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ON THE GEOMETRY OF CHAINSANDREAS �CAPVOJT�ECH �Z�ADN�IKAbstra
t. The 
hains studied in this paper generalize Chern{Moser 
hainsfor CR stru
tures. They form a distinguished family of one dimensional sub-manifolds in manifolds endowed with a paraboli
 
onta
t stru
ture. Both theparaboli
 
onta
t stru
ture and the system of 
hains 
an be equivalently en-
oded as Cartan geometries (of di�erent types). The aim of this paper is tostudy the relation between these two Cartan geometries for Lagrangean 
on-ta
t stru
tures and partially integrable almost CR stru
tures.We develop a general method for extending Cartan geometries whi
h gen-eralizes the Cartan geometry interpretation of Fe�erman's 
onstru
tion of a
onformal stru
ture asso
iated to a CR stru
ture. For the two stru
tures inquestion, we show that the Cartan geometry asso
iated to the family of 
hains
an be obtained in that way if and only if the original paraboli
 
onta
t stru
-ture is torsion free. In parti
ular, the pro
edure works exa
tly on the sub
lassof (integrable) CR stru
tures.This tight relation between the two Cartan geometries leads to an expli
itdes
ription of the Cartan 
urvature asso
iated to the family of 
hains. Onthe one hand, this shows that the homogeneous models for the two paraboli

onta
t stru
tures give rise to examples of non{
at path geometries with largeautomorphism groups. On the other hand, we show that one may (almost)re
onstru
t the underlying torsion free paraboli
 
onta
t stru
ture from theCartan 
urvature asso
iated to the 
hains. In parti
ular, this leads to a very
on
eptual proof of the fa
t that 
hain preserving 
onta
t di�eomorphisms areeither isomorphisms or anti{isomorphisms of paraboli
 
onta
t stru
tures.1. Introdu
tionParaboli
 
onta
t stru
tures are a 
lass of geometri
 stru
tures having an under-lying 
onta
t stru
ture. They admit a 
anoni
al normal Cartan 
onne
tion 
orre-sponding to a 
onta
t grading of a simple Lie algebra. The best known examplesof su
h stru
tures are non{degenerate partially integrable almost CR stru
tures ofhypersurfa
e type. The 
onstru
tion of the 
anoni
al Cartan 
onne
tion is due toChern and Moser ([8℄) for the sub
lass of CR stru
tures, and to Tanaka ([16℄) ingeneral.In the approa
h of Chern and Moser, a 
entral role is played by a 
anoni
al
lass of unparametrized 
urves 
alled 
hains. For ea
h point x and ea
h dire
tion� at x, whi
h is transverse to the 
onta
t distribution, there is a unique 
hainthrough x in dire
tion �. In addition, ea
h 
hain 
omes with a proje
tive 
lass ofdistinguished parametrizations. The notion of 
hains easily generalizes to arbitraryparaboli
 
onta
t stru
tures, and the 
hains are easy to des
ribe in terms of theCartan 
onne
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2 ANDREAS �CAP VOJT�ECH �Z�ADN�IKA path geometry on a smooth manifold M is given by a smooth family of un-parametrized 
urves onM su
h that for ea
h x 2M and ea
h dire
tion � at x thereis a unique 
urve through x in dire
tion �. The best way to en
ode this stru
tureis to pass to the proje
tivized tangent bundle PTM , the spa
e of all lines in TM .Then a path geometry is given by a line subbundle in the tangent bundle of PTMwith 
ertain properties, see [9℄ and [11℄ for a modern presentation. It turns outthat these stru
tures are equivalent to regular normal Cartan geometries of a 
er-tain type, whi
h fall under the general 
on
ept of paraboli
 geometries, see se
tion4.7 of [3℄.In the des
ription as a Cartan geometry, path geometries immediately generalizeto open subsets of the proje
tivized tangent bundle. In parti
ular, given a mani-fold M endowed with a paraboli
 
onta
t stru
ture, the 
hains give rise to a pathgeometry on the open subset P0TM � PTM formed by all lines transversal to the
onta
t subbundle. The general question addressed in this paper is how to des
ribethe resulting Cartan geometry on P0TM in terms of the original Cartan geometryon M . We study this in detail in the 
ase of Lagrangean 
onta
t stru
tures and,in the end, brie
y indi
ate how to deal with partially integrable almost CR stru
-tures, whi
h 
an be viewed as a di�erent real form of the same 
omplex geometri
stru
ture.The �rst observation is that P0TM 
an be obtained as a quotient of the Cartanbundle G ! M obtained from the paraboli
 
onta
t stru
ture. More pre
isely,there is a subgroup Q � P su
h that P0TM �= G=Q. In parti
ular, G is a prin
ipalQ{bundle over P0TM and the 
anoni
al Cartan 
onne
tion ! 2 
1(G; g) asso
iatedto the paraboli
 
onta
t stru
ture 
an be also viewed as a Cartan 
onne
tion onG ! P0TM . The question then is whether the 
anoni
al Cartan geometry ( ~G !P0TM; ~!) determined by the path geometry of 
hains 
an be 
onstru
ted dire
tlyfrom (G ! P0TM;!).To atta
k this problem, we study a 
lass of extension fun
tors mapping Cartangeometries of some type (G;Q) to Cartan geometries of another type ( ~G; ~P ). Thesefun
tors have the property that there is a homomorphism between the two Cartanbundles, whi
h relates the two Cartan 
onne
tions. We show that in order toobtain su
h a fun
tor, one needs a homomorphism i : Q ! ~P (whi
h we assumeto be in�nitesimally inje
tive) and a linear map � : g ! ~g whi
h satisfy 
ertain
ompatibility 
onditions. There is a simple notion of equivalen
e for su
h pairs andequivalent pairs lead to naturally isomorphi
 extension fun
tors.There is a parti
ular simple sour
e of pairs (i; �) leading to extension fun
torsas above. Namely, one may start from a homomorphism G ! ~G and take i therestri
tion to Q and � the indu
ed homomorphism of Lie algebras. In a spe
ial
ase, this leads to the Cartan geometry interpretation of Fe�erman's 
onstru
tionof a 
anoni
al 
onformal stru
ture on a 
ir
le bundle over a CR manifold.One 
an 
ompletely des
ribe the e�e
t of the extension fun
tor asso
iated to apair (i; �) on the 
urvature of the Cartan geometries. Apart from the 
urvatureof the original geometry, also the deviation from � being a homomorphism of Liealgebras enters into the 
urvature of the extended Cartan geometry.An important feature of the spe
ial 
hoi
e for ( ~G; ~P ) that we are 
on
erned with,is a uniqueness result for su
h extension fun
tors. We show (see Theorem 3.4) that ifthe extension fun
tor asso
iated to a pair (i; �) maps lo
ally 
at geometries of type(G;Q) to regular normal geometries of type ( ~G; ~P ), then the pair (i; �) is alreadydetermined uniquely up to equivalen
e. For the two paraboli
 
onta
t stru
turesstudied in this paper, we show that there exist appropriate pairs (i; �) in 3.5 and5.2.



ON THE GEOMETRY OF CHAINS 3In both 
ases, the resulting extension fun
tor does not produ
e the 
anoni
alCartan geometry asso
iated to the path geometry of 
hains in general. We showthat the 
anoni
al Cartan 
onne
tion is obtained if and only if the original paraboli

onta
t geometry is torsion free. For a Lagrangean 
onta
t stru
ture this meansthat the two Lagrangean subbundles are integrable, while it is the usual integrability
ondition for CR stru
tures. This ties in ni
ely with the Fe�erman 
onstru
tion,where one obtains a 
onformal stru
ture for arbitrary partially integrable almost CRstru
tures, but the normal Cartan 
onne
tion is obtained by equivariant extensionif and only if the stru
ture is integrable (and hen
e CR).Finally, we dis
uss appli
ations of our 
onstru
tion, whi
h are based on an ana-lysis of the 
urvature of the 
anoni
al Cartan 
onne
tion asso
iated to the pathgeometry of 
hains. We show that 
hains never are geodesi
s of a 
onne
tion, andthey give rise to a torsion free path geometry if and only if the original paraboli

onta
t stru
ture is lo
ally 
at. Then we show that the underlying paraboli
 
onta
tstru
ture 
an be almost re
onstru
ted from the harmoni
 
urvature of the pathgeometry of 
hains. In parti
ular, this leads to a very 
on
eptual proof of thefa
t that a 
onta
t di�eomorphism whi
h maps 
hains to 
hains must (essentially)preserve the original torsion free paraboli
 
onta
t stru
ture.2. Paraboli
 
onta
t stru
tures, 
hains, and path geometriesIn this se
tion, we will dis
uss the 
on
epts of 
hains and the asso
iated pathgeometry for a paraboli
 
onta
t stru
ture, fo
using on the example of Lagrangean
onta
t stru
tures. We only brie
y indi
ate the 
hanges needed to deal with generalparaboli
 
onta
t stru
tures.2.1. Lagrangean 
onta
t stru
tures. The starting point to de�ne a paraboli

onta
t stru
ture is a simple Lie algebra g endowed with a 
onta
t grading, i.e. ave
tor spa
e de
omposition g = g�2 � g�1 � g0 � g1 � g2 su
h that [gi; gj℄ � gi+j ,g�2 has real dimension one, and the bra
ket g�1 � g�1 ! g�2 is non{degenerate.It is known that su
h a grading is unique up to an inner automorphism and itexists for ea
h non{
ompa
t non{
omplex real simple Lie algebra ex
ept sl(n;H),so(n; 1), sp(p; q), one real form of E6 and one of E7, see se
tion 4.2 of [19℄.Here we will mainly be 
on
erned with the 
onta
t grading of g = sl(n + 2;R),
orresponding to the following blo
k de
omposition with blo
ks of size 1, n, and 1:0� g0 gL1 g2gL�1 g0 gR1g�2 gR�1 g01A :We have indi
ated the splittings g�1 = gL�1� gR�1 respe
tively g1 = gL1 � gR1 , whi
hare immediately seen to be g0{invariant. Further, the subspa
es gL�1 and gR�1 ofg�1 are isotropi
 for [ ; ℄ : g�1 � g�1 ! g�2.Put G := PGL(n + 2;R), the quotient of GL(n + 2;R) by its 
enter. We willview G as the quotient of the group of matri
es whose determinant has modulusone by the two element subgroup generated by � id and work with representativematri
es. The group G always has Lie algebra g. For odd n, one 
an identifyG withSL(n + 2;R). For even n, G has two 
onne
ted 
omponents, and the 
omponent
ontaining the identity is PSL(n + 2;R).By G0 � P � G we denote the subgroups formed by matri
es whi
h are blo
kdiagonal respe
tively blo
k upper triangular with blo
k sizes 1, n, and 1. Then theLie algebras of G0 and P are g0 respe
tively p := g0 � g1 � g2. For g 2 G0, themap Ad(g) : g ! g preserves the grading while for g 2 P one obtains Ad(g)(gi) 2gi � � � � � g2 for i = �1; : : : ; 2. This 
an be used as an alternative 
hara
terizationof the two subgroups. The reason for the 
hoi
e of the spe
i�
 group G with Lie



