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AUTOMORPHISM GROUPS OF PARABOLIC GEOMETRIES

ANDREAS CAP

ABSTRACT. We show that elementary algebraic techniques lead to surprising results
on automorphism groups of Cartan geometries and especially parabolic geometries.
The example of three-dimensional CR, structures is discussed in detail.

1. INTRODUCTION

The aim of this article is to show how rather elementary algebra can be used to
obtain surprising information on the automorphism groups of Cartan geometries and,
more specifically, parabolic geometries. On the way, we review several basic facts
about Cartan geometries, so this article can also be considered as a short introduction
to some basic ideas of the theory. A detailed introduction to Cartan geometries can
be found in the book [6].

Any Cartan geometry comes with a homogeneous model G/ H. The crucial point for
our purposes, is that the autmorphism group of any Cartan geometry can be made into
a Lie group, and the Lie algebra of this group can be described explicitly in terms of the
Lie algebra g of G and the curvature of the geometry. This description can be improved
considerably in the special case of parabolic geometries, in which g is semisimple and
P C (G is a parabolic subgroup. In this case, one can obtain information on possible
autmorphism groups by studying certain Lie subalgebras of g. We work this out
explicitly in the case of three—dimensional CR structures of hypersurface type, in
which the algebraic problems become particularly simple. In particular, we show that
the classification of homogeneous three—dimensional CR structures reduces to purely
algebraic problems.

Except for the presentation, nothing in this article is really original. The proof
of Corollary 2.2 sketched here can be found in the book [3]. The basic results for
parabolic geometries in 2.5 can be found (in the special case of CR structures) in [7].
The results on three-dimensional CR structures go back to E. Cartan, see [1] and [4]
for a modern presentation.

I would like to thank Keizo Yamaguchi for helpful conversations.

2. CARTAN GEOMETRIES AND THEIR AUTOMORPHISM GROUPS

2.1. Cartan geometries. Let (¢ be a Lie group, H C (i a closed subgroup such that
G/ H is connected, and let h C g be the corresponding Lie algebras. The basic idea
behind Cartan geometries is to view this homogeneous space as a particularly nice in-
stance of a differential geometric structure. Manifolds endowed with the corresponding
structure can then be thought of as “curved analogs” of the homogeneous space G/ H.
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The main requirement on this structure is that the automorphisms on G/ H should be
exactly the left actions of elements of (.

The natural projection G — G/ H is an H-principal bundle, and left multiplication
by ¢ € G lifts the left action of ¢ on G/H to an automorphism of this principal
bundle. The left multiplications by elements of (G can be characterized within the
(infinite dimensional) space of principal bundle automorphisms of G — G/H by the
fact that they preserve the left Maurer—Cartan form. This motivates the definition of
“curved analogs” as general principal H-bundles endowed with a g—valued one form,
which has all properties of the left Maurer Cartan form that do make sense in the
more general context:

Definition. (1) A Cartan geometry of type (G, H) on a smooth manifold M is a
principal H-bundle p : G — M together with a one form w € Q'(G, g) such that

o (r")*w = Ad(h)"'ow for all h € H, where r" denotes the principal right action
of h.

e w((4) = A for all A € b, where (4 denotes the fundamental vector field with
generator A.

e w(u):T,G — gis a linear isomorphism for all u € G.

(2) A morphism between two Cartan geometries (G — M,w) and (G — M, &) is a
principal bundle homomorphism ® : G — G such that ®*& = w. Note that since both w
and & are bijective on each tangent space, this implies that ® is a local diffeomorphism.
(3) The homogeneous model of the geometry is the principal bundle ¢ — G/ H together
with the left Maurer—Cartan form ™.

The fact that interesting geometric structures can be described as Cartan geometries
usually is the result of a theorem rather than a definition. In most cases of interest,
the principal bundle and the Cartan connection are obtained by fairly involved con-
structions from some underlying data. These underlying data may for example be
a geometric strcuture (a Riemannian metric, a conformal structure, a CR structure,
etc.) or a differential equation of a certain type. Then one proves existence of a
unique Cartan connection (with certain properties), which leads to an equivalence of
the category under consideration with a category of Cartan geometries.

In this paper, we will mostly view Cartan geometries as the basic input, and not
care about the equivalence to some underlying structure. Let us only describe the
equivalence briefly in the case of Riemannian metrics. This simple example was one of
the basic motivations for the development of the general concept of Cartan geometries.

