
ESI The Erwin Schr�odinger International Pasteurgasse 6/7Institute for Mathematical Physics A-1090 Wien, Austria
On Twisted Tensor Products of AlgebrasAndreas CapHermann SchichlJi�r�� Van�zura

Vienna, Preprint ESI 163 (1994) November 23, 1994Supported by Federal Ministry of Science and Research, AustriaAvailable via WWW.ESI.AC.AT



ON TWISTED TENSOR PRODUCTS OF ALGEBRASAndreas �CapHermann SchichlJi�r�� Van�zuraAbstract. The problems considered in this paper are motivated by non{commuta-tive geometry. Starting from two unital algebras A and B over a commutative ringK we describe all triples (C; iA; iB), where C is a unital algebra and iA and iB areinclusions of A and B into C such that the canonical linear map (iA; iB) : A
B !C is a linear isomorphism. We discuss possibilities to construct di�erential formsand modules over C from di�erential forms and modules over A and B, and give adescription of deformations of such structures using cohomological methods.1. IntroductionAlthough the problems we consider are from pure algebra (and topological al-gebra), the motivation comes from non{commutative di�erential geometry: Thesimple question we started from is, given two algebras which are supposed to de-scribe some \spaces", what is an appropriate representative of the product of thetwo \spaces"? Thinking of the commutative case one would be led to consideringthe (topological) tensor product of the two algebras. But in the non-commutativecase this means that one assumes that functions on the two factors commute witheach other, although the functions on the individual factors do not commute amongthemselves, and we see no reason to assume this. In this paper we study algebras,which are in a certain sense very close to the tensor product of the given ones, andin particular deformations of the tensor product.It should also be remarked that special examples of such algebras, notably thenon{commutative two tori and more generally crossed products of C�{algebras bygroups, already play an important role in non-commutative geometry.The problem may as well be viewed as a question of decompositions of given al-gebras: Suppose that a unital algebra is, as a linear space, the tensor product of twosubalgebras. What does this say about the algebra structure? From this point ofview the analogous problems for discrete groups, Lie groups, Lie algebras and Hopfalgebras have been studied (see e.g. [Majid, 1990], [Michor, 1990] and [Takeuchi,1981]), often under the name of matched pairs or factorization of structures. In thestudy of the Hopf algebra case the basic conditions 2.4(1) for algebra structureshave been obtained (c.f. [Majid, 1994, 7.2.3]). It turns out that the case of algebras1991 Mathematics Subject Classi�cation. 16E40 16S10 16S35 16S80 58B30.Key words and phrases. Non-commutative geometry, twisted tensor products, twisting maps.Parts of this work were done during a stay of the third author at the Erwin Schr�odinger inter-national Institute for Mathematical Physics and a visit of the �rst author in Brno and Olomouc.Typeset by AMS-TEX1



2 ANDREAS �CAP HERMANN SCHICHL JI�R�I VAN�ZURAis the most complicated one, since in all other cases the problem reduces to thestudy of mutual actions of the two factors on each other which are compatible in acertain sense, while in the algebra case such a reduction is not possible. Anyhow,for our work the point of view of decompositions is less important, since our mainaim is the study of deformations.We will study the problem without assuming that the algebras are endowedwith topologies. In fact, all constructions can be carried out precisely in the sameway in categories of vector spaces and linear maps, such that the Hom{functorL( ; ) lifts to the category, and which admit a tensor product 
̂ such that thereis a natural isomorphism L(E
̂F;G) �= L(E;L(F;G)) (i.e. in monoidally closedcategories). This is the case for example in the category of Banach spaces andcontinuous linear maps with the projective tensor product or, more generally, in thecategory of convenient vector spaces and bounded linear maps with the bornologicaltensor product (c.f. [Fr�olicher{Kriegl, 1988]).2. Twisted tensor productsThroughout this paper we �x some commutative ring K with unit. Later onwhen we will study deformations we will specialize to K = R or C . We assume allalgebras to be unital and all homomorphisms to preserve units.2.1. De�nition. Let A and B be algebras over K. A twisted tensor product ofA and B is an algebra C together with two injective algebra homomorphisms iA :A! C and iB : B ! C such that the canonical linear map (iA; iB) : A
K B ! Cde�ned by (iA; iB)(a
b) := iA(a)�iB(b) is a linear isomorphism. An isomorphism oftwisted tensor products is an isomorphism of algebras which respects the inclusionsof A and B.2.2. There is a simple way to construct candidates for twisted tensor products asfollows: Let � : B 
A! A
B be a K{linear mapping, such that � (b
 1) = 1
 band � (1 
 a) = a 
 1. Then on A 
 B de�ne a multiplication �� by �� := (�A 
�B) � (A
 � 
B). We write A
 � 
B for idA 
 � 
 idB. This is also justi�ed bythe fact that this is the functor A 
 
B applied to the map � .Next de�ne iA : A! A
B by iA(a) := a
1 and likewise iB : B ! A
B. Theseare algebra homomorphisms by the conditions on � . Obviously, if the multiplication�� is associative, then (A 
B;�� ) is a twisted tensor product of A and B.Now the associativity of the multiplication �� can be characterized in terms of� as follows:2.3. Proposition/De�nition. Suppose that � (b
1) = 1
b and � (1
a) = a
1.Then the multiplication �� is associative if and only if we have:� � (�B 
 �A) = �� � (� 
 � ) � (B 
 � 
A)A mapping � which satis�es these conditions is called a twisting map for A and B,and we denote the algebra (A 
B;�� ) by A 
� B.Proof. Let us �rst assume that �� is associative. We also write �� for the multipli-



ON TWISTED TENSOR PRODUCTS OF ALGEBRAS 3cation �� . Since �� is associative we get(1
 b) �� (a1 
 b1) �� (a 
 1) =((1 
 b) �� (a1 
 1)) �� ((1 
 b1) �� (a 
 1)) =� (b
 a1) �� � (b1 
 a):But using this we compute:� (b1b2 
 a1a2) = (1
 b1b2) �� (a1a2 
 1) == (1 
 b1) �� ((1
 b2) �� (a1 
 1)) �� (a2 
 1) == (1 
 b1) �� � (b2 
 a1) �� (a2 
 1) == �� � (� 
 � ) � (B 
 � 
A)(b1 
 b2 
 a1 
 a2);so � indeed satis�es the condition.So let us conversely assume that � satis�es the conditions. Then(1
 b) �� ((a1 
 1) �� (a 
 1)) = (1
 b) �� (a1a
 1) == � (b
 a1a) = �� � (� 
 � ) � (B 
 � 
A)(b 
 1
 a1 
 a) == �� (� (b 
 a1) 
 a 
 1) = � (b
 a1) �� (a 
 1) == ((1 
 b) �� (a1 
 1)) �� (a 
 1):and similarly with (a1
1) replaced by (1
b1). Next, from the de�nition of �� it isobvious that �� is a left A{module homomorphism for the canonical left actions ofA and a right B{module homomorphism for the canonical right actions of B. Viathe above computation this implies that associativity holds if the middle elementis either of the form (a 
 1) or of the form (1 
 b). But then we may compute asfollows: ((a0 
 b0) �� (a1 
 b1)) �� (a2 
 b2) == ((a0 
 b0) �� ((a1 
 1) �� (1 
 b1))) �� (a2 
 b2) == (((a0 
 b0) �� (a1 
 1)) �� (1
 b1)) �� (a2 
 b2) == ((a0 
 b0) �� (a1 
 1)) �� ((1 
 b1) �� (a2 
 b2));and in the same way the last line is easily seen to be equal to(a0 
 b0) �� ((a1 
 b1) �� (a2 
 b2)): �2.4. Remarks. (1): The symmetric condition for being a twisting map used in2.3 can be split into the two conditions:� � (B 
 �A) = (�A 
B) � (A 
 � ) � (� 
A)� � (�B 
A) = (A 
 �B) � (� 
B) � (B 
 � )



