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ON THE GEOMETRY OF CHAINSANDREAS �CAPVOJT�ECH �Z�ADN�IKAbstrat. The hains studied in this paper generalize Chern{Moser hainsfor CR strutures. They form a distinguished family of one dimensional sub-manifolds in manifolds endowed with a paraboli ontat struture. Both theparaboli ontat struture and the system of hains an be equivalently en-oded as Cartan geometries (of di�erent types). The aim of this paper is tostudy the relation between these two Cartan geometries for Lagrangean on-tat strutures and partially integrable almost CR strutures.We develop a general method for extending Cartan geometries whih gen-eralizes the Cartan geometry interpretation of Fe�erman's onstrution of aonformal struture assoiated to a CR struture. For the two strutures inquestion, we show that the Cartan geometry assoiated to the family of hainsan be obtained in that way if and only if the original paraboli ontat stru-ture is torsion free. In partiular, the proedure works exatly on the sublassof (integrable) CR strutures.This tight relation between the two Cartan geometries leads to an expliitdesription of the Cartan urvature assoiated to the family of hains. Onthe one hand, this shows that the homogeneous models for the two paraboliontat strutures give rise to examples of non{at path geometries with largeautomorphism groups. On the other hand, we show that one may (almost)reonstrut the underlying torsion free paraboli ontat struture from theCartan urvature assoiated to the hains. In partiular, this leads to a veryoneptual proof of the fat that hain preserving ontat di�eomorphisms areeither isomorphisms or anti{isomorphisms of paraboli ontat strutures.1. IntrodutionParaboli ontat strutures are a lass of geometri strutures having an under-lying ontat struture. They admit a anonial normal Cartan onnetion orre-sponding to a ontat grading of a simple Lie algebra. The best known examplesof suh strutures are non{degenerate partially integrable almost CR strutures ofhypersurfae type. The onstrution of the anonial Cartan onnetion is due toChern and Moser ([8℄) for the sublass of CR strutures, and to Tanaka ([16℄) ingeneral.In the approah of Chern and Moser, a entral role is played by a anoniallass of unparametrized urves alled hains. For eah point x and eah diretion� at x, whih is transverse to the ontat distribution, there is a unique hainthrough x in diretion �. In addition, eah hain omes with a projetive lass ofdistinguished parametrizations. The notion of hains easily generalizes to arbitraryparaboli ontat strutures, and the hains are easy to desribe in terms of theCartan onnetion.Date: May 26, 2005.1991 Mathematis Subjet Classi�ation. 53B15, 53C15, 53D10, 32V99.First author supported by projet P15747{N05 of the Fonds zur F�orderung der wis-senshaftlihen Forshung (FWF). Seond author supported at di�erent times by the Junior Fel-lows program of the Erwin Shr�odinger Institute (ESI) and by the grant 201/05/2117 of the CzehSiene Foundation (GA�CR). Disussions with Boris Doubrov have been very helpful.1



2 ANDREAS �CAP VOJT�ECH �Z�ADN�IKA path geometry on a smooth manifold M is given by a smooth family of un-parametrized urves onM suh that for eah x 2M and eah diretion � at x thereis a unique urve through x in diretion �. The best way to enode this strutureis to pass to the projetivized tangent bundle PTM , the spae of all lines in TM .Then a path geometry is given by a line subbundle in the tangent bundle of PTMwith ertain properties, see [9℄ and [11℄ for a modern presentation. It turns outthat these strutures are equivalent to regular normal Cartan geometries of a er-tain type, whih fall under the general onept of paraboli geometries, see setion4.7 of [3℄.In the desription as a Cartan geometry, path geometries immediately generalizeto open subsets of the projetivized tangent bundle. In partiular, given a mani-fold M endowed with a paraboli ontat struture, the hains give rise to a pathgeometry on the open subset P0TM � PTM formed by all lines transversal to theontat subbundle. The general question addressed in this paper is how to desribethe resulting Cartan geometry on P0TM in terms of the original Cartan geometryon M . We study this in detail in the ase of Lagrangean ontat strutures and,in the end, briey indiate how to deal with partially integrable almost CR stru-tures, whih an be viewed as a di�erent real form of the same omplex geometristruture.The �rst observation is that P0TM an be obtained as a quotient of the Cartanbundle G ! M obtained from the paraboli ontat struture. More preisely,there is a subgroup Q � P suh that P0TM �= G=Q. In partiular, G is a prinipalQ{bundle over P0TM and the anonial Cartan onnetion ! 2 
1(G; g) assoiatedto the paraboli ontat struture an be also viewed as a Cartan onnetion onG ! P0TM . The question then is whether the anonial Cartan geometry ( ~G !P0TM; ~!) determined by the path geometry of hains an be onstruted diretlyfrom (G ! P0TM;!).To attak this problem, we study a lass of extension funtors mapping Cartangeometries of some type (G;Q) to Cartan geometries of another type ( ~G; ~P ). Thesefuntors have the property that there is a homomorphism between the two Cartanbundles, whih relates the two Cartan onnetions. We show that in order toobtain suh a funtor, one needs a homomorphism i : Q ! ~P (whih we assumeto be in�nitesimally injetive) and a linear map � : g ! ~g whih satisfy ertainompatibility onditions. There is a simple notion of equivalene for suh pairs andequivalent pairs lead to naturally isomorphi extension funtors.There is a partiular simple soure of pairs (i; �) leading to extension funtorsas above. Namely, one may start from a homomorphism G ! ~G and take i therestrition to Q and � the indued homomorphism of Lie algebras. In a speialase, this leads to the Cartan geometry interpretation of Fe�erman's onstrutionof a anonial onformal struture on a irle bundle over a CR manifold.One an ompletely desribe the e�et of the extension funtor assoiated to apair (i; �) on the urvature of the Cartan geometries. Apart from the urvatureof the original geometry, also the deviation from � being a homomorphism of Liealgebras enters into the urvature of the extended Cartan geometry.An important feature of the speial hoie for ( ~G; ~P ) that we are onerned with,is a uniqueness result for suh extension funtors. We show (see Theorem 3.4) that ifthe extension funtor assoiated to a pair (i; �) maps loally at geometries of type(G;Q) to regular normal geometries of type ( ~G; ~P ), then the pair (i; �) is alreadydetermined uniquely up to equivalene. For the two paraboli ontat struturesstudied in this paper, we show that there exist appropriate pairs (i; �) in 3.5 and5.2.



ON THE GEOMETRY OF CHAINS 3In both ases, the resulting extension funtor does not produe the anonialCartan geometry assoiated to the path geometry of hains in general. We showthat the anonial Cartan onnetion is obtained if and only if the original paraboliontat geometry is torsion free. For a Lagrangean ontat struture this meansthat the two Lagrangean subbundles are integrable, while it is the usual integrabilityondition for CR strutures. This ties in niely with the Fe�erman onstrution,where one obtains a onformal struture for arbitrary partially integrable almost CRstrutures, but the normal Cartan onnetion is obtained by equivariant extensionif and only if the struture is integrable (and hene CR).Finally, we disuss appliations of our onstrution, whih are based on an ana-lysis of the urvature of the anonial Cartan onnetion assoiated to the pathgeometry of hains. We show that hains never are geodesis of a onnetion, andthey give rise to a torsion free path geometry if and only if the original paraboliontat struture is loally at. Then we show that the underlying paraboli ontatstruture an be almost reonstruted from the harmoni urvature of the pathgeometry of hains. In partiular, this leads to a very oneptual proof of thefat that a ontat di�eomorphism whih maps hains to hains must (essentially)preserve the original torsion free paraboli ontat struture.2. Paraboli ontat strutures, hains, and path geometriesIn this setion, we will disuss the onepts of hains and the assoiated pathgeometry for a paraboli ontat struture, fousing on the example of Lagrangeanontat strutures. We only briey indiate the hanges needed to deal with generalparaboli ontat strutures.2.1. Lagrangean ontat strutures. The starting point to de�ne a paraboliontat struture is a simple Lie algebra g endowed with a ontat grading, i.e. avetor spae deomposition g = g�2 � g�1 � g0 � g1 � g2 suh that [gi; gj℄ � gi+j ,g�2 has real dimension one, and the braket g�1 � g�1 ! g�2 is non{degenerate.It is known that suh a grading is unique up to an inner automorphism and itexists for eah non{ompat non{omplex real simple Lie algebra exept sl(n;H),so(n; 1), sp(p; q), one real form of E6 and one of E7, see setion 4.2 of [19℄.Here we will mainly be onerned with the ontat grading of g = sl(n + 2;R),orresponding to the following blok deomposition with bloks of size 1, n, and 1:0� g0 gL1 g2gL�1 g0 gR1g�2 gR�1 g01A :We have indiated the splittings g�1 = gL�1� gR�1 respetively g1 = gL1 � gR1 , whihare immediately seen to be g0{invariant. Further, the subspaes gL�1 and gR�1 ofg�1 are isotropi for [ ; ℄ : g�1 � g�1 ! g�2.Put G := PGL(n + 2;R), the quotient of GL(n + 2;R) by its enter. We willview G as the quotient of the group of matries whose determinant has modulusone by the two element subgroup generated by � id and work with representativematries. The group G always has Lie algebra g. For odd n, one an identifyG withSL(n + 2;R). For even n, G has two onneted omponents, and the omponentontaining the identity is PSL(n + 2;R).By G0 � P � G we denote the subgroups formed by matries whih are blokdiagonal respetively blok upper triangular with blok sizes 1, n, and 1. Then theLie algebras of G0 and P are g0 respetively p := g0 � g1 � g2. For g 2 G0, themap Ad(g) : g ! g preserves the grading while for g 2 P one obtains Ad(g)(gi) 2gi � � � � � g2 for i = �1; : : : ; 2. This an be used as an alternative haraterizationof the two subgroups. The reason for the hoie of the spei� group G with Lie



