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INFINITESIMAL AUTOMORPHISMS AND

DEFORMATIONS OF PARABOLIC GEOMETRIES

ANDREAS ČAP

Abstract. We show that infinitesimal automorphisms and infin-
itesimal deformations of parabolic geometries can be nicely de-
scribed in terms of the twisted de–Rham sequence associated to a
certain linear connection on the adjoint tractor bundle. For regular
normal geometries, this description can be related to the underly-
ing geometric structure using the machinery of BGG sequences. In
the locally flat case, this leads to a deformation complex, which
generalizes the is well know complex for locally conformally flat
manifolds.

Recently, a theory of subcomplexes in BGG sequences has been
developed. This applies to certain types of torsion free parabolic
geometries including, quaternionic structures, quaternionic contact
structures and CR structures. We show that for these structures
one of the subcomplexes in the adjoint BGG sequence leads (even
in the curved case) to a complex governing deformations in the
subcategory of torsion free geometries. For quaternionic structures,
this deformation complex is elliptic.

1. Introduction

Given a smooth manifoldM and a type of geometric structure, it is a
natural idea to consider the moduli space, i.e. the space of isomorphism
classes of structures of the given type on M . This moduli space can be
viewed as the quotient of the space of all structures of the given type
by the action of the diffeomorphism group of M , which acts by pulling
back structures. In general, the moduli space is a highly complicated
object. Trying to understand the moduli space locally, one is led to
the study of deformations of geometric structures. Here deformations
coming from the action of one–parameter groups of diffeomorphisms
have to be considered as trivial. Reducing further to the formal infini-
tesimal level, one arrives at infinitesimal deformations. These describe

1991 Mathematics Subject Classification. 32V05, 53A40, 53B15, 53C15, 53D10,
58H15, 58J10.

Key words and phrases. parabolic geometry, BGG–sequence, quaternionic struc-
ture, quaternionic contact structure, CR structure, infinitesimal automorphism, in-
finitesimal deformation, deformation complex.

1



2 ANDREAS ČAP

the possible directions into which a given structure can be deformed.
As before, there is the notion of a trivial infinitesimal deformation, and
the quotient of the space of all infinitesimal deformations by the trivial
ones is usually referred to as the formal tangent space of the moduli
space at the given structure.

In this paper, we study infinitesimal deformations and the closely re-
lated infinitesimal automorphisms for parabolic geometries. These form
a large class of geometric structures containing examples like confor-
mal, quaternionic, hypersurface type CR, and certain higher codimen-
sion CR structures. For some of these structures, deformation theory
has been developed quite far. Infinitesimal deformations are usually
defined in an ad hoc manner as smooth sections of some bundle. Triv-
ial infinitesimal deformations are those which lie in the image of some
linear differential operator, whose kernel is the space of infinitesimal au-
tomorphisms. In particular, the formal tangent space is usually infinite
dimensional.

It is a highly interesting problem to restrict the class of allowed
deformations in such a way that one obtains a finite dimensional moduli
space. This can be done by imposing integrability conditions on the
geometric structure and looking only at deformations in the subclass of
geometries defined in that way. For parabolic geometries, the simplest
possible condition is local flatness, but in some cases much more subtle
integrability conditions can be used, for example anti self duality for
conformal structures in dimension four.

The unifying feature of parabolic geometries is that they can be
viewed as Cartan geometries with homogeneous model a generalized
flag manifold. Regular normal geometries of this type are then equiv-
alent to underlying geometric structures including the examples listed
above. For Cartan geometries, there are evident notions of infinitesimal
deformations and infinitesimal automorphisms. These can be nicely for-
mulated in terms of a certain linear connection (which surprisingly is
different from the canonical normal tractor connection) on the adjoint
tractor bundle, see Proposition 3.2. In particular, the relevant opera-
tors are part of the twisted de–Rham sequence associated to this linear
connection.

The machinery of Bernstein–Gelfand–Gelfand sequences (or BGG–
sequences), which was introduced in [12] and improved in [5], can be ap-
plied to this twisted de–Rham sequence to obtain a sequence of higher
order operators acting on sections of bundles that can be easily inter-
preted in terms of the underlying structure. For regular normal geome-
tries, the first operator in this sequence has the space of infinitesimal
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automorphisms as its kernel and the formal tangent space to the moduli
space of normal geometries as its cokernel, see 3.4 and 3.6.

For locally flat parabolic geometries (which are automatically regular
and normal, and locally isomorphic to the homogeneous model), the
twisted de–Rham sequence is a complex. Thus also the corresponding
BGG sequence is a complex which can be naturally interpreted as a
deformation complex in the category of locally flat structures.

Finally we move to more subtle integrability conditions. The recent
joint work [13] with V. Souček contains a theory of subcomplexes in
BGG sequences. In that paper, we study several examples, in which
there is an interesting notion of semi flatness which includes (and in
most cases is equivalent to) torsion freeness. In particular, these in-
clude quaternionic structures and CR structures, but also quaternionic
contact structures (torsion free ones in dimension 7) as introduced in
[3, 4]. In section 4, we show that for all these geometries a certain sub-
complex of the adjoint BGG sequence can be naturally interpreted as
a deformation complex in the subcategory of semi flat geometries. For
quaternionic structures, this deformation complex is elliptic.
Acknowledgments. This work was supported by project P15747–N05
of the “Fonds zur Förderung der wissenschaftlichen Forschung” (FWF).
Discussions with D. Calderbank, M. Eastwood, and R. Gover were very
helpful. This paper grew out of the joint work [13] with V. Souček and
I particularly want to thank him for many discussions.

2. Some background

We very briefly review some background. Some more details can be
found in [13] and much more information is available in [12, 10, 11].

2.1. Parabolic geometries. The basic data needed to define a para-
bolic geometry is a semisimple Lie algebra g endowed with a |k|–grading
g = g−k ⊕ · · · ⊕ gk and a group G with Lie algebra g. The subgroup
P ⊂ G consisting of all elements g ∈ G such that Ad(g)(gi) ⊂ gi for all
i, where gi := gi ⊕ · · · ⊕ gk, is a parabolic subgroup. We will also need
the subgroup G0 ⊂ P of all elements whose adjoint action preserves
the grading of g.

Parabolic geometries of type (G,P ) are then defined as Cartan ge-
ometries of that type. Thus such a geometry on a smooth manifold M
consists of a principal P–bundle p : G → M and a Cartan connec-
tion ω ∈ Ω1(G, g). The homogeneous model of parabolic geometries of
type (G,P ) is given by the canonical principal bundle G → G/P with
the left Maurer–Cartan form as a Cartan connection. A morphism of
parabolic geometries is a homomorphism of principal bundles which is
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compatible with the Cartan connections. In particular, any morphism
is a local diffeomorphism.

The curvature of a Cartan connection ω can be viewed as K ∈
Ω2(G, g) defined by the structure equation

K(ξ, η) = dω(ξ, η) + [ω(ξ), ω(η)],

where ξ and η are vector fields on G and the bracket is in g. Since K is
horizontal and equivariant, it can be interpreted as a two–form κ on M
with values in the associated bundle AM := G ×P g, see 3.1 for more
details. The bundle AM is called the adjoint tractor bundle. The P–
invariant filtration {gi} of g gives rise to a filtration AM = A−kM ⊃
· · · ⊃ AkM by smooth subbundles and the Lie bracket on g gives rise
to a tensorial bracket { , } on AM , making it into a bundle of filtered
Lie algebras modeled on g.

On the other hand, the Cartan connection ω induces an isomorphism
between the tangent bundle TM and the associated bundle G×P (g/p).
Hence there is a natural projection Π : AM → TM which induces an
isomorphism AM/A0M ∼= TM . Via this isomorphism, the filtration
of AM descends to a filtration TM = T−kM ⊃ · · · ⊃ T−1M of the
tangent bundle by smooth subbundles.

Applying the projection Π to the values of κ, we obtain a TM–valued
two–form κ−, which is called the torsion of the Cartan connection ω.
The geometry is called torsion free if this torsion vanishes.

Via the filtrations of TM and AM , one has a natural notion of
homogeneity for AM–valued differential forms. In particular, we say
that κ is homogeneous of degree ≥ ℓ, if κ(T iM,T jM) ⊂ Ai+j+ℓM
for all i, j = −k, . . . ,−1. A parabolic geometry is called regular if
its curvature is homogeneous of degree ≥ 1. Note that torsion free
parabolic geometries are automatically regular.

