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ON THE STABILITY OF CONSTRAINT PROPAGATION

J. FRAUENDIENER AND T. VOGEL

ABSTRACT. The divergence of the constraint quantities is a major problem in computational gravity today. Appar-

ently, there are two sources for constraint violations. The use of boundary conditions which are not compatiblewith
the constraint equations inadvertently leads to ‘constraint violatingmodes’ propagating into the computational do-

main from the boundary. The other source for constraint violation is intrinsic. It is already present in the initial
value problem, i.e. even when no boundary conditions have to be specified. Its origin is due to the instability of the

constraint surface in the phase space of initial conditions for the time evolution equations. Our aim in this paper is
to investigate one reason for this instability which is due to the choice of the time foliation. We demonstrate this for

the Weyl system because this is the essential hyperbolic part in various formulations of the Einstein equations.

1. INTRODUCTION

One of themajor problems in computational gravity is the fact that the constraints are not preserved in free
evolution codes. Indeed, it can be observed in many numerical approaches that the constraints are violated
with an exponential (or even worse) rate in time. Thus, the numerically generated solution of the evolution
equations seizes to satisfy the full Einstein equations as time progresses.
Currently, there are two known sources for constraint violation in an initial boundary value problem. The

first one is present already in the Cauchy problem. It is due to the structure of the field equations and the
specific splitting of these equations into evolution and constraint equations. The other cause for constraint
divergence is due to inappropriate boundary conditions, i.e., data given on the boundary of the computa-
tional domain which are not compatible with the constraint equations. These data will give rise to ‘constraint
violating modes’ which propagate into the computational domain thereby spoiling the solution inside.
Much work has gone in recent years into the possibilities of curing the desease of diverging constraints.

There have been various proposals for constraint preserving boundary conditions [3, 4, 14, 15, 16, 27, 29, 30,
31] to prevent the constraint violating modes from entering the computational domain. However, the only
formulation of an initial-boundary-value problem for the Einstein equation which is known to be well-posed
has been given by Friedrich and Nagy [12]. On the other hand, if the constraints have already started to
diverge there are ways to force the solution back onto the constraint surface [2, 20, 32, 18].
In the present paper we want to discuss the first cause of constraint violation which is related to the struc-

ture of the field equations. Our aim is to demonstrate that the stability of the constraint propagation depends
heavily on the choice of coordinates, in particular on the time foliation. We will do this on the basis of an
explicit example, the Bianchi equation. This equation features prominently in various formulations of the
field equations of general relativity [7, 12, 10] where it can clearly be seen that it is the essential hyperbolic
equation in general relativity. It is the equation which governs the propagation of the gravitational degrees
of freedom described by the Weyl curvature tensor. However, we want to stress that the method we employ
is general and can be applied to any system of constrained evolution equations. In fact, a similar analysis can
and should be carried out for the standard Einstein equations in the ADM or BSSN formulations.
The plan of the paper is as follows. In sect. 2 we present our geometric point of view and discuss our

approach in more detail. In sect. 3 and 4 we indicate how to derive the evolution and constraint equations for
theWeyl tensor and how to find the subsidiary system of propagation equations for the constraints. In sect. 5
we apply the Routh-Hurwitz criterion for stability to a suitably simplified set of equations and evaluate the
ensuing conditions. Since we are not able to give complete mathematical proofs for all the statements made,
we dicuss at the end of that section the numerical evidence for our claims. We end the paper with a brief
discussion of the results and implications for further studies.

2. GENERAL DESCRIPTION OF THE METHOD

In the situation, we are considering, we have to deal with fields on space-time which constitute a system
with infinite dimensions. In order to get a feeling for the geometrical situation, we pretend that we are only
concerned with finite dimensions. So let P denote a finite dimensional manifold which we call the phase space
of the system. We assume that there is a vector field V defined on P , whose integral curves describe the
evolution in time of the system from some specified initial condition p 2 P . Thus, P can also be interpreted
as the manifold of initial conditions for the system.
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2 J. FRAUENDIENER AND T. VOGEL

Let � : P ! Z be the constraint map, mapping the initial conditions onto the constraint quantities which
form a manifold Z. Consider the equation z = �(p) and assume that there is p0 2 P and z0 2 Z such that
z0 = �(p0 ). Let us assume that d�(p0 ) is surjective. Then we can locally write p = (q, r) so that ∂�=∂q is
invertible. By the implicit function theorem we can solve the equation z = �(q, r) locally near p0 = (q0 , r0)
i.e., we find a smooth map q = ψ(z, r) with q0 = ψ(z0 , r0) such that z = �(ψ(z, r), r) for all (z, r) close
to (z0 , r0 ). This allows us to locally consider the phase space P as being parameterised by p = (ψ(z, r), r)
where z are the constraint quantities and r comprises the ‘residual’ variables. These are the unconstrained
‘true degrees of freedom’. Thus, P is locally foliated by the leaves of constant z.
Consider now the vector field V on P . Given an arbitrary point p0 2 P there is a unique integral curve

pt of V through p0 such that ṗt = V(pt). Related to this curve is the curve zt = �(pt ) in Z. This curve
describes the change in the constraint variables caused by the evolution. Its tangent vector żt = d�(pt ) � ṗt =
d�(pt) � V(pt ) depends on the solution curve pt . Using the parameterisation for pt we can write
(2.1) żt = F(zt , rt ),
for some smooth map F : P ! TZ. Now it may happen that for some z0 2 Z we have F(z0 , r) = 0 for
all r. Then z0 = �(pt ) for all times t if z0 = �(p0 ), i.e., the evolution remains in the leaf C = ��1(z0 ), the
constraint manifold. In that case, one says that the constraints are propagated by the evolution. This is the
case for the Einstein system in its various formulations and for many other constrained evolution systems
appearing in physics (see [8] for a well-known example of a systemwhere this is not the case).
We are interested in the case when the solution curve starts outside of but close to C and we want to

obtain some information about the change of z during the evolution. So let us take a 1-parameter family
of evolutions pt(λ) with the corresponding 1-parameter family of constraint variables zt(λ). Assume that
zt(0) = z0 so that pt(0) = (z0 , rt ) lies on the constraint surface. Then we have
(2.2)

∂zt
∂t

(λ) = F(zt (λ), rt (λ)).
Taking the derivative with respect to λ and evaluating at λ = 0 yields
(2.3)

∂
∂t
δz = Fz(z0 , rt) � δz+ Fr(z0 , rt ) � δr = Fz(z0 , rt) � δz.