4 ANDREAS �CAP VOJT�ECH �Z�ADN�IKalgebra g is that the adjoint ation identi�es G0 with the group of all automorphismsof the graded Lie algebra g�2 � g�1 whih in addition preserve the deompositiong�1 = gL�1 � gR�1.LetM be a smooth manifold of dimension 2n+1 and letH � TM be a subbundleof orank one. The Lie braket of vetor �elds indues a tensorial map L : �2H !TM=H, and thatH is alled a ontat struture onM if this map is non{degenerate.A Lagrangean ontat struture on M is a ontat struture H � TM togetherwith a �xed deompositionH = L�R suh that eah of the subbundles is isotropiwith respet to L. This fores the two bundles to be of rank n, and L induesisomorphisms R �= L� 
 (TM=H) and L �= R� 
 (TM=H).In view of the desription of G0 above, the following result is a speial ase ofgeneral prolongation proedures [17, 14, 4℄, see [15℄ and setion 4.1 of [3℄ for moreinformation on this spei� ase.Theorem. Let H = L � R be a Lagrangean ontat struture on a manifold Mof dimension 2n + 1. Then there exists a prinipal P{bundle p : G ! M en-dowed with a Cartan onnetion ! 2 
1(G; g) suh that L = Tp(!�1(gL�1� p)) andR = Tp(!�1(gR�1 � p)). The pair (G; !) is uniquely determined up to isomorphismprovided that one in addition requires the urvature of ! to satisfy a normalizationondition disussed in 3.6.Similarly, for any ontat grading of a simple Lie algebra g and a hoie of aLie group G with Lie algebra g, one de�nes a subgroup P � G with Lie algebrag0�g1�g2. One then obtains an equivalene of ategories between regular normalparaboli geometries of type (G;P ) and underlying geometri strutures, whih inpartiular inlude a ontat struture.The seond ase of suh strutures we will be onerned with in this paper, ispartially integrable almost CR strutures of hypersurfae type, see setion 5.2.2. Chains. Let (p : G !M;!) be the anonial Cartan geometry determined bya paraboli ontat struture. Then one obtains an isomorphism TM �= G�P (g=p)suh that H � TM orresponds to (g�1 � p)=p � g=p. Of ourse, we may identifyg�2�g�1 as a vetor spae with g=p and use this to arry over the natural P{ationto g�2 � g�1. Let Q � P be the stabilizer of the line g�2 under this ation. Byde�nition, this is a losed subgroup of P . Let us denote by G0 � P the losedsubgroup onsisting of all elements whose adjoint ation respets the grading ofg. Then G0 has Lie algebra g0 and by Proposition 2.10 of [4℄, any element g 2 Pan be uniquely written in the form g0 exp(Z1) exp(Z2) for g0 2 G0, Z1 2 g1, andZ2 2 g2.Lemma. (1) An element g = g0 exp(Z1) exp(Z2) 2 P lies in the subgroup Q � P ifand only if Z1 = 0. In partiular, q = g0�g2 and for g 2 Q we have Ad(g)(g�2) �g�2 � q.(2) Let (p : G !M;!) be the anonial Cartan geometry determined by a paraboliontat struture. Let x 2 M be a point and � 2 TxM n Hx a tangent vetortransverse to the ontat subbundle.Then there is a point u 2 p�1(x) � G and a unique lift ~� 2 TuG of � suh that!(u)(~�) 2 g�2. The point u is unique up to the prinipal right ation of an elementg 2 Q � P .Proof. (1) We �rst observe that for a nonzero elementX 2 g�2, the mapZ 7! [Z;X℄is a bijetion g1 ! g�1. This is easy to verify diretly for the examples disussedin 2.1 and 5.1. For general ontat gradings it follows from the fat that [g�2; g2℄onsists of all multiples of the grading element, see setion 4.2 of [19℄.



ON THE GEOMETRY OF CHAINS 5By de�nition, g 2 Q if and only if Ad(g)(g�2) � g�2 � p. Now from the expres-sion g�1 = exp(�Z2) exp(�Z1)g�10 one immediately onludes that Ad(g�1)(X) isongruent to �[Z1; X℄ 2 g�1 modulo g�2 � p. Hene we see that g 2 Q if and onlyif Z1 = 0, and the rest of (1) evidently follows.(2) Choose any point v 2 p�1(x). Sine the vertial bundle of G ! M equals!�1(p), there is a unique lift � 2 TvG of � suh that !(v)(�) 2 g�2 � g�1. Theassumption that � is transverse to Hx means that !(v)(�) =2 g�1. For an elementg 2 P we an onsider v � g and Tvrg � � 2 Tv�gG, where v � g = rg(v) denotesthe prinipal right ation of g on v. Evidently, Tvrg � � is again a lift of � andequivariany of ! implies that !(v � g)(Tvrg � �) = Ad(g�1)(!(v)(�)).Writing !(v)(�) = X�2 + X�1 we have X�2 6= 0, so from above we see thatthere is an element Z 2 g1 suh that [Z;X�2℄ = X�1. Putting g = exp(Z) 2 P weonlude that !(v �g)(Tvrg ��) 2 g�2�p. Hene putting u = v �g and subtrating anappropriate vertial vetor from Tvrg � �, we have found a ouple (u; ~�) as required.Any other hoie of a preimage of x has the form u � g for some g 2 P . Any liftof � in Tu�gG is of the form Turg � ~� + � for some vertial vetor �. Clearly, there isa hoie for � suh that !(Turg � ~� + �) 2 g�2 if and only if !(Turg � ~�) 2 g�2 � pand equivariany of ! implies that this is equivalent to g 2 Q. �This lemma immediately leads us to hains: Fix a nonzero element X 2 g�2.For a point x 2 M and a line ` in TxM whih is transverse to Hx, we an �nda point u 2 G suh that Tup � !�1u (X) 2 `. Denoting by ~X the \onstant vetor�eld" !�1(X) we an onsider the ow of ~X through u and projet it onto Mto obtain a (loally de�ned) smooth urve through x whose tangent spae at x is`. In setion 4 of [6℄ it has been shown that, as an unparametrized urve, thisis uniquely determined by x and `, and it omes with a distinguished projetivefamily of parametrizations.The lemma also leads us to a nie desription of the spae of all transversediretions: For a point u 2 G, we obtain a line in Tp(u)M whih is transverseto Hp(u), namely Tp(!�1u (g�2)). This de�nes a smooth map G ! PTM , wherePTM denotes the projetivized tangent bundle of M . Sine P ats freely on Gso does Q and hene G=Q is a smooth manifold. By the lemma, we obtain adi�eomorphism from G=Q to the open subset P0TM � PTM formed by all lineswhih are transverse to the ontat distribution H.2.3. Path geometries. Classially, path geometries are assoiated to ertain fam-ilies of unparametrized urves in a smooth manifold. Suppose that in a manifoldZ we have a smooth family of urves suh that through eah point of Z there isexatly one urve in eah diretion. Let PTZ be the projetivized tangent bundleof Z, i.e. the spae of all lines through the origin in tangent spaes of Z. Given aline ` in TxZ, we an hoose the unique urve in the family whih goes through xin diretion `. Choosing a loal regular parametrization  : I ! Z of this urve weobtain a lift ~ : I ! PTZ by de�ning ~(t) to be the line in T(t)Z generated by 0(t).Choosing a di�erent regular parametrization, we just obtain a reparametrizationof ~, so the submanifold ~(I) � PTZ is independent of all hoies. These urvesfoliate PTZ, and their tangent spaes give rise to a line subbundle E � TPTZ.This subbundle has a speial property: Similarly to the tautologial line bundleon a projetive spae, a projetivized tangent bundle arries a tautologial subbun-dle � � TPTZ of rank dim(Z). By de�nition, given a line ` � TzZ, a tangentvetor � 2 T`PTZ lies in �` if and only if its image under the tangent map ofthe projetion PTZ ! Z lies in the line `. By onstrution, the line subbundle Eassoiated to a family of urves as above always is ontained in � and is transverseto the vertial subbundle V of PTZ ! Z. Hene we see that � = E � V .



6 ANDREAS �CAP VOJT�ECH �Z�ADN�IKConversely, having given a deomposition � = E�V of the tautologial bundle,we an projet the leaves of the foliation of PTZ de�ned by E to the manifoldZ toobtain a smooth family of urves in Z with exatly one urve through eah point ineah diretion. Hene one may use the deomposition � = E � V as an alternativede�nition of suh a family of urves, and this deomposition is usually referred toas a path geometry on Z. It is easy to verify that the Lie braket of vetor �eldsindues an isomorphism E 
 V ! TPTZ=�.It turns out that path geometries also admit an equivalent desription as regularnormal paraboli geometries. Putting m := dim(Z)�1 we onsider the Lie algebra~g := sl(m + 2;R) with the j2j{grading obtained by a blok deomposition0� ~g0 ~gE1 ~g2~gE�1 ~g0 ~gV1~g�2 ~gV�1 ~g01A :as in 2.1, but this time with bloks of size 1, 1, and m. Hene ~gE�1 has dimension1 while ~gV�1 and ~g�2 are all m{dimensional. Put ~G := PGL(m + 2;R) and let~G0 � ~P � ~G be the subgroups formed by matries whih are blok diagonalrespetively blok upper triangular with blok sizes 1, 1, and m. Then ~G0 and~P have Lie algebras ~g0 respetively ~p := ~g0 � ~g1 � ~g2, where ~g1 = ~gE1 � ~gV1 .The adjoint ation identi�es ~G0 with the group of automorphisms of the gradedLie algebra ~g�2�~g�1 whih in addition preserve the deomposition ~g�1 = ~gE�1�~gV�1.Hene the following result is a speial ase of the general prolongation proedures[17, 14, 4℄, see setion 4.7 of [3℄ for this spei� ase.Theorem. Let ~Z be a smooth manifold of dimension 2m+1 endowed with transver-sal subbundles E and V in T ~Z of rank 1 and m, respetively, and put � := E�V �T ~Z. Suppose that the Lie braket of two setions of V is a setion of � and thatthe tensorial map E 
 V ! T ~Z=� indued by the Lie braket of vetor �elds is anisomorphism.Then there exists a prinipal bundle ~p : ~G ! ~Z with struture group ~P en-dowed with a Cartan onnetion ~! 2 
1( ~G;~g) suh that E = T ~p(~!�1(~gE�1� ~p)) andV = T ~p(~!�1(~gV�1 � ~p)). The pair ( ~G; ~!) is uniquely determined up to isomorphismprovided that ~! is required to satisfy a normalization ondition disussed in 3.6.In partiular, a family of paths on Z as before gives rise to a Cartan geometry onPTZ. This immediately generalizes to the ase of an open subset of PTZ, i.e. thease where paths are only given through eah point in an open set of diretions.It turns out that for m 6= 2, the assumptions of the theorem already imply thatthe subbundle V � T ~Z is involutive. Then ~Z is automatially loally di�eomorphito a projetivized tangent bundle in suh a way that V is mapped to the vertialsubbundle and � to the tautologial subbundle. Hene for m 6= 2, the geometriesdisussed in the theorem are loally isomorphi to path geometries.2.4. The path geometry of hains. From 2.2 we see that for a manifold Mendowed with a paraboli ontat struture the hains give rise to a path geometryon the open subset ~M := P0TM of the projetivized tangent bundle ofM . We aneasily desribe the orresponding on�guration of bundles expliitly: Denoting by(p : G ! M;!) the Cartan geometry indued by the paraboli ontat struture,we know from 2.2 that ~M = G=Q, where Q � P denotes the stabilizer of the line ing=p orresponding to g�2 � g�2�g�1. In partiular, G is a Q{prinipal bundle over~M and ! is a Cartan onnetion on G ! ~M . This implies that T ~M = G �Q g=q,and the tangent map to the projetion � : ~M ! M orresponds to the obviousprojetion g=q ! g=p. In partiular, the vertial bundle V = ker(T�) orresponds



