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SPECTRAL RIGIDITY OF GROUP ACTIONS:APPLICATIONS TO THE CASE grht; s; ts = st2iOLEGN. AGEEVAbstrat. We apply a tehnique to study the notion of spetral rigidity ofgroup ations to a group grht; s; ts = st2i. As an appliation, we provethat there exist rank one weakly mixing transformations onjugate its square,thereby giving a positive answer to a well-known question.IntrodutionIn [1℄ we introdued a notion of spetral rigidity of group ations. This notionis essential only for nonommutative groups (see Remark 8 in [1℄). We say thata property holds for a typial element from a topologial spae D (or a typialelement of a topologial spae D has some property) if the set of elements fromD with this property ontains a dense GÆ subset of D. Following [1℄, we say thatan element h of a group H has spetral rigidity if for a typial H-ation T theset of essential values of the spetral multipliity funtion of Th, named M (Th),is onstant. If every element of H has this property, we say that the group Hhas spetral rigidity. It is easy to see that the notion of spetral rigidity an beonsidered as one of invariants (in general, not omplete) with respet to group,metrial, or unitary isomorphisms.It is well known that a typial transformation has rank one, and is weakly mixing.However, it is not onjugate to its square (see [9℄). More information about thesenotations an be found in [5℄. The main goal of this paper is to show how thetehnique to study the spetral rigidity works in the ase of ations of a groupG = grht; s; ts = st2i. Let us reall that even in this simple ase we have no usefulspetral theorem, beause G is wild (see [10℄).1. Preliminaries and the basi resultLet T be a transformation de�ned on a non-atomi standard Borel probabilityspae (X;F ; �). The set of all transformations (automorphisms of the �- algebra ofmeasurable sets) of (X;�) is a Polish (omplete metrizable separable) topologialgroup, noted Aut(�), with respet to the weak (or oarse) topology (see [7℄) de�nedby Tn ! T , �(T�1n A�T�1A)! 0 for eah measurable A(we identify transformations if they are oinide up to a set of measure zero).Date: November 24. 04.1991 Mathematis Subjet Classi�ation. Primary 37A, 28D05, 28D15; Seondary 47A05,47A35, 47D03.Key words and phrases. Group ations, ergodi theory, onjugations to its squares.The author was supported in part by Max Plank Institute of Mathematis, Bonn and a grantfrom the President of Russia for Support of Leading Sienti� Shools #00-15-96107.1



2 OLEGN. AGEEVThe spetral properties of T are those of the indued unitary operator on L2(�)de�ned by bT : L2(�)! L2(�); bT f(x) = f(Tx):This is Koopman's representation of dynamial systems, therefore if TS = ST 2,then bS bT = T 2 bS. Let us reall that a transformationT has rank n if n is the smallestnumber suh that, for any k, there exist integers hk;i and towers (olumns)Ak;i; TAk;i; : : : ; T hk;i�1Ak;i; i = 1; : : : ; nsuh that all levels T jAk;i, 0 � j < hk;i, and the remaining set form a measurablepartition of X, say �k, and �k ! ", i.e. for any measurable set A there are �k-measurable sets Ak suh that �(A�Ak) ! 0 as k ! 1. A transformation hasin�nite rank if there is no suh number n.In this paper we study metrial properties of some elements of typial G-ations,in partiular, we answer a well-known question (see [4℄,[5℄,[6℄) by proving the fol-lowing theorem:Theorem 1.1. There exists a weakly mixing rank one transformation onjugate toits square.For the proof of Theorem 1.1, we apply a group ation approah. Given a disretegroup G, a G-ation Tg is any homomorphism T : G ! Aut(�). The G-ation Tis alled free if �fx 2 X : (9g 6= 1) Tgx = xg = 0. The set of all G-ations isequipped with the weak topology de�ned byT (n)! T , (8g 2 G) Tg(n)! Tg :When G is ountable, the weak topology makes the ation spae, noted 
G, a Polishspae.Theorem 1.1 is a natural orollary of the following main theorem:Theorem 1.2. For a typial G-ation T , Tt is a weakly mixing rank one transfor-mation. 2. Natural properties and basi notation for GDenote by Q2 the subgroup of G generated by all onjugations of t, i.e. g�1tg,g 2 G. Following [11℄, a subset of G, say F , tiles G if there is a set of enters C � Gsuh that fF :  2 Cg is a partition of G.Proposition 2.1. (1) Q2 is an abelian group onsisting of elements s�mtnsm,m;n 2 Z.(2) Q2 is isomorphi to a subgroup of R via an isomorphism � de�ned by�(s�mtnsm) = n2m, m;n 2 Z.(3) G0 = Q2.(4) G = ti2ZsiG0. Therefore G=G0 �= Z.(5) There exists a F�lner sequene of sets, say Fk, suh that every Fk tiles G.Proof. The proof is almost obvious. Indeed, part 1 is a onsequene of the followingequality:(2.1) smtps�msqtrs�q = sqtr+p2q�ms�q = sqtrs�qsmtps�m;where q � m � 0.