The second equality follows by taking the derivative of F(z0 , r) = 0 with respect to r. This equation tells
us how perturbations in the constraint variables close to the constraint surface evolve once they are excited.
Their propagation properties are determined by the evolution pt .
In the context of the Einstein equations the evolution curve pt corresponds to the space-timewhich evolves

from the initial conditions p0 . Thus, the perturbations of the constraint quantities propagate on the back-
ground space-time provided by the solution under consideration.
In the finite dimensional setting this is a rather straightforward route to determine the propagation prop-

erties of constraint perturbations near C. However, the Einstein system is infinite dimensional and it is not
so clear how much of this route translates rigorously to an infinite-dimensional setting. In a recent paper,
Bartnik [1] shows that much of the finite-dimensional picture can be taken over to the Einstein system on
asymptotically flat manifolds in the formulation given by Fischer and Marsden [6]. In particular, he shows
that the constraint map� is smooth and surjective and that all its level sets, in particular the constraint mani-
fold C, are smoothHilbert submanifolds of the phase space of GRdefined by the first and second fundamental
forms (g,π) of a suitable 3-dimensional manifold.
Thus, the infinite dimensional Einstein system shows some of the features as the finite-dimensional model

described above. Taking this as motivation,we are therefore led to study the linearisation of the systemwhich
propagates the constraints. For a lack of a better name we call this system following Friedrich the subsidiary
system. Since this system is linear in the constraint quantities we have to study this system itself. In the
course of the investigation we may assume that the background manifold is a fixed solution of the Einstein
equations. Of course, this procedure is not limited to this particular formulation of the Einstein equations but
applies to any formulation for which the constraints are propagated by the evolution equations.
In fact, following Frittelli [13], Shinkai and Yoneda [23, 24, 25, 26, 34] have already studied the stability

properties of the subsidiary system for several variations of the ADM systemmost notably the BSSN formu-
lation. Their work has been motivated by the desire to understand the superiority of the BSSN scheme over
the standard ADM formulation. They analyse several modified ADM formulations on flat space or on the
Schwarzschild space-time with a fixed time foliation. Compared with their approach our work will be both
more restrictive and more general. We do not restrict ourselves to a given background and admit arbitrary
time foliations. But since our aim is to determine the propagation properties analytically, we cannot easily
switch between various different formulations because the algebra is rather complicated.
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In this paper, we will start with the analysis of the system of constraint propagation for a class of formu-
lations of the field equations given by Friedrich [9, 10, 11] following this route. These are first order formula-
tions consisting of equations for several geometrical quantities, most notably the extrinsic curvature and the
acceleration vector of the time foliation and various curvature quantities including the Weyl curvature.
At the moment it seems to be hopeless to analyse the full system at once. Therefore, we restrict ourselves

to the most important subsystemwhich features in all these formulations, namely the so-called Bianchi equa-
tion. This is an equation for theWeyl curvature tensorwhich results from the Bianchi identity for the Riemann
tensor after using the Einstein vacuum equations. In the conformal setting there is an additional conformal
rescaling involved which, however, does not change the character of the equation.
As will be described in more detail in the following sections, the Bianchi equation can be split in the

usual way into constraint and evolution equations and it can be verified that the constraints propagate. This
collection of constraints and evolution equationswill be referred to as theWeyl system. The subsidiary system
of evolution equations for the constraint quantities contains not only the constraint quantities of that system
but also constraint quantities related to the equations which determine the properties of the foliation. We
decouple the Weyl subsystem from the other subsystems by assuming these constraints to vanish identically
i.e., that only the perturbations of the Weyl constraints are excited. This amounts to the assumption that the
Weyl curvature propagates on a foliation which is not influenced by the curvature and vice versa.
Having obtained the subsidiary system which is already linear in the constraint quantities, the next step is

to localise the equation by ‘freezing’ the coefficients. This means that we study the system in an infinitesimal
neighbourhood of an arbitrary but fixed event. This results in a system with constant coefficients which
can be treated by Fourier analysis. We derive the mode dependent propagation matrix P(k) and ask for
its stability properties. The main tool in this analysis is the Routh-Hurwitz criterion which allows us to
determine the number of eigenvalues of P(k) with negative real part by looking at the coefficients of its
characteristic polynomial.
One might question the relevance of the frozen problems to the problem with variable coefficients. This

is not an easy task to sort out. One possibility is to refer to the literature on the analysis of PDEs such
as [19] where it is shown that well-posedness of all frozen systems is sufficient for well-posedness of the
general problem. For first-order systems Strang [28] has shown that it is also necessary. This indicates that
the properties of the frozen systems and in particular the estimates which relate the solution at time t to the
initial data are closely related to those of the general system.

3. HYPERBOLIC REDUCTION

The formulation of an initial value problem for the Einstein equations, which is the basis for their nu-
merical treatment, requires the introduction of a time-flow along which the integration of the field equations
proceeds to produce a solution out of initial data. The covariant fields are decomposed into parts tangential
and transversal to this flow (3+1 decomposition) which splits the originally covariant field equations into a
set of equations for the 3+1-constituents of the fields, hopefully yielding a symmetric-hyperbolic system of
evolution equations which allows for the formulation of a well-posed initial value problem.
In this section we want to present this procedure and the formalism used here on the example of the

Bianchi equation:

(3.1) raKabcd = 0
The tensor Kabcd is a trace-free tensor with the symmetry properties of the Weyl tensor describing the gravita-
tional field. Importance and origin of this equation are discussed in [22].

3.1. 3+1 decomposition. We work with the time-like, normalised vector field ta generating the time-flow
and use metric signature (+,�,�,�), thus ta ta = 1. With respect to this vector field, every tangent space
splits into a parallel (1-dim. time-like) component and an orthogonal (3-dim. space-like) component. The
respective projectors are

(3.2) tab = tatb and hab = δab � tatb ,
which also splits the metric:

(3.3) gab = tatb + hab ,
where hab is the negative definite spatial metric in the space transversal to t

a .
Accordingly, every tensor splits into parts which are parallel or transversal to ta . We call a tensor purely

spatial if every contraction with ta or ta vanishes. As an example, the 3+ 1 decomposition of Kabcd is
Kabcd = 4t[aEb℄[c td℄ + 2t[aB e

b℄ εecd � 2ε e
ab Be[c td℄ +εabeEe f ε f cd(3.4)
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with the purely spatial, trace-free and symmetric tensors Eab and Bab which are called electric and magnetic
component of the gravitational field. The covariant derivative is decomposed as well:

(3.5) ra = taD+Da
with its components

(3.6) D := tara and Da := hbarb .
To facilitate calculations, it is useful to introduce derivative operators which are adapted to the time vector-
field ta [7, p. 65]. To characterise the course of ta , we introduce the extrinsic curvature quantities

(3.7) χa := Dta and χ ba := Da tb (with trace χ := χ aa ) .

Since ta is assumed to be normalised, these quantities are purely spatial. Usually ta is chosen as the unit
normal field of a foliation of space-time. Then χab is the extrinsic curvature of the foliation and symmetric.

Taking ta as the 4-velocity of an observer travelling along the integral curves of ta , then χa = tbDb ta is the
acceleration measured by the observer. Therefore χa is called acceleration vector. The adapted derivatives are
defined by their action on 1-forms:

∂vb := Dvb + tbχava � χb tava ,(3.8)

∂avb := Davb + tbχ ca vc � χab tcvc(3.9)

Their action on vector fields and higher tensors is defined by the Leibniz rule and the requirement that when
applied to functions, they coincide with D and Da .
The adapted derivatives have the important property, that in contrast to D and Da they commute with

the projectors defined in (3.2). The new time-derivative ∂ can further be interpreted as the generator of
Fermi-Walker transport along the integral curves of ta . The spatial derivative ∂a is the Levi-Civita connection
intrinsic to the leaves of the foliation.