4 ANDREAS �CAP VOJT�ECH �Z�ADN�IKalgebra g is that the adjoint a
tion identi�es G0 with the group of all automorphismsof the graded Lie algebra g�2 � g�1 whi
h in addition preserve the de
ompositiong�1 = gL�1 � gR�1.LetM be a smooth manifold of dimension 2n+1 and letH � TM be a subbundleof 
orank one. The Lie bra
ket of ve
tor �elds indu
es a tensorial map L : �2H !TM=H, and thatH is 
alled a 
onta
t stru
ture onM if this map is non{degenerate.A Lagrangean 
onta
t stru
ture on M is a 
onta
t stru
ture H � TM togetherwith a �xed de
ompositionH = L�R su
h that ea
h of the subbundles is isotropi
with respe
t to L. This for
es the two bundles to be of rank n, and L indu
esisomorphisms R �= L� 
 (TM=H) and L �= R� 
 (TM=H).In view of the des
ription of G0 above, the following result is a spe
ial 
ase ofgeneral prolongation pro
edures [17, 14, 4℄, see [15℄ and se
tion 4.1 of [3℄ for moreinformation on this spe
i�
 
ase.Theorem. Let H = L � R be a Lagrangean 
onta
t stru
ture on a manifold Mof dimension 2n + 1. Then there exists a prin
ipal P{bundle p : G ! M en-dowed with a Cartan 
onne
tion ! 2 
1(G; g) su
h that L = Tp(!�1(gL�1� p)) andR = Tp(!�1(gR�1 � p)). The pair (G; !) is uniquely determined up to isomorphismprovided that one in addition requires the 
urvature of ! to satisfy a normalization
ondition dis
ussed in 3.6.Similarly, for any 
onta
t grading of a simple Lie algebra g and a 
hoi
e of aLie group G with Lie algebra g, one de�nes a subgroup P � G with Lie algebrag0�g1�g2. One then obtains an equivalen
e of 
ategories between regular normalparaboli
 geometries of type (G;P ) and underlying geometri
 stru
tures, whi
h inparti
ular in
lude a 
onta
t stru
ture.The se
ond 
ase of su
h stru
tures we will be 
on
erned with in this paper, ispartially integrable almost CR stru
tures of hypersurfa
e type, see se
tion 5.2.2. Chains. Let (p : G !M;!) be the 
anoni
al Cartan geometry determined bya paraboli
 
onta
t stru
ture. Then one obtains an isomorphism TM �= G�P (g=p)su
h that H � TM 
orresponds to (g�1 � p)=p � g=p. Of 
ourse, we may identifyg�2�g�1 as a ve
tor spa
e with g=p and use this to 
arry over the natural P{a
tionto g�2 � g�1. Let Q � P be the stabilizer of the line g�2 under this a
tion. Byde�nition, this is a 
losed subgroup of P . Let us denote by G0 � P the 
losedsubgroup 
onsisting of all elements whose adjoint a
tion respe
ts the grading ofg. Then G0 has Lie algebra g0 and by Proposition 2.10 of [4℄, any element g 2 P
an be uniquely written in the form g0 exp(Z1) exp(Z2) for g0 2 G0, Z1 2 g1, andZ2 2 g2.Lemma. (1) An element g = g0 exp(Z1) exp(Z2) 2 P lies in the subgroup Q � P ifand only if Z1 = 0. In parti
ular, q = g0�g2 and for g 2 Q we have Ad(g)(g�2) �g�2 � q.(2) Let (p : G !M;!) be the 
anoni
al Cartan geometry determined by a paraboli

onta
t stru
ture. Let x 2 M be a point and � 2 TxM n Hx a tangent ve
tortransverse to the 
onta
t subbundle.Then there is a point u 2 p�1(x) � G and a unique lift ~� 2 TuG of � su
h that!(u)(~�) 2 g�2. The point u is unique up to the prin
ipal right a
tion of an elementg 2 Q � P .Proof. (1) We �rst observe that for a nonzero elementX 2 g�2, the mapZ 7! [Z;X℄is a bije
tion g1 ! g�1. This is easy to verify dire
tly for the examples dis
ussedin 2.1 and 5.1. For general 
onta
t gradings it follows from the fa
t that [g�2; g2℄
onsists of all multiples of the grading element, see se
tion 4.2 of [19℄.



ON THE GEOMETRY OF CHAINS 5By de�nition, g 2 Q if and only if Ad(g)(g�2) � g�2 � p. Now from the expres-sion g�1 = exp(�Z2) exp(�Z1)g�10 one immediately 
on
ludes that Ad(g�1)(X) is
ongruent to �[Z1; X℄ 2 g�1 modulo g�2 � p. Hen
e we see that g 2 Q if and onlyif Z1 = 0, and the rest of (1) evidently follows.(2) Choose any point v 2 p�1(x). Sin
e the verti
al bundle of G ! M equals!�1(p), there is a unique lift � 2 TvG of � su
h that !(v)(�) 2 g�2 � g�1. Theassumption that � is transverse to Hx means that !(v)(�) =2 g�1. For an elementg 2 P we 
an 
onsider v � g and Tvrg � � 2 Tv�gG, where v � g = rg(v) denotesthe prin
ipal right a
tion of g on v. Evidently, Tvrg � � is again a lift of � andequivarian
y of ! implies that !(v � g)(Tvrg � �) = Ad(g�1)(!(v)(�)).Writing !(v)(�) = X�2 + X�1 we have X�2 6= 0, so from above we see thatthere is an element Z 2 g1 su
h that [Z;X�2℄ = X�1. Putting g = exp(Z) 2 P we
on
lude that !(v �g)(Tvrg ��) 2 g�2�p. Hen
e putting u = v �g and subtra
ting anappropriate verti
al ve
tor from Tvrg � �, we have found a 
ouple (u; ~�) as required.Any other 
hoi
e of a preimage of x has the form u � g for some g 2 P . Any liftof � in Tu�gG is of the form Turg � ~� + � for some verti
al ve
tor �. Clearly, there isa 
hoi
e for � su
h that !(Turg � ~� + �) 2 g�2 if and only if !(Turg � ~�) 2 g�2 � pand equivarian
y of ! implies that this is equivalent to g 2 Q. �This lemma immediately leads us to 
hains: Fix a nonzero element X 2 g�2.For a point x 2 M and a line ` in TxM whi
h is transverse to Hx, we 
an �nda point u 2 G su
h that Tup � !�1u (X) 2 `. Denoting by ~X the \
onstant ve
tor�eld" !�1(X) we 
an 
onsider the 
ow of ~X through u and proje
t it onto Mto obtain a (lo
ally de�ned) smooth 
urve through x whose tangent spa
e at x is`. In se
tion 4 of [6℄ it has been shown that, as an unparametrized 
urve, thisis uniquely determined by x and `, and it 
omes with a distinguished proje
tivefamily of parametrizations.The lemma also leads us to a ni
e des
ription of the spa
e of all transversedire
tions: For a point u 2 G, we obtain a line in Tp(u)M whi
h is transverseto Hp(u), namely Tp(!�1u (g�2)). This de�nes a smooth map G ! PTM , wherePTM denotes the proje
tivized tangent bundle of M . Sin
e P a
ts freely on Gso does Q and hen
e G=Q is a smooth manifold. By the lemma, we obtain adi�eomorphism from G=Q to the open subset P0TM � PTM formed by all lineswhi
h are transverse to the 
onta
t distribution H.2.3. Path geometries. Classi
ally, path geometries are asso
iated to 
ertain fam-ilies of unparametrized 
urves in a smooth manifold. Suppose that in a manifoldZ we have a smooth family of 
urves su
h that through ea
h point of Z there isexa
tly one 
urve in ea
h dire
tion. Let PTZ be the proje
tivized tangent bundleof Z, i.e. the spa
e of all lines through the origin in tangent spa
es of Z. Given aline ` in TxZ, we 
an 
hoose the unique 
urve in the family whi
h goes through xin dire
tion `. Choosing a lo
al regular parametrization 
 : I ! Z of this 
urve weobtain a lift ~
 : I ! PTZ by de�ning ~
(t) to be the line in T
(t)Z generated by 
0(t).Choosing a di�erent regular parametrization, we just obtain a reparametrizationof ~
, so the submanifold ~
(I) � PTZ is independent of all 
hoi
es. These 
urvesfoliate PTZ, and their tangent spa
es give rise to a line subbundle E � TPTZ.This subbundle has a spe
ial property: Similarly to the tautologi
al line bundleon a proje
tive spa
e, a proje
tivized tangent bundle 
arries a tautologi
al subbun-dle � � TPTZ of rank dim(Z). By de�nition, given a line ` � TzZ, a tangentve
tor � 2 T`PTZ lies in �` if and only if its image under the tangent map ofthe proje
tion PTZ ! Z lies in the line `. By 
onstru
tion, the line subbundle Easso
iated to a family of 
urves as above always is 
ontained in � and is transverseto the verti
al subbundle V of PTZ ! Z. Hen
e we see that � = E � V .



6 ANDREAS �CAP VOJT�ECH �Z�ADN�IKConversely, having given a de
omposition � = E�V of the tautologi
al bundle,we 
an proje
t the leaves of the foliation of PTZ de�ned by E to the manifoldZ toobtain a smooth family of 
urves in Z with exa
tly one 
urve through ea
h point inea
h dire
tion. Hen
e one may use the de
omposition � = E � V as an alternativede�nition of su
h a family of 
urves, and this de
omposition is usually referred toas a path geometry on Z. It is easy to verify that the Lie bra
ket of ve
tor �eldsindu
es an isomorphism E 
 V ! TPTZ=�.It turns out that path geometries also admit an equivalent des
ription as regularnormal paraboli
 geometries. Putting m := dim(Z)�1 we 
onsider the Lie algebra~g := sl(m + 2;R) with the j2j{grading obtained by a blo
k de
omposition0� ~g0 ~gE1 ~g2~gE�1 ~g0 ~gV1~g�2 ~gV�1 ~g01A :as in 2.1, but this time with blo
ks of size 1, 1, and m. Hen
e ~gE�1 has dimension1 while ~gV�1 and ~g�2 are all m{dimensional. Put ~G := PGL(m + 2;R) and let~G0 � ~P � ~G be the subgroups formed by matri
es whi
h are blo
k diagonalrespe
tively blo
k upper triangular with blo
k sizes 1, 1, and m. Then ~G0 and~P have Lie algebras ~g0 respe
tively ~p := ~g0 � ~g1 � ~g2, where ~g1 = ~gE1 � ~gV1 .The adjoint a
tion identi�es ~G0 with the group of automorphisms of the gradedLie algebra ~g�2�~g�1 whi
h in addition preserve the de
omposition ~g�1 = ~gE�1�~gV�1.Hen
e the following result is a spe
ial 
ase of the general prolongation pro
edures[17, 14, 4℄, see se
tion 4.7 of [3℄ for this spe
i�
 
ase.Theorem. Let ~Z be a smooth manifold of dimension 2m+1 endowed with transver-sal subbundles E and V in T ~Z of rank 1 and m, respe
tively, and put � := E�V �T ~Z. Suppose that the Lie bra
ket of two se
tions of V is a se
tion of � and thatthe tensorial map E 
 V ! T ~Z=� indu
ed by the Lie bra
ket of ve
tor �elds is anisomorphism.Then there exists a prin
ipal bundle ~p : ~G ! ~Z with stru
ture group ~P en-dowed with a Cartan 
onne
tion ~! 2 
1( ~G;~g) su
h that E = T ~p(~!�1(~gE�1� ~p)) andV = T ~p(~!�1(~gV�1 � ~p)). The pair ( ~G; ~!) is uniquely determined up to isomorphismprovided that ~! is required to satisfy a normalization 
ondition dis
ussed in 3.6.In parti
ular, a family of paths on Z as before gives rise to a Cartan geometry onPTZ. This immediately generalizes to the 
ase of an open subset of PTZ, i.e. the
ase where paths are only given through ea
h point in an open set of dire
tions.It turns out that for m 6= 2, the assumptions of the theorem already imply thatthe subbundle V � T ~Z is involutive. Then ~Z is automati
ally lo
ally di�eomorphi
to a proje
tivized tangent bundle in su
h a way that V is mapped to the verti
alsubbundle and � to the tautologi
al subbundle. Hen
e for m 6= 2, the geometriesdis
ussed in the theorem are lo
ally isomorphi
 to path geometries.2.4. The path geometry of 
hains. From 2.2 we see that for a manifold Mendowed with a paraboli
 
onta
t stru
ture the 
hains give rise to a path geometryon the open subset ~M := P0TM of the proje
tivized tangent bundle ofM . We 
aneasily des
ribe the 
orresponding 
on�guration of bundles expli
itly: Denoting by(p : G ! M;!) the Cartan geometry indu
ed by the paraboli
 
onta
t stru
ture,we know from 2.2 that ~M = G=Q, where Q � P denotes the stabilizer of the line ing=p 
orresponding to g�2 � g�2�g�1. In parti
ular, G is a Q{prin
ipal bundle over~M and ! is a Cartan 
onne
tion on G ! ~M . This implies that T ~M = G �Q g=q,and the tangent map to the proje
tion � : ~M ! M 
orresponds to the obviousproje
tion g=q ! g=p. In parti
ular, the verti
al bundle V = ker(T�) 
orresponds



