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AUTOMORPHISM GROUPS OF PARABOLIC GEOMETRIESANDREAS �CAPAbstrat. We show that elementary algebrai tehniques lead to surprising resultson automorphism groups of Cartan geometries and espeially paraboli geometries.The example of three{dimensional CR strutures is disussed in detail.1. IntrodutionThe aim of this artile is to show how rather elementary algebra an be used toobtain surprising information on the automorphism groups of Cartan geometries and,more spei�ally, paraboli geometries. On the way, we review several basi fatsabout Cartan geometries, so this artile an also be onsidered as a short introdutionto some basi ideas of the theory. A detailed introdution to Cartan geometries anbe found in the book [6℄.Any Cartan geometry omes with a homogeneous model G=H. The ruial point forour purposes, is that the autmorphism group of any Cartan geometry an be made intoa Lie group, and the Lie algebra of this group an be desribed expliitly in terms of theLie algebra g of G and the urvature of the geometry. This desription an be improvedonsiderably in the speial ase of paraboli geometries, in whih g is semisimple andP � G is a paraboli subgroup. In this ase, one an obtain information on possibleautmorphism groups by studying ertain Lie subalgebras of g. We work this outexpliitly in the ase of three{dimensional CR strutures of hypersurfae type, inwhih the algebrai problems beome partiularly simple. In partiular, we show thatthe lassi�ation of homogeneous three{dimensional CR strutures redues to purelyalgebrai problems.Exept for the presentation, nothing in this artile is really original. The proofof Corollary 2.2 skethed here an be found in the book [3℄. The basi results forparaboli geometries in 2.5 an be found (in the speial ase of CR strutures) in [7℄.The results on three{dimensional CR strutures go bak to E. Cartan, see [1℄ and [4℄for a modern presentation.I would like to thank Keizo Yamaguhi for helpful onversations.2. Cartan geometries and their automorphism groups2.1. Cartan geometries. Let G be a Lie group, H � G a losed subgroup suh thatG=H is onneted, and let h � g be the orresponding Lie algebras. The basi ideabehind Cartan geometries is to view this homogeneous spae as a partiularly nie in-stane of a di�erential geometri struture. Manifolds endowed with the orrespondingstruture an then be thought of as \urved analogs" of the homogeneous spae G=H.Date: February 10, 2004.The author was supported by projet P15747{N05 of the Fonds zur F�orderung der wis-senshaftlihen Forshung (FWF). 1



2 ANDREAS �CAPThe main requirement on this struture is that the automorphisms on G=H should beexatly the left ations of elements of G.The natural projetion G! G=H is an H{prinipal bundle, and left multipliationby g 2 G lifts the left ation of g on G=H to an automorphism of this prinipalbundle. The left multipliations by elements of G an be haraterized within the(in�nite dimensional) spae of prinipal bundle automorphisms of G ! G=H by thefat that they preserve the left Maurer{Cartan form. This motivates the de�nition of\urved analogs" as general prinipal H{bundles endowed with a g{valued one form,whih has all properties of the left Maurer Cartan form that do make sense in themore general ontext:De�nition. (1) A Cartan geometry of type (G;H) on a smooth manifold M is aprinipal H{bundle p : G !M together with a one form ! 2 