ON THE GEOMETRY OF CHAINS 7to p=q � g=q. From the onstrution of the isomorphism G=Q ! ~M in 2.2, it isevident that the tautologial bundle � orresponds to (g�2 � p)=q. By part (1) ofLemma 2.2, the subspae (g�2 � q)=q � g=q is Q{invariant, thus it gives rise to aline subbundle E in �, whih is omplementary to V . By onstrution, this exatlydesribes the path geometry determined by the hains.If dim(M ) = 2n+1, then the dimension of ~M is 4n+1. Put ~G := PGL(2n+2;R)and let ~P � ~G be the subgroup desribed in 2.3. Then by Theorem 2.3 the path ge-ometry on ~M gives rise to a anonial prinipal bundle ~G ! ~M with struture group~P endowed with a anonial normal Cartan onnetion ~! 2 
1( ~G;~g). The mainquestion now is whether there is a diret relation between the Cartan geometries(G ! ~M;!) and ( ~G ! ~M; ~!).The only reasonable way to relate these two Cartan geometries is to onsidera morphism j : G ! ~G of prinipal bundles and ompare the pull{bak j�~! to !.This means that j is equivariant, so we �rst have to hoose a group homomorphismi : Q! ~P and require that j(u � g) = j(u) � i(g) for all g 2 Q. Having hosen i andj, we have j�~! 2 
1(G; ~g) and the only way to diretly relate this to ! 2 
1(G; g) isto have j�~! = � Æ! for some linear map � : g! ~g. If we have suh a relation, thenwe an immediately reover ~G from G: Consider the map � : G � ~P ! ~G de�nedby �(u; ~g) := j(u) � ~g. Equivariany of j immediately implies that �(u � g; ~g) =�(u; i(g)~g), so � desends to a bundle map G�Q ~P ! ~G, where the left ation of Qon ~P is de�ned via i. This is immediately seen to be an isomorphism of prinipalbundles, so ~G is obtained from G by an extension of struture group. Under thisisomorphism, the given morphism j : G ! ~G orresponds to the natural inlusionG ! G �Q ~P indued by u 7! (u; e).3. Indued Cartan onnetionsIn this setion, we study the problem of extending Cartan onnetions. We derivethe basi results in the setting of general Cartan geometries, and then speializeto the ase of paraboli ontat strutures and, in partiular, Lagrangean ontatstrutures. Some of the developments in 3.1 and 3.3 below are losely related to[12, 18℄.3.1. Extension funtors for Cartan geometries. Motivated by the last ob-servations in 2.4, let us onsider the following problem: Suppose we have given Liegroups G and ~G with Lie algebras g and ~g, losed subgroups Q � G and ~P � ~G, ahomomorphism i : Q! ~P and a linear map � : g! ~g. We will assume throughoutthat i is in�nitesimally injetive, i.e. i0 : q! ~p is injetive.Given a Cartan geometry (p : G ! N;!) of type (G;Q), we put ~G := G �Q ~Pand denote by j : G ! ~G the anonial map. Sine i is in�nitesimally injetive, thisis an immersion, i.e. Tuj is injetive for all u 2 G. We want to understand whetherthere is a Cartan onnetion ~! 2 
1( ~G;~g) suh that j�~! = �Æ!, and if so, whether~! is uniquely determined.Proposition. There is a Cartan onnetion ~! on ~G suh that j�~! = � Æ ! if andonly if the pair (i; �) satis�es the following onditions:(1) � ÆAd(g) = Ad(i(g)) Æ � for all g 2 Q.(2) On the subspae q � g, the map � restrits to the derivative i0 of i : Q! ~P .(3) The map � : g=q! ~g=~p indued by � is a linear isomorphism.If these onditions are satis�ed, then ~! is uniquely determined.Proof. Let us �rst assume that there is a Cartan onnetion ~! on ~G suh thatj�~! = � Æ !. For u 2 G, the tangent spae Tj(u) ~G is spanned by Tuj(TuG) andthe vertial subspae Vj(u) ~G. The behavior of ~! on the �rst subspae is determined



8 ANDREAS �CAP VOJT�ECH �Z�ADN�IKby the fat that j�~! = � Æ !, while on the seond subspae ~! has to reproduethe generators of fundamental vetor �elds. Hene the restrition of ~! to j(G) isdetermined by the fat that j�~! = � Æ !. By de�nition of ~G, any point ~u 2 ~G anbe written as j(u) � ~g for some u 2 G and some ~g 2 ~P , so uniqueness of ~! followsfrom equivariany.Still assuming that ~! exists, ondition (1) follows from equivariany of j, !, and~!. Equivariany of j also implies that for A 2 q and the orresponding fundamentalvetor �eld �A we get Tj Æ�A = �i0(A). Thus ondition (2) follows from the fat thatboth ! and ~! reprodue the generators of fundamental vetor �elds. Let p : G ! Nand ~p : ~G ! N be the bundle projetions, so ~p Æ j = p. For � 2 TuG we have�(!(�)) = ~!(Tuj � �), so if this lies in ~p then Tuj � � is vertial. But then � is vertialand hene !(�) 2 q. Therefore, the map � is injetive, and sine both G and ~Gadmit a Cartan onnetion, we must have dim(g=q) = dim(N ) = dim(~g=~p), so (3)follows.Conversely, suppose that (1){(3) are satis�ed for (i; �) and ! is given. For ~u 2 ~Gand ~� 2 T~u ~G we an �nd elements u 2 G, � 2 TuG, A 2 ~p, and ~g 2 ~P suh that~u = j(u)�~g and ~� = Tr~g �(Tj ��+�A). Then we de�ne ~!(~�) := Ad(~g)�1(�(!(�))+A).Using properties (1) and (2) one veri�es that this is independent of all hoies. By(3), it de�nes a linear isomorphism T~u ~G ! ~g, and the remaining properties of aCartan onnetion are easily veri�ed diretly. �Any pair (i; �) whih satis�es the properties (1){(3) of the proposition gives riseto an extension funtor fromCartan geometries of type (G;Q) to Cartan geometriesof type ( ~G; ~P): Starting from a geometry (p : G ! N;!) of type (G;Q), one puts~G := G �Q ~P (with Q ating on ~P via i) and de�nes ~! 2 
1( ~G;~g) to be theunique Cartan onnetion on ~G suh that j�~! = � Æ !, where j : G ! ~G is theanonial map. For a morphism ' : G1 ! G2 between geometries of type (G;Q),we an onsider the prinipal bundle map � : ~G1 ! ~G2 indued by ' � id ~P . Byonstrution, this satis�es � Æ j1 = j2 Æ ' and we obtainj�1��~!2 = '�j�2 ~!2 = '�(� Æ !2) = � Æ '�!2 = � Æ !1:But ~!1 is the unique Cartan onnetion whose pull{bak along j1 oinides with� Æ !1, whih implies that ��~!2 = ~!1, and hene � is a morphism of Cartangeometries of type ( ~G; ~P ).There is a simple notion of equivalene for pairs (i; �): We all (i; �) and (̂i; �̂)equivalent and write (i; �) � (̂i; �̂) if and only if there is an element ~g 2 ~P suh thatî(g) = ~g�1i(g)~g and �̂ = Ad(~g�1)Æ�. Notie that if (i; �) satis�es onditions (1){(3)of the proposition, then so does any equivalent pair. In order to distinguish betweendi�erent extension funtors, for a geometry (p : G ! M;!) of type (G;Q) we willoften denote the geometry of type ( ~G; ~P ) obtained using (i; �) by (G �i ~P; ~!�).Lemma. Let (i; �) and (̂i; �̂) be equivalent pairs satisfying onditions (1){(3) ofthe proposition. Then the resulting extension funtors for Cartan geometries arenaturally isomorphi.Proof. By assumption, there is an element ~g 2 ~P suh that î(g) = ~g�1i(g)~g and�̂ = Ad(~g�1) Æ�. Let j : G ! G �i ~P and ĵ : G ! G�î ~P be the natural inlusions,and onsider the map r~gÆj : G ! G�i ~P . Evidently, we have j(u�g)�~g = j(u)�~g�î(g).Hene, by the last observation in 2.4, we obtain an isomorphism	 : G�î ~P ! G�i ~Psuh that 	 Æ ĵ = r~g Æ j. Now we omputeĵ�	�~!� = j�(r~g)�~!� = Ad(~g�1) Æ j�~!� = �̂ Æ !:By uniqueness, 	�~!� = ~!�̂, so 	 is a morphism of Cartan geometries. It is learfrom the onstrution that this de�nes a natural transformation between the two