3.2. The Weyl system. With the mentioned tools, we are in a position to carry out the 3 + 1 decomposition
of the Bianchi equation raKabcd = 0 .(3.1)

We first decompose the covariant derivative according to (3.5), then transform to the new derivatives ∂ and ∂a
by use of (3.8) and (3.9) and finally insert the 3+ 1 representation of the gravitational field as given by (3.4).
The resulting equation still has three indices but each of its terms can now easily be classified to be either
purely temporal or purely spatial in any of its indices. This requires every such component of the equation
to hold on its own, thereby splitting the equation into a set of equations for the 3+ 1 components Eab and Bab
of the gravitational field.
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The calculations are too technical and lengthy to be given here [33], therefore we only give the resulting
Weyl system of equations:
The constraint equation for E:

(3.10) ∂aEac = εabeχabBec +εcbeχ ba Bae
The constraint equation for B:

(3.11) ∂aBac = �εabeχabEec �εcbeχ ba Eae
The evolution equation for E:

(3.12) ∂Ebc +εae(b∂aB e
c) = �2χEbc + 2χa(bEc)a + χ a(c Eb)a � hbcχaeEae + 2χaεae(bB e

c)
The evolution equation for B:

(3.13) ∂Bbc �εae(b∂aE e
c) = �2χBbc + 2χa(bBc)a + χ a(c Bb)a � hbcχaeBae � 2χaεae(bE e

c)
The system of equations has the remarkable property that it is invariant under the duality transformation
E! B, B! �E known from electrodynamics. This allows for a very compact and elegant notation: Formally
collecting E and B into a complex tensor Fbc := Ebc � iBbc , the duality transformation now becomes simply
Fbc ! i Fbc . With this, the set of equations reduces to one single (complex) constraint equation

∂aFac = iεabeχabFec + iεcbeχ ba Fae(3.14)

and one single (complex) evolution equation

∂Fbc + iεae(b∂aF ec) = �2χFbc + 2χa(bFc)a + χ a(c Fb)a(3.15) � hbcχaeFae + 2iχaεae(bF ec) .
It can be shown [9] that the evolution equation is symmetric-hyperbolic and that therefore its initial value
problem is well-posed. The development of the gravitational field is completely determined by the evolution
equation. Thus it defines the vector field V in the picture of sect. 2.

4. CONSTRAINT PROPAGATION

The last statement gives rise to the question of compatibility between the evolution and constraint equa-
tions: Given data on an initial time slice which fulfill the constraint equation, then the evolution equation
fully determines the time development of these data, but will the constraint equation hold on later time slices
as well? In other words: Is the evolution-generating vector field V tangential to the constraint surface C?
This important question can be answered by looking at the time development of the constraints. Therefore,

we write the constraint equations (3.10) and (3.11) as

0 = Ec := ∂aEac �εabeχabBec �εcbeχ ba Bae ,(4.1)

0 = Bc := ∂aBac +εabeχabEec +εcbeχ ba Eae(4.2)

with the constraint quantities Ec and Bc whose evolution equations we need to determine. Due to the invari-
ance of the system of equations under duality transformation we need to calculate only one of them. The
other one is then obtained by substituting E! B, B! �E and E ! B, B ! �E .
According to (4.1), calculating ∂Ec gives on the right hand side time derivatives of B forwhich its evolution

equation can be substituted, but furthermore the time derivative of a spatial divergence of E. Using the
evolution equation of E in this placemakes it necessary to commute the spatial and time derivative producing
curvature terms. Specialising to the case that ta is in fact orthogonal to a foliation and thus assuming χab to
be symmetric, finally yields the following system of propagation equations:

∂Ec = � 12εcab∂aBb + 3
2εcabχ

aBb � 32χEc + 1
2χ
b
c Eb(4.3) � EabXcab + 2EacX bab + 2εab(cB b

d) X da + 1
4 tcεdabB

ebX ade ,
∂Bc = 1

2εcab∂
aEb � 3

2εcabχ
aEb � 3

2χBc + 1
2χ
b
c Bb(4.4) � BabXcab + 2BacX bab � 2εab(cE b

d) X da � 1
4 tcεdabE

ebX ade
with the constraint quantities of the foliation:X ab := ∂[aχb℄ ,(4.5) X abc := 2∂[aχb℄c + haa0 hbb0hcc0 td0Ra0b0c0d0(4.6)

The first lines in (4.3) and (4.4) feed back the constraint quantities E andB into themselveswith the extrinsic
curvature quantities of the foliation acting as coefficients. The second lines couple the system to the constraint
quantities of the foliation with E and B acting as coefficients.
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Obviously all the terms on the right-hand sides are proportional to constraint quantities. The differential
equations therefore are homogeneous with respect to constraint quantities, i.e. Ec = 0, Bc = 0 are solutions
of the propagation equations under the assumption, that the constraint quantities of the foliation also vanish.
Since the system can be shown to be symmetric hyperbolic, we have uniqueness of solutions, so that the only
solutionwith vanishing initial conditions is in fact the zero solution. Hence it is shown that the evolution and
constraint equations of the Weyl system are compatible.

5. STABILITY ANALYSIS

From the analytical point of view, the above statement is all we need. From the numerical point of view,
this is just the first step.
In doing numerics, the canonical approach is to solve the constraint equations to produce initial data which

is as accurate as possible. The numerical integration of the evolution equations will produce a solution of the
evolution equations from these initial conditions. In general, this procedure cannot distinguish between
good data satisfying the constraint equations exactly and bad data which are perturbed by numerical error.
Numerical noise will be carried along and can (and will) accumulate.
That means that one has to consider the evolution equations from a more general point of view allowing

arbitrary initial data (off the constraint surface C). The way in which these non-solutions of the constraint
equations are propagated, depends on properties which are not part of the original full system of equations
but of the evolution equations on their own.
The form of this system is not fixed. By adding multiples of the constraint equations one can write down

many different systems with (presumably) very different properties, changing the evolution anywhere but
on the constraint surface C. Here we will consider the form of the evolution equations as fixed, partly because
we want to focus on the particular influence of the foliation and partly because the spinorial formulation of
the Weyl system seems to suggest that this form is a very natural one.
Then we see that the subsidiary system (4.3,4.4) essentially depends on the foliation chosen for hyperbolic

reduction as this is the parameter which determines how the properties of the covariant equation (3.1) are
partitioned between evolution and constraint equations. In a way hyperbolic reduction unscrews the railing
along the ridge on which the constraint path of virtue runs.
Since the numerical procedure aims at producing solutions which are as close to analytic solutions as

possible, it must be required to be stable against perturbations by numerical noise. Thus, it is a necessary
condition that the solutions of the evolution equations with vanishing constraint quantities are attractors
in the positive time direction, i.e., the constraint surface in the phase space of initial conditions has to be
attractive.
The following analysis will extend the analysis of compatibility given in the last section, which can be

looked upon as stability analysis of zeroth order, to a stability analysis of first order which is valid for small
perturbations. In this process different approximations have to be applied. The first one is that we analyse
the constraint propagation properties only within the Weyl system. The coupling to other equations outside
this system will be neglected by assuming the external constraint quantities (belonging to equations for the
foliation) to vanish.
To make the calculations more compact, we introduce a complex constraint quantity Fc := Ec � iBc to

exploit the invariance under duality transformation. Then the decoupled propagation equations combine into
a single one which reads:

∂Fc = ∂Ec � i∂Bc(5.1) = � 12 iεcab∂aFb + 3
2 iεcabχ

aFb + 1
2χ
b
c Fb � 3

2χFc
Obviously, Fc = 0 is a solution, but now of particular interest is, how solutions Fc 6= 0 will behave. If
propagation is stable, they will converge against Fc = 0 in positive time direction. If not, then the constraint
quantity will diverge.
To investigate this, we use another approximation: In general, the coefficients of the propagation equation

χ ba and χ
a vary from point to point. We now consider the propagation properties locally around a point

p 2M and assume, that in a certain neighbourhood of this point the coefficients can be considered constant.
That implies, that the space-time manifold is locally approximated by its tangent space at point p. This
will be the manifold of our further investigation. The constraint quantity Fc and the extrinsic curvature
quantities χ ba and χ

a accordingly become tensor fields on the flat tangent space, for which now is imposed
a differential equation with constant coefficients which formally corresponds to the original equation. The
detailed discussion of what is involved in this step is given in the appendix A. There we show how to derive
the final equation (A.5) which will be analysed here. Note, that this equation contains the lapse function N
and the shift vector. However, for the purpose here, it is enough to assume N = 1 and a vanishing shift, so
that ∂ = ∂t. We will comment on the influence of non-trivial lapse and shift below.
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The procedure of this approximation is known as freezing of coefficients, a standard method in numerical
stability analysis. Because the frozen propagation equation is now defined on flat space, it is apt to be Fourier
transformed in the spatial directions. Let V denote the local spatial tangent space (tangent to the space-like
slice through p) and V� its dual space. Then the frozen constraint quantity can be represented asFc(t, xa ) := Z

V� bFc(t, ka)eika xad3ka 8 xa 2 V(5.2)

with its frequency components bFc(t, ka ), for which now the following propagation equation holds:
∂ bFc = 1

2εcabk
a bFb + 3

2 iεcabχ
a bFb � 3

2χ
bFc + 1

2χ
b
c
bFb(5.3) = P bc (ka ,χ ba ,χa ) bFb(t, ka)

The spatial derivative ∂a has transformed into the frequency covector ka which reduces the propagation
equation to an ordinary differential equation with constant coefficients which are denoted by the propagation
tensor

(5.4) P bc := ε b
ca

�
1
2 k
a + 3

2 iχ
a
�+ 1

2χ
b
c � 32χhbc .

The propagation tensor is the evolution generator of the constraint quantities in frequency representation
and its eigenvalues decide on the propagation properties of the mode belonging to the respective eigenvalue.
For numerically stable constraint propagation, the propagation equation is required to be stable and attrac-

tive around the point bFc = 0. Here stable means that the solutions around bFc = 0 can be controlled: For
every maximal deviation from bFc = 0 given for all times, there is a maximum initial deviation. Attractive
means that in a certain neighbourhood of bFc = 0 all solutions converge against bFc = 0 for large times. If
both conditions are met, then the propagation equation is said to be asymptotically stable which is equivalent
to all eigenvalues lying in the left complex half-plane f<(z) < 0g. More details can be found in the litera-
ture on linear systems, e.g. [5]. The impact of the location of the eigenvalues and of diagonalisability on the
propagation properties has been analysed by Yoneda and Shinkai in [34].
To study the eigenvalues, it is necessary to calculate the characteristic polynomial

(5.5) XP(z) := det(P ba � zhba ) ,
which is most elegantly done by using the covariant representation of 3-dimensional determinants as

det T ba = T [a
a T

b
b T

c℄
c .(5.6)

Since the propagation tensor is only 3-dimensional in our case, it would be possible in principle to directly
calculate the eigenvalues by the well known solution formula for the roots of polynomials of third order.
Unfortunately, the solution formula employs case discriminations which makes the general dependence of
the eigenvalues on the parameters of the propagation tensor difficult to analyse. Moreover we are only
interested in the sign of the real part of the eigenvalues to decide whether propagation is stable or not. Thus,
we only need to know under what conditions the spectrum of the propagation tensor is contained in the left
half of the complex plane. This is exactly the kind of question that can be decided with the Routh-Hurwitz
criterion (see app. B) which is applicable to propagation tensors of arbitrary dimensionality.

5.1. Application to the propagation tensor. The first step now is to calculate the characteristic polynomial
in the representation required by the Routh-Hurwitz criterion and results in

XP (iz) = b0z3 + b1z2 + b2z+ b3 + i (a0z3 + a1z2 + a2z+ a3)(5.7)

with the following real coefficients:

a0 = 1, a1 = 0 ,(5.8)

a2 = �� 12 (M a
a )2 � 1

2M c
b M b

c � 1
4 (ka ka � 9χaχa)� ,

a3 = � 32 kaM b
a χb ,

b0 = 0, b1 = �M a
a ,

b2 = � 32 kaχa ,
b3 = detM b

a � 1
4M b

a (kakb � 9χaχb)
Here,Mab denotes the symmetric part of the propagation tensor which is a trace-transform of the extrinsic
curvature: Mcb := 1

2χcb � 3
2χhcb(5.9)
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From these coefficients we calculate the three Hurwitz determinantsD2 , D4 and D6 which are required to be
strictly positive for stable constraint propagation. The three inequalities are of increasing complexity, sinceDi is a i� i-determinant.
5.1.1. The first Routh-Hurwitz inequality. The condition requiring D2 to be strictly positive, is

0 < D2 = ����a0 a1
b0 b1

���� = ����1 0
0 �M a

a

���� = �M a
a =
(5.4)
4χ(5.10) , χ > 0(RH.1)

Remarkably, this condition neither depends on the mode ka , nor on the acceleration vector χ
a . It demands

that the foliation has positive mean curvature at the point under consideration.

5.1.2. The second Routh-Hurwitz inequality. This inequality is already much more complicated, therefore we
have to limit ourselves to the results. The complete calculations can be found in [33, sec. 6.3]. The determinant
involved here is: D4 = ��������a0 a1 a2 a3

b0 b1 b2 b3
0 a0 a1 a2
0 b0 b1 b2

��������(5.11) = 1
2N c
c

�
detN b

a � 1
4N b
a (kakb � 9χaχb)�� � 32kaχa�2

with another trace-transform of the extrinsic curvatureN b
a := M b

a �M c
c h
b
a =
(5.4)

1
2χ
b
a + 5

2χh
b
a , which implies(5.12) N a

a =M a
a � 3M a

a = �2M a
a = 8χ .(5.13)

This determinant now contains all the parameters ka , χ
a and χ ba . Ideally onewould like to fulfil this condition

for arbitrary modes ka simultaneously, resulting in relations betweenχ
a and χ ba only. Detailed analysis shows

that this is actually possible and yields the following conditions:
Let the acceleration vector χa be represented in polar fashion as χa = s va with an unit vector va and s � 0.