1(G; g) suh that� (rh)�! = Ad(h)�1 Æ! for all h 2 H, where rh denotes the prinipal right ationof h.� !(�A) = A for all A 2 h, where �A denotes the fundamental vetor �eld withgenerator A.� !(u) : TuG ! g is a linear isomorphism for all u 2 G.(2) A morphism between two Cartan geometries (G ! M;!) and ( ~G ! ~M; ~!) is aprinipal bundle homomorphism� : G ! ~G suh that ��~! = !. Note that sine both !and ~! are bijetive on eah tangent spae, this implies that � is a loal di�eomorphism.(3) The homogeneous model of the geometry is the prinipal bundleG! G=H togetherwith the left Maurer{Cartan form !MC.The fat that interesting geometri strutures an be desribed as Cartan geometriesusually is the result of a theorem rather than a de�nition. In most ases of interest,the prinipal bundle and the Cartan onnetion are obtained by fairly involved on-strutions from some underlying data. These underlying data may for example bea geometri struture (a Riemannian metri, a onformal struture, a CR struture,et.) or a di�erential equation of a ertain type. Then one proves existene of aunique Cartan onnetion (with ertain properties), whih leads to an equivalene ofthe ategory under onsideration with a ategory of Cartan geometries.In this paper, we will mostly view Cartan geometries as the basi input, and notare about the equivalene to some underlying struture. Let us only desribe theequivalene briey in the ase of Riemannian metris. This simple example was one ofthe basi motivations for the development of the general onept of Cartan geometries.Example. Let G be the group of rigid motions of Rn and H � G the subgroup ofmotions �xing 0 2 R. Then H = O(n) and G=H is Eulidean spae Rn. For an n{dimensional Riemannian manifoldM let G be the orthonormal frame bundle, whih isa prinipal O(n){bundle. The bundle arries a anonial Rn{valued one{form � alledthe soldering form. On the other hand, the Levi{Civita onnetion of M induesa prinipal onnetion  on G. Then � +  an be viewed as a g{valued one formon G, and is elementary to verify that this is a Cartan onnetion. Any isometrybetween Riemannian manifolds lifts to the orthonormal frame bundle and suh a liftpreserves and the soldering form and the Levi{Civita onnetion. Hene any isometryde�nes a morphism of Cartan geometries, and it is easy to see that onversely for



AUTOMORPHISM GROUPS OF PARABOLIC GEOMETRIES 3any suh morphism the underlying map between the bases is isometry. Thus we haveobtained an equivalene of ategories between n{dimensional Riemannian manifoldsand a subategory of Cartan geometries of type (G;H).2.2. Automorphisms. For a Cartan geometry (p : G ! M;!) of some �xed type(G;H) let Aut(G; !) be the group of automorphisms. Note that for a ategory ofCartan geometries whih is equivalent to some ategory of underlying strutures, thisgroup is naturally isomorphi to the automorphism group of the underlying struture.The in�nitesimal version of an automorphism � : G ! G is a vetor �eld � on G suhthat (rh)�� = � for all h 2 H and suh that L�! = 0. The spae inf(G; !) of all thesein�nitesimal automorphisms evidently is a Lie subalgebra of X(G).For A 2 g let ~A 2 X(G) be the \onstant vetor �eld" haraterized by !( ~A) = A.In partiular, ~A = �A for A 2 h � g. For � 2 inf(G; !) the equation 0 = (L�!)( ~A)immediately implies [�; ~A℄ = 0. Hene the ows of � and ~A ommute and denoting byFl ~At the ow of ~A up to time t, we obtain �(Fl ~At (u)) = Tu Fl ~At (�(u)) for all u 2 G andall t 2 R for whih the ow is de�ned. Sine the �elds ~A with A 2 g span eah tangentspae, we onlude that the value of � 2 inf(G; !) in a point u 2 G uniquely determines� loally around u. By H{invariane of �, the value in one point determines the valuesalong the �ber through that point, and we obtainProposition. If M is onneted, then for any point u0 2 G the map � 7! !