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AUTOMORPHISM GROUPS OF PARABOLIC GEOMETRIESANDREAS �CAPAbstra
t. We show that elementary algebrai
 te
hniques lead to surprising resultson automorphism groups of Cartan geometries and espe
ially paraboli
 geometries.The example of three{dimensional CR stru
tures is dis
ussed in detail.1. Introdu
tionThe aim of this arti
le is to show how rather elementary algebra 
an be used toobtain surprising information on the automorphism groups of Cartan geometries and,more spe
i�
ally, paraboli
 geometries. On the way, we review several basi
 fa
tsabout Cartan geometries, so this arti
le 
an also be 
onsidered as a short introdu
tionto some basi
 ideas of the theory. A detailed introdu
tion to Cartan geometries 
anbe found in the book [6℄.Any Cartan geometry 
omes with a homogeneous model G=H. The 
ru
ial point forour purposes, is that the autmorphism group of any Cartan geometry 
an be made intoa Lie group, and the Lie algebra of this group 
an be des
ribed expli
itly in terms of theLie algebra g of G and the 
urvature of the geometry. This des
ription 
an be improved
onsiderably in the spe
ial 
ase of paraboli
 geometries, in whi
h g is semisimple andP � G is a paraboli
 subgroup. In this 
ase, one 
an obtain information on possibleautmorphism groups by studying 
ertain Lie subalgebras of g. We work this outexpli
itly in the 
ase of three{dimensional CR stru
tures of hypersurfa
e type, inwhi
h the algebrai
 problems be
ome parti
ularly simple. In parti
ular, we show thatthe 
lassi�
ation of homogeneous three{dimensional CR stru
tures redu
es to purelyalgebrai
 problems.Ex
ept for the presentation, nothing in this arti
le is really original. The proofof Corollary 2.2 sket
hed here 
an be found in the book [3℄. The basi
 results forparaboli
 geometries in 2.5 
an be found (in the spe
ial 
ase of CR stru
tures) in [7℄.The results on three{dimensional CR stru
tures go ba
k to E. Cartan, see [1℄ and [4℄for a modern presentation.I would like to thank Keizo Yamagu
hi for helpful 
onversations.2. Cartan geometries and their automorphism groups2.1. Cartan geometries. Let G be a Lie group, H � G a 
losed subgroup su
h thatG=H is 
onne
ted, and let h � g be the 
orresponding Lie algebras. The basi
 ideabehind Cartan geometries is to view this homogeneous spa
e as a parti
ularly ni
e in-stan
e of a di�erential geometri
 stru
ture. Manifolds endowed with the 
orrespondingstru
ture 
an then be thought of as \
urved analogs" of the homogeneous spa
e G=H.Date: February 10, 2004.The author was supported by proje
t P15747{N05 of the Fonds zur F�orderung der wis-sens
haftli
hen Fors
hung (FWF). 1



2 ANDREAS �CAPThe main requirement on this stru
ture is that the automorphisms on G=H should beexa
tly the left a
tions of elements of G.The natural proje
tion G! G=H is an H{prin
ipal bundle, and left multipli
ationby g 2 G lifts the left a
tion of g on G=H to an automorphism of this prin
ipalbundle. The left multipli
ations by elements of G 
an be 
hara
terized within the(in�nite dimensional) spa
e of prin
ipal bundle automorphisms of G ! G=H by thefa
t that they preserve the left Maurer{Cartan form. This motivates the de�nition of\
urved analogs" as general prin
ipal H{bundles endowed with a g{valued one form,whi
h has all properties of the left Maurer Cartan form that do make sense in themore general 
ontext:De�nition. (1) A Cartan geometry of type (G;H) on a smooth manifold M is aprin
ipal H{bundle p : G !M together with a one form ! 2 
1(G; g) su
h that� (rh)�! = Ad(h)�1 Æ! for all h 2 H, where rh denotes the prin
ipal right a
tionof h.� !(�A) = A for all A 2 h, where �A denotes the fundamental ve
tor �eld withgenerator A.� !(u) : TuG ! g is a linear isomorphism for all u 2 G.(2) A morphism between two Cartan geometries (G ! M;!) and ( ~G ! ~M; ~!) is aprin
ipal bundle homomorphism� : G ! ~G su
h that ��~! = !. Note that sin
e both !and ~! are bije
tive on ea
h tangent spa
e, this implies that � is a lo
al di�eomorphism.(3) The homogeneous model of the geometry is the prin
ipal bundleG! G=H togetherwith the left Maurer{Cartan form !MC.The fa
t that interesting geometri
 stru
tures 
an be des
ribed as Cartan geometriesusually is the result of a theorem rather than a de�nition. In most 
ases of interest,the prin
ipal bundle and the Cartan 
onne
tion are obtained by fairly involved 
on-stru
tions from some underlying data. These underlying data may for example bea geometri
 str
uture (a Riemannian metri
, a 
onformal stru
ture, a CR stru
ture,et
.) or a di�erential equation of a 
ertain type. Then one proves existen
e of aunique Cartan 
onne
tion (with 
ertain properties), whi
h leads to an equivalen
e ofthe 
ategory under 
onsideration with a 
ategory of Cartan geometries.In this paper, we will mostly view Cartan geometries as the basi
 input, and not
are about the equivalen
e to some underlying stru
ture. Let us only des
ribe theequivalen
e brie
y in the 
ase of Riemannian metri
s. This simple example was one ofthe basi
 motivations for the development of the general 
on
ept of Cartan geometries.Example. Let G be the group of rigid motions of Rn and H � G the subgroup ofmotions �xing 0 2 R. Then H = O(n) and G=H is Eu
lidean spa
e Rn. For an n{dimensional Riemannian manifoldM let G be the orthonormal frame bundle, whi
h isa prin
ipal O(n){bundle. The bundle 
arries a 
anoni
al Rn{valued one{form � 
alledthe soldering form. On the other hand, the Levi{Civita 
onne
tion of M indu
esa prin
ipal 
onne
tion 
 on G. Then � + 
 