4 ANDREAS �CAP HERMANN SCHICHL JI�R�I VAN�ZURAIt is obvious that the condition in 2.3 implies these two conditions by setting ap-propriate entries equal to one. On the other hand, the condition in 2.3 can be easilydeduced from successive applications of the two conditions above.(2): Note that the multiplications on A 
B de�ned by twisting maps are exactlythose associative multiplications which are left A{module homomorphisms and rightB{module homomorphisms for the canonical actions, and for which 1 
 1 is aunit. This can be seen as follows: Let � be such a multiplication, and de�ne � by� (b
 a) = �(1
 b
 a
 1). Then by the module homomorphism property � = �� .Moreover, � (b
1) = �(1
 b
1
1) = 1
 b, and in the same way � (1
a) = a
1.Thus from proposition 2.3 we see that � is a twisting map.2.5. Next we present an alternative characterization of twisting maps which willbe very useful when dealing with di�erential forms. Let A and B be unital algebrasand consider the space L(A;A
B) of linear maps. On this space we de�ne a mul-tiplication � by '� := (A
�B)� ('
B)� , where �B denotes the multiplicationon B.Proposition. (L(A;A 
 B); �) is an associative unital algebra with unit given bythe map a 7! a
 1.Proof. We compute:(' �  ) � ! = (A
 �B) � ((' �  ) 
B) � ! == (A 
 �B) � (A
 �B 
B) � ('
B 
B) � ( 
B) � ! == (A 
 �B) � ('
 �B) � ( 
B) � ! = ' � ( � !);since the multiplication on B is associative. Obviously, a 7! a 
 1 is a unit for themultiplication �. �Similarly, we de�ne a multiplication on L(B;A
B) by ' � = (�A 
B) � (A
 ) � ', and as above one easily proves that this is associative with unit b 7! 1
 b.2.6. Proposition. A linear map � : B 
 A ! A 
 B is a twisting map if andonly if the two associated maps B ! L(A;A 
 B) and A ! L(B;A 
 B) arehomomorphisms of unital algebras.Proof. The condition that the two associated maps preserve the units mean exactlythat � (1 
 a) = a 
 1 and that � (b 
 1) = 1 
 b. Now let us write �b for the mapa 7! � (b 
 a). Then the condition that the �rst associated map is an algebrahomomorphism means that �b1b2 = �b1 � �b2, and by de�nition of the multiplication� this means that �b1b2 = (A 
 �B) � (�b1 
 B) � �b2, and this is precisely thesecond condition of remark 2.4(1). In the same way the condition that the secondassociated map is an algebra homomorphism is easily seen to be the �rst conditionof that remark, so we get the result. �2.7. Proposition. Let (C; iA; iB) be a twisted tensor product of A and B. Thenthere is a unique twisting map � : B 
 A ! A 
 B such that C is isomorphic toA
� B as a twisted tensor product.Proof. Let ' : A 
 B ! C be the K{module isomorphism used in the de�nitionof a twisted tensor product. Then we de�ne � : B 
 A ! A 
 B by � (b 
 a) :=



ON TWISTED TENSOR PRODUCTS OF ALGEBRAS 5'�1(iB(b) � iA(a)). Then'((a 
 1) �� (a1 
 b1)) = '(aa1 
 b1) == iA(aa1)iB(b1) = iA(a)iA(a1)iB(b1) = '(a
 1)'(a1 
 b1);and likewise '((a1 
 b1) �� (1 
 b)) = '(a1 
 b1)'(1 
 b). But by de�nition of ��we have (a0 
 b0) �� (a1 
 b1) = (a0 
 1) �� � (b0 
 a1) �� (1
 b1), so ' is an algebrahomomorphism since '(� (b
 a)) = iB(b)iA(a) = '(1
 b)'(a 
 1).Finally, uniqueness of � is obvious since any algebra homomorphism A
� B !A
� 0B which is compatible with the inclusions of A and B must be the identity. �2.8. Examples. (1): Let G be a discrete group which acts from the left byautomorphisms on an algebra A, and let K[G] be the group algebra. Then there isa natural twisting map � : K[G]
A! A
K[G] induced by � (g
 a) := (g � a)
 g.One immediately veri�es by a direct computation that this is indeed a twisting map.Similarly, a right action of G on A induces a twisting map A 
 K[G] ! K[G] 
A.This construction forms the basis for crossed products.(2): Consider the algebra A := C [z; z�1 ] of complex Laurent{polynomials in onevariable and let q be a complex number of modulus 1. Then de�ne � : A
A! A
Aby � (zk 
 z`) := qk`z` 
 zk. Again a simple direct computation shows that thisde�nes a twisting map.In fact, this example is just a special instance of the �rst one, since we can identifyA with the complex group ring of Zas well as with the algebra of trigonometricpolynomials on S1. Now the left action ofZon S1 de�ned by n �z = qnz induces anaction on the algebra of trigonometric polynomials and applying the constructionof (1) we get exactly the twisting map de�ned above.Note that one can complete the algebra A to the algebra of Schwartz sequences,i.e. sequences which decay faster than any polynomial, and the above twisting mapis still well de�ned and continuous for the natural Fr�echet topology. Then thiscompletion can be identi�ed with the space of smooth functions on S1 as well aswith a smooth version of the group algebra of Z, and the above construction leadsto the smooth version of the famous non-commutative two{tori. It has also beenshown in [Cap-Michor-Schichl, 1993] that on a non{commutative two{torus thereis again a natural twisting map.(3): The conditions 2.4(1) for being a twisting map can in several cases beobtained as a consequence of naturality conditions. Suppose that we have given acategory of modules and module homomorphisms which is closed under the tensorproduct and equipped with a natural transformation � between the tensor productand the opposite tensor product which is compatible with the tensor product inthe sense that �A
B;C = �A;C 
 B � A 
 �B;C and similarly for �A;B
C. Supposefurther that A and B are algebras in this category, i.e. that there are associativemultiplications �A : A 
 A ! A and �B : B 
 B ! B which are morphisms inthe category. Then the value �B;A : B 
A! A
B of the natural transformation� is automatically a twisting map since the conditions 2.4(1) are precisely theconditions de�ning a natural transformation applied to the maps to B 
 �A and�B 
A, respectively.Nontrivial natural transformations as above have been constructed in severalsituations by S. Majid, for example on the category of all representations of a



6 ANDREAS �CAP HERMANN SCHICHL JI�R�I VAN�ZURAquasitriangular Hopf algebra. These twisting maps satisfy an additional conditionthus leading to braided tensor categories, the algebras in which are also calledbraided groups, see e.g. [Majid, 1993].3. Differential forms and modules over twisted tensor productsIn this section we want to study the following problem: Suppose we have atwisting map � : B 
 A ! A 
 B and the algebras A and B are equipped withgraded di�erential algebras of di�erential forms, or with �xed modules. Can weconstruct in this situation di�erential forms or modules over A
� B, respectively?3.1. Let A be a unital algebra and let B be a unital graded di�erential algebrawith di�erential dB, and consider the algebra L(A;A 
 B) of linear maps, withmultiplication � as de�ned in 2.5. Obviously, this is a graded algebra with respectto the grading inherited from the grading of B. Now we de�ne a di�erential on thisalgebra by d' := (A 
 dB) � '.Proposition. (L(A;A 
 B); �; d) is a graded di�erential algebra.Proof. We only have to prove that d is a graded derivation with respect to �:d(' �  ) = (A 
 dB) � (A 
 �B) � ('
 B) �  == (A 
 �B) � (A 
 dB 
B +A
 "
 dB) � ('
 B) �  ;where " denotes the grading of B, i.e. it is given by multiplication with (�1)k onBk. Now the �rst term in the sum equals(A 
 �B) � (d'
B) �  = d' �  ;while in the second for homogeneous ', " is just multiplication by (�1)j'j, and thisterm becomes(�1)j'j(A 
 �B) � ('
 dB) �  = (�1)j'j' � d : �3.2. Now start with two graded di�erential algebras A and B, a twisting map� : B 
 A ! A 
 B, where A = A0 and B = B0 and let us denote by 
( ) thefunctor which assigns to a unital algebra the graded di�erential algebra of universaldi�erential forms (c.f. [Karoubi 1982,1983], and [Cap{Kriegl{Michor{Vanzura 1993]for a construction in a topological setting). Consider the map B ! L(A;A 
 B)associated to � . By 2.6 this is an algebra homomorphism to the zero component ofa graded di�erential algebra, so directly by the universal property of the universaldi�erential forms this prolongs to a homomorphism of graded di�erential algebras
(B)! L(A;A 
 B).Now let us assume that B = 
(B). Then we claim that the associated map~� : 
(B) 
 A ! A 
 
(B) is again a twisting map, which is moreover compatiblewith the grading and with the di�erential A
d, i.e. ~�(d!
a) = (A
d)(~� (!
a)).In fact, the latter condition is clear from the fact that we had a homomorphismof graded di�erential algebras. So by 2.6 we just have to show that the mapping�~� : A! L(
(B); A

(B)) associated to ~� is a homomorphism of unital algebras.