Then the following conditions are necessary and sufficient for the second Routh-Hurwitz inequality D4 > 0
to hold for arbitrary modes ka :

All three eigenvalues ni ofN b
a are strictly positive;(RH.2)

for the length s of the acceleration vector hold both

s < 2
3

s� detN b
aNabvavb and(RH.3)

s � 1
3

s� 1
2N c
cfNabvavb .(RH.4)

Here fN b
a denotes the inverse of N b

a . The condition (RH.2) implies the first stability condition (RH.1). The
conditions (RH.3) and (RH.4) are not equivalent. Examples show, that depending on the parameters, either
one of them can be more strict than the other.

5.1.3. The third Routh-Hurwitz inequality. The third inequality is obtained from the 6� 6-determinantD6 = ������������a0 a1 a2 a3 0 0
b0 b1 b2 b3 0 0
0 a0 a1 a2 a3 0
0 b0 b1 b2 b3 0
0 0 a0 a1 a2 a3
0 0 b0 b1 b2 b3

������������(5.14) = �b 31 a 23 � b 21 a 22 b3 + b 21 a2b2a3 + 2b1 a2b 23 � 3b1b2a3b3� a2b 22 b3 + b 32 a3 � b 33 ,
with the coefficients already given in (5.8). To examine D6 > 0 with respect to the frequency ka , we sort the
terms in D6 by their order in ka : D6 = K6 + K4 + K2 + K0(5.15)
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The terms Ki contain ka to the power of i and are given by

K6 := B1((B1 � b1A1)2 � b 22 A1) ,(5.16)

K4 := (B1 � b1A1)�2b1B1(A0 + A2) + (B0 + B2)(A1b1 � 3B1) + b1b2a3�(5.17) + b 22 B1(A0 + A2) + b 22 A1(B0 + B2) + 2b2 a3B1b1 + b 32 a3 ,
K2 := b 21 B1(A0 + A2)2 + (B0 + B2)2(3B1 � 2A1b1)(5.18) � (A0 + A2)(B0 + B2)�b1(4B1 � 2b1A1) + b 22 �+ b2a3b 21 (A0 + A2)� 3b2a3b1(B0 + B2)� b 31 a 23 ,
K0 := � (B0 + B2)�(B0 + B2)� b1(A0 + A2)�2 ,(5.19)

with the following abbreviations:

A0 := �M [a
a M b℄

b ,A1 := � 14 kaka ,A2 := � 94χaχa ;
B0 := detM b

a , B1 := 1
4M b

a k
akb , B2 := 9

4M b
a χ
aχb

This makes it obvious that we have to discuss a polynomial inequality of sixth order in ka of which we hope,
that it can be fulfilled for arbitrary ka simultaneously with the first and second Routh-Hurwitz inequalities
above.
To see, if this is actually possible, we will first discuss the low frequency limit. In the domain of low

frequencies, the terms of low order in ka play the dominant role. Looking at the case ka ! 0, only D6 ! K0
contributes. Analysing this term yields the following result:

As before letM b
a denote the symmetric part of the propagation tensor and choose the acceleration vector

χa to be represented in polar form as χa = s va with unit vector va and length s � 0.
Then necessary and sufficient for the third Routh-Hurwitz inequality D6 > 0 to hold in the limit ka ! 0,

are the following conditions:

All three eigenvalues mi ofM b
a are strictly negative ;(RH.5)

s < 2
3

s� detM b
aMabvavb
.(RH.6)

Because of ni = mi � (m1 +m2 +m3) = �∑ j 6=i m j , it follows from (RH.5), that ni > 0 (RH.2) which further
implies (RH.1). Moreover, it can be shown, that (RH.6) implies the previous conditions (RH.3) and (RH.4).
Therefore the conditions (RH.5) and (RH.6) are already sufficient for the first and second Routh-Hurwitz
inequality D2 , D4 > 0 to hold, and that for all ka .
For non-zero frequencies, the inequality D6 > 0, of course, is much more complicated to analyse. Repre-

senting the frequency vector in polar form as ka = k ua with another unit vector ua and k � 0 results in:D6 = K6(ua) k6 +K4(ua) k4 +K2(ua) k2 + K0(ua)(5.20)

Surprisingly, numerical tests (see below) strongly support the conjecture, that K6(ua), K4(ua) and K2(ua )
are already individually positive whenever the conditions (RH.5) and (RH.6) hold. This means, that zero-
frequency stability already implies stability for arbitrary modes.
To test this conjecture in a systematic way, it suggests itself to represent the acceleration vector χa in the

following rescaled polar form (with gain t � 0 and direction vava = �1):
χa(t, va ) := t Xa(va) with(5.21)

Xa(va) := 2
3

s� detM b
aMabv
avb
va(5.22)

Then (RH.6) is equivalent with t < 1. Inserting this into the coefficients K6 , K4 and K2 of (5.20) has the
following benefit: RescalingM b

a ! αM b
a now causes Ki to rescale with a power ofα: Ki ! α9�i Ki . That

means, that rescaling with positive factors will never change the sign of the individual terms.

Without loss of generality assume that the eigenvaluesmi ofM b
a are numbered in increasing order: m1 �

m2 � m3 < 0. Then anyM b
a can be represented asM b

a = �m1 fM b
a , where the eigenvalues of

fM b
a are

given by �1 = m̃1 � m̃2 � m̃3 < 0 and the Ki will have the same signs for both tensors with and without
tilde. This shows, that it is sufficient to prove or test the conjecture for eigenvalues (�1, m̃2 , m̃3 ) lying inside
the bounded triangle defined by the last inequality.
Although we did not find a proof for the given conjecture, we neither found any special cases in numerical

tests, in which the conjecture would be falsified. For the numerical tests, we used the following procedure:
First, pick the following quantities:



10 J. FRAUENDIENER AND T. VOGEL� m̃2 , m̃3 with�1 � m̃2 � m̃3 < 0,� the gain t with t < 1,� the direction va with vava = �1,� the direction ua with uaua = �1.
These amount to seven real and independent degrees of freedom, all bounded to finite ranges. The conditions
of the first two items assert, that the conditions (RH.5) and (RH.6) hold.
Second, calculate the coefficients K6 , K4 and K2 of (5.20). If they are all positive, then the conjecture is

proven for the chosen special case. If K6 is negative, the conjecture is falsified for the high-frequency limit.
If K4 or K2 are negative, a more detailed analysis must show, if this results in frequency bands which are
instable.
This procedure has been carried out for a large number of special cases. The eigenvalues have been chosen

as m̃2 := �α and m̃3 := �αβ with α and β in [10�5 , 1℄. In different runs we tried both equally distributed
and exponentially distributed values, which concentrate around the critical points α = 0 and β = 0. The
typical (α,β)-grid had 20 � 20 points.
For the unit vectors va and ua we chose vectors on the unit sphere in a way, so that the angular distance

between them stays approximately constant for all latitudes, which is not the case for a simple uniform(θ,φ)-grid. So the number of points on each line of latitude increases towards the equator. Further it was
taken advantage of the fact, that the quantities Ki are invariant under inversion of the unit vectors, so only
the northern hemisphere was actually used. On typical runs, we used 272 points on this hemisphere (10
latitudes, 40 longitudes on the equator).
For the choice of the gain t, which describes if the condition (RH.6) is met, we also used an exponential

spacing, which concentrates around the critical value t = 1. We chose 20 values in [0, 1� 10�5 ℄. This amounts
to 591.872.000 combinations per run.
The result of this test is, that in the given domain, we did not find any cases contradicting the conjecture.

