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ABSTRACT. We prove that under some restrictions the flow of a Hamiltonian vector
field on a finite dimensional Poisson manifold exists for all time.

1. INTRODUCTION

Let (@, g) be a Riemannian, n-dimensional, smooth (= C*°) manifold, T*@Q its
cotangent bundle and (¢*,...,¢", p1,...,pn) canonical coordinates on T*Q. Every
smooth potential V' on @) gives rise to a Hamiltonian H on T*(), namely

(1.1) H=Y g7pipj+ V(" ..q"),

t,7=1

whose corresponding Hamiltonian vector field Xy is given locally by:

" /O0H & OH 0
1.2 Xy = ),
(12) " Z (api dq¢t  Og 32%)

t,7=1

Around 1969 W. Gordon [2] proved that Xp is complete if V is proper, i.e. V!
(compact )=compact, and bounded below, say V' > 0. The aim of our paper is to
extend Gordon’s result to arbitrary finite dimensional Poisson manifolds.

2. (GENERALITIES ON VECTOR FIELDS AND THEIR COMPLETENESS

Let M be a smooth n-dimensional manifold. We remind ourselves that (see [1],
[3], [4] for details) that a vector field X on M is said to be complete if for every
xo € M, the maximal interval of existence (t_,t4) of every solution of:

dx(t)
— = X (x(t
(2.1) dt (2(%))
z(0) = x
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is given by t4 = Zoo. Hence if X is of class C'!, so that solutions of (2.1) are
unique, to say that X is complete means that X generates a global flow on M. It
is well known (see e.g. [1] Theorem 2.1.18 p. 70) that 3 = +oo if #(¢) remains in a
compact set as t varies over any such neighbourhood. A sufficient condition which
assures this property is provided by the following theorem:

Theorem 2.1. (Gordon) Let X be a C'-vector field on @ manifold M of class C.
Then X is complete if there exists a C'-function E, a proper C°-function f and
the constants o, 3 € R such that for each x € M we have:

(2.2) (X (E(2))] < o |E(2)]
(2.3) [f(z)| < B |E(x)]

Proof. From the chain rule and the basic definitions we have:

(2.4 ) _ x(B)ar)

Hence, if we define

(2.5) h(t) = [E(z(1))]

then we have successively:

h(t) 2 |Ba(t))

25 /0 X(E)(2(s))ds + E(2(0))|

It follows that:

(2.6) h(t) < |E(2(0))] + « /0 h(s)ds.

Now, using Gronwall’s inequality (see the Appendix) we deduce that:

(2.7) h(#) < |B((0)] exp(alt]).
Then
)] < Bl
(2.7)

and therefore:

(2.8) [f(z(1)] < 8- |E(2(0))] - exp(a - [£]).
Since f is proper, this means that x(¢) remains in a compact set as t varies over

a bounded neighbourhood of zero (for which a solution is defined), so that X is
complete. O



3. THE MAIN RESULT

Let (P,{-,-}) be a smooth n-dimensional Poisson manifold, i.e. P is a smooth
n-dimensional manifold and {-,-} is a bi-linear map

{-,}:C®(P,R)x C*(P,R) - C>~(P,R)
such that the following conditions are satisfied

(Pl){fvg} = _{gvf}v
(P2 ){f, gh} = g{f. h} + h{f. g},
(Ps){fi{g, h}} + {0 {f g3} + {9, {h, f}} =0

for each f,g,h € C>=(P,R).
For each H € C*°(P,R) we denote by Xy the Hamiltonian vector field on P
given by
Xy feC®PR) — Xu(f) € {f, H} e c=(P,R).

Then we can prove:

Theorem 3.1. Let (P,{-,-}) be a smooth n-dimensional Poisson manifold. If H €
C>°(M,IR) is proper and bounded below, say H > 0, then Xy is complete.

Proof. Let us take in Theorem 2.1
f=E=H.
Since
Xyy(H) = {H,H} =0

it follows that all conditions of the Theorem 2.1 are satisfied and then we can
conclude that Xy is complete. O

As a consequence we can obtain immediately the following theorem:
Theorem 3.2. Let (M,w) be a smooth, 2n-dimensional symplectic manifold and
H e C°(M,IR). If H is proper and bounded below, say H > 0, then X 1s complete.
4. APPENDIX

In this last section we shall give, following [1], the proof of the well known
Gronwall’s inequality.

Theorem 4.1. (Gronwall’s inequality). Let f,g : [a,b] — R be continuous and
non-negative. Suppose that

f(t) < A—I—/ f(s)gds; A >0.

Then 1t follows that

Fi6) < A | g(s)ds),



for t € [a,b].
Proof. First, suppose that A > 0. Let

(4.1) h(t)=A+ /Ot f(s)g(s)ds.
Thus

(4.2) h(t) >0

and

(43) f(t) < hit)
Then

or equivalently ‘
h(t
M) g(1).

(t)

Integration gives via (4.2):

bl < [ ot

n%ﬁ/{l g(s)ds.

or

Hence:
) < A-expl [ g(s)ds)

and then via (4.3) we obtain the desired result

ity < Aol ' g(s)ds).

If A =0, then we have the result replacing A by €> 0 for every €> 0, thus & and

hence f is zero. 0O
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