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ABSTRACT. The theory of characteristic classes of vector bundlessamabth manifolds
plays an important role in the theory of smooth manifolds. iAvestigation of reason-
able notions of characteristic classes of singular spateted with a systematic study
of singular spaces such as singular algebraic varieties gWea quick survey of char-
acteristic classes of singular varieties, mainly focusinghe functorial aspects of some
important ones such as the singular versions of the Chess,dlae Todd class and Thom—
Hirzebruch's L-class. Further we explain our recent “miaticharacteristic classes, which
in a sense unify these three different theories of charstiteclasses. We also discuss
bivariant versions of them and characteristic classes @édlgebraic varieties, which are
related to the motivic measures/integrations. Finally wpl&n some recent work on
“stringy” versions of these theories, together with sonfemences for “equivariant” coun-
terparts.
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1. INTRODUCTION

Characteristic classes are usually certain kinds of cotiogyoclasses for vector bun-
dles over spaces and characteristic classes of smoothatdmédre defined via their tan-
gent bundles. The most basic ones &teefel-WhitneyEuler and Pontrjagin classes in
the real case, an@hernclasses in the complex case. They were introduced in 1930's
and 1940’'s and constructed in a topological manner, i.a.tha obstuction theory, and in a
differential-geometrical manner, i.e., viathe Chern-M¥egory. Various important charac-
teristic classes of vector bundles and invariants of méaisfare expressed as polynomials
of them. The theory of cohomological characteristic clasgere used for classifying man-
ifolds and the study of structures of manifolds.

In 1960’'s a systematic study of singular spaces was stasté®l. Fhom H. Whitney
H. Hironaka S. Lojasiewiczet al.; they studied triangulations, stratificationsptaton
of singularities (in characteristic zero) and so on. Alread1958R. Thomintroduced in
[Thom2] rational Pontrjagin and L-classefor oriented rational PL-homology manifolds.
In 1965M.-H. Schwartadefined in [Schw1] certain characteristic classes usingrobs
tion theory of the so-called radial vector fields; thehwartz classs defined for a singular
complex variety embedded in a complex manifold as a cohogyodtass of the manifold
supported on the singular variety. In 1969, Sullivan[Sull] proved that a real analytic
space is mod 2 Euler space, i.e., the Euler—Poincaré deasic of the link of any point
is even, which implies that the sum of simplices in the firstybantric subdivision of any
triangulationis mod 2 cycle. This enabled Sullivan to defire=“singular”Stiefel-Whitney
classas a mod 2 homology class, which is equal to the Poincaréadtiaé above cohomo-
logical Stiefel-Whitney class for a smooth variety. Moregyn his beautiful “MIT notes”
of 1970 [Sull2, Chapter 6], Sullivan introduced for an otieshrational PL-homology man-
ifold M anorientation classA (M) € KO, (M)[] in the KO-homology witt2 inverted,
whose Pontrjagin-Chern character are the rational L-ekas$ Thom.

P. Deligneand A.Grothendieck(cf. [Sull]) conjectured the unique existence of the
Chern classversion of the Sullivan’s Stiefel-Whitney class, and in 4R. MacPher-
son[Mac1l] proved their conjecture affirmatively. Motivated bhacPherson’s proof of the
conjectureP. BaumW. FultonandR. MacPhersofiBFM1] proved a “singular Riemann—
Roch theorem”, which is nothing but tiedd clasgransformation in the case of singular
varieties.