For parabolic geometries, there is a uniform normalization condition.
This comes from the Kostant codifferential, which is the differential
∂∗ : Λkp+ ⊗ g → Λk−1p+ ⊗ g in the standard complex computing
Lie algebra homology of p+ := g1 ⊕ · · · ⊕ gk with coefficients in the
representation g. Now p+ is dual to g/p as a P–module via the Killing
form, so G×P (Λkp+⊗g) ∼= ΛkT ∗M⊗AM . Since ∂∗ is P–equivariant it
induces a bundle map ΛkT ∗M ⊗AM → Λk−1T ∗M ⊗AM as well as a
tensorial operator Ωk(M,AM) → Ωk−1(M,AM), which we all denote
by ∂∗. A parabolic geometry is called normal if and only if ∂∗(κ) = 0.

Several important geometric structures like conformal structures, al-
most quaternionic structures, non–degenerate CR structures of hyper-
surface type, and quaternionic contact structures admit a unique regu-
lar normal Cartan connection of type (G,P ) for an appropriate choice
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of (G,P ). Usually, the underlying structure is easily encoded into a
principal G0–bundle endowed with certain partially defined differential
forms. Using quite involved prolongations procedures (see [19, 18, 9])
one extends this bundle to a principal P–bundle and constructs a
canonical regular normal Cartan connection. This leads to an equiv-
alence of categories between regular normal parabolic geometries and
the underlying structures. Thus parabolic geometries offer a powerful
general machinery to study a variety of geometric structures.

2.2. Bernstein–Gelfand–Gelfand sequences. BGG sequences gen-
eralize the BGG resolutions of representation theory to sequences of
invariant differential operators on parabolic geometries. They were in-
troduced in [12] and the construction was improved in [5]. We will
briefly sketch this improved construction for regular geometries in the
special case of the adjoint tractor bundle, more details can be also
found in [13, 6].

The Cartan connection ω induces a natural linear connection ∇,
called the adjoint tractor connection, on the adjoint tractor bundle
AM . This in turn induced the covariant exterior derivative

d∇ : Ωk(M,AM) → Ωk+1(M,AM).

The BGG machinery relates d∇ to higher order operators acting on
sections of certain subquotient bundles. Let ∂∗ : ΛkT ∗M ⊗ AM →
Λk−1T ∗M ⊗AM denote the bundle maps induced by the Kostant co-
differential. The kernels and images of these bundle maps are natural
subbundles, so we can look at the quotient bundles ker(∂∗)/ im(∂∗).
By construction, they are associated to the representations Hk(p+, g).
It turns out that the latter representations are always completely re-
ducible and they are algorithmically computable using Kostant’s ver-
sion of the Bott–Borel–Weil theorem. Since the associated bundles can
be viewed as the fiber–wise homology groups of the bundle T ∗M of
Lie algebras with coefficients in the bundle AM , we denote them by
Hk(T

∗M,AM).Note that by construction there is a natural bundle map
πH : ker(∂∗) → Hk(T

∗M,AM), and we will denote by the same symbol
the induced tensorial operator on sections.

For a normal parabolic geometry, the Cartan curvature κ by defini-
tion is a section of ker(∂∗), so we obtain the section κH = πH(κ) of the
bundle H2(T

∗M,AM), which is called the harmonic curvature. This is
a much simpler object than κ, but still a complete obstruction to lo-
cal flatness. The components of κH (according to the decomposition of
H2(p+, g) into irreducibles) are the fundamental invariants of a regular
normal parabolic geometry.
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We have observed in 2.1 that there is a natural notion of homogeneity
for AM–valued forms. The operators ∂∗ preserve homogeneities, i.e. if
ϕ ∈ Ωk(M,AM) is homogeneous of degree ≥ ℓ, then so is ∂∗(ϕ) ∈
Ωk−1(M,AM). For regular parabolic geometries, also d∇ is compatible
with homogeneities. Now the operator ∂∗ ◦ d∇ evidently preserves the
subspace Γ(im(∂∗)) ⊂ Ωk(M,AM). To get the machinery going, one
only needs the fact that the lowest homogeneous component of the
restriction of ∂∗◦d∇ to Γ(im(∂∗)) is tensorial and invertible. Using this
one shows that the whole operator ∂∗ ◦ d∇ is invertible on Γ(im(∂∗))
and the inverse is a (by construction natural) differential operator.

Using this inverse, one constructs a natural differential operator
L : Γ(Hk(T

∗M,AM)) → Ωk(M,AM) which is characterized by the
properties that for α ∈ Γ(Hk(T

∗M,AM)) one has ∂∗(L(α)) = 0,
πH(L(α)) = α, and ∂∗(d∇L(α)) = 0. The first two properties say that L
is a differential splitting of the tensorial projection πH : Γ(ker(∂∗)) →
Γ(Hk(T

∗M,AM)). Therefore, the operators L are referred to as the
splitting operators. The last property implies that we can define invari-
ant differential operators by

D := πH ◦ d∇ ◦ L : Γ(Hk(T
∗M,AM)) → Γ(Hk+1(T

∗M,AM)),

and these operators form the adjoint BGG sequence. Each of the bun-
dles Hk(T

∗M,AM) splits into a direct sum of subbundles according
to the splitting of the representation H∗(p+, g) into irreducible com-
ponents. Doing this in all degrees, one obtains a pattern of operators
acting between the various components.

2.3. Infinitesimal deformations of conformal structures. For the
convenience of the reader, we briefly review some basic results on in-
finitesimal deformations of conformal structures. Let M be a smooth
manifold of dimension n ≥ 3 and let [g] be a conformal class of pseudo–
Riemannian metrics on M . An infinitesimal deformation of a pseudo–
Riemannian metric is simply a smooth section h of the bundle S2T ∗M .
To obtain a deformation on the conformal class [g] one first requires h
to be trace free, and second one needs that rescaling the metric g in
the conformal class, h has to rescale in the same way. This means that
h has to be a section of the tensor product of S2

0T
∗M with a certain

density bundle. Using the notation and conventions of [8], the right
bundle is F1 := S2

0T
∗M [2] = S2

0T
∗M ⊗ E[2].

Trivial deformations are those coming from pulling back the given
structure along diffeomorphisms. Viewing the conformal class [g] as a
section g of F1, this means that trivial infinitesimal deformations are
those of the form Lξg, for some vector field ξ on M . Here L denotes the
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Lie derivative. Hence the quotient of all infinitesimal deformations by
the trivial ones can be interpreted as the cokernel of the (by construc-
tion invariant) linear differential operator D0 : Γ(TM) → Γ(F1) given
by D0(ξ) = Lξg. It is easy to verify that D0 is the conformal Killing op-
erator. In particular, its kernel is the space of conformal Killing fields,
i.e. of infinitesimal conformal isometries of (M, [g]).

This is about how far one can get for general conformal structures.
To proceed further one can impose some integrability condition on the
conformal structure and look at deformations in the subclass of struc-
tures satisfying this condition. The simplest choice of such a condition
is local conformal flatness. Since this is equivalent to vanishing of the
Weyl curvature, it is natural to consider the bundle F2, in which the
Weyl curvature has its values, and the operator D1 : Γ(F1) → Γ(F2),
which computes the infinitesimal change of the Weyl curvature caused
by an infinitesimal deformation of the conformal structure. If (M, [g])
is locally conformally flat, then sections in the kernel of D1 correspond
to infinitesimal deformations in the subcategory of locally conformally
flat structures. Moreover, D1 ◦ D0 = 0 in that case, so the quotient
ker(D1)/ im(D0) is exactly the formal tangent space to the moduli space
of locally conformally flat structures on M .

It turns out that, still in the locally conformally flat case, this extends
to a fine resolution

0 → Γ(TM)
D0−→ Γ(S2

0T
∗M [2])

D1−→ Γ(F2)
D2−→ . . .

Dn

−→ Γ(Fn) → 0

of the sheaf of conformal Killing fields on M . Constructing this resolu-
tion by hand is fairly involved, see the book [14].

In the case of four dimensional conformal structures, a weaker inte-
grability condition is available. In this case, the bundle F2 splits into
the direct sum F+

2 ⊕ F−

2 of self dual and anti self dual parts. Accord-
ingly, the Weyl curvature splits as W = W++W− and correspondingly
D1 = D+

1 + D−

1 . Given an anti self dual conformal structure, i.e. one
such that W+ = 0, the kernel of the operator D+

1 exactly consists of in-
finitesimal deformations in the subcategory of anti self dual conformal
structures. It turns out that in this case

0 → Γ(TM)
D0−→ Γ(S2

0T
∗M [2])

D+
1−→ Γ(F+

2 ) → 0

is a complex, which is elliptic for Riemannian signature. This is the
basis of the deformation theory for anti self dual conformal Riemannian
four manifolds, see [16] and [15].
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3. Infinitesimal automorphisms and deformations

3.1. The basic setup. Fix a parabolic geometry (p : G → M,ω)
of some type (G,P ). By definition, the adjoint tractor bundle AM is
the associated bundle G ×P g corresponding to the restriction of the
adjoint representation of G to P . Smooth sections of this bundle are
in bijective correspondence with smooth functions f : G → g such that
f(u·g) = Ad(g−1)(f(u)) for all u ∈ G and g ∈ P . More generally, for
k = 1, . . . , dim(M) the space Ωk(M,AM) can be identified with the
space Ωk

hor(G, g)P of P–equivariant, horizontal g–valued k–forms on G.
Here Φ ∈ Ωk(G, g) is horizontal, if it vanishes upon insertion of one
fundamental vector field, and P–equivariant if (rg)∗Φ = Ad(g−1) ◦ Φ
for all g ∈ P .