Example. Let G be the group of rigid motions of R" and H C G the subgroup of
motions fixing 0 € R. Then H = O(n) and G/H is Euclidean space R". For an n-
dimensional Riemannian manifold M let G be the orthonormal frame bundle, which is
a principal O(n)-bundle. The bundle carries a canonical R"-valued one—form é called
the soldering form. On the other hand, the Levi-Civita connection of M induces
a principal connection v on ¢G. Then 6 + ~ can be viewed as a g—valued one form
on ¢, and is elementary to verify that this is a Cartan connection. Any isometry
between Riemannian manifolds lifts to the orthonormal frame bundle and such a lift
preserves and the soldering form and the Levi—Civita connection. Hence any isometry
defines a morphism of Cartan geometries, and it is easy to see that conversely for



AUTOMORPHISM GROUPS OF PARABOLIC GEOMETRIES 3

any such morphism the underlying map between the bases is isometry. Thus we have
obtained an equivalence of categories between n—dimensional Riemannian manifolds
and a subcategory of Cartan geometries of type (G, H).

2.2. Automorphisms. For a Cartan geometry (p : ¢ — M,w) of some fixed type
(G, H) let Aut(G,w) be the group of automorphisms. Note that for a category of
Cartan geometries which is equivalent to some category of underlying structures, this
group is naturally isomorphic to the automorphism group of the underlying structure.
The infinitesimal version of an automorphism ® : G — G is a vector field £ on G such
that (r")*¢ = € for all h € H and such that Lsw = 0. The space inj(G,w) of all these
infinitesimal automorphisms evidently is a Lie subalgebra of X(G).

For A € g let Ae X(G) be the “constant vector field” characterized by w([l) = A.
In particular, A = (4 for A € h C g. For £ € inf(G,w) the equation 0 = (,ng)(A)
immediately implies [€, A] — (. Hence the flows of ¢ and A commute and denoting by
FltA the flow of A up to time ¢, we obtain f(FltA( ) =T, FltA(f( )) for all w € G and
all t € R for which the flow is defined. Since the fields A with A € g span each tangent
space, we conclude that the value of £ € inf(G,w) in a point u € G uniquely determines
¢ locally around w. By H-invariance of &, the value in one point determines the values
along the fiber through that point, and we obtain

Proposition. If M is connected, then for any point ug € G the map £ — w(&(uo))
defines a linear isomorphism from inf(G,w) onto a linear subspace a C g.

Now we have to invoke a characterization of Lie transformation groups due to

R. Palais, see [5, 3]:

Theorem. Let S be a group of diffeomorphisms of a smooth manifold N and let
s C X(N) be the space of those vector fields for which the flow is defined for all
times and lies in the group S. If the Lie subalgebra of X(N) generated by s is finite
dimensional, then it coincides with s and S can be made into a Lie group with Lie
algebra s, which acts smoothly on N.

This result can be directly applied to our situation: If ¢ is a complete vector field
on G then the corresponding one—parameter group of diffeomorphisms is contained in
Aut(G,w) if and only if £ lies in inf(G,w). By the Proposition, inf(G,w) is a finite
dimensional Lie subalgebra (of dimension < dim(g)) of X(G), so we get

Corollary. The group Aut(G,w) is a Lie group with Lie algebra given by all complete
vector fields contained in inf(G,w). For connected M, one has dim(Aut(G,w)) <
dim(G).

Applied to the case of Riemannian manifolds discussed in 2.1, this result shows that
the isometry group of a connected n—dimensional Riemannian manifold is a Lie group
of dimension at most 2"t This bound is attained for the homogeneous model R”
but also for S™, which has isometry group SO(n + 1). This shows that there may
be non—flat manifolds, for which the automorphism group has the maximal possible

dimension.

2.3. Curvature. Let us look more closely at the relation between infinitesimal au-
tomorphisms and curvature. There is a general notion of the curvature of a Cartan
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geometry (G,w) for which there are two equivalent descriptions. The curvature form

K € Q*(G,g) and the curvature function r : G — L(A?g,g). They are defined by

K(€,n) = dw(€.n) + [w(€),w(n)]
r(u)(X,Y) = K(u)(X,Y),

where X,Y € X(G) are the constant vector fields corresponding to X,Y € g.

The defining properties of the Cartan connection w imply that K is H—equivariant
and horizontal. Correspondingly, the function s is H—equivariant (for the action of H
on L(A%*g,g) induced from the adjoint action of ) and has values in L(A*(g/h),q).
The curvature turns out to be a complete obstruction to local isomorphism of the
Cartan geometry (G,w) with the homogeneous model GG/ H.

Let € € X(G) be a vector field such that Lewo = 0. From the definitions one easily
concludes that L K =0 and -« = 0. If in addition £(u) is vertical, and A = w(&(u)),
then £(u) = (a(u) and equivariancy of k implies that ({4 - )(u) coincides with the
algebraic action of A € h on w(u) € L(A*(g/h),g). Hence for a = {w(&(ug)) : £ €
inf(G,w)} C g we see that all elements of a N h annihilate x(ug) € L(A*(g/h), g).

