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SPECTRAL RIGIDITY OF GROUP ACTIONS:
APPLICATIONS TO THE CASE gr(t,s; ts = st?)

OLEGN. AGEEV

ABSTRACT. We apply a technique to study the notion of spectral rigidity of
group actions to a group gr{t,s; ts = st2). As an application, we prove
that there exist rank one weakly mixing transformations conjugate its square,
thereby giving a positive answer to a well-known question.

INTRODUCTION

In [1] we introduced a notion of spectral rigidity of group actions. This notion
is essential only for noncommutative groups (see Remark 8 in [1]). We say that
a property holds for a typical element from a topological space D (or a typical
element of a topological space D has some property) if the set of elements from
D with this property contains a dense G subset of D. Following [1], we say that
an element h of a group H has spectral rigidity if for a typical H-action T the
set of essential values of the spectral multiplicity function of T}, named M (T}),
is constant. If every element of H has this property, we say that the group H
has spectral rigidity. It i1s easy to see that the notion of spectral rigidity can be
considered as one of invariants (in general, not complete) with respect to group,
metrical, or unitary isomorphisms.

It 1s well known that a typical transformation has rank one, and is weakly mixing.
However, it is not conjugate to its square (see [9]). More information about these
notations can be found in [5]. The main goal of this paper is to show how the
technique to study the spectral rigidity works in the case of actions of a group
G = gr(t,s; ts = st?). Let us recall that even in this simple case we have no useful
spectral theorem, because G is wild (see [10]).

1. PRELIMINARIES AND THE BASIC RESULT

Let T' be a transformation defined on a non-atomic standard Borel probability
space (X, F, u). The set of all transformations (automorphisms of the o- algebra of
measurable sets) of (X, u) is a Polish (complete metrizable separable) topological
group, noted Aut(y), with respect to the weak (or coarse) topology (see [7]) defined
by

T, =T < w(T,; " AAT T A) — 0 for each measurable A

(we identify transformations if they are coincide up to a set of measure zero).
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The spectral properties of T are those of the induced unitary operator on La(p)
defined by

T Lop) > La(w); T(@) = F(Ta),
This is Koopman’s representation of dynamical systems, therefore if 7S = ST?,

then §f = ﬁg Let us recall that a transformation 7" has rank n if n is the smallest

number such that, for any k, there exist integers kg ; and towers (columns)
Akyi,TAkyi,...,Thk”_lAkyi, 1=1,...,n

such that all levels TjAkyi, 0 <j < Ay, and the remaining set form a measurable
partition of X, say &, and & — £, i.e. for any measurable set A there are &-
measurable sets A such that p(AAAL) — 0 as k& = oo. A transformation has
infinite rank if there 1s no such number n.

In this paper we study metrical properties of some elements of typical G-actions,
in particular, we answer a well-known question (see [4],[5],[6]) by proving the fol-
lowing theorem:

Theorem 1.1. There exists a weakly miring rank one transformation conjugate to
its square.

For the proof of Theorem 1.1, we apply a group action approach. Given a discrete
group G, a G-action Ty is any homomorphism T : G — Aut(u). The G-action 7'
is called free if u{z € X : (3¢ # 1) Ty = x} = 0. The set of all G-actions is
equipped with the weak topology defined by

Tn) > T < (Vg € G) Ty(n) = 1.

When G is countable, the weak topology makes the action space, noted Q¢, a Polish
space.
Theorem 1.1 is a natural corollary of the following main theorem:

Theorem 1.2. For a typical G-action T, T} 1s a weakly mizing rank one transfor-
mation.

2. NATURAL PROPERTIES AND BASIC NOTATION FOR (&

Denote by @, the subgroup of GG generated by all conjugations of ¢, i.e. ¢~ 'tg,
g € G. Following [11], a subset of G, say F, tiles G if there is a set of centers C' C G
such that {Fe:c € C'} is a partition of G.

Proposition 2.1. (1) Q2 is an abelian group consisting of elements s~ s™
m,n 7.

(2) Q2 is isomorphic to a subgroup of R wvia an isomorphism ¢ defined by
$(s7™"s™) = n2™, m,n € Z.