Explicitly, this correspondence is given as follows. For vector fields
ξ1, . . . , ξk ∈ X(M), there are P–invariant lifts ξ̃1, . . . , ξ̃k ∈ X(G). For

Φ ∈ Ωk(G, g) we consider the function Φ(ξ̃1, . . . , ξ̃k) : G → g. If Φ is
horizontal and equivariant, then this function is independent of the
choice of the lifts and P–equivariant, so it defines a smooth section
ϕ(ξ1, . . . , ξk) of AM . One immediately verifies that this defines an ele-
ment ϕ ∈ Ωk(M,AM). Note that this identification is independent of
the Cartan connection ω.

This correspondence immediately leads to a geometric interpreta-
tion of Ω1(M,AM): Suppose that ω̃ ∈ Ω1(G, g) is a second Cartan
connection on G. Then the difference ω̃ − ω ∈ Ω1(G, g) is by definition
horizontal and P–equivariant, and thus corresponds to an element of
Ω1(M,AM). There is an obvious notion of a deformation of the Car-
tan geometry (G → M,ω) as a smooth family ωτ of Cartan connections
on G parametrized by τ ∈ (−ǫ, ǫ) ⊂ R such that ω0 = ω. The initial
direction of this deformation is the derivative d

dτ
|τ=0ωτ of this family

at τ = 0. By definition, this is the limit of 1
τ
(ωτ − ω0), so it can be

interpreted as ϕ ∈ Ω1(M,AM). On the other hand, if Φ ∈ Ω1(G, g) is
horizontal and P–equivariant, then ω + Φ is a Cartan connection pro-
vided that it restricts to a linear isomorphism on each tangent space.
Since this is an open condition, we can view Ω1(M,AM) as the space
of all directions of deformations of the Cartan connection ω, i.e. as the
space of all infinitesimal deformations of ω.

From 2.1 we know that the curvature of any Cartan connection on
G is naturally interpreted as an element of Ω2(M,AM). In particular,
for a deformation ωτ of ω, the resulting infinitesimal change of the
curvature can be viewed as an element of Ω2(M,AM).

To discuss Ω0(M,AM) = Γ(AM) we need a second interpretation of
C∞(G, g)P . Since ω trivializes TG, associating to a vector field ξ on G
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the function ω ◦ ξ defines a bijection X(G) → C∞(G, g). Equivariancy
of ω immediately implies that (ω ◦ ξ) ◦ rg = Ad(g−1) ◦ (ω ◦ ξ) if and
only if (rg)∗ξ = ξ, so we obtain a bijection between Γ(AM) and the
space X(G)P of P–invariant vector fields on G. Notice that P–invariant
vector fields are automatically projectable to vector fields on M , and
this corresponds to the projection Π : AM → TM from 2.1.

A vector field ξ ∈ X(G) satisfies (rg)∗ξ = ξ if and only if its flow com-
mutes with rg , whenever the flow is defined. This is true for all g ∈ P
if and only if the local flows are principal bundle automorphisms. Thus
we can view the space Γ(AM) as the space of infinitesimal principal
bundle automorphisms of the Cartan bundle G.

3.2. Given a section of AM , we can look at the corresponding vector
field on G. The local flows of this vector field are principal bundle
automorphisms, so we can use them to pull back the Cartan connection
ω, which locally defines a deformation of ω. Deformations obtained
in this way and also the corresponding infinitesimal deformations are
called trivial. Note that while flows may be only locally defined the
corresponding infinitesimal deformation is always defined globally.

An automorphism of the parabolic geometry (G, ω) by definition is
a principal bundle automorphism Φ of G such that Φ∗ω = ω. Corre-
spondingly, an infinitesimal automorphism is a P–invariant vector field
ξ on G such that the induced infinitesimal deformation of the Cartan
connection vanishes identically.

In studying the infinitesimal change of curvature caused by an infin-
itesimal deformation of the Cartan connection, there is an additional
subtlety. For a deformation ωτ of ω = ω0, we may view the curvature κτ

of ωτ as an element of Ω2(M,AM), and we could simply differentiate
this family of sections. However, the identification of Λ2T ∗M ⊗ AM
with the associated bundle G ×P Λ2p+ ⊗ g, which is used to construct
operators acting on the curvature, depends on the Cartan connection.
The easiest way to take this into account is to first convert κτ into
an equivariant function G → Λ2p+ ⊗ g using ωτ . Then one takes the
derivative of this family of functions at τ = 0 and converts it back to
an element of Ω2(M,AM) using ω = ω0.

Finally observe that using the projection Π : AM → TM , any sec-
tion of AM has an underlying vector field on M . In particular, for
s ∈ Γ(AM) we can insert Π(s) into a (bundle valued) differential form
on M , and we write is for the corresponding insertion operator. More
generally, for ϕ ∈ Ωℓ(M,AM) and a vector bundle V →M , we obtain
an insertion operator iϕ : Ωk(M,V ) → Ωk+ℓ−1(M,V ).
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Proposition. Let (G → M,ω) be a parabolic geometry with curvature
κ ∈ Ω2(M,AM). Let ∇ be the adjoint tractor connection, and let d∇ :
Ωk(M,AM) → Ωk+1(M,AM) be the corresponding covariant exterior
derivative. Then we have:
(1) For s ∈ Γ(AM), the infinitesimal deformation of ω induced by the
corresponding invariant vector field is given by ∇s+ isκ. In particular,
s is an infinitesimal automorphism if and only if ∇s = −isκ.
(2) For an infinitesimal deformation ϕ ∈ Ω1(M,AM) of the Cartan
connection ω, the induced infinitesimal change of the curvature is given
by d∇ϕ− iϕκ ∈ Ω2(M,AM).

Proof. (1) The derivative at zero of the pullback of ω by the flow of ξ
is the Lie derivative Lξω ∈ Ω1(G, g). Evaluating this on a vector field
η, we obtain ξ·ω(η) − ω([ξ, η]). If η is invariant and t ∈ Γ(AM) is the
corresponding section, we can express this in terms of the operators
on adjoint tractor fields introduced in [7, section 3]: The term ξ·ω(η)
corresponds exactly to the fundamental D–operator or fundamental
derivative Dst, while the second term is computed in [7, 3.6]. Inserting
this we see that (Lξω)(η) corresponds to Dts+ {t, s}+ κ(s, t), and by
[7, 3.5] the first two terms add up to ∇Π(t)s, which implies the result.

(2) Let ωτ be a deformation of ω, put Φ := d
dτ
|τ=0ωτ ∈ Ω1

hor(G, g)P ,
and let ϕ ∈ Ω1(M,AM) be the corresponding element. Viewed as
Kτ ∈ Ω2(G, g), the curvature of ωτ is given by

Kτ (ξ, η) = dωτ (ξ, η) + [ωτ (ξ), ωτ (η)].

The derivative of this expression with respect to τ at τ = 0 is given by

dΦ(ξ, η) + [Φ(ξ), ω(η)] + [ω(ξ),Φ(η)].

Choose ξ and η to be P–invariant and denote by s and t the correspond-
ing sections of AM . Inserting the definition of the exterior derivative,
we can rewrite the above as

Ds(ϕ(Π(t)))−Dt(ϕ(Π(s)))−ϕ(Π([s, t]))−{t, ϕ(Π(s))}+{s,ϕ(Π(t))}.

As above, the first and last term adds up to ∇Π(s)(ϕ(Π(t))) and sim-
ilarly for the second and forth term. Since Π([s, t]) = [Π(s),Π(t)], we
see that d

dτ
|τ=0Kτ is represented by the covariant exterior derivative

d∇ϕ.
As discussed above, we should however first convert Kτ into a func-

tion using ωτ , which means looking at Kτ (ω
−1
τ (X), ω−1

τ (Y )) for X, Y ∈
g, differentiate, and then convert the result back into a form using ω.
Differentiating the equation X = ωτ (ω

−1
τ (X)) we see that

d
dτ
|τ=0ω

−1
τ (X) = −ω−1(Φ(ω−1(X))).
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To get the expression for the change of the curvature, we thus have to
add to d∇ϕ the terms

−K0

(

ω−1(Φ(ω−1(X))), ω−1(Y )

)

−K0

(

ω−1(X), ω−1(Φ(ω−1(Y )))

)

,

which exactly represent −iϕκ. �

Remark. We consider infinitesimal automorphisms and deformations
on the level of the total space of the Cartan bundle here. As discussed
in 2.1, regular normal parabolic geometries are equivalent to underly-
ing structures. For several of these structures, notions of infinitesimal
automorphisms and deformations are available in the literature, see 2.3
for a sketch of the conformal case.