Only when choosing values t � 1 or α,β � 0 we found negative coefficients Ki . As the coefficients Ki only
consist of (admittedly complicated) polynomials, we tend to believe that the conjecture is true.

6. RESULTS

In the last section it has been shown that it is possible to apply the Routh-Hurwitz criterion to the prop-
agation tensor and to perform a detailed analysis of the geometrical meaning of the conditions given by the
criterion which in our example of the Bianchi equation results in:

For the extrinsic curvature χab define the auxiliary tensorMab := 1
2χab � 3

2χ
c
c hab . Represent the accelera-

tion vector (see 3.1) in polar fashion as χa = s va with unit vector va and positive length s. Then the following
conditions are necessary for local stability:

RH.5: All eigenvalues mi ofM b
a are strictly negative;

RH.6: the length s of χa is, depending on its direction va , bounded by

s < 2
3

s� detM b
aMabvavb
.

According to the discussion at the end of 5.1.3, we conjecture, that these conditions are also sufficient for
local stability in the sense described at the beginning of sec. 5.
Remarkably, these conditions in a way resemble the partition of the original set of equations into constraint

and evolution equations: As presented in 3.1, the extrinsic curvature χab can be defined as the purely-spatial
derivative of the foliation’s normal unit vector field ta , whereas the acceleration vector χa is its temporal
derivative. As (RH.5) only contains the extrinsic curvature, it can be viewed as a constraint inequality, because
it has to hold on every individual leaf of the foliation. On the other hand, (RH.6) connects the extrinsic
curvature with the acceleration vector, thus forming an evolution inequality for the vector field.
We have derived these conditions under the assumption of a constant lapse and a vanishing shift. It is

straightforward to incorporate the case of non-trivial lapse and shift as follows. Consider the propagation

tensor P̂ab for the general equation (A.5). It is easy to verify thatP̂a b = N P ba + i�N lkl�h ba .
Thus, the effect of the lapse on the spectrum of P̂a b is simply a scaling with a positive number while the shift
vector shifts the spectrum along the imaginary axis. None of these modifications affects the number of roots

in the left half of the complex plane. Therefore, the stability conditions for the general propagation tensor P̂a b
are the same as for Pab .
One may wonder, why there is no influence of the lapse on the propagation properties. After all, it is the

lapse function which determines the time-foliation. However, this is easily explained since it is not the value
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of the lapse which is relevant but its spatial derivative and this is related to the acceleration vector by

χa = ∂aN
N
.

Thus, the spatial variation of N does have a strong influence on the stability properties.

6.1. Geometric interpretation. The conditions (RH.1), (RH.2) and (RH.5) all limit the allowed eigenvalues
of the extrinsic curvature. Their impact is visualised in fig. 1. Each axis in these pictures corresponds to one
eigenvalue of the extrinsic curvature. Then only such combinations are allowedwhich lie on the same side of
all the depicted planes as the corresponding arrow. These pictures show that the conditions are of increasing
strictness.

a

b c

FIGURE 1. Limitation of the eigenvalues of extrinsic curvature by the conditions a: (RH.1),
b: (RH.2) and c: (RH.5)

The strongest condition found for the acceleration vector χa (RH.6) can be rewritten as(χ1)2
m2m3

+ (χ2)2
m1m3

+ (χ3)2
m1m2

< 4
9

(6.1)

with the components of χa taken with respect to the normalised eigenvector basis ofM b
a . This obviously

means, that the vector χa has to lie strictly inside an ellipsoid whose semi-major axes are determined by the
eigenvalues mi .
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6.2. Trivial foliation of Minkowski space. As an example consider Minkowski space with standard coor-
dinates (t, x, y, z). Its flat foliation by ft = constg-surfaces with vanishing curvature quantities χab = 0 and
χa = 0 does not fulfil the stability conditions:
Vanishing extrinsic curvature results inMab = 0 which violates (RH.5). However, this violation is only

marginal: The situation lies exactly on the border of the condition.
Furthermore, the right hand side of (RH.6) is undefined. The formal singularity can be resolved by taking

an appropriate limiting procedure (the numerator is of third order inM, the denominator is only of first
order), but this will still only result in the condition s < 0 which cannot be satisfied. But also here, the
condition (RH.6) is only marginally violated.
So it is to be expected, that the eigenvalues of the propagation tensor lie on the imaginary axis. The

propagation equation with vanishing curvature quantities reads (5.1)

∂Fc = �1
2
iεcab∂aFb ,(6.2)

which is completely analogous to the Ampère-Faraday law of vacuum electrodynamics. The propagation

tensor in frequency representation therefore is P bc = 1
2ε

b
ca k

a with its eigenvalues f0,� i2p�ka kag. As ex-
pected, their real parts vanish. Therefore flat Minkowski foliations are not stable in the strict sense used
above, but instead are marginally stable. However, this might be unstable enough to spoil numerical simula-
tions, since constraint violations will evolve undamped and so can pile up, even though the growth rate will
not be significant.

6.3. Hyperboloidal foliation ofMinkowski space. Now consider the foliation ofMinkowski space given byfτ = constg surfaces of the parametrisation
t = sin τ

cos τ + cos ρ , r = sin ρ

cos τ + cos ρ(6.3)

in spherical coordinates (t, r,θ,φ) with compactified time coordinate jτj < π and compactified radial coor-
dinate 0 � ρ < π � jτj (see fig. 2). The leaves in standard coordinates are shown in fig. 3. This gives for the
extrinsic curvature:

χ ba = sign(τ)p
cot2 τ + 1 hba(6.4) )M b

a = � 4 sign(τ)p
cot2 τ + 1 hba(6.5)

That means the condition (RH.5) is satisfied only for τ > 0, i.e. t > 0. In this case, the acceleration vector
reads

χa = � 1p
cot2 τ + 1 rt � ua(6.6)

ρ

τ

π

π

FIGURE 2. Hyperboloidal foliation of Minkowski space (compactified coordinates)
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with the radial unit vector ua tangent to the leaf. Condition (RH.6) is just

t

r
> 3
8
,(6.7)

which means that the condition holds for points which are above the straight line plotted in fig. 3.