ON THE GEOMETRY OF CHAINS 7to p=q � g=q. From the 
onstru
tion of the isomorphism G=Q ! ~M in 2.2, it isevident that the tautologi
al bundle � 
orresponds to (g�2 � p)=q. By part (1) ofLemma 2.2, the subspa
e (g�2 � q)=q � g=q is Q{invariant, thus it gives rise to aline subbundle E in �, whi
h is 
omplementary to V . By 
onstru
tion, this exa
tlydes
ribes the path geometry determined by the 
hains.If dim(M ) = 2n+1, then the dimension of ~M is 4n+1. Put ~G := PGL(2n+2;R)and let ~P � ~G be the subgroup des
ribed in 2.3. Then by Theorem 2.3 the path ge-ometry on ~M gives rise to a 
anoni
al prin
ipal bundle ~G ! ~M with stru
ture group~P endowed with a 
anoni
al normal Cartan 
onne
tion ~! 2 
1( ~G;~g). The mainquestion now is whether there is a dire
t relation between the Cartan geometries(G ! ~M;!) and ( ~G ! ~M; ~!).The only reasonable way to relate these two Cartan geometries is to 
onsidera morphism j : G ! ~G of prin
ipal bundles and 
ompare the pull{ba
k j�~! to !.This means that j is equivariant, so we �rst have to 
hoose a group homomorphismi : Q! ~P and require that j(u � g) = j(u) � i(g) for all g 2 Q. Having 
hosen i andj, we have j�~! 2 
1(G; ~g) and the only way to dire
tly relate this to ! 2 
1(G; g) isto have j�~! = � Æ! for some linear map � : g! ~g. If we have su
h a relation, thenwe 
an immediately re
over ~G from G: Consider the map � : G � ~P ! ~G de�nedby �(u; ~g) := j(u) � ~g. Equivarian
y of j immediately implies that �(u � g; ~g) =�(u; i(g)~g), so � des
ends to a bundle map G�Q ~P ! ~G, where the left a
tion of Qon ~P is de�ned via i. This is immediately seen to be an isomorphism of prin
ipalbundles, so ~G is obtained from G by an extension of stru
ture group. Under thisisomorphism, the given morphism j : G ! ~G 
orresponds to the natural in
lusionG ! G �Q ~P indu
ed by u 7! (u; e).3. Indu
ed Cartan 
onne
tionsIn this se
tion, we study the problem of extending Cartan 
onne
tions. We derivethe basi
 results in the setting of general Cartan geometries, and then spe
ializeto the 
ase of paraboli
 
onta
t stru
tures and, in parti
ular, Lagrangean 
onta
tstru
tures. Some of the developments in 3.1 and 3.3 below are 
losely related to[12, 18℄.3.1. Extension fun
tors for Cartan geometries. Motivated by the last ob-servations in 2.4, let us 
onsider the following problem: Suppose we have given Liegroups G and ~G with Lie algebras g and ~g, 
losed subgroups Q � G and ~P � ~G, ahomomorphism i : Q! ~P and a linear map � : g! ~g. We will assume throughoutthat i is in�nitesimally inje
tive, i.e. i0 : q! ~p is inje
tive.Given a Cartan geometry (p : G ! N;!) of type (G;Q), we put ~G := G �Q ~Pand denote by j : G ! ~G the 
anoni
al map. Sin
e i is in�nitesimally inje
tive, thisis an immersion, i.e. Tuj is inje
tive for all u 2 G. We want to understand whetherthere is a Cartan 
onne
tion ~! 2 
1( ~G;~g) su
h that j�~! = �Æ!, and if so, whether~! is uniquely determined.Proposition. There is a Cartan 
onne
tion ~! on ~G su
h that j�~! = � Æ ! if andonly if the pair (i; �) satis�es the following 
onditions:(1) � ÆAd(g) = Ad(i(g)) Æ � for all g 2 Q.(2) On the subspa
e q � g, the map � restri
ts to the derivative i0 of i : Q! ~P .(3) The map � : g=q! ~g=~p indu
ed by � is a linear isomorphism.If these 
onditions are satis�ed, then ~! is uniquely determined.Proof. Let us �rst assume that there is a Cartan 
onne
tion ~! on ~G su
h thatj�~! = � Æ !. For u 2 G, the tangent spa
e Tj(u) ~G is spanned by Tuj(TuG) andthe verti
al subspa
e Vj(u) ~G. The behavior of ~! on the �rst subspa
e is determined
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t that j�~! = � Æ !, while on the se
ond subspa
e ~! has to reprodu
ethe generators of fundamental ve
tor �elds. Hen
e the restri
tion of ~! to j(G) isdetermined by the fa
t that j�~! = � Æ !. By de�nition of ~G, any point ~u 2 ~G 
anbe written as j(u) � ~g for some u 2 G and some ~g 2 ~P , so uniqueness of ~! followsfrom equivarian
y.Still assuming that ~! exists, 
ondition (1) follows from equivarian
y of j, !, and~!. Equivarian
y of j also implies that for A 2 q and the 
orresponding fundamentalve
tor �eld �A we get Tj Æ�A = �i0(A). Thus 
ondition (2) follows from the fa
t thatboth ! and ~! reprodu
e the generators of fundamental ve
tor �elds. Let p : G ! Nand ~p : ~G ! N be the bundle proje
tions, so ~p Æ j = p. For � 2 TuG we have�(!(�)) = ~!(Tuj � �), so if this lies in ~p then Tuj � � is verti
al. But then � is verti
aland hen
e !(�) 2 q. Therefore, the map � is inje
tive, and sin
e both G and ~Gadmit a Cartan 
onne
tion, we must have dim(g=q) = dim(N ) = dim(~g=~p), so (3)follows.Conversely, suppose that (1){(3) are satis�ed for (i; �) and ! is given. For ~u 2 ~Gand ~� 2 T~u ~G we 
an �nd elements u 2 G, � 2 TuG, A 2 ~p, and ~g 2 ~P su
h that~u = j(u)�~g and ~� = Tr~g �(Tj ��+�A). Then we de�ne ~!(~�) := Ad(~g)�1(�(!(�))+A).Using properties (1) and (2) one veri�es that this is independent of all 
hoi
es. By(3), it de�nes a linear isomorphism T~u ~G ! ~g, and the remaining properties of aCartan 
onne
tion are easily veri�ed dire
tly. �Any pair (i; �) whi
h satis�es the properties (1){(3) of the proposition gives riseto an extension fun
tor fromCartan geometries of type (G;Q) to Cartan geometriesof type ( ~G; ~P): Starting from a geometry (p : G ! N;!) of type (G;Q), one puts~G := G �Q ~P (with Q a
ting on ~P via i) and de�nes ~! 2 
1( ~G;~g) to be theunique Cartan 
onne
tion on ~G su
h that j�~! = � Æ !, where j : G ! ~G is the
anoni
al map. For a morphism ' : G1 ! G2 between geometries of type (G;Q),we 
an 
onsider the prin
ipal bundle map � : ~G1 ! ~G2 indu
ed by ' � id ~P . By
onstru
tion, this satis�es � Æ j1 = j2 Æ ' and we obtainj�1��~!2 = '�j�2 ~!2 = '�(� Æ !2) = � Æ '�!2 = � Æ !1:But ~!1 is the unique Cartan 
onne
tion whose pull{ba
k along j1 
oin
ides with� Æ !1, whi
h implies that ��~!2 = ~!1, and hen
e � is a morphism of Cartangeometries of type ( ~G; ~P ).There is a simple notion of equivalen
e for pairs (i; �): We 
all (i; �) and (̂i; �̂)equivalent and write (i; �) � (̂i; �̂) if and only if there is an element ~g 2 ~P su
h thatî(g) = ~g�1i(g)~g and �̂ = Ad(~g�1)Æ�. Noti
e that if (i; �) satis�es 
onditions (1){(3)of the proposition, then so does any equivalent pair. In order to distinguish betweendi�erent extension fun
tors, for a geometry (p : G ! M;!) of type (G;Q) we willoften denote the geometry of type ( ~G; ~P ) obtained using (i; �) by (G �i ~P; ~!�).Lemma. Let (i; �) and (̂i; �̂) be equivalent pairs satisfying 
onditions (1){(3) ofthe proposition. Then the resulting extension fun
tors for Cartan geometries arenaturally isomorphi
.Proof. By assumption, there is an element ~g 2 ~P su
h that î(g) = ~g�1i(g)~g and�̂ = Ad(~g�1) Æ�. Let j : G ! G �i ~P and ĵ : G ! G�î ~P be the natural in
lusions,and 
onsider the map r~gÆj : G ! G�i ~P . Evidently, we have j(u�g)�~g = j(u)�~g�î(g).Hen
e, by the last observation in 2.4, we obtain an isomorphism	 : G�î ~P ! G�i ~Psu
h that 	 Æ ĵ = r~g Æ j. Now we 
omputeĵ�	�~!� = j�(r~g)�~!� = Ad(~g�1) Æ j�~!� = �̂ Æ !:By uniqueness, 	�~!� = ~!�̂, so 	 is a morphism of Cartan geometries. It is 
learfrom the 
onstru
tion that this de�nes a natural transformation between the two
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tors and an inverse 
an be 
onstru
ted in the same way using ~g�1rather than ~g. �3.2. The relation to the Fe�erman 
onstru
tion. There is a simple sour
eof pairs (i; �) whi
h satisfy 
onditions (1){(3) of Proposition 3.1: Suppose that' : G ! ~G is an in�nitesimally inje
tive homomorphism of Lie groups su
h that'(Q) � ~P . Then i := 'jQ : Q ! ~P is an in�nitesimally inje
tive homomorphismand � := '0 : g ! ~g is a Lie algebra homomorphism. Then 
ondition (2) ofProposition 3.1 is satis�ed by 
onstru
tion, while 
ondition (1) easily follows fromdi�erentiating the equation '(ghg�1) = '(g)'(h)'(g)�1. Hen
e the only nontrivial
ondition is (3). Note that if (i; �) is obtained from ' in this way, than any pairequivalent to (i; �) is obtained in the same way from the map g 7! ~g'(g)~g�1 forsome ~g 2 ~G. The main feature of su
h pairs is that � is a homomorphism of Liealgebras.In this setting, one may a
tually go one step further: Suppose we have �xedan in�nitesimally inje
tive ' : G ! ~G and a 
losed subgroup ~P � ~G. Thenwe put Q := '�1( ~P ) � G to obtain a pair (i := 'jQ; � := '0) and hen
e anextension fun
tor from Cartan geometries of type (G;Q) to geometries of type( ~G; ~P ). For a 
losed subgroup P � G with Q � P , one gets a fun
tor fromgeometries of type (G;P ) to geometries of type (G;Q) as des
ribed in 2.2: Givena geometry (p : G ! M;!) of type (G;P ), one de�nes ~M := G=Q = G �P (P=Q)and (G ! ~M;!) is a geometry of type (G;Q). Combining with the above, one getsa fun
tor from geometries of type (G;P ) to geometries of type ( ~G; ~P).The most important example of this is the Cartan geometry interpretation ofFe�erman's 
onstru
tion of a Lorentzian 
onformal stru
ture on the total spa
e ofa 
ertain 
ir
le bundle over a CR manifold, see [10℄. In this 
ase G = SU (n+ 1; 1),~G = SO(2n+2; 2), and ' is the evident in
lusion. Putting ~P the stabilizer of a realnull line ` � R2n+4 in ~G, the group Q = G\ ~P is the stabilizer of ` in G. Evidently,this is 
ontained in the stabilizer P � G of the 
omplex null line spanned by `,and P=Q �= RP 1 �= S1. Hen
e the above pro
edure de�nes a fun
tor, whi
h to aparaboli
 geometry of type (G;P ) on M asso
iates a paraboli
 geometry of type( ~G; ~P ) on the total spa
e ~M of a 
ir
le bundle overM . More details about this 
anbe found in [2℄.3.3. The e�e
t on 
urvature. We next dis
uss the e�e
t of extension fun
torsof the type dis
ussed in 3.1 on the 
urvature of Cartan geometries. This will showspe
i�
 features of the spe
ial 
ase dis
ussed in 3.2.For a Cartan 
onne
tion ! on a prin
ipal P{bundle G !M with values in g, oneinitially de�nes the 
urvature K 2 
2(G; g) by K(�; �) := d!(�; �) + [!(�); !(�)℄.This measures the amount to whi
h the Maurer{Cartan equation fails to hold. Thede�ning properties of a Cartan 
onne
tion immediately imply that K is horizontaland P{equivariant. In parti
ular, K(�; �) = 0 for all � provided that � is verti
alor, equivalently, that !(�) 2 p.Using the trivialization of TG provided by !, one 
an pass to the 
urvaturefun
tion � : G ! L(�2(g=p); g), whi
h is 
hara
terized by�(u)(X + p; Y + p) := K(u)(!�1(X); !�1(Y )):This is well de�ned by horizontality of K, and equivarian
y of K easily impliesthat � is equivariant for the natural P{a
tion on the spa
e L(�2(g=p); g), whi
h isindu
ed from the adjoint a
tion on all 
opies of g.Using the setting of 3.1, suppose that (i : Q! ~P; � : g! ~g) is a pair satisfyingthe 
onditions (1){(3) of Proposition 3.1. Consider the map g � g ! ~g de�nedby (X;Y ) 7! [�(X); �(Y )℄~g � �([X;Y ℄g), whi
h measures the deviation from �



