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TWO CONSTRUCTIONS WITH PARABOLIC GEOMETRIESANDREAS �CAPAbstrat. This is an expanded version of a series of letures delivered at the 25thWinter Shool \Geometry and Physis" in Srni.After a short introdution to Cartan geometries and paraboli geometries, we givea detailed desription of the equivalene between paraboli geometries and underlyinggeometri strutures.The seond part of the paper is devoted to onstrutions whih relate paraboligeometries of di�erent type. First we disuss the onstrution of orrespondenespaes and twistor spaes, whih is related to nested paraboli subgroups in thesame semisimple Lie group. An example related to twistor theory for Grassmannianstrutures and the geometry of seond order ODE's is disussed in detail.In the last part, we disuss analogs of the Fe�erman onstrution, whih relategeometries orresponding di�erent semisimple Lie groups.1. IntrodutionThis is an expanded version of a series of plenary letures at the 25th Winter Shool\Geometry and Physis" in Srni. I would like to thank the organizers for giving methe opportunity to present this series.The onept whih is nowadays known as a Cartan geometry was introdued byE. Cartan under the name \generalized spae" in order to build a bridge betweengeometry in the sense of F. Klein's Erlangen program and di�erential geometry. Thisonept assoiates to an arbitrary homogeneous spae G=H the notion of a Cartangeometry of type (G;H), whih is a di�erential geometri struture on smooth mani-folds whose dimension equals the dimension of G=H. A manifold endowed with suha geometry an be onsidered as a \urved analog" of the homogeneous spaes G=H.Although Cartan geometries are an extremely general onept, there are several re-markable results whih hold for all of them, see 2.2.The most interesting examples of Cartan geometries are those, in whih the Cartangeometry is equivalent to some simpler underlying struture. Obtaining the Cartangeometry from the underlying struture usually is a highly nontrivial proess whihoften involves prolongation. Cartan himself found many examples of this situation,ranging from onformal and projetive strutures via 3{dimensional CR strutures togeneri rank two distributions in manifolds of dimension �ve.Paraboli geometries are Cartan geometries of type (G;P ), where G is a semisimpleLie group and P � G is a paraboli subgroup. The orresponding homogeneous spaesDate: April 19, 2005.2000 Mathematis Subjet Classi�ation. primary: 53B15, 53C15, 53C28, 32V05; seondary:53A40, 53D10.supported by projet P15747-N05 of the \Fonds zur F�orderung der wissenshaftlihen Forshung"(FWF). 1



2 ANDREAS �CAPG=P are the so{alled generalized ag manifolds whih are among the most importantexamples of homogeneous spaes. Under the onditions of regularity and normality,paraboli geometries always are equivalent to underlying strutures. This basiallygoes bak to the pioneering works of N. Tanaka, see e.g. [29℄.In setion 2 of this artile we give a preise desription of the underlying stru-tures whih are equivalent to regular normal paraboli geometries. In this underlyingpiture, the strutures are very diverse, inluding in partiular the four examples ofstrutures listed above. From that point of view, paraboli geometries o�er a uni�edapproah to a broad variety of geometri strutures.Some of the advantages of this uni�ed approah will be disussed in the remainingtwo setions. They are devoted to onstrutions whih relate paraboli geometriesof di�erent types. The ommon feature of these onstrutions is that they are quitetransparent in the piture of Cartan geometries, while from the point of view of theunderlying strutures they are often surprising.Setion 3 is devoted to the onstrution of orrespondene spaes, whih is assoiatedto nested paraboli subgroups in one semisimple Lie group. Trying to haraterize thegeometries obtained in that way, one is lead to the notion of a twistor spae and obtainsseveral lassial examples of twistor theory. In the end one arrives at a omplete loalharaterization of orrespondene spaes in terms of the harmoni urvature. Wegive a detailed disussion of one example of this situation related to the geometry ofsystems of seond order ODE's.The last setion is devoted to Fe�erman's onstrution of a onformal struture onthe total spae of a irle bundle over a CR manifold and analogs of this onstrution.From the point of view of Cartan geometries, the basi input for these onstrutions isan inlusion i : G! ~G between semisimple groups together with appropriately hosenparaboli subgroups P � G and ~P � ~G. Then the onstrution relates geometries oftype (G;P ) to geometries of type ( ~G; ~P ).2. Cartan geometries and paraboli geometriesWe start with some general bakground on Cartan geometries.2.1. Homogeneous spaes and the Maurer Cartan form. Let G be any Liegroup and let H � G be a losed subgroup. The basi idea behind Cartan geometriesis to endow the homogeneous spae G=H with a geometri struture, whose auto-morphisms are exatly the left ations of the elements of G. The natural projetionG! G=H is well known to be a prinipal bundle with struture group H. Left multi-pliation by g 2 G lifts the ation of g on G=H to an automorphism of this prinipalbundle. Of ourse, the group of prinipal bundle automorphisms of G! G=H is muhbigger than just the left translations, so an additional ingredient is needed to reognizeleft translations.It turns out that the right ingredient is the (left) Maurer Cartan form !MC 2
1(G; g). Reall that this is just a di�erent way to enode the trivialization of thetangent bundle TG by left translations. By de�nition, for � 2 TgG we have!MC(�) = T�g�1 � � 2 TeG = g;where �g�1 denotes left translation by g�1.



TWO CONSTRUCTIONS WITH PARABOLIC GEOMETRIES 3Proposition. Let G be a Lie group and let H � G be a losed subgroup suh that thehomogeneous spae G=H is onneted. Then the left translations �g are exatly theprinipal bundle automorphisms of G! G=H whih pull bak !MC to itself.For later use, we note some further properties of !MC. As we have noted above,!(LX) = X for all X 2 g. Note that for X 2 h, the vetor �eld LX oinideswith the fundamental vetor �eld �X on the prinipal bundle G ! G=H generatedby X. For g 2 H, onsider the right translation rg by g. Using that the adjointation of g is the derivative of the onjugation by g, one immediately veri�es that(rg)�!MC = Ad(g�1) Æ !MC . Note that for g 2 H, the map rg is the prinipal rightation on the bundle G ! G=H. Finally, there is the Maurer{Cartan equation: Thefat that [LX; LX ℄ = L[X;Y ℄ for all X;Y 2 g implies that d!MC(�; �) + [!(�); !(�)℄ = 0for all vetor �elds � and � on G.2.2. Cartan geometries. The de�nition of a Cartan geometry is now obtained byreplaing G ! G=H by an arbitrary prinipal H{bundle and !MC by a form whihhas all the properties of !MC that make sense in the more general setting.De�nition. (1) A Cartan geometry of type (G;H) on a smooth manifold M is aprinipal H{bundle p : G ! M together with a one form ! 2 
1(G; g) (the Cartanonnetion) suh that� (rh)�! = Ad(h)�1 Æ ! for all h 2 H.� !(�A) = A for all A 2 h.� !(u) : TuG ! g is a linear isomorphism for all u 2 G.(2) A morphism between two Cartan geometries (G ! M;!) and ( ~G ! ~M; ~!) is aprinipal bundle homomorphism � : G ! ~G suh that ��~! = !.(3) The urvature K 2 
2(G; g) of a Cartan geometry (G ! M;!) of type (G;H) isde�ned by K(�; �) = d!(�; �) + [!(�); !(�)℄;for �; � 2 X (G).Notie that a Cartan geometry is a loal struture, i.e. it an be restrited to opensubsets: For (p : G !M;!) and an open subset U �M , we simply have the restrition(p : p�1(U) ! U;!jp�1(U)). The urvature evidently is a loal invariant, i.e. theurvature of this restrited geometry is the restrition of the original urvature.Any morphism � between two Cartan geometries as in (2) has an underlying smoothmap ' :M ! ~M . It turns out (see [27, hapter 5℄) that � is determined by ' up to asmooth funtion fromM to the maximal normal subgroup of G whih is ontained inH. In all ases of interest, this subgroup is trivial or at least disrete, whene this maphas to be loally onstant. In fat, it is neessary to inluded the possibility of havingvarious morphisms overing the same base map to deal with strutures analogous toSpin strutures.By de�nition (G ! G=H;!MC ) is a Cartan geometry of type (G;H), and Propo-sition 2.1 exatly tells us that the automorphisms of this geometry are exatly theleft translations by elements of G. This geometry is alled the homogeneous model ofCartan geometries of type (G;H).



4 ANDREAS �CAPThe Maurer{Cartan equation noted in the end of 2.1 exatly says that the urvatureof the homogeneous model vanishes identially. Indeed, the urvature exatly measuresto what extent the Maurer{Cartan equation fails to hold. One of the nie features ofCartan geometries is that vanishing of the urvature haraterizes the homogeneousmodel loally, i.e. any Cartan geometry of type (G;H) with vanishing urvature isloally isomorphi to (G ! G=H;!MC), see [27, hapter 5℄. More generally, theurvature (at least in priniple) provides a solution to the equivalene problem. Thisis one of the reasons why already assoiating to some geometri struture a anonialCartan onnetion is a powerful result. For the main part of the theory of paraboligeometries however, the existene of a anonial Cartan onnetion is only the startingpoint.There are other interesting features of general Cartan geometries, for example:� For any Cartan geometry (p : G ! M;!) of type (G;H), the automorphismgroup Aut(G; !) is a Lie group of dimension � dim(G). The Lie algebraaut(G; !) an be desribed ompletely, and analyzing its algebrai strutureleads to interesting results, see [9℄.� The homogeneous model (G ! G=H;!MC) satis�es a Liouville type theo-rem. If U and V are open subsets of G=H then any isomorphism betweenthe restritions of the geometry to these open subsets uniquely extends to anautomorphism of the homogeneous model.� There are various general tools available for Cartan geometries, for examplethe notions of distinguished urves and of normal oordinates.2.3. Cartan geometries determined by underlying strutures. The results listedabove beome partiularly powerful if a Cartan geometry is obtained as an equivalentdesription of some underlying geometri struture. A very simple example is pro-vided by Riemannian geometries, whih orrespond to the ase that G is the Eulideangroup Eu(n) and H = O(n). The Lie algebra g is isomorphi to h � Rn as an H{module. Therefore, a Cartan onnetion of type (G;H) on a prinipal O(n){bundleG ! M deomposes into an Rn{valued form � and a h{valued form  whih bothare H{equivariant. Then � de�nes a redution of the linear frame bundle of M tothe struture group O(n), whih is equivalent to a Riemannian metri on M . Theform  de�nes a prinipal onnetion on G whih is equivalent to a metri onnetionon M . If  is torsion free, then it must be the Levi{Civita onnetion. Conversely,starting from a Riemannian manifold, one obtains a torsion free Cartan geometry byusing the orthonormal frame bundle endowed with the soldering form and the Levi{Civita onnetion. In that way, one obtains an equivalene between torsion free Cartangeometries of type (G;H) and n{dimensional Riemannian manifolds.The results disussed above then imply� The isometry group of any Riemannian manifold is a Lie group of dimension� 12 dim(M)(dim(M) � 1).� Any isometry between two open subsets of Eulidean spae is the restritionof a uniquely determined Eulidean motion.� The onepts of geodesis and Riemann normal oordinates for Riemannianmanifolds.