(�(u0))de�nes a linear isomorphism from inf(G; !) onto a linear subspae a � g.Now we have to invoke a haraterization of Lie transformation groups due toR. Palais, see [5, 3℄:Theorem. Let S be a group of di�eomorphisms of a smooth manifold N and lets � X(N) be the spae of those vetor �elds for whih the ow is de�ned for alltimes and lies in the group S. If the Lie subalgebra of X(N) generated by s is �nitedimensional, then it oinides with s and S an be made into a Lie group with Liealgebra s, whih ats smoothly on N .This result an be diretly applied to our situation: If � is a omplete vetor �eldon G then the orresponding one{parameter group of di�eomorphisms is ontained inAut(G; !) if and only if � lies in inf(G; !). By the Proposition, inf(G; !) is a �nitedimensional Lie subalgebra (of dimension � dim(g)) of X(G), so we getCorollary. The group Aut(G; !) is a Lie group with Lie algebra given by all ompletevetor �elds ontained in inf(G; !). For onneted M , one has dim(Aut(G; !)) �dim(G).Applied to the ase of Riemannian manifolds disussed in 2.1, this result shows thatthe isometry group of a onneted n{dimensional Riemannian manifold is a Lie groupof dimension at most n(n+1)2 . This bound is attained for the homogeneous model Rnbut also for Sn, whih has isometry group SO(n + 1). This shows that there maybe non{at manifolds, for whih the automorphism group has the maximal possibledimension.2.3. Curvature. Let us look more losely at the relation between in�nitesimal au-tomorphisms and urvature. There is a general notion of the urvature of a Cartan



4 ANDREAS �CAPgeometry (G; !) for whih there are two equivalent desriptions. The urvature formK 2 
2(G; g) and the urvature funtion � : G ! L(�2g; g). They are de�ned byK(�; �) = d!(�; �) + [!(�); !(�)℄�(u)(X;Y ) = K(u)( ~X; ~Y );where ~X; ~Y 2 X(G) are the onstant vetor �elds orresponding to X;Y 2 g.The de�ning properties of the Cartan onnetion ! imply that K is H{equivariantand horizontal. Correspondingly, the funtion � is H{equivariant (for the ation of Hon L(�2g; g) indued from the adjoint ation of G) and has values in L(�2(g=h); g).The urvature turns out to be a omplete obstrution to loal isomorphism of theCartan geometry (G; !) with the homogeneous model G=H.Let � 2 X(G) be a vetor �eld suh that L�! = 0. From the de�nitions one easilyonludes that L�K = 0 and � �� = 0. If in addition �(u) is vertial, and A = !(�(u)),then �(u) = �A(u) and equivariany of � implies that (�A � �)(u) oinides with thealgebrai ation of A 2 h on �(u) 2 L(�2(g=h); g). Hene for a = f!(�(u0)) : � 2inf(G; !)g � g we see that all elements of a \ h annihilate �(u0) 2 L(�2(g=h); g).For the Cartan geometry assoiated to a Riemannian manifold as in 2.1, the ur-vature de�ned above euqals the usual Riemann urvature. It is well know that thissplits into the Weyl urvature, the traefree part of the Rii urvature and the salarurvature. While the Weyl urvature and the traefree part of the Rii urvaturehave values in a non{trivial representation of O(n), the salar urvature has valuesin a trivial representation. Hene from above we onlude that any Riemannian n{manifold whose isometry group has dimension n(n+1)2 must have trivial Weyl urvatureand its Rii urvature must be pure trae, so it must be onformally at and Einstein.As the example of Sn shows, the salar urvature may indeed be nontrivial.2.4. The Lie braket on inf(G; !). The braket on the Lie algebra aut(G; !) ofAut(G; !) is indued by the negative of the Lie braket of vetor �elds on G, whihalso makes sense on inf(G; !). For � 2 inf(G; !) and � 2 X(G) we ompute0 =(L�!)(�) = � � !(�)� !([�; �℄)=d!(�; �) + � � !(�)=�(!(�); !(�))� [!(�); !(�)℄ + � � !(�):If both � and � are in�nitesimal automorphisms, we may ombine the �rst and lastline to obtain an expression for �!([�; �℄). This shows that for �xed u0 2 G, the abovebraket on inf(G; !) orresponds to the operation(�) (A;B) 7! [A;B℄� �(u0)(A;B)on a = f!(�(u0)) : � 2 inf(G; !)g � g.This onludes our disussion of inf(G; !) for general Cartan geometries. Let usollet the results:� Choosing a point u0 2 G identi�es inf(G; !) with a linear subspae a � gendowed with Lie braket given by (�).� Any element A 2 a \ h annihilates the value �(u0) 2 L(�2(g=h); h) of theurvature funtion in u0.