ON THE GEOMETRY OF CHAINS 9extension funtors and an inverse an be onstruted in the same way using ~g�1rather than ~g. �3.2. The relation to the Fe�erman onstrution. There is a simple soureof pairs (i; �) whih satisfy onditions (1){(3) of Proposition 3.1: Suppose that' : G ! ~G is an in�nitesimally injetive homomorphism of Lie groups suh that'(Q) � ~P . Then i := 'jQ : Q ! ~P is an in�nitesimally injetive homomorphismand � := '0 : g ! ~g is a Lie algebra homomorphism. Then ondition (2) ofProposition 3.1 is satis�ed by onstrution, while ondition (1) easily follows fromdi�erentiating the equation '(ghg�1) = '(g)'(h)'(g)�1. Hene the only nontrivialondition is (3). Note that if (i; �) is obtained from ' in this way, than any pairequivalent to (i; �) is obtained in the same way from the map g 7! ~g'(g)~g�1 forsome ~g 2 ~G. The main feature of suh pairs is that � is a homomorphism of Liealgebras.In this setting, one may atually go one step further: Suppose we have �xedan in�nitesimally injetive ' : G ! ~G and a losed subgroup ~P � ~G. Thenwe put Q := '�1( ~P ) � G to obtain a pair (i := 'jQ; � := '0) and hene anextension funtor from Cartan geometries of type (G;Q) to geometries of type( ~G; ~P ). For a losed subgroup P � G with Q � P , one gets a funtor fromgeometries of type (G;P ) to geometries of type (G;Q) as desribed in 2.2: Givena geometry (p : G ! M;!) of type (G;P ), one de�nes ~M := G=Q = G �P (P=Q)and (G ! ~M;!) is a geometry of type (G;Q). Combining with the above, one getsa funtor from geometries of type (G;P ) to geometries of type ( ~G; ~P).The most important example of this is the Cartan geometry interpretation ofFe�erman's onstrution of a Lorentzian onformal struture on the total spae ofa ertain irle bundle over a CR manifold, see [10℄. In this ase G = SU (n+ 1; 1),~G = SO(2n+2; 2), and ' is the evident inlusion. Putting ~P the stabilizer of a realnull line ` � R2n+4 in ~G, the group Q = G\ ~P is the stabilizer of ` in G. Evidently,this is ontained in the stabilizer P � G of the omplex null line spanned by `,and P=Q �= RP 1 �= S1. Hene the above proedure de�nes a funtor, whih to aparaboli geometry of type (G;P ) on M assoiates a paraboli geometry of type( ~G; ~P ) on the total spae ~M of a irle bundle overM . More details about this anbe found in [2℄.3.3. The e�et on urvature. We next disuss the e�et of extension funtorsof the type disussed in 3.1 on the urvature of Cartan geometries. This will showspei� features of the speial ase disussed in 3.2.For a Cartan onnetion ! on a prinipal P{bundle G !M with values in g, oneinitially de�nes the urvature K 2 
2(G; g) by K(�; �) := d!(�; �) + [!(�); !(�)℄.This measures the amount to whih the Maurer{Cartan equation fails to hold. Thede�ning properties of a Cartan onnetion immediately imply that K is horizontaland P{equivariant. In partiular, K(�; �) = 0 for all � provided that � is vertialor, equivalently, that !(�) 2 p.Using the trivialization of TG provided by !, one an pass to the urvaturefuntion � : G ! L(�2(g=p); g), whih is haraterized by�(u)(X + p; Y + p) := K(u)(!�1(X); !�1(Y )):This is well de�ned by horizontality of K, and equivariany of K easily impliesthat � is equivariant for the natural P{ation on the spae L(�2(g=p); g), whih isindued from the adjoint ation on all opies of g.Using the setting of 3.1, suppose that (i : Q! ~P; � : g! ~g) is a pair satisfyingthe onditions (1){(3) of Proposition 3.1. Consider the map g � g ! ~g de�nedby (X;Y ) 7! [�(X); �(Y )℄~g � �([X;Y ℄g), whih measures the deviation from �



10 ANDREAS �CAP VOJT�ECH �Z�ADN�IKbeing a homomorphism of Lie algebras. This map is evidently skew symmetri.By ondition (1), � Æ Ad(g) = Ad(i(g)) Æ � for all g 2 Q, whih in�nitesimallyimplies that � Æ ad(X) = ad(i0(X)) Æ� for all X 2 q, and by ondition (2) we havei0(X) = �(X) in this ase. Hene this map vanishes if one of the entries is fromq � g, and we obtain a well de�ned linear map �2(g=q) ! ~g. By ondition (3), �indues a linear isomorphism � : g=q ! ~g=~p, and we onlude that we obtain a wellde�ned map 	� : �2(~g=~p)! ~g by putting	�( ~X + ~p; ~Y + ~p) = [�(X); �(Y )℄� �([X;Y ℄);where �(X) + ~p = ~X + ~p and �(Y ) + ~p = ~Y + ~p.Proposition. Let (i; �) be a pair satisfying onditions (1){(3) of Proposition 3.1.Let (p : G ! N;!) be a Cartan geometry of type (G;Q), let (G �i ~P ; ~!�) be thegeometry of type ( ~G; ~P ) obtained using the extension funtor assoiated to (i; �),and let j : G ! G �i ~P be the natural map.Then the urvature funtions � and ~� of the two geometries satisfy~�(j(u))( ~X; ~Y ) = �(�(u)(��1( ~X); ��1( ~Y ))) + 	�( ~X; ~Y );for any ~X; ~Y 2 ~g=~p, and this ompletely determines ~�.In partiular, if ! is at, then ~! is at if and only if � is a homomorphism ofLie algebras.Proof. By de�nition, j�~!� = � Æ !, and hene j�d~!� = � Æ d!. This immediatelyimplies that for the urvatures K and ~K and �; � 2 X(G) we get~K(j(u))(Tj � �; T j � �) = �(d!(u)(�; �)) + [�(!(u)(�)); �(!(u)(�))℄:On the other hand, we get�(K(u)(�; �)) = �(d!(u)(�; �)) + �([!(u)(�); !(u)(�)℄):Now the formula for ~�(j(u)) follows immediately from the de�nition of the urvaturefuntions. Sine ~� is ~P{equivariant, it is ompletely determined by its restritionto j(G). The �nal laim follows diretly, sine 	� vanishes if and only if � is ahomomorphism of Lie algebras. �3.4. Uniqueness. A ruial fat for the further development is that, passing fromparaboli ontat strutures to the assoiated path geometries of hains, there isatually no freedom in the hoie of the pair (i; �) up to equivalene as introduedin 3.1 above. This result ertainly is valid in a more general setting but it seems tobe diÆult to give a nie formulation for onditions one has to assume.Therefore we return to the setting of setion 2, i.e. G is semisimple, P � G isobtained from a ontat grading, Q is the subgroup desribed in 2.2, and ~G and~P orrespond to path geometries in the appropriate dimension as in 2.3. In thissetting we an now prove:Theorem. Let (i; �) and (̂i; �̂) be pairs satisfying onditions (1){(3) of Proposition3.1. Suppose that there is a Cartan geometry (p : G !M;!) of type (G;Q) suh thatthere is an isomorphism between the geometries of type ( ~G; ~P ) obtained using (i; �)and (̂i; �̂), whih overs the identity on M . Then (i; �) and (̂i; �̂) are equivalent.Proof. Using the notation of the proof of Lemma 3.1, suppose that we have anisomorphism 	 : G �i ~P ! G �î ~P of prinipal bundles whih overs the identityon M and has the property that 	�~!�̂ = ~!�. Let us denote by j and ĵ the naturalinlusions of G into the two extended bundles. Sine 	 overs the identity on M ,there must be a smooth funtion ' : G ! ~P suh that 	(j(u)) = ĵ(u) � '(u).



ON THE GEOMETRY OF CHAINS 11By onstrution we have j(u � g) = j(u) � i(g) and ĵ(u � g) = ĵ(u) � î(g), and usingthe fat that 	 is ~P{equivariant we obtain î(g) = '(u)i(g)'(u �g)�1. On the otherhand, di�erentiating the equation 	(j(u)) = ĵ(u) � '(u), we obtain(T	 Æ Tj) � � = (Tr'(u) Æ T ĵ) � � + �Æ'(u)(�)(	(j(u)))where Æ' 2 
1(G; ~p) denotes the left logarithmi derivative of ' : G ! ~P . Applying~!�̂ to the left hand side of this equation, we simply get(j�	�~!�̂)(�) = (j�~!�)(�) = �(!(�)):Applying ~!�̂ to the right hand side, we obtain(ĵ�(r'(u))�~!�̂)(�) + Æ'(u)(�) =Ad('(u)�1)((ĵ�~!�̂)(�)) + Æ'(u)(�) =Ad('(u)�1)(�̂(!(�))) + Æ'(u)(�);and we end up with the equation(�) �(!(�)) = Ad('(u)�1)(�̂(!(�))) + Æ'(u)(�)for all � 2 TG. Together with the relation between i and î derived above, this showsthat it suÆes to show that '(u) is onstant to prove that (i; �) � (̂i; �̂).By onstrution, Æ'(u) has values in ~p, so projeting equation (�) to ~g=~p impliesthat �(!(�)) + ~p = Ad('(u)�1)(�̂(!(�)) + ~p);for all � 2 TuG, where Ad is the ation of ~P on ~g=~p indued by the adjoint ation.By property (3) from Proposition 3.1 this implies that � = Ad('(u)�1)Æ�̂, so we seethat Ad('(u)�1) must be independent of u. Hene we must have '(u) = ~g1'1(u)for some element ~g1 2 ~P and a smooth funtion '1 : G ! ~P whih has valuesin the kernel of Ad. As in 2.2, any element of ~P an be uniquely written in theform ~g0 exp( ~Z1) exp( ~Z2) with ~g0 2 ~G0 and ~Zi 2 ~gi, and suh an element lies inthe kernel of Ad if and only if Ad(~g0) restrits to the identity on ~g� and ~Z1 = 0.Sine ~p+ is dual to ~g� and ~g0 injets into L(~g�; ~g�) the �rst ondition implies thatAd(~g0) = id~g. Sine ~G = PGL(k;R) for some k, this implies that ~g0 is the identity.Hene '1 has values in exp(~g2) and therefore Æ'(u) has values in ~g2. Projetingequation (�) to ~g=~g2, we obtain�(!(�)) + ~g2 = Ad('(u)�1)(�̂(!(�)) + ~g2);where this time Ad denotes the natural ation on ~g=~g2. But by [19, Lemma 3.2℄ anelement of ~g2 vanishes provided that all brakets with elements of ~g�1 vanish, andthis easily implies that '1(u) is the identity and so ' is onstant. �This result has immediate onsequenes on the problem of desribing the pathgeometry of hains assoiated to a paraboli ontat struture: If we start withthe homogeneous model G=P for a paraboli ontat geometry, the indued pathgeometry of hains is de�ned on the homogeneous spae G=Q. To obtain this by anextension funtor as desribed in 3.1, we need a homomorphism i : Q ! ~P and alinear map � : g! ~g, where ( ~G; ~P ) gives rise to path geometries in the appropriatedimension. The pair (i; �) has to satisfy onditions (1){(3) of Proposition 3.1 inorder to give rise to an extension funtor. The only additional ondition is thatthe extended geometry (G �i ~P ; ~!�) obtained from (G ! G=Q;!MC) is regularand normal. By Theorem 2.3, a regular normal paraboli geometry of type ( ~G; ~P )is uniquely determined by the underlying path geometry, whih is enoded into(G! G=Q;!MC), see 2.4.



