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The last quarter of this century was a time of a very intensive development of
interaction between statistical mechanics and probability theory. What principally
new added this development to the methodology of statistical mechanics? I think
that it is possible to single out the following contributions:

1) Mathematically rigorous methods were introduced in the realm of statistical
mechanics. (Of course, I understand that at least not all modern physicists agree
that this contribution is a positive one.)

2) It turned out that even any real system contains a finite number of particles
the mathematical laws of statistical mechanics find more explicit and transparent
formulations as properties of systems with infinite number of particles. The infinity
is a better approximation to the number 6 - 10*® than the number 100 (100 <
6 - 10%* &~ oo). The number 6 - 10*® is the famous Avogadro number corresponding
to the number of particles in a typical macroscopic system of particles and 100 is a
number of components so large that the most part of mathematical algorithms and
descriptions that are applicable theoretically to any system with a finite numbers of
elements becomes practically non applicable to the finite systems with such number
of components.

3) Many laws of statistical mechanics are traditionally formulated as approxi-
mately valid in some situations which are not described exactly enough. It turned
out that they can be treated mathematically as exact results of some well-defined
limit approaches.

4)The mathematical models of statistical mechanics lost their exclusiveness. It
turned out that similar models can arise in many other sciences, in situations which
are far from the physical specifics of statistical mechanics. Now we have series of
similar mathematical models which are equal in rights from the pure mathematical
point of view and only some of them have a direct physical interpretation. It
creates a possibility of wide generalizations and extends the class of more simple
mathematical models that can be studied without a care on their physical reality
in a hope that results can help to orient in the real physical situations.

T An enlarged and revised variant of lectures given at the International Symposium in Honour
of Boltzmann’s 150-th birthday, Vienna, February 1994 and Boltzmann’s Legacy, 150 Years after
his Birth, International Conference, Rome, May 1994
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2 R.L. DOBRUSHIN

The aim of this lecture is to discuss from these positions the classical problem
of foundations of statistical mechanics. We concentrate on the following question.
Why are the properties of the system of statistical mechanics in equilibrium can be
described by Gibbsian probability distributions (the Gibbs postulate)?

Any mathematical construction has to have a starting point. Our starting point
is the hypothesis that the time evolution is defined by the laws of classical mechan-
ics. So we completely avoid possibilities and difficulties created by the quantum
mechanics approach. Also we confine ourselves to consideration of systems with
deterministic dynamics, where only initial realizations can be random even the
problems discussed below can be formulated also for random dynamics and in such
modified variant seem to be easier for an investigation. There is a voluminous
mathematical literature on random dynamics of multicomponent system and in
the limits of this lecture it is possible only to give a reference to excellent books
of Liggett [Li] and Spohn [Sp] and the bibliography in these books. Besides it, it
seems that a hope to justify the postulates of statistical mechanics in the framework
of deterministic approach is important as an end in itself.

We assume that at some initial instant £ = 0 we have a system of a large number
of similar particles having a general enough statistical properties of their positions
and velocities. We ask how these statistical properties will be transformed after
the mechanical evolution of this system during a long enough time period ¢ and if
there is a hope to justify the statement that asymptotically, as t — oo, a Gibbsian
distribution arises. Of course, it has to be the Gibbsian distribution described by
the same Hamiltonian which governs the mechanical motion of the particles.

So we assume that realizations of the system of N particles at any given instant
are vectors ¢ = (q1,v1,4¢2,v2,... ,¢N,VN ), Where the positions of particles ¢; and
their velocities v; are d-dimensional vectors: ¢;,v; € R%, i =1,2,... , N. We denote
the space of such vectors by An. Although the main physical case is the case d = 3,
we want to compare the situations in different dimensions and so assume that d is
an arbitrary positive integer. We assume that a potential U(q),q € R?, such that
U(q) = U(—q) is fixed. This potential will be called the potential of dynamics. We
consider the Hamiltonian dynamics governed by the Hamiltonian

(1) H(a):%Z|vi|2—l—ZU(qi—Qj), aE./Zl\N.

i=1 i<j

(So we suppose that the masses of the particles are equal to 1.) If U is a smooth
function, the standard theorems of the theory of differential equations prove the
existence and the uniqueness of the solution of the appropriate system of differential
equation and so for any initial condition a(0) € ./Zl\N a trajectory a(t) € ./Zl\N,O <
t < o0, is well defined. The system of transformations Ty : a(0) — a(t),0 <t < oo,
defines a dynamical system for which the Lebesgue measure in the 2d N-dimensional
space of realizations a € Ay is an invariant measure (the Lioville theorem). The
usual mechanical laws of conservation hold. The following two laws are important
for us. One of them is the law of conservation of energy, which states that

(2) H(a(t)) = const, 0<1t< 0.
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The other one is the law of conservation of moment, which states that
(3) M(a(t)) = const, 0<t < oo,

where the moment

(4) M(a) = v

=1

The hypothesis about a smoothness of the potential of dynamics U is too restrictive,
since it 1s natural to suppose that particles repulse strongly at small distances and
so U(q) — oo, as ¢ — 0. But in this case the law of conservation of energy
does not permit collisions of particles and so, if the potential is smooth out of the
point ¢ = 0, we again have the statements about the existence and the uniqueness
of the dynamics and about the existence of the invariant measure and the laws
of conservation. Sometimes it is assumed that the particles have hard cores of a
diameter R > 0. It means that only realizations a with |¢; — ¢;| > R,¢ # j,%,j =
1,2,..., N, are possible what is interpreted as the condition

(5) U(g) =00, if |¢| < R.

