go+ Hy =2

Proof.

Case 1. It follows from (22) that f(x),¢(y),h(z) are arbitrary linear

functions. A form of the functions F(x),G(y), H(z) can be reconstructed

directly from (14), taking into account the identity 22y = 2% — 2% — y2.

Case 2 . We obtain from (22)

(@) g1 =) =0

If f(x)# 0, then g1 = hy and f(x) is arbitrary. The form of the func-
tions F(x),G(y), H(z) can be reconstructed immediately.

Case § . We get from (24):
2(f'(w) = ha)(g'(y) = ha) = H" (=2 — y).
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If f'(¢) and ¢'(y) are not constants, then according to the classical

Cauchy—Pexider result [Ca 1821] (see also [Ab 1823]) we obtain:
fl(x) — hy = érexp(Az), ¢'(y) — h1 = caexp(Aa).
where é1,¢é2 and A are free parameters.

Therefore

f(z) = fo+ hiz +crexp(Az), g(y) = go + hiy + c2 exp(Ay),

where ¢ = ¢x/\, k = 1,2. The form of the functions F(x),G(y), H(z) can

be reconstructed easily. The Lemma is proved.

The functions f(x),g(x), h(z) from eq. (1), will considered as nondegen-
erate solutions of eq. (1).

Lemma 6. On choosing the appropriate values of the parameters fo, go, ho, a1, Fo, G
(see Lemma 2) we obtain

£(0) = g(0) = h(0) =0, K(0)=0, F(0)=G(0). (20)

The proof is easy.

Lemma 7. An appropriate choice of the parameters oy and ao leads to

the relation f(x) # g(x).
Proof. Suppose on the contrary that
flz +a1) = flon) = g(w + a1) — g(az) (30)

for all a; and «a in any neighbourhood of the point + = 0. On differentiating
(30), we obtain

Iflr+aon) _ Of(etar)
8:1; N 8@1 N f (051)7

flea+a1)= f’(Oél)l' + flay).

in contradiction to the assumption about the nondegeneracy of the solution.
The Lemma is proved.

Hence, it is sufficient to find all the nondegenerate solutions of eq. (1)
under the following additional conditions: f(z) # ¢(x) and f(0) = ¢(0) =
h(0), R'(0)=0, F(0)=G(0)=0.
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Then, using the transformations from Lemma 2 we obtain the general
nondegenerate solution. In what follows only the nondegenerate solutions of
(14) satisfying the above additional conditions will be considered.

Interchanging @ and y in eq. (14), we obtain

(f(y) +g(x) + h(2))* = Fly) + G(x) + H(z). (31)
N T Bt 1)

where £(0) = ¢'(0) = 7(0) = 7(0) = £(0) = 0 and " (2) # 0.

Definition 8. Let us call solution (v,n,€,7v) of the equation (52) nor-
malized, if the following initial conditions are satisfied:

Lemma 9. The map

(.0,6,7) = (0.0 + b1&, 026, ba(y + b1E7)), (33)

where by and by are parameters, by # 0, defines a group action. Each orbit
of this group contains one and only one solution.

Proof. The first statement may be checked by a direct computation. To
proof the second statement, let us differentiate eq. (32) with respect to y.
At the point y = 0 we have:

Assuming ¢(x) is regular at * = 0 and ¢"(x) # 0, it is easy to check that
£'(0) #0.

Applying the transformation (33) with by = (£'(0))™1, 51 = —/(0)/£'(0)
to the solution (¢,n,&,7), we obtain a normalized solution, and the Lemma

is proved.

In what follows solutions are assumed to be normalized, unless the con-
trary is asserted. Let us now consider the functional equation

oz +y) =)+ oly) + ()7 (y) Az +y),
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p(0) = ¢'(0) =7(0) =7"(0) =0, 7'(0)=1. (34)

Lemma 10. For any solution (p,n,£,v) of the eq. (32), there is a unique
solution (@, 7, A) of the eq. (34) such that

_ ()
o) = (z) — by7(z)’ (35)
n(z) = e(x) — ¢'(x)é(x), (36)
Yz) = —¢'(2)(2)*, (37)

where by = £"(0) s a free parameter.