12 ANDREAS �CAP VOJT�ECH �Z�ADN�IKThe theorem above then implies that (i; �) is uniquely determined up to equiv-alene. In view of Lemma 3.1, the extension funtor obtained from (i; �) is (up tonatural isomorphism) the only extension funtor of the type disussed in 3.1 whihprodues the right result for the homogeneous model (and hene for loally atgeometries).The �nal step is then to study under whih onditions on a geometry of type(G;P ), the extension funtor assoiated to (i; �) produes a regular normal geom-etry of type ( ~G; ~P ).3.5. Let us return to the ase of Lagrangean ontat strutures as disussed in2.1. By de�nition, we have G = PGL(n+ 2;R) and P � G is the subgroup of allmatries whih are blok upper triangular with bloks of sizes 1, n, and 1. Frompart (1) of Lemma 2.2 one immediately onludes that Q � P is the subgroupformed by all matries of the blok form0�p 0 s0 R 00 0 q1A ;suh that jpq det(R)j = 1. Sine the orresponding manifolds have dimension 2n+1,the right group for the path geometry de�ned by the hains is ~G = PGL(2n+2;R).The subgroup ~P � ~G is given by the lasses of those matries whih are blok uppertriangular with bloks of sizes 1, 1, 2n. In the sequel, we will always further splitthe last blok into two bloks of size n.Consider the (well de�ned) smooth map i : Q! ~P and the linear map � : g! ~gde�ned byi0�p 0 s0 R 00 0 q1A := 0BBBBBB�sgn( qp )qjpq j sgn( qp ) spqjpq j 0 00 qj qp j 0 00 0 q�1qj qp jR 00 0 0 pqj qp j(R�1)t1CCCCCCA ;�0�a u dx B vz y 1A := 0BB�a�2 d 12u 12vtz �a2 12y �12xtx v B � a+2 id 0yt �ut 0 �Bt + a+2 id1CCA ;where id denotes the n� n identity matrix.Proposition. The map i : Q ! ~P is an injetive group homomorphism and thepair (i; �) satis�es onditions (1){(3) of Proposition 3.1. Hene it gives rise to anextension funtor from Cartan geometries of type (G;Q) to Cartan geometries oftype ( ~G; ~P ).Proof. All these fats are veri�ed by straightforward omputations, some of whihare a little tedious. �3.6. Regularity and normality. We next have to disuss the onditions on theurvature of a Cartan onnetion whih were used in Theorems 2.1 and 2.3. IfG is a semisimple group and P � G is paraboli, then one an identify (g=p)�with p+, the sum of all positive grading omponents, via the Killing form, see [19,Lemma 3.1℄. Hene we an view the urvature funtion de�ned in 3.3 as havingvalues in �2p+ 
 g. Via the gradings of p+ and g, this spae is naturally graded,and the Cartan onnetion ! is alled regular if its urvature funtion has valuesin the part of positive homogeneity. Otherwise put, if X 2 gi and Y 2 gj , then�(u)(X + p; Y + p) 2 gi+j+1 � � � � � gk.



ON THE GEOMETRY OF CHAINS 13Reall that a Cartan geometry is torsion free, if and only if � has values in�2p+ 
 p. Sine elements of p+ have stritly positive homogeneity, this subspae isontained in the part of positive homogeneity, and any torsion free Cartan geometryis automatially regular. Hene regularity should be viewed as a ondition whihavoids partiularly bad types of torsion.On the other hand, there is a natural map �� : �2p+ 
 g! p+ 
 g de�ned by��(Z ^W 
 A) := �W 
 [Z;A℄ + Z 
 [W;A℄� [Z;W ℄
Afor deomposable elements. This is the di�erential in the standard omplex omput-ing the Lie algebra homology of p+ with oeÆients in the module g. This map isevidently equivariant for the natural P{ation, so in partiular, ker(��) � �2p+
gis a P{submodule. The Cartan onnetion ! is alled normal if and only if itsurvature has values in this submodule.To proeed with the program set out in the end of 3.4 we next have to analyzethe map 	� : �2(~g=~p) ! ~g introdued in 3.3 in the speial ase of the pair (i; �)from 3.5. As a linear spae, we may identify ~g=~p with ~g� = ~gE�1 � ~gV�1� ~g�2. Notethat using brakets in ~g, we may identify ~gV�1 with ~gE1 
 ~g�2 if neessary. We willview ~g�2 as R2n = Rn�Rn and orrespondingly write X 2 ~g�2 as (X1; X2). Byh ; i we denote the standard inner produt on Rn.Lemma. Viewing 	� as an element of �2(~g�)�
~g, it lies in the subspae (~gV�1)�^(~g�2)� 
 ~g0. Denoting by W0 2 ~gE1 the element whose unique nonzero entry isequal to 1, the trilinear map ~g�2 � ~g�2 � ~g�2 ! ~g�2 de�ned by (X;Y; Z) 7![	�(X; [Y;W0℄); Z℄ is (up to a nonzero multiple) the omplete symmetrization ofthe map (X;Y; Z) 7! hX1; Y2i� Z1�Z2�.Proof. Let x 2 ~gE�1 be the element whose unique nonzero entry is equal to 1.Then an arbitrary element of ~g� an be written uniquely as X + [Y;W0℄ + ax forX;Y 2 ~g�2 and a 2 R. From the de�nition of � in 3.5 we obtain�0� 0 �Y t2 0X1 0 Y1a Xt2 0 1A = 0BB� 0 0 �12Y t2 12Y t1a 0 12Xt2 �12Xt1X1 Y1 0 0X2 Y2 0 0 1CCA ;so this is ongruent toX+[Y;W0℄+axmodulo ~p. Using this, one an now insert intothe de�ning formula for 	� from 3.3 and ompute diretly that the result alwayshas values in ~g0, and indeed only in the lower right 2n � 2n blok. Moreover, allthe entries in that blok are made up from bilinear expressions involving one entryfrom ~g�2 and one entry from ~gV�1, so we see that 	� 2 (~g�2)� ^ (~gV�1)� 
 ~g0.ForX;Y 2 ~g�2, one next omputes that the only nonzero blok in 	�(X; [Y;W0℄)(whih is a 2n� 2n{matrix) is expliitly given by12 �X1Y t2 + Y1Xt2 + (Y t2X1 +Xt2Y1) id X1Y t1 + Y1Xt1�X2Y t2 � Y2Xt2 �Y2Xt1 �X2Y t1 � (Y t2X1 +Xt2Y1) id� :To obtain [	�(X; [Y;W0℄); Z℄ 2 ~g�2 for another element Z 2 ~g�2, we now simplyhave to apply this matrix to �Z1Z2�. Taking into aount that hv; wi = vtw = wtvfor v; w 2 Rn we obtain half the sum of all yli permutations of(hX1; Y2i+ hY1; X2i)� Z1�Z2� ;whih is three times the total symmetrization of (X;Y; Z) 7! hX1; Y2i� Z1�Z2�. �



14 ANDREAS �CAP VOJT�ECH �Z�ADN�IKUsing this we an now omplete the �rst part of the program outlined in the endof 3.4:Theorem. The extension funtor assoiated to the pair (i; �) from 3.5 maps loallyat Cartan geometries of type (G;Q) to torsion free (and hene regular), normalparaboli geometries of type ( ~G; ~P ).Proof. Let (p : G ! N;!) be a loally at Cartan geometry of type (G;Q). Thismeans that ! has trivial urvature, so by Proposition 3.3, the urvature funtion ~�of the paraboli geometry (G �i ~P; ~!�) has the property that~�(j(u)) = 	� : �2(~g=~p)! ~g;where j : G ! G �i ~P is the natural map. By the lemma above, ~�(j(u)) has valuesin ~g0 � ~p, and sine having values in ~p is a ~P{invariant property, torsion freenessfollows.Similarly, sine ker(��) is a ~P{submodule in �2(~g=~p)�
~g, it suÆes to show that��(	�) = 0 to omplete the proof of the theorem. This may be heked by a diretomputation, but there is a more oneptual argument: Traefree matries in thelower right 2n�2n blok of ~g0 form a Lie subalgebra isomorphi to sl(2n;R) whihats on eah of the spaes �k(~g=~p)� 
 ~g. Hene we may deompose eah of theminto a diret sum of irreduible representations. Sine �� is a ~P{homomorphism, itis equivariant for this ation of sl(2n;R), and hene it an be nonzero only betweenisomorphi irreduible omponents.In the proof of the lemma we have noted that ~g�2 is the standard representa-tion of sl(2n;R), so the expliit formula for 	� shows that it sits in a omponentisomorphi to S3R2n� 
 R2n. There is a unique trae from this representation toS2R2n�, and the kernel of this is well known to be irreduible. One immediatelyheks that (~g=~p)� 
 ~g annot ontain an irreduible omponent isomorphi to thekernel of this trae. Hene we an �nish the proof by showing that 	� lies in thekernel of that trae, whih is a simple diret omputation. �This has a nie immediate appliation:Corollary. Consider the homogeneous model G ! G=P of Lagrangean ontatstrutures. Then the resulting path geometry of hains is non{at and hene notloally isomorphi to ~G= ~P , but its automorphism group ontains G. In partiular,for eah n � 1, we obtain an example of a non{at torsion free path geometry ona manifold of dimension 2n+ 1 whose automorphism group has dimension at leastn2 + 4n+ 3.Remark. (1) In [11℄, the author diretly onstruted a torsion free path geometryfrom the homogeneous model of three{dimensional Lagrangean ontat strutures.This onstrution was one of the motivations for this paper and one of the guidelinesfor the right hoie of the pair (i; �). The other main guideline for this hoie arethe omputations needed to show that 	� has values in ~g0.(2) We shall see later that in the situation of the orollary, the dimension of theautomorphism group atually equals the dimension of G. In partiular, for n = 1,one obtains a non{at path geometry on a three manifold with automorphismgroupof dimension 8. To our knowledge, this is the maximal possible dimension for theautomorphism group of a non{at path geometry in this dimension.Via the interpretation of path geometries in terms of systems of seond orderODE's, we obtain examples of nontrivial systems of suh ODE's with large auto-morphism groups.