If we assume additionally that the potential of dynamics U is smooth in the domain
lg| > R and U(q) — o0, as |¢| — R, then the trajectories are well defined and again
the laws of conservation hold and the Lebesgue measure is invariant. The situation
becomes more complex if the condition U(gq) — oo as |¢| — R is not fulfilled as, for
example, in the case of the hard spheres system, defined by the potential

00, if |q| < b,

(6) Ula) = { 0,  if|q >0

In such cases it is necessary to supplement the definition of the trajectories by a
description of their behavior at instants of collisions of particles, i.e., at instants t,
when |¢;(t) — ¢;(t)] = b for some ¢ # j. Usually it is assumed that these collisions
are elastic, since it do not violate the laws of conservation (2) and (3). But there
are no natural way to continue a trajectory at the instants, when three or more
particles collide. A hope is that it can occur only for some set of initial conditions
of zero invariant measure.

The existence of dynamics is trivial for the case of the ideal gas, when the
potential of dynamics

(7) Ulg)=0, ¢eR%

Then the trajectories of positions of particles are direct lines and the velocities are
constant.

Models of finite systems of particles moving in all d-dimensional space does not
seem promising for an asymptotical study. In typical cases the positions of all
particles tend to infinity, as ¢t — oc. So it usually assumed that particles moves
inside a finite domain 2, the volume of which || is proportional to N. It means
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that the trajectories take the values in the set of realizations ./Zl\N(Q) = {a € ./Zl\N :
gi € Q,0=1,2,... ,N}. Then we need to supplement the definition of trajectories
and to describe the law of their collision with the walls of the volume ). Usually
it is assumed that the particles reflect elastically from the walls. In the case of the
potential (6) and d > 2 a billiard terminology is often used. The volume Q is a
billiard and the particles are billiard balls. In the case of the potential (6) and d =1
the system of particles is called a hard rods system. There are some difficulties with
an exact mathematical definition of trajectories especially if the boundary of the
domain € is not smooth (for example a square billiard). For the case of billiard
systems the problem of the existence and uniqueness was studied in details in the
book [CFS, chapter 6]. But there is an additional difficulty. An elastic reflection
from a wall conserves the energy of a particle but changes its velocity. So the law
of conservation of energy is fulfilled, but the law of conservation of the moment
fails. However, as it is clear from the discussion below the law of conservation of
moment is inherent in the very nature of the Gibbs postulate. In the framework of
finite-particle approach the only possibility to save this law is to consider periodical
boundary conditions, i.e., to assume that the volume in which the particles move
is a torus. But it seems that this brave hypothesis is not closer to the physical
reality than the hypothesis that there is an infinite system of particles used in the
following.

We construct the infinite-particle dynamics as a limit of dynamics of the N
particles as N — oc. To do this a little another point of view on realizations of
finite particle systems is convenient. Since all the particles are similar we can make
a factorization of the space ./Zl\N, identifying the realizations which are obtained one
from another by a renumeration of particles. Then we obtain a set of realizations
that are finite subsets of the space R? x R? containing N points. We denote this
set by An. The definition of dynamics and its properties described above are easily
extended to this situation. The space A of infinite system of particles is the space
of all countable subsets of the space R? x R?, which are locally finite in the sense
that for any open cube A, = {¢ = (¢1,¢2,... ,qa): —n < ¢ <n,1 =1,2,... N}
the subset a|y, of a set a € A consisting of all points from a which positions located
inside A, is finite. There is a natural topology in the space A: a sequence a,, € A
converges to a realization a if and only if for any n the number of points in the set
am|p, coincides with the number of points in the set a|y, for all large enough m
and the set ap |, — alp, in the natural sense. We say that for some realization
a € A the infinite-particle dynamics is defined if for any ¢ > 0 the limit

(8) Tia = lim Ty(ala,)

exists, where Ty(alys, ) is the realization at the instant ¢ generated by the finite-
particle dynamics in the infinite volume of particles with the initial configuration
ala, . It would be too much to expect that the limit (8) exists for any initial con-
dition a. There are simple examples of situations such that at some fixed instant
to > 0 the velocity of a particle or the number of particles in a finite subvolume
tend to infinity as n — oo and so there are no natural way to prolong the infinite-
particle dynamics after the instant ¢5. Such collapse can occur since even for the
typical initial configuration the energy of its restriction to any finite subvolume is
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finite its total energy is typically infinite and it can happen that this energy from
infinity gathers in a finite volume after a finite period of time. So the following
statement of the problem seems to be natural: to describe a sufficiently wide class
of initial realizations a for which the limits (8) exist. It is possible to say a little
more explicitly what means a wide enough class of realizations in this context. This
class has to be so wide that it has probability 1 with respect to a wide class of prob-
ability distributions on the space of infinite realizations (this class of distributions
has to include Gibbsian distributions — see below — described by a general class of
potentials). The study of this problem was initiated by Lanford [La] for the case of
the dimension 1 and a smooth potential and then extended to some natural classes
of potentials with a repulsion at close distances and to the case d = 2 in the papers
of Dobrushin and Fritz [DF], [FD], [F]. Restrictions on initial configurations used in
these papers are explicitly described as certain restrictions on the growth of veloc-
ities and density at infinity. There are no analogous result for the most important
case d = 3, where additional mathematical difficulties arises. It seems that for this
case there is a slight hope to find mild restrictions on initial configuration which
will guarantee the existence of infinite particle dynamics in an explicit way, but
it is possible to hope that the dynamics exists for almost all initial configurations
with respect to a wide class of initial probability measures. It is a challenging open
mathematical problem. Nevertheless, we will formulate the following hypothesis
in terms of infinite-particle dynamics since their reformulations in terms of finite-
particle dynamics are essentially more tremendous (see a discussion in the end of
the lecture). The construction of infinite particle dynamics of the ideal gas is a triv-
ial problem and by the help of a non-linear transformation its construction for the
one-dimensional hard rods system can be reduced to the case of ideal gas dynamics
(see [DS)).