Proof. Let (¢, 7,A4) is some solution of the eq. (34). Then acting on

(34) by the operator 0_ = (% — a%) we obtain

0=¢'(x) = ¢'(y) + (r'(2)7(y) = 7(x)7"(y)) Az +y),

o e P W)
A = ) = e ) 39
Hence, we transform the eq. (34) to the equation
P ) = o) )+ 7 ()rly) ) ) (39)

On the other hand,

where the function £(x) may be expressed in terms of 7(x) by the formula
(35) with a free parameter bs.

Therefore,

. e 2 = ')
plety) = ol@) +oly) + W) =,y

On substituting the expressions for n(x) and v(x) from (36) and (37) we
obtain a solution (¢,n,&,v) of the eq. (32).
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Let now (¢,n,€,7) be a solution of eq. (32). On substituting y = 0 in
eq. (32) we obtain

le. v(x) = &(x)d(x), where 6(x) = n(x) — ¢(x), and our initial conditions
©'(0) =n'(0) =0 = ¢(0) =n(0) are satisfied.

Hence, v'(0) = 0, and from the formula for ¢'(x) obtained in the course
of the proof of Lemma 9 we have

Y(z) = —¢'(2)€*(2),

n(z) = e(x) — ¢'(x)é(x),
as asserted in (36) and (37). Let us note that formula (35) may be considered
as the differential equation for the function 7(x). Solving this equation
at initial conditions 7(0) = 0,7'(0) = 1 we obtain the function 7(x), if,
moreover, we take by = £''(0) it will satisfy the condition 7"(0) = 0.

Substituting now the expressions for £(x),n(x),v(x) into eq. (32) we
obtain eq. (39).

Let us apply the operator 0_ to the eq. (39); we obtain

¢'(z) —¢'(y) _
S e =

Thus it is shown that the functions ¢(z) and 7(2) determine the function
A(x) given by the expression (38). The Lemma is proved.

So it was shown, how it is possible to construct all the solutions of the
eq. (32) using the solutions of eq. (32).

Now we describe the general analytical solution of equation (14).

Lemma 11. Let (¢, 7, A) be a solution of equation (34). (Let us remind
that ©(0) = ¢'(0) = 7(0) = 7(0) = 0 and 7'(0) = 1.) Then the function

u(x) = p'(x) is a solution of the equation
(u')2 = csu® 4 dequ® + 2¢qu + cg,
u(0) =0, u'(0)=cy, (40)
and if co =0 then ¢; # 0.
The functions 7(x) and A(x) satisfy the following equations:

'(x) _ 1 () +co




- (42)

If co = 0 then u(z) = L7(2)?, and A(x) = L7(2).

2 2

Proof. Let us consider the first three derivatives with respect to y of
the eq. (34)

Ox+y) = (y)+ @) (v Az +y) + 7(y) A (z + y)],
"z +y) =" (y) +7(x)[7" (y)A(z +y) + 27" (y)A (2 +y) + 7(y) A" (z + y)],

" (x+y) = " (y)+7(@) [T (y) Az +y)+37" (y) A (2 4y)+37"(y) A" (z+y)+7(y) A" (2 +y)].

Taking y = 0 and making use of the initial conditions for ¢(z) and 7(z),
we obtain

P'(e) = 7(x)Alw), (43)
#"(x) = ¢"(0) + 27 () A'(w), (44)
?"(x) = @"(0) + 7(2)[7"(0)A(w) + 34" (2)]. (45)

Let o5 = ©®(0) and 73 = 7/(0). ;From (43) and (44) we obtain

p(2) = o A'(z)

J@ 0 A 40
from (45) and (43) it follows that
" (x) —ps _ mA(x) +34"(2)
@ Aw 0

Making use of the identity
A// Al Al
T (Z)l + (Z)z

for the quantity ¢'(z) = u(x), we obtain the following equation (see eq. (46),

(47)):

u" — 3 1 u'—py, 3 u' — a5
e G ey

This equation may be rewritten as follows:
4(u" — p3)u = 4drsu® 4 6[un —u'(u' — p2)] + 3(u' — p2)?,
Quu'’ — 3(u')2 + drgu® + dosu + 3(,9% =0. (48)
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Let
T3 = C2, Y3 =2¢C1, @2 =Cp.