M. GoreskyandR. MacPhersoif{GM1], [GMZ2]) have introducedntersection Homol-
ogy Theory by using the notion of “perversity”. In [GM1] they extendéae work of
[Thom2] to stratified spaces with even (co)dimensionakatead introduced homology
L-classLEM (X)) such that ifX is nonsingular it becomes the Poincaré dual of the original
Thom-HirzebruchL-class: L™ (X) = L*(TX) N [X]. Independently, these were also
discovered byl. Cheegeiin his work [Che] on analysis on singular spaces. In paricul
he obtained under suitable assumptions a “local formulatlieseL-classes in terms of
n-invariants of links of simplices for a given triangulatiohthe singular spac&’. In [Si]
the work of Goresky-MacPherson and Sullivan was furthegmastéd to so-called stratified
“Witt-spaces”, whose intersection (co)homology complix the middle perversity) be-
comes self-dual (compare also with [Ban] for a more recetgresion). LaterS. Cappell
andJ. ShanesofCS1](see also [CS2] and [Sh]) introduceti@amologyL-classtransfor-
mation L., which turns out to be a natural transformation from the iaipegroupQ(X)
(sees7) of cobordism classes of selfdual constructible com@égredhe rational homology
group [BSY3] (cf.[Y2]).
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In the case of singular varieties, the characteristic catlogy classes have been indi-
vidually extended to the corresponding characteristic dlogy classes without any uni-
fying theory of characteristic classes of singular vaegtiunlike the case of smooth mani-
folds and vector bundles. Only very recently such a unifyhepry of “motivic character-
istic classes” for singular spaces appeared in our work [B®SY4]. The purpose of the
present paper is to make a quick survey on the developmeritasbcteristic classes and
the up date situation of characteristic classes of singylaces. This includes our motivic
characteristic classes, bivariant versions, charatiedssses of proalgebraic varieties and
finally “stringy” versions of these theories, together wstime references for “equivariant”
counterparts.

The present survey is a kind of extended and up-dated veddidbacPherson’s sur-
vey article [Mac2] of more than 30 years ago. There are othereys, e.g., [Alul, Br2,
Pa, Seal, Sch4, Su2] on characteristic classes of singari@ties written from different
viewpoints. Here we recommend also the monographs in pagiparBr3, BSS].

2. EULER—POINCARE CHARACTERISTIC

The simplest, but most fundamental and most important tapohl invariant of a com-
pact topological space is ti®iler numbeior Euler—Poincaré characteristidts definition
is quite simple; for a compact triangulable space or moreegaly for a cellular decom-
posable spac#, itis defined to be the alternating sum of the numbers of egltsdenoted

by x(X):
(2.1) X(X) =" (—1)™4(n — cells).

n
By the homology theory, the Euler—Poincaré characteristins out to be equal to the
alternating sum of Betti numbers, i.e.,

(2.2) X(X) =Y (-1)"dim H,(X;R).

With this fact, the Euler—Poincaré characteristic is dafirior any topological space as
long as the right-hand-side of (2.2) is defined, e.g. forllgeampact semialgebraic sets.
Note that taking the alternating sum is essential in the digfin(2.1), but it is not the case

in the definition (2.2). The following general form is calldte Poincaré polynomial

Pi(X) = dim H,(X; R)t",

which is also a topological invariant.

The Euler—Poincaré characteristic has the following prtps:

(1) x(X) = x(X') if X = X",

(2) x(X) = x(X,Y) + x(Y) for any closed subspad C X, where the relative
Euler—Poincaré characteristi¢ X, Y) is defined by the relative homology groups
H,(X,Y),

(3) X(X xY) = x(X) - x(Y).

For a fiber bundlef : X — Y we havex(X) = x(F) - x(Y), if the Euler characteristic
x(F) of all fibers F' is constant, e.gY” is connected. This generalizes the above property
(3).

In most cases when one deals with non-compact spaces, wemeea withcohomol-
ogy groups with compact supporfer example, as they play a key role in Deligne’s theory
of mixed Hodge structures. One can define it as a direct liw@t compact subspaces, but
here we take a sheaf-theoretic approach, which is moretiefe@.g., see [Dim, Chapter

2]).
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Let f : X — Y be a continuous map of locally compact spaces an#’lbe a sheaf
of vector spaces oX. Thethe functor of direct image with compact supports ungler
denoted byfi, is defined by

AFWV) :={s € D(f7H(V), F) | floupp(s) : supp(s) — V' is propes.
Note that iff is proper, then the usual functgyr of direct image and the functgr of direct
image with compact supports are the same. For amap X — pt to a point,ax,F is
nothing but

(X, F):={se(X,F)| supp(s)is compac},

which is thefunctor of global sections with compact supportdamely, T'.(X, F) =
(ax )1 F. Then the higher derived functor of this direct image, );F with compact sup-
port is calledthe cohomology with compact supports

HY(X; F) := R*(ax ) F.