TWO CONSTRUCTIONS WITH PARABOLIC GEOMETRIES 5The ase of Riemannian metris is rather easy, sine the bundle G an be diretlyobtained from the underlying struture. In other ases, one also has to onstrut thisprinipal bundle, a proess whih is usually alled prolongation. This also leads toadditional features. Let us disuss this in the ase of onformal strutures, whih is amodel ase for paraboli geometries:A onformal struture on a smooth manifoldM is given by an equivalene lass [g℄of Riemannian metris on M . Here two metris g and ĝ are onsidered as equivalentif and only if ĝ = e2fg for some smooth funtion f on M . Equivalently, a onformalstruture an be de�ned as a redution of struture group of the frame bundle PM tothe group CO(n) of onformal isometries of Rn.It is a lassial result of E. Cartan, see [16℄ that for n = dim(M) � 3 onformalstrutures admit a anonial normal Cartan onnetion. Consider the semisimple Liegroup G := SO(n+1; 1). This naturally ats on Rn+2 and the ation preserves the nullone. Fix a nonzero null vetor v and let P � G be the stabilizer of the lineRv. Then Pis an example of a paraboli subgroup of the semisimple Lie group G. It turns out thatP ontains an Abelian normal subgroup P+ �= Rn suh that P=P+ =: G0 �= CO(n).The relation of these groups to onformal geometry is the following: The group Gats transitively on the spae of null lines in Rn+2, whih is easily seen to be isomorphito Sn. Sine by de�nition P is the stabilizer of one null line we get G=P �= Sn andthis identi�es G with the group of onformal isometries of Sn and P with the group ofonformal isometries �xing a point x0 2 Sn. It turns out that the projetion from Pto G0 �= CO(n) is given by passing from a onformal isometry �xing x0 to its tangentmap in x0, see [17℄ for more details.Now onsider a manifoldM of dimension n endowed with a onformal struture [g℄.The orresponding redution of struture group is a G0{prinipal bundle p0 : G0 !M endowed with a anonial di�erential form � alled the soldering form. Cartan'sresult states that this bundle an be anonially extended to a prinipal bundle p :G ! M with struture group P and the soldering form � an be extended to aCartan onnetion ! 2 
1(G; g). If one requires the Cartan onnetion ! to satisfy anormalization ondition, then it is uniquely determined.Conversely, given a prinipal P{bundle p : G ! M endowed with a Cartan on-netion ! 2 
1(G; g), one obtains a G0{prinipal bundle G0 := G=P+ ! M and !indues a soldering form on that bundle, thus giving rise to a onformal struture onM . In the end one obtains an equivalene of ategories between onformal struturesand Cartan geometries of type (G;P ).The additional feature provided by this is that one obtains new geometri objets.Viewing a onformal struture as a redution to the struture group CO(n) of the linearframe bundle, one obtains a natural vetor bundle assoiated to eah representationof CO(n). Sine CO(n) is a quotient of P , this gives rise to a representation of P andthe resulting vetor bundles an also be viewed as assoiated to the Cartan bundleG. But the group P admits more general representations than those oming from G0,and these give rise to new natural vetor bundles and thus new geometri objets. Apartiularly interesting ase is to onsider restritions to P of representations of G.This leads to the so{alled trator bundles, see [1, 10℄.In a series of pioneering papers in the 1960's and 70's ulminating in [29℄, N. Tanakashowed that for all semisimple Lie groups and paraboli subgroups normal Cartan



6 ANDREAS �CAPgeometries are determined by underlying strutures. These results have been putinto the more general ontext of �ltered manifolds in the work of T. Morimoto (seee.g. [23℄) and a new version of the result tailored to the paraboli ase was givenin [12℄. Otherwise put, these results show that these underlying strutures (whihseemingly are very diverse) admit anonial Cartan onnetions. Our next aim is togive a uniform desription of the underlying strutures.2.4. Generalized ag manifolds. We �rst ollet some bakground on the homoge-neous models of paraboli geometries. We will use elementary de�nitions, whih avoidstruture theory of Lie algebras.De�nition. Let g be a semisimple Lie algebra. A jkj{grading on g is a vetor spaedeomposition g = g�k � � � � � g0 � � � � � gksuh that [gi; gj℄ � gi+j and suh that the subalgebra g� := g�k�� � ��g�1 is generatedby g�1.For given g there is a simple omplete desription of suh gradings (up to isomor-phism) in terms of struture theory. For omplex g, they are in bijetive orrespon-dene with sets of simple roots of g and hene are onveniently denoted by Dynkindiagrams with rosses. For real g there is a similar desription in terms of the Satakediagram.Let us make this more expliit for the ase g = sl(n + 1;K) for K = R or C . Upto isomorphism, eah jkj{grading is determined by a blok deomposition of matries:One deomposes Rn+1 into k + 1 bloks of sizes i0; : : : ; ik. The g0 onsists of all blokdiagonal matries, and for i > 0, the omponent gi (respetively g�i) onsists of thosematries, whih only have nonzero entries in the ith bloks above (respetively below)the main diagonal. The orresponding Dynkin diagram is obtained as follows: Lookat the matrix entries in the �rst diagonal above the main diagonal. The blok inwhih they are ontained either lies in g0 or in g1. Use a dot in the �rst and a rossin the seond ase and onnet eah entry with a line to its (one or two) neighbors.More expliitly, onsider sl(4;K) with bloks of sizes 1, 1, and 2. Then one obtains aj2j{grading of the form 0BB� g0 g1 g2 g2g�1 g0 g1 g1g�2 g�1 g0 g0g�2 g�1 g0 g01CCAand the orresponding Dynkin (respetively Satake) diagram with rosses is� � Æ .Putting gi := gi � � � � � gk we obtain a �ltration g = g�k � � � � � gk of g suhthat [gi; gj℄ � gi+j . In partiular, p := g0 is a subalgebra of g and p+ := g1 is anilpotent ideal in p suh that p = g0 � p+ is a semidiret sum. The subalgebras pobtained in that way are exatly the paraboli subalgebras of g used in representationtheory. In the omplex ase, a subalgebra of g is paraboli if and only if it ontains amaximal solvable subalgebra (i.e. a Borel subalgebra) of g. In the real ase, parabolisubalgebras are de�ned via omplexi�ation.Given a (not neessarily onneted) Lie group G with Lie algebra g, it turns outthat the normalizer P := NG(p) of p in G has Lie algebra p. This is the paraboli



TWO CONSTRUCTIONS WITH PARABOLIC GEOMETRIES 7subgroup of G assoiated to the paraboli subalgebra p � g. It turns out that forg 2 P , the adjoint ation Ad(g) : g ! g not only preserves the �ltration omponentg0 but all �ltration omponents gi. Indeed, the whole �ltration an be reonstrutedalgebraially from g0 = p. Further, one de�nes a losed subgroup G0 � P as the setof those g 2 P , whose adjoint ation even preserves the grading of g. Then G0 isredutive and has Lie algebra g0. One shows that exp de�nes a di�eomorphism fromp+ onto a losed subgroup P+ � P and P is the semidiret produt of G0 and P+.A generalized ag variety is a homogeneous spae G=P for a semisimple Lie groupG and a paraboli subgroup P � G. These homogeneous spaes are always ompatand for omplex G they are the only ompat homogeneous spaes of G. In theomplex ase, G=P arries a K�ahler metri. Generalized ag manifolds are among themost important examples of homogeneous spaes. They show up in many areas ofmathematis.Paraboli geometries are Cartan geometries of type (G;P ) for G and P as above. In2.3 we have seen that for an appropriate hoie of G and P , suh a struture (satisfyingan additional normalization ondition) is equivalent to a onformal Riemannian stru-ture. Under the onditions of regularity and normality, general paraboli geometriesequivalent to a ertain underlying struture. We will next desribe how this underlyingstruture is obtained.2.5. The �ltration of the tangent bundle. We �rst show how a paraboli geometry(p : G ! M;!) of type (G;P ) gives rise to a �ltration of the tangent bundle TM .De�ne the adjoint trator bundle AM of M as AM := G �P g. (This is an importantexample of the onept of trator bundles disussed in 2.3.) Then we have the P{invariant �ltration fgig of g, whih gives rise to a �ltrationAM = A�kM � A�k+1M � � � � � AkMof the adjoint trator bundle by smooth subbundles. The Lie braket on g indues atensorial map f ; g : AM �AM ! AM . In partiular, eah �ber of AM is a �lteredLie algebra isomorphi to g.The Cartan onnetion ! leads to an identi�ation TM �= G�P g=p, with the ationoming from the adjoint ation. The Killing form of g indues a duality between thisP{module and p+ = g1, so T �M �= G �P p+ = A1M . Hene T �M is a bundle ofnilpotent �ltered Lie algebras. On the tangent bundle, there are similar but moresubtle strutures: From above, we see that TM �= AM=A0M , and we obtain anindued �ltration TM = T�kM � � � � � T�1M of the tangent bundle by puttingT iM := AiM=A0M . The assoiated graded bundle isgr(TM) = gr�k(TM)� � � � � gr�1(TM);where gri(TM) = T iM=T i+1M . By onstrution, this implies that gri(TM) �= G �Pgi=gi+1. By de�nition, the subgroup P+ � P ats trivially on this quotient. Hene theP{ation fatorizes over P=P+ �= G0 and as a G0{module we have gi=gi+1 �= gi.On the level of prinipal bundles, we observe that the subgroup P+ � P ats freelyon G. Hene the quotient G0 := G=P+ is a prinipal bundle over M with struturegroup P=P+ = G0. The Cartan onnetion ! indues a bundle map from G0 to theframe bundle of gr(TM) whih de�nes a redution of struture group. In partiular,