The main laws of conservation can be extend to the situation of infinite-particle
dynamics, although, of course, their formulations need a modification. Let & =
(¢1,¢2) be a pair of function ¢1(q,v) and ¢a(¢q1,v1,q2,v2). For any realization
a € A the limit

9 Fa)=1im — [ 3 g+ Y agnenge) |

w2 A
(g,v)€ala, (q1,v1),(g2,v2) €ala,

where |A,| is the volume of the cube A,, is called the density of the two-particle
additive functional with the foundation ® on the realization a (if, of course, this
limit exists). We say that a law of conservation for the functional ® and an initial
realization a is fulfilled if the value ®(a(t)) is defined for all 0 < ¢ < oo and

(10) ®(a(t)) = const, 0 <t < cc.

In a similar way laws of conservations for k-particle functionals can be defined. The
law of conservation of moment is defined by the foundation

(11) ¢1(q,v) = v,  da(qu,v1,q2,v2) = 0.

The corresponding density is denoted by M(a). The law of conservation of energy
is defined by the foundation

(12) 451(97”) = %|U|27 452(91701792702) = U(Ql - Q2)-
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The corresponding density is denoted by E(a). To this list it is necessary to add
the law of conservation of the number of particles, which was trivial in the case of
finite-particle dynamics. It is defined by the foundation

(13) o1(q,v) =1, dalqi,v1,q2,v2) = 0.

The corresponding density is denoted by N(a). In all the cases, when the infinite-
particle dynamics is constructed, these three main laws of conservation are fulfilled
with the probability 1 for a wide class of initial distributions (including the Gibbsian
distributions).

We denote by Ay the set of all realizations a € A for which the limit (8) exists
for all £ > 0. Then a semigroup of transformations Ty : a € Ay — Ap,0 <t < o0,
is defined. There is a natural Borel (with respect to the topology described above)
o-algebra of measurable subsets of the space A. The set A is measurable and
the transformations 7} are measurable transformations. Consider a state Py, i.e., a
probability measure on the space A, such that the probability

(14) Py(Ay) = 1.
Then the family of states P;,0 <t < oo, 1s well defined by the relation
(15) P(A)=Py({a:Tia € A})

for any measurable set A C A. The family P; is called the evolution of the initial
state Py. We can formulate the Gibbs postulate as the statement that for a wide
class of initial states Py the state P; tends to one of Gibbsian states corresponding to
the potential U governing the dynamics of the system. In all cases, when we speak
about convergence of states we speak about their weak convergence with respect to
the topology in the space A introduced above. Roughly speaking it means that the
restrictions of the states to any finite volume converge in the usual weak sense and
there are no requirements on uniformity of convergence in different finite volumes.

Now it 1s the time to recall the definition of the Gibbsian states of infinite systems
of particles. To avoid some additional stipulations we suppose that the potential
U(q) satisfies the hard core condition (5) and vanishes out of a sphere of a radius r.
Fix the parameters 3 > 0 (the inverse temperature), v € R? (the mean velocity),
and the number of particles N. The (small canonical) Gibbsian distribution in
the volume € is a probability measure on the set ./Zl\N(Q) defined by the following
density with respect to the usual Lebesgue measure on this set

exp {_5 <Ei<1‘ U(M;;(zlj)') L >} a € Ay(Q),

(16)  pn(a) =

where the partition function
(17)
Zn(8)

1
:/A exp { —/f3 ZU(|qi—Qj|)+§Z|vi—17|2 dqy . ..dgqdvy ... dvg.
An () i<j i
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So, the velocities v; are mutually independent and have Gaussian (= Maxwell) dis-
tributions with the mean value v. To define the grand canonical Gibbs distribution
with a random number of particles we introduce an additional parameters ;¢ € R
(the chemical potential) and let ./Zl\(Q) = UJOVOZOA\N(Q). (Here ./Zl\o(Q) is the space
consisting from one point §) corresponding to the empty realization.) We introduce
the (Poisson) probabilities

ePrNQIN exp { —eP#|Q| }
N! '
The grand canonical Gibbsian distribution with parameters /3, 11, v is the probability

o~

(18) P(Ayn(Q) =

measure on the space A(2) such that the probability of the event Axn(€2) is given
by (18) and that the conditional distribution of N particles under the condition
./Zl\N(Q) is given by (16). To define Gibbsian distribution in all the space R? we
need to consider a sequence of domains €2, tending to infinity (in the sense that any
finite domain lies inside €, for all sufficiently large n) and a sequence of functions
Win(q),q € Qy, such that W,(¢q) vanishes for the points ¢ situated on a distance
more than r from the boundary of €,,. This function will be called the boundary
potential. We let