AUTOMORPHISM GROUPS OF PARABOLIC GEOMETRIES 52.5. The ase of paraboli geometries. Paraboli geometries are Cartan geome-tries orresponding to paraboli subgroups in (real or omplex) semisimple Lie groups.There is a simple way to haraterize these: Let g be a semisimple Lie algebra endowedwith a grading of the form g = g�k � � � � � gk, suh that [gi; gj℄ � gi+j and suh thatthe nilpotent subalgebra g�k�� � ��g�1 is generated by g�1. Put h := g0�� � ��gk. Fora Lie group G with Lie algebra g let H be the normalizer of h in G. It turns out thatH has Lie algebra h, and this de�nition is equivalent to H being a paraboli subgroupof G in the sense of representation theory. A paraboli geometry of type (G;H) is thende�ned as a Cartan geometry of that type.Putting gi = gi�� � ��gk de�nes an H{invariant �ltration g = g�k � � � � � gk, whihmakes g into a �ltered Lie algebra suh that h = g0. A paraboli geometry (G !M;!)of type (G;H) is alled regular, if its urvature funtion � satis�es �(u)(gi; gj) � gi+j+1for all u 2 G and all i; j = �k; : : : ;�1.There are general results showing that regular paraboli geometries, whose urava-ture satis�es an additional normalization ondition, are equivalent (in the ategori-al sense) to ertain underlying strutures, see e.g. [2℄. These underlying struturesinlude onformal, almost quaternioni, non{degenerate hypersurfae type CR, andquaternioni CR. Hene together with many others, these strutures an be identi�edwith sublasses of regular normal paraboli geometries of some type.The �rst important information for our purposes onerns the urvature of paraboligeometries.Proposition. Let (G !M;!) be a regular normal paraboli geometry with urvaturefuntion �. If � 6= 0, then the lowest homogeneous omponent of � has values in anontrivial, ompletely reduible representation of H.This representation an be omputed expliitly for any given type. Sine it is alwaysnontrivial, Aut(G; !) may have the maximal possible dimension dim(G) only if � = 0and thus the paraboli geometry is loally isomorphi to the homogeneous model.For a paraboli geometry (p : G ! M;!) of type (G;H) �x a point u0 2 G andonsider the subsape a = f!(�(u0)) : � 2 inf(G; !)g as before. De�ne a �ltration ona by ai := a \ gi for i = �k; : : : ; k. The braket (�) from 2.4 makes a into a �lteredLie algebra by regularity. It is worth notiing that the �ltration an be pulled bak toinf(G; !) and the result does not depend on the hoie of the point u0 2 G but only onp(u0) 2M , sine di�erent hoies of u0 are related by the ation of an element of H.The inlusion a ,! g is �ltration preserving so it indues a linear map gr(a)! gr(g)between the assoiated graded vetor spaes. The assoiated graded of a �ltered Liealgebra anonially inherits a Lie braket, and by regularity the map gr(a)! gr(g) isa Lie algebra homomorphism. Sine the �ltration of g is derived from a grading, weonlude that gr(g) = g as a Lie algebra. Thus we onlude that gr(a) (whih has thesame dimension as a) is (isomorphi to) a graded Lie subalgebra of g.3. Example: 3{dimensional CR struturesThese are 3{dimensional ontat manifolds together with a omplex struture onthe ontat subbundle. The prototypial examples of suh manifolds arise as follows:For a smooth real hypersurfaeM � C 2, eah tangent spae ofM is a real subspae inC 2 of real dimension 3. The maximal omplex subspae ontained in suh a tangent



6 ANDREAS �CAPspae has to be of omplex dimension one, so we obtain a omplex line bundle sittinginside the tangent bundle of M . Generially, this subbundle will be non{integrable,and thus de�ne a ontat struture on M . In this ase, the hypersurfae M is allednon{degenerate. A loal CR di�eomorphism is de�ned as a loal di�eomorphismwhose tangent maps preserve the ontat subbundle and suh that the restrition tothe ontat subbundle is omplex linear.In [1℄, E. Cartan shows that these strutures admit a anonial normal Cartanonnetion of type (G;H), where G = PSU(2; 1) and H � G is a Borel subgroup.This onstrution identi�es the ategory of 3{dimensional CR manifolds and loalCR di�eomorphisms with the ategory of regular normal paraboli geometries of type(G;H).The homogeneous model in this ase is S3 � C 2 . Therefore, CR{manifolds whihare loally isomorphi to the homogeneous model are alled spherial.The general results on Cartan geometries imply that the group Aut(M) of CRautomorphisms of a 3{dimensional CR manifold M is a Lie group of dimension atmost dim(G) = 8. We now laim:Theorem. (1) If dim(Aut(M)) < 8, then dim(Aut(M)) � 5.