For infinitesimal automorphisms, it is easy to see that the two con-
cepts are equivalent: The construction of the canonical normal Cartan
connection induces an equivalence of categories between regular nor-
mal parabolic geometries and underlying structures. An automorphism
of the underlying structure uniquely lifts to an automorphism of the
parabolic geometry, and conversely any automorphism of a parabolic
geometry induces an automorphism of the underlying structure on the
base. Applying this to local flows of vector fields, one immediately con-
cludes that there is a bijective correspondence between infinitesimal
automorphisms in the two senses. We shall see below that this corre-
spondence is implemented by the machinery of BGG sequences.

In the case of infinitesimal deformations the question is a bit more
subtle, but the concepts still coincide in all cases that I am aware of.
The basic point here is the following: The underlying structures of par-
abolic geometries can all be encoded as infinitesimal flag structures,
see [10]. These are principal G0–bundles endowed with certain par-
tially defined differential forms. A small deformation of the underlying
structure cannot change the isomorphism type of the principal bundle,
so it can be viewed as a deformation of the partially defined differ-
ential forms. Since the subgroup P+ ⊂ P is always contractible, the
total space of the Cartan bundle must be a trivial P+–principal bun-
dles over the underlying G0–bundle. Making choices, one can extend
the partially defined differential forms from above to a Cartan connec-
tion of the principal P—bundle, and this transforms smooth families
to smooth families. The canonical Cartan connection can then be con-
structed by a normalization process which again maps smooth families
to smooth families. This construction will be described in detail in [11].
In this way, any deformation of the underlying structure gives rise to a
deformation of the parabolic geometry, and since the converse direction



12 ANDREAS ČAP

is obvious, this establishes the equivalence of the two notions. We shall
see below in examples that this correspondence is implemented by the
BGG machinery.

3.3. A variant of the adjoint BGG sequence. Proposition 3.2 sug-
gests considering the linear connection ∇̃ on the bundle AM which is
defined by ∇̃s = ∇s+ isκ:

Lemma. (1) For ϕ ∈ Ωk(M,AM) we have d∇̃ϕ = d∇ϕ+ (−1)kiϕκ.

(2) The curvature R̃ of ∇̃ is given by R̃(ξ, η)(s) = (Dsκ)(ξ, η), where
Ds denotes the fundamental derivative.

Proof. (1) is a straightforward computation using the standard formula

(d∇̃ϕ)(ξ0, . . . , ξk) =
∑

i

(−1)i∇̃ξi
(ϕ(ξ0, . . . , î, . . . , ξk))

+
∑

i<j

(−1)i+jϕ([ξi, ξj], ξ0, . . . , î, . . . , ĵ, . . . , ξk)

for the covariant exterior derivative.
(2) The action of R̃ on s ∈ Γ(AM) can be computed as d∇̃∇̃s. Inserting
the definition of ∇̃ and using (1), this equals d∇∇s+d∇(isκ)−i∇̃sκ. The
first term gives the action κ•s of the curvature of ∇, i.e. (κ•s)(ξ, η) =
{κ(ξ, η), s}. Since κ is the curvature of ∇, the Bianchi identity for
linear connections implies that 0 = d∇κ. Taking t1, t2 ∈ Γ(AM) and
expanding 0 = d∇κ(t1, s, t2) we obtain the formula

d∇(isκ)(t1, t2) = ∇s(κ(t1, t2)) − κ([s, t1], t2) − κ(t1, [s, t2]).

By [7, Proposition 3.2] we get ∇s(κ(t1, t2)) = Ds(κ(t1, t2))+{s, κ(ξ, η)}.
On the other hand, [7, Proposition 3.6] reads as [s, t1] = Dst1 − ∇̃t1s.

Inserting all these facts into the above formula for d∇̃∇̃s, the claim
follows. �

Using part (1), we conclude from Proposition 3.2 that the infinites-
imal change of curvature caused by an infinitesimal deformation of a
Cartan connection is computed by d∇̃.

Now suppose that we are dealing with a regular parabolic geom-
etry (p : G → M,ω). By definition, this means that κ is homoge-
neous of degree ≥ 1, i.e. for ξ ∈ Γ(T iM) and η ∈ Γ(T jM), we have
κ(ξ, η) ∈ Γ(Ai+j+1M). If ϕ ∈ Ωk(M,AM) is homogeneous of degree
≥ ℓ, this immediately implies that iϕκ is homogeneous of degree ≥ ℓ+1.

Therefore d∇̃ϕ is congruent to d∇ϕmodulo elements which are homoge-
neous of degree ≥ ℓ+1. Hence the lowest possibly nonzero homogeneous
components of d∇ϕ and of d∇̃ϕ coincide. As pointed out in 2.2, this
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is all we need to apply the BGG machinery to the twisted de–Rham
sequence induced by ∇̃.

We write L̃ : Γ(Hk(T
∗M,AM)) → Ωk(M,AM) for the splitting

operators obtained by this construction. Their values L̃(α) are charac-

terized by ∂∗(L̃(α)) = 0, πH(L̃(α)) = α, and ∂∗(d∇̃L̃(α)) = 0. The in-

duced BGG operators D̃k : Γ(Hk(T
∗M,AM)) → Γ(Hk+1(T

∗M,AM)))

are given by D̃k = πH ◦ d∇̃ ◦ L̃.

3.4. Infinitesimal automorphisms. It is easy to relate the BGG

sequence obtained from d∇̃ to infinitesimal automorphisms:

Theorem. Let (p : G → M,ω) be a regular normal parabolic geome-
try of type (G,P ) corresponding to a |k|–grading of g. Then the bun-
dle H0(T

∗M,AM) equals AM/A−k+1M ∼= TM/T−k+1M . The alge-

braic projection πH and the differential operator L̃ restrict to inverse
bijections between infinitesimal automorphisms of (p : G → M,ω) and
smooth sections σ ∈ Γ(TM/T−k+1M) such that D̃0(σ) = 0.

Proof. The bundle H0(T
∗M,AM) corresponds to the representation

H0(p+, g). By definition, this homology group is g/[p+, g], and it is well
known that [p+, g] = g−k+1, so the statement about H0(T

∗M,AM)
follows.

By part (1) of Proposition 3.2, a smooth section s ∈ Γ(AM) defines
an infinitesimal automorphism if and only if ∇̃s = 0. If this is the case,
then in particular ∂∗(∇̃s) = 0, and since ∂∗(s) = 0 is automatically
satisfied, this implies s = L̃(πH(s)) and D̃0(πH(s)) = 0. Hence πH

restricts to an injection from infinitesimal automorphisms to ker(D̃0).
Conversely, if σ ∈ Γ(TM/T−k+1M) satisfies D̃0(σ) = 0, then put

s := L̃(σ). Then ∂∗(∇̃s) = 0 and D̃0(σ) = 0 implies that πH(∇̃s) = 0,
so ∇̃s is a section of the subbundle im(∂∗) ⊂ T ∗M ⊗ AM . By part

(2) of Proposition 3.2, we get d∇̃∇̃s = Dsκ and by naturality of the
fundamental derivative and normality we get ∂∗(Dsκ) = Ds∂

∗(κ) = 0.

But from 2.2 we know that ∂∗ ◦ d∇̃ is injective on sections of im(∂∗),
so ∇̃s = 0 and s is an infinitesimal automorphism. �

3.5. To complete the discussion of infinitesimal automorphisms, it re-
mains to compare the first operator D̃0 in the BGG sequence associated
to ∇̃ with the first operator D0 in the BGG sequence associated to ∇.

Theorem. Let (p : G → M,ω) be a regular normal parabolic geometry

of type (G,P ), and let g be the Lie algebra of G. Let L and L̃ be the
splitting operators in degree zero and D0 and D̃0 the BGG operators
obtained from ∇ and ∇̃, respectively.
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(1) If g is |1|–graded or (p : G → M,ω) is torsion free, then L = L̃ :
Γ(TM/T−k+1M) → Γ(AM) and D̃0(σ) = D0(σ) + πH(iL(σ)κ).
(2) If (p : G → M,ω) is torsion free and H1(p+, g) is concentrated in
non–positive homogeneous degrees then D̃0 = D0.

Proof. (1) We start by computing ∂∗(iξκ) for an arbitrary vector field
ξ ∈ X(M). Locally, we can write κ as a finite sum of terms of the form
ϕ ∧ ψ ⊗ t for ϕ, ψ ∈ Ω1(M) and t ∈ Γ(AM). By definition, ∂∗(κ) is
then the sum of the corresponding terms of the form

−ψ ⊗ {ϕ, t}+ ϕ⊗ {ψ, t} − {ϕ, ψ} ⊗ t.