(19) Hw,(a) = H(a) + Y Walgi)

=1

Repeating the previous construction with H changed to Hy, we define the grand
canonical Gibbsian distribution in the volume €2, with parameters 3, u, v and the
boundary potential W, . Renumarating the particles and assuming that there are
no particles out of 2, we can interpret the introduced Gibbsian distribution as a
probability measure in the space A. We say that a probability measure in the space
A is a Gibbsian state with the potential U and the parameters 3, y, v if it is a limit
of Gibbsian measures with the same parameters in volumes £2,, with the boundary
potentials W, for some sequences 2,,, W,, or if it belongs to the closure of the set
of convex linear combinations of such limits. It is well known that a Gibbsian
state exists for all values of parameters [, i, v and that it is unique if the chemical
potential p < o, where po is an appropriate number (the case of rarefied gas) or
if the dimension d =1 (see [D2] for example). It is expected that if the dimension
d > 1 then for large enough u the Gibbsian state can be non-unique (a phase
transition) but (unlike with the case of lattice gas models) there are no examples
in which this nonuniqueness is proven in a mathematically rigorous way. So, in the
following discussion we restrict ourselves to the situations, when the Gibbsian state
with the given values of parameters p, 5, v and the dynamics potential U is unique.
For any Gibbsian state in the domain of uniqueness the values of densities
E(a),M(a), and N(a) take values which are independent of a for almost all a
(the law of large numbers). So, we can define the values N(P), M(P), E(P) corre-
sponding to a Gibbs state P. It turns out that the correspondence between triples
(p, 3,0) and (N(P),E(P),M(P)) is an one-to-one correspondence. The values
M(P) = v, but the correspondence between pairs (y, 3) and (N(P), E(P)) is not
given by explicit analytical formulas. (We need to make a reservation: the men-
tioned one-to-one correspondence is proven in a part of uniqueness domain only).
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A study of an asymptotical behavior of a dynamics is natural to begin with
a description of stationary points of the dynamics. We say that a state P is a
time-stationary state for the evolution defined by a potential U if Py(Ay) =1 and

(20) P,=Py, 0<t< .

So the result of Marchioro, Presutti, and Pulverenti [MPP], who proved that for
a wide class of potentials U any Gibbs state with this potential is time-invariant
for the evolution defined by this potential, seems important. (See also the earlier
papers of Sinai [Si2, Si3], who initiated a study of this problem for one-dimensional
case, and the paper [PPT]). After it a question arises immediately. Do the Gibbsian
states exhaust all the class of time-invariant states? In such general formulation
the answer to this question is negative. It is easy to invent simple counterexamples.
But there are some other natural conditions which have to be fulfilled for states
pretending to be candidates for equilibrium states of statistical mechanics.

I) These states have to be invariant with respect to the space shifts in the Eu-
clidean space of coordinates g.

IT) These states have to satisfy some conditions of an asymptotic decay of cor-
relations on large distances. Such conditions means, roughly speaking, that for
functions ¢v,, ¢y, depending on the restrictions of realizations to finite volumes
Vi, Vs the differences of mean values

(21) <¢V1¢V2> - <¢V1><¢V2>

are small, when the sets Vi, 1V, are far enough one from another. The conditions
of such type are called mixing conditions in the theory of probability and can be
formulated in many variants.

IIT) The restrictions of these states to the finite volumes must have densities and,
if 1t is useful, it is possible to impose the smoothness conditions and other similar
conditions of general type on these densities.

Conjecture I. For a wide class of potentials U of dynamics any state which s
invariant with respect to the evolution and satisfies conditions of the types I), II),
III) 1s one of Gibbsian states with the potential U.

This Conjecture seems to be plausible and important and, on the other hand,
difficult for a proof.

An important argument in behalf of the last conjecture gives the result which was
obtained in the series of papers of Gurevich, Sinai and Suhov ([GSS], [GS],[Gu]).
They applied an equivalent description of an evolution of a system in terms of
the usually used in statistical mechanics infinite BBGKY-system of differential
equations for the multipartical correlation functions of the state P;. (We need
to mention that this equivalency for the case of infinite-particle systems was never
discussed at a mathematically rigorous level at the literature.) They defined the
time-invariant states as states such that their multiparticle correlation functions
give a time-invariant solution of the BBGKY-system of equations. Further, they
supposed a priori that the considered candidates for time-invariants states are Gibb-
sian states with some restrictions of a general type on the potentials describing these
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states. They proved that in this class of candidates only the Gibbsian states with
the potential U which defines the dynamics give time-invariant solutions of the
BBGKY-system. It is possible to show that any state which satisfies some strong
conditions of decay of correlations is a Gibbsian state with some potentials (see
[Ko]). So the a priori condition that the states are Gibbsian can be treated as a
special strong variant of the conditions II), III) introduced above. In the derivation
of the described results about time-invariant states the following step turns out
to be the decisive one. It is proved that in some sense there are no other laws of
conservation defined by additive functionals except the laws of conservation of the
number of particles, of the moment and of the energy and their linear combinations.