ON THE GEOMETRY OF CHAINS 153.7. More on urvatures of regular normal geometries. We have ompletedhalf of the program outlined in the end of 3.4 at this point: Theorem 3.6 showsthat the extension funtor assoiated to the pair (i; �) de�ned in 3.5 produes theregular normal paraboli geometry determined by the path geometry of hains forloally at Lagrangean ontat strutures. In view of Theorem 3.4 and Lemma 3.1this pins down the pair (i; �) up to equivalene and hene the assoiated extensionfuntor up to isomorphism.Hene it only remains to larify under whih onditions on a Lagrangean ontatstruture this extension proedure produes a regular normal paraboli geometry.This then tells us the most general situation in whih a diret relation (as disussedin 2.4 and 3.1) between the two paraboli geometries an exist. As it an already beexpeted from the ase of the Fe�erman onstrution (see [2℄) this is a rather subtlequestion. Moreover, the result annot be obtained by algebraially omparing thetwo normalization onditions, but one needs more information on the urvatureof regular normal and torsion free normal geometries. In partiular, the proof ofpart (2) of the Lemma below needs quite a lot of deep mahinery for paraboligeometries.As disussed in 3.6, the urvature funtion of a paraboli geometry of type (G;P )has values in �2p+ 
 g. Sine both p+ and g are graded, there is a natural notionof homogeneity on this spae. While being of some �xed homogeneity is not a P{invariant property, the fat that all nonzero homogeneous omponents have at leastsome given homogeneity is P{invariant. This is used in the de�nition of regularityin 3.6, whih simply says that all nonzero homogeneous omponents are in positivehomogeneity.The map �� used in the de�nition of normality in 3.6 atually extends to afamily of maps �� : �`p+ 
 g ! �`�1p+ 
 g. These are the di�erentials in thestandard omplex omputing the Lie algebra homology H�(p+; g). By de�nition,the urvature funtion � of a normal paraboli geometry of type (G;P ) has valuesin ker(��) � �2p+ 
 g. Hene we an naturally projet to the quotient to obtain afuntion �H with values in ker(��)= im(��) = H2(p+; g). Equivariany of � impliesthat �H an be viewed as a smooth setion of the bundle G �P H2(p+; g). Thissetion is alled the harmoni urvature of the normal paraboli geometry. It turnsout (see [5℄) that P+ ats trivially on H�(p+; g), so this bundle admits a diretinterpretation in terms of the underlying struture. As we shall see below, thisbundle is algorithmially omputable.Now from 3.6 we know that p+ �= (g=p)� as a P{module, and sine g� � g is aomplementary subspae (and G0{module) to p � g we an identify p+ with (g�)�as a G0{module. Hene we an also view the spaes �`p+
 g as L(�`g�; g), whihare the hain spaes in the standard omplex omputing the Lie algebra ohomologyof g� with oeÆients in g. The di�erentials � : L(�`g�; g)! L(�`+1g�; g) in thatomplex turn out to be adjoint to the maps �� with respet to a ertain innerprodut.Hene we obtain an algebrai Hodge theory on eah of the spaes �`p+
g, withalgebrai Laplaian � = �� Æ � + � Æ ��. This onstrution is originally due toKostant (see [13℄), whene � is usually alled the Kostant Laplaian. The kernel of� is a G0{submodule alled the harmoni subspae of �`p+ 
 g. Kostant's versionof the Bott{Borel{Weil theorem in [13℄ gives a omplete algorithmi desription ofthe G0{module ker(�). By the Hodge deomposition, ker(�) is isomorphi to thehomology group of the appropriate dimension.We will need two general fats about the urvature of regular normal respetivelytorsion free normal paraboli geometries in the sequel:



16 ANDREAS �CAP VOJT�ECH �Z�ADN�IKLemma. Let (p : G !M;!) be a regular normal paraboli geometry of type (G;P )with urvature funtions � : G ! �2p+
g and �H : G ! H2(p+; g). Then we have:(1) The lowest nonzero homogeneous omponent of � has values in the subsetker(�) � �2p+ 
 g.(2) Suppose that (p : G ! M;!) is torsion free and that E0 � ker(�) � �2p+ 
 gis a G0{submodule suh that �H has values in the image of E0 under the naturalisomorphism ker(�) ! H2(p+; g) (indued by projeting ker(�) � ker(��) to thequotient). Then � has values in the P{submodule of �2p+ 
 g generated by E0.Proof. (1) is an appliation of the Bianhi identity, whih goes bak to [17℄, see also[4, Corollary 4.10℄. (2) is proved in [3, Corollary 3.2℄. �The �nal bit of information we need is the expliit form of ker(�) for the pairs(g; p) and (~g;~p) orresponding to Lagrangean ontat strutures on manifolds ofdimension 2n+ 1 respetively path geometries in dimension 4n+ 1. Obtaining theexpliit desription of the irreduible omponents of these submodules is an exerisein the appliation of Kostant's results from [13℄ and the algorithms from the book[1℄, see also [3℄. The results are listed in the tables below. The �rst olumn ontainsthe homogeneity of the omponent and the seond olumn ontains the subspaethat it is ontained in. The atual omponent is always the highest weight part inthat subspae, so in partiular, it lies in the kernel of all traes one an form.(g; p), n = 1homog. ontained in4 gR1 ^ g2 
 gR14 gL1 ^ g2 
 gL1 (g; p), n > 1homog. ontained in2 gL1 ^ gR1 
 g01 �2gL1 
 gR�11 �2gR1 
 gL�1(~g; ~p), n = 1homog. ontained in3 ~gV1 ^ ~g2 
 ~g02 ~gE1 ^~g2
~gV�11 �2~gV1 
 ~gE�1 (~g; ~p), n > 1homog. ontained in3 ~gV1 ^ ~g2 
 ~g02 ~gE1 ^~g2
~gV�10 �2~gV1 
 ~g�23.8. We are now ready to prove the main result of this artile:Theorem. Let (p : G ! M;!) be a regular normal paraboli geometry of type(G;P ) and let ( ~G := G �Q ~P ! P0(TM ); ~!�) be the paraboli geometry obtainedusing the extension funtor assoiated to the pair (i; �) de�ned in 3.5. Then thisgeometry is regular and normal if and only if (p : G !M;!) is torsion free.Proof. We �rst prove neessity of torsion freeness. From the tables in 3.7 we seethat for n = 1 a regular normal paraboli geometry of type (G;P ) is automatiallytorsion free, so we only have to onsider the ase n > 1. If ~!� is regular andnormal, then all nonzero homogeneous omponents of ~� are homogeneous of positivedegrees. The table in 3.7 shows that then the homogeneity is at least two, andby part (1) of Lemma 3.7 the homogeneous omponent of degree two sits in thesubspae ~gE1 ^ ~g2 
 ~gV�1. In partiular, for any ~u 2 ~G, the restrition of ~�(~u) to�2~g�2 is homogeneous of degree at least three, whih implies that ~�(~u) has valuesin ~g�1 � ~p, i.e. for the natural projetion � : ~g ! ~g=(~g�1 � ~p) we get � Æ ~�(~u) = 0.



ON THE GEOMETRY OF CHAINS 17Using the notation of the proof of Lemma 3.6, onsider two elementsX;Y 2 ~g�2.From that proof, we see that(� Æ ~�(j(u)))(X;Y ) = (� Æ� Æ �(u))0�0� 0 0 0X1 0 00 Xt2 01A ;0� 0 0 0Y1 0 00 Y t2 01A1A :By regularity, �(u)(�2g�1) � g�1 � p. From the de�nition in 3.5 it is evident that� indues a linear isomorphism g=(g�2 � p) ! ~g=(~g�1 � ~p). Hene we onludethat if ~!� is regular and normal, then �(u)(�2g�1) � p. From the table in 3.7we see that this implies that the homogeneous omponent of degree one of � hasto vanish identially, and then further that the homogeneous omponent of degreetwo has values in p. Sine �2g�2 = 0, omponents of homogeneity at least threeautomatially have values in p, so we see that ! is torsion free.To prove suÆieny, we �rst need two fats on the urvature funtion � of atorsion free normal paraboli geometry of type (G;P ). On the one hand, the map�� as de�ned in 3.6 an be written as the sum ��1 + ��2 of two P{equivariant maps,with ��1 orresponding to the �rst two summands and ��2 orresponding to the lastsummand in the de�nition. We laim that � has values in the kernels of bothoperators ��i . On the other hand, one easily veri�es that the subspae bp � p formedby all matries of the form 0�0 u d0 B v0 0 01A is a P{submodule. (Indeed, this is thepreimage in p of the semisimple part of the redutive algebra g0 = p=p+.) Ourseond laim is that �(u)(X;Y ) 2 bp for all u 2 G and all X;Y .To prove both laims, it suÆes to show that � has values in the P{submodule�20p+
bp � �2p+
p. Here �20p+ is the kernel of the P{homomorphism�2p+ ! p+de�ned by the Lie braket on p+, so �20p+ 
 g = ker(��2 ).In the ase n = 1, this is evident, sine from the table in 3.7 we see that the lowestnonzero homogeneous omponent of �(u) is of degree 4, vanishes on �2g�1 and hasvalues in p+. For homogeneous omponents of higher degree, these two propertiesare automatially satis�ed, and we onlude that �(u) 2 g1 ^ g2 
 p+ � �20p+ 
 bp.In the ase n > 1, we see from the table in 3.7 that by torsion freeness thelowest homogeneous omponent of �(u) must be of homogeneity 2. By part (1) ofLemma 3.7 it has values in ker(�) � �2g1 
 g0. Sine this omponent of ker(�) isa highest weight part, it lies in the kernel of all possible traes, and hene it mustbe ontained in the tensor produt of �2g1 \�20p+ with the semisimple part of g0.Hene ker(�) is ontained in the P{submodule �20p+ 
bp so, by part (2) of Lemma3.7, the urvature funtion � has values in that submodule.In view of Proposition 3.3 and the proof of Theorem 3.6, to prove that ~!� isregular and normal, it suÆes to verify that the map F (u) : �2~g� ! ~g de�ned byF (u)(X;Y ) := �(�(u)(��1(X); ��1(Y ))) lies in the kernel of �� for all u 2 G. Toompute ��F (u), it is better to view F (u) as an element of �2~p+
~g, and we want torelate this to �(u), viewed as an element of �2p+
g. Therefore, we have to omputethe map ' : p+ ! ~p+, whih is dual to the omposition of the anonial projetiong=q ! g=p with ��1 : ~g=~p ! g=q, sine by onstrution F (u) = (�2' 
 �)(�(u)).Reall that the duality between g=p and p+ (and likewise for the other algebra)is indued by the Killing form. Sine the Killing form of a simple Lie algebra isuniquely determined up to a nonzero multiple by invariane, we may as well usethe trae form on both sides, whih leads to a nonzero multiple of '. But then the