Let X be a locally compact space aldbe a closed subset of. Let: : Y — X and
j: X \Y — X be the inclusions. For a she&fof modules onX we have the following
exact sequence

0—jij *F—F—iilF—=o.
Then by taking the higher direct image with compact supp@tgst the following long
exact sequence
oo HYX\YSF) = HyX F) = Hi (Y F) = HEP (XY F) o —

Here for a subspacl’” C X with . : W — X the inclusion andF a sheaf overX,
HEW; F) = H*(W;.,~1F). This long exact sequence gives rise to

Xe(X, F) = xe(X\ Y, F) + xe(Y, F)
as long as th&uler characteristic with compact support &f

Xe(W, F):=Y_ (~1)" dim H}(W; F)

n

is well-defined fol?V = X, Y andX \ Y.

Remark 2.3. It is worthwhile to mention that one can define the cohomolwil compact
support using a (in fact any) compactification; this deswipis useful for the theory of
mixed Hodge structures (e.g., see [Sri]). Détbe a locally compact topological space and
Y be a closed subspace &f. Letj : X \ Y — X be the inclusion as above. Then the
relative conomology groupl* (X, Y'; ) is defined by

HY(X,Y; F):= H¥(X, 515 F).
The natural transformation,. (X, 515~ 1F) — I'(X, jij ~1F) induces the following com-
mutative diagrams:
= Hi(X\Y;F) — H{(X; F) —= H{(Y; F) —= HP (X \ Y} F) —

l l | l

— H(X,Y;F) —— H{(X; F) —= H(Y; F) —= H*Y (X, Y; F) —.
If X iscompactthenH!(X,F) = HY(X,F)andH.(Y,F) = H' (Y, F) and itfollows
from the 5-lemma that for any integéwe get the isomorphism

H{(X\Y;F)=2 H(X,Y;F).

In particular we get the following: Lek be a locally compact space aida compactifi-
cation of X such thatX is open inX. Then we have

HYX; F) = HY(X,0X; F)
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wheredX := X \ X is called the boundary. This implies that the conomologygraith
compact support can be defined usamy such compactification.

If 7 = Rx is the constant sheaf associated to the real nunibetiseny.(X,Rx) is
simply denoted by (X):

(2.4) Xe(X) :=>_ (=1)"dim H}'(X; R),

and called th&uler characteristic with compact suppofthen the same properties as (1)
and (3) above also hold for the Euler characteristic with paot support and (2) is simply
replaced by

(2.5) Xe(X) = xe(X\Y) + xe(Y)
for any closed subspadé C X.

Remark 2.6. For two topological spaceX, Y, let X + Y denote the topological sum,
which is the disjoint sum, we clearly have

X(X +Y) = x(X) + x(Y).

However, we should note that for a closed subspace X the following additivity prop-
erty does not hold in general

(2.7) X(X) =x(X\Y)+x(Y),

althoughX = (X \ Y) + Y as a set, since the topological sim+ (X \ Y') is not equal
to the original topological spac¥. In other wordsy (X,Y") # x(X \ Y) in general.
However, in the category of complex algebraic varieties,ahove formula (2.7) holds,
i.e., for any closed subvariety C X we have thai(X) = x(X \Y) + x(Y). The key
geometric reason for the equalipf X) = x(X \ ' Y) + x(Y) is that a closed subvariety
Y always has a neighborhood deformation retfsictuch that the Euler—Poincaré charac-
teristic of the “link” x(N \ Y") vanishes due to a result of Sullivan (see [Fu2, Exercise on
p.95 and comments on p.141-142]). In other woydX \ Y) = x.(X \ Y) in the com-
plex algebraic context, which also can be extended and griovihe language of complex
algebraically constructible functions (see [Sc30.6]).