On the other hand, iξκ is the sum of the terms ϕ(ξ)ψ ⊗ t− ψ(ξ)ϕ⊗ t.
Thus ∂∗(iξκ) is the sum of the terms ϕ(ξ){ψ, t} − ψ(ξ){ϕ, t}, and we
conclude that

∂∗(iξκ) = −iξ

(

∂∗(κ) − ({ , } ⊗ id)(κ)

)

,

where in the last term we use { , }⊗ id : Λ2T ∗M⊗AM → T ∗M⊗AM .
Since we are dealing with a normal parabolic geometry, we have ∂∗(κ) =
0. In the case of a |1|–grading the map { , } : Λ2T ∗M → T ∗M is
identically zero, so we get ∂∗(iξκ) = 0 in this case.

In the torsion free case, we fist observe that the kernel of [ , ] ⊗ id
is a P–submodule in Λ2p+ ⊗ g. For any normal parabolic geometry,
the harmonic curvature κH = πH(κ) has values in H2(T

∗M,AM). By
Kostant’s version of the Bott–Borel–Weyl Theorem (see [17]) the corre-
sponding subrepresentation has multiplicity one in Λ∗p+⊗g. In partic-
ular, it has to be contained in the kernel of [ , ]⊗ id. By [6, Theorem 3.2
(1)] the curvature of any torsion free parabolic geometry therefore has
values in the kernel of { , }⊗ id, so we again conclude that ∂∗(iξκ) = 0
for each ξ.

For a section σ of TM/T−k+1M , consider L(σ). By construction
this satisfies ∂∗(L(σ)) = 0, πH(L(σ)) = σ, and ∂∗(∇L(σ)) = 0. Since
∇̃L(σ) = ∇L(σ) + iL(σ)κ, so we also have ∂∗(∇̃L(σ)) = 0. Hence L(σ)

satisfies the three properties which characterize L̃(σ) and L̃ = L fol-
lows. Using this we obtain

D̃0(σ) = πH(∇̃L(σ)) = D0(σ) + πH(iL(σ)κ).

(2) Since we are dealing with a torsion free geometry, we get isκ ∈
Ω1(M,A0M) ⊂ Ω1(M,AM) for each s ∈ Γ(AM). In particular, isκ is
always homogeneous of degree ≥ 1, so by the assumption on H1(p+, g)
we get πH(iL(σ)κ) = 0 for any section σ of TM/T−k+1M . �
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Corollary. Suppose that (p : G → M,ω) is torsion free and H1(p+, g)
is concentrated in non–positive homogeneous degrees, and that s ∈
Γ(AM) satisfies ∇s = 0. Then isκ = 0 and in particular s is an
infinitesimal automorphism.

Proof. Since ∇s = 0 we get s = L(πH(s)) and D0(πH(s)) = 0. By the
Theorem, we have L = L̃ and D0 = D̃0, and in the proof of Theorem
3.4, we have seen that D̃0(πH(s)) = 0 implies ∇̃s = 0. �

Remark. (1) The condition that H1(p+, g) is concentrated in non–
positive homogeneous degrees is easy to verify, see [20] or [9, Propo-
sition 2.7]: The semisimple |k|–graded Lie algebra g decomposes as a
direct sum of |ki|–graded simple ideals with ki ≤ k for each i. The
condition is equivalent to the fact that none of these simple ideals is of
type Aℓ or Cℓ with the grading corresponding to the first simple root.
If g itself is simple, then this exactly excludes classical projective struc-
tures and a contact analog of these. Note that in the latter two cases
regular normal parabolic geometries are automatically torsion free, so
part (1) holds for all regular normal geometries in these cases.
(2) The statement of the corollary is rather surprising even in special
cases like conformal structures. The identities responsible for its validity
are contained in the proof of Lemma 3.3. From this proof one easily
deduces d∇(isκ) = Dsκ− κ • s + i

∇̃sκ for any s ∈ Γ(AM). If ∇s = 0,
then 0 = d∇(∇s) = κ • s and if the geometry is torsion free then this
also implies that ∇̃s has values in A0M and hence i

∇̃sκ = 0. Since
0 = Ds∂

∗(κ) = ∂∗(Dsκ) we obtain ∂∗d∇(isκ) = 0, which under the
assumptions of the Corollary implies isκ = 0.

3.6. Infinitesimal deformations. We next study infinitesimal defor-
mations of parabolic geometries. Consider an infinitesimal deformation
ϕ ∈ Ω1(M,AM) of a regular normal parabolic geometry (p : G →
M,ω). Then ϕ is called normal, if the deformed curvature (infinitesi-
mally) remains normal, so according to Propositions 3.2 and 3.3, this

is the case if and only if ∂∗(d∇̃ϕ) = 0.
The BGG machinery now easily implies that the operator D̃0 whose

kernel is the space of infinitesimal automorphisms, also has the formal
tangent space to the moduli space of normal geometries as its cokernel:

Theorem. Let (p : G → M,ω) be a regular normal parabolic geometry.
(1) Any trivial infinitesimal deformation of ω is normal.
(2) The splitting operator L̃ : Γ(H1(T

∗M,AM)) → Ω1(M,AM) in-
duces a bijection between Γ(H1(T

∗M,AM))/ im(D̃0) and the formal
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tangent space at the given structure to the moduli space of all normal
parabolic geometries on M .
(3) The BGG operator D̃1 computes the infinitesimal change of the

harmonic curvature caused by the infinitesimal deformation L̃(α) asso-
ciated to α ∈ Γ(H1(T

∗M,AM)).

Proof. We have already observed in the proof of Theorem 3.4 that

d∇̃∇̃s = Dsκ and that this has values in the kernel of ∂∗, so (1) follows.
For α ∈ Γ(H1(T

∗M,AM)) we put ϕ := L̃(α). Then by construc-

tion ∂∗(d∇̃ϕ) = 0, so ϕ defines a normal infinitesimal deformation. By

Proposition 3.2, d∇̃ϕ is the infinitesimal change of curvature caused by

ϕ, and by definition D̃1(α) = πH(d∇̃ϕ), which implies (3).
If α = D̃0(σ), then put s = L̃(σ), so α = πH(∇̃s). Since ∂∗(∇̃s) =

0 and ∂∗(d∇̃∇̃s) = 0 we conclude that ∇̃s = L̃(α), so the result-
ing deformation is trivial. Thus L̃ induces a map from the quotient
Γ(H1(T

∗M,AM))/ im(D̃0) to normal infinitesimal deformations mod-
ulo trivial infinitesimal deformations.

Suppose that L̃(α) = ∇̃s. Then in particular ∂∗(∇̃s) = 0, so s =
L̃(πH(s)). Hence α = D̃0(πH(s)) and our map is injective. To prove
surjectivity, suppose that ϕ ∈ Ω1(M,AM) is any normal infinitesimal
deformation. Put s = −Q̃∂∗(ϕ), where Q̃ : Γ(im(∂∗)) → Γ(im(∂∗)) is

the inverse of ∂∗ ◦d∇̃, compare with 2.2. Replacing ϕ by the equivalent
infinitesimal deformation ψ = ϕ + ∇̃s, we see that ∂∗(ψ) = 0 and

∂∗(d∇̃ψ) = 0, so ψ = L̃(πH(ψ)) and surjectivity follows. �

The relation between the splitting operators and the BGG operators
obtained from d∇ respectively d∇̃ is much more complicated than for
the first operator in the sequence. We just prove a simple general result
here which is sufficient to deal with the cases discussed in this paper.

Lemma. Let (p : G → M,ω) be a torsion free normal parabolic geom-
etry. Suppose that V ⊂ Hk(p+, g) and W ⊂ Hk+1(p+, g) are irreducible
components which are contained in homogeneity ℓ respectively ℓ + 1.
Then the components of the BGG operators D̃k and Dk, which map
sections of G ×P V to sections of G ×P W , coincide.

