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A GENERIC CONVERGENCE THEOREM FOR

CONTINUOUS DESCENT METHODS IN BANACH SPACES

Sergiu Aizicovici, Simeon Reich and Alexander J. Zaslavski

Abstract. We study continuous descent methods for minimizing convex functions
defined on general Banach spaces and prove that most of them (in the sense of Baire

category) converge.

1. Introduction

In this paper we continue our studies of descent methods. This is an important
topic in optimization theory and in dynamical systems; see, for example, [1-3, 6-11].
Given a continuous convex function f on a Banach space X, we associate with f
a complete metric space of vector fields V : X → X such that f0(x, V x) ≤ 0 for
all x ∈ X. Here f0(x, u) is the right-hand derivative of f at x in the direction
of u ∈ X. In [2] we studied the convergence of the values of the function f to
its minimum along the trajectories of continuous dynamical systems governed by
such vector fields and established a convergence result for most of them. Here by
“most” we mean an everywhere dense Gδ subset of the space of vector fields (cf.,
for instance, [4, 5, 8-10, 12]). In [2] we considered a class of vector fields which are
Lipschitz on bounded subsets. We assumed there that the convex function f has
a unique point of minimum, and moreover, that the minimization problem for the
function f on X is well-posed. In the present paper, we obtain a generic convergence
result for a class of vector fields which are only locally Lipschitz and bounded on
bounded subsets of X, and for a convex function f which has a (not necessarily
unique) point of minimum. We equip the space of these vector fields with a natural
complete metric and show that the function f tends to its minimum along any
trajectory of the dynamical system determined by a generic pair consisting of an
initial condition and a vector field.

More precisely, let (X, || · ||) be a Banach space and let f : X → R1 be a convex
continuous function which satisfies the following conditions:

C(i)

lim
||x||→∞

f(x) = ∞;

C(ii) there is x̄ ∈ X such that f(x̄) ≤ f(x) for all x ∈ X.
Note that if X is reflexive, then C(i) implies C(ii).
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For each x ∈ X, let

(1.1) f0(x, u) = lim
t→0+

[f(x + tu) − f(x)]/t, u ∈ X.

For each x ∈ X and r > 0, set

(1.2) B(x, r) = {z ∈ X : ||z − x|| ≤ r} and B(r) = B(0, r).

For each mapping A : X → X and each r > 0, put

(1.3) Lip(A, r) = sup{||Ax− Ay||/||x− y|| : x, y ∈ B(r) and x 6= y}.

Denote by A the set of all locally Lipschitz mappings V : X → X which are
bounded on bounded subsets of X and satisfy the inequality f0(x, V x) ≤ 0 for all
x ∈ X.

For the set A we consider the uniformity determined by the base

Es(n, ǫ) = {(V1, V2) ∈ A ×A : Lip(V1 − V2, n) ≤ ǫ

(1.4) and ||V1x − V2x|| ≤ ǫ for all x ∈ B(n)}.

Clearly, this uniform space A is metrizable and complete. The topology induced
by this uniformity in A will be called the strong topology.

We also equip the space A with the uniformity determined by the base

Ew(n, ǫ) = {(V1, V2) ∈ A ×A : ||V1x − V2x|| ≤ ǫ

(1.5) for all x ∈ B(n)}

where n, ǫ > 0. The topology induced by this uniformity will be called the weak
topology.

The product space X×A is equipped with a pair of topologies: a weak topology
which is the product of the norm topology of X and the weak topology of A, and
a strong topology which is the product of the norm topology of X and the strong
topology of A.

Our paper is organized as follows. The main result, Theorem 2.1, is stated in
the next section. An auxiliary result, Proposition 3.1, is presented in Section 3.
The proof of our main result is carried out in Section 4.

2. The main result

In the proof of our main result, we are going to use the following existence result,
the proof of which is almost identical with the proof of Proposition 1.1 in [2].

Proposition 2.1. Let x0 ∈ X and V ∈ A. Then there exists a unique continuously
differentiable mapping x : [0,∞) → X such that

x′(t) = V x(t), t ∈ [0,∞),

x(0) = x0.

Now we are ready to state the main result of our paper.
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Theorem 2.1. There exists a set F ⊂ X × A which is a countable intersection
of open (in the weak topology) everywhere dense (in the strong topology) subsets of
X × A such that for each pair (z, V ) ∈ F and each ǫ > 0, the following property
holds:

There are a neighborhood U of (z, V ) in X × A with the weak topology and
T0 > 0 such that for each (ξ, W ) ∈ U and each continuously differentiable mapping
y : [0,∞) → X satisfying

y(0) = ξ, y′(t) = Wy(t) for all t ≥ 0,

the inequality f(y(t)) ≤ f(x̄) + ǫ holds for all t ≥ T0.