an be viewed as a g{valued one formon G, and is elementary to verify that this is a Cartan 
onne
tion. Any isometrybetween Riemannian manifolds lifts to the orthonormal frame bundle and su
h a liftpreserves and the soldering form and the Levi{Civita 
onne
tion. Hen
e any isometryde�nes a morphism of Cartan geometries, and it is easy to see that 
onversely for



AUTOMORPHISM GROUPS OF PARABOLIC GEOMETRIES 3any su
h morphism the underlying map between the bases is isometry. Thus we haveobtained an equivalen
e of 
ategories between n{dimensional Riemannian manifoldsand a sub
ategory of Cartan geometries of type (G;H).2.2. Automorphisms. For a Cartan geometry (p : G ! M;!) of some �xed type(G;H) let Aut(G; !) be the group of automorphisms. Note that for a 
ategory ofCartan geometries whi
h is equivalent to some 
ategory of underlying stru
tures, thisgroup is naturally isomorphi
 to the automorphism group of the underlying stru
ture.The in�nitesimal version of an automorphism � : G ! G is a ve
tor �eld � on G su
hthat (rh)�� = � for all h 2 H and su
h that L�! = 0. The spa
e inf(G; !) of all thesein�nitesimal automorphisms evidently is a Lie subalgebra of X(G).For A 2 g let ~A 2 X(G) be the \
onstant ve
tor �eld" 
hara
terized by !( ~A) = A.In parti
ular, ~A = �A for A 2 h � g. For � 2 inf(G; !) the equation 0 = (L�!)( ~A)immediately implies [�; ~A℄ = 0. Hen
e the 
ows of � and ~A 
ommute and denoting byFl ~At the 
ow of ~A up to time t, we obtain �(Fl ~At (u)) = Tu Fl ~At (�(u)) for all u 2 G andall t 2 R for whi
h the 
ow is de�ned. Sin
e the �elds ~A with A 2 g span ea
h tangentspa
e, we 
on
lude that the value of � 2 inf(G; !) in a point u 2 G uniquely determines� lo
ally around u. By H{invarian
e of �, the value in one point determines the valuesalong the �ber through that point, and we obtainProposition. If M is 
onne
ted, then for any point u0 2 G the map � 7! !(�(u0))de�nes a linear isomorphism from inf(G; !) onto a linear subspa
e a � g.Now we have to invoke a 
hara
terization of Lie transformation groups due toR. Palais, see [5, 3℄:Theorem. Let S be a group of di�eomorphisms of a smooth manifold N and lets � X(N) be the spa
e of those ve
tor �elds for whi
h the 
ow is de�ned for alltimes and lies in the group S. If the Lie subalgebra of X(N) generated by s is �nitedimensional, then it 
oin
ides with s and S 
an be made into a Lie group with Liealgebra s, whi
h a
ts smoothly on N .This result 
an be dire
tly applied to our situation: If � is a 
omplete ve
tor �eldon G then the 
orresponding one{parameter group of di�eomorphisms is 
ontained inAut(G; !) if and only if � lies in inf(G; !). By the Proposition, inf(G; !) is a �nitedimensional Lie subalgebra (of dimension � dim(g)) of X(G), so we getCorollary. The group Aut(G; !) is a Lie group with Lie algebra given by all 
ompleteve
tor �elds 
ontained in inf(G; !). For 
onne
ted M , one has dim(Aut(G; !)) �dim(G).Applied to the 
ase of Riemannian manifolds dis
ussed in 2.1, this result shows thatthe isometry group of a 
onne
ted n{dimensional Riemannian manifold is a Lie groupof dimension at most n(n+1)2 . This bound is attained for the homogeneous model Rnbut also for Sn, whi
h has isometry group SO(n + 1). This shows that there maybe non{
at manifolds, for whi
h the automorphism group has the maximal possibledimension.2.3. Curvature. Let us look more 
losely at the relation between in�nitesimal au-tomorphisms and 
urvature. There is a general notion of the 
urvature of a Cartan