For the Cartan geometry associated to a Riemannian manifold as in 2.1, the cur-
vature defined above euqals the usual Riemann curvature. It is well know that this
splits into the Weyl curvature, the tracefree part of the Ricci curvature and the scalar
curvature. While the Weyl curvature and the tracefree part of the Ricci curvature
have values in a non—trivial representation of O(n), the scalar curvature has values
in a trivial representation. Hence from above we conclude that any Riemannian n—
manifold whose isometry group has dimension @ must have trivial Weyl curvature
and its Ricci curvature must be pure trace, so it must be conformally flat and Finstein.
As the example of S™ shows, the scalar curvature may indeed be nontrivial.

2.4. The Lie bracket on inf(G,w). The bracket on the Lie algebra aut(G,w) of
Aut(G,w) is induced by the negative of the Lie bracket of vector fields on G, which
also makes sense on inf(G,w). For ¢ € inf(G,w) and n € X(G) we compute

0 =(Lew)(n) =& - wln) —w(l )
=dw(&,m) £ w(§)
=r(w(£),w(n) = [w(€),w(m] +n - w(§).
If both ¢ and n are infinitesimal automorphisms, we may combine the first and last

line to obtain an expression for —w([£,n]). This shows that for fixed ug € G, the above
bracket on inf(G,w) corresponds to the operation

(%) (A, B) — [A, B] — k(uo)(A, B)
on @ = {w(€(up)) : € € inf(G.w)} C a.

This concludes our discussion of inf(G,w) for general Cartan geometries. Let us
collect the results:

e Choosing a point uy € G identifies inf(G,w) with a linear subspace a C g
endowed with Lie bracket given by ().

e Any element A € a N annihilates the value x(ug) € L(A*(g/h),h) of the
curvature function in wug.
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2.5. The case of parabolic geometries. Parabolic geometries are Cartan geome-
tries corresponding to parabolic subgroups in (real or complex) semisimple Lie groups.
There is a simple way to characterize these: Let g be a semisimple Lie algebra endowed
with a grading of the form g =g_; & - - & gi, such that [g;, 8;] C gi+; and such that
the nilpotent subalgebra g_; &+ - -Hg_; is generated by g_;. Put ) := go®---Pgi. For
a Lie group G with Lie algebra g let H be the normalizer of  in . It turns out that
H has Lie algebra f, and this definition is equivalent to H being a parabolic subgroup
of (G in the sense of representation theory. A parabolic geometry of type (G, H) is then
defined as a Cartan geometry of that type.

Putting g' = g;®- - - © gy, defines an H-invariant filtration g = g=* O --- O g*, which
makes g into a filtered Lie algebra such that h = g°. A parabolic geometry (G — M, w)
of type (G, H) is called regular, if its curvature function x satisfies x(u)(g’, g’) C g™/*!
forallu € Gand all 2,5 = —Fk,...,—1.

There are general results showing that regular parabolic geometries, whose curava-
ture satisfies an additional normalization condition, are equivalent (in the categori-
cal sense) to certain underlying structures, see e.g. [2]. These underlying structures
include conformal, almost quaternionic, non—degenerate hypersurface type CR, and
quaternionic CR. Hence together with many others, these strcutures can be identified
with subclasses of regular normal parabolic geometries of some type.

The first important information for our purposes concerns the curvature of parabolic
geometries.

Proposition. Let (G — M,w) be a reqular normal parabolic geometry with curvature
function k. If K # 0, then the lowest homogeneous component of k has values in a
nontrivial, completely reducible representation of H.

This representation can be computed explicitly for any given type. Since it is always
nontrivial, Aut(G,w) may have the maximal possible dimension dim((G) only if K =0
and thus the parabolic geometry is locally isomorphic to the homogeneous model.

For a parabolic geometry (p : G — M,w) of type (G, H) fix a point ug € G and
consider the subsapce a = {w(&(up)) : € € inf(G,w)} as before. Define a filtration on
abya :=ang fori=—Fk,...,k. The bracket (x) from 2.4 makes a into a filtered
Lie algebra by regularity. It is worth noticing that the filtration can be pulled back to
inf(G,w) and the result does not depend on the choice of the point ug € G but only on
p(ug) € M, since different choices of ug are related by the action of an element of H.

The inclusion a < g is filtration preserving so it induces a linear map gr(a) — gr(g)
between the associated graded vector spaces. The associated graded of a filtered Lie
algebra canonically inherits a Lie bracket, and by regularity the map gr(a) — gr(g) is
a Lie algebra homomorphism. Since the filtration of g is derived from a grading, we
conclude that gr(g) = g as a Lie algebra. Thus we conclude that gr(a) (which has the
same dimension as a) is (isomorphic to) a graded Lie subalgebra of g.