 0

 2

 4

 6

 8

 10

 12

 14

 16

-10 -5  0  5  10

r

t

t

r
= 3

8

FIGURE 3. Hyperboloidal foliation of Minkowski space (standard coordinates), equally
spaced in the compactified time coordinate
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7. CONCLUSION

We have shown in this work that the stability of the constraint propagation is heavily influenced by the
choice of the time slicing, i.e., by the choice of the time coordinate. We derive our results by an application of
the Routh-Hurwitz criterion to the propagation equation obtained by freezing the coefficients in the system
of PDEs that describes the propagation of the constraints. The system we have treated is known as the Weyl
system because it describes the evolution of the gravitational degrees of freedom given by the Weyl tensor.
We obtain conditions for the extrinsic curvature and the acceleration vector of the foliation which have to be
satisfied for the local constraint propagation to be stable.
This work can only be considered as a first step towards understanding the various contributions to the

behaviour of the constraints in numerical simulations. For instance, we have ignored the effect of the Ricci
rotation coefficients to the propagation tensor by focussing exclusively on the time foliation.
Furthermore, it is well known that the propagation system for the constraints can be cast into a large class

of different forms by adding linear combinations of the constraint quantities to the right-hand sides. These
possibilities have also been completely ignored by us. A more detailed study should take these terms into
account, even though general considerations suggest that they cannot affect the overall stability properties
[2].
We have also treated theWeyl system in isolation, i.e. decoupled from the rest of the system that describes

the time evolution of vacuum space-times. In this larger system, there is feedback into the Weyl constraints
by the constraints coming from the other subsystems and vice versa. Again, a more detailed analysis should
be made in order to understand these effects.
Even though we have applied our analysis only to the case of the Weyl system it is clear that a similar

analysis can also be applied to the standard ADM and the BSSN formulation. Then one could compare the
analytical findings with the study by Shinkai and Yoneda. It would be interesting to see whether the much
improved performance of the BSSN system compared to the ADM system can be understood from the point
of view of this stability analysis. To end, we want to quickly resume on the procedure we have followed for
our analysis, and which is to be applied to answer the questions given last:

(1) Starting from the covariant field equations, hyperbolic reduction produces a set of constraint equations
and evolution equations. The distribution of the properties of the covariant equation into the constraint
and evolution equations is decided by the choice of gauge which appears as coefficients in the split
equations.

(2) For the constraint quantities whose vanishing indicates fulfillment of the constraint equations, propa-
gation equations can be derived using the evolution equations. These are considered as equations for
the constraint variables propagating on the fixed background provided by some solution of the full
system of evolution and constraint equations.

(3) The propagation equations generally couple all of the system’s constraint quantities. As a first step,
feedback of one subsystem into itself can be studied by assuming the other constraint quantities to
vanish which decouples the subsystem.

(4) Freezing of coefficients approximates the decoupled system locally on flat background as partial differ-
ential equations with constant coefficients.

(5) These frozen propagation equations are apt to Fourier analysis yielding propagation equations in frequency
representation which are just ordinary differential equations with constant coefficients.

(6) The location of the complex eigenvalues of the matrix of coefficients (propagation tensor) governs the
local stability behaviour of constraint propagation. Necessary for asymptotic stability is that the real
parts of the eigenvalues are negative.

(7) The Routh-Hurwitz criterion is the proper tool to analyse the spectrum with respect to stability. It
allows to distill algebraic conditions for the gauge parameters under which stable constraint propa-
gation is possible.

These conditions represent necessary and sufficient conditions for locally asymptotic stability of constraint
propagation within the subsystem under analysis. For the stability of the whole system, they are in general
necessary conditions.
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APPENDIX A. SIMPLIFYING ASSUMPTIONS

In our treatment of the propagation system it has been necessary to make some simplifying assumptions
in order to bring the equations into a manageable form. Here, we want to discuss these assumptions in more
detail. Let us start with the covariant form of the propagation system (5.1)

(A.1) ∂Fc = � 12 iεcab∂aFb + 3
2 iεcabχ

aFb + 1
2χ
b
c Fb � 32χFc .

This equation is given on the space-time manifoldM which, we imagine, has been foliated into space-like
leaves �t given by t = const. for some global time coordinate t. The time-like vector field ta is chosen to be the
time-like unit-vector field to the foliation. In addition, we suppose that three further space-like unit-vector
fields eai (i = 1, 2, 3) have been chosen in order to form a complete tetrad field with ea0 = ta . The space-like
members of the tetrad are necessarily tangent to the leaves of the foliation. Let (ta = ω0a ,ω

i
a) be the dual

basis. Then we can write every tensor field with respect to this basis. Thus we have e.g.,

(A.2) Fc = Fiωic .
Inserting these expansions into the equations and taking components yields for l = 1, 2, 3
(A.3) ∂Fl ��klFk = �i 12ε mnl �

∂mFn � γ k
m nFk�+ i 32εlmnχmFn + 1

2χ
m
l Fm � 32χFl .

Here, ∂k := eak∂a denotes the directional derivative along the tetrad vector eak while ∂ is the directional deriva-
tive along ta . Introducing the familiar 3+ 1 split we may write
(A.4)

∂
∂t

= N∂ + Nk∂k
with the lapse function N and the shift vector Nkeak .

The functions �kl and γ k
m l are Ricci rotation coefficients with respect to the tetrad defined by

∂eka = �klela ∂ieka = γ ki le
l
a .

They characterise the behaviour of the spatial tetrad vectors. Geometrically, the functions�kl determine how
the spatial triad is transported from one leaf of the foliation to the next. In the formulations we are interested
in, they are considered as gauge source functions, i.e., they can be prescribed freely as functions on M.
Here, we will assume that they in fact vanish. This amounts to moving the spatial vectors by Fermi-Walker
transport along the integral curves of ta , the world lines of the Eulerian observers attached to the foliation
(i.e., those observers for which the current leaf is the manifold of simultaneity).
Now we fix some event p 2 M which will be the point on which we localise the equation. Let t0 = t(p)

be the value of the time coordinate at p and let �t0 be the leaf through p. Let us introduce normal coordinates
inside �t0 centred at pwith respect to the metric hab and choose the spatial triad at that point to agree with the
coordinate vectors. Then only at the point p we have γ k

m n(p) = 0. After localisation we have (A.3) with all the
coefficients being frozen at their value at p. This results in

(A.5) ∂tFl �Nk∂kFl = N2 (�iε mnl ∂mFn + 3iεlmnχmFn + χ ml Fm � 3χFl ) .
Admittedly, this procedure of removing the functions γ k

m n(p) is somewhat brutal and not quite consistent.
However, it is the best that we can do if we want to study the isolated influence of the time foliation on the
stability properties.

APPENDIX B. THE GENERALISED ROUTH-HURWITZ CRITERION

The appropriate tool to answer questions of stability of ODEs is the Routh-Hurwitz criterion, also known
as Bilharz criterion, which originates from stability theory. Presentations of the criterion can be found in
Gantmacher [17] and Parks and Hahn [21]. Our representation follows the lines of [17]:

Theorem 1 (Routh-Hurwitz). Let f be a complex polynomial of degree n with

f (iz) = b0zn + b1zn�1 + � � � + bn + i�a0zn + a1zn�1 + � � � + an�
with ai , bi real and without loss of generality a0 6= 0 (otherwise assign f ! i f , which does not change its roots). Now
define the 2p-dimensional Hurwitz determinantD2p := �����������a0 a1 . . . a2p�1

b0 b1 . . . b2p�1
0 a0 . . . a2p�2
0 b0 . . . b2p�2
...
...
. . .