4 ANDREAS �CAPgeometry (G; !) for whi
h there are two equivalent des
riptions. The 
urvature formK 2 
2(G; g) and the 
urvature fun
tion � : G ! L(�2g; g). They are de�ned byK(�; �) = d!(�; �) + [!(�); !(�)℄�(u)(X;Y ) = K(u)( ~X; ~Y );where ~X; ~Y 2 X(G) are the 
onstant ve
tor �elds 
orresponding to X;Y 2 g.The de�ning properties of the Cartan 
onne
tion ! imply that K is H{equivariantand horizontal. Correspondingly, the fun
tion � is H{equivariant (for the a
tion of Hon L(�2g; g) indu
ed from the adjoint a
tion of G) and has values in L(�2(g=h); g).The 
urvature turns out to be a 
omplete obstru
tion to lo
al isomorphism of theCartan geometry (G; !) with the homogeneous model G=H.Let � 2 X(G) be a ve
tor �eld su
h that L�! = 0. From the de�nitions one easily
on
ludes that L�K = 0 and � �� = 0. If in addition �(u) is verti
al, and A = !(�(u)),then �(u) = �A(u) and equivarian
y of � implies that (�A � �)(u) 
oin
ides with thealgebrai
 a
tion of A 2 h on �(u) 2 L(�2(g=h); g). Hen
e for a = f!(�(u0)) : � 2inf(G; !)g � g we see that all elements of a \ h annihilate �(u0) 2 L(�2(g=h); g).For the Cartan geometry asso
iated to a Riemannian manifold as in 2.1, the 
ur-vature de�ned above euqals the usual Riemann 
urvature. It is well know that thissplits into the Weyl 
urvature, the tra
efree part of the Ri

i 
urvature and the s
alar
urvature. While the Weyl 
urvature and the tra
efree part of the Ri

i 
urvaturehave values in a non{trivial representation of O(n), the s
alar 
urvature has valuesin a trivial representation. Hen
e from above we 
on
lude that any Riemannian n{manifold whose isometry group has dimension n(n+1)2 must have trivial Weyl 
urvatureand its Ri

i 
urvature must be pure tra
e, so it must be 
onformally 
at and Einstein.As the example of Sn shows, the s
alar 
urvature may indeed be nontrivial.2.4. The Lie bra
ket on inf(G; !). The bra
ket on the Lie algebra aut(G; !) ofAut(G; !) is indu
ed by the negative of the Lie bra
ket of ve
tor �elds on G, whi
halso makes sense on inf(G; !). For � 2 inf(G; !) and � 2 X(G) we 
ompute0 =(L�!)(�) = � � !(�)� !([�; �℄)=d!(�; �) + � � !(�)=�(!(�); !(�))� [!(�); !(�)℄ + � � !(�):If both � and � are in�nitesimal automorphisms, we may 
ombine the �rst and lastline to obtain an expression for �!([�; �℄). This shows that for �xed u0 2 G, the abovebra
ket on inf(G; !) 
orresponds to the operation(�) (A;B) 7! [A;B℄� �(u0)(A;B)on a = f!(�(u0)) : � 2 inf(G; !)g � g.This 
on
ludes our dis
ussion of inf(G; !) for general Cartan geometries. Let us
olle
t the results:� Choosing a point u0 2 G identi�es inf(G; !) with a linear subspa
e a � gendowed with Lie bra
ket given by (�).� Any element A 2 a \ h annihilates the value �(u0) 2 L(�2(g=h); h) of the
urvature fun
tion in u0.