3. EXAMPLE: 3—DIMENSIONAL CR STRUCTURES

These are 3—dimensional contact manifolds together with a complex structure on
the contact subbundle. The prototypical examples of such manifolds arise as follows:
For a smooth real hypersurface M C C?, each tangent space of M is a real subspace in
C? of real dimension 3. The maximal complex subspace contained in such a tangent
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space has to be of complex dimension one, so we obtain a complex line bundle sitting
inside the tangent bundle of M. Generically, this subbundle will be non—integrable,
and thus define a contact structure on M. In this case, the hypersurface M is called
non—degenerate. A local CR diffeomorphism is defined as a local diffeomorphism
whose tangent maps preserve the contact subbundle and such that the restriction to
the contact subbundle is complex linear.

In [1], E. Cartan shows that these structures admit a canonical normal Cartan
connection of type (G, H), where G = PSU(2,1) and H C G is a Borel subgroup.
This construction identifies the category of 3—dimensional CR manifolds and local
CR diffeomorphisms with the category of regular normal parabolic geometries of type
(G, H).

The homogeneous model in this case is S* C C*. Therefore, CR—manifolds which
are locally isomorphic to the homogeneous model are called spherical.

The general results on Cartan geometries imply that the group Aut(M) of CR
automorphisms of a 3—dimensional CR manifold M is a Lie group of dimension at
most dim(G) = 8. We now claim:

Theorem. (1) If dim(Aut(M)) < 8, then dim(Aut(M)) < 5.
(2) If M is not spherical, then dim(Aut(M)) < 3.

~

Proof. The grading of g = su(2,1) has the foom g = g_o & --- § g with gi» = R,
g+1 = C and go = C. The Lie algebra of Aut(M) must be contained in inf(G,w),
which gives rise to a graded Lie subalgebra gr(a) of g. Hence we can prove (1) by
showing that any proper graded Lie subalgebra of g has dimension at most 5.

For (2) one verifies that the representation of b, in which the lowest nonzero homoge-
neous component of the curvature has its values, comes from a faithful representation
of go = C. Thus we can prove (2) by showing that any graded Lie subalgebra of g
which has a trivial component in degree 0 has dimension at most 3.

For an appropriate choice of Hermitian metric on C* we have

a+168  z 1)
g= x 20 —Z
1 - —a+1f

with a, 3,0, € R and z,z € C. The grading is given by the diagonals, i.e. the com-
ponent w2 lies in g_o, the component x in g_;, and so on. From this, one immediately
reads off that the brackets between the various grading components. The main point
is that the brackets g4y X g4+1 — g4 are given by the standard symplectic form on C,
while the other brackets are essentially induced by complex multiplications.

Suppose that b = b_y & --- & by is a graded Lie subalgebra of g, put n; = dim(b;)
and n = dim(b), where all dimensions are over R.

Case 1: n_; = 2. This means that b_; = g_; and then [b_;,b_4] = g_» C b.
Suppose there is a nonzero element z € by. Then [z,b_;] = go and hence [z, go] = ¢
are contained in b, which immediately implies b = g. Hence we conclude that b # g is
only possible if n; = 0. This implies ny = 0, since for a nonzero element 1) € gy the
map ad;y : g—1 — @1 is surjective. Hence b C g_2 & g1 & go, and we get (1) and (2).

Case 2: n_; = 1. For 0 # = € b_; the map ad, is a linear isomorphism gy — g_1
and g; — go, so we conclude that no < 1 and then ny < 1, which implies (1). For
no = 0 we also must have n; = 0, which implies (2).
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Case 3: n_; = 0. Since the bracket induces a linear isomorphism g_, ® g — g1
we conclude that either n_y = 0 or ny = 0, which completes the proof. g

This theorem reduces the classification of homogeneous 3—dimensional CR manifolds
to pure algebra: In the spherical case, the Lie algebra of the automorphism group is a
subalgebra of g = su(2, 1), and one can work in the homogeneous model. If M is not
spherical, then dim(Aut(M)) = 3 and fixing a point xg € M the map f — f(x0) is
a covering Aut(M) — M. The CR structure on M lifts to a left invariant structure
on Aut(M). Hence any non-spherical homogeneous 3-dimensional CR structure is
covered by a left invariant structure on a Lie group. Determining such left invariant
structures is a rather simple algebraic problem.

For higher dimensional CR structures, similar methods are used in [7] to determine
the second largest possible dimension for the automorphism group. In that paper,
Yamaguchi completely classified the CR structures with automorphism group of this
second largest dimension.
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