8 ANDREAS �CAPgri(TM) �= G0�G0 gi, whih is a re�ned version of the identi�ation of the representa-tion spaes above. Putting the omponents together, we see that gr(TM) �= G0�G0 g�.The Lie braket on g� is G0{invariant and hene gives rise to a tensorial map f ; g ongr(TM). Hene for eah x 2M , the spae gr(TxM) is a nilpotent graded Lie algebraisomorphi to g�.2.6. Filtered manifolds and their symbol algebras. A ruial observation for thesequel is that under a weak ondition, a �ltration of the tangent bundle of a manifoldgives rise to the struture of a nilpotent graded Lie algebra on the assoiated gradedof eah tangent spae.A �ltered manifold is a smooth manifold M together with a �ltration TM =T�kM � � � � � T�1M of the tangent bundle by smooth subbundles, whih is ompati-ble with the Lie braket of vetor �elds, i.e. suh that for � 2 �(T iM) and � 2 �(T jM)one always has [�; �℄ 2 �(T i+jM).Let q : T i+jM ! T i+jM=T i+j+1M = gri+j(TM) be the natural map, and onsiderthe operator �(T iM) � �(T jM) ! �(gri+j(TM)) de�ned by (�; �) 7! q([�; �℄). Sinethe indies of the �ltration omponents are always negative, the bundles T iM and T jMare ontained in T i+j+1M , whih implies that this operator is bilinear over smoothfuntions. Therefore, it is indued by a tensor T iM � T jM ! gri+j(TM). If � 2�(T i+1M), then [�; �℄ 2 �(T i+j+1M) so the result of this tensor depends only on thelasses of � in gri(TM) and � 2 grj(TM). Taking together the various omponents,we obtain a tensor L : gr(TM)� gr(TM)! gr(TM) whih is alled the Levi braket.By onstrution, this makes eah of the spaes gr(TxM) into a nilpotent graded Liealgebra, alled the symbol algebra of the �ltered manifold at the point x. Consider aloal isomorphism between �ltered manifolds, i.e. a loal di�eomorphism f suh thateah of the maps Txf is an isomorphism of �ltered vetor spaes. Then eah Txfindues and isomorphism between the assoiated graded spaes to the tangent spaes,whih is easily seen to be an isomorphism of the symbol algebras.Therefore, the symbol algebra should be onsidered as the �rst order approximationof a �ltered manifold in a point, similarly to the tangent spae at a point of an ordinarymanifold. The usual tangent spae (viewed as an Abelian Lie algebra) is reovered inthe ase of the trivial �ltration T�1M = TM .A priory, the isomorphism lass of the symbol algebra may hange from point topoint, but the ase that all symbol algebras are isomorphi to a �xed nilpotent gradedLie algebra a is of partiular interest. In this ase, there is a natural frame bundlefor the vetor bundle gr(TM) with struture group the group Autgr(a) of all auto-morphisms of the Lie algebra a, whih in addition preserve the grading. This is thereplaement for the usual frame bundle of a smooth manifold, whih is again reoveredin the speial ase of the trivial �ltration.2.7. Regularity and normality. Let (p : G ! M;!) be a paraboli geometry oftype (G;P ). Then we have the urvature K 2 
2(G; g) of ! as introdued in 2.2.The de�ning properties of K easily imply that it is horizontal and P{equivariant, soit de�nes a two{form � on M with values in the bundle G �P g = AM . Hene theCartan urvature an be viewed as a two form on M with values in the adjoint tratorbundle.



TWO CONSTRUCTIONS WITH PARABOLIC GEOMETRIES 9The geometry (p : G ! M;!) is alled regular if and only if the urvature � hasthe property that �(T iM;T jM) � Ai+j+1M for all i; j < 0. Otherwise put, regularitymeans that the urvature is onentrated in positive homogeneities.Reall that a Cartan geometry of type (G;P ) is alled torsion free, if its urvatureK 2 
2(G; g) atually has values in p � g. In the paraboli ase, this an be nielyreformulated as � lying in the subspae 
2(M;A0M) � 
2(M;AM). From this de-sription, it is evident that torsion free paraboli geometries are automatially regular,so regularity an be viewed as a ondition avoiding partiularly bad types of torsion.Note that the ondition is vauous for j1j{gradings.The geometri meaning of the regularity ondition is easy to desribe (and also easyto prove):Proposition. Let (p : G ! M;!) be a paraboli geometry of type (G;P ), let fT iMgbe the indued �ltration of the tangent bundle, and let f ; g be the tensorial Lie braketon gr(TM) introdued in 2.5.Then the geometry is regular if and only if the �ltration fT iMg makes M into a�ltered manifold suh that the natural braket on eah symbol algebra oinides withf ; g. In partiular, eah symbol algebra is isomorphi to g�.For regular geometries, the bundle G0 ! M from 2.5 niely ties into the oneptsfor �ltered manifolds. The adjoint ation of G0 on g� is by Lie algebra automorphismswhih preserve the grading (by de�nition of G0), so it de�nes a homomorphism G0 !Autgr(g�). This homomorphism turns out to be in�nitesimally injetive provided thatnone of the simple ideal of g is ontained in g0. This ondition is very harmless, sinesimple ideals ontained in g0 an be left out without problems, so we will assumethroughout that it is satis�ed. As we have noted in 2.6, the group Autgr(g�) is thenatural struture group for the vetor bundle gr(TM) sine eah symbol algebra isisomorphi to g�. The bundle G0 an thus be interpreted as the �ltered manifoldversion of a �rst order G0{struture.Now we have olleted the two strutures underlying a regular paraboli geometryof type (G;P ) that we will need in the sequel:� A �ltration fT iMg of the tangent bundle suh that eah symbol algebra isisomorphi to g�.� A redution of struture group of the assoiated graded gr(TM) to the struturegroup G0 � Autgr(g�).Similarly to the soldering form used for lassial �rst order strutures, this redutionof struture group an be expressed by ertain partially de�ned di�erential forms onthe bundle G0. This leads to the desription of underlying strutures used in [12℄.The olletion of these two underlying strutures is alled a regular in�nitesimal agstruture, see [13℄.Fixing the underlying regular in�nitesimal ag struture still leaves a lot of freedomfor the Cartan onnetion !, so we need an additional normalization ondition: Reallthe the otangent bundle T �M an be naturally viewed as G �P p+ = A1M . Heneit naturally is a bundle of nilpotent Lie algebras with the restrition of the algebraibraket f ; g ofAM . Now for ` > 0 we de�ne a tensorial operator �� : �`T �M
AM !



10 ANDREAS �CAP�`�1T �M 
AM by��(�1^ � � � ^ �` 
 s) := X̀i=1 (�1)i�1 ^ � � � ^ b�i ^ � � � ^ �` 
 f�i; sg+Xi<j (�1)i+jf�i; �jg ^ �1 ^ � � � ^ b�i ^ � � � ^ b�j ^ � � � ^ �` 
 sfor �r 2 T �M and s 2 AM , where as usual the hats denote omission. This is thedi�erential in the standard omplex omputing Lie algebra homology. In partiular,��Æ�� = 0, and the quotients ker(��)= im(��) are the pointwise Lie algebra homologiesof the Lie algebras T �xM with oeÆients in the modules AxM .The homology groups H�(p+; g) are naturally P{modules and it is easy to see thatP+ ats trivially, so they are obtained by trivially extending the ation of G0. Henethe above bundles ker(��)= im(��) an be naturally viewed as either G �P H`(p+; g) orG0�G0H`(p+; g). The latter interpretation shows that they an be diretly interpretedin terms of the underlying struture. It is a ruial point in the theory that theG0{representations H`(p+; g) an be omputed expliitly and algorithmially usingKostant's version of the Bott{Borel{Weil theorem, see [30℄. (In that referene, as wellas in large parts of the literature, ohomology groups rather than homology groupsare used, but swithing between the two points of view is easy.)A paraboli geometry (p : G !M;!) is alled normal if and only if its urvature �has the property that ��(�) = 0.Theorem. Let (M; fT iMg) be a �ltered manifold suh that eah symbol algebra isisomorphi to g�, and let G0 ! M be a redution of gr(TM) to the struture groupG0 � Autgr(g�). Then there is a regular normal paraboli geometry (p : G ! M;!)induing the given data. If H1(p+; g) is onentrated in non{positive homogeneousdegrees, then the pair (G; !) is unique up to isomorphism.Remark. (1) The ondition on H1(p+; g) an be easily turned into something muhmore onrete, see [30, 12℄. If g is simple, then it exludes exatly two series of examplesorresponding to the rossed Dynkin diagrams . . .� Æ Æ Æ and . . .� Æ Æ Æ< .Exept for the very degenerate ase of the Dynkin diagram � (i.e. the Borel subalgebrain sl(2;K)), the orresponding regular normal paraboli geometries are still determinedby some underlying struture. Geometrially, these give rise to lassial projetivestrutures and a ontat version of projetive strutures.(2) One atually obtains an equivalene of ategories between regular normal paraboligeometries and regular in�nitesimal ag strutures.2.8. Examples. By Theorem 2.7, a regular normal paraboli geometry on M of type(G;P ) is for almost all hoies of G and P equivalent to a �ltration fT iMg of thetangent bundle suh that eah symbol algebra is isomorphi to g� plus a redutionof the struture group of gr(TM) to the group G0. In many situation, this simpli�esfurther, and we will disuss this next.(1) j1j{gradings. Here we are in the situation g = g�1 � g0 � g1 and p = g0 � g1.The lassi�ation of suh gradings is equivalent to the lassi�ation of Hermitian andpseudo{Hermitian symmetri spaes and therefore well known. Geometrially, the