ON TWISTED TENSOR PRODUCTS OF ALGEBRAS 7Let us �rst show that this map preserves the unit, i.e. that ~�(! 
 1) = 1 
 !.Now if ! 2 
0(B) this is clear since � is a twisting map. Moreover if it is true for !then it is true for d! since by construction ~� (d!
 a) = (A
 d)(~� (! 
 a)). Finally,it is true for !1!2 if it is true for each !i by the algebra homomorphism property.Thus, the result follows since the elements of the form b0db1 : : : dbn span the space
(B).It remains to show that(1) �~� (a1a2) = �~� (a1) � �~� (a2) 2 L(
(B); A 
 
(B));so we have to show that this holds when evaluating at any ! 2 
(B). For anya 2 A the map �~� (a) : 
(B)! A

(B) satis�es �~�(a)(d!) = (A
d)(�~� (a)(!)). Butnow one easily veri�es that also �~� (a1) � �~�(a2) is compatible with the di�erential inthe above sense. Thus it follows that if (1) holds when evaluating on ! then it alsoholds when evaluating on d!.Now (1) holds when evaluating on ! if and only if ~�! ��A = (�A

(B)) � (A
~�) � (~�! 
 A), where we write ~�! for the map a 7! ~� (! 
 a). On the other hand,since the map 
(B) ! L(A;A 
 
(B)) is an algebra homomorphism we see that~� � (�
(B)
A) = (A
�
(B)) � (~� 

(B)) � (
(B)
 ~�) or written after evaluationin the 
(B) factor: ~�!1!2 = (A 
 �
(B)) � (~�!1 
 
(B)) � ~�!2 . Now assuming that(1) holds when evaluating at !1 and when evaluating at !2 we compute:~�!1!2 � �A = (A 
 �
(B)) � (~�!1 
 
(B)) � ~�!2 � �A == (A 
 �
(B)) � (~�!1 
 
(B)) � (�A 
 
(B)) � (A
 ~� ) � (~�!2 
A) == (A 
 �
(B)) � (�A 
 
(B) 
 
(B)) � (A 
 ~� 
 
(B))�� (~�!1 
A 

(B)) � (A 
 ~�) � (~�!2 
A) == (�A 
 
(B)) � (A 
A
 �
(B)) � (A 
 ~� 
 
(B))�� (A 
 
(B) 
 ~�) � (~�!1 
 
(B) 
A) � (~�!2 
A) == (�A 
 
(B)) � (A 
 ~�) � (A
 �
(B) 
A)�� (~�!1 

(B) 
A) � (~�!2 
A) == (�A 
 
(B)) � (A 
 ~�) � (~�!1!2 
A)Thus we see that the space of all ! 2 
(B) such that (1) holds when evaluating in! is closed under multiplication and under the di�erential, and since ~� extends �it contains B = 
0(B), so it must be all of 
(B). Thus ~� : A
 
(B)! 
(B) 
Ais again a twisting map.3.3. Now consider the space L0(
(B);
(A) 
 
(B)) of all linear maps which arehomogeneous of degree zero with respect to the grading of 
(B). Recall that onthis space we have the structure of a unital algebra with multiplication de�ned byf �g = (�
(A)

(B))�(
(A)
g)�f . With this multiplication we get the structureof a graded algebra with respect to the grading induced from 
(A). We de�ne adi�erential on this space by f 7! (dA
 "B)�f , where dA denotes the di�erential on
(A) and "B denotes the grading of 
(B). As above, one easily veri�es that thisis a graded derivation with respect to the multiplication �. Since ~� is a twistingmap, the associated mapping A! L0(
(B);
(A) 
 
(B)) is a homomorphism of



8 ANDREAS �CAP HERMANN SCHICHL JI�R�I VAN�ZURAunital algebras, and thus by the universal property of 
(A) there is an inducedhomomorphism of graded di�erential algebras 
(A)! L0(
(B);
(A)

(B)). Asabove one veri�es that the corresponding map 
(B) 
 
(A) ! 
(A) 
 
(B) isagain a twisting map.Theorem. A twisting map � : B 
A ! A 
B extends to a unique twisting map~� : 
(B)

(A)! 
(A)

(B) which satis�es ~� � (dB

(A)) = ("A
dB)� ~� and~� � (
(B) 
 dA) = (dA 
 "B) � ~� . Moreover 
(A) 
~� 
(B) is a graded di�erentialalgebra with di�erential d('
 !) = dA'
 ! + (�1)j'j'
 dB!.Proof. Note �rst that ~� is uniquely determined by its restriction to A 
 B andthe compatibility with the two di�erentials because the behavior on products isdetermined by the fact that it is a twisting map. So it su�ces to show that thetwisting map we have constructed above has all properties listed in the theorem.The compatibility with dA is clear from the second step of our construction.Moreover, from the �rst step of the construction it is obvious that the compatibilitywith dB is satis�ed for elements of the form ! 
 a with a 2 A and ! 2 
(B).Now suppose that for some ' 2 
(A) and all ! 2 
(B) we have ~�(dB! 
 ') =("A 
 dB)(~� (! 
 ')). Then we compute:~�(dB! 
 dA') = (dA 
 "B)(~� (dB! 
 ')) == (�1)j'j(dA 
 "B) � (
(A) 
 dB)(~� (! 
 ')) == (�1)j'j+1(
(A) 
 dB) � (dA 
 "B)(~� (! 
 ')) == (�1)j'j+1(
(A) 
 dB)(~� (! 
 dA')):Furthermore, if the compatibility with dB is satis�ed for two elements '1 and '2it is easily shown using the fact that ~� is a twisting map that it is also satis�edfor their product. Consequently, the compatibility with dB must hold in general.(Another way to prove this is to show that the maps in L0(
(B);
(A) 
 
(B))which satisfy this compatibility condition form a subalgebra.)Finally, we have to show that the di�erential d acts as a graded derivation withrespect to the multiplication �~� . First note that by de�nition of d for ' 2 
(A)and ! 2 
(B) we haved(('
 1B) �~� (1A 
 !)) = d('
 !) = dA'
 ! + (�1)j'j'
 dB! == d('
 1B) �~� (1A 
 !) + (�1)j'j('
 1B) �~� d(1A 
 !):Direct computations easily show thatd(('1 
 1B) �~� ('2 
 !)) = d('1 
 1B) �~� ('2 
 !) + (�1)j'1j('1 
 1B) �~� d('2 
 !)and similarly for ('
 !1) �~� (1A 
 !2). Next we compute:d((1A 
 !) �~� ('
 1B)) = d(~� (! 
 ')) == (dA 
 
(B) + "A 
 dB)(~� (! 
 ')) == (�1)j!j~�(! 
 dA') + ~�(dB! 
 ') == d(1A 
 !) �~� ('
 1B) + (�1)j!j(1A 
 !) �~� d('
 1B)Now the general result immediately follows from the fact that('1 
 !1) �~� ('2 
 !2) = ('1 
 1B) �~� (~�(!1 
 '2)) �~� (1A 
 !2): �



ON TWISTED TENSOR PRODUCTS OF ALGEBRAS 93.4. Let us return to the case of general di�erential forms, so assume we havegiven graded di�erential algebrasA and B with A = A0 and B = B0 and a twistingmap � : B 
 A ! A 
 B. Considering A and B as algebras of di�erential formsit is a very reasonable assumption that they are quotients of 
(A) and 
(B).Algebraically this just means that they are generated as di�erential algebras bythe zero components, while in the topological case it also implies that they do nothave a too coarse topology. But assuming this there is an obvious procedure todetermine whether � induces a twisting map (which is then clearly unique) on thelevel of these di�erential forms: First consider the map B ! L(A;A
B) associatedto � . From 3.2 we see that this induces a homomorphism of graded di�erentialalgebras 
(B) ! L(A;A 
 B), and we just have to check whether this factors toa map B ! L(A;A 
 B). If this is the case then as in 3.2 one shows that it againcorresponds to a twisting map. Then as before we take the corresponding mapA ! L0(B;A 
 B) which induces a homomorphism of graded di�erential algebras
(A)! L0(B;A
B), and again we have to check whether this factors to A. If thisis the case then as in 3.3 one proves that one gets a twisting map ~� : B
A! A
B.3.5. Example. As an example for the procedure described in 3.4 we show thatthe twisting maps which de�ne the non{commutative 2{tori induce twisting mapson the level of K�ahler di�erentials and (in the smooth case) on smooth di�erentialforms. The computations for the smooth case are precisely as the ones in thealgebraic case which we carry out here, one just has to check continuity for thenatural Fr�echet topologies at several points, which is quite elementary.First we have to discuss di�erential forms on the algebra A = C [u; u�1] oftrigonometric polynomials on the unit circle. Let us start with the universalforms. By the derivation property of the di�erential we have d(u2) = udu+ (du)uand inductively we get d(un) = Pn�1i=0 ui(du)un�i�1 for n 2 N. Moreover, since0 = d(1) = d(uu�1) = ud(u�1) + (du)u�1 we see that d(u�1) = �u�1(du)u�1.Now again using the derivation property and induction one can compute d(u�n)for n 2 N. We will only need the fact that any element of 
1(A) can be written as asum of elements of the form ui(du)uj for i; j 2Z. This implies that any element of
n(A) can be written as a sum of elements of the form ui0(du)ui1(du) : : : (du)uin .Next let us turn to the K�ahler di�erentials �(A) over A (cf. [Kunz, 1986]). Fromthe fact that �(A) is the universal graded commutative di�erential algebra withzero component A it is clear that �(A) is just the graded abelization of 
(A), i.e.the quotient of 
(A) by the ideal generated by all graded commutators. From theabove description of 
(A) it is then clear that �(A) = A �A � du, while all �k(A)for k � 2 are zero. Moreover, in �(A) we have the usual relations d(un) = nun�1dufor all n 2 Z. This description in the smooth case also shows that for the unitcircle the smooth di�erential forms coincide with a topological version of the K�ahlerdi�erentials, or, more precisely, that the smooth di�erential forms on the unit circleare the universal complete locally convex graded commutative di�erential algebrawith zero component the smooth functions on the circle.Now let B = C [v; v�1 ], �x a complex number q of modulus one, and considerthe twisting map � : B 
A ! A 
B given by � (vk 
 u`) = qk`u` 
 vk. As in 3.2we get a homomorphism of graded di�erential algebras 
(B) ! L(A;A 
 �(B)),



10 ANDREAS �CAP HERMANN SCHICHL JI�R�I VAN�ZURAwhich is characterized byv 7! (uk 7! qkuk 
 v) and dv 7! (uk 7! qkuk 
 dv)Next one computes directly that since v and dv commute in �(B) that the imagesof vdv and d(v)v under this homomorphism coincide. Since the homomorphismpreserves the grading and L(A;A 
 �(B)) has nonzero components only in degreezero and one this implies that the homomorphism factors over �(B).Next we have to consider the corresponding homomorphism
(A)! L0(�(B);�(A) 
�(B)):From the construction in 3.3 we see that the image of u under this homomorphismis characterized byvk 7! qku
 vk and vkdv 7! qk+1u
 vkdv;while the image of du is characterized byvk 7! qkdu
 vk and vkdv 7! �qk+1du
 vkdv:Again an easy direct computation shows that the images of udu and (du)u coincideand from compatibility with the grading we conclude that this homomorphismfactors to �(A), so indeed we get an induced twisting map ~� : �(B) 
 �(A) !�(A) 
 �(B).3.6. Modules over twisted tensor products. The problem we start to discusshere is, given two unital algebras A and B, a left A{module M and a left B{module N , and a twisting map � : B
A! A
B, can we make M 
N into a leftA
� B module in a way which is compatible with the inclusion of A, i.e. such that(a
 1B) � (m
 n) = (a �m)
 n? Clearly the idea we follow is that we consider anexchange map �M : B
M !M
B and de�ne the action ��M : A
�B
M
N !M 
N by (�A 
 �B) � (A
 �M 
N), where �A and �B denote the left actions ofA on M and of B on N , respectively.De�nition. The mapping �M : B
M !M 
B is called a (left) module twistingmap if and only if �M (1B 
m) = m
 1B for all m 2M , and�M � (�B 
 �A) = (�A 
 �B) � (A 
 �M 
B) � (� 
 �M ) � (B 
 � 
M):3.7. As in the case of twisting maps for algebras the symmetric condition de�ninga module twisting map can be split into two conditions, namely�M � (�B 
M) = (M 
 �B) � (�M 
B) � (B 
 �M )�M � (B 
 �A) = (�A 
B) � (A 
 �M ) � (� 
M):These conditions follow by applying the above one to b1
 b2
1A
m and b
1B
a
m, respectively. Conversely, the condition from 3.6 can be deduced by iteratedapplication of the two conditions here.



ON TWISTED TENSOR PRODUCTS OF ALGEBRAS 113.8. Theorem. If �M : B
M !M 
B is a module twisting map, then the map��M de�ned above is a left action which is compatible with the inclusion of A forany B{module N .Conversely, if M is a projective K{module and for one e�ective B{module Nthe map ��M de�nes a left action which is compatible with the inclusion of A then�M is a module twisting map.Proof. Let us �rst assume that �M is a module twisting map. Clearly the conditionthat �M (1B 
 m) = m 
 1B ensures compatibility of the action ��M with theinclusion of A. Using the conditions of 3.7 we compute:��M � (�� 
M 
N) == (�A 
 �B) � (A 
 �M 
N) � (�A 
 �B 
M 
N) � (A 
 � 
B 
M 
N) == (�A 
 �B) � (�A 
M 
 �B 
N) � (A
A 
 �M 
B 
N)�� (A 
 � 
 �M 
N) == (�A 
 �B) � (A 
 �A 
B 
 �B) � (A 
A
 �M 
B 
N)�� (A 
 � 
 �M 
N) == (�A 
 �B) � (A 
 �M 
N) � (A
B 
 �A 
 �B) � (A 
B 
A 
 �M 
N) == ��M � (A 
B 
 ��M )Thus having given a module twisting map we get a module structure for any N .Conversely, let us assume that M is K{projective and ��M de�nes a left modulestructure, which is compatible with the inclusion of A, for one e�ective B{moduleN . E�ectivity of N means that the algebra homomorphism B ! L(N;N) whichde�nes the action of B on N is injective. Since M is projective over K this impliesthat the induced map M 
 B ! M 
 L(N;N) is injective. Next we claim thatthe latter space maps injectively to L(N;M 
N). Let us �rst assume that M is afree K{module, so M = K(�), a direct sum of copies of K. Then M 
 L(N;N) 'L(N;N)(�), which maps injectively to L(N;N)�, the direct product. The latterspace is isomorphic to L(N;N�). Thus the composition of the natural map K(�) 
L(N;N)! L(N;K(�) 
N) with the inclusion of the latter space into L(N;N�) isan injection, so the claim holds in this case. In general, if M is a direct summandin some K(�) , we get an injection M 
 L(N;N) ! K(�) 
 L(N;N) ! L(N;N (�),and this map is just the composition of the map M 
 L(N;N) ! L(N;M 
N)with the obvious map from the latter space to L(N;K(�) 
 N) ' L(N;N (�)), sothe result holds in this case, too.Thus we see that for any K{module V the induced mapping L(V;M 
 B) !L(V;L(N;M 
N)) �= L(V 
N;M 
N) is injective. This map is given by mapping' to v 
 n 7! (M 
 �B)('(v) 
 n).First the compatibility of the action ��M with the inclusion of A shows that themapM
N !M
N given bym
n 7! (M 
�B)(�M (1B
m)
n) is the identity.From the injectivity result above we see that thus �M (1B 
m) =m
 1B.Next, the condition that (1 
 b1b2) � (m 
 n) = (1 
 b1) � ((1 
 b2) � (m 
 n))immediately implies that(M 
 �B) � (�M 
N) � (�B 
M 
N) == (M 
 �B) � (M 
 �B 
N) � (�M 
B 
N) � (B 
 �M 
N);