3. An auxiliary result

We let x ∈ W 1,1(0, T ; X), i.e.,

x(t) = x0 +

∫ t

0

u(s)ds, t ∈ [0, T ],

where T > 0, x0 ∈ X, and u ∈ L1(0, T ; X). Then x : [0, T ] → X is absolutely
continuous and x′(t) = u(t) for a.e. t ∈ [0, T ]. Recall that the function f : X → R1

is assumed to be convex and continuous and therefore it is, in fact, locally Lipschitz.
It follows that its restriction to the set {x(t) : t ∈ [0, T ]} is Lipschitz. Indeed, since
the set {x(t) : t ∈ [0, T ]} is compact, the closure of its convex hull C is both
compact and convex, and so the restriction of f to C is Lipschitz.

Hence the function (f ◦ x)(t) := f(x(t)), t ∈ [0, T ], is absolutely continuous. It
follows that for almost every t ∈ [0, T ], both the derivatives x′(t) and (f ◦ x)′(t)
exist:

x′(t) = lim
h→0

h−1[x(t + h) − x(t)],

(f ◦ x)′(t) = lim
h→0

h−1[f(x(t + h)) − f(x(t))].

We now recall Proposition 3.1 in [11].

Proposition 3.1. Assume that t ∈ [0, T ] and that both the derivatives x′(t) and
(f ◦ x)′(t) exist. Then

(f ◦ x)′(t) = lim
h→0

h−1[f(x(t) + hx′(t)) − f(x(t))].

4. Proof of Theorem 2.1

For each V ∈ A and each γ ∈ (0, 1), set

(4.1) Vγx = V x + γ(x̄ − x), x ∈ X.

We first state four lemmata that can be proved by essentially the same arguments
as those in [2].

Lemma 4.1. Let V ∈ A and γ ∈ (0, 1). Then Vγ ∈ A.
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Lemma 4.2. Let V ∈ A. Then limγ→0+ Vγ = V in the strong topology.

Lemma 4.3. Let V ∈ A, γ ∈ (0, 1), ǫ > 0, and let x ∈ X satisfy f(x) ≥ f(x̄) + ǫ.
Then f0(x, Vγx) ≤ −γǫ.

Lemma 4.4. Let V ∈ A, γ ∈ (0, 1), and let x ∈ C1([0,∞); X) satisfy

(4.2) x′(t) = Vγx(t), t ∈ [0,∞).

Assume that T0, ǫ > 0 are such that

(4.3) T0 > (f(x(0)) − f(x̄))(γǫ)−1 .

Then for each t ≥ T0,

(4.4) f(x(t)) ≤ f(x̄) + ǫ.

The next two lemmata play a key role in the proof of our theorem.

Lemma 4.5. Let V ∈ A, x0 ∈ X, T > 0, ǫ > 0, and let

(4.5) x ∈ C1([0, T ]; X)

satisfy

(4.6) x′(t) = V x(t), t ∈ [0,∞),

and

(4.7) x(0) = x0.

Then there exists a neighborhood U of (x0, V ) in X×A with the weak topology such
that for each (ξ, W ) ∈ U and each y ∈ C1([0, T ]; X) satisfying

(4.8) y(0) = ξ, y′(t) = Wy(t), t ∈ [0,∞),

the following inequality holds:

(4.9) ||y(t) − x(t)|| ≤ ǫ, t ∈ [0, T ].

Proof. Denote by K the closure of the convex hull of {x(t) : t ∈ [0, T ]}. It is clear
that K is convex and compact. It is also not difficult to see that there is r > 0 such
that V is Lipschitz on B(z, r) for all z ∈ K.

We may assume that

(4.10) f(z) ≤ f(x0) + 1 for all z ∈ B(x0, r).

Since K is compact, there are points z1, . . . , zn ∈ K such that

K ⊂ ∪n
i=1

B(zi, r/2).
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Then

(4.11) E := ∪{B(z, r/4) : z ∈ K} ⊂ ∪n
i=1

B(zi, 3r/4).

Clearly, E is a closed and convex set. By the choice of r, there is L1 > 0 such that
for each i = 1, . . . , n,

(4.12) ||V y1 − V y2|| ≤ L1||y1 − y2|| for all y1, y2 ∈ B(zi, r).

We claim that for each y1, y2 ∈ E,

(4.13) ||V y1 − V y2|| ≤ L1||y1 − y2||.