TWO CONSTRUCTIONS WITH PARABOLIC GEOMETRIES 11main point is that the �ltration fT iMg by de�nition onsists of just one bundle.Moreover, the regularity ondition is easily seen to be vauous in this ase.Hene if (G;P ) orresponds to a j1j{grading, then Theorem 2.7 says that normalparaboli geometries of type (G;P ) are equivalent to lassial �rst order G0{strutureson M . Here G0 is onsidered as a (overing of a) subgroup of GL(dim(M);R) viaAd : G0 ! GL(g�1).The most important examples of these strutures are onformal, almost quater-nioni, and almost Grassmannian strutures. The exeptional ase orresponding tothe Dynkin diagram . . .� Æ Æ Æ orresponds to a j1j{grading. Here G0 = GL(g�1)so the underlying in�nitesimal ag struture ontains no information at all. Normalparaboli geometries of this type are equivalent to lassial projetive strutures, whihwill be disussed in more detail in 3.2 below.(2) Strutures determined by the �ltration. We have seen in 2.7 that the adjointation de�nes a homomorphism G0 ! Autgr(g�). If this is an isomorphism, thenG0 is the full natural frame bundle of gr(TM) and there is no additional redution ofstruture group. Hene in this ase Theorem 2.7 shows that a regular normal paraboligeometry on M is equivalent to a �ltration fT iMg suh that eah symbol algebra isisomorphi to g�.There is a simple way to obtain strutures of this type: For any semisimple g, thegroup G := Aut(g) has Lie algebra g. It turns out (see [25℄) that for this hoieof G we obtain G0 �= Autgr(g�) provided that H1(p+; g) is onentrated in negativehomogeneous degrees. Again this homologial ondition is easy to verify, and it turnsout that it is often satis�ed. The paper [30℄ ontains a omplete list of pairs (g; p)suh that the ondition is not satis�ed.This lass of examples ontains the quaternioni ontat strutures introdued byO. Biquard, see [3, 4℄, generi distributions of rank 2 in dimension 5 (whih werestudied in Cartan's lassi [15℄), rank 3 in dimension 6, and rank 4 in dimension 7.(3) Paraboli ontat strutures. These orrespond to j2j{gradings suh thatg�2 is one{dimensional and suh that the bilinear form g�1 � g�1 ! g�2 de�ned bythe braket is non degenerate. The lassi�ation of suh gradings is equivalent to thelassi�ation of quaternioni symmetri spaes and therefore well know. Gradings ofthis type exist only on simple Lie algebras and are unique up to isomorphism. Witha few exeptions, they exist on all non{ompat, non{omplex simple Lie algebras.Sine g� by de�nition is a real Heisenberg algebra, a �ltration TM = T�2M �T�1M of TM suh that eah symbol algebra is isomorphi to g� is exatly a ontatstruture T�1M � TM . Hene the �ltration annot be enough to determine thegeometry and one needs the additional redution to the struture group G0, whih anbe expressed as an additional struture on T�1M .This lass ontains non{degenerate partially integrable almost CR strutures ofhypersurfae type, for whih the additional struture on T�1M is an almost omplexstruture, as well as Lagrangean ontat strutures, where the additional struture isa deomposition of T�1M into the diret sum of two isotropi subbundles. Next, thereis the example of Lie ontat strutures (see [26℄), in whih the additional strutureis a deomposition of T�1M as the tensor produt of two auxiliary bundles, one ofwhih has rank 2 while the other one is endowed with a pseudo{eulidean metri of



12 ANDREAS �CAPsome �xed signature. Finally, this lass also ontains the seond exeptional struturementioned in Remark 2.7 (2). In that ase, regular normal paraboli geometries areequivalent to a ontat analog of projetive strutures, see [20℄.(4) As an example of general paraboli geometries, we disuss generalized path geome-tries. These orrespond to the j2j{grading on sl(n + 2;R) orresponding to the �rstand seond simple root. In blok form, this deomposition has the form0� g0 gL1 g2gL�1 g0 gR1g�2 gR�1 g0;1Awhere the bloks are of size 1, 1, and n. We have met this grading for n = 2 in 2.4.For later use, we have indiated deomposition of g�1 into a one{dimensional partgL�1 and an n{dimensional part gR�1. Evidently, this deomposition is invariant underthe adjoint ation of g0. For an appropriate hoie of G, the subgroup G0 onsistsof all automorphisms of the graded Lie algebra g� whih in addition preserve thedeomposition g�1 = gL�1 � gR�1.From this desription, we an diretly read o� the geometri meaning of a regularin�nitesimal ag struture of type (G;P ) on a smooth manifoldM of dimension 2n+1:One has two transversal subbundles L;R � TM of rank 1 and n, respetively, suhthat for �; � 2 �(R) we have [�; �℄ 2 �(L � R) while the Lie braket indues anisomorphism L
R! TM=(L�R).Examples of suh strutures ome from path geometries. Let N be a manifold ofdimension n+1 and onsider the projetivized tangent bundle M := PTN , the spaeof lines through the origin in TN . Take R to be the vertial bundle of the projetionPTN ! N . SineM is a projetivized tangent bundle, there is a tautologial subbun-dle H � TM of rank n+1. The �ber of H in a point onsists of those tangent vetorswhose image in TN lies in the line determined by the point. HeneR is ontained inHand a path geometry on N is given by the hoie of a line subbundle L � H suh thatH = L�R. A path geometry on N is equivalent to a family of unparametrized urvesin N , with exatly one urve through eah point in eah diretion. In partiular, asystem of seond order ODE's on a manifold Y an be equivalently desribed as a pathgeometry on Y � R by onsidering the unparametrized urves desribing the graphsof solutions, see [21, 19℄.For n 6= 2, the data (M;L;R) orresponding to a regular in�nitesimal ag strutureas above are loally isomorphi to a path geometry. Namely, for n 6= 2 the subbundleR � TM turns out to be automatially integrable, and one de�nes N to be a loalleaf spae for the orresponding foliation. Then for an open subset U �M , there is asurjetive submersion  : U ! N suh that ker(Tx ) = Rx for all x 2 U . Under Tx ,the line Lx gives rise to a line in T (x)N , hene de�ning a lift ~ : U ! PTN . Possiblyshrinking U , ~ is an open embedding. By onstrution, T ~ maps R to the vertialsubbundle and L�R to the tautologial subbundle.2.9. Harmoni urvature. There is a last element of the general theory of paraboligeometries that we have to disuss. The Cartan urvature � 2 
2(M;AM) as de�nedin 2.2 and 2.7 is a fairly ompliated objet. In partiular, to understand it geomet-rially, one needs the adjoint trator bundle, whih is an equivalent enoding of the



TWO CONSTRUCTIONS WITH PARABOLIC GEOMETRIES 13prinipal Cartan bundle. An important feature of regular normal paraboli geometriesis that one may pass to the harmoni urvature �H , whih is muh easier to handle,but as powerful as �.In 2.7 we have de�ned the operators �� : �`T �M 
 AM ! �`�1T �M 
 AM andnoted that ��Æ�� = 0. For a normal geometry the urvature � by de�nition is a setionof the subbundle ker(��) � �2T �M 
 AM . Hene we an projet it to a setion �Hof the quotient ker(��)= im(��). As we have noted in 2.7, this quotient bundle an beidenti�ed with G0 �G0 H2(p+; g), so it admits a diret interpretation in terms of theunderlying struture and is algorithmially omputable.We have also seen that H2(p+; g) splits into a diret sum of G0{irreduible om-ponents. Correspondingly, we obtain a splitting of �H into fundamental urvaturequantities. There are several general tools to desribe (parts of) �H in terms of theunderlying struture.The following result shows that �H still is a omplete obstrution to loal atness,and indeed, it ontains the full information about �.Theorem. Let (p : G !M;!) be a regular normal paraboli geometry of type (G;P )with urvature � and harmoni urvature �H .(1) (Tanaka) If �H vanishes identially, then � vanishes identially.(2) (Calderbank{Diemer) There is a natural linear di�erential operator L suh thatL(�H) = �.The �rst part is a rather easy appliation of the Bianhi{identity for Cartan onne-tions. The seond part is muh more diÆult. It follows from the general mahineryof BGG{sequenes, see [14, 6℄.3. Correspondene spaes and twistor spaesNow we swith to the disussion of onstrutions relating paraboli geometries ofdi�erent type. We start with the onstrutions of orrespondene spaes and twistorspaes, whih is related to di�erent paraboli subgroups of the same group G. Thebasi referene for this hapter is [7℄.3.1. Correspondene spaes. Consider a semisimple Lie group G with nested par-aboli subgroups Q � P � G. For the homogeneous models, we have the simpleobservation that G=Q naturally �bers over G=P . Moreover, we an interpret G=Q asG �P (P=Q), so this is the total spae of a natural �ber bundle over G=P . It turnsout that the �ber P=Q an be equivalently viewed as the quotient of the semisimplepart of G0 � P by its intersetion with Q. This intersetion turns out to be paraboli,so P=Q again is a generalized ag manifold. The situations overed by this onstru-tions are easy to desribe in the Dynkin (or Satake) diagram notation: The diagramorresponding to q is obtained from the one orresponding to p by hanging dots intorosses. The �ber P=Q an then be diretly read o� the two diagrams, see [2℄.Carrying this over to urved Cartan geometries is easy. Given a geometry (p : G !N;!) of type (G;P ) the subgroup Q � P ats freely on G. Hene the orrespondenespae CN := G=Q is a smooth manifold, and the obvious map G ! CN is a Q{prinipalbundle. Moreover, CN = G �P (P=Q), so � : CN ! N is a natural �ber bundle with�ber a generalized ag manifold. In partiular, this �ber is always ompat. By