12 ANDREAS �CAP HERMANN SCHICHL JI�R�I VAN�ZURAand by the injectivity result above this immediately gives the �rst condition of 3.7.On the other hand, we must have � (b
 a) � (m
n) = (1
 b) � ((a
 1) � (m
n)).This gives:(M 
 �B) � (�A 
M 
N) � (A 
 �M 
N) � (� 
M 
N) =(M 
 �B) � (�M 
N) � (B 
 �A 
N);and again by the injectivity result above this implies the second condition of 3.7. �Remark. The condition used in the converse part of theorem 3.8 is just one possi-bility. Also, in the case of topological algebras and topological tensor products thiscondition is not su�cient in general. The main point is that one has to ensure theinjectivity of the map L(V;M 
B)! L(V 
N;M 
N) constructed in the prooffor any V . An example of a condition which ensures this, even in the topologicalcase, is that ��M de�nes a left action compatible with the inclusion of A for oneB{module N which contains a free submodule of rank one as a direct summand.In this case it is easy to explicitly reconstruct an element of L(V;M 
B) from itsimage in L(V 
N;M 
N).3.9. Next we give a characterization of module twisting maps which is analogous tothe characterization of twisting maps in 2.6: First consider the space L(M;M 
B).As in 2.5 we see that this space is a unital associative algebra with multiplicationde�ned by ' �  := (M 
 �B) � (' 
B) �  and unit m 7! m 
 1B. On the otherhand consider the space L(B;M 
B). On this space we de�ne a left action of A bya �' := (�A
B) � (A
') � �a, where �a : B ! A
B is given by �a(b) := � (b
 a).3.10. Proposition. The action de�ned in 3.9 makes L(B;M 
 B) into a leftA{module.Proof. Consider the �rst condition from 2.4(1):� � (B 
 �A) = (�A 
B) � (A 
 � ) � (� 
A)Evaluating with elements of A this reads as �a1a2 = (�A
B)� (A
�a2 )��a1 . Thenwe compute:(a1a2) � ' = (�A 
B) � (A 
 ') � �a1a2 == (�A 
B) � (A 
 ') � (�A 
B) � (A 
 �a2) � �a1 == (�A 
B) � (A 
 �A 
B) � (A 
A 
 ') � (A
 �a2) � �a1 == (�A 
B) � (A 
 (a2 � ')) � �a1 = a1 � (a2 � ')Moreover, since � (b
 1) = 1
 b it is obvious that 1A acts as the identity. �3.11. Proposition. A linear map �M : B 
M ! M 
 B is a module twistingmap if and only if the associated map B ! L(M;M 
 B) is a homomorphism ofunital algebras and the associated map M ! L(B;M 
B) is a homomorphism ofleft A{modules.Proof. First the condition that the associated map B ! L(M;M 
 B) preservesthe units means exactly that �M (1
m) = m
 1. Next as in proof of 2.6 one sees



ON TWISTED TENSOR PRODUCTS OF ALGEBRAS 13that this map being an algebra homomorphism is precisely the �rst condition of3.7.On the other hand, the condition that the associated mapM ! L(B;M 
B) isa homomorphism of left A{modules means just that �M (b 
 (a �m)) = (�A 
B) �(A
 �M )(� (b
 a)
m) which is precisely the second condition of 3.7 evaluated onb
 a 
m. �3.12. Right modules. What we have done above for left modules can be devel-oped completely analogous for right modules. For completeness we list here thecorresponding conditions. We start with a twisting map � : B
A! A
B, a rightA{module M and a right B{module N , and we are looking for a right A 
� B{module structure onM
N such that (m
n)�(1
b) = m
(n�b). Thus we need anexchange map �N : N
A! A
N , and de�ne then ��N := (�A
�B)�(M
�N
B),where the �'s denote the given right action. We call �N a (right) module twistingmap if and only if�N � (�B 
 �A) = (�A 
 �B) � (A 
 �N 
B) � (�N 
 � ) � (N 
 � 
A);and the obvious analog of theorem 3.8 holds. The analogs of the conditions of 3.7look as �N � (N 
 �A) = (�A 
N) � (A 
 �N) � (�N 
A)�N � (�B 
A) = (A 
 �B) � (�N 
B) � (N 
 � ):Next as in 3.9 and 3.10 we get a unital associative algebra structure on L(N;A
N)via '� := (�A
N)� (A
 )�', and a right B{module structure on L(A;A
N)via ' � b := (A
 �B) � ('
B) � �b, where �b : A! A
B is the map a 7! � (b
 a),and the obvious analog of proposition 3.11 holds.3.13. Bimodules. Again, let us start from a twisting map � : B 
 A ! A 
 B,and suppose that M is an A{bimodule and N is a B{bimodule. Moreover, supposewe have given a left module twisting map �M : B
M !M
B and a right moduletwisting map �N : N 
A! A
N . Thus we have a left and a right A
� B{modulestructure on M 
N , which we denote by ��M and ��N , respectively.Proposition. M 
N is an A 
� B{bimodule with respect to the structures fromabove if and only if(�A 
N) � (M 
 �N ) � (M 
 �B 
A) � (�M 
N 
A) == (A
 �B) � (�M 
N) � (B 
 �A 
N) � (B 
M 
 �N):Proof. The condition above is precisely the translation of the fact that ((1 
 b) �(m
n)) � (a
1) = (1
 b) � ((m
n) � (a
1)). By the compatibility of ��M with theleft action of A and of ��N with the right action of B this condition is equivalentto M 
N being a bimodule. �



14 ANDREAS �CAP HERMANN SCHICHL JI�R�I VAN�ZURA4. Cohomology for twisted tensor products and deformations.In this section we construct an analog of the Hochschild cohomology of an algebrawith coe�cients in the algebra for twisted tensor products. We show that therelation of this cohomology to (formal) deformations (in the sense of twisted tensorproducts) is similar as in the classical case. In particular, we consider the case ofdeformations of the ordinary multiplication on the tensor product. As we indicatedbefore, from now on we put K = R or C .4.1. From 2.7 we see that we may reduce the study of twisted tensor products to thestudy of multiplications on the tensor product which are de�ned by a twisting maplike in 2.2. Now for multiplication maps on a �xed module there is a conceptualapproach to Hochschild cohomology via a certain graded Lie algebra, which isprobably due to [Gerstenhaber, 1953]. This approach is probably better known inthe case of Lie algebras, see [Nijenhuis-Richardson, 1967]. A multigraded versionboth for associative and Lie algebras is developed in [Lecomte-Michor-Schicketanz,1992]. Here we give a short outline in the associative case: Let V be a K{vectorspace and for n 2 N put Mn(V ) := Ln+1(V; V ), the space of all n+ 1{linear mapsfrom V n+1 to V . Then for Li 2M`i(V ) de�ne j(L1)L2 and [L1; L2] in M`1+`2(V )by: (j(L1)L2)(v0; : : : ; v`1+`2) :== `2Xi=0(�1)`1iL2(v0; : : : ; L1(vi; : : : ; vi+`1); : : : ; v`1+`2)[L1; L2] :=j(L1)L2 � (�1)`1`2j(L2)L1:Then it turns out that this bracket de�nes a graded Lie algebra structure onM(V ) = LnMn(V ). Moreover, an element � 2 M1(V ), i.e. a bilinear map V �V ! V is an associative multiplication if and only if [�; �] = 0. But if this is the casethen by the graded Jacobi{identity the mapping d� :Mn(V )! Mn+1(V ) de�nedby d�(L) = [�;L] is a di�erential, i.e. d��d� = 0 and the cohomology of (M(V ); d�)is exactly the Hochschild cohomology of the algebra (V; �) with coe�cients in thebimodule V .4.2. Let us now adapt this construction for twisted tensor products. Thus we haveV = A 
 B. Now Mn(A 
 B) = L((A 
 B)
n+1; A 
 B) and both (A 
 B)
n+1and A
B have canonical structures of a left A{module and a right B{module, byacting on the leftmost A component and the rightmost B-component, respectively.By de�nition, any multiplication of the form �� as de�ned in 2.2 is a homomorphismfor both these module structures. Moreover, from the de�nition of the operator jabove it is obvious that the subspace ~M (A 
 B) = L ~Mn(A 
 B), where ~Mndenotes the set of linear maps (A 
B)
n+1 ! A
B, which respect both modulestructures, is a Lie subalgebra of M(A 
 B). Since A and B are unital we mayidentify ~M0(A
B) with A
B and ~Mn(A
B) with L(B
(A
B)
n�1
A;A
B).In particular, under this identi�cation ~M1(A
B) = L(B
A;A
B) and one easilychecks that the element in ~M1(A 
 B) corresponding to a multiplication �� as in