10 ANDREAS �CAP VOJT�ECH �Z�ADN�IKbeing a homomorphism of Lie algebras. This map is evidently skew symmetri
.By 
ondition (1), � Æ Ad(g) = Ad(i(g)) Æ � for all g 2 Q, whi
h in�nitesimallyimplies that � Æ ad(X) = ad(i0(X)) Æ� for all X 2 q, and by 
ondition (2) we havei0(X) = �(X) in this 
ase. Hen
e this map vanishes if one of the entries is fromq � g, and we obtain a well de�ned linear map �2(g=q) ! ~g. By 
ondition (3), �indu
es a linear isomorphism � : g=q ! ~g=~p, and we 
on
lude that we obtain a wellde�ned map 	� : �2(~g=~p)! ~g by putting	�( ~X + ~p; ~Y + ~p) = [�(X); �(Y )℄� �([X;Y ℄);where �(X) + ~p = ~X + ~p and �(Y ) + ~p = ~Y + ~p.Proposition. Let (i; �) be a pair satisfying 
onditions (1){(3) of Proposition 3.1.Let (p : G ! N;!) be a Cartan geometry of type (G;Q), let (G �i ~P ; ~!�) be thegeometry of type ( ~G; ~P ) obtained using the extension fun
tor asso
iated to (i; �),and let j : G ! G �i ~P be the natural map.Then the 
urvature fun
tions � and ~� of the two geometries satisfy~�(j(u))( ~X; ~Y ) = �(�(u)(��1( ~X); ��1( ~Y ))) + 	�( ~X; ~Y );for any ~X; ~Y 2 ~g=~p, and this 
ompletely determines ~�.In parti
ular, if ! is 
at, then ~! is 
at if and only if � is a homomorphism ofLie algebras.Proof. By de�nition, j�~!� = � Æ !, and hen
e j�d~!� = � Æ d!. This immediatelyimplies that for the 
urvatures K and ~K and �; � 2 X(G) we get~K(j(u))(Tj � �; T j � �) = �(d!(u)(�; �)) + [�(!(u)(�)); �(!(u)(�))℄:On the other hand, we get�(K(u)(�; �)) = �(d!(u)(�; �)) + �([!(u)(�); !(u)(�)℄):Now the formula for ~�(j(u)) follows immediately from the de�nition of the 
urvaturefun
tions. Sin
e ~� is ~P{equivariant, it is 
ompletely determined by its restri
tionto j(G). The �nal 
laim follows dire
tly, sin
e 	� vanishes if and only if � is ahomomorphism of Lie algebras. �3.4. Uniqueness. A 
ru
ial fa
t for the further development is that, passing fromparaboli
 
onta
t stru
tures to the asso
iated path geometries of 
hains, there isa
tually no freedom in the 
hoi
e of the pair (i; �) up to equivalen
e as introdu
edin 3.1 above. This result 
ertainly is valid in a more general setting but it seems tobe diÆ
ult to give a ni
e formulation for 
onditions one has to assume.Therefore we return to the setting of se
tion 2, i.e. G is semisimple, P � G isobtained from a 
onta
t grading, Q is the subgroup des
ribed in 2.2, and ~G and~P 
orrespond to path geometries in the appropriate dimension as in 2.3. In thissetting we 
an now prove:Theorem. Let (i; �) and (̂i; �̂) be pairs satisfying 
onditions (1){(3) of Proposition3.1. Suppose that there is a Cartan geometry (p : G !M;!) of type (G;Q) su
h thatthere is an isomorphism between the geometries of type ( ~G; ~P ) obtained using (i; �)and (̂i; �̂), whi
h 
overs the identity on M . Then (i; �) and (̂i; �̂) are equivalent.Proof. Using the notation of the proof of Lemma 3.1, suppose that we have anisomorphism 	 : G �i ~P ! G �î ~P of prin
ipal bundles whi
h 
overs the identityon M and has the property that 	�~!�̂ = ~!�. Let us denote by j and ĵ the naturalin
lusions of G into the two extended bundles. Sin
e 	 
overs the identity on M ,there must be a smooth fun
tion ' : G ! ~P su
h that 	(j(u)) = ĵ(u) � '(u).
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onstru
tion we have j(u � g) = j(u) � i(g) and ĵ(u � g) = ĵ(u) � î(g), and usingthe fa
t that 	 is ~P{equivariant we obtain î(g) = '(u)i(g)'(u �g)�1. On the otherhand, di�erentiating the equation 	(j(u)) = ĵ(u) � '(u), we obtain(T	 Æ Tj) � � = (Tr'(u) Æ T ĵ) � � + �Æ'(u)(�)(	(j(u)))where Æ' 2 
1(G; ~p) denotes the left logarithmi
 derivative of ' : G ! ~P . Applying~!�̂ to the left hand side of this equation, we simply get(j�	�~!�̂)(�) = (j�~!�)(�) = �(!(�)):Applying ~!�̂ to the right hand side, we obtain(ĵ�(r'(u))�~!�̂)(�) + Æ'(u)(�) =Ad('(u)�1)((ĵ�~!�̂)(�)) + Æ'(u)(�) =Ad('(u)�1)(�̂(!(�))) + Æ'(u)(�);and we end up with the equation(�) �(!(�)) = Ad('(u)�1)(�̂(!(�))) + Æ'(u)(�)for all � 2 TG. Together with the relation between i and î derived above, this showsthat it suÆ
es to show that '(u) is 
onstant to prove that (i; �) � (̂i; �̂).By 
onstru
tion, Æ'(u) has values in ~p, so proje
ting equation (�) to ~g=~p impliesthat �(!(�)) + ~p = Ad('(u)�1)(�̂(!(�)) + ~p);for all � 2 TuG, where Ad is the a
tion of ~P on ~g=~p indu
ed by the adjoint a
tion.By property (3) from Proposition 3.1 this implies that � = Ad('(u)�1)Æ�̂, so we seethat Ad('(u)�1) must be independent of u. Hen
e we must have '(u) = ~g1'1(u)for some element ~g1 2 ~P and a smooth fun
tion '1 : G ! ~P whi
h has valuesin the kernel of Ad. As in 2.2, any element of ~P 
an be uniquely written in theform ~g0 exp( ~Z1) exp( ~Z2) with ~g0 2 ~G0 and ~Zi 2 ~gi, and su
h an element lies inthe kernel of Ad if and only if Ad(~g0) restri
ts to the identity on ~g� and ~Z1 = 0.Sin
e ~p+ is dual to ~g� and ~g0 inje
ts into L(~g�; ~g�) the �rst 
ondition implies thatAd(~g0) = id~g. Sin
e ~G = PGL(k;R) for some k, this implies that ~g0 is the identity.Hen
e '1 has values in exp(~g2) and therefore Æ'(u) has values in ~g2. Proje
tingequation (�) to ~g=~g2, we obtain�(!(�)) + ~g2 = Ad('(u)�1)(�̂(!(�)) + ~g2);where this time Ad denotes the natural a
tion on ~g=~g2. But by [19, Lemma 3.2℄ anelement of ~g2 vanishes provided that all bra
kets with elements of ~g�1 vanish, andthis easily implies that '1(u) is the identity and so ' is 
onstant. �This result has immediate 
onsequen
es on the problem of des
ribing the pathgeometry of 
hains asso
iated to a paraboli
 
onta
t stru
ture: If we start withthe homogeneous model G=P for a paraboli
 
onta
t geometry, the indu
ed pathgeometry of 
hains is de�ned on the homogeneous spa
e G=Q. To obtain this by anextension fun
tor as des
ribed in 3.1, we need a homomorphism i : Q ! ~P and alinear map � : g! ~g, where ( ~G; ~P ) gives rise to path geometries in the appropriatedimension. The pair (i; �) has to satisfy 
onditions (1){(3) of Proposition 3.1 inorder to give rise to an extension fun
tor. The only additional 
ondition is thatthe extended geometry (G �i ~P ; ~!�) obtained from (G ! G=Q;!MC) is regularand normal. By Theorem 2.3, a regular normal paraboli
 geometry of type ( ~G; ~P )is uniquely determined by the underlying path geometry, whi
h is en
oded into(G! G=Q;!MC), see 2.4.