Proof. Consider a section α ∈ Γ(G ×P V ) and put ϕ := L(α) ∈
Ωk(M,AM). Then ϕ is homogeneous of degree ≥ ℓ, ∂∗(ϕ) = 0 and

πH(ϕ) = α. By part (1) of Lemma 3.3 we get d∇̃ϕ = d∇ϕ + (−1)kiϕκ

and therefore ∂∗(d∇̃ϕ) = (−1)k∂∗(iϕκ). By torsion freeness κ is ho-
mogeneous of degree ≥ 2, so iϕκ is homogeneous of degree ≥ ℓ + 2.
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Denoting by Q̃ the operator used in the proof of the Theorem, we con-
clude that ψ := (−1)k+1Q̃∂∗(iϕκ) is homogeneous of degree ≥ ℓ+2. By

construction ∂∗(ϕ + ψ) = 0, πH(ϕ + ψ) = α, and ∂∗(d∇̃(ϕ + ψ)) = 0,
which implies L̃(α) = ϕ+ ψ. Now

d∇̃(ϕ+ ψ) = d∇ϕ+ (−1)kiϕκ + d∇̃ψ,

and the last two terms are homogeneous of degree ≥ ℓ + 2. By homo-
geneity, these terms cannot contribute to the component of the image
under πH that we are interested in. �

3.7. On regularity. To get a complete correspondence to underlying
structures, one has to single out regular normal infinitesimal deforma-
tions among all normal ones. Here a normal infinitesimal deformation

ϕ ∈ Ω1(M,AM) is called regular if and only if d∇̃ϕ ∈ Ω2(M,AM) is
homogeneous of degree ≥ 1. Notice that this condition is vacuous if
the geometry corresponds to a |1|–grading, and Theorem 3.6 therefore
gives a complete description of the formal tangent space to the moduli
space of regular normal geometries.

In general, we can first show that trivial infinitesimal deformations of
regular normal geometries are regular. Indeed, from part (2) of Lemma

3.3 we know that for s ∈ Γ(AM) we have d∇̃∇̃s = Dsκ. If we start
from a regular normal geometry, then κ is homogeneous of degree ≥ 1,
and by naturality of the fundamental derivative the same is true for
Dsκ. Theorem 3.6 now directly implies

Corollary. Let (p : G → M,ω) be a regular normal parabolic geometry.
Then the formal tangent space at the given structure to the moduli space
of regular normal geometries is the quotient of the space of all α ∈

Γ(H1(T
∗M,AM)) such that d∇̃L̃(α) ∈ Ω2(M,AM) is homogeneous of

degree ≥ 1 by the image of D̃0.

For any concrete choice of structure, the condition on the homogene-

ity of d∇̃L̃(α) can be made more explicit by projecting out step by step

the lowest possibly nonzero homogeneous components of d∇̃ ◦ L̃. For
structures correspondig to |2|–gradings, we can give a nicer description,
which will be useful in the examples in section 4.

Proposition. Suppose that P ⊂ G corresponds to a |2|–grading of g.
Then for any regular normal parabolic geometry (p : G → M,ω) of

type (G,P ) and any section α ∈ Γ(H1(T
∗M,AM)) the form d∇̃L̃(α) ∈

Ω2(M,AM) is homogeneous of degree ≥ 1 if and only D̃1(α) is homo-
geneous of degree ≥ 1.
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Proof. By definition, we have D̃1(α) = πH(d∇̃L̃(α)). If D̃1(α) is homo-

geneous of degree ≥ 1, then so is L̃(D̃1(α)), which differs from d∇̃L̃(α)
by a section of im(∂∗). Since we deal with a |2|–grading, any element
of Λ3T ∗M ⊗AM is homogeneous of degree ≥ 1, and the result follows
since ∂∗ preserves homogeneities. �

Since any irreducible component of H2(p+, g) is contained in some
homogeneous degree, the condition in the proposition simply means
that all components of D̃1(α) in bundles corresponding to irreducible
pieces in homogeneity zero have to vanish.

3.8. The locally flat case. As a simple consequence of Theorem 3.6,
we can deal with the case of locally flat geometries. The following result
was first proved in [5].

Theorem. Let (p : G → M,ω) be a locally flat parabolic geometry.
Then the BGG sequence associated to the adjoint representation is a
complex. It can be naturally viewed as a deformation complex, i.e. its
homologies in degrees zero and one are the space of infinitesimal auto-
morphisms respectively the formal tangent space to the moduli space of
all locally flat parabolic geometries on M .

Proof. By local flatness, ∇ = ∇̃ and this connection is flat, so the
twisted de-Rham sequence is a complex. This easily implies that L ◦
D = d∇ ◦ L, so the BGG sequence also is a complex. By Theorem
3.5, the cohomology of this complex in degree zero is isomorphic to
the space of infinitesimal automorphisms. For α ∈ Γ(H1(T

∗M,AM))
with D1(α) = 0 we have d∇L(α) = LD(α) = 0, so the infinitesimal
deformation L(α) does not change the curvature infinitesimally. Since
conversely d∇L(α) = 0 clearly implies D1(α) = 0, we see that the
kernel of D1 exactly corresponds to the infinitesimal deformations in
the subcategory of locally flat geometries. Now the interpretation of
the first cohomology follows from Theorem 3.6. �

4. Deformation complexes for torsion free geometries

In the recent joint work [13] with V. Souček, we have developed a
theory of subcomplexes in curved BGG sequences. This theory applies
to torsion free geometries of certain types. To have interesting exam-
ples, one needs assumptions on the structure of the homology groups
H2(p+, g), which form the degree two part of the adjoint BGG sequence
and governs the structure of the harmonic curvature. The main exam-
ples of this situation are the ones discussed in [13].
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Here we find for all these examples a certain subcomplex in the
adjoint BGG sequence (obtained from d∇). Using the results of section
3, we can show that the first two operators in this subcomplex coincide

with their counterparts in the BGG sequence obtained from d∇̃. This
leads to an interpretation of the subcomplex as a deformation complex
in the appropriate subcategory of torsion free geometries.

4.1. Grassmannian structures. An almost Grassmannian structure
on a manifold M of dimension 2n is essentially given by two auxiliary
bundles E and F over M of rank 2 respectively n, and an isomorphism
Φ : E∗⊗F → TM . The bundles E and F are the basic building blocks
for bundles over M corresponding to irreducible representations of P .

The BGG sequences in this case have triangular shape, see [13, 3.4].
The bundle in degree k of the BGG sequence splits as a direct sum
of irreducible subbundles Hp,q with p + q = k and 0 ≤ p ≤ q ≤ n. In
particular, the second bundle splits as H0,2⊕H1,1, and correspondingly
there are two irreducible components in the harmonic curvature. Let
us now restrict to the case n > 2, the case n = 2 will be discussed
below. The harmonic curvature component in Γ(H0,2) is called the tor-
sion of the almost Grassmannian structure. Vanishing of this torsion
is equivalent to torsion freeness in the sense of G–structures, and the
corresponding geometries are called Grassmannian rather than almost
Grassmannian. The harmonic curvature component in H1,1 is a true
curvature. It is shown in [13, Theorem 3.5] that in the case of Grass-
mannian structures for any p = 0, . . . , n the parts Hp,p → · · · → Hp,n

and for any q = 0, . . . , n the parts H0,q → · · · → Hq,q are subcomplexes
in each BGG sequence.

The representations inducing the bundles in the adjoint BGG se-
quence are determined in [13, 4.1], where we have to take k = ℓ = 1.
For j < n, one obtains H0,j = (SjE⊗E∗)0⊗(ΛjF ∗⊗F )0, where the sub-
script 0 denotes the tracefree part. In particular H0,0 = E∗⊗F = TM ,
which also follows from Theorem 3.4, and H0,1 = sl(E) ⊗ sl(F ). Evi-
dently, H0,jM ⊂ Λj(E⊗F ∗)⊗(E∗⊗F ) = ΛjT ∗M⊗TM . Looking at ho-
mogeneities, this implies that the BGG operators Γ(H0,j−1) → Γ(H0,j)
are first order for all j = 1, . . . , n− 1. Finally, H0,n = (Sn+1E⊗E∗)0 ⊗
ΛnF ∗, and the last BGG operator Γ(H0,n−1) → Γ(H0,n) is of second
order.

Finally, we need the bundle H1,1 which turns out to be the highest
weight part in Λ2E ⊗ S2F ∗ ⊗ sl(F ). This is contained in Λ2T ∗M ⊗
L(TM, TM), so the BGG operator Γ(H0,1) → Γ(H1,1) is a second
order operator.
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Theorem. Let M be a Grassmannian manifold of dimension 2n ≥ 6.
Then the subcomplex

0 → Γ(H0,0) → Γ(H0,1) → · · · → Γ(H0,n) → 0

of the adjoint BGG sequence is a deformation complex in the subcate-
gory of Grassmannian structures.

Proof. The first two operators in this sequence are just the first two
operators in the full adjoint BGG sequence, and from Theorem 3.5
and Lemma 3.6 we conclude that they coincide with their counterparts
constructed from ∇̃ rather than ∇. The statement on the cohomology
in degree zero then follows from Theorem 3.4.

By part (2) of Theorem 3.6 and since regularity is automatic for |1|–
gradings, the quotient Γ(H0,1)/ im(D0) is isomorphic to infinitesimal
deformations of M in the category of almost Grassmannian structures
modulo trivial infinitesimal deformations. On the other hand, part (3)
of Theorem 3.6 implies that the kernel of Γ(H0,1M) → Γ(H0,2M) corre-
sponds exactly to those deformations for which the infinitesimal change
of torsion is trivial, so these are exactly the infinitesimal deformations
in the category of Grassmannian structures. �

Remark. (1) For almost Grassmannian structures, the right definition
of an infinitesimal deformation is not immediately evident. Is is a nice
feature of the approach via parabolic geometries and the BGG machin-
ery, that it shows that infinitesimal deformations are smooth sections
of the bundle sl(E) ⊗ sl(F ). This can be seen directly as follows.