(3) G'=Qo. '

(4) G =Uiezs'G'. Therefore G/G' = 7.

(5) There exists a Folner sequence of sets, say Py, such that every Fy, tiles G.

?

Proof. The proof is almost obvious. Indeed, part 1 is a consequence of the following
equality:

— — qg—m _ — —
(2.1) STHP s TM T T = AP 5T = gUyT T gMP g™

where ¢ > m > 0.
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It is easy to see that the map ¢ is well defined. Using (2.1) once more, we prove
part 2. The statement

(Vg € Q2) (391,92 € Q) [g5=" = s g1 & gt™! = g2

is trivial. This implies that G = U;ezs'Q2, because s € Qs iff i = 0.

It is easy to check that [g1,g2] € Q2 for g; = s'iq;, ¢; € Q2. Thus G’ C Qs.

To prove both parts 3 and 4, it remains to mention that @5 C G’, because
t=1[s"1,s] €.

Part 5, were we replaced GG by @2, holds for some sequence of subsets | say Fg,
of (5. Therefore U0§i<ksiFlk 1s the sequence we need in part 5. Proposition 2.1 is
proved.

d

3. APPROXIMATIONS

3.1. The density of conjugations to any fixed free action in . For any
countable group G, the set of free actions is dense in Qg (see [3]). Thus we only
need to approximate a free action of G, say 7T, by conjugations of a fixed free action
T of G. Given a finite set F' C @, and a measurable set A C X with u(A4) > 0,
F x A is said to form a (Rokhlin) tower if the sets T, A, g € F are mutually
disjoint. We say that such a tower is an (¢)-tower if /’L(UgEF TyA) > e. It said that
the Rokhlin lemma is valid for F', and a free action 7' if for all ¢ > 0 there is a
measurable set A such that F' x A forms a (1 — ¢)-tower of 7. Consider the same
sets Fj as in Proposition 2.1. The Rokhlin lemma is valid for every Fy and every
free G-action, because Fj, tiles (G, and is finite (see [11], and [12] for the proofs of
theorems announced in [11]). Therefore we can choose a measurable set A (Ar) such
that Fj, x A (F x Af) forms a (1 — 1/k)-tower for T' (T, respectively). Obviously,
A and Ar can be chosen such that p(A) = u(Ar). Therefore there exists a metrical
isomorphism Sy, : A7 — A, i.e. a measure-preserving map (onto) which is one-to-one
up to zero measure subsets of A7 and A. It is clear that S; can be extended to a
metrical isomorphism of (X, ) and (X, p¢) (hence it is an automorphism) such that

SpTlye =T, Spx for any g € Fy,x € Al
It is easy to see that for any g € G
Sk_ngSkx =Tz ifxelr, At for some ¢4 € [} Ng~1F.
Therefore,

L |F\g™ ' Fy

(VgEG)[u{xEX:Sk_ngSkx#Tlgx}<E+ A —0 as k — ool
k

This implies that
Sk_lTSk —T1 as k — oco.

3.2. An example of a free action of G such that T; is weakly mixing.
Let W be a measurable flow on X (i.e. some continuous homomorphism W :
R — Aut(X,u)) such that the transformation W1 is weakly mixing. Define a
transformation 7p : Q — Q by

TO = X;’i_oowzl,
where Q = [];2 X. Also consider the right shift map, say .S, acting on Q by

(Sz); = a1, i €7,
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where y; 1s the it coordinate of y € Q. Clearly, maps Tp, S are weakly mixing
transformations of the space (2, v), where v = x22_ __u, and the map

t—)To, s—= S

can be naturally extended to a homomorphism from G to a group generated by Tj
and S, so a pair (Tp,.S) defines an action of GG, say T. Using Proposition 2.1, to
prove the freeness of T', we only need to show that

k| + || #0=>v{zreQ : Tie =Sz} =0.
It is trivial in the case [ = 0, because W 1is the aperiodic transformation. To have
the same in the case [ # 0, it is remain to mention that for any transformation R

of a non-atomic standard Borel probability space (X, F, 1) we have p x u{(z, Rx) :
2z € X} = 0. This implies that T is a free action.