12 ANDREAS �CAP VOJT�ECH �Z�ADN�IKThe theorem above then implies that (i; �) is uniquely determined up to equiv-alen
e. In view of Lemma 3.1, the extension fun
tor obtained from (i; �) is (up tonatural isomorphism) the only extension fun
tor of the type dis
ussed in 3.1 whi
hprodu
es the right result for the homogeneous model (and hen
e for lo
ally 
atgeometries).The �nal step is then to study under whi
h 
onditions on a geometry of type(G;P ), the extension fun
tor asso
iated to (i; �) produ
es a regular normal geom-etry of type ( ~G; ~P ).3.5. Let us return to the 
ase of Lagrangean 
onta
t stru
tures as dis
ussed in2.1. By de�nition, we have G = PGL(n+ 2;R) and P � G is the subgroup of allmatri
es whi
h are blo
k upper triangular with blo
ks of sizes 1, n, and 1. Frompart (1) of Lemma 2.2 one immediately 
on
ludes that Q � P is the subgroupformed by all matri
es of the blo
k form0�p 0 s0 R 00 0 q1A ;su
h that jpq det(R)j = 1. Sin
e the 
orresponding manifolds have dimension 2n+1,the right group for the path geometry de�ned by the 
hains is ~G = PGL(2n+2;R).The subgroup ~P � ~G is given by the 
lasses of those matri
es whi
h are blo
k uppertriangular with blo
ks of sizes 1, 1, 2n. In the sequel, we will always further splitthe last blo
k into two blo
ks of size n.Consider the (well de�ned) smooth map i : Q! ~P and the linear map � : g! ~gde�ned byi0�p 0 s0 R 00 0 q1A := 0BBBBBB�sgn( qp )qjpq j sgn( qp ) spqjpq j 0 00 qj qp j 0 00 0 q�1qj qp jR 00 0 0 pqj qp j(R�1)t1CCCCCCA ;�0�a u dx B vz y 
1A := 0BB�a�
2 d 12u 12vtz 
�a2 12y �12xtx v B � a+
2 id 0yt �ut 0 �Bt + a+
2 id1CCA ;where id denotes the n� n identity matrix.Proposition. The map i : Q ! ~P is an inje
tive group homomorphism and thepair (i; �) satis�es 
onditions (1){(3) of Proposition 3.1. Hen
e it gives rise to anextension fun
tor from Cartan geometries of type (G;Q) to Cartan geometries oftype ( ~G; ~P ).Proof. All these fa
ts are veri�ed by straightforward 
omputations, some of whi
hare a little tedious. �3.6. Regularity and normality. We next have to dis
uss the 
onditions on the
urvature of a Cartan 
onne
tion whi
h were used in Theorems 2.1 and 2.3. IfG is a semisimple group and P � G is paraboli
, then one 
an identify (g=p)�with p+, the sum of all positive grading 
omponents, via the Killing form, see [19,Lemma 3.1℄. Hen
e we 
an view the 
urvature fun
tion de�ned in 3.3 as havingvalues in �2p+ 
 g. Via the gradings of p+ and g, this spa
e is naturally graded,and the Cartan 
onne
tion ! is 
alled regular if its 
urvature fun
tion has valuesin the part of positive homogeneity. Otherwise put, if X 2 gi and Y 2 gj , then�(u)(X + p; Y + p) 2 gi+j+1 � � � � � gk.
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all that a Cartan geometry is torsion free, if and only if � has values in�2p+ 
 p. Sin
e elements of p+ have stri
tly positive homogeneity, this subspa
e is
ontained in the part of positive homogeneity, and any torsion free Cartan geometryis automati
ally regular. Hen
e regularity should be viewed as a 
ondition whi
havoids parti
ularly bad types of torsion.On the other hand, there is a natural map �� : �2p+ 
 g! p+ 
 g de�ned by��(Z ^W 
 A) := �W 
 [Z;A℄ + Z 
 [W;A℄� [Z;W ℄
Afor de
omposable elements. This is the di�erential in the standard 
omplex 
omput-ing the Lie algebra homology of p+ with 
oeÆ
ients in the module g. This map isevidently equivariant for the natural P{a
tion, so in parti
ular, ker(��) � �2p+
gis a P{submodule. The Cartan 
onne
tion ! is 
alled normal if and only if its
urvature has values in this submodule.To pro
eed with the program set out in the end of 3.4 we next have to analyzethe map 	� : �2(~g=~p) ! ~g introdu
ed in 3.3 in the spe
ial 
ase of the pair (i; �)from 3.5. As a linear spa
e, we may identify ~g=~p with ~g� = ~gE�1 � ~gV�1� ~g�2. Notethat using bra
kets in ~g, we may identify ~gV�1 with ~gE1 
 ~g�2 if ne
essary. We willview ~g�2 as R2n = Rn�Rn and 
orrespondingly write X 2 ~g�2 as (X1; X2). Byh ; i we denote the standard inner produ
t on Rn.Lemma. Viewing 	� as an element of �2(~g�)�
~g, it lies in the subspa
e (~gV�1)�^(~g�2)� 
 ~g0. Denoting by W0 2 ~gE1 the element whose unique nonzero entry isequal to 1, the trilinear map ~g�2 � ~g�2 � ~g�2 ! ~g�2 de�ned by (X;Y; Z) 7![	�(X; [Y;W0℄); Z℄ is (up to a nonzero multiple) the 
omplete symmetrization ofthe map (X;Y; Z) 7! hX1; Y2i� Z1�Z2�.Proof. Let x 2 ~gE�1 be the element whose unique nonzero entry is equal to 1.Then an arbitrary element of ~g� 
an be written uniquely as X + [Y;W0℄ + ax forX;Y 2 ~g�2 and a 2 R. From the de�nition of � in 3.5 we obtain�0� 0 �Y t2 0X1 0 Y1a Xt2 0 1A = 0BB� 0 0 �12Y t2 12Y t1a 0 12Xt2 �12Xt1X1 Y1 0 0X2 Y2 0 0 1CCA ;so this is 
ongruent toX+[Y;W0℄+axmodulo ~p. Using this, one 
an now insert intothe de�ning formula for 	� from 3.3 and 
ompute dire
tly that the result alwayshas values in ~g0, and indeed only in the lower right 2n � 2n blo
k. Moreover, allthe entries in that blo
k are made up from bilinear expressions involving one entryfrom ~g�2 and one entry from ~gV�1, so we see that 	� 2 (~g�2)� ^ (~gV�1)� 
 ~g0.ForX;Y 2 ~g�2, one next 
omputes that the only nonzero blo
k in 	�(X; [Y;W0℄)(whi
h is a 2n� 2n{matrix) is expli
itly given by12 �X1Y t2 + Y1Xt2 + (Y t2X1 +Xt2Y1) id X1Y t1 + Y1Xt1�X2Y t2 � Y2Xt2 �Y2Xt1 �X2Y t1 � (Y t2X1 +Xt2Y1) id� :To obtain [	�(X; [Y;W0℄); Z℄ 2 ~g�2 for another element Z 2 ~g�2, we now simplyhave to apply this matrix to �Z1Z2�. Taking into a

ount that hv; wi = vtw = wtvfor v; w 2 Rn we obtain half the sum of all 
y
li
 permutations of(hX1; Y2i+ hY1; X2i)� Z1�Z2� ;whi
h is three times the total symmetrization of (X;Y; Z) 7! hX1; Y2i� Z1�Z2�. �



14 ANDREAS �CAP VOJT�ECH �Z�ADN�IKUsing this we 
an now 
omplete the �rst part of the program outlined in the endof 3.4:Theorem. The extension fun
tor asso
iated to the pair (i; �) from 3.5 maps lo
ally
at Cartan geometries of type (G;Q) to torsion free (and hen
e regular), normalparaboli
 geometries of type ( ~G; ~P ).Proof. Let (p : G ! N;!) be a lo
ally 
at Cartan geometry of type (G;Q). Thismeans that ! has trivial 
urvature, so by Proposition 3.3, the 
urvature fun
tion ~�of the paraboli
 geometry (G �i ~P; ~!�) has the property that~�(j(u)) = 	� : �2(~g=~p)! ~g;where j : G ! G �i ~P is the natural map. By the lemma above, ~�(j(u)) has valuesin ~g0 � ~p, and sin
e having values in ~p is a ~P{invariant property, torsion freenessfollows.Similarly, sin
e ker(��) is a ~P{submodule in �2(~g=~p)�
~g, it suÆ
es to show that��(	�) = 0 to 
omplete the proof of the theorem. This may be 
he
ked by a dire
t
omputation, but there is a more 
on
eptual argument: Tra
efree matri
es in thelower right 2n�2n blo
k of ~g0 form a Lie subalgebra isomorphi
 to sl(2n;R) whi
ha
ts on ea
h of the spa
es �k(~g=~p)� 
 ~g. Hen
e we may de
ompose ea
h of theminto a dire
t sum of irredu
ible representations. Sin
e �� is a ~P{homomorphism, itis equivariant for this a
tion of sl(2n;R), and hen
e it 
an be nonzero only betweenisomorphi
 irredu
ible 
omponents.In the proof of the lemma we have noted that ~g�2 is the standard representa-tion of sl(2n;R), so the expli
it formula for 	� shows that it sits in a 
omponentisomorphi
 to S3R2n� 
 R2n. There is a unique tra
e from this representation toS2R2n�, and the kernel of this is well known to be irredu
ible. One immediately
he
ks that (~g=~p)� 
 ~g 
annot 
ontain an irredu
ible 
omponent isomorphi
 to thekernel of this tra
e. Hen
e we 
an �nish the proof by showing that 	� lies in thekernel of that tra
e, whi
h is a simple dire
t 
omputation. �This has a ni
e immediate appli
ation:Corollary. Consider the homogeneous model G ! G=P of Lagrangean 
onta
tstru
tures. Then the resulting path geometry of 
hains is non{
at and hen
e notlo
ally isomorphi
 to ~G= ~P , but its automorphism group 
ontains G. In parti
ular,for ea
h n � 1, we obtain an example of a non{
at torsion free path geometry ona manifold of dimension 2n+ 1 whose automorphism group has dimension at leastn2 + 4n+ 3.Remark. (1) In [11℄, the author dire
tly 
onstru
ted a torsion free path geometryfrom the homogeneous model of three{dimensional Lagrangean 
onta
t stru
tures.This 
onstru
tion was one of the motivations for this paper and one of the guidelinesfor the right 
hoi
e of the pair (i; �). The other main guideline for this 
hoi
e arethe 
omputations needed to show that 	� has values in ~g0.(2) We shall see later that in the situation of the 
orollary, the dimension of theautomorphism group a
tually equals the dimension of G. In parti
ular, for n = 1,one obtains a non{
at path geometry on a three manifold with automorphismgroupof dimension 8. To our knowledge, this is the maximal possible dimension for theautomorphism group of a non{
at path geometry in this dimension.Via the interpretation of path geometries in terms of systems of se
ond orderODE's, we obtain examples of nontrivial systems of su
h ODE's with large auto-morphism groups.
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urvatures of regular normal geometries. We have 
ompletedhalf of the program outlined in the end of 3.4 at this point: Theorem 3.6 showsthat the extension fun
tor asso
iated to the pair (i; �) de�ned in 3.5 produ
es theregular normal paraboli
 geometry determined by the path geometry of 
hains forlo
ally 
at Lagrangean 
onta
t stru
tures. In view of Theorem 3.4 and Lemma 3.1this pins down the pair (i; �) up to equivalen
e and hen
e the asso
iated extensionfun
tor up to isomorphism.Hen
e it only remains to 
larify under whi
h 
onditions on a Lagrangean 
onta
tstru
ture this extension pro
edure produ
es a regular normal paraboli
 geometry.This then tells us the most general situation in whi
h a dire
t relation (as dis
ussedin 2.4 and 3.1) between the two paraboli
 geometries 
an exist. As it 
an already beexpe
ted from the 
ase of the Fe�erman 
onstru
tion (see [2℄) this is a rather subtlequestion. Moreover, the result 
annot be obtained by algebrai
ally 
omparing thetwo normalization 
onditions, but one needs more information on the 
urvatureof regular normal and torsion free normal geometries. In parti
ular, the proof ofpart (2) of the Lemma below needs quite a lot of deep ma
hinery for paraboli
geometries.As dis
ussed in 3.6, the 
urvature fun
tion of a paraboli
 geometry of type (G;P )has values in �2p+ 
 g. Sin
e both p+ and g are graded, there is a natural notionof homogeneity on this spa
e. While being of some �xed homogeneity is not a P{invariant property, the fa
t that all nonzero homogeneous 
omponents have at leastsome given homogeneity is P{invariant. This is used in the de�nition of regularityin 3.6, whi
h simply says that all nonzero homogeneous 
omponents are in positivehomogeneity.The map �� used in the de�nition of normality in 3.6 a
tually extends to afamily of maps �� : �`p+ 
 g ! �`�1p+ 
 g. These are the di�erentials in thestandard 
omplex 
omputing the Lie algebra homology H�(p+; g). By de�nition,the 
urvature fun
tion � of a normal paraboli
 geometry of type (G;P ) has valuesin ker(��) � �2p+ 
 g. Hen
e we 
an naturally proje
t to the quotient to obtain afun
tion �H with values in ker(��)= im(��) = H2(p+; g). Equivarian
y of � impliesthat �H 
an be viewed as a smooth se
tion of the bundle G �P H2(p+; g). Thisse
tion is 
alled the harmoni
 