The only part of an almost Grassmannian structure that can be de-
formed nontrivially is the isomorphism Φ : E∗ ⊗ F → TM . Infinitesi-
mally, deformations of this isomorphisms are linear mapsE∗⊗F → TM
modulo those, which are compatible with Φ. Using Φ to convert the
target of such a map back to E∗⊗F , these are exactly endomorphisms
of E∗ ⊗ F modulo those which are of the form ϕ⊗ idF + idE ⊗ψ.
(2) By Theorem 3.6, the splitting operator L̃ : Γ(H0,1) → Ω1(M,AM)
computes the infinitesimal deformation of the canonical Cartan connec-
tion caused by an infinitesimal deformation of the underlying structure.

4.2. The case n = 2. In this case, dim(M) = 4 and an almost Grass-
mannian structure is equivalent to a conformal spin structure with split
signature (2, 2). Basically, this is due to the fact that SL(4,R) naturally
is a two fold covering of SO(3, 3). Here the situation is more symmetric
than for general Grassmannian structures and the two components of
the harmonic curvature are the self dual and the anti self dual parts of
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the Weyl curvature. Theorem 3.6 directly leads to a complex

0 → Γ(H0,0) → Γ(H0,1) → Γ(H0,2) → 0

inside the BGG sequence obtained from d∇̃, and, for anti self dual
structures, an interpretation as a deformation complex in the category
of anti self dual conformal structures. This is exactly the split signature
version of the complex discussed in 2.3. However, in this case the second
operator (which has order two) differs (tensorially) from its counterpart
in the standard adjoint BGG sequence.

4.3. Quaternionic structures. An almost quaternionic structure on
a smooth manifold of dimension 4n is given by a rank 3 subbun-
dle Q ⊂ L(TM, TM) which is locally spanned by three almost com-
plex structures I , J , and K = IJ = −JI . However, these local al-
most complex structures are an additional choice and not an ingre-
dient of the structure. Equivalently, one can view an almost quater-
nionic structure are a reduction of the structure group of the linear
frame bundle to the subgroup S(GL(1,H)GL(n,H)) ⊂ GL(4n,R). Re-
placing S(GL(1,H)GL(n,H)) by the two–fold covering S(GL(1,H) ×
GL(n,H)) one has an equivalent description as an identification of the
complexified tangent bundle TM ⊗ C into the tensor product E ⊗ F ,
where E has complex rank two and F has complex rank 2n. Hence after
complexification we are in the same situation as for almost Grassman-
nian structures with even dimensional F .

In particular, the BGG sequences have the same shape as in the
almost Grassmannian case, and the operators have the same orders.
Moreover, after complexification the bundles showing up in each BGG
sequence are the same as in the almost Grassmannian case. In par-
ticular, there are again two harmonic curvature components and for
n > 1 (the case n = 1 will be discussed below) one of them is a tor-
sion and the other is a true curvature. Vanishing of the torsion is again
equivalent to torsion freeness in the sense of G–structures and the corre-
sponding geometries are referred to as quaternionic rather than almost
quaternionic. For quaternionic structures one obtains subcomplexes in
all BGG sequences which have the same form as in the Grassmannian
case.

Theorem. Let M be a quaternionic manifold of dimension 4n ≥ 8.
Then the subcomplex

0 → Γ(H0,0) → Γ(H0,1) → · · · → Γ(H0,n) → 0
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of the adjoint BGG sequence is an elliptic complex, which can be nat-
urally interpreted as a deformation complex in the category of quater-
nionic structures.

Proof. The interpretation as a deformation complex works exactly as
in the Grassmannian case. Exactness of the symbol sequence is the
special case k = ℓ = 1 of [13, Theorem 4.3]. �

Describing the bundles which show up in the deformation complex
is straightforward, but we do not need this description here. Let us
just note the description of the bundle H0,1, whose sections are the
infinitesimal deformations of an almost quaternionic structure. For Q ⊂
L(TM, TM) let LQ(TM, TM) ⊂ L(TM, TM) denote the subbundle of
those endomorphisms which commute with any element of Q. Then it
turns out that L(TM, TM) ∼= Q⊕ LQ(TM, TM)⊕H0,1 and that H0,1

is isomorphic to the tensor product of Q with the space of tracefree
elements of LQ(TM, TM).

In the special case n = 1, an almost quaternionic structure on a four
manifold is equivalent to a conformal Riemannian spin structure. As in
4.2, we obtain the deformation complex discussed in 2.3 directly from
Theorem 3.6. Again, the second operator in the sequence differs from
the one in the standard adjoint BGG sequence. Ellipticity can be easily
verified directly.

4.4. Lagrangean contact structures. A Lagrangean contact struc-
ture on a smooth manifold M of dimension 2n + 1 is given by a codi-
mension one subbundle H ⊂ TM , which defines a contact structure
on M , together with a decomposition H = E ⊕ F as a direct sum of
two Lagrangean (or Legendrean) subbundles. This means that the Lie
bracket of two sections of E (respectively F ) is a section of H. Since H
defines a contact structure, this forces E and F to be of rank at most
(and hence equal to) n. We will assume n ≥ 2 throughout.

The form of the BGG sequences is described in [13, 3.6]. For k ≤ n,
the bundle in degree k of each BGG sequence splits as ⊕p,qHp,q with
p + q = k and 0 ≤ p, q. The decomposition of the bundle in degree
n + k has the same form as for degree n − k + 1. In particular, there
are three components in the harmonic curvature. The components in
Γ(H2,0) and Γ(H0,2) are torsions, which are exactly the obstructions
to integrability of the subbundles E and F of TM . The component in
Γ(H1,1) is a true curvature. For torsion free geometries, the bundles E
and F are integrable, so M locally admits two transversal fibrations
onto manifolds of dimension n + 1 such that the two vertical bundles
span a contact distribution on M and both are Legendrean. In the
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torsion free case, there many subcomplexes in each BGG sequence (see
[13, 3.7]), in particular the bundles H0,q for q = 0, . . . , n and Hp,0 for
p = 0, . . . , n both form subcomplexes.

Specializing to the adjoint BGG sequence, we know from 3.4 that the
first bundle H0,0 is the quotient Q := TM/H of the tangent bundle by
the contact subbundle. For 0 < j ≤ n one easily verifies that the bundle
H0,j can be described as follows. Since E and F are Legendrean, the
contact structure defines isomorphisms F ∼= E∗⊗Q. Thus ΛjE∗⊗F ∼=
ΛjE∗ ⊗E∗ ⊗Q, and H0,j ⊂ ΛjE∗ ⊗F corresponds to the kernel of the
alternation ΛjE∗ ⊗E∗ ⊗Q → Λj+1E∗ ⊗Q. In particular, the operator
mapping sections of H0,0 to sections of H0,1 must be of second order,
while for 1 ≤ j < n the operator Γ(H0,j) → Γ(H0,j+1) is first order.
In the same way, the bundles Hj,0 for 1 ≤ j ≤ n can be described
as subbundles in ΛjF ∗ ⊗ E and one gets the analogous results for the
orders of the operators.

Theorem. Let (M,E, F ) be a torsion free Lagrangean contact struc-
ture. Then the subcomplex

0 → Γ(H0,0) →
Γ(H0,1)

⊕
Γ(H1,0)

→ · · · →
Γ(H0,n)

⊕
Γ(Hn,0)

→ 0

in the adjoint BGG sequence can be naturally viewed as a deformation
complex in the category of torsion free Lagrangean contact structures.

Proof. From Theorem 3.5 and Lemma 3.6 we see that the first two
operators in this complex coincide with their counterparts in the BGG
sequence obtained from d∇̃. Since the bundles H2,0, H1,1, and H0,2

are all contained in positive homogeneous degrees, normal infinitesimal
deformations are automatically regular by Proposition 3.7. Now the
interpretation as a deformation complex works as for Grassmannian
structures. �

We can again see directly that sections of the bundle H0,1 ⊕H1,0 are
the right notion for infinitesimal deformations of a Lagrangean contact
structure. Since contact structures are rigid, the only way to deform
such a structure is deforming the decomposition H = E⊕F . Infinites-
imally, a deformation of the subbundle E ⊂ H is given by a linear map
E → H/E ∼= F . Such a deformation is in the direction of a Legendrean
subbundle if and only if the corresponding map E×E → Q has trivial
alternation. Likewise, Γ(H1,0) describes infinitesimal Lagrangean de-

formations of F ⊂ H. The splitting operator L̃1 again computes the
infinitesimal deformation of the normal Cartan connection caused by
an infinitesimal deformation of a Lagrangean contact structure.
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Note that the deformation complex cannot be elliptic or subelliptic,
since Q is a real line bundle, while all other bundles showing up in the
subcomplex have even rank.