AUTOMORPHISM GROUPS OF PARABOLIC GEOMETRIES 52.5. The 
ase of paraboli
 geometries. Paraboli
 geometries are Cartan geome-tries 
orresponding to paraboli
 subgroups in (real or 
omplex) semisimple Lie groups.There is a simple way to 
hara
terize these: Let g be a semisimple Lie algebra endowedwith a grading of the form g = g�k � � � � � gk, su
h that [gi; gj℄ � gi+j and su
h thatthe nilpotent subalgebra g�k�� � ��g�1 is generated by g�1. Put h := g0�� � ��gk. Fora Lie group G with Lie algebra g let H be the normalizer of h in G. It turns out thatH has Lie algebra h, and this de�nition is equivalent to H being a paraboli
 subgroupof G in the sense of representation theory. A paraboli
 geometry of type (G;H) is thende�ned as a Cartan geometry of that type.Putting gi = gi�� � ��gk de�nes an H{invariant �ltration g = g�k � � � � � gk, whi
hmakes g into a �ltered Lie algebra su
h that h = g0. A paraboli
 geometry (G !M;!)of type (G;H) is 
alled regular, if its 
urvature fun
tion � satis�es �(u)(gi; gj) � gi+j+1for all u 2 G and all i; j = �k; : : : ;�1.There are general results showing that regular paraboli
 geometries, whose 
urava-ture satis�es an additional normalization 
ondition, are equivalent (in the 
ategori-
al sense) to 
ertain underlying stru
tures, see e.g. [2℄. These underlying stru
turesin
lude 
onformal, almost quaternioni
, non{degenerate hypersurfa
e type CR, andquaternioni
 CR. Hen
e together with many others, these str
utures 
an be identi�edwith sub
lasses of regular normal paraboli
 geometries of some type.The �rst important information for our purposes 
on
erns the 
urvature of paraboli
geometries.Proposition. Let (G !M;!) be a regular normal paraboli
 geometry with 
urvaturefun
tion �. If � 6= 0, then the lowest homogeneous 
omponent of � has values in anontrivial, 
ompletely redu
ible representation of H.This representation 
an be 
omputed expli
itly for any given type. Sin
e it is alwaysnontrivial, Aut(G; !) may have the maximal possible dimension dim(G) only if � = 0and thus the paraboli
 geometry is lo
ally isomorphi
 to the homogeneous model.For a paraboli
 geometry (p : G ! M;!) of type (G;H) �x a point u0 2 G and
onsider the subsap
e a = f!(�(u0)) : � 2 inf(G; !)g as before. De�ne a �ltration ona by ai := a \ gi for i = �k; : : : ; k. The bra
ket (�) from 2.4 makes a into a �lteredLie algebra by regularity. It is worth noti
ing that the �ltration 
an be pulled ba
k toinf(G; !) and the result does not depend on the 
hoi
e of the point u0 2 G but only onp(u0) 2M , sin
e di�erent 
hoi
es of u0 are related by the a
tion of an element of H.The in
lusion a ,! g is �ltration preserving so it indu
es a linear map gr(a)! gr(g)between the asso
iated graded ve
tor spa
es. The asso
iated graded of a �ltered Liealgebra 
anoni
ally inherits a Lie bra
ket, and by regularity the map gr(a)! gr(g) isa Lie algebra homomorphism. Sin
e the �ltration of g is derived from a grading, we
on
lude that gr(g) = g as a Lie algebra. Thus we 
on
lude that gr(a) (whi
h has thesame dimension as a) is (isomorphi
 to) a graded Lie subalgebra of g.3. Example: 3{dimensional CR stru
turesThese are 3{dimensional 
onta
t manifolds together with a 
omplex stru
ture onthe 
onta
t subbundle. The prototypi
al examples of su
h manifolds arise as follows:For a smooth real hypersurfa
eM � C 2, ea
h tangent spa
e ofM is a real subspa
e inC 2 of real dimension 3. The maximal 
omplex subspa
e 
ontained in su
h a tangent