SPECTRAL RIGIDITY OF GROUP ACTIONS:APPLICATIONS TO THE CASE grht; s; ts = st2i3It is easy to see that the map � is well de�ned. Using (2.1) one more, we provepart 2. The statement(8g 2 Q2) (9g1; g2 2 Q2) [gs�1 = s�1g1 & gt�1 = g2℄is trivial. This implies that G = ti2ZsiQ2, beause si 2 Q2 i� i = 0.It is easy to hek that [g1; g2℄ 2 Q2 for gj = sij qj, qj 2 Q2. Thus G0 � Q2.To prove both parts 3 and 4, it remains to mention that Q2 � G0, beauset = [s�1t; s℄ 2 G0.Part 5, were we replaed G by Q2, holds for some sequene of subsets , say F 0k,of Q2. Therefore [0�i<ksiF 0k is the sequene we need in part 5. Proposition 2.1 isproved. �3. Approximations3.1. The density of onjugations to any �xed free ation in 
G. For anyountable group G, the set of free ations is dense in 
G (see [3℄). Thus we onlyneed to approximate a free ation of G, say T 0, by onjugations of a �xed free ationT of G. Given a �nite set F � G, and a measurable set A � X with �(A) > 0,F � A is said to form a (Rokhlin) tower if the sets TgA, g 2 F are mutuallydisjoint. We say that suh a tower is an (")-tower if �(Sg2F TgA) > ". It said thatthe Rokhlin lemma is valid for F , and a free ation T if for all " > 0 there is ameasurable set A suh that F � A forms a (1 � ")-tower of T . Consider the samesets Fk as in Proposition 2.1. The Rokhlin lemma is valid for every Fk and everyfree G-ation, beause Fk tiles G, and is �nite (see [11℄, and [12℄ for the proofs oftheorems announed in [11℄). Therefore we an hoose a measurable set A (A0) suhthat Fk �A (Fk �A0) forms a (1� 1=k)-tower for T (T 0, respetively). Obviously,A and A0 an be hosen suh that �(A) = �(A0). Therefore there exists a metrialisomorphismSk : A0 ! A, i.e. a measure-preserving map (onto) whih is one-to-oneup to zero measure subsets of A0 and A. It is lear that Sk an be extended to ametrial isomorphism of (X;�) and (X;�) (hene it is an automorphism) suh thatSkT 0gx = TgSkx for any g 2 Fk; x 2 A0:It is easy to see that for any g 2 GS�1k TgSkx = T 0gx if x 2 T 0g1A0 for some g1 2 Fk \ g�1Fk:Therefore,(8g 2 G) [�fx 2 X : S�1k TgSkx 6= T 0gxg < 1k + jFkng�1FkjjFkj ! 0 as k !1℄:This implies that S�1k TSk ! T 0 as k !1:3.2. An example of a free ation of G suh that Tt is weakly mixing.Let W be a measurable ow on X (i.e. some ontinuous homomorphism W :R ! Aut(X;�)) suh that the transformation W 1 is weakly mixing. De�ne atransformation T0 : 
! 