3.3. An example of a free action of G such that 7; has rank 1. Let A be
a countable discrete subgroup of T such that the restriction of the map ¢ : A —
A, #()) = A%, to this subgroup is a group automorphism, and A has no roots of
unity. By the theorem of Pontryagin, the group of characters of A, noted K, 18
an abelian compact group. It is clear that ¢* is an automorphism of K, where
¢~ is defined by (¢*x)(A) = x(¢(A)) for any character x(A). Consider a rotation
S:A— K,S(X) = XoX, where xg(A) = A is a character of A. Maps ¢*, S are
transformations of a Lebesgue space (/A\, i), where p is a normalized Haar measure
on A. Clearly, ¢*(x) = x?, and ¢* o S = 5% 0 ¢*. All characters of A form an
orthonormal basis of LQ(K, #t). By the theorem of Pontryagin, every character of A
has the following form

for some A € A. Clearly,
SA) = ASX) = Alxo) M) = M),
6" A(x) = AMx?) = A(x).

Therefore S is an ergodic transformation having discrete spectrum (moreover,
Aq(S) = A, where Ag(S) is a set of all eigenvalues of §) This implies that §
has rank 1 (see [8]).
It is clear that a pair (¢*, S) defines a G-action T via an identification Ty = ot
= S. To prove a freeness of 7', it is enough to show that

—k ~
(3.1)  (Vf € La)((Vk,l € Z) [[¢* f=S"f] = [either k=1=0 or f = const]].
Moreover, we can assume that & > 0. The transformation S is totally ergodic,
because A has no roots of unity. Therefore (3.1) is true in the case k = 0. Let
k > 0. Using a uniqueness of a representation of f in the form ), exA(x), where
>y leal? < oo, we have

oy ~ ,
[0 f=511e D ar ()= aXNax),
) )
and [ex| = e, ok | = [cyortr | =
If A € A\{1}, then A, A2, /\2k+ .. are pairwise different. Thus ¢y = 0 if A # 1.

Therefore f =¢;. It follovvs both (31) and the freeness of the G-action T'.
We need the following modification of Theorem 5 in [1]
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Theorem 3.1. Suppose D is a dense subset of Q¢, and g € G; then
(1) IfT, is weakly mizing for any T € D, then Ty is weakly mizing for a typical
T from Qeq.
(2) If T, has rank 1 for any T € D, then Ty has rank 1 for a typical T from
Qq.

Remark 3.2. Let us mention that Theorem 3.1 is also true in the case of any discrete
group G such that Q¢ 1s a Polish space with respect to the weak topology. Moreover
part 2 is true if we replace the property to have rank 1 by the property to have at
most rank k. The proof of this remark is a certain modification of the proofs of
Theorem 3.1 and Theorem 5 in [1].

Proof. Choose a countable subset of D, say {T'(k) € D : k € N}, which is dense in
Qg. Let g5 — 0 as ¢ — oo for some sequence ¢;. Consider

B(er,ea,..) = || U= (T()),
E >k

where U, (T) = {S € Q¢ : p(T,S) < £}, p is a metric of the space Qg. Tt is easy to
check that Qg has no isolated points. This implies that | J,, T'(¢) is also dense for
any k. Therefore B(ey,eq,...) is a dense Gy set. N

Obviously, to prove Theorem 3.1, it is enough to find a sequence ¢; such that
B(e1,¢€2,...) consists of group actions having properties as required in parts 1,2.

Fix a dense sequence of elements in La(X, p), fi, i =1,2,....