18 ANDREAS �CAP VOJT�ECH �Z�ADN�IKomputation is very easy, showing that'0�0 Z  0 0 W0 0 0 1A = 0BB�0  Z W t0 0 0 00 0 0 00 0 0 0 1CCA :In partiular, '(p+) � ~gE1 � ~g2, whih implies that ��2 (F (u)) = 0 for all u.On the other hand, the formula for � from 3.5 shows that �(bp) � ~gV�1�~g0�~gE1 �~g2, and the ~g0{omponent is ontained in the bottom right 2n � 2n blok. Thisshows that for Z 2 p+ and A 2 bp we have ['(Z); �(A)℄ 2 ~gE1 �~g2. One immediatelyveri�es diretly that the ~gE1 {omponent of ['(Z); �(A)℄ equals the ~gE1 {omponent of�([Z;A℄), while the ~g2{omponent of ['(Z); �(A)℄ equals twie the ~g2{omponentof �([Z;A℄). From the de�nition of ��1 we now onlude that �2'
� maps ker(��1)to ker(��1 ), so we also get ��1(F (u)) = 0 for all u. �4. AppliationsFor torsion free Lagrangean ontat strutures, Theorem 3.8 provides us withan expliit desription of the paraboli geometry determined by the path geometryof hains. In partiular, we obtain an expliit formula for the Cartan urvaturewhih is the basis for the appliations disussed in this setion. The main result isthat one an essentially reonstrut the torsion free Lagrangean ontat struturefrom the harmoni urvature of this paraboli geometry. In partiular, this impliesthat a ontat di�eomorphism whih maps hains to hains has to either preserveor swap the subbundles de�ning the Lagrangean ontat struture. On the way, wean prove that hains an never be desribed by linear onnetions and that onlyloally at Lagrangean ontat strutures give rise to torsion free path geometriesof hains.4.1. Deomposing the Cartan urvature. For a torsion free Lagrangean on-tat struture with urvature �, the urvature ~� of the normal Cartan onnetionassoiated to the path geometry of hains is determined by the formula from Propo-sition 3.3, whih holds on j(G) � G �i ~P . In this formula, there are two terms,one of whih depends on � while the other one only omes from the map �. Ourmain task is to extrat parts of ~� whih only depend on one of the two terms. ThediÆulty is that this has to be done in a geometri way without knowing the subsetj(G) in advane.The urvature funtion ~� has values in the P{module �2~p+ 
 ~g, and using themap ' from the proof of Theorem 3.8, the formula from Proposition 3.3 reads as~�(j(u)) = (�2' 
 �)(�(u)) + 	�. Now ~p+ ontains the P{invariant subspae ~g2.Correspondingly, we obtain P{invariant subspaes �2~g2 � ~p+ ^ ~g2 � �2~p+. In theproof of Theorem 3.8, we have seen that ' has values in ~gE1 � ~g2, whene �2' hasvalues in ~p+ ^ ~g2. From Lemma 3.6 we know that 	� 2 ~p+ ^ ~g2
 ~g, so we onludethat ~�(j(u)) lies in this ~P{submodule. By equivariany, all values of the urvaturefuntion lie in ~p+ ^ ~g2 
 ~g � �2~p+ 
 ~g.On the quotient ~p+=~g2, the subgroup ~P+ � ~P ats trivially, so we an identifythis quotient with the ~G0{module ~g1 = ~gE1 � ~gV1 . Correspondingly, we get ~P{equivariant projetions �E : ~p+ ^ ~g2 
 ~g! ~gE1 ^ ~g2 
 ~g�V : ~p+ ^ ~g2 
 ~g! ~gV1 ^ ~g2 
 ~g:From the desription of the image of ' in the proof of Theorem 3.8 we onludethat (�2'
�)(�(u)) 2 ker(�V ). On the other hand, Lemma 3.6 in partiular showsthat �V (	�) 6= 0 and 	� 2 ker(�E).



ON THE GEOMETRY OF CHAINS 19Theorem. Let (M;L;R) be a torsion free Lagrangean ontat struture.(1) There is no linear onnetion on the tangent bundle TM whih has the hainsamong its geodesis.(2) The paraboli geometry assoiated to the path geometry of hains on ~M =P0(TM ) is torsion free if and only if (M;L;R) is loally at, i.e. loally isomorphito the homogeneous model G=P .Proof. (1) Suppose that r is a linear onnetion on TM whose geodesis in dire-tions transverse to L�R are parametrizations of the hains. Sine symmetrizing aonnetion does not hange the geodesis, we may without loss of generality assumethat r is torsion free. Then we an look at the assoiated projetive struture [r℄on M and use the mahinery of orrespondene spae from [3℄. The fat that thegeodesis of r are the hains exatly means that the path geometry of hains on ~Mis isomorphi to an open subgeometry of the orrespondene spae C(M; [r℄), see4.7 of [3℄. In partiular, the Cartan urvature ~� is the restrition of the urvatureof this orrespondene spae. By [3, Proposition 2.4℄ this urvature has the prop-erty that it vanishes upon insertion of one tangent vetor ontained in the vertialbundle of ~M !M . But this ontradits the fat that �V Æ ~� 6= 0 we have observedabove.(2) By Theorem 3.6, the path geometry of hains assoiated to a loally at La-grangean ontat struture is torsion free. Conversely, if the Cartan onnetion~! is torsion free, then aording to part (1) of Lemma 3.7 and the tables in 3.7,the lowest nonzero homogeneous omponent of ~� must be of degree at least three,and the harmoni urvature must have values in ~gV1 ^ ~g2 
 ~g0 � ker(�E). Bypart (2) of Lemma 3.7 the whole urvature ~� has values in ker(�E). Above, wehave observed that 	� 2 ker(�E) so we onlude that for eah u 2 G we get�E Æ (�2'
 �)(�(u)) = 0.In the proof of Theorem 3.8 we see that ' is a linear isomorphism p+ ! ~gE1 �~g2,and hene ~gE1 ^ ~g2 is ontained in the image of �2'. Hene we onlude that� Æ �(u) = 0 and sine � is injetive, the result follows. �4.2. Harmoni urvature. We have disussed the de�nition of harmoni urva-ture already in 3.7. Let �H be the natural projetion from ker(��) � �2~p+ 
 ~g tothe quotient ker(��)= im(��). Sine this is a ~P{equivariant map, the omposition~�H = �H Æ ~� : ~G ! ker(��)= im(��) de�nes a smooth setion of the assoiated bun-dle ~G � ~P ker(��)= im(��), whih is the main geometri invariant of the paraboligeometry assoiated to the path geometry of hains.From 3.7 we also know that ~P+ ats trivially on the quotient ker(��)= im(��)and we may identify it with the ~G0{module ker(�) � �2~p+ 
 ~g. From the tablein 3.7, we see that this module ontains two irreduible omponents in positivehomogeneity, whih are the highest weight omponents of the subrepresentations~gE1 ^~g2
~gV�1 respetively ~gV1 ^~g2
~g0. Correspondingly, we obtain deompositions�H = �EH + �VH and ~�H = ~�EH + ~�VH .Lemma. Let �E and �V be the projetions on ~p+ ^~g2
~g de�ned in 4.1. Then therestrition of �EH (respetively �VH) to ker(��)\ (~p+ ^ ~g2 
 ~g) fatorizes through �E(respetively �V ).Proof. By Kostant's version of the Bott{Borel{Weil theorem, see [13℄, the ~G0{irreduible omponents ontained in ker(�) our with multipliity one, even within��~p+
~g. To obtain �E and �V , we used the projetion ~p+^~g2
~g ! ~g1^~g2
~g withkernel �2~g2 
 ~g. By the multipliity one result and the fat that both omponentsof ker(�) are ontained in ~g1 ^ ~g2 
 ~g, there is no nonzero ~G0{equivariant map�2~g2
~g ! ker(��)= im(��). Hene eah of the projetions �H , �EH and �VH fatorizes



20 ANDREAS �CAP VOJT�ECH �Z�ADN�IKthrough ~g1 ^ ~g2 
 ~g. Looking at the resulting map for �EH , we see that again bymultipliity one, the subspae ~gV1 ^ ~g2 
 ~g must be ontained in the kernel, sowe onlude that �EH fatorizes through �E . In the same way one shows that �VHfatorizes through �V . �Proposition. Let (M;L;R) be a torsion free Lagrangean ontat struture, and let~�H = ~�EH + ~�VH be the harmoni urvature of the regular normal paraboli geometrydetermined by the path geometry of hains.Then the funtion ~G ! ~gV1 ^~g2
~g0 orresponding to ~�VH is a nonzero multiple ofthe unique equivariant extension of the onstant funtion 	� (ompare with Lemma3.6) on j(G).Proof. We have to ompute the funtion �VH Æ ~�. By the lemma, �VH fator-izes through the projetion �V introdued in 4.1, and from there we know that�V (~�(j(u))) = �V (	�). Hene we see that (�VH Æ ~�)jj(G) = �VH(	�). Now 	� 2~gV1 ^ ~g2 
 ~g0 by Lemma 3.6, and the values even lie in the semisimple part of ~g0,whih may be identi�ed with sl(~g�2). Evidently, ~gV1 �= ~gE�1
~g2 as a ~G0{module, sowe may interpret 	� as an element of ~gE�1 
 (
3~g2)
 ~g�2. In Lemma 3.6 and theproof of Theorem 3.6 we have seen that in this piture 	� lies in the irreduibleomponent ~gE�1 
 (S3~g2 
 ~g�2)0, where the subsript denotes the trae free part.Passing bak to ~gV1 ^ ~g2 
 ~g0 this exatly means that 	� lies in the highest weightsubspae, whih is the intersetion with ker(�). Now �VH restrits to ~G0{equivariantlinear isomorphism on this intersetion, whih implies the result. �Remark. Similarly to the proof above, one shows that the harmoni urvatureomponent ~�EH is the extension of a omponent of j(u) 7! (�2' 
 �)(�(u)). Sinewe expliitly know �2'
 �, this an be used to obtain a more expliit desriptionof the seond harmoni urvature omponent. From part (2) of Theorem 4.1 and[3, 4.7℄ we see that vanishing of ~�EH is equivalent to loal atness of the originalLagrangean ontat struture, so � is ompletely enoded in ~�EH .4.3. Passing to the underlyingmanifold. The harmoni urvature omponentdetermined by the funtion ~�VH is a setion of the bundle assoiated to ~gV1 ^~g2
~g0.In the proof of Proposition 4.2 we have seen that we an replae that spae by~gE�1 
 (
3~g2) 
 ~g2. The orresponding bundle is E 
 