ON TWISTED TENSOR PRODUCTS OF ALGEBRAS 152.2 is exactly the map � . Let us again denote by [ ; ] the induced bracket on~M (A
B). Then from the above we see that �� is associative if and only if [�; � ] = 0.Since we are interested in twisting maps � , we have to take into account theadditional condition that � (1 
 a) = a 
 1 and � (b 
 1) = 1 
 b. We de�neCn(A
B) to be the set of all � 2 ~Mn(A
B) which satisfy the following condition:�(b
a1
b1
� � �
an�1
bn�1
a) = 0 if either b = 1 or a = 1 or ai = 1 and bi = 1for some i = 1; : : : ; n � 1. The motivation for this de�nition is that elements inC1(A
B) should be candidates for in�nitesimal deformations of twisting maps andin order to remain in the realms of twisting maps they have to satisfy �(1 
 a) =�(b
 1) = 0, and the following result, the proof of which also shows that C(A
B)is just the natural analog of the normalized Hochschild complex.4.3. Proposition. The space C(A
B) =Ln Cn(A
B) is a graded Lie subalgebraof ~M (A 
 B) and for any twisting map � it is closed under the di�erential d� =[�; ].Proof. Take �i 2 Cni(A 
 B) for i = 1; 2. To compute the bracket [�1; �2] weproceed as follows: To �i we associate Li 2Mni (A 
B) de�ned byLi(a0 
 b0 
 � � � 
 ani 
 bni ) = a0 � �i(b0 
 � � � 
 ani) � bni ;and then[�1; �2](b 
 a1 
 � � � 
 bn1+n2�1 
 a) = [L1; L2](1
 b 
 � � � 
 a 
 1):This shows that [�1; �2] 2 C(A 
 B) is equivalent to [L1; L2](v0; : : : ; vn1+n2) = 0if one of the vi equals 1 assuming that the Li have this property. (Here we writevi for elements of A 
 B). But obviously each individual summand occurring inthe de�nition of j(L1)L2 vanishes under these conditions, so C(A
B) is indeed asubalgebra.Now suppose that � 2 Cn(A 
 B) and that � is a twisting map. As above weform L� and consider the bracket [�� ; L�](1 
 b 
 � � � 
 a 
 1). Now we have toshow that [�� ; L�](v0; : : : ; vn+1) vanishes if any of the vi = 1 assuming that L� hasthis property and that 1 is really the multiplicative unit for �� . This is exactlythe classical fact that the normalized Hochschild cochains form a subcomplex. Ex-plicitly this can be seen as follows: Consider �rst the case where vi = 1 for somei 6= 0; n+ 1. Then in the sum de�ning j(�� )L� all terms vanish obviously, but thetwo in which vi goes into the �� . But these two give the same result with oppositesigns since �� 2 M1(A 
B) and 1 is a multiplicative unit. On the other hand, inboth summands of j(L�)�� this vi must go into the L� since i 6= 0; n+ 1, so thesevanish, too.Next suppose that v0 = 1. Then in j(�� )L� the only surviving summand equalsL�(v1; : : : ; vn+1), while from j(L�)�� we get �(�1)n(�1)n�1L�(v1; : : : ; vn+1), sothese two terms cancel. Similarly one proves the result if vn+1 = 1, and thusC(A
B) is indeed closed under the di�erential d� for any twisting map � . �4.4. De�nition. We now de�ne the cohomology H�(� ) to be the cohomologyof the complex (C�(A 
 B); d� ). Note that C0(A 
 B) = 0, so H0(� ) = 0 and



16 ANDREAS �CAP HERMANN SCHICHL JI�R�I VAN�ZURAH1(� ) = Ker(d� ) � C1(� ). This is true since ~M0(A 
 B) �= A 
 B, with (� 
�)(a 
 b) = a�
 �b and such a map vanishes on 1
 1 only if �
 � = 0.Nevertheless, we do not renumber the cohomology groups so that we get theusual correspondences between cohomology groups and deformations.Note that by the graded Jacobi identity the di�erential d� acts as a gradedderivation with respect to the graded Lie bracket, which thus induces a graded Liealgebra structure on the cohomology space H�(� ).4.5. Formal Deformations. To study deformations of twisted tensor productswe have to study deformations of twisting maps. So let �0 be a twisting map andconsider a formal power series � = Pk�0 �ktk, where each �k is a linear mapping�k : B 
 A ! A 
B. To have a chance that at least for small t this power seriesde�nes a twisting map we obviously have to assume that for each k; a and b wehave �k(b
 1) = �k(1
 a) = 0, i.e. that each �k is in fact an element of C1(A
B).Next let [�; � ] be the formal power seriesPk[�; � ]ktk with [�; � ]k :=Pi+j=k[�i; �j ],so we have [�; � ] = 0 + 2[�0; �1]t+ (2[�0; �2] + [�1; �1])t2 + : : :Now we call � a formal deformation of �0 if and only if [�; � ] = 0. Clearly, if thepower series � converges for jtj < t0 for some t0 > 0 then this condition is equivalentto � (t) being a twisting map for all jtj < t0.4.6. Now it is quite easy to relate formal deformations to the cohomology. Assumethat we have given a formal power series � =Pk �ktk as above. Then the �rst termin the expansion of [�; � ] is just 2d�0(�1), so the �rst condition for being a formaldeformation is that �1 2 H1(�0). In particular, if H1(�0) = 0 then �1 = 0 and thenext equation reads just as 2d�0(�2) = 0, thus �2 = 0 and inductively one gets thatall �k must be zero. Thus if H1(�0) = 0 there is no formal deformation of �0, andwe call �0 formally rigid in this case.On the other hand if H1(�0) 6= 0 let us �x some �1. Then the next term inthe expansion of [�; � ] is 2d�0 (�2) + [�1; �1]. Since d�0 acts as a graded derivationwith respect to the bracket we see that [�1; �1] is always a cocycle, and thus theobstruction against the existence of a �2 2 C1(A 
 B) which solves the equation2d�0(�2)+[�1; �1] = 0 is exactly the cohomology class of [�1; �1] inH2(�0). Moreover,if this class vanishes then this element �2 is determined up to elements of H1(�0).Now let us inductively assume that for k < N we have found elements �k 2C1(A 
 B) such that 0 = 2d�0 (�k) +Pi;j>0;i+j=k[�i; �j ] for all k. Clearly, thisimplies that[�; � ] = tN (2d�0 (�N) + Xi;j>0;i+j=N[�i; �j ]) + higher order terms:Now applying d�0 to Pi;j>0;i+j=N [�i; �j] we get:Xi;j>0i+j=N([d�0�i; �j ]� [�i; d�0�j ]) = 2 Xi;j>0i+j=N[d�0�i; �j ]