4

The equation (48) admit the integrable factor u™*u' and may be reduced to

the equation
(WP = dea(u™Y 4 2en(u) + ) (49)
Integrating (49) and multiplying the result by u? we obtain eq. (40), where
¢3 is the integration constant. Equation (42) follows from (46). Then from
eq. (43) we obtain:
u'(:z;) = T'(J;)A(:l;) + T(:I;)A'(:l;).

It follows from (44) that

l j—
r(2)A(z) = u'(z) — co
Making use of this fact, we obtain
!
F(e)A(r) = T

Let us divide this eq. to eq.(43) : 7(x)A(x) = u(x) we come to the
equation (41). Note that if ¢ = 0 equations (41),(42), and conditions 7(0) =
0,7'(0) = 1 imply

and it follows, in particular, that ¢; # 0 if ¢g = 0. The Lemma is proved.

Consider the Weierstrass function p(x) with parameters g and ¢gs. We
have

o'(x)? = 4p(x)’ — g20(x) — gs.

Lemma 12. The general solution of the equation (40) may be written in
one of the following equivalent forms:

) = 2o +0) - pla) (50)
u(w) = ext(@) + Do) + et (o), (51)



where

P(x) = % m (52)

Here p(x) is the Weierstrass function with parameters:

202 C1C3 202

_ 2 _ 3 010203_00032
=3P = g = (P 22 (R (53
and . cnc
G p _ Cocs
pla) =5, ¢la)=—.

Proof. Formula (50) gives:

(! (2))? = %4@(:1: T a)® — gap(e + a) — gs).

On the other hand,

(! (2))? = es]—(pla-ta)—p(a) P +des| = (pa-ta)—p(a) 420 [(p(-+a)—p(a)] 2.

C3 C3 C3

Hence

16[4p(z + a)® — gap(z + a) — g3] =
Plp(z+a)—p(a)]® +4%c2fp(z+ o) — p(a))? +8cresp(x + o) — p(a)] + cf c3.

Let us compare the coeflicients of the terms of the same degree in p(x+4«).
This shows that formula (50) with parameters ¢s, g5 follows from (53). To
deduce (51) from (50) one makes use of the addition theorem for the g-
function (cf., e.g., [WW 1927]).

ol ) = pla) = ~(o(o) + 2p(a) + 7S

therefore

(p(rta)=p(a))(p(x)—p(a)* = —(p(2)+2p(a))(p(2)* —2p(x)p(a)+p(a)®)+

(4p(2)° = g20(x) = g3 = 29/ (2)p" (@) + ¢'(a)?)

3p(e)p(a)’ —20(a)” — Zrp(e) = 79s = 59 (2)9'(0) + (F57)° =
(3@(06)2 _ 1gz)(p(gc) —p(a)) — %@l(:li)p'(a) + @’(205)



Hence,

SRS S i RPN G it 2 S PO G B
(54)
This gives: 1
@l(Oé) _ 004037 3@(0&)2 . Zgz 01803 ‘

Formula (51) follows from eq.(54) on dividing by ic;;. The Lemma is
proved.

Corollary 13. The general solution of eq. (40) takes the shape

cosh2,/cor — 1 sinh 2, /cox
ug(7) = 1 Ve )_|_007\/_2

BN 2/ %)

as cs — 0.

Proof. Let

ur(z) = lm u(z), Yu(x) = lim (x),

Jim, Jim Pu(z) = clglglo p(z).

By Lemma 12, the function p.(x) satisfies the equation

(GL(0) = 40u(0)* =32 Pou(a) + ()P = () — 2

Therefore

P2 — 1 —pi(a) 2 _ p«() + §c2 _ . ‘ )2

Differentiating (56) with respect to x, one obtains

W) = dexpu(e) + 1,

Therefore L9 )
cos Cox —
i(a) = \/_/—2 2
(2 02)
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In view of (51), it follows that

wn(@) = ertbu() + ol ().

The Lemma 13 is proved.

Note that according to the Lemma 11, if the functions (¢, 7, A) satisty
equation (14) then the function 7(x) is determined uniquely by the equation

subject to the initial conditions 7(0) = 0,7'(0) = 1, and the function A(x)
is determined by the equation (43):

Hence we may reqard the functions ¢(x) as solutions of the equation (14).