 by T0 = �1i=�1W 2i ;where 
 = Q1i=�1X. Also onsider the right shift map, say S, ating on 
 by(Sx)i = xi�1; i 2 Z;



4 OLEGN. AGEEVwhere yi is the ith oordinate of y 2 
. Clearly, maps T0; S are weakly mixingtransformations of the spae (
; �), where � = �1i=�1�, and the mapt! T0; s! San be naturally extended to a homomorphism from G to a group generated by T0and S, so a pair (T0; S) de�nes an ation of G, say T . Using Proposition 2.1, toprove the freeness of T , we only need to show thatjkj+ jlj 6= 0) �fx 2 
 : T k0 x = Slxg = 0:It is trivial in the ase l = 0, beause W is the aperiodi transformation. To havethe same in the ase l 6= 0, it is remain to mention that for any transformation Rof a non-atomi standard Borel probability spae (X;F ; �) we have ���f(x;Rx) :x 2 Xg = 0. This implies that T is a free ation.3.3. An example of a free ation of G suh that Tt has rank 1. Let � bea ountable disrete subgroup of T suh that the restrition of the map � : � !�; �(�) = �2, to this subgroup is a group automorphism, and � has no roots ofunity. By the theorem of Pontryagin, the group of haraters of �, noted b�, isan abelian ompat group. It is lear that �� is an automorphism of b�, where�� is de�ned by (���)(�) = �(�(�)) for any harater �(�). Consider a rotationS : b� ! b�; S(�) = �0�, where �0(�) = � is a harater of �. Maps ��; S aretransformations of a Lebesgue spae (b�; �), where � is a normalized Haar measureon b�. Clearly, ��(�) = �2, and �� Æ S = S2 Æ ��. All haraters of b� form anorthonormal basis of L2(b�; �). By the theorem of Pontryagin, every harater of b�has the following form �(�) = �(�)for some � 2 �. Clearly,bS�(�) = �(S�) = �(�0)�(�) = ��(�);���(�) = �(�2) = �2(�):Therefore S is an ergodi transformation having disrete spetrum (moreover,�d(S) = �, where �d(S) is a set of all eigenvalues of bS). This implies that Shas rank 1 (see [8℄).It is lear that a pair (��; S) de�nes a G-ation T via an identi�ation Ts = ���1,Tt = S. To prove a freeness of T , it is enough to show that(3.1) (8f 2 L2)((8k; l 2 Z) [[��kf = bSlf ℄) [either k = l = 0 or f = onst℄℄:Moreover, we an assume that k � 0. The transformation S is totally ergodi,beause � has no roots of unity. Therefore (3.1) is true in the ase k = 0. Letk > 0. Using a uniqueness of a representation of f in the formP� ��(�), whereP� j�j2 <1, we have[��kf = bSlf ℄, [X� ��2k(�) =X� ��l�(�)℄;and j�j = j�2k j = j�2k+1 j = :::.If � 2 �nf1g, then �; �2k ; �2k+1 ; : : : are pairwise di�erent. Thus � = 0 if � 6= 1.Therefore f � 1. It follows both (3.1) and the freeness of the G-ation T .We need the following modi�ation of Theorem 5 in [1℄



SPECTRAL RIGIDITY OF GROUP ACTIONS:APPLICATIONS TO THE CASE grht; s; ts = st2i5Theorem 3.1. Suppose D is a dense subset of 
G, and g 2 G; then(1) If Tg is weakly mixing for any T 2 D, then Tg is weakly mixing for a typialT from 
G.(2) If Tg has rank 1 for any T 2 D, then Tg has rank 1 for a typial T from
G.Remark 3.2. Let us mention that Theorem 3.1 is also true in the ase of any disretegroup G suh that 
G is a Polish spae with respet to the weak topology. Moreoverpart 2 is true if we replae the property to have rank 1 by the property to have atmost rank k. The proof of this remark is a ertain modi�ation of the proofs ofTheorem 3.1 and Theorem 5 in [1℄.Proof. Choose a ountable subset of D, say fT (k) 2 D : k 2Ng, whih is dense in
G. Let "i ! 0 as i!1 for some sequene "i. ConsiderB("1; "2; : : :) =\k [i�kU"i (T (i));where U"(T ) = fS 2 
G : �(T; S) < "g, � is a metri of the spae 
G. It is easy tohek that 