3F � 
 F ! ~M , whereF := T ~M=(E � V ). Sine E � TM is a line bundle, we an view ~�VH as a setionof 
3F � 
 F whih is determined up to a nonzero multiple.To relate this to the underlying manifoldM , reall that ~M is an open subset inthe projetivized tangent bundle ofM . A point in ~M is a line in some tangent spaeTxM that is transversal to Lx�Rx. We have noted in 2.4 that TM �= G�P g=p andT ~M �= G�Q g=q, and the tangent map of the projetion � : ~M !M orresponds tothe natural projetion g=q ! g=p. Fix a point ` 2 ��1(x). Then for eah � 2 TxMthere is a lift ~� 2 T` ~M and we an onsider the lass of ~� in F` = T` ~M=(E` � V`).Sine V` is the vertial subbundle, this lass is independent of the hoie of thelift and from the expliit desription of T� we see that restriting to Lx � Rx, weobtain a linear isomorphism Lx � Rx �= F`.Fixing x and ` we therefore see that the harmoni urvature omponent orre-sponding to ~�VH gives rise to an element of 
3(Lx � Rx)� 
 (Lx � Rx), whih isdetermined up to a nonzero multiple. To write down this map expliitly, we �rstneed the Levi braketL : (Lx �Rx)� (Lx � Rx)! TxM=(Lx �Rx):Sine this has values in a one{dimensional spae, we may view it as a real valuedbilinear map determined up to a nonzero multiple. Further, we denote by J the



ON THE GEOMETRY OF CHAINS 21almost produt struture orresponding to the deomposition L � R. This meansthat J is the endomorphism of L � R whih is the identity on L and minus theidentity on R. Using this we an now formulate:Lemma. The element of 
3(Lx 
Rx)� 
 (Lx �Rx) obtained from ~�VH above is (anonzero multiple of) the omplete symmetrization of the map(�; �; �) 7! L(�;J(�))J(�):Proof. This is a reinterpretation of the proof of Lemma 3.6. Observe that J orre-sponds to the map �X1X2� 7! � X1�X2� in the notation there. Sine L orrespondsto [ ; ℄ : g�1 � g�1 ! g�2, omputing the braket240� 0 0 0X1 0 00 Xt2 01A ;0� 0 0 0Y1 0 00 �Y t2 01A35 ;we see that the expression hX1; Y2i+hY1; X2i in the proof of Lemma 3.6 orrespondsto L(�;J(�)). �4.4. Reonstruting the Lagrangean ontat struture. Now we an �nallyshow that the Cartan urvature of the path geometry of hains an be used to(almost) reonstrut the Lagrangean ontat struture on M that we have startedfrom:Theorem. Let (M;L;R) be a torsion free Lagrangean ontat struture. Thenfor eah x 2 M , the subset Lx [ Rx � TxM an be reonstruted from the har-moni urvature of the normal paraboli geometry assoiated to the path geometryof hains.Proof. In view of the results in 4.2 and 4.3 it suÆes to show that Lx [Rx an bereovered from the omplete symmetrization S of the map(�; �; �) 7! L(�;J(�))J(�):First we see that S(�; �; �) = 0 if and only if L(�;J(�)) = 0. Note that this is alwayssatis�ed for � 2 Lx [Rx. Fixing an element � with this property, we see thatS(�; �; �) = 2L(�;J(�))J(�):By non{degeneray of L, given a nonzero element � we an always �nd � suh thatL(�;J(�)) 6= 0. Hene we see that � is an eigenvetor for J (whih by de�nition isequivalent to � 2 Lx [ Rx) if and only if S(�; �; �) = 0 and there is an element �suh that S(�; �; �) is a nonzero multiple of �. �Corollary. Let (M;L;R) be a torsion free Lagrangean ontat struture and let f :M !M be a ontat di�eomorphism whih maps hains to hains. Then either fis an automorphism or an anti{automorphism of the Lagrangean ontat struture.Here anti{automorphism means that Txf(Lx) = Rf(x) and Txf(Rx) = Lf(x) for allx 2M .Proof. By assumption, f indues an automorphism ~f of the path geometry of hainsassoiated to (M;L;R). This automorphism has to pull bak the Cartan urvature~� and also the harmoni urvature �H to itself. From the theorem we onludethat this implies Txf(Lx [Rx) = Lf(x) [Rf(x), and this is only possible if f is anautomorphism or an anti{automorphism. �



22 ANDREAS �CAP VOJT�ECH �Z�ADN�IK5. Partially integrable almost CR struturesWhat we have done for Lagrangean ontat strutures so far an be easilyadapted to deal with partially integrable almost CR struture. We will only brieysketh the neessary hanges in this setion.5.1. A non{degenerate partially integrable almost CR struture on a smoothmanifold M is given by a ontat struture H � TM together with an almostomplex struture J on H suh that the Levi braket L has the property thatL(J�; J�) = L(�; �) for all �; �. Then L is the imaginary part of a non{degenerateHermitian form and we denote the signature of this form by (p; q). Suh a stru-ture of signature (p; q) is equivalent to a regular normal paraboli geometry of type(G;P ), where G = PSU (p + 1; q + 1) and P � G is the stabilizer of a point inCPn+1 , n = p + q, orresponding to a null line, see [4, 4.15℄. The group G is thequotient of SU (p+1; q+1) by its enter (whih is isomorphi toZn+2) and we willwork with representative matries as before.We will use the Hermitian form of signature (p; q) on Cn+1 orresponding to(z0; : : : ; zn+1) 7! z0�zn+1 + zn+1�z0 +Ppj=1 jzj j2 �Pnj=p+1 jzj j2:Then the deomposition on sl(n + 2; C ) with blok sizes 1, n, and 1 restrits to aontat grading on the Lie algebra g of G. The expliit form for signature (n; 0)an be found in [4, 4.15℄. In general, g onsists of all matries of the form0�w Z izX A �IZ�ix �X�I � �w 1Awith bloks of sizes 1, n, and 1, w 2 C , x; z 2 R,X 2 Cn , Z 2 Cn� , and A 2 u(p; q)suh that w � �w + tr(A) = 0. Here Iis the diagonal matrix with the �rst p entriesequal to 1 and the remaining q entries equal to �1.It is easy to show that the subgroup Q � G orresponds to matries of the form0�' 0 ia'0 � 00 0 �'�11A ;with ' 2 C n f0g, a 2 R and � 2 U (p; q) suh that '2j'j2 det(�) = 1.5.2. Next we need an analog of the pair (i; �) introdued in 3.5. As before westart with a manifoldM of dimension 2n + 1, so again ~G = PGL(2n+ 2;R). Wewill use a blok deomposition into bloks of sizes 1, 1, n, and n as before. Theright hoie turns out to bei0�' 0 ia'0 � 00 0 �'�11A := 0BBB�j'j �aj'j 0 00 j'j�1 0 00 0 <( j'j' �) �=( j'j' �)0 0 =( j'j' �) <( j'j' �) 1CCCA ;�0�w Z izX A �IZ�ix �X�I � �w 1A := 0BB�<(w) �z <(Z) �=(Z)x �<(w) �=(X�I) �<(X�I)<(X) =(IZ�) <(A) �=(A) +=(w)=(X) �<(IZ�) =(A) �=(w) <(A) 1CCA ;where < and = denote real and imaginary part, respetively, and we write =(w) forthe appropriate multiple of the identity matrix.



ON THE GEOMETRY OF CHAINS 23There is an analog of Lemma 3.6 (with similar proof), the only hange one hasto make is that the map whose alternation has to be used is given by(X;Y; Z) 7! (hX1;IY1i + hX2;IY2i)��Z2Z1 � :This map has similar properties as the one from 3.6 so the analogs of Theorem 3.6and Corollary 3.6 hold.Conerning the struture of ker(�) the situation is also similar to the ase ofLagrangean ontat strutures, sine the deomposition of ker(�) an be deter-mined from the omplexi�ations of g and p whih are the same in both ases. Theonly di�erene is that the two irreduible omponents for n = 1 respetively thetwo irreduible omponents ontained in homogeneity 1 in the ase n > 1 in theLagrangean ase orrespond to only one omponent here. This omponent howeverhas a omplex struture and it onsists of maps g�1 ^g�2 ! g1 whih are omplexlinear in the �rst variable respetively maps �2g�1 ! g�1, whih are onjugatelinear in both variables. For n > 1 this omponent is a torsion whih is up to anonzero multiple given by the Nijenhuis tensor. Vanishing of this omponent isequivalent to torsion freeness and to integrability of the almost CR struture, see[4, 4.16℄.Theorem. Let (M;H; J) be a partially integrable almost CR struture and let(p : G ! M;!) be the orresponding regular normal paraboli geometry of type(G;P ). Then the paraboli geometry (G �Q ~P ! P0(TM ); ~!�) onstruted usingthe extension funtor assoiated to the pair (i; �) from 5.1 is regular and normal ifand only if ! is torsion free, i.e. the almost CR struture is integrable.Proof. Apart from some numerial fators whih ause no problems, this is om-pletely parallel to the proof of Theorem 3.8. �Hene the diret relation between the regular normal paraboli geometries asso-iated to a partially integrable almost CR struture respetively to the assoiatedpath geometry of hains works exatly on the the sublass of CR strutures.5.3. Appliations. The developments of setion 4 an be applied to the CR asewith only minimal hanges. In analog of Lemma 4.3, one obtains S 2 
3H�x 
Hx,whih is the omplete symmetrization of(�; �; �) 7! L(�; J(�))J(�);where J is the almost omplex struture on H.Theorem. Let (M;H; J) be a CR struture.(1) There is no linear onnetion on TM whih has the hains among its geodesis.(2) The path geometry of hains is torsion free if and only if the CR struture isloally at.(3) The almost omplex struture J an be reonstruted up to sign from the har-moni urvature of the assoiated path geometry of hains.Proof. The only hange ompared to setion 4 is that one has to extend S to theomplexi�ed bundle H 
 C . As in the proof of Theorem 4.4 one then reonstrutsthe subset H1;0x [H0;1x � Hx
 C for eah x 2M , i.e. the union of the holomorphiand the anti{holomorphi part. This union determines J up to sign. �This theorem now also implies that the signature of the CR struture, whih isenoded in L(�; J(�)), an be reonstruted from the path geometry of hains. Asa orollary, we obtain a ompletely independent proof of the analog of Corollary4.4, whih is due to [7℄ for CR strutures:
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