ON TWISTED TENSOR PRODUCTS OF ALGEBRAS 17which by our assumptions equals2 Xi;j>0i+j=N Xm;n>0m+n=i[[�m; �n]; �j ] = 2 Xi;j;k>0i+j+k=N[[�i; �j ]; �k]:If in this sum there is a term in which all three indices are equal than this termvanishes by the graded Jacobi identity. Next, the sum of all terms in which exactlytwo indices are equal can be written as2 Xi;j>02i+j=N([[�i; �i]; �j] + [[�i; �j ]; �i] + [[�j ; �i]; �i]);and each of these summands vanishes by the graded Jacobi identity and the sym-metry of the bracket for elements of degree one. Finally, again using this symmetrythe sum of the terms in which all three indices are di�erent can be rewritten as4 Xi>j>k>0i+j+k=N([[�i; �j ]; �k] + [[�i; �k]; �j ] + [[�j; �k]; �i]);and as above each of these summands vanishes.So again the obstruction against �nding �N 2 C1(A 
B) such that 2d�0(�N ) +Pi;j>0;i+j=N [�i; �j ] = 0 is the cohomology class of Pi;j>0;i+j=N [�i; �j ] in H2(�0),and if this vanishes the choice of �N is unique up to elements of H1(�0). Togetherwe see that if we try to extend a cocycle �1 2 H1(�0) to a formal deformation, ineach step there is an obstruction in H2(�0) and if this vanishes the extension isunique up to elements of H1(�0).4.7. De�nition. In order to proceed towards the computation of the cohomologyof a twisting map � , we have to consider some module structures depending on� . From 3.9 we get a left A{module structure on L(B;A 
 B) given by a � � :=(�A
B)� (A
�)� �a, where �a : B ! A
B is the map given by �a(b) := � (a
 b).Moreover, we de�ne a right action of A on this space by (� � a)(b) := �(b) �� (a
 1).Similarly from 3.12 we get a right B{module structure on L(A;A 
 B) given by� � b := (A 
 �B) � (� 
 B) � �b and we de�ne a left action of B on this space by(b � �)(a) := (1
 b) �� �(a).4.8. Proposition. The actions from 4.7 make L(B;A 
 B) into an A{bimoduleand L(A;A 
B) into a B{bimodule.Proof. We prove this only for the actions of A, the proof for the actions of B iscompletely analogous.In 3.10 we have shown that the left action of A is indeed an action. Next byde�nition the �{multiplication with a
 1 from the right is just given by (�A
B) �(A 
 �a). Thus we get:(a1 � �) � a2 = (�A 
B) � (A 
 �a2) � (a1 � �) == (�A 
B) � (A 
 �a2) � (�A 
B) � (A 
 �) � �a1 ;



18 ANDREAS �CAP HERMANN SCHICHL JI�R�I VAN�ZURAwhile on the other handa1 � (� � a2) = (�A 
B) � (A 
 (� � a2)) � �a1 == (�A 
B) � (A 
 �A 
B) � (A 
A
 �a2) � (A 
 �) � �a1 ;and again by associativity of �A this equals the above expression. �4.9. Remarks. (1) If V is an arbitrary K{vector space then the module structuresfrom above induce an A{bimodule structure on L(B
V;A
B), since this space iscanonically isomorphic to L(V;L(B;A
B)) by the universal property of the tensorproduct. In the same way, one gets a B{bimodule structure on L(V 
 A;A 
 B)for any V .A short computation shows that these structures are given by (� � a)(b 
 v) =�(b 
 v) �� (a 
 1) and a � � = (�A 
 B) � (A 
 �) � (�a 
 V ), and likewise for theactions of B.(2) To any mapping � 2 L(B 
 V;A 
 B) we can associate a linear map L� :A 
 B 
 V ! A 
 B, which is a homomorphism for the left A{module structuresgiven by left multiplication. Now the nontrivial module structures de�ned abovecan be conveniently expressed using L� as (a��)(b
v) = L�(� (b
a)
v). Similarlyone can express the right actions of B. This follows directly from the de�nitions.4.10. Consider the space C1(A
B) � L(B 
A;A
B). This can be canonicallyidenti�ed with L0(B;L0(A;A 
 B)), where L0 denotes the space of those linearmaps which vanish on 1. Thus we can consider the Hochschild di�erential @�B withrespect to B and the B{bimodule structure on L0(A;A 
 B) constructed in 4.7above (obviously L0(A;A
B) is a sub{bimodule of L(A;A
B) for this structure).@�B has then values in the space L(B 
B;L0(A;A 
B)) which can be canonicallyidenti�ed with a subspace of L(B
B
A;A
B). Since the Hochschild di�erentialrespects the normalized Hochschild complex the values are in fact in the subspaceof those maps which vanish if one entry is equal to one.Similarly, identifying C1(A
B) with L0(A;L0(B;A
B)) we get a Hochschilddi�erential @�A which has values in (a subspace of) L(B 
A
A;A 
B).For later use let us compute these di�erentials explicitly:For � 2 L0(B;L0(A;A 
 B)) we have by de�nition @�B�(b1 
 b2) = b1 � (�(b2)) ��(b1b2) + (�(b1)) � b2. Reinterpreting � as a map from B 
A to A
B we thus get@�B�(b1 
 b2 
 a) = (1 
 b1) �� (�(b2 
 a)) � �(b1b2 
 a) + L�(b1 
 � (b2 
 a)):Here L� : B 
 A 
 B ! A 
 B denotes the homomorphism of right B{modulesinduced by � (cf. 4.9(2)).Similarly one computes@�A�(b 
 a1 
 a2) = L�(� (b 
 a1) 
 a2) � �(b 
 a1a2) + (�(b 
 a1)) �� (a2 
 1):In this case L� : A
B
A! A
B denotes the homomorphism of left A{modulesinduced by � as in 4.9(2).4.11. Next consider the map 	1 : C2(A 
 B) ! L(B 
 B 
 A;A 
 B) given by(	1�)(b1 
 b2 
 a) := �(b1 
 1 
 b2 
 a). Obviously, this is a homomorphism ofA{bimodules and of B{bimodules for the structures de�ned in 4.8 for any twistingmap � .Similarly, we get such a homomorphism 	2 : C2(A 
B)! L(B 
A
A;A 
B).



ON TWISTED TENSOR PRODUCTS OF ALGEBRAS 19Theorem. For a �xed twisting map � let Z2� (A 
 B) denote the space of two{cocycles in C2(A 
B) with respect to d� . Then the induced map	 = (	1;	2) : Z2� (A 
B)! L(B 
B 
A;A 
B) � L(B 
A 
A;A 
B)is injective and we have 	 � d� = (�@�B ; @�A). Moreover, 	1 has values in thesubspace of normalized Hochschild two{cocycles on B with values in L0(A;A 
 B)and 	2 has values in the subspace of normalized Hochschild two{cocycles on A withvalues in L0(B;A 
B).Proof. Let us �rst compute the two{cocycle equation for � 2 C2(A 
 B). Thisreads as: 0 = [�� ; L�](1
 b0 
 a1 
 b1 
 a2 
 b2 
 a3 
 1) == L�((1 
 b0) �� (a1 
 b1) 
 a2 
 b2 
 a3 
 1)�� L�(1
 b0 
 (a1 
 b1) �� (a2 
 b2)
 a3 
 1)++ L�(1
 b0 
 a1 
 b1 
 (a2 
 b2) �� (a3 
 1))�� (1
 b0) �� L�(a1 
 b1 
 a2 
 b2 
 a3 
 1)�� L�(1
 b0 
 a1 
 b1 
 a2 
 b2) �� (a3 
 1)Now apply this equation with b1 = 1 and a2 = 1. Then the last two terms vanishsince �(1 
 : : : ) = �(: : : 
 1) = 0 and since (1 
 b) �� (a 
 1) = � (b 
 a) and(a 
 1) �� (1
 b) = a
 b we get:0 = (a1 � �)(b0 
 1
 b2 
 a3)� �(b0 
 a1 
 b2 
 a3) + (� � b2)(b0 
 a1 
 1
 a3);and since 	1 and 	2 are bimodule homomorphisms this implies injectivity of 	.Next applying the cocycle equation with a1 = a2 = 1 we get:0 = �(b0b1 
 1
 b2 
 a3) � �(b0 
 1
 b1b2 
 a3)++ (� � b2)(b0 
 1
 b1 
 a3) � (b0 � �)(b1 
 1
 b2 
 a3);which exactly means that 	1(�) is a Hochschild two{cocycle. Similarly, the cocycleequation for b1 = b2 = 1 shows that 	2(�) is a Hochschild two{cocycle.Finally, for � 2 C1(A 
B) we have:d� (�)(b0 
 a1 
 b1 
 a2) = [�� ; L�](1
 b0 
 a1 
 b1 
 a2 
 1) ==L�((1 
 b0) �� (a1 
 b1)
 a2 
 1) � L�(1 
 b0 
 (a1 
 b1) �� (a2 
 1))�� (1
 b0) �� L�(a1 
 b1 
 a2 
 1) + L�(1 
 b0 
 a1 
 b1) �� (a2 
 1)Putting in this equation a1 = 1 we get	1(d��)(b0 
 b1 
 a2) = �(b0b1 
 a2)� (� � b1)(b0 
 a2) � (b0 � �)(b1 
 a2);and this is just �@�B�(b0 
 b1 
 a2), while putting b1 = 1 we get	2(d��)(b0 
 a1 
 a2) = (a1 � �)(b0 
 a2) � �(b0 
 a1a2) + (� � a2)(b0 
 a1);which is just @�A�(b0 
 a1 
 a2). �



20 ANDREAS �CAP HERMANN SCHICHL JI�R�I VAN�ZURA4.12. The case of the trivial twisting map. We investigate the case of thetrivial twisting map s : B
A! A
B, s(b
 a) = a
 b, i.e. of deformations of theordinary tensor product. First note that in this case the bimodule structures de�nedin 4.7 simplify considerably: By de�nition, the right action of A on L(B;A 
 B)and the left action of B on L(A;A 
 B) are just given by right respectively leftmultiplication on the values of the maps. On the other hand the left action of Aon L(B;A 
B) is de�ned by a � � := (�A 
B) � (A 
 �) � sa and this is the mapb 7! a
b 7! a
�(b) 7! (a
1)(�(b)), so the left action reduces to left multiplicationon the values and similarly for the right action of B.Using this fact we can now give a nice description of H1(s): Consider a map� : B
A! A
B. By theorem 4.11 � is in H1(s) if and only if @sB(�) = @sA(�) =0. From the equations in 4.10 one immediately reads o� that in this case theseconditions just mean that�(b1b2 
 a) = �(b1 
 a)(1 
 b2) + (1
 b1)(�(b2 
 a))�(b 
 a1a2) = �(b 
 a1)(a2 
 1) + (a1 
 1)(�(b 
 a2)):Now viewing � as an element of L(B;L(A;A
B)) the second equation just meansthat the values are in the subspace Der(A;A 
 B) of derivations, while the �rstcondition means that the map itself is a derivation with respect to the bimodulestructure on Der(A;A 
 B) given by multiplication on the values. Thus H1(s) �=Der(B;Der(A;A 
B)) �= Der(A;Der(B;A 
 B)), since the compatibility with theunits is automatically satis�ed by derivations.4.13. Examples. Still in the case of the trivial twisting map, suppose that ' 2Der(A;A) and  2 Der(B;B) are derivations. Consider the map b 
 a 7! '(a) 
 (b). Obviously this is an element of H1(s). Now consider the formal power seriesexp(t'
  ) := s+Pk�1 tkk! ('
  )k, where ('
  )k(b 
 a) := 'k(a)
  k(b). Weclaim that this is always a formal deformation of s. By theorem 4.11 we have toshow that for any N 2 N we have2N !@sB(('
  )N ) = Xi;j>0;i+j=N 1i!j!	1([('
  )i; ('
  )j ])and � 2N !@sA((' 
  )N ) = Xi;j>0;i+j=N 1i!j!	2([('
  )i; (' 
  )j ]):By the product rule for powers of derivations we have (' 
  )N (b1b2 
 a) =PNi=0 �Ni �'N(a) 
  i(b1) N�i(b2). Thus, using the formula for @�B derived in 4.10we see that@sB(('
  )N )(b1 
 b2 
 a) = N�1Xi=1 �Ni �'N(a) 
  i(b1) N�i(b2):On the other hand, writing Li for the extension of ('
 )i to A
B
A
B as a



ON TWISTED TENSOR PRODUCTS OF ALGEBRAS 21left A{module and a right B{module homomorphism we compute:[('
  )i; ('
  )j ](b1 
 1
 b2 
 a) == Lj(Li(1 
 b1 
 1
 b2)
 a
 1)� Lj(1
 b1 
 Li(1 
 b2 
 a 
 1))++ Li(Lj (1
 b1 
 1
 b2)
 a 
 1)� Li(1
 b1 
 Lj(1
 b2 
 a
 1)) == 0� 'i+j(a) 
  j(b1) i(b2) + 0� 'i+j(a) 
  i(b1) j (b2)Using this it is easy to see that the �rst of the two above equations holds. Thesecond one is proved similarly.In fact, this is closely related to a result of [Mourre 1990], who has shown thatif A is an algebra and D1 and D2 are commuting derivations on A, then a � b :=P1k=0 tkk!Dk1 (a)Dk2 (b) is a formal deformation of A.Let us carry this out in the two simplest situations: First put A = B = C [x]viewed as the algebra of complex valued polynomials on the real line, and considerthe formal deformation exp(it ddx 
 ddx). Calling the variable in B p instead of xwe can write the resulting commutation relation as px = xp + it or [p; x] = it, sowe get exactly the Heisenberg uncertainty relation. It should be remarked thatclearly this is a true deformation on the level of polynomials. The extension of thisdeformation to bigger subalgebras of all complex valued functions on the real lineis a more subtle (topological) problem.Second put A = C [u; u�1 ], B = C [v; v�1 ] viewed as two copies of the algebra oftrigonometric polynomials on the unit circle, and consider the formal deformationexp(it@u 
 @v), where @u is the derivation given by @u(un) = inun, and similarlyfor @v. We then get the commutation relation vu = uvPk�0 (�it)kk! = e�ituv,which is exactly the non{commutative two torus (or irrational rotation algebra)with parameter q = e�it or in terms of physics the Weyl relations. In this casethis is not only a true deformation in the case of polynomials but it is also wellknown that this extends to a true deformation for smooth functions and even tocontinuous and essentially bounded functions.ReferencesCap, A.; Kriegl, A.; Michor, P.; Van�zura, J., The Fr�olicher{Nijenhuis Bracket in Non Commuta-tive Di�erential Geometry, Acta Math. Univ. Commenianae LXII 1 (1993), 17{49.Cap, A.; Michor, P.; Schichl, H., A quantum group like structure on non commutative 2{tori,Lett. Math. Phys. 28 (1993), 251{255.Fr�olicher, Alfred; Kriegl, Andreas, Linear spaces and di�erentiation theory, Pure and AppliedMathematics, J. Wiley, Chichester, 1988.Gerstenhaber, M., On the deformation of rings and algebras, Annals of Math. (2) 57 (1953),591{603.Karoubi, Max, Connexions, courbures et classes caract�eristiques en K-theorie alg�ebriques, Cana-dian Math. Soc. Conference Proc. Vol 2, 1982, pp. 19{27.Karoubi, Max, Homologie cyclique des groupes et alg�ebres, C. R. Acad. Sci. Paris 297 (1983),381{384.Kunz, Ernst, K�ahler Di�erentials, Viehweg, Braunschweig - Wiesbaden, 1986.Lecomte, P.; Michor, P. W.; Schicketanz, H., The multigraded Nijenhuis{Richardson Algebra, itsuniversal property and application, J. Pure Applied Algebra 77 (1992), 87{102.Majid, S., Matched Pairs of Lie Groups Associated to Solutions of the Yang{Baxter Equations,Paci�c J. Math. 141, no. 2 (1990), 311{332.
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