Indeed, let y1, y2 ∈ E with y1 6= y2. To prove (4.13), put
(4.14)

Ω = {S ∈ [0, 1] : ||V y1 − V (ty2 + (1 − t)y1)|| ≤ tL1||y1 − y2|| for all t ∈ [0, S]}.

First, we show that Ω 6= ∅. By (4.11), there is j ∈ {1, . . . , n} such that

(4.15) y1 ∈ B(zj , (3/4)r).

Clearly, there is S0 ∈ (0, 1) such that

ty2 + (1 − t)y1 ∈ B(zj , r) for all t ∈ [0, S0].

When combined with (4.12) and (4.14), this relation implies that S0 ∈ Ω. Set
S1 = sup Ω. It is clear that S1 ∈ Ω. Next, we claim that S1 = 1. Assume that
S1 < 1. Since the set E is convex, it follows from (4.11) that there is p ∈ {1, . . . , n}
such that

(4.16) S1y2 + (1 − S1)y1 ∈ B(zp , (3/4)r).

Hence there is S2 ∈ (S1, 1) such that

(4.17) ty2 + (1 − t)y1 ∈ B(zp , r) for all t ∈ [S1, S2].

By (4.17) and (4.12), we have for all t ∈ [S1, S2],

||V (S1y2 + (1 − S1)y1) − V (ty2 + (1 − t)y1)|| ≤ (t − S1)L1||y2 − y1||.

In conjunction with the inclusion S1 ∈ Ω, this inequality implies that

||V y1 − V (ty2 + (1 − t)y1)|| ≤ tL1||y1 − y2|| for all t ∈ [0, S2].

Thus S2 ∈ Ω, a contradiction. The contradiction we have reached proves that
S1 = 1, as claimed, and thus (4.13) is true.

By C(i), there is n0 > 0 such that

(4.18) if z ∈ X and f(z) ≤ |f(x0)| + 2, then ||z|| ≤ n0.
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Choose a positive number δ such that

(4.19) δ(T + 1)eL1T < min{r/4, ǫ/2}

and set

(4.20) U = B(x0, δ) × {W ∈ A : ||Wz − V z|| ≤ δ for all z ∈ B(n0)}.

Assume that

(4.21) (y0 , W ) ∈ U , y ∈ C1([0, T ]; X),

and

(4.22) y(0) = y0, y′(t) = Wy(t), t ∈ [0, T ].

By Proposition 3.1, (4.22), (4.6), and the inclusions V, W ∈ A, the composite
functions (f ◦ y)(t), t ∈ [0, T ], and (f ◦ x)(t), t ∈ [0, T ], are decreasing, so that
(4.23)

f(y(t)) ≤ f(y(0)) = f(y0), t ∈ [0, T ], f(x(t)) ≤ f(x(0)) = f(x0), t ∈ [0, T ].

Relations (4.23) and (4.18) imply that

(4.24) ||x(t)|| ≤ n0, t ∈ [0, T ].

By (4.23), (4.21), (4.20), (4.19), and (4.10), we have for all t ∈ [0, T ],

(4.25) f(y(t)) ≤ f(y(0)) = f(y0) ≤ f(x0) + 1.

Relations (4.25) and (4.18) imply that

(4.26) ||y(t)|| ≤ n0, t ∈ [0, T ].

Put

(4.27) Ω0 = {S ∈ [0, T ] : ||y(t) − x(t)|| ≤ δ(T + 1)eL1T , t ∈ [0, S]}.

By (4.27), (4.22), (4.21), (4.20), and (4.6), Ω0 6= ∅. Set

(4.28) τ1 = sup Ω0.

Clearly,

(4.29) τ1 ∈ Ω0.

We now show that τ1 = T. Assume by way of contradiction that τ1 < T . In view
of (4.29), (4.27) and (4.19), there holds for all t ∈ [0, τ1],

(4.30) ||y(t) − x(t)|| ≤ δ(T + 1)eL1T < r/4.
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Since τ1 < T , there is τ2 ∈ (τ1, T ) such that

(4.31) ||x(t)− y(t)|| < r/4, t ∈ [τ1, τ2].

Relations (4.31) and (4.30) imply that

(4.32) ||x(t)− y(t)|| < r/4, t ∈ [0, τ2].

Together with (4.11), this inequality implies that

(4.33) y(t) ∈ E, t ∈ [0, τ2].