14 ANDREAS �CAPde�nition, ! 2 
1(G; g) an also be viewed as a Cartan onnetion on the prinipalQ{bundle G ! CN .The next obvious question is whether this onstrution is ompatible with regularityand normality. At this point, the uniform algebrai onstrution of the normalizationondition pays o�:Proposition. If (G ! N;!) is a normal paraboli geometry of type (G;P ) then theparaboli geometry (G ! CN;!) of type (G;Q) is normal, too.As we shall see in an example below, regularity is not preserved by the onstrutionin general. However, �nding onditions whih are equivalent to regularity is usuallyvery easy.3.2. Example. Let Q � G := SL(n+ 2;R) be the paraboli subgroup orrespondingto generalized path geometries as in Example (4) of 2.8. Then Q is the stabilizer of theag onsisting of the line spanned by the �rst vetor sitting inside the plane spannedby the �rst two vetors of the standard basis of Rn+2. Hene we an write it as theintersetion P1 \ P2 for parabolis P1 and P2 (the stabilizers of the line respetivelythe plane). Let us start by analyzing the nested parabolis Q � P1 � G.Paraboli geometries of type (G;P1) orrespond to lassial projetive strutures on(n+1){dimensional manifolds, see Example (1) of 2.8. Suh a struture on a manifoldZ is given by the hoie of a projetive equivalene lass [r℄ of torsion free linearonnetions on TZ. Two linear onnetions r and r̂ on TZ are alled projetivelyequivalent if there is a one form � 2 
1(Z) suh thatr̂�� = r�� +�(�)� +�(�)�for all vetor �elds �; � 2 X(Z). Evidently, projetively equivalent onnetions have thesame torsion. Alternatively, projetive equivalene an be haraterized as having thesame torsion and the same geodesis up to parametrization. The harmoni urvaturefor this geometry is the projetive Weyl urvature, i.e. the totally traefree part of theurvature of any onnetion in the lass.Sine ! is a Cartan onnetion on G ! Z, we have TZ = G �P1 (g=p1). One easilyveri�es that Q � P1 an be desribed as the stabilizer of a line in g=p1. Sine P1ats transitively on the projetive spae P(g=p1), see that P=Q �= P(g=p1). HeneCZ = G �P1 P=Q an be naturally identi�ed with the projetivized tangent bundlePTZ. Sine projetive strutures are torsion free, the urvature � of ! has values inp1, whih immediately implies that ! is regular as a Cartan onnetion on G ! CZ.From Example (4) of 2.8 we onlude that (G ! CZ;!) an be interpreted as a pathgeometry on Z. One veri�es that the paths desribed in that way are exatly theunparametrized geodesis of the onnetions from the projetive lass.Let us now swith to the nested paraboli subgroups Q � P2 � G. A normalparaboli geometry (G ! N;!) of type (G;P2) exists only for dim(N) = 2n and isequivalent to an almost Grassmannian struture. Essentially, suh a geometry is givenby two auxiliary vetor bundles E and F over N of rank 2 and n, respetively, andan isomorphism E 
 F ! TN . The subgroup Q � P2 an be haraterized as thestabilizer of a line in the representation induing E, whih similarly as above impliesthat CN an be identi�ed with the projetivization PE of E ! N .



TWO CONSTRUCTIONS WITH PARABOLIC GEOMETRIES 15Here ! is not regular as a Cartan onnetion on G ! CN in general. Regularityturns out to be equivalent to the fat that the struture on N is Grassmannian ratherthan almost Grassmannian. This an be haraterized by vanishing of a ertain torsionor equivalently by the fat that there is a torsion free onnetion ompatible with thestruture. If this is satis�ed, then we obtain a generalized path geometry on PE. Thesubbundle L whih is one of the ingredients of that struture is simply the vertialbundle of PE ! N . In partiular, the manifold N an be viewed the spae of all pathsof the indued path geometry. The subbundle L � R � TCN is again a tautologialsubbundle. The splitting of this tautologial subbundle as L � R omes from thetorsion free onnetions ompatible with the Grassmannian struture.Suppose that n > 2 (the ase n = 2 will be disussed later). Then starting from aGrassmannian struture on N , we obtain a generalized path geometry on CN := PE.We know that the resulting subbundle R � TCN is involutive, so for suÆiently smallopen subsets U � CN we an form a loal leaf spae  : U ! Z. With a bit morework, one shows that one may take U = ��1(V ), for suÆiently small and onvexopen subsets V � N , where � : CN ! N is the natural projetion. One then obtainsa orrespondene Z   � ��1(V ) ��! V;whih is the basis for twistor theory for Grassmannian strutures.3.3. Charaterizing orrespondene spaes. A entral feature of the general the-ory of orrespondene spaes is that one an ompletely haraterize paraboli geome-tries whih are loally isomorphi to orrespondene spaes. This haraterization isuniform for all the strutures.Let us return to the general setting of nested parabolis P � Q � G. The questionwe want to address is when a regular normal paraboli geometry (p : G !M;!) of type(G;Q) is loally isomorphi to the orrespondene spae CN for a paraboli geometryof type (G;P ). There is a fairly obvious neessary ondition: The subspae p=q � g=qis Q{invariant, thus giving rise to a subbundle V � TM . For a orrespondene spaeCN , this subbundle is the vertial subbundle of the natural projetion CN ! N . Sinethe Cartan onnetions for N and CN are the same, so are their urvatures. Sinevetors from V are vertial from the point of view of N , they must hook trivially intothe Cartan urvature of CN .It turns out that this ondition is also suÆient:Theorem. Let (p : G ! M;!) be a paraboli geometry of type (G;Q) with Cartanurvature �, and let V � TM be the distribution orresponding to p=q � g=q. ThenM admits an open overing fUig suh that the restrition of (G ! M;!) to eah Uiis isomorphi to the orrespondene spae of some paraboli geometry of type (G;P ) ifand only if i�� = 0 for all � 2 V.The proof of this theorem is not spei�ally \paraboli" and uses only prinipalbundle geometry. One �rst shows that the urvature ondition in the theorem impliesthat the distribution V � TM is involutive. Hene V gives rise to a foliation of M ,and one onsiders a loal leaf spae for this foliation, i.e. an open subset U � Mtogether with a surjetive submersion  : U ! N suh that ker(Tx ) = Vx for allx 2 U . For suÆiently small U , one next onstruts a di�eomorphism from an open



16 ANDREAS �CAPsubset of p�1(U) � G onto an open subset of the trivial prinipal bundle N �P ! N ,whih satis�es a ertain equivariany ondition. This di�eomorphism is then used toarry over ! to this open subset of N � P , and one proves that the resulting formuniquely extends to all of N � P by equivariany. It is easy to see that this not onlygives a paraboli geometry of type (G;P ) on N but also an isomorphism (of paraboligeometries) between U and an open subset of CN .While this result is very satisfatory from a oneptual point of view, it is diÆultto apply in onrete ases, sine the Cartan urvature is a ompliated objet. Frompart (2) of Theorem 2.9 we know that for regular normal geometries there is a nat-ural di�erential operator L whih omputes the Cartan urvature from the harmoniurvature �H , whih is muh easier to handle. This operator is onstruted usingthe mahinery of BGG sequenes and the onstrution is expliit enough to lead torelations between algebrai properties of � and �H .Proposition. Let (G ! M;!) be a regular normal paraboli geometry of type (G;Q)with Cartan urvature � and harmoni urvature �H , and let V � TM be as above. Ifi��H = 0 for all � 2 V, then i�� = 0 for all � 2 V.Combining this result with the theorem above, one obtains a very eÆient loal har-aterization of orrespondene spaes. From another point of view, these are equivalentonditions for the existene of natural geometri strutures on twistor spaes. It hasto be pointed out here that usually the struture of the harmoni urvature an beunderstood without detailed knowledge of the anonial Cartan onnetion.3.4. Examples. Let us interpret the results on loal haraterization of orrespon-dene spaes in the example disussed in 3.2. So we start with a generalized path geom-etry (M;L;R) and the assoiated regular normal paraboli geometry (p : G ! M;!)of type (G;Q). For n > 2 (whih we will still assume throughout this subsetion), theharmoni urvature �H splits into two irreduible omponents:T : L ^ TM=(L �R)! R Torsion� : R ^ TM=(L �R)! R� 
R CurvatureThe types of these omponents an be dedued from the struture of the homologygroup H2(q+; g), whih an be determined algorithmially using Kostant's version ofthe Bott{Borel{Weil theorem. There are general proedures how to obtain expliitformulae for the two omponents, say in terms of a loal non{vanishing setion of L.Let us �rst onsider the haraterization of orrespondene spaes oming from theinlusion Q � P1 � G. From 3.2 we know that these are exatly the path geometriesassoiated to the unparametrized geodesis of a projetive lass of onnetions. Thedistribution V orresponding to p1=q � g=q evidently is the subbundle R � TM . Theresults from 3.3 now show that M is loally isomorphi to a orrespondene spaes ifand only if � vanishes identially.As we have noted in 2.8, the subbundle R � TM is involutive (sine n > 2). Fora loal leaf spae  : U ! Z of the orresponding foliation, the subset U then isnaturally di�eomorphi to an open subset in the projetivized tangent bundle PTZ.Then our result shows that the generalized path geometry on M indues a projetivestruture on Z if and only if � vanishes identially. If this is the ase, then the torsionT is diretly related to the projetive Weyl urvature of the indued strutures on the