Remark 2.8. In the above we consider the cohomology with compact suppblere
we remark that the duafom,, (H?(X; k), k) of the cohomology with compact support
for any field coefficient< is isomorphic to the so-called Borel-Moore homology group
HBM (X k). For the Borel-Moore homology groups, e.g., see [CG] andJFu

3. CHARACTERISTIC CLASSES OF VECTOR BUNDLES

Very nice references for this section are the books [MiSt2HHus, Stong]. A char-
acteristic class of vector bundles over a topological spads defined to be a map from
the set of isomorphism classes of vector bundles d¥¢o the cohomology group (ring)
H*(X; A) with a coefficient ringA, which is supposed to be compatible with the pullback
of vector bundle and cohomology group for a continuous magmély, it is an assignment
el : Vect(X) — H*(X; A) such that the following diagram commutes for a continuous
mapf: X —Y:

cl

Vect(Y) —— H*(Y;A)
f*l lf*
Vect(X) — H*(X;A).

HereVect(W) is the set of isomorphism classes of vector bundles Gver
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The theory of characteristic classes started in Stiefajsap [Sti], in which he consid-
ered the problem of the existence of tangential frames, lireearly independent vector
fields on a differentiable manifold. And at the same year HitWdy defined such char-
acteristic classes for sphere bundles over a simpliciaitex{Wh1], and some time later
he invented cohomology and proved his important “sum foethfWh2)]. Then Pontrjagin
[Pontr] introduced other characteristic classes of reatarebundles, based on the study
of the homology of real Grassmann manifolds. Finally Ch&h1, Ch2] defined similar
characteristic classes of complex vector bundles.

The most fundamental characteristic classes of a real vbatodle E over X are the
Stiefel-Whitney classes’(F) € H'(X;Z), Pontrjagin classep’(E) € H*(X;Z[1]),
and for a complex vector bundig theChern classes'(E) € H?/(X;Z). These charac-
teristic classes/!(E) € H*(X; A) are described axiomatically in a unified way (compare
[MiSt, Chapter 4,8,14,15], [Hir2, Chapter 1.4] and [Husapter 17]):

Definition 3.1. The Stiefel Whitney classes and the Pontrjagin classesabf/eetor bun-
dles, resp. the Chern classes of complex vector bundlegpators assigning to each
real (resp. complex) vector bundie — X cohomology classes

wi(E) € H'(X;Zs)
cl'(E) =< pi(B) € H%(X;Z[4])

(E) € H*(X;Z)
of the base spac¥ such that the following four axioms are satisfied:
Axiom-1: (finiteness) For each vector bundieone hasc/’(E) := 1 andcl(E) = 0
for i > rank E (in factp’(E) = 0 fori > [222E]) o/*(E) := 3, cl’(E) is called
the correspondingptal characteristic classln particularcé* (0x) = 1 for the zero vector
bundle0x of rank zero.
Axiom-2: (naturality) One has(*(F) = ct*(f*E) = f*ct*(E) for any cartesian diagram

F~f*E —— FE

! !

f
Axiom-3: (Whitney sum formula)

A (EQF)=cl*(E)el*(F),

or more generally
cl*(E) = ct*(E"et*(E")
for any short exact sequene—~ E’ — E — E” — 0 of vector bundles.
Axiom-4: (normalization or the “projective space” condition) Foetcanonical (i.e., the
dual of the tautological) line bundtg} (K) := Opn k(1) over the projective spad@™ (K)
(with K = R, C) one has:
(wh): wl(y}(R)) is non-zero.
(®): P (1,(C)) = ¢ (1,(C))*.
(ch): ct(L(C)) = [P Y(C)] € H?(P™(C);Z) is the cohomology class represented
by the hyperplan®”~1(C), i.e., the Poincaré dual of the homology cl&8s~(C)]
of the hyperplanéP™~1(C)].

Remark 3.2. We use the superscript notatioff for contravariant functorial characteristic
classes of vector bundles in cohomology, to distinguismtfrem the subscript notation
cl, for covariant functorial characteristic classes of simggpaces in homology, which we
consider later on. Also note that in topology any short esacfuence of vector bundles
over a reasonable (i.e. paracompact) space splits (by asimetric onE). But this is not
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the case in the algebraic or complex analytic context, wbaeeshould ask the “Whitney
sum formula” for short exact sequences.