By (4.22), (4.6), (4.7), (4.21), (4.20), (4.24), and (4.26), we have for s ∈ [0, τ2],

||y(s) − x(s)|| = ||y0 +

∫ s

0

y′(t)dt − x0 −

∫ s

0

x′(t)dt|| ≤ ||x0 − y0||

+

∫ s

0

||y′(t) − x′(t)||dt ≤ δ +

∫ s

0

||Wy(t) − V x(t)||dt

≤ δ +

∫ s

0

||V x(t) − V y(t)||dt +

∫ s

0

||V y(t) − Wy(t)||dt

≤ δ +

∫ s

0

||V x(t) − V y(t)||dt + δs ≤ δ(1 + T ) +

∫ s

0

L1||x(t)− y(t)||dt.

It follows from this inequality and Gronwall’s inequality that for all s ∈ [0, τ2],

||y(s) − x(s)|| ≤ δ(T + 1)eL1T .

Hence τ2 ∈ Ω0, a contradiction. Therefore τ1 = T and

||y(t) − x(t)|| < δ(T + 1)eL1T

for all t ∈ [0, T ]. Together with (4.19), this latter inequality implies that ||y(t) −
x(t)|| < ǫ/2 for all t ∈ [0, T ]. Lemma 4.5 is proved.

Lemma 4.6. Let V ∈ A, γ ∈ (0, 1), ǫ > 0, and x0 ∈ X. Then there exist a
neighborhood U of (x0, Vγ) in X ×A with the weak topology and T0 > 0 such that
for each (ξ, W ) ∈ U and each continuously differentiable mapping y : [0,∞) → X
satisfying

(4.34) y′(t) = Wy(t), t ∈ [0,∞), y(0) = ξ,

the following inequality holds: f(x(T0)) ≤ f(x̄) + ǫ.

Proof. Let the mapping x ∈ C1([0,∞); X) satisfy

(4.35) x(0) = x0, x′(t) = Vγx(t), t ∈ [0,∞).

(The existence of this mapping follows from Proposition 2.1.) By Lemma 4.4, there
is T0 > 0 such that

(4.36) f(x(T0)) ≤ f(x̄) + ǫ/2.
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There also is δ > 0 such that

(4.37) |f(ξ) − f(x(T0))| ≤ ǫ/4 for all ξ ∈ B(x(T0), δ).

By Lemma 4.5, there exists a neighborhood U of (x0, Vγ) in X ×A with the weak
topology such that for each (ξ, W ) ∈ U and each y ∈ C1([0,∞); X) satisfying (4.34),

(4.38) ||y(T0) − x(T0)|| ≤ δ.

Assume that (ξ, W ) ∈ U and that y ∈ C1([0,∞); X) satisfies (4.34). Then (4.38)
is true. Relations (4.38), (4.36) and (4.37) now imply that

f(y(T0)) ≤ f(x(T0)) + ǫ/4 ≤ f(x̄) + ǫ.

Thus Lemma 4.6 is proved.

Completion of the proof of Theorem 2.1. The set

{(z, Vγ) : z ∈ X, V ∈ A, γ ∈ (0, 1)}

is an everywhere dense subset of X × A with the strong topology. Let z ∈ X,
V ∈ A, γ ∈ (0, 1), and let n be a natural number. By Lemma 4.6, there are
T (z, V, γ, n) > 0, and an open neighborhood U(z, V, γ, n) of (z, Vγ) in X ×A with
the weak topology, such that the following property holds:

(P) For each (ξ, W ) ∈ U(z, V, γ, n) and each y ∈ C1([0,∞); X) satisfying (4.34),

f(y(T (z, V, γ, n))) ≤ f(x̄) + 1/n.

Set
F = ∩∞

q=1
∪ {U(z, V, γ, q) : z ∈ X, V ∈ A, γ ∈ (0, 1)}.

It is obvious that F is a countable intersection of open (in the weak topology)
everywhere dense (in the strong topology) subsets of X ×A.

Let (x0, U) ∈ F and ǫ > 0. Choose q > 8(min{1, ǫ}−1). There exist z ∈ X,
V ∈ A and γ ∈ (0, 1) such that

(x0, U) ∈ U(z, V, γ, q).

Let (ξ, W ) ∈ U(z, V, γ, q) and let y ∈ C1([0,∞); X) satisfy (4.34). By property (P)
and the choice of q,

f(y(T (z, V, γ, q))) ≤ f(x̄) + 1/q < f(x̄) + ǫ.

Since the function f(y(t)), t ≥ 0, is decreasing, we conclude that

f(y(t)) < f(x̄) + ǫ for all t ≥ T (z, V, γ, q).

This completes the proof of Theorem 2.1.
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