TWO CONSTRUCTIONS WITH PARABOLIC GEOMETRIES 17loal leaf spaes. In partiular, the path geometry on M is loally at if and only ifthe indued projetive strutures on all loal leaf spaes are loally projetively at.Another interesting appliation of this riterion is to the path geometry assoiatedto a system of seond order ODE's as desribed in 3.2. This reprodues a result of[19℄:Theorem. A system of seond order ODE's is loally equivalent to a geodesi equationif and only if the urvature � of the assoiated path geometry vanishes identially.Now we swith to the haraterization of orrespondene spaes with respet tothe inlusion Q � P2 � G. The distribution V orresponding to p2=q � g=q is thesubbundle L � TM . This is always involutive and loal leaf spaes for the assoiatedfoliation loally parametrize the paths of the path geometry. Hene here the maininterpretation of the haraterization result is a riterion when a generalized pathgeometry loally desends to a Grassmannian struture on the spae of all paths.From 3.3 we see that this is the ase if and only if T = 0, whih is equivalent to thegeneralized path geometry being torsion free.Again there is an interesting appliation to the theory of systems of seond orderODE's: One de�nes suh a system to be torsion free if and only if the assoiatedpath geometry is torsion free. For suh a systems we obtain an indued Grassmannianstruture on the spae of solutions of the system. The urvature of this Grassmannianstruture an be onstruted from the urvature � of the path geometry. Of ourse,this urvature desends to the spae of solutions and hene is onstant along eahsolution. Using this, D. Grossman proved in [21℄ the following result.Theorem. For generi torsion free systems of seond order ODE's, the urvature ofthe assoiated path geometry an be used to solve the system expliitly.3.5. The ase n = 2. Let us briey disuss how the examples related to generalizedpath geometries disussed in 2.9, 3.2, and 3.4 hange in the ase n = 2. The ingredientsare projetive strutures on three manifolds, generalized path geometries in dimension�ve, and four dimensional almost Grassmannian strutures. The main point is that analmost Grassmannian struture in dimension four is equivalent to a onformal pseudo{Riemannian spin struture of split signature (2; 2). The auxiliary bundles E and Fwhose tensor produt is isomorphi to the tangent bundle both have rank two. Theyare exatly the two spinor bundles.The struture of harmoni urvatures for n = 2 is also di�erent from the ase n > 2.For almost Grassmannian strutures the more symmetri situation leads to the fatthat there are two urvatures rather than one urvature and one torsion. These twoomponents are exatly the self dual and the anti self dual part of the Weyl urvatureof the orresponding onformal struture.On the level of path geometries, a third irreduible omponent in the harmoniurvature shows up. This omponent is represented by a torsion � : �2R! L, whihis the obstrution to involutivity of the subbundle R. (For n > 2, there also is aorresponding omponent in the homology H2(q+; g), but this sits in homogeneityzero. By regularity, this omponent annot ontribute to the harmoni urvature.)Starting from a onformal four manifold, the orrespondene spae is a projetivizedspinor bundle, whih inherits a generalized path geometry. The torsion � on this spae



18 ANDREAS �CAPorresponds exatly to the self dual part of the Weyl urvature downstairs. Vanishingof this part, i.e. anti self duality, is equivalent to existene of loal leaf spaes for thebundle R on the orrespondene spae. This is the basis for twistor theory for antiself dual four manifolds in split signature. The Riemannian version of twistor theoryan be either obtained from the omplex version of this onstrution or by an analogof the orrespondene spae onstrution (for a subgroup whih is not paraboli).4. Analogs of the Fefferman onstrutionWe now swith to a seond general onstrution relating paraboli geometries ofdi�erent types. The basi example for this is Fe�erman's onstrution whih relatesCR strutures to onformal strutures. This onstrution is of di�erent nature to theones disussed in setion 3 sine it involves two di�erent semisimple groups. Moredetails on the ontents of this setion an be found in [8℄ and [11℄.4.1. The Fe�erman onstrution. We start by reviewing Fe�erman's original on-strution from [18℄ and its interpretation in terms of Cartan geometries. He startedfrom a stritly pseudoonvex domain 
 � C n+1 with smooth boundary M := �
.This boundary naturally inherits a CR struture (see below). Studying the Bergmankernel of 
, Fe�erman was led to onsider the ambient metri: Put C � := C n f0gand onsider M# = M � C � � 
# = 
 � C � . A de�ning funtion r for M indues ade�ning funtion r# for M#. Sine M is stritly pseudoonvex, r# an be used as thepotential for a pseudo{K�ahler metri g# of signature (n+1; 1). Fe�erman showed thatone may always hose r to be an approximate solution of a Monge{Amp�ere equationand doing this a ertain jet of g# along M# is invariant under biholomorphisms of 
.Otherwise put, this jet is a CR invariant of M .Hene it is a natural idea to look at the restrition of g# to M#. This turns outto be degenerate but only in the real diretions within the vertial subspaes of theprojetion M# ! M . To get rid of these diretions, one passes to the spae ~M =M � (C �=R�) �= M � S1. Using a setion of the evident projetion M# ! ~M , onean pull bak g# to a non{degenerate Lorentz metri on ~M . Changing the setionsleads to a onformal hange of the metri, so one obtains a well de�ned onformallass of metris of signature (2n+1; 1) on ~M . This onformal lass is invariant underbiholomorphisms of 
 and hene depends only on the CR struture of M .CR strutures �t into the general onept of paraboli geometries as the paraboliontat strutures assoiated to g = su(p + 1; q + 1). In fat, one obtains a moregeneral onept: A partially integrable almost CR struture on a smooth manifold Mof dimension 2n+1 is a ontat struture H � TM together with an almost omplexstruture J : H ! H suh that the Levi braket L (see 2.6) satis�es L(J�; J�) =L(�; �) for all �; �. Under this assumption, L is the imaginary part of a Hermitianform (with values in the real line bundle TM=H), the Levi form, whih has a signature(p; q). Sine there is an ambiguity of sign, we require p � q to have the signature wellde�ned.The ompatibility of L and J , whih is usually referred to as partial integrability, analso be niely formulated in terms of omplexi�ations. The almost omplex strutureJ leads to a splitting of H 
C � TM 
C into the diret sum of the holomorphi partH1;0 and the anti holomorphi part H0;1, whih are onjugate to eah other. Partial



TWO CONSTRUCTIONS WITH PARABOLIC GEOMETRIES 19integrability is equivalent to the fat that the Lie braket of two setions of H0;1 is asetion of H 
 C . An almost CR struture is alled integrable or a CR struture if thesubbundle H0;1M � TM 
 C is involutive, so the Lie braket of two setions of H0;1even is a setion of H0;1.Partially integrable almost CR strutures of signature (p; q) are then equivalent toregular normal paraboli geometries assoiated to the group PSU(p + 1; q + 1). Formany appliations it is better to extend the group to G := SU(p + 1; q + 1). LetP be the stabilizer of an isotropi omplex line ` in V := C p+q+2 . Then a regularnormal paraboli geometry of type (G;P ) on a manifoldM is equivalent to a partiallyintegrable almost CR struture of signature (p; q) plus a hoie of a omplex linebundle, whih is an (n + 2)nd root of the so{alled anonial bundle. While suh ahoie need not exist in general, it is always possible loally. The integrability onditionturns out to be equivalent to torsion freeness of the assoiated paraboli geometry.IfM is the boundary of a stritly pseudoonvex domain 
 � C n+1 , then one de�nesHxM as the maximal omplex subspae of TxM � TxC n+1 . This evidently has analmost omplex struture and it de�nes a ontat struture by strit pseudoonvexity.The latter ondition also implies that the signature is (n; 0). Looking at the omplex-i�ed tangent bundle, we see that H0;1M = (TM 
 C ) \ T 0;1C n+1. Sine C n+1 is aomplex manifold, the subbundle T 0;1C n+1 � TC n+1 
 C is involutive, so we obtain aCR struture on M . Triviality of the tangent bundle of C n+1 implies that the anoni-al bundle of M is anonially trivial, so there is no problem in hoosing an (n+2)ndroot.Now it is easy to obtain the Fe�erman onstrution for the homogeneous model: Thereal part of the Hermitian form onVde�nes an inner produt of signature (2p+2; 2q+2)on the underlying real vetor spae VR. Sine elements of G preserve this real part, weobtain an injetion G ,! SO(2p + 2; 2q + 2). Analyzing the indued homomorphismbetween the fundamental groups one even shows that this naturally lifts to an inlusioninto the spin group ~G := Spin(2p + 2; 2q + 2). Choose a real line `R in the isotropiomplex line ` and let ~P � ~G be the stabilizer of `R. The intersetionQ := G\ ~P is thestabilizer of `R in G, so it is evidently ontained in P and P=Q �= RP 1. Elementarylinear algebra shows that G ats transitively on the spae of real null lines in VR.Hene the inlusion G ,! ~G indues a di�eomorphism G=Q! ~G= ~P . The latter spaeis well known to be the homogeneous model of onformal spin strutures of signature(2p+ 1; 2q+ 1). Hene we obtain suh a struture (whih by onstrution is invariantunder the ation of G) on G=Q whih is the total spae of a irle bundle over G=P .Passing to urved geometries is easy: Looking at the tangent spaes at the basepoints, the di�eomorphism G=Q ! ~G= ~P indues a linear isomorphism g=q ! ~g=~pwhih is equivariant over the inlusion Q ,! ~P . Here q = g\ ~p is the Lie algebra of Q.In partiular, we obtain a onformal lass of inner produts of signature (2p+1; 2q+1)on g=(g \ ~p) whih is invariant under the natural ation of Q. Given a partiallyintegrable almost CR struture (M;H; J), let (G ! M;!) be the assoiated regularnormal paraboli geometry. The subgroup Q � P ats freely on G, so the Fe�ermanspae ~M := G=Q is a smooth manifold and the total spae of the natural �ber bundleG �P P=Q over M . On the other hand, the evident projetion G ! ~M is a prinipalQ{bundle and ! 2 
1(G; p) de�nes a Cartan onnetion on that bundle. In partiular,T ~M �= G �Q g=q so the Q{invariant lass of inner produts on g=q gives rise to a