Theorem 14. The general solution of the equation (14)

plz+y) = o) +ey) + m(2)7(y)Alz +y)
18 grven by the function

o(2) = 2(¢la) — ((x + a) — pla)e),

C3

p(0) =¢'(0) =0

where ((x) and p(x) are the Weierstrass (-function and p-function with the
parameters gz and gs ( see Lemma 12).

Proof. According to the Lemmas (11) and (12) it is sufficient to prove
that any function ¢(x) given by the formula (57) is a solution of equation
(14). It is convenient to consider two different cases.

Case 1. ¢3 = 0.

pul(x) = lim o(x)

cg—0

In this case @.(x) = fooo ux(x)dx and hence, using the Corollary 13,we

obtain _ ) Lo .
oul) = 1 sinh 2, /cox —3 NEY: L cos \/6:1;— ‘ (58)
(2y/c2) (2y/c2)
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Using the elementary identity

x —x

() 1) = (5 = 1) (e = 1) (eF = T (e

[V

we obtain

sinh 2\/ca(x+y) = sinh 2,/cox+sinh 2, /coy+4 sinh /e sinh /cay sinh \/ca(x+y),

cosh 2/ca(x+y) = cosh 2y/cax+cosh 2./cay+4 sinh \/cax sinh \/cay cosh /e (2 +y)

Hence

pa( +y) = 0a(®) + 0u(y) + 7l@) 7 (y) Aul + ),

where

inh inh
To(2) = %, Au(z) = % % + ¢ cosh \/caz. (60)

Case 2. ¢3 # 0.
Then without any restriction we may take C3 = 2. According to Frobenius-
Stickelberger formula [F'S 1880] the functions f(x), g(y), h(z) are the solution
the eq. (1):

fle) = ((ar = 5 = v) = la)e = ((ar = ), (61)
9(y) = C(=a1 = 5 —y) = (@)y + ¢l + 3). (62)
h(z) = (o = 2) = y(a)z = ((a), (63)

Using the considered above reduction of the (1) to the eq.(14) we obtain

p(z) = =2h(—2) = 2(((a) — ((z + a) — y(a)z)
that gives the solution of eq. (14). The theorem is proved.

Corollary 15. The general normalized solution of eq. (12) is given by
the formulae

() = 2 (¢la) — (= + a) — A(a)z),

C3
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2u(x)
co — 2bgu(x) + u'(x)’

() = (64)

where u(x) = ¢'(x) = f—g(p(w + «) — p(a)) and bs is free parameter.

The proof is follows from the theorem 14, formula (61) and Lemma 10.
Let us remind that at the proof of Lemma 10 we will give the explicit con-
struction of the solution eq. (12) on the solution of eq. (14).

So,it was proved already that if (f(x),¢(y),h(z)) is the nondegenerate
solution of eq. (1) with additional conditions

flz) =g(x).  f(0) =g(0) = h(0) = 1'(0). (65)
than it is necessary that

h(z) = = (o — 2) — v(a)z — ((a)), (66)

C3

where c¢3, a and the parameters ¢o, g3 of the p- Weierstrass function should
satisfy the condition of the Lemma (12). Moreover, if ¢3 # 0, then for the
functions

fl) = = (¢lan = § = ) = 3(a)e = Glar = ) (67
Jo) = —((ar = G =) =l + ) (68)

where « is free parameter, the function h(x) of type (66) is given the solution
of eq. (1). Hence, there are two unsolved problems.

1. Does the functions f(z) and g(x) at ¢ # 0 are unique functions,
which give the solution of eq. (1) at fixed function h(x)?

2. To find the sufficient conditions at ¢ = 0 on the parameters of the
function h.(x) = lim.,—¢ h(x), that there are the functions f(x) and g(x),
such that (f(x),¢(x), h«(2)) are the solution of the equation (1) and to find
all such functions (f(x),g(x)).

Let us note, that at the case ¢ = 0 the main problem is that we cannot
consider the limit ¢3 — 0 at the formulae (67),(68) (in the distinction of
function (66)).
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To solve these two problems we will consider first the reduction of the
eq. (1) to the eq. (12) and will use the general analytic solution of eq. (12)
(see Lemma 9 and Corollary 15).