6 ANDREAS �CAPspa
e has to be of 
omplex dimension one, so we obtain a 
omplex line bundle sittinginside the tangent bundle of M . Generi
ally, this subbundle will be non{integrable,and thus de�ne a 
onta
t stru
ture on M . In this 
ase, the hypersurfa
e M is 
allednon{degenerate. A lo
al CR di�eomorphism is de�ned as a lo
al di�eomorphismwhose tangent maps preserve the 
onta
t subbundle and su
h that the restri
tion tothe 
onta
t subbundle is 
omplex linear.In [1℄, E. Cartan shows that these stru
tures admit a 
anoni
al normal Cartan
onne
tion of type (G;H), where G = PSU(2; 1) and H � G is a Borel subgroup.This 
onstru
tion identi�es the 
ategory of 3{dimensional CR manifolds and lo
alCR di�eomorphisms with the 
ategory of regular normal paraboli
 geometries of type(G;H).The homogeneous model in this 
ase is S3 � C 2 . Therefore, CR{manifolds whi
hare lo
ally isomorphi
 to the homogeneous model are 
alled spheri
al.The general results on Cartan geometries imply that the group Aut(M) of CRautomorphisms of a 3{dimensional CR manifold M is a Lie group of dimension atmost dim(G) = 8. We now 
laim:Theorem. (1) If dim(Aut(M)) < 8, then dim(Aut(M)) � 5.(2) If M is not spheri
al, then dim(Aut(M)) � 3.Proof. The grading of g = su(2; 1) has the form g = g�2 � � � � � g2 with g�2 �= R,g�1 �= C and g0 �= C . The Lie algebra of Aut(M) must be 
ontained in inf(G; !),whi
h gives rise to a graded Lie subalgebra gr(a) of g. Hen
e we 
an prove (1) byshowing that any proper graded Lie subalgebra of g has dimension at most 5.For (2) one veri�es that the representation of h, in whi
h the lowest nonzero homoge-neous 
omponent of the 
urvature has its values, 
omes from a faithful representationof g0 �= C . Thus we 
an prove (2) by showing that any graded Lie subalgebra of gwhi
h has a trivial 
omponent in degree 0 has dimension at most 3.For an appropriate 
hoi
e of Hermitian metri
 on C 2 we haveg = 8<:0��+ i� z i x �2i� ��zi' ��x ��+ i�1A9=;with �; �; ';  2 R and x; z 2 C . The grading is given by the diagonals, i.e. the 
om-ponent i' lies in g�2, the 
omponent x in g�1, and so on. From this, one immediatelyreads o� that the bra
kets between the various grading 
omponents. The main pointis that the bra
kets g�1� g�1 ! g�2 are given by the standard symple
ti
 form on C ,while the other bra
kets are essentially indu
ed by 
omplex multipli
ations.Suppose that b = b�2 � � � � � b2 is a graded Lie subalgebra of g, put ni = dim(bi)and n = dim(b), where all dimensions are over R.Case 1: n�1 = 2. This means that b�1 = g�1 and then [b�1; b�1℄ = g�2 � b.Suppose there is a nonzero element z 2 b1. Then [z; b�1℄ = g0 and hen
e [z; g0℄ = g1are 
ontained in b, whi
h immediately implies b = g. Hen
e we 
on
lude that b 6= g isonly possible if n1 = 0. This implies n2 = 0, sin
e for a nonzero element i 2 g2 themap adi : g�1 ! g1 is surje
tive. Hen
e b � g�2 � g�1 � g0, and we get (1) and (2).Case 2: n�1 = 1. For 0 6= x 2 b�1 the map adx is a linear isomorphism g0 ! g�1and g1 ! g0, so we 
on
lude that n0 � 1 and then n1 � 1, whi
h implies (1). Forn0 = 0 we also must have n1 = 0, whi
h implies (2).



AUTOMORPHISM GROUPS OF PARABOLIC GEOMETRIES 7Case 3: n�1 = 0. Sin
e the bra
ket indu
es a linear isomorphism g�2 
 g1 ! g�1we 
on
lude that either n�2 = 0 or n1 = 0, whi
h 
ompletes the proof. �This theorem redu
es the 
lassi�
ation of homogeneous 3{dimensional CR manifoldsto pure algebra: In the spheri
al 
ase, the Lie algebra of the automorphism group is asubalgebra of g = su(2; 1), and one 
an work in the homogeneous model. If M is notspheri
al, then dim(Aut(M)) = 3 and �xing a point x0 2 M the map f 7! f(x0) isa 
overing Aut(M) ! M . The CR stru
ture on M lifts to a left invariant stru
tureon Aut(M). Hen
e any non{spheri
al homogeneous 3{dimensional CR stru
ture is
overed by a left invariant stru
ture on a Lie group. Determining su
h left invariantstru
tures is a rather simple algebrai
 problem.For higher dimensional CR stru
tures, similar methods are used in [7℄ to determinethe se
ond largest possible dimension for the automorphism group. In that paper,Yamagu
hi 
ompletely 
lassi�ed the CR stru
tures with automorphism group of thisse
ond largest dimension. Referen
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