urvature of the normal paraboli
 geometry. It turnsout (see [5℄) that P+ a
ts trivially on H�(p+; g), so this bundle admits a dire
tinterpretation in terms of the underlying stru
ture. As we shall see below, thisbundle is algorithmi
ally 
omputable.Now from 3.6 we know that p+ �= (g=p)� as a P{module, and sin
e g� � g is a
omplementary subspa
e (and G0{module) to p � g we 
an identify p+ with (g�)�as a G0{module. Hen
e we 
an also view the spa
es �`p+
 g as L(�`g�; g), whi
hare the 
hain spa
es in the standard 
omplex 
omputing the Lie algebra 
ohomologyof g� with 
oeÆ
ients in g. The di�erentials � : L(�`g�; g)! L(�`+1g�; g) in that
omplex turn out to be adjoint to the maps �� with respe
t to a 
ertain innerprodu
t.Hen
e we obtain an algebrai
 Hodge theory on ea
h of the spa
es �`p+
g, withalgebrai
 Lapla
ian � = �� Æ � + � Æ ��. This 
onstru
tion is originally due toKostant (see [13℄), when
e � is usually 
alled the Kostant Lapla
ian. The kernel of� is a G0{submodule 
alled the harmoni
 subspa
e of �`p+ 
 g. Kostant's versionof the Bott{Borel{Weil theorem in [13℄ gives a 
omplete algorithmi
 des
ription ofthe G0{module ker(�). By the Hodge de
omposition, ker(�) is isomorphi
 to thehomology group of the appropriate dimension.We will need two general fa
ts about the 
urvature of regular normal respe
tivelytorsion free normal paraboli
 geometries in the sequel:



16 ANDREAS �CAP VOJT�ECH �Z�ADN�IKLemma. Let (p : G !M;!) be a regular normal paraboli
 geometry of type (G;P )with 
urvature fun
tions � : G ! �2p+
g and �H : G ! H2(p+; g). Then we have:(1) The lowest nonzero homogeneous 
omponent of � has values in the subsetker(�) � �2p+ 
 g.(2) Suppose that (p : G ! M;!) is torsion free and that E0 � ker(�) � �2p+ 
 gis a G0{submodule su
h that �H has values in the image of E0 under the naturalisomorphism ker(�) ! H2(p+; g) (indu
ed by proje
ting ker(�) � ker(��) to thequotient). Then � has values in the P{submodule of �2p+ 
 g generated by E0.Proof. (1) is an appli
ation of the Bian
hi identity, whi
h goes ba
k to [17℄, see also[4, Corollary 4.10℄. (2) is proved in [3, Corollary 3.2℄. �The �nal bit of information we need is the expli
it form of ker(�) for the pairs(g; p) and (~g;~p) 
orresponding to Lagrangean 
onta
t stru
tures on manifolds ofdimension 2n+ 1 respe
tively path geometries in dimension 4n+ 1. Obtaining theexpli
it des
ription of the irredu
ible 
omponents of these submodules is an exer
isein the appli
ation of Kostant's results from [13℄ and the algorithms from the book[1℄, see also [3℄. The results are listed in the tables below. The �rst 
olumn 
ontainsthe homogeneity of the 
omponent and the se
ond 
olumn 
ontains the subspa
ethat it is 
ontained in. The a
tual 
omponent is always the highest weight part inthat subspa
e, so in parti
ular, it lies in the kernel of all tra
es one 
an form.(g; p), n = 1homog. 
ontained in4 gR1 ^ g2 
 gR14 gL1 ^ g2 
 gL1 (g; p), n > 1homog. 
ontained in2 gL1 ^ gR1 
 g01 �2gL1 
 gR�11 �2gR1 
 gL�1(~g; ~p), n = 1homog. 
ontained in3 ~gV1 ^ ~g2 
 ~g02 ~gE1 ^~g2
~gV�11 �2~gV1 
 ~gE�1 (~g; ~p), n > 1homog. 
ontained in3 ~gV1 ^ ~g2 
 ~g02 ~gE1 ^~g2
~gV�10 �2~gV1 
 ~g�23.8. We are now ready to prove the main result of this arti
le:Theorem. Let (p : G ! M;!) be a regular normal paraboli
 geometry of type(G;P ) and let ( ~G := G �Q ~P ! P0(TM ); ~!�) be the paraboli
 geometry obtainedusing the extension fun
tor asso
iated to the pair (i; �) de�ned in 3.5. Then thisgeometry is regular and normal if and only if (p : G !M;!) is torsion free.Proof. We �rst prove ne
essity of torsion freeness. From the tables in 3.7 we seethat for n = 1 a regular normal paraboli
 geometry of type (G;P ) is automati
allytorsion free, so we only have to 
onsider the 
ase n > 1. If ~!� is regular andnormal, then all nonzero homogeneous 
omponents of ~� are homogeneous of positivedegrees. The table in 3.7 shows that then the homogeneity is at least two, andby part (1) of Lemma 3.7 the homogeneous 
omponent of degree two sits in thesubspa
e ~gE1 ^ ~g2 
 ~gV�1. In parti
ular, for any ~u 2 ~G, the restri
tion of ~�(~u) to�2~g�2 is homogeneous of degree at least three, whi
h implies that ~�(~u) has valuesin ~g�1 � ~p, i.e. for the natural proje
tion � : ~g ! ~g=(~g�1 � ~p) we get � Æ ~�(~u) = 0.



ON THE GEOMETRY OF CHAINS 17Using the notation of the proof of Lemma 3.6, 
onsider two elementsX;Y 2 ~g�2.From that proof, we see that(� Æ ~�(j(u)))(X;Y ) = (� Æ� Æ �(u))0�0� 0 0 0X1 0 00 Xt2 01A ;0� 0 0 0Y1 0 00 Y t2 01A1A :By regularity, �(u)(�2g�1) � g�1 � p. From the de�nition in 3.5 it is evident that� indu
es a linear isomorphism g=(g�2 � p) ! ~g=(~g�1 � ~p). Hen
e we 
on
ludethat if ~!� is regular and normal, then �(u)(�2g�1) � p. From the table in 3.7we see that this implies that the homogeneous 
omponent of degree one of � hasto vanish identi
ally, and then further that the homogeneous 
omponent of degreetwo has values in p. Sin
e �2g�2 = 0, 
omponents of homogeneity at least threeautomati
ally have values in p, so we see that ! is torsion free.To prove suÆ
ien
y, we �rst need two fa
ts on the 
urvature fun
tion � of atorsion free normal paraboli
 geometry of type (G;P ). On the one hand, the map�� as de�ned in 3.6 
an be written as the sum ��1 + ��2 of two P{equivariant maps,with ��1 
orresponding to the �rst two summands and ��2 
orresponding to the lastsummand in the de�nition. We 
laim that � has values in the kernels of bothoperators ��i . On the other hand, one easily veri�es that the subspa
e bp � p formedby all matri
es of the form 0�0 u d0 B v0 0 01A is a P{submodule. (Indeed, this is thepreimage in p of the semisimple part of the redu
tive algebra g0 = p=p+.) Ourse
ond 
laim is that �(u)(X;Y ) 2 bp for all u 2 G and all X;Y .To prove both 
laims, it suÆ
es to show that � has values in the P{submodule�20p+
bp � �2p+
p. Here �20p+ is the kernel of the P{homomorphism�2p+ ! p+de�ned by the Lie bra
ket on p+, so �20p+ 
 g = ker(��2 ).In the 
ase n = 1, this is evident, sin
e from the table in 3.7 we see that the lowestnonzero homogeneous 
omponent of �(u) is of degree 4, vanishes on �2g�1 and hasvalues in p+. For homogeneous 
omponents of higher degree, these two propertiesare automati
ally satis�ed, and we 
on
lude that �(u) 2 g1 ^ g2 
 p+ � �20p+ 
 bp.In the 
ase n > 1, we see from the table in 3.7 that by torsion freeness thelowest homogeneous 
omponent of �(u) must be of homogeneity 2. By part (1) ofLemma 3.7 it has values in ker(�) � �2g1 
 g0. Sin
e this 
omponent of ker(�) isa highest weight part, it lies in the kernel of all possible tra
es, and hen
e it mustbe 
ontained in the tensor produ
t of �2g1 \�20p+ with the semisimple part of g0.Hen
e ker(�) is 
ontained in the P{submodule �20p+ 
bp so, by part (2) of Lemma3.7, the 
urvature fun
tion � has values in that submodule.In view of Proposition 3.3 and the proof of Theorem 3.6, to prove that ~!� isregular and normal, it suÆ
es to verify that the map F (u) : �2~g� ! ~g de�ned byF (u)(X;Y ) := �(�(u)(��1(X); ��1(Y ))) lies in the kernel of �� for all u 2 G. To
ompute ��F (u), it is better to view F (u) as an element of �2~p+
~g, and we want torelate this to �(u), viewed as an element of �2p+
g. Therefore, we have to 
omputethe map ' : p+ ! ~p+, whi
h is dual to the 
omposition of the 
anoni
al proje
tiong=q ! g=p with ��1 : ~g=~p ! g=q, sin
e by 
onstru
tion F (u) = (�2' 
 �)(�(u)).Re
all that the duality between g=p and p+ (and likewise for the other algebra)is indu
ed by the Killing form. Sin
e the Killing form of a simple Lie algebra isuniquely determined up to a nonzero multiple by invarian
e, we may as well usethe tra
e form on both sides, whi
h leads to a nonzero multiple of '. But then the
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omputation is very easy, showing that'0�0 Z  0 0 W0 0 0 1A = 0BB�0  Z W t0 0 0 00 0 0 00 0 0 0 1CCA :In parti
ular, '(p+) � ~gE1 � ~g2, whi
h implies that ��2 (F (u)) = 0 for all u.On the other hand, the formula for � from 3.5 shows that �(bp) � ~gV�1�~g0�~gE1 �~g2, and the ~g0{
omponent is 
ontained in the bottom right 2n � 2n blo
k. Thisshows that for Z 2 p+ and A 2 bp we have ['(Z); �(A)℄ 2 ~gE1 �~g2. One immediatelyveri�es dire
tly that the ~gE1 {
omponent of ['(Z); �(A)℄ equals the ~gE1 {
omponent of�([Z;A℄), while the ~g2{
omponent of ['(Z); �(A)℄ equals twi
e the ~g2{
omponentof �([Z;A℄). From the de�nition of ��1 we now 
on
lude that �2'
� maps ker(��1)to ker(��1 ), so we also get ��1(F (u)) = 0 for all u. �4. Appli
ationsFor torsion free Lagrangean 
onta
t stru
tures, Theorem 3.8 provides us withan expli
it des
ription of the paraboli
 geometry determined by the path geometryof 
hains. In parti
ular, we obtain an expli
it formula for the Cartan 
urvaturewhi
h is the basis for the appli
ations dis
ussed in this se
tion. The main result isthat one 
an essentially re
onstru
t the torsion free Lagrangean 
onta
t stru
turefrom the harmoni
 