To prove part 1, we consider the weak operator topology. Next, we use the well-
known fact that a transformation S is weakly mixing if and only if Sni [ for
some sequence n;, and [ is the operator of orthogonal projection onto the space

of constants. Let 0 < §, — 0 as n = oo. Choose a sequence k;(n) such that

f;’(”)(n) — [ as i — oco. Fix a number m,, = kj(,)(n) such that

o~ on
(32) (.0 < ) KT Oy £) = { [ S )] < 5
Obviously, for any k € Z and hy, hy € L2(X, i), the map ¢ : Qg — R defined by
&(T) = <T§h1, ha) is continuous.
Thus there exists ¢, > 0 such that
p(Tn), T) < ep =

~ -~ on,
(3.3) (Vp,q < n) KI5 (n) fp, fa) = (15" foo ] < =

Let T € B(e1,é€9,...), where ¢; were chosen above. Then, for some n; — oo, we

have T'€ Ue,, | (T'(n;)). Using (3.2) and (3.3), we obtain that

|<f;1njfpafq> - </ fpd/'tafq>| < 6nj fOI' P, q= 1a . an]

Hence
(Fp0) Ty ) = ([ Sy 1)
Part 1 is proved.
Let us prove part 2. Let 0 < 6, — 0 as n — oco. Since Ty(n) has rank 1, there
exist integers k;(n), towers

Ai(n), Ty(n)As(n), ..., TF=1(n) Ay (n)
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and corresponding partitions &;(n) of X such that &(n) — ¢ as i = oco. Choose
a sequence i(n) > n such that &,)(n) = ¢ as n — oco. Obviously, for any k € Z

the map ¢ : Q¢ — Aut(p) defined by ¢(T) = f; is continuous. Thus there exists
£n > 0 such that
p(Tn), T) < ep =

(3.4) max  u(TH () Ay (R)ATS Ag oy () <

On
Ai ).
0<j<ki(ny(n) )“( ()( ))

Let T € B(e1,¢€9, .. .), where ¢; were chosen above. Then, for some n; — oo, we
have T'€ Ue,, | (T'(ny)).

Consider the following set
Ay = Ai(nj)(nj) N Tg_ng(nj)Ai(nj)(nj) n...
ngl—kz(nj)(”j)T:wnj)(”j)—l(nj)Ai(nj)(nj).
Obviously,
TyAly C Ty(nj) Ay (ng), 1= 0, kign,)(ng) — L.

Therefore the sets TéAlj ({=0,...,kitn,)(n;) — 1) and the remaining part of X
form a partition of X, say n;. Using (3.4), we obtain that

Al s
M>l— 2 > 1asj— oco.
(Ain;y(n5)) 2
This implies that 7; — ¢ as j — oo, because &;(n,)(n;) = ¢ as j — co. Thus T}
has rank 1. Theorem 3.1 is proved. |

4. THE PROOF OF THEOREM 1.2

Proof. To prove Theorem 1.2, 1t is enough to collect all remarks of Section 3.
Namely, denote by A the property of a G-action T' to have a weakly mixing T;.
Properties we consider are invariant with respect to any metrical isomorphism (in
particular, any conjugation). Therefore the set of actions having the property A
is dense. Finally, Theorem 3.1 implies that A holds for a typical G-action. It is
remain to repeat the same arguments for the set of G-actions T satisfying the rank
T; = 1 condition. Theorem 1.2 is proved. a

5. CLOSING REMARKS

There are many observations about metrical properties of dynamical systems
conjugated to their composition squares (see [5], [6]). We restrict our attention to
the ”typical” case, i.e. we consider metrical properties of 7T for a typical G-action
T. It is not difficult to prove that in our case 7} is rigid, i.e. 7% — E for some
sequence k;, where F means the identity transformation. Therefore the typical
transformation is not mixing. It is also easy to see that the typical transformation
T; has a simple singular spectrum. Moreover, the maximal spectral type of ﬁ 18
invariant and ergodic with respect to a map ¢ : T — T, ¢(A\) = A? | where the
ergodicity means that every invariant Borel set has zero measure or is the torus up
to a set of zero measure.

All statements of this paper can be naturally extended to the cases both maps
T, where ¢ = k2!, k # 0, l € Z, and G, = gr(t,s; ts = st"), where n # 0.



SPECTRAL RIGIDITY OF GROUP ACTIONS:APPLICATIONS TO THE CASE gr(t,s; ts = st}

However let us mention that the case n = —1 is essentially different, because (see
[1], Theorem 7) for a typical G_j-action T', transformation T3 has a homogeneous
spectrum of multiplicity 2 in the orthogonal complement of the constant functions.

—_
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