20 ANDREAS �CAPonformal struture on ~M , whih by onstrution depends only on the CR strutureon M .It is easy to give a more expliit desription of ~M . Namely, one shows that ~M an benaturally identi�ed with the spae of real lines in a natural omplex line bundle, whihis losely related to the hosen root of the anonial bundle. One an also onstrutexpliitly a metri from the onformal lass in terms of a hoie of ontat form onM (usually alled a pseudo Hermitian struture) and the assoiated Weyl onnetion(see [13℄) on a omplex line bundle.4.2. Cartan geometry interpretation. The onstrution of the anonial onfor-mal lass on ~M from above an be easily reformulated in terms of Cartan geometries.As we know from 4.1, we have the Q{prinipal bundle G ! ~M and we an view theanonial CR Cartan onnetion ! as a Cartan onnetion on that bundle. Now viathe inlusion Q ,! ~P , we an extend the struture group of this bundle. De�ne aprinipal ~P{bundle ~G := G �Q ~P ! ~M . Mapping u 2 G to the lass of (u; e) in ~Gde�nes an injetive smooth map j : G ! ~G whih is equivariant over the inlusionQ ,! ~P . It is easy to show that there is a unique Cartan onnetion ~! 2 
1( ~G; ~g) suhthat ~!jTj(TG) = ! (viewing g as a Lie subalgebra of ~g).As a Cartan onnetion on a prinipal ~P {bundle ~! is automatially regular andhene it indues a onformal spin struture on the base ~M . From the onstrution itis evident this this leads to the onformal struture desribed in 4.1.Now one might expet that ~! is the normal Cartan onnetion assoiated to thisonformal spin struture, but this is not true in general:Theorem. Let (M;H; J) be a partially integrable almost CR struture with Fe�ermanspae ~M . Then the Cartan onnetion ~! on the extended prinipal bundle ~G ! ~M isnormal if and only if the almost CR struture is integrable.The neessity of integrability follows rather easily from the fat that normal on-formal Cartan onnetions are automatially torsion free. The proof of suÆieny ofthis ondition is muh more subtle. The result does not follow from algebraially om-paring the normalization onditions for the two geometries in question but one has toprove additional properties of the urvature of a torsion free geometry. In that respet,the situation is very di�erent from the ase of orrespondene spaes disussed in thelast setion.For some appliations of the Fe�erman onstrution, the question of normality of ~!is not relevant. For example, onformal invariants of the Fe�erman spae are alwaysinvariants of the underlying partially integrable almost CR struture. However, wewill show below that normality of ~! leads to many other and deeper results.If the struture on M is not integrable, then the anonial Cartan onnetion forthe onformal spin struture on ~M an be obtained by normalizing ~!. The di�ereneof ~! from the normal Cartan onnetion is given by a one form on ~M with values inthe onformal adjoint trator bundle ~G � ~P ~g. One may try to imitate some of thedevelopments desribed below taking into aount the hange aused by this form. Tomy knowledge, this has not been explored up to now.4.3. Appliations of normality to CR geometry. We want to disuss a few resultswhih are based on normality of the Cartan onnetion ~! in the ase of a CR struture.



TWO CONSTRUCTIONS WITH PARABOLIC GEOMETRIES 21The �rst of these was the main appliation in Fe�erman's original artile [18℄ as wellas in the �rst version for abstrat CR strutures in [5℄.� Chern{Moser hains are the projetions to M of null geodesis in ~M .Chern{Moser hains in M an be obtained as the projetions of ow lines of vetor�elds on G whih are mapped to ertain onstant funtions by !. Likewise, onformalirles on ~M are the projetions of ow lines of vetor �elds on ~G whih are mapped toertain onstant funtions by ~!. For initial diretions whih are null, onformal irlesare just null geodesis whih, as unparametrized urves, are onformally invariant.The initial diretion of a hain is always transversal to the ontat subbundle, andsuh a diretion always admits a lift to a null diretion in ~M . Then the result easilyfollows from the fat that ~! is obtained from ! by equivariant extension.� Relations between CR trator alulus on M and onformal trator alulus on ~M .Standard trators are probably the niest way to relate a CR manifold to its Fe�er-man spae. The CR standard trator bundle T of M is by de�nition the assoiatedbundle G �P V, where V denotes the standard representation of G. By onstrution,this is a rank n + 2 omplex vetor bundle endowed with Hermitian inner produt hof signature (p + 1; q + 1), and a omplex line subbundle T 1 � T whih is isotropifor h. This subbundle orresponds to the omplex line in Vwhih is stabilized by P .The anonial Cartan onnetion ! on G indues a Hermitian linear onnetion on T ,alled the normal standard trator onnetion.Likewise, the onformal standard trator bundle ~T of the Fe�erman spae ~M is thebundle ~G � ~P V. This is a real bundle of rank 2n+4 endowed with a Eulidean bundlemetri ~h of signature (2p+2; 2q+2) and an a real line subbundle ~T 1 whih is isotropifor ~h. The Cartan onnetion ~! indues the normal standard trator onnetion on~T .The relation between the Cartan bundles and the Cartan onnetions disussedabove an be interpreted as the fat that ~T (inluding the additional strutures) analso be obtained as G �G\ ~P V and the normal trator onnetion on ~T is indued by!, viewed as a Cartan onnetion on G ! ~M .Both for onformal and for CR strutures, the standard trator bundle and thestandard trator onnetion lead to an eÆient alulus. Hene we obtain a loserelation between CR trator alulus on a CR manifold and onformal trator aluluson its Fe�erman spae.� Conformally invariant di�erential operators on ~M desend to families of CR invari-ant di�erential operators on M .The relations between the standard trator bundles ofM and ~M an be extended toother bundles, for example other trator bundles and density bundles. One an theninterpret setions of some bundle over M as a subset of setions of some other bundleover ~M , whih usually are haraterized as solutions of some di�erential equation. Itoften happens that this works for a whole family of bundles over M (with di�erentweights) and the same bundle on ~M . Based on the relations between trator alulidisussed above, one shows that in several ases onformally invariant di�erential op-erators preserve the subspaes of \downstairs" setions and hene desend to (familiesof) CR invariant di�erential operators.



22 ANDREAS �CAP� Interpretation of solutions of ertain CR invariant di�erential equations.The solutions of ertain CR invariant di�erential equations admit a natural inter-pretation in terms of the onformal geometry of the Fe�erman spae. An examplefor this will be given in the disussion of onformal isometries of the Fe�erman spaebelow.4.4. Conformal geometry of Fe�erman spaes. The seond interesting line ofappliations is towards Fe�erman spaes as an interesting sublass of onformal stru-tures.� Fe�erman spaes have a parallel orthogonal omplex struture on the standard tratorbundle and are loally haraterized by that.We have seen above that for the Fe�erman spae ~M of a CR manifold M , theonformal standard trator bundle an be interpreted as ~T = G �G\ ~P V, and thetrator onnetion on that bundle is indued by the CR Cartan onnetion !. SineV is a omplex vetor spae, we obtain an almost omplex struture J on ~T , whih isorthogonal (or equivalently skew symmetri) with respet to the trator metri, andparallel for the onnetion on L( ~T ; ~T ) indued by the standard trator onnetion.This an be interpreted as the fat that the holonomy of the standard trator on-netion is ontained in SU(p+1; q+1) � SO(2p+2; 2q+2). Conversely, one an showthat a onformal struture of signature (2p+2; 2q+2) whih admits suh a holonomyredution, is loally onformally isometri to a Fe�erman spae. This shows that therole of Fe�erman spaes among general onformal strutures is similar to the role ofCalabi{Yau manifolds among general Riemannian manifolds.� Fe�erman spaes admit nontrivial Twistor spinors and onformal Killing forms ofall odd degrees.Several onformally invariant di�erential equations whih are overdetermined (andthus do not have solutions in general) always admit nontrivial solutions on Fe�ermanspaes. The simplest example of this situation is that one onstruts a nowhere van-ishing onformal Killing �eld j on ~M , whih spans the vertial subbundle of ~M !M .The most oneptual interpretation of this is via the almost omplex struture J onthe standard trator bundle ~T ! ~M . Sine this is skew symmetri with respet to thetrator metri, it an be interpreted as a parallel setion of the adjoint trator bundle~A = ~G � ~P ~g. It is well known that there is a natural projetion � : ~A! T ~M and theimage of a parallel setion under this projetion is automatially a onformal Killing�eld (whih in addition hooks trivially into the Cartan urvature).Viewing ~A as �2 ~T , we an form the k{fold wedge produt of J with itself, whihde�nes a nonzero parallel setion of the trator bundle �2k ~T . This bundle naturallyprojets onto the bundle �2k�1T � ~M (twisted by an appropriate density bundle) andthe image of a parallel setion is a onformal Killing form (with additional properties),see [22℄. These onformal Killing forms an be expliitly expressed in terms of theonformal Killing �eld j from above. In ontrast to the simple algebrai formula onthe trator level, these expressions involve ovariant derivatives of j.We have noted in 4.1, the Fe�erman spae ~M arries a natural spin struture. Inpartiular, we an onsider the trator bundle ~S ! ~M orresponding to the spin repre-sentation of ~G = Spin(2p+2; 2q+2). Now it is well known that as a representation of