(2) If M is not spherial, then dim(Aut(M)) � 3.Proof. The grading of g = su(2; 1) has the form g = g�2 � � � � � g2 with g�2 �= R,g�1 �= C and g0 �= C . The Lie algebra of Aut(M) must be ontained in inf(G; !),whih gives rise to a graded Lie subalgebra gr(a) of g. Hene we an prove (1) byshowing that any proper graded Lie subalgebra of g has dimension at most 5.For (2) one veri�es that the representation of h, in whih the lowest nonzero homoge-neous omponent of the urvature has its values, omes from a faithful representationof g0 �= C . Thus we an prove (2) by showing that any graded Lie subalgebra of gwhih has a trivial omponent in degree 0 has dimension at most 3.For an appropriate hoie of Hermitian metri on C 2 we haveg = 8<:0��+ i� z i x �2i� ��zi' ��x ��+ i�1A9=;with �; �; ';  2 R and x; z 2 C . The grading is given by the diagonals, i.e. the om-ponent i' lies in g�2, the omponent x in g�1, and so on. From this, one immediatelyreads o� that the brakets between the various grading omponents. The main pointis that the brakets g�1� g�1 ! g�2 are given by the standard sympleti form on C ,while the other brakets are essentially indued by omplex multipliations.Suppose that b = b�2 � � � � � b2 is a graded Lie subalgebra of g, put ni = dim(bi)and n = dim(b), where all dimensions are over R.Case 1: n�1 = 2. This means that b�1 = g�1 and then [b�1; b�1℄ = g�2 � b.Suppose there is a nonzero element z 2 b1. Then [z; b�1℄ = g0 and hene [z; g0℄ = g1are ontained in b, whih immediately implies b = g. Hene we onlude that b 6= g isonly possible if n1 = 0. This implies n2 = 0, sine for a nonzero element i 2 g2 themap adi : g�1 ! g1 is surjetive. Hene b � g�2 � g�1 � g0, and we get (1) and (2).Case 2: n�1 = 1. For 0 6= x 2 b�1 the map adx is a linear isomorphism g0 ! g�1and g1 ! g0, so we onlude that n0 � 1 and then n1 � 1, whih implies (1). Forn0 = 0 we also must have n1 = 0, whih implies (2).



AUTOMORPHISM GROUPS OF PARABOLIC GEOMETRIES 7Case 3: n�1 = 0. Sine the braket indues a linear isomorphism g�2 
 g1 ! g�1we onlude that either n�2 = 0 or n1 = 0, whih ompletes the proof. �This theorem redues the lassi�ation of homogeneous 3{dimensional CR manifoldsto pure algebra: In the spherial ase, the Lie algebra of the automorphism group is asubalgebra of g = su(2; 1), and one an work in the homogeneous model. If M is notspherial, then dim(Aut(M)) = 3 and �xing a point x0 2 M the map f 7! f(x0) isa overing Aut(M) ! M . The CR struture on M lifts to a left invariant strutureon Aut(M). Hene any non{spherial homogeneous 3{dimensional CR struture isovered by a left invariant struture on a Lie group. Determining suh left invariantstrutures is a rather simple algebrai problem.For higher dimensional CR strutures, similar methods are used in [7℄ to determinethe seond largest possible dimension for the automorphism group. In that paper,Yamaguhi ompletely lassi�ed the CR strutures with automorphism group of thisseond largest dimension. Referenes[1℄ E. Cartan, Sur la g�om�trie pseudo-onforme des hypersurfaes de l'espae de deux variablesomplexes, Ann. Mat. Pura Appl., IV. Ser. 11, 17-90 (1932)[2℄ A. �Cap, H. Shihl, Paraboli Geometries and Canonial Cartan Connetions, Hokkaido Math.J. 29 No.3 (2000) 453{505, MR 2002f:53036[3℄ S. Kobayashi, Transformation groups in di�erential geometry, Springer, New York, 1972; MR50#8360[4℄ P. Nurowski, J. Tafel, Symmetries of Cauhy-Riemann spaes, Lett. Math. Phys. 15 (1988),31{38; MR 89:53027[5℄ R.S. Palais, \A Global Formulation of the Lie Theory of Transformation Groups", Mem. Amer.Math. So. 22 (1957); MR 22#12162[6℄ R.W. Sharpe, Di�erential Geometry Graduate Texts in Mathematis 166, Springer, 1997; MR98m:53033[7℄ K. Yamaguhi, Non-degenerate real hypersurfaes in omplex manifolds admitting large groupsof pseudo-onformal transformations. I. , Nagoya Math. J. 62 (1976), 55{96; MR 55#3301; II.Nagoya Math. J. 69 (1978), 9{31; MR 57#12898Institut f�ur Mathematik, Universit�at Wien, Nordbergstra�e 15, A{1090 Wien,Austria, and International Erwin Shr�odinger Institute for Mathematial Physis,Boltzmanngasse 9, A-1090 Wien, AustriaE-mail address: andreas.ap�esi.a.at