...

�����������
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where p = 1, 2, . . . ,n and ak = bk = 0 for k > n. Further let both of the following real polynomials
z 7! a0zn + a1zn�1 + � � �+ an

and z 7! b0zn + b1zn�1 + � � � + bn
be coprime, which is equivalent to D2n 6= 0. Then the number of roots of the polynomial f , which are located in the
right complex half-plane f<(z) > 0g, is given by
(B.1) k = V(1,D2 ,D4 , . . . ,D2n ) ,
with V(x1 , x2 , . . . , xq) denoting the number of changes of sign in the sequence (x1 , x2 , . . . , xq ). In case some of the
determinants in (B.1) vanish, then for every section of vanishing determinants of length pD2h 6= 0,D2(h+1) = � � � = D2(h+p) = 0,D2(h+p+1) 6= 0 (h, p 2 N)
one has to set:

(B.2) V(D2h ,D2(h+1) , . . . ,D2(h+p) ,D2(h+p+1)) = ( p+1
2 if p odd
p+1�ε
2 with ε = (�1) p2 sign D2(h+p+1)D2h if p even

The proof is rather extensive and can be found in the mentioned literature, the basic idea however will be
outlined in the following section. From the theorem follows, that equivalent to asymptotic stability is, that all
Hurwitz determinants are strictly positive.

B.1. Mathematical background. The basic idea behind the remarkable Routh-Hurwitz criterion is the argu-
ment principle: Every polynomial f of degree n has exactly n complex rootsαi and can therefore be written as
a product of its elementary divisors:

(B.3) f (z) = n

∑
i=0 aizi = an n∏i=1(z�αi)

Then the argument of f constitutes additively from the contributions of the several elementary divisors:

arg f (z) = arg  an n∏
i=1(z�αi)! = n

∑
i=1 arg(z�αi) + arg an(B.4)

Now choose a closed, non-self-intersecting path C in the complex plane and track the change of arg f (z) =
∑ni=1 arg(z�αi) + arg an while travelling once around C in positive orientation (s. fig. 4).
As the change of argument sums up from the contributions of each root, one can look at each root individ-

ually:
If the considered root lies outside of the domain enclosed by C (e.g. α2 in fig. 4), then the argument of(z �α2) first grows a little, then decreases and finally increases so that the net difference exactly vanishes.

Roots out of C therefore contribute nothing to the change of argument.
On the contrary, if the root under consideration lies inside C (as α1 of fig. 4 does), then the argument of(z�α1) grows continually, picking up an increase of 2π for one revolution.
So the growth of argument counts the number of roots l inside C , counting multiple roots according to

their multiplicity:

(B.5) �C arg f = 2π l
This connection between change of argument and the location of roots can now be employed to count the

roots in a complex half-plane. Let l and r be the number of roots in the left and right half-plane, and n = l+ r,
i.e. no roots lie on the imaginary axis. Now one can construct a pathC := C1C2 out of two segments (s. fig. 5),
which encloses the left complex half-plane for R! 1.
Calculating the change of argument for the individual segments, the half-circle C2 for R ! 1 always

counts all roots, regardless of their location:

lim
R!1�C2 arg f = lim

R!1 n

∑
i=1�C2 arg(z�αi) = n

∑
i=1 limR!1 arg�R(eiφ � αi

R )���� 32πφ=π2(B.6) = π n

The complete path C however counts only the roots in the left complex half-plane according to the argu-
ment principle:

lim
R!1�C arg f = 2π l(B.7)
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FIGURE 4. The argument principle
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FIGURE 5. A path enclosing the left complex half-plane for R! 1
Thus the contribution of C1 along the imaginary axis is given as the difference of these two amounts:

lim
R!1�C1 arg f = lim

R!1�C arg f � limR!1�C2 arg f = π (2l � n) = π (n� 2r)(B.8)



18 J. FRAUENDIENER AND T. VOGEL

This can be written as

(B.9) lim
R!1�C1 arg f = � arg f (iz)��z!1

z!�1 .
Representing the polynomial f by

(B.10) f (iz) =: f<(z) + i f=(z)
with real polynomials f< and f= , and using
(B.11) arg f (iz) = arctan f=(z)

f<(z) ,
now allows to state the Leonhard-Michailov criterion:
All roots are located in the left complex half-plane (r = 0), if and only if

(B.12) arctan
f=(z)
f<(z)

increases exactly by π n when travelling along the real axis from z = �1 to z = +1.
That means, one has to track the change of angle of the vector

(B.13)

�
f<(z)
f=(z)�

when walking from z = �1 to z = +1, and count how often the vector circles around the origin. This
is a rather cumbersome method. Fortunately, it is possible to find an algebraic version of this criterion. The
following shall outline the necessary procedure. For a proof, we refer to literature, e.g. [21, section 1.2, p.
10ff].

As a first step, the growth of arctan
f=(z)
f<(z) by multiples of π is directly related to the number of jumps

between�1 and+1 of f=(z)
f<(z) . For every increase by π, the fraction jumps exactly once from +1 to �1.

A magnitude which counts such jumps is the Cauchy index Iba g which amounts to the number of jumps of
the function g from �1 to+1 minus the number of jumps from +1 to �1, when tracing g from a to b.
Considering rational functions s2s1 , the Cauchy index can be calculated from the Sturm sequence if s1 and s2

are coprime and the degree of s1 is greater than that of s2 . The Sturm sequence is generated by the Euclidean
algorithm: For two elements si�1 and si of a Sturm sequence, the next element si+1 is the negative residual of
the polynomial division (si�1 : si), i.e.
(B.14) si�1 = qi�1 si � si+1 ,
where the quotient polynomials (qi ) are of no further interest. As the degree is decreasing from element to
element, the Sturm sequence terminates with a constant polynomial sm which is non-vanishing if and only if
s1 and s2 are coprime. In this case furthermore the Sturm theorem for the Cauchy index of the rational function
holds:

(B.15) Iba
s2
s1

= V(a) � V(b) ,
with V(z) denoting the number of changes of sign in the sequence �s1(z), s2 (z), � � � , sm (z)� . Thus one evalu-
ates the elements of the Sturm sequence at the position z and then counts the number of changes of sign.

For the Leonhard-Michailov criterion one is interested in the Cauchy index I+1�1 f=
f< , therefore the Sturm

sequence must be evaluated at z ! �1 and z ! +1. For these limiting values only the highest order
coefficients in the elements of the Sturm sequence play a role. They can be expressed in terms of special
determinants, which are composed out of the coefficients of f< and f= .
Finally this leads to the Routh-Hurwitz criterion given above, which therefore represents an algebraic ver-

sion of the Leonhard-Michailov criterion.
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