Conjecture II. Let a state Py satisfying the conditions I), II), III) introduced
above is such that the mean values N(Py), M(Py), E(Py) are defined and there exists

an unique Gibbsian state P with the potential U such that
(22) N(P) = N(R), M(P)=M(R), E(P)=E(R)

Then for a wide class of potentials of dynamics the evolution Pp,0 <t < oo, with
the wnitial state Py 15 such that

(23) lim P, = P.
t—o0

The Conjecture II is much stronger than Conjecture I and so seems even more
difficult for a proof. There are no cases in which it is proved but if a result of a
such type would be proved it could explain at a mathematical level the role which
Gibbsian distributions play in the equilibrium statistical mechanics.

Some exceptional potentials of dynamics are known for which Conjectures I and
IT are not valid in their original formulation. They are the potential of the ideal gas

(7), the potential of one-dimensional hard rods (6) and in the case of the dimension
d =1 the potentials

—2 a
(24) Ulz) =ca™", U(Q?)—W,
where a > 0,b > 0,¢ > 0. In these cases there are additional additive laws of
conservations. In the ideal gas motion the particles conserve their velocities. In
the hard rods motion the particles exchange their velocities in their collisions. It
implies that the laws of conservations (10) are valid for the additive functionals
with the foundations ® = (¢1, ¢2) such that

(25) $1(q,v) = ¢(v), d2(g,v) =0,

where ¢(v) is an arbitrary function. Because of it a wider family of time-stationary
states exists for these degenerate motion potentials. It is the family of states for
which the positions have the Gibbsian distributions with the potential of dynam-
ics, velocities of particles are again statistically independent of the positions of all
particles and statistically independent for different particles, the probability distri-
butions of velocities of all particles are identical, but unlike to the generic case this
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general probability distribution F' of velocities is not obligatory Gaussian and can
be arbitrary. We say that such state is Gibbsian with the probability distribution
F for velocities. An analog of Conjecture I can be proved for these cases: all states
which are invariant with respect to the evolution and satisfy the conditions I), II),
III) (in one of their natural and wide concrete interpretation) are Gibbsian with a
distribution F for velocities (see [DS]). The following statement is a natural analog
of Conjecture II. Assume that an initial state Py satisfies the conditions I), II),
I1I) and is such that for some probability distribution F on R? for almost all with
respect to this state realizations a¢ and any measurable set B C R? the density
®p(a) of the additive functional with the foundation ®5 = (xp,0), where Y g is
the indicator function of the set of realizations (¢,v) such that v € B, exists and
is equal to F(B). Then P; converges to the Gibbsian state P with the probability
distribution F of velocities such that N(P) = N(P,). This statement have been
also proved (see again [DS]). It seems that it an essential argument in the behalf of
Conjectures I and II in the original formulation. In the case of the potentials (24)
the additional laws of conservation arise from the integrability of the corresponding
equations of motions and are more complex but again additional states invariant
with respect to the evolution arise (see [C]).

The condition I) of space invariance of the initial state Py is not mandatory for
Conjecture II. It can be changed on the condition that this state P, is spatially
periodic or that it is only locally distinct from a space invariant state Pj. The
latest condition means that for a sequence of cubes A,, the restrictions of the states
Py and P} on the complement to A, asymptotically coincide (in some sense) as
n — oo. A special class of states which are locally distinct from a space invariant
state arises, if we consider the states, which are absolutely continuous (i.e. defined
by a density) with respect to a space invariant Gibbsian state with the dynam-
ics potential. For the last class of initial states Conjecture II is close to another
conjecture which has an elegant mathematical formulation and so is popular in
the mathematical literature. It is the conjecture that the dynamical system with
an time-invariant and space-invariant Gibbsian measure defined by the group of
transformations 7Ty is ergodic (= metrically transitive) or, what is stronger, this
dynamical system is mixing. The mixing means that the mutual distribution of
the realizations of the system in instants 0 and ¢ defined by this dynamical system
tends asymptotically, as t — o0, to the direct product Py x Py, i.e., realizations of
the system at instances 0 and t became almost independent. This last conjecture is
again a difficult open problem for the generic case and is proved for the case of ideal
gas and one-dimensional hard rods system. For the case of ideal gas this conjecture
is an evident implication of an old general probabilistic result [D1]. Its formulation
on the language of the theory of dynamical system is due to Volkovissky and Sinai
[VS], who proved also that this ideal gas dynamical system has the K-property.
The references to the further papers can be found in the last review section of the
paper [DS].

A traditional doubt exists. The entropy of a state P having the density p(a)
with respect to the Lebesgue measure is defined as

(26) S(P)=— /p(a) In p(a)da.
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It follows from the Lioville theorem that in the case of dynamics in a finite volume
S(P;) is constant in t. For a state P in the infinite volume the entropy can be

defined as
P
(27) S(P) = lim S(Pla,)

n—oo |A_n| ’
where P|y, is the projection of the measure P to the cube A,, i.e., the measure
such that for any measurable set A of realizations in A,, the value

(28) Ply (A) = P(a:a|y, € A).