Let us begin to the consideration of the case ¢3 # 0.

Lemma 16. Let the functions (fi(x),g1(x), hi(x)) satisfy the equation
(1) and the initial conditions under cinsideration. Then, if hi(x) = H(x) s
the function from eq. (66), then

filz) = s1f(x) + s29(x), (69)

gi(x) =t f(x) + tag(x), (70)

where f(x) and g(x) are given by eqs. (47) and (48), and s1+s2 = 1,t1+t2 =
1. Proof.
For the functions, given by eqs. (47) and (48) we have:

Ex) = fla)—g(a) = %[c(al—%—x)+<(a1+%+x)—<(a1—%)—c(a1+%)1.
(71)
Then 5 N N
() = g[v(m —5 @)=t g+,
(@) = 2 e = § ) = (a1 + 5 + )

We have that if the quantities o and «; are sufficiently close to the point
x = 0, then £'(0) # 0, and the quantity £(0) gives the free parameter by
to construct the general normalized solution of eq. (12). Therefore, in this
case the general solution of the equation has the form

p(x) = =2h(=z), n(x)+ (), bl(w)

where h(x) is the function (46), £(«) is the function (49) and n(x) = f(x) +
g(x) for the functions (47) and (48).

Let us introduce now
fi(z) + g1(z) = n(z) + bi{(z),

fl(l‘) - 91(:1?) = bzf(l’)a

we have

by + by
2

n(z) + {(x) = s1f(x) + s19(2),

file) =
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1 by — b
() = onle) + PSP ew) = 1 f0) + tagle),
where
_1 by + bo _1 by + bo t—l—l—bl_bz t—l by — by
S1—2 9 ) 82_2 9 ) 1 — 9 ) 2—2 2

The Lemma is proved.

Now we need just find the values of parameters s; and t, for which the
set of functions (fi(x),¢g(x), h(x)) from the Lemma 16 gives the solution of

eq. (1).
Let us introduce the notation

f‘ll(x) gll(y) h”(Z)
det(f.g,h)= | f'(z) ¢'(y) R'(2)
1 1 1

and let us use the following formula (see [WW 1927], p.458)

(a +y + 2)o(x — y)oly — 2)o(z — a)
() (y)o* ()

If the conditions of the Lemma 16 are sutisfied, we have

5 det(p(r), o(y), o)) = 7

det(sy f(x) + s2g(x), tif(x) +t29(x), h(z)) =

sity det( F(x), £(y), h(2)) + sata det(g(x), 9(y), h(=)) (72)
Therefore,
2 det(f(), fy) b)) = 2 det(plar—F =), plar=F—y), pla—=2)

o o(2a1)o(y —x)o(z —y+ay — 5a)o(x — z + %oz —aq)

B O (T I B
2 detlg(a). g(y), h(z)) = 3 det(p(—ar—5 =), pl—ar=3-y), plai=2)

B § o(2a1)o(y —x)o(y —z+ a1 + %oz)a(x —z4ao + %oz) (74)
4 ooy + 5+ z)od(ag + 5+ y)od3(a — z) '

Comparison of expressions (71) and (72) shows that if oy = wy, is the
one of the three halfperiods of the Weierstrass-function p(x), then det ( ),

21



given by the formula (70) is equal to zero identically for any values s; and
t1. If, however, oy # wi, k = 1.2.3, then the det is equal to zero if and only
if S§1 = tl = 0.

Let us consider now the case ¢3 = 0.
The general normalized solution in this case is given by the function (78).

Let us denote

Car(2) = lm i), Twx(z) = lm 7u(x), Awu(z)= lim A.(z)

co—0 co—0 co—0

i From (78) we obtain

x3 x?

Yax() = cla + CO?, (75)

and according to the formulae (40) we have

Tax(2) = 2, Au(z) = clg + ¢p.

We have: .
‘f**(l') = 1_ 631}7 (76)
z3 x? x? x
Nar () :cla—l—cog—(q?—l—cox)l o (77)

Hence, the general solution of the equation (12) is given by the functions
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