urvature of this paraboli
 geometry. In parti
ular, this impliesthat a 
onta
t di�eomorphism whi
h maps 
hains to 
hains has to either preserveor swap the subbundles de�ning the Lagrangean 
onta
t stru
ture. On the way, we
an prove that 
hains 
an never be des
ribed by linear 
onne
tions and that onlylo
ally 
at Lagrangean 
onta
t stru
tures give rise to torsion free path geometriesof 
hains.4.1. De
omposing the Cartan 
urvature. For a torsion free Lagrangean 
on-ta
t stru
ture with 
urvature �, the 
urvature ~� of the normal Cartan 
onne
tionasso
iated to the path geometry of 
hains is determined by the formula from Propo-sition 3.3, whi
h holds on j(G) � G �i ~P . In this formula, there are two terms,one of whi
h depends on � while the other one only 
omes from the map �. Ourmain task is to extra
t parts of ~� whi
h only depend on one of the two terms. ThediÆ
ulty is that this has to be done in a geometri
 way without knowing the subsetj(G) in advan
e.The 
urvature fun
tion ~� has values in the P{module �2~p+ 
 ~g, and using themap ' from the proof of Theorem 3.8, the formula from Proposition 3.3 reads as~�(j(u)) = (�2' 
 �)(�(u)) + 	�. Now ~p+ 
ontains the P{invariant subspa
e ~g2.Correspondingly, we obtain P{invariant subspa
es �2~g2 � ~p+ ^ ~g2 � �2~p+. In theproof of Theorem 3.8, we have seen that ' has values in ~gE1 � ~g2, when
e �2' hasvalues in ~p+ ^ ~g2. From Lemma 3.6 we know that 	� 2 ~p+ ^ ~g2
 ~g, so we 
on
ludethat ~�(j(u)) lies in this ~P{submodule. By equivarian
y, all values of the 
urvaturefun
tion lie in ~p+ ^ ~g2 
 ~g � �2~p+ 
 ~g.On the quotient ~p+=~g2, the subgroup ~P+ � ~P a
ts trivially, so we 
an identifythis quotient with the ~G0{module ~g1 = ~gE1 � ~gV1 . Correspondingly, we get ~P{equivariant proje
tions �E : ~p+ ^ ~g2 
 ~g! ~gE1 ^ ~g2 
 ~g�V : ~p+ ^ ~g2 
 ~g! ~gV1 ^ ~g2 
 ~g:From the des
ription of the image of ' in the proof of Theorem 3.8 we 
on
ludethat (�2'
�)(�(u)) 2 ker(�V ). On the other hand, Lemma 3.6 in parti
ular showsthat �V (	�) 6= 0 and 	� 2 ker(�E).



ON THE GEOMETRY OF CHAINS 19Theorem. Let (M;L;R) be a torsion free Lagrangean 
onta
t stru
ture.(1) There is no linear 
onne
tion on the tangent bundle TM whi
h has the 
hainsamong its geodesi
s.(2) The paraboli
 geometry asso
iated to the path geometry of 
hains on ~M =P0(TM ) is torsion free if and only if (M;L;R) is lo
ally 
at, i.e. lo
ally isomorphi
to the homogeneous model G=P .Proof. (1) Suppose that r is a linear 
onne
tion on TM whose geodesi
s in dire
-tions transverse to L�R are parametrizations of the 
hains. Sin
e symmetrizing a
onne
tion does not 
hange the geodesi
s, we may without loss of generality assumethat r is torsion free. Then we 
an look at the asso
iated proje
tive stru
ture [r℄on M and use the ma
hinery of 
orresponden
e spa
e from [3℄. The fa
t that thegeodesi
s of r are the 
hains exa
tly means that the path geometry of 
hains on ~Mis isomorphi
 to an open subgeometry of the 
orresponden
e spa
e C(M; [r℄), see4.7 of [3℄. In parti
ular, the Cartan 
urvature ~� is the restri
tion of the 
urvatureof this 
orresponden
e spa
e. By [3, Proposition 2.4℄ this 
urvature has the prop-erty that it vanishes upon insertion of one tangent ve
tor 
ontained in the verti
albundle of ~M !M . But this 
ontradi
ts the fa
t that �V Æ ~� 6= 0 we have observedabove.(2) By Theorem 3.6, the path geometry of 
hains asso
iated to a lo
ally 
at La-grangean 
onta
t stru
ture is torsion free. Conversely, if the Cartan 
onne
tion~! is torsion free, then a

ording to part (1) of Lemma 3.7 and the tables in 3.7,the lowest nonzero homogeneous 
omponent of ~� must be of degree at least three,and the harmoni
 
urvature must have values in ~gV1 ^ ~g2 
 ~g0 � ker(�E). Bypart (2) of Lemma 3.7 the whole 
urvature ~� has values in ker(�E). Above, wehave observed that 	� 2 ker(�E) so we 
on
lude that for ea
h u 2 G we get�E Æ (�2'
 �)(�(u)) = 0.In the proof of Theorem 3.8 we see that ' is a linear isomorphism p+ ! ~gE1 �~g2,and hen
e ~gE1 ^ ~g2 is 
ontained in the image of �2'. Hen
e we 
on
lude that� Æ �(u) = 0 and sin
e � is inje
tive, the result follows. �4.2. Harmoni
 
urvature. We have dis
ussed the de�nition of harmoni
 
urva-ture already in 3.7. Let �H be the natural proje
tion from ker(��) � �2~p+ 
 ~g tothe quotient ker(��)= im(��). Sin
e this is a ~P{equivariant map, the 
omposition~�H = �H Æ ~� : ~G ! ker(��)= im(��) de�nes a smooth se
tion of the asso
iated bun-dle ~G � ~P ker(��)= im(��), whi
h is the main geometri
 invariant of the paraboli
geometry asso
iated to the path geometry of 
hains.From 3.7 we also know that ~P+ a
ts trivially on the quotient ker(��)= im(��)and we may identify it with the ~G0{module ker(�) � �2~p+ 
 ~g. From the tablein 3.7, we see that this module 
ontains two irredu
ible 
omponents in positivehomogeneity, whi
h are the highest weight 
omponents of the subrepresentations~gE1 ^~g2
~gV�1 respe
tively ~gV1 ^~g2
~g0. Correspondingly, we obtain de
ompositions�H = �EH + �VH and ~�H = ~�EH + ~�VH .Lemma. Let �E and �V be the proje
tions on ~p+ ^~g2
~g de�ned in 4.1. Then therestri
tion of �EH (respe
tively �VH) to ker(��)\ (~p+ ^ ~g2 
 ~g) fa
torizes through �E(respe
tively �V ).Proof. By Kostant's version of the Bott{Borel{Weil theorem, see [13℄, the ~G0{irredu
ible 
omponents 
ontained in ker(�) o

ur with multipli
ity one, even within��~p+
~g. To obtain �E and �V , we used the proje
tion ~p+^~g2
~g ! ~g1^~g2
~g withkernel �2~g2 
 ~g. By the multipli
ity one result and the fa
t that both 
omponentsof ker(�) are 
ontained in ~g1 ^ ~g2 
 ~g, there is no nonzero ~G0{equivariant map�2~g2
~g ! ker(��)= im(��). Hen
e ea
h of the proje
tions �H , �EH and �VH fa
torizes
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 ~g. Looking at the resulting map for �EH , we see that again bymultipli
ity one, the subspa
e ~gV1 ^ ~g2 
 ~g must be 
ontained in the kernel, sowe 
on
lude that �EH fa
torizes through �E . In the same way one shows that �VHfa
torizes through �V . �Proposition. Let (M;L;R) be a torsion free Lagrangean 
onta
t stru
ture, and let~�H = ~�EH + ~�VH be the harmoni
 
urvature of the regular normal paraboli
 geometrydetermined by the path geometry of 
hains.Then the fun
tion ~G ! ~gV1 ^~g2
~g0 
orresponding to ~�VH is a nonzero multiple ofthe unique equivariant extension of the 
onstant fun
tion 	� (
ompare with Lemma3.6) on j(G).Proof. We have to 
ompute the fun
tion �VH Æ ~�. By the lemma, �VH fa
tor-izes through the proje
tion �V introdu
ed in 4.1, and from there we know that�V (~�(j(u))) = �V (	�). Hen
e we see that (�VH Æ ~�)jj(G) = �VH(	�). Now 	� 2~gV1 ^ ~g2 
 ~g0 by Lemma 3.6, and the values even lie in the semisimple part of ~g0,whi
h may be identi�ed with sl(~g�2). Evidently, ~gV1 �= ~gE�1
~g2 as a ~G0{module, sowe may interpret 	� as an element of ~gE�1 
 (
3~g2)
 ~g�2. In Lemma 3.6 and theproof of Theorem 3.6 we have seen that in this pi
ture 	� lies in the irredu
ible
omponent ~gE�1 
 (S3~g2 
 ~g�2)0, where the subs
ript denotes the tra
e free part.Passing ba
k to ~gV1 ^ ~g2 
 ~g0 this exa
tly means that 	� lies in the highest weightsubspa
e, whi
h is the interse
tion with ker(�). Now �VH restri
ts to ~G0{equivariantlinear isomorphism on this interse
tion, whi
h implies the result. �Remark. Similarly to the proof above, one shows that the harmoni
 
urvature
omponent ~�EH is the extension of a 
omponent of j(u) 7! (�2' 
 �)(�(u)). Sin
ewe expli
itly know �2'
 �, this 
an be used to obtain a more expli
it des
riptionof the se
ond harmoni
 
urvature 
omponent. From part (2) of Theorem 4.1 and[3, 4.7℄ we see that vanishing of ~�EH is equivalent to lo
al 
atness of the originalLagrangean 
onta
t stru
ture, so � is 
ompletely en
oded in ~�EH .4.3. Passing to the underlyingmanifold. The harmoni
 
urvature 
omponentdetermined by the fun
tion ~�VH is a se
tion of the bundle asso
iated to ~gV1 ^~g2
~g0.In the proof of Proposition 4.2 we have seen that we 
an repla
e that spa
e by~gE�1 
 (
3~g2) 
 ~g2. The 
orresponding bundle is E 
 