In the general class of cases, when the existence of infinite-particle dynamics is
proved, and for a wide class of space invariant initial states P, it is possible to
prove that the entropy S(P;) exists for all ¢ and is constant in t. Nevertheless, in
the generic situation the entropy of the limit Gibbsian state

(29) S(P) > S(Py).

Of course, it does not contradicts to Conjecture II. The mathematical explanation
is simple. The entropy defined by the relation (27) is not a continuous functional on
the space of states with the topology of weak convergence, it is only semicontinuous
functional and so the convergence P; — P does not imply that S(P;) — S(P). It is
possible to give a "more physical” explanation of this effect. Entropy is a measure
of dependency of positions and velocities of particles. If an initial state Py satisfies
some conditions of decay of correlation, at the initial instant this dependence is
mainly the dependence of particles which are close one to another. This dependence
conserved in time but, typically, dependent particles will be far one from another
for large t. Entropy does not feel it since in the definition (27) the cubes of any
size are used. The topology of weak convergence means that the limit approach is
taken in any finite volume separately and so this dependence is lost in the limit
state. On the example of the ideal gas this mechanism 1s discussed in detail in the
paper [DS].

There is another popular approach which is founded on the Ergodic Hypothesis
which attracts by its elegant and simple mathematical formulation. Consider the
dynamics Ty of the system of N particles defined by a dynamic potential U in
a finite volume Q C R? with elastic reflections from its walls or in a torus € .
Let Ay, g(£2) be the set of all realizations a of N particles in the volume € such
that the energy H(a) = E (in the case of dynamics in a torus the additional
restriction M(a) = 0 is added). Under mild restrictions on U and E this set is a
piece of a smooth surface in an Euclidean space and so a probability measure on
An E(§) can be defined as the limit of the normalized Lebesgue measures in the
layers Up . pem <ppn AN, z/(2) as A — 0. This probability distribution is called
the microcanonical Gibbsian distribution in the volume 2 and we denote it by
po,n,E- 1t follows from the Lioville theorem and the laws of conservation that this
microcanonical distribution is invariant with respect to the dynamics. Assume that
the volumes ||, the numbers of particles N(§2), and the energies E(Q) in these
volumes tend to infinity in such a way that the finite non-vanishing limits

N(Q) = . E(Q)

30 N= lim —~*, E= lim —*
(30) 2] —co | 2] —co  |$2]
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exist. Under some additional conditions of a general type it is possible to prove that
in the limit approach (30) the microcanonical Gibbsian distribution converges to a
Gibbsian distribution in R? defined by the dynamic potential U. It is the Gibbsian
distribution P with the parameters p, 3 defined by the conditions N(P) = N,
E(P)=FE and v = 0. (See results of such type in [DT], [Gel], [Ge2], [H], [LPS1],
[LPS2]).

So, it seems natural to assume that an justification of the statement that the
microcanonical distribution describes the equilibrium distribution of the system of
particles could be a decisive step toward the justification of statistical mechanics.
Other time-invariant probability distribution could compete with the microcanon-
ical distribution for the position to be the equilibrium distribution. The Ergodic
Hypothesis mainly excludes this possibility. It states that in the class of probability
distribution absolutely continuous with respect to the microcanonical distribution
there are no other distributions invariant with respect to the dynamics. So it
possible to compare the Ergodic Hypothesis with Conjecture I for infinite-particle
systems formulated above and the a priori condition of absolute continuity with the
condition IIT of this conjecture.

The famous Von Neumann — Birkhoff ergodic theorem is an analog of Conjecture
IT for the infinite-particle system. It states [B] that, if (for a given Q, U, N and E)
the ergodic theorem is valid, then for any bounded measurable function f of the
realization in the volume €

(31) fim 7 [ AN dt= [ faun xp(da)

in the sense of the convergence with the probability 1 with respect to the measure
defined by the evolution with the initial distribution po n g. After this result
published in 1931 the Ergodic Hypothesis began to be treated as the main road to
the foundation of statistical mechanics (See, for example, Khinchin book [Kh] which
was the first mathematically rigorous book on statistical mechanics.) But during
the next 30 years there was no progress in the proof of the Ergodic Hypothesis.

A pioneer paper of Sinai [Sil] generated an exciting hope to prove the Ergodic
Hypothesis for the case of the hard sphere potential (6) on tori. A new deep branch
of the theory of dynamical systems — theory of billiards was created (see the review
paper of Szasz [Sz]). But the Ergodic Hypothesis turned out to be very difficult
in the case of hard spheres also. After other 30 years of efforts of many scientists
the best record is now the proof of Ergodic Hypothesis in the dimension d = 2 for
N = 3 balls and in the dimension d = 3 for N = 4 balls (see Bunimovich, Sinai
[BS] for N = 2,d = 2, Sinai, Chernov [SC| for N = 2,d > 2, Kramli, Simanyi,
Szasz [KSS1] for N = 3,d > 2 and [KSS2] for N = 4,d > 3). On the other
hand there are pessimistic indications. In a paper of Markus and Meyer [MM] it
is proved that in the space of smooth Hamiltonians the Hamiltonians generating
nonergodic dynamical systems for a set of values of energy E of a positive measure
form a dense open subset. So perspectives for a proof of the Ergodic Hypothesis in
a generic situation of statistical mechanics seem very vague now.