TWO CONSTRUCTIONS WITH PARABOLIC GEOMETRIES 23the subgroup G = SU(p+1; q+1) this spin representation deomposes and in parti-ular ontains a two dimensional trivial subrepresentation. Using the relation betweenthe trator aluli disussed above, one shows that this leads to a deomposition ofthe spin trator bundle ~S ! ~M , and in partiular one obtains a two parameter familyof parallel setions of that bundle. The bundle ~S omes with a anonial projetionto the spinor bundle of ~M , whih maps parallel setions to twistor spinors. Hene anyFe�erman spae admits a two parameter family of twistor spinors.� Deomposition of onformal Killing �elds.By naturality of the onstrution of the Fe�erman spae, any CR automorphism ofM lifts to a onformal isometry of ~M . Likewise, an in�nitesimal automorphism of Mindues a onformal Killing �eld on ~M . As the example of the homogeneous modelshows, there may be other onformal Killing �elds on ~M . It turns out that one anompletely desribe the spae of all onformal Killing �elds on ~M in terms of the CRgeometry of M .In�nitesimal automorphisms of paraboli geometries an be desribed in general interms of setions of the adjoint trator bundle. For the ase of onformal strutures,this means that any onformal Killing �eld is the image of a uniquely determinedsetion of the adjoint trator bundle ~A whih satis�es a ertain onformally invariantdi�erential equation.As a representation of G = SU(V), the Lie algebra ~g = so(V) is not irreduible,but deomposes as su(V)� R� �2CV. Here the �rst two summands orrespond toomplex linear maps, while the last one orresponds to onjugate linear maps, and thetrivial summand onsists of purely imaginary multiples of the identity. This induesan analogous splitting of the onformal adjoint trator bundle ~A! ~M .We an use this splitting to deompose any setion of ~A into a sum of three terms.Via trator alulus one shows that for a setion orresponding to a onformal Killing�eld, eah of the three parts satis�es the in�nitesimal automorphism equation. Thusone onludes that any onformal Killing �elds � 2 X( ~M) deomposes uniquely intoa sum �1 + �2 + �3 of onformal Killing �elds. One further shows that �1 desends toan in�nitesimal automorphism of the underlying CR manifoldM and �2 is a onstantmultiple of j. The summand �3 desends to a setion of �2CT ! M whih solvesa ertain CR invariant di�erential equation. Likewise, appropriate solutions of thisequation give rise to onformal Killing �elds on ~M .4.5. Analogs of the Fe�erman onstrution. From the disussion in 4.1 it ispretty evident what is needed to obtain an analog of the Fe�erman onstrution: Onestarts with an inlusion G ,! ~G of semisimple Lie groups and hooses a parabolisubgroup ~P � ~G suh that the G orbit of e ~P in ~G= ~P is open. Finally, one needs aparaboli subgroup P � G whih ontains G \ ~P .Suppose that (p : G ! M;!) is a paraboli geometry of type (G;P ). The de�ne~M := G=(G \ ~P ), whih is a smooth manifold and the total spae of the natural �berbundle G �P P=(G \ ~P ) ! M . To obtain an expliit desription of ~M , it suÆesto give a good desription of the subgroup G \ ~P � P . As before, one an viewG ! ~M as a prinipal bundle with struture group G\ ~P and ! 2 
1(G; g) as a Cartan



24 ANDREAS �CAPonnetion on this bundle. In partiular, this identi�es T ~M with the assoiated bundleG �G\ ~P g=(g \ ~p).Sine the G{orbit of e ~P in ~G= ~P is open, the inlusion g ,! ~g indues a linearisomorphism g=(g \ ~p) ! ~g=~p. Clearly, this isomorphism is equivariant under theinlusion G \ ~P ,! ~P . Hene we an arry over ~P {invariant objets related to ~g=~pto (G \ ~P ){invariant objets related to g=(g \ ~p) and hene to natural geometriobjets on ~M . In most examples disussed below, this already suÆes to obtain theunderlying struture of a regular normal paraboli geometry of type ( ~G; ~P ) on ~M . Inmore ompliated situations one in addition has to hek that the map �2(~g=~p) ! ~gindued by the urvature of ! is regular, but this usually is very easy.It is a muh more diÆult problem to hek whether ! indues the regular normalCartan onnetion assoiated to this underlying struture. As in the lassial ase,one an form the extended bundle ~G := G �G\ ~P ~P , and there is a unique Cartanonnetion ~! on that bundle whih restrits to ! on TG � T ~G. To obtain an analogof Theorem 4.2 and appliations similar to the ones desribed in 4.3 and 4.4, one hasto �nd onditions for ~! being normal. To my knowledge, this has not been done forall the examples desribed below but for many of them there are hints oming fromindependent works on these strutures.Examples. (1) Closest to the lassial Fe�erman onstrution, one may onsider thegroup G := Sp(p + 1; q + 1) assoiated to a quaternioni Hermitian form of signature(p + 1; q + 1) on H p+q+2 . Viewing this spae as C 2p+2q+4 gives rise to an inlusionSp(p + 1; q + 1) ,! ~G := SU(2p + 2; 2q + 2). Taking P � G and ~P � ~G thestabilizer of a quaternioni respetively a omplex null line, one obtains G\ ~P � P andP=(G \ ~P ) �= CP 1. Paraboli geometries of type (G;P ) fall into the lass disussed inExample (2) of 2.8, i.e. the strutures whih are (essentially) determined by a �ltrationof the tangent bundle. The modeling Lie algebra g� is a quaternioni Heisenbergalgebra of signature (p; q). This means that g�1 �= H p+q and g�2 �= =(H ), the spae ofpurely imaginary quaternions, in suh that way that the braket is by the imaginarypart of a quaternioni Hermitian form of signature (p; q). For q = 0, one obtains thequaternioni ontat strutures introdued by Olivier Biquard, see [3, 4℄.Hene we see that, up to some disrete data (related to the fat that we use the groupSp rather than PSp) our onstrution starts with a quaternioni ontat struture ofsignature (p; q) on some manifold M . The Fe�erman spae ~M is then the total spaeof a natural �ber bundle over M with �ber CP 1 �= S2, and on ~M we naturally obtaina partially integrable almost CR struture of signature (2p+1; 2q+1). This should belosely related to O. Biquard's onstrution of a twistor spae for quaternioni ontatstrutures.(2) Consider a vetor spae ~Vendowed with an inner produt of signature (p+1; q+2).Fixing a line ` on whih the inner produt is negative de�nite, the inlusion `? ,! ~Vgives rise to an inlusion G := SO(p + 1; q + 1) ,! SO(p + 1; q + 2) =: ~G. Choose anull plane W whih is transversal to `? and let ~P � ~G be the stabilizer of W. ThenW \ `? is a null line, and its stabilizer P evidently ontains G \ ~P . One veri�es thatthe G{orbit of e ~P in ~G= ~P onsists of those null planes in ~Vwhih are transversal to`?, so in this ase G=(G \ ~P ) is a proper open subset of ~G= ~P .



TWO CONSTRUCTIONS WITH PARABOLIC GEOMETRIES 25Normal paraboli geometries of type (G;P ) are just onformal strutures of signa-ture (p; q). Given suh a struture on M one shows that the Fe�erman spae ~M anbe identi�ed with the open subset P+(T �M) of the projetivized otangent bundleof M onsisting of all lines in T �M on whih the onformal inner produt is positivede�nite. In partiular, for q = 0, we obtain the full projetivized otangent bundle.Of ourse, in any ase ~M arries a anonial ontat struture and the analog of theFe�erman onstrution re�nes this to a Lie ontat struture. This generalizes andexplains the results of [26℄.(3) Consider the inlusion of G := Sp(2n;R) into ~G := SL(2n;R) by the standardrepresentation. Paraboli subgroups of G orrespond to isotropi ags in the symple-ti vetor spae R2n, whih paraboli subgroups in ~G orrespond to arbitrary ags.Hene there is only one hoie for a paraboli subgroup ~P � ~G suh that the G{orbitof e ~P in ~G= ~P is open. Namely, one has to use the stabilizer of a line, sine for linesbeing isotropi is a vauous ondition. In this ase P := G\ ~P is itself paraboli in G.Hene we onlude that the analog of the Fe�erman onstrution this time startsfrom a geometry of type (G;P ) on M and produes the underlying struture of ageometry of type ( ~G; ~P ) on the same spae M . Geometries of type (G;P ) are aontat analog of projetive strutures, and our onstrution extends suh a strutureto a lassial projetive struture. This has been diretly obtained in [20℄, where moredetails about suh strutures an be found.(4) To �nish, we disuss an exoti example whih however has a long history. Let Gbe the split real form of the exeptional Lie group G2. It is well known that G2 has a 7dimensional representation, and for the split form there is an invariant inner produtof signature (3; 4) on this representation. Hene this gives rise to an inlusion of Ginto ~G := SO(3; 4). The stabilizer P � G of a line through a highest weight vetor inthis representation is one of the two maximal paraboli subgroups of G. This line iseasily seen to be isotropi, so as in (3) we obtain P = G\ ~P , where ~P is the stabilizerof the highest weight line in ~G.Geometries of type (G;P ) are exatly the generi rank two distributions in dimension�ve whih are studied in Cartan's famous \�ve variables paper" [15℄. Given suh adistribution on M , the analog of the Fe�erman onstrution produes a anonialonformal lass of split signature (2; 3) on M . Suh a anonial onformal lass wasreently disovered by P. Nurowski using Cartan's method of equivalene, see [24℄.Sine in Nurowski's onstrution one obtains the same normal Cartan onnetion forboth geometries, it is very likely that the struture desribed here oinides with his.Referenes[1℄ T.N. Bailey, M.G. Eastwood, A.R. Gover, Thomas's struture bundle for onformal, projetiveand related strutures, Roky Mountain J. 24 (1994), 1191{1217.[2℄ R. J. Baston, M. G. Eastwood: \The Penrose Transform" Its Interation with RepresentationTheory. Oxford Siene Publiations, Clarendon Press, 1989.[3℄ O. Biquard, \M�etriques d'Einstein asymptotiquement sym�etriques" Ast�erisque 265 (2000)[4℄ O. Biquard, Quaternioni ontat strutures. in \Quaternioni strutures in mathematis andphysis (Rome, 1999)" (eletroni), Univ. Studi Roma "La Sapienza", 1999, 23{30[5℄ D. Burns, K. Diederih, S. Shnider, Distinguished urves in pseudoonvex boundaries, DukeMath. J. 44, No. 2 (1977) 407{431
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