3F � 
 F ! ~M , whereF := T ~M=(E � V ). Sin
e E � TM is a line bundle, we 
an view ~�VH as a se
tionof 
3F � 
 F whi
h is determined up to a nonzero multiple.To relate this to the underlying manifoldM , re
all that ~M is an open subset inthe proje
tivized tangent bundle ofM . A point in ~M is a line in some tangent spa
eTxM that is transversal to Lx�Rx. We have noted in 2.4 that TM �= G�P g=p andT ~M �= G�Q g=q, and the tangent map of the proje
tion � : ~M !M 
orresponds tothe natural proje
tion g=q ! g=p. Fix a point ` 2 ��1(x). Then for ea
h � 2 TxMthere is a lift ~� 2 T` ~M and we 
an 
onsider the 
lass of ~� in F` = T` ~M=(E` � V`).Sin
e V` is the verti
al subbundle, this 
lass is independent of the 
hoi
e of thelift and from the expli
it des
ription of T� we see that restri
ting to Lx � Rx, weobtain a linear isomorphism Lx � Rx �= F`.Fixing x and ` we therefore see that the harmoni
 
urvature 
omponent 
orre-sponding to ~�VH gives rise to an element of 
3(Lx � Rx)� 
 (Lx � Rx), whi
h isdetermined up to a nonzero multiple. To write down this map expli
itly, we �rstneed the Levi bra
ketL : (Lx �Rx)� (Lx � Rx)! TxM=(Lx �Rx):Sin
e this has values in a one{dimensional spa
e, we may view it as a real valuedbilinear map determined up to a nonzero multiple. Further, we denote by J the
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t stru
ture 
orresponding to the de
omposition L � R. This meansthat J is the endomorphism of L � R whi
h is the identity on L and minus theidentity on R. Using this we 
an now formulate:Lemma. The element of 
3(Lx 
Rx)� 
 (Lx �Rx) obtained from ~�VH above is (anonzero multiple of) the 
omplete symmetrization of the map(�; �; �) 7! L(�;J(�))J(�):Proof. This is a reinterpretation of the proof of Lemma 3.6. Observe that J 
orre-sponds to the map �X1X2� 7! � X1�X2� in the notation there. Sin
e L 
orrespondsto [ ; ℄ : g�1 � g�1 ! g�2, 
omputing the bra
ket240� 0 0 0X1 0 00 Xt2 01A ;0� 0 0 0Y1 0 00 �Y t2 01A35 ;we see that the expression hX1; Y2i+hY1; X2i in the proof of Lemma 3.6 
orrespondsto L(�;J(�)). �4.4. Re
onstru
ting the Lagrangean 
onta
t stru
ture. Now we 
an �nallyshow that the Cartan 
urvature of the path geometry of 
hains 
an be used to(almost) re
onstru
t the Lagrangean 
onta
t stru
ture on M that we have startedfrom:Theorem. Let (M;L;R) be a torsion free Lagrangean 
onta
t stru
ture. Thenfor ea
h x 2 M , the subset Lx [ Rx � TxM 
an be re
onstru
ted from the har-moni
 
urvature of the normal paraboli
 geometry asso
iated to the path geometryof 
hains.Proof. In view of the results in 4.2 and 4.3 it suÆ
es to show that Lx [Rx 
an bere
overed from the 
omplete symmetrization S of the map(�; �; �) 7! L(�;J(�))J(�):First we see that S(�; �; �) = 0 if and only if L(�;J(�)) = 0. Note that this is alwayssatis�ed for � 2 Lx [Rx. Fixing an element � with this property, we see thatS(�; �; �) = 2L(�;J(�))J(�):By non{degenera
y of L, given a nonzero element � we 
an always �nd � su
h thatL(�;J(�)) 6= 0. Hen
e we see that � is an eigenve
tor for J (whi
h by de�nition isequivalent to � 2 Lx [ Rx) if and only if S(�; �; �) = 0 and there is an element �su
h that S(�; �; �) is a nonzero multiple of �. �Corollary. Let (M;L;R) be a torsion free Lagrangean 
onta
t stru
ture and let f :M !M be a 
onta
t di�eomorphism whi
h maps 
hains to 
hains. Then either fis an automorphism or an anti{automorphism of the Lagrangean 
onta
t stru
ture.Here anti{automorphism means that Txf(Lx) = Rf(x) and Txf(Rx) = Lf(x) for allx 2M .Proof. By assumption, f indu
es an automorphism ~f of the path geometry of 
hainsasso
iated to (M;L;R). This automorphism has to pull ba
k the Cartan 
urvature~� and also the harmoni
 
urvature �H to itself. From the theorem we 
on
ludethat this implies Txf(Lx [Rx) = Lf(x) [Rf(x), and this is only possible if f is anautomorphism or an anti{automorphism. �
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turesWhat we have done for Lagrangean 
onta
t stru
tures so far 
an be easilyadapted to deal with partially integrable almost CR stru
ture. We will only brie
ysket
h the ne
essary 
hanges in this se
tion.5.1. A non{degenerate partially integrable almost CR stru
ture on a smoothmanifold M is given by a 
onta
t stru
ture H � TM together with an almost
omplex stru
ture J on H su
h that the Levi bra
ket L has the property thatL(J�; J�) = L(�; �) for all �; �. Then L is the imaginary part of a non{degenerateHermitian form and we denote the signature of this form by (p; q). Su
h a stru
-ture of signature (p; q) is equivalent to a regular normal paraboli
 geometry of type(G;P ), where G = PSU (p + 1; q + 1) and P � G is the stabilizer of a point inCPn+1 , n = p + q, 
orresponding to a null line, see [4, 4.15℄. The group G is thequotient of SU (p+1; q+1) by its 
enter (whi
h is isomorphi
 toZn+2) and we willwork with representative matri
es as before.We will use the Hermitian form of signature (p; q) on Cn+1 
orresponding to(z0; : : : ; zn+1) 7! z0�zn+1 + zn+1�z0 +Ppj=1 jzj j2 �Pnj=p+1 jzj j2:Then the de
omposition on sl(n + 2; C ) with blo
k sizes 1, n, and 1 restri
ts to a
onta
t grading on the Lie algebra g of G. The expli
it form for signature (n; 0)
an be found in [4, 4.15℄. In general, g 
onsists of all matri
es of the form0�w Z izX A �IZ�ix �X�I � �w 1Awith blo
ks of sizes 1, n, and 1, w 2 C , x; z 2 R,X 2 Cn , Z 2 Cn� , and A 2 u(p; q)su
h that w � �w + tr(A) = 0. Here Iis the diagonal matrix with the �rst p entriesequal to 1 and the remaining q entries equal to �1.It is easy to show that the subgroup Q � G 
orresponds to matri
es of the form0�' 0 ia'0 � 00 0 �'�11A ;with ' 2 C n f0g, a 2 R and � 2 U (p; q) su
h that '2j'j2 det(�) = 1.5.2. Next we need an analog of the pair (i; �) introdu
ed in 3.5. As before westart with a manifoldM of dimension 2n + 1, so again ~G = PGL(2n+ 2;R). Wewill use a blo
k de
omposition into blo
ks of sizes 1, 1, n, and n as before. Theright 
hoi
e turns out to bei0�' 0 ia'0 � 00 0 �'�11A := 0BBB�j'j �aj'j 0 00 j'j�1 0 00 0 <( j'j' �) �=( j'j' �)0 0 =( j'j' �) <( j'j' �) 1CCCA ;�0�w Z izX A �IZ�ix �X�I � �w 1A := 0BB�<(w) �z <(Z) �=(Z)x �<(w) �=(X�I) �<(X�I)<(X) =(IZ�) <(A) �=(A) +=(w)=(X) �<(IZ�) =(A) �=(w) <(A) 1CCA ;where < and = denote real and imaginary part, respe
tively, and we write =(w) forthe appropriate multiple of the identity matrix.
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hange one hasto make is that the map whose alternation has to be used is given by(X;Y; Z) 7! (hX1;IY1i + hX2;IY2i)��Z2Z1 � :This map has similar properties as the one from 3.6 so the analogs of Theorem 3.6and Corollary 3.6 hold.Con
erning the stru
ture of ker(�) the situation is also similar to the 
ase ofLagrangean 
onta
t stru
tures, sin
e the de
omposition of ker(�) 
an be deter-mined from the 
omplexi�
ations of g and p whi
h are the same in both 
ases. Theonly di�eren
e is that the two irredu
ible 
omponents for n = 1 respe
tively thetwo irredu
ible 
omponents 
ontained in homogeneity 1 in the 
ase n > 1 in theLagrangean 
ase 
orrespond to only one 
omponent here. This 
omponent howeverhas a 
omplex stru
ture and it 
onsists of maps g�1 ^g�2 ! g1 whi
h are 
omplexlinear in the �rst variable respe
tively maps �2g�1 ! g�1, whi
h are 
onjugatelinear in both variables. For n > 1 this 
omponent is a torsion whi
h is up to anonzero multiple given by the Nijenhuis tensor. Vanishing of this 
omponent isequivalent to torsion freeness and to integrability of the almost CR stru
ture, see[4, 4.16℄.Theorem. Let (M;H; J) be a partially integrable almost CR stru
ture and let(p : G ! M;!) be the 
orresponding regular normal paraboli
 geometry of type(G;P ). Then the paraboli
 geometry (G �Q ~P ! P0(TM ); ~!�) 
onstru
ted usingthe extension fun
tor asso
iated to the pair (i; �) from 5.1 is regular and normal ifand only if ! is torsion free, i.e. the almost CR stru
ture is integrable.Proof. Apart from some numeri
al fa
tors whi
h 
ause no problems, this is 
om-pletely parallel to the proof of Theorem 3.8. �Hen
e the dire
t relation between the regular normal paraboli
 geometries asso-
iated to a partially integrable almost CR stru
ture respe
tively to the asso
iatedpath geometry of 
hains works exa
tly on the the sub
lass of CR stru
tures.5.3. Appli
ations. The developments of se
tion 4 
an be applied to the CR 
asewith only minimal 
hanges. In analog of Lemma 4.3, one obtains S 2 
3H�x 
Hx,whi
h is the 
omplete symmetrization of(�; �; �) 7! L(�; J(�))J(�);where J is the almost 
omplex stru
ture on H.Theorem. Let (M;H; J) be a CR stru
ture.(1) There is no linear 
onne
tion on TM whi
h has the 
hains among its geodesi
s.(2) The path geometry of 
hains is torsion free if and only if the CR stru
ture islo
ally 
at.(3) The almost 
omplex stru
ture J 
an be re
onstru
ted up to sign from the har-moni
 
urvature of the asso
iated path geometry of 
hains.Proof. The only 
hange 
ompared to se
tion 4 is that one has to extend S to the
omplexi�ed bundle H 
 C . As in the proof of Theorem 4.4 one then re
onstru
tsthe subset H1;0x [H0;1x � Hx
 C for ea
h x 2M , i.e. the union of the holomorphi
and the anti{holomorphi
 part. This union determines J up to sign. �This theorem now also implies that the signature of the CR stru
ture, whi
h isen
oded in L(�; J(�)), 
an be re
onstru
ted from the path geometry of 
hains. Asa 
orollary, we obtain a 
ompletely independent proof of the analog of Corollary4.4, whi
h is due to [7℄ for CR stru
tures:
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