Of course a nonfulfillment of the Ergodic Hypothesis does not undermine the
foundations of statistical mechanics. Some compromise variants of this hypothesis
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are discussed in the literature. For example, it is possible that even the Ergodic
Hypothesis is not valid and there are several ergodic components, for large N one of
these components covers the main part of the phase space. Another variant seems
more plausible. For large N there is a lot of small ergodic components which are
intermixed in a so complex way that using an observations in a fixed subvolume
we almost can not distinguish these components. It is difficult to formulate exactly
such hypothesis and even more difficult to deduce its implications. Really on this
way we approach to Conjectures I and II for infinite-particle systems formulated
above.

There is an additional complication which arises even if the Ergodic Hypothesis
is valid. The ergodic theorem does not state that the convergence in (31) is uniform
in N. If we define the relaxation time 7'(¢) as the minimal value of T such that the
difference between the integral in the left part of (31) normalized by the multiplier
T—! and its limit value smaller than e it seems that the best estimate for this
relaxation time which could be extracted from the constructions usually used in the
proof of the ergodic theorem will grow exponentially with N. Roughly speaking,
the mechanism of this construction is such that before the time T'(¢) the trajectory
need to visit a small enough neighborhood of the each point of the phase space. But
the volume of the space grows exponentially with N and so the time T'(¢) has to
grow proportionally to this volume. On the other hand, the physical intuition and
experience suggest that the relaxation time for a realizations in a fixed subvolume
does not depend on the number of particles in the whole volume. Of course, it
is possible to assume that for a fixed function f depending on a restriction of
realizations to a finite subvolume only the convergence in (31) is really uniform in
N but the proof of such hypothesis requires entirely another ideas.

So I am glad a possibility to cite an aphoristic words of Prof. J. Lebowitz at the
Vienna International Symposium in Honor of Boltzmann’s 150-th Birthday which
stated that now it is the real time to recognize hat the Ergodic Hypothesis is not a
necessary and is not a sufficient condition for the foundation of statistical mechanic.

Within the framework of the finite-particle approach it is also possible to formu-
late a conjecture avoiding difficulties connected with the Ergodic Hypothesis and
the ergodic theorem discussed above. Consider the sequences of cubes A,, and the
dynamics T}* for the realizations in these cubes and the corresponding microcanon-
ical distributions jt,, = pa, N, g, such that N,/|A,| = N and E,/|A,| — E (cf.
(30)). Let P be the corresponding limit Gibbsian state and f be an bounded mea-
surable function depending on the restriction of realizations to a fixed subvolume.

Conjecture III. The relation

(32) lim lim l/0 f(Tt"a|An)dt:[4f(a)P(da),

n—oo T—oo 1

where (out of prudence) the convergence is treated as the convergence in probability,
holds. The convergence in T in the inner limit s uniform in n.

Of course, this conjecture is again a very difficult open problem. It seems that
its proof will require new methods, for which in a contrast to the methods used
in proofs of Ergodic Hypothesis and the ergodic theorem an increase of N does
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not hamper but facilitates the situation. An allusion to such possibility gives a
mechanism applied in all the papers devoted to much more primitive models of
the ideal gas and of the one-dimensional hard rods in the infinite volume. Here
because of the condition II) about of a decay of correlation in the initial moment
there is an "initial store of randomness in infinity”. The moving particles spread
this "store of randomness” over all the space. After a long time ¢ the situation in a
given subvolume combine the initial information from different distant parts of the
space and it creates the necessary mixing. Of course, the interaction between the
particles tangles and covers this picture. Nevertheless it is possible to hope that
a similar mechanism works also for interacting systems, especially in the case of
rarefied gas, when long periods of free motion of particles alternate with shorter
periods of their interaction in small groups.

The main aim of this lecture is to attract attention of ambitious representatives
of the next generation of specialists in mathematical statistical mechanics to this
range of difficult but important problems.

REFERENCES

[B] G. D. Birkhoff, Proof of the ergodic theorem, Proc. Nat. Acad. USA 17 (1931), 656—660.

[BS] L. A. Bunimovich, Ya. G. Sinai, On a fundamental theorem in the theory of dispersing
billiards, Mat. Sbornik 90 (1973), 415-431.

[C] V. A. Chulaevsky, The inverse problem method of scatiering theory in statistical physics,
Funct. Anal. and its Appl. 31 (1983), 53-62.

[CFS] 1. P. Cornfeld, S. V. Fomin and Ya. G. Sinai, Ergodic theory, Springer Verlag, Berlin etc.,
1982.

[D1] R. L. Dobrushin, On Poisson law for distribution of particles in space., Ukrain. Math.
Journal 8 (1956), 130-134.

[D2] R. L. Dobrushin, Gibbsian fields. General case, Funct. Anal. Appl. 3 (1969), 27-35.

[DF] R. L. Dobrushin and J. Fritz, Non-equilibrium dynamics of one-dimensional infinite
particle systems with a hard-rode interaction, Comm. Math. Phys. 55 (1977), 275-292.

[DS] R. L. Dobrushin and Yu. M. Suhov, Time asymptotics for some degenerate models of
evolution of systems with an infinite number of particles, Itogi nauki 1 tekhniki, serija
Sovremennye problemy matematiki, vol. 14, 1978, pp. 143-254; English. transl. Journ. of
Soviet Math. 16 (1981), 1277-1340.