G has no isolated points. This implies that Si�k T (i) is also dense forany k. Therefore B("1; "2; : : :) is a dense GÆ set.Obviously, to prove Theorem 3.1, it is enough to �nd a sequene "i suh thatB("1; "2; : : :) onsists of group ations having properties as required in parts 1,2.Fix a dense sequene of elements in L2(X;�), fi, i = 1; 2; : : :.To prove part 1, we onsider the weak operator topology. Next, we use the well-known fat that a transformation S is weakly mixing if and only if bSni ! R forsome sequene ni, and R is the operator of orthogonal projetion onto the spaeof onstants. Let 0 < Æn ! 0 as n ! 1. Choose a sequene ki(n) suh thatbT ki(n)g (n)! R as i!1. Fix a number mn = ki(n)(n) suh that(3.2) (8p; q � n) jhbTmng (n)fp; fqi � hZ fpd�; fqij < Æn2 :Obviously, for any k 2 Z and h1; h2 2 L2(X;�), the map � : 
G ! R de�ned by�(T ) = h bT kg h1; h2i is ontinuous.Thus there exists "n > 0 suh that�(T (n); T ) < "n )(3.3) (8p; q � n) jh bTmng (n)fp; fqi � h bTmng fp; fqij < Æn2 :Let T 2 B("1; "2; : : :), where "i were hosen above. Then, for some nj ! 1, wehave T 2 U"nj (T (nj)). Using (3.2) and (3.3), we obtain thatjhbTmnjg fp; fqi � hZ fpd�; fqij < Ænj for p; q = 1; : : : ; nj:Hene (8p; q) limj h bTmnjg fp; fqi = hZ fpd�; fqi:Part 1 is proved.Let us prove part 2. Let 0 < Æn ! 0 as n ! 1. Sine Tg(n) has rank 1, thereexist integers ki(n), towersAi(n); Tg(n)Ai(n); : : : ; T ki(n)�1g (n)Ai(n)



6 OLEGN. AGEEVand orresponding partitions �i(n) of X suh that �i(n) ! " as i ! 1. Choosea sequene i(n) > n suh that �i(n)(n) ! " as n ! 1. Obviously, for any k 2 Zthe map � : 
G ! Aut(�) de�ned by �(T ) = bT kg is ontinuous. Thus there exists"n > 0 suh that �(T (n); T ) < "n )(3.4) max0<j<ki(n)(n)�(T jg (n)Ai(n)(n)4T jgAi(n)(n)) < Ænki(n)(n)�(Ai(n)(n)):Let T 2 B("1; "2; : : :), where "i were hosen above. Then, for some nj !1, wehave T 2 U"nj (T (nj)).Consider the following setA0j = Ai(nj)(nj) \ T�1g Tg(nj)Ai(nj)(nj) \ : : :\T 1�ki(nj)(nj)g T ki(nj )(nj)�1g (nj)Ai(nj)(nj):Obviously, T lgA0j � T lg(nj)Ai(nj)(nj); l = 0; : : : ; ki(nj)(nj)� 1:Therefore the sets T lgA0j ( l = 0; : : : ; ki(nj)(nj) � 1) and the remaining part of Xform a partition of X, say �j. Using (3.4), we obtain that�(A0j)�(Ai(nj)(nj)) > 1� Ænj2 ! 1 as j !1:This implies that �j ! " as j ! 1, beause �i(nj)(nj) ! " as j ! 1. Thus Tghas rank 1. Theorem 3.1 is proved. �4. The proof of Theorem 1.2Proof. To prove Theorem 1.2, it is enough to ollet all remarks of Setion 3.Namely, denote by A the property of a G-ation T to have a weakly mixing Tt.Properties we onsider are invariant with respet to any metrial isomorphism (inpartiular, any onjugation). Therefore the set of ations having the property Ais dense. Finally, Theorem 3.1 implies that A holds for a typial G-ation. It isremain to repeat the same arguments for the set of G-ations T satisfying the rankTt = 1 ondition. Theorem 1.2 is proved. �5. Closing remarksThere are many observations about metrial properties of dynamial systemsonjugated to their omposition squares (see [5℄, [6℄). We restrit our attention tothe "typial" ase, i.e. we onsider metrial properties of Tt for a typial G-ationT . It is not diÆult to prove that in our ase Tt is rigid, i.e. T ki ! E for somesequene ki, where E means the identity transformation. Therefore the typialtransformation is not mixing. It is also easy to see that the typial transformationTt has a simple singular spetrum. Moreover, the maximal spetral type of bTt isinvariant and ergodi with respet to a map � : T ! T, �(�) = �2 , where theergodiity means that every invariant Borel set has zero measure or is the torus upto a set of zero measure.All statements of this paper an be naturally extended to the ases both mapsT qt , where q = k2l, k 6= 0, l 2 Z, and Gn = grht; s; ts = stni, where n 6= 0.
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