4.5. CR structures. This case is closely parallel to the case of La-
grangean contact structures. The geometries in question are non–dege-
nerate almost CR structures of hypersurface type, which satisfy partial
integrability, a weakening of the usual integrability condition for CR
structures, see [9, 4.15]. Compared the the case of Lagrangean contact
structures, one only replaces the decomposition of the contact subbun-
dle (which can be interpreted as an almost product structure) by an
almost complex structure J on the contact subbundle H. The condi-
tion that the two subbundles are Legendrean corresponds to the partial
integrability condition for almost CR structures. The complexification
H ⊗ C splits as H1,0 ⊕ H0,1 into holomorphic and anti holomorphic
part, so an this level the picture is parallel to the Lagrangean contact
case.

In particular, complex BGG sequences have exactly the same form
as for Lagrangean contact structures. However, BGG sequences corre-
sponding to real representations without an invariant complex struc-
ture (like the adjoint representation) are different. They are obtained
by “folding” a complex BGG pattern, see [13, 3.8]. In particular, there
are only two irreducible components in the harmonic curvature. One
of these components is a torsion (corresponding to the two torsions
for Lagrangean contact structures), while the other is a curvature. The
torsion is a multiple of the Nijenhuis tensor, so the torsion free geome-
tries are exactly CR structures, see [9, 4.16]. For CR structures, one
obtains many subcomplexes in BGG sequences, see [13, Theorem 3.8].

Using the notation of [13, 3.8], there is a subcomplex in the adjoint
BGG sequence which starts at H0,0. This has the form

0 → Γ(H0,0) → Γ(H1,0) → · · · → Γ(Hn,0) → 0.

and apart from H0,0 = Q := TM/H, all the bundles Hj,0 in the se-
quence are complex vector bundles. To identify them, we just have to
observe that their complexification splits into a direct sum of two com-
plex vector bundles which exactly correspond to the two bundles in the
Lagrangean contact case with E and F replaced by H1,0 and H0,1. In
particular we see that Hj,0⊗C ⊂ LC(Λj(H⊗C)∗, H⊗C) and the com-
ponents are singled out by their complex (anti–)linearity properties. For
example, H0,1 ⊗ C is contained in L(H1,0, H0,1) ⊕ L(H0,1, H1,0), which
exactly means that H0,1 consists of conjugate linear maps H → H. A
conjugate linear map ϕ lies in H0,1 if and only if the corresponding



INFINITESIMAL AUTOMORPHISMS & DEFORMATIONS 25

bilinear map H × H → Q is symmetric. In particular, conjugate lin-
ear maps are exactly infinitesimal deformations of the almost complex
structure J (which is the only deformable ingredient in the structure)
and the symmetry condition takes care about partial integrability. As
before we deduce:

Theorem. Let (M,H, J) be a non–degenerate CR structure of hyper-
surface type. Then the subcomplex

0 → Γ(H0,0) → Γ(H1,0) → · · · → Γ(Hn,0) → 0

in the adjoint BGG sequence can be naturally interpreted as a defor-
mation complex in the category of CR structures.

Remark. This deformation complex has been found (by ad hoc meth-
ods) and successfully applied to the deformation theory of strictly pseu-
doconvex compact CR manifolds earlier. The part starting from H1,0M
is used in the work of T. Akahori in the case n ≥ 3, see e.g. [1]. The
full complex was constructed in [2] for n = 2. Since the first bundle
in the complex is a real line bundle while all others a complex vector
bundles, there is again no hope for the whole complex to be elliptic
or subelliptic. Nonetheless, for some of the operators in the complex
one can prove subelliptic estimates (in the strictly pseudoconvex case),
which play a crucial role in the applications to deformation theory.

4.6. Quaternionic contact structures. These geometries are given
by certain codimension three subbundles in the tangent bundles of
manifolds of dimension 4n + 3. Recall first that for p+ q = n, there is
(up to isomorphism) a unique quaternionic Hermitian form of signature
(p, q) on Hn. The imaginary part of this form is a skew symmetric
bilinear map Hn×Hn → im(H). Putting g1 := Hn and g2 := im(H) this
imaginary part makes g1⊕g2 into a nilpotent graded Lie algebra, called
the quaternionic Heisenberg algebra of signature (p, q). Since the forms
of signature (p, q) and (q, p) differ only by sign, we may assume p ≥ q.
Similarly, one may look at the algebra of split quaternions, for which
there is a unique Hermitian form in each dimension. Correspondingly,
one obtains a unique split quaternionic Heisenberg algebra of dimension
4n+ 3 for each n ≥ 1.

Recall that if H ⊂ TM is a subbundle in the tangent bundle of a
smooth manifold M , then the Lie bracket of vector fields induces a
tensorial map L : H × H → TM/H =: Q. For any x ∈ M we put
gr1(TxM) = Hx and gr2(TxM) := Qx. Then we can view L as defining
on each of the spaces gr(TxM) = gr1(TxM) ⊕ gr2(TxM) the structure
of a nilpotent graded Lie algebra. A quaternionic contact structure
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of signature (p, q) on a smooth manifold M of dimension 4(p + q) +
3 is a smooth subbundle H ⊂ TM of corank 3 such that for each
x ∈ M the nilpotent graded Lie algebra gr(TxM) is isomorphic to the
quaternionic Heisenberg algebra of signature (p, q). A split quaternionic
contact structure on a smooth manifold of dimension 4n+ 3 is defined
similarly using the split quaternionic Heisenberg algebra.

For n = 1 we have dim(M) = 7 and there is only one possible signa-
ture. It turns out that both the quaternionic and the split quaternionic
Heisenberg algebra are rigid in this case. Moreover, corank three distri-
butions defining quaternionic and split quaternionic contact structures
the two generic types of rank 4 distributions in dimension 7. In partic-
ular, a generic real hypersurface in a two–dimensional (split) quater-
nionic vector space carries a (split) quaternionic contact structure.

For n > 1, there are no generic distributions of rank 4n in manifolds
of dimension 4n+3, but it is known from the works of O. Biquard, see
[3, 4], that there are many examples of quaternionic contact structures
of signature (n, 0).

For all these structures, the BGG sequences have the same form,
see [13, 3.9]. For k = 0, . . . , 2n + 1 the bundle in degree k splits into
a direct sum of bundles Hp,q with p + q = k and p ≥ q, and for the
bundle in degree 2n+ 1 + k decomposes in the same way as the one in
degree 2n+2−k. In particular, in degree two we obtain two irreducible
components H2,0 and H1,1. The harmonic curvature component having
values in the bundle H2,0 of the adjoint BGG sequence is a torsion, while
the one having values in H1,1 is a curvature. For n = 1, one obtains
a subcategory of torsion free (split) quaternionic contact structures.
However, for n > 1, bundle H2,0 is contained in homogeneity zero,
so vanishing of the corresponding harmonic curvature component is
forced by regularity, and any (split) quaternionic contact structure is
automatically torsion free.

By [13, Theorem 3.10] there is a number of subcomplexes in each
BGG sequence for a manifold endowed with a torsion free (split) quater-
nionic contact structure. In particular, the bundles Hp,0 with p =
0, . . . , 2n + 1 form a subcomplex. For the adjoint BGG sequence, one
verifies directly that the operator Γ(Hn,0) → Γ(Hn+1,0) is of second
order, while all other operators in the subcomplex are of first order.

Theorem. Let M be a smooth manifold of dimension 4n+ 3 ≥ 11 en-
dowed with a quaternionic contact structure or split quaternionic con-
tact structure. Then the subcomplex

0 → Γ(H0,0) → Γ(H1,0) → · · · → Γ(H2n+1,0) → 0
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of the adjoint BGG sequence can be naturally interpreted as a deforma-
tion complex in the category of torsion free (split) quaternionic contact
structures.

Proof. By Theorem 3.5 and Lemma 3.6 the first two operators in this
sequence coincide with their counterparts obtained from d∇̃. Using
Proposition 3.7 we conclude that the kernel of the operator H1,0 → H2,0

exactly corresponds to regular normal deformations. The interpretation
as a deformation complex then works as before. �

Remark. The situation in the seven–dimensional case is not com-
pletely clear. The problem here is that the operator H1,0 → H2,0 in
the adjoint BGG sequence is of second order. It seems that the two op-

erators obtained from d∇ respectively from d∇̃ differ (tensorially) from
each other. Therefore, there seems to be no direct way to relate the
BGG sequence based on d∇ (for which we can prove the existence of

the relevant subcomplex) to the one based on d∇̃ (for which we have
the interpretation in terms of infinitesimal deformations).
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