[DT] R. L. Dobrushin and B. Tirozzi, The central limit theorems and the problem of equivalence
of ensembles, Comm. Math. Phys. 54 (1977), 173-192.

[F] J. Fritz, Some remarks on nonequilibrium dynamics of infinite particle system, J. Stat.
Phys. 34 (1984), 539-556.

[FD] J. Fritz and R. L. Dobrushin, Non-equilibrium dynamics of two-dimensional infinite
particle systems with a singular interaction., Comm. Math. Phys. 57 (1977), 67-81.

[Gel] H. O. Georgii, Large deviations and the equivalence of ensembles for Gibbsian particle
systems with superstable interaction, Prob. Theory and Rel. Fields 99 (1994), 171-176.

[Ge2] H. O. Georgii, The equivalence of ensembles for classical systems of particles, Preprint
(1994).

[GS] B. M. Gurevich, Yu. M. Suhov, Stationary solution of the Bogoliubov hierarchy equations
in classical statistical mechanics, Comm. Math. Phys. 49 (1976), 63-96; 2, 54 (1977),
81-96; 3, 56 (1977), 225-236; 4, 84 (1982), 333-376.

[GSS] B. M. Gurevich, Ya. G. Sinai, Yu. M. Suhov, On invariant measures of dynamical systems
of one-dimensional statistical mechanics, Russ. Math. Surv. 28 (1973), no. 5, 49-86.

[Gu] B. M. Gurevich, Asymptotically additive integrals of motion for particles with nonpair-
wise interaction in dimension one, Probability Contributions to Statistical Mechanics,
Advances in Soviet Mathematics (R. L. Dobrushin, ed.), vol. 20, American Mathematical
Society, Providence, Rhode Island, 1994, pp. 221-275.



[LPS2]
[MM]
[MPP]
[PPT]
[SC]
[Si1]
[Si2]
[Si3]
[Sp]
[Sz]

[VS]

FOUNDATIONS OF STATISTICAL MECHANICS 15

A. M. Halfina, The limiting equivalence of the canonical and grand canonical ensembles,
Math. Sbornik 9 (1969), 1-52.

A. J. Khinchin, Mathematical Foundations of Statistical Mechanics, Dover, New York,
1949.

O. Kozlov, A Gibbsian description of point random fields, Theor. Prob. Appl. 21 (1976),
348-365.

A. Kramli, N. Simanyi, D. Szasz, The K-property of three billiard balls, Annals of Math-
ematics 133 (1991), 31-72.

A. Kramli, N. Simanyi, D. Szasz, The K-property of four billiard balls, Comm. Math.
Phys 144 (1992), 107-148.

O. E. Lanford, The classical mechanics of one-dimenstonal systems of infinitely many
particles. 1. An existence theorem, Comm. Math. Phys 9 (1968), 176-191; 2. Kinetic
theory 11 (1969), 257-292.

T. M. Liggett, Interacting Particle Systems, Springer-Verlag, New York etc., 1985.

J. T. Lewis, C.-E. Pfister, W. G. Sullivan, Large deviations and the thermodynamical
formalism: a mew proof of the equivalence of ensembles, Micro-, Meso-, and Macro-
Approaches in Physics (M. Fannes, Ch. Maes, A. Verbeure, eds.), Nato ASI Series, Series
B: Physica, vol 324, Plenum Press, New York, 1994, pp. 183-192.

J. T. Lewis, C.-E. Pfister, W. G. Sullivan, Entropy, conceniration of probability and
conditional limit theorems, DIAS-preprint (1994).

L. Markus, K. R. Meyer, Generic Hamiltonians dynamical systems are neither ergodic
nor integrable, Memoirs of Amer. Math. Soc. 144 (1978), 1-52.

C. Marchioro, A. Pelligrinotti, E. Presutti, Ezistence of time-evolution for v-dimensional
statistical mechanics, Comm. Math. Phys. 40 (1975), 175-185.

E. Presutti, M. Pulverenti, M. Tirozzi, Time evolution of infinite classical system with
singular, long range two body interaction, Comm. Math. Phys. 47 (1976), 81-95.

Ya. G. Sinai, N. I. Chernov, Ergodic properties of some systems of 2-d discs and 3-d
spheres, Usp. Math. Nauk 42 (1987), 153-174.

Ya. G. Sinai, On the foundation of the ergodic hypothesis for a dynamical system of
statistical mechanics, Rep. Acad. sci. USSR 153 (1963), 1261-1264.

Ya. G. Sinai, Construction of dynamics of one-dimensitonal systems of statistical me-
chanics, Theor. Math. Phys. 11 (1973), 487-495.

Ya. G. Sinai, The construction of cluster dynamics for dynamical systems of statistical
mechanics, Vestnik Moscow. Univ. (1974), no. 1, 152-158.

H. Spohn, Large Scale Dynamics of Interacting Particles, Springer-Verlag, Berlin etc.,
1991.

D. Szasz, Boltzmann’s ergodic hypothesis, a conjecture for centuries?, Studia Scient.
Math. 30 (1995) (to appear).

K. L. Volkovissky, Ya. G. Sinai, Ergodic properties of an ideal gas with an infinite number
of degrees freedom, Funct. Analysis and Appl. 5 (1971), 19-21.