The existence of such a class for vector bundles of rackn be shown, for example,
with the help of a classifying space, i.e., the infinite disienal Grassmanian manifolds
G, (K*) (with K = R, C), and the fact that the cohomology ring of this Grassmanian
manifold is a polynomial ring

ZoJwl,w? -+ jw"]  forK=RandA = Z,
H*(Gn(K™); A) =< Z[3][pt,p? -+ ,pl2]] forK=RandA = Z[1],
Zict, % e for K = C andA = Z.

The most important axiom is Axiom-2 and the uniqueness dfisudass follows from
Axiom-3 and Axiom-4. By the “splitting principle” one cansasme (after pulling back to a
suitable bundle so that the pullback on the cohomology lievielective) that a given non-
zero vector bundlé’ splits into a sum of line (02-plane) bundles. These line (&plane)
bundles are then called the “Chern roots”fof Then Axiom-3 reduces the calculation of
characteristic classes to the case of line bundles:(ffer w, ¢) or real 2-plane bundles (for
¢l = p). By naturality these are uniquely determined by AxiomiAce

G1(K*) = lim P*(K) (forK =R,C),
for the case:! = w, ¢, or from the fact that the canonical projection
lim P*(C) — G5 (R™)

is the orientation double cover for the cage= p.

From the axioms one gets that in all cas€'s p' andc! arenilpotenton finite dimen-
sional spaces and thet" (F) = 1 for a trivial vector bundleZ. Note that a real oriented
line bundle is always trivial so that a real line bundle— X has no interesting character-
istic classct? (L) = 0 € H’(X;Z[4]) for j > 0. Just pullback to an orientation double
coverm : X — X so thatr*L is orientable witht* : H7(X;Z[3]) — H/(X;Z[3])
injective (since2 € Z[1] is invertible). In particular a real vector bundie of rank r is
orientable if and only ifv! (E) = w! (A" E) = 0.

If a characteristic class/* : Vect(X) — H*(X; A) satisfies the Whitney sum condi-

tion
A (EQF)=cl*(E)et*(F) with ¢*(0x)=1,

thenct* is called amultiplicative characteristic class. Another important multiplicative
characteristic class of aarientedreal vector bundle — X of rank r is the Euler
classe(E) € H"(X;Z), with e(E) mod 2 = w"(E), e(E)? = p3(E) for r even and
e(E) = ¢"(F) in caseFE is given by a complex vector bundIe of rank . But theEuler
classis not anormalizedcharacteristic class with?* (L) = 1.

The Stiefel-Whitney, Pontrjagin and Chern classes essential in the sense that any
multiplicativecharacteristic classf* over finite dimensional base spaces is uniquely ex-
pressed as a polynomial (or power series) in these classesthie “splitting principle”
implies (compare [Hus, chapter 20: thm.4.3, thm.5.5 and THi):

Theorem 3.3. Let A be aZ,-algebra (resp. aZ[%]-algebra) for the case of real vector
bundles, or &-algebra for the case of complex vector bundles. Then tlsaaeone-to-one
correspondence between

(1) multiplicativecharacteristic classes/* over finite dimensional base spaces, and
(2) formal power serieg € AJ[z]]
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such thate¢* (L) = f(w'(L)) or cf*(L) = f(c'(L)) for any real or complex line bundle
L (resp. ¢/*(L) = f(p'(L)) for any real2-plane bundleL). In this casef is called the
characteristic power seried the corresponding multiplicative characteristic clags.

Remark 3.4. For the result above it is important that characteristis®ts of vector bun-
dles live in cohomology so that one can build new classes biptication (i.e. by the
cup-product) of the basic ones. This is not possible in tise cd characteristic classes of
singular spaces, which live in homology (except in the cd$®mology manifolds where
Poincaré duality is available).

Moreovercl?} is invertible with inverse:(, , if f € A[[z]] is invertible, i.e. iff(0) € A
f

is a unit (e.g. f is a normalized power series with(0) = 1). Then the corresponding
multiplicative characteristic clasg* extends over finite dimensional base spa&e® a
natural transformation of groups

" (K(X), ®) — (H*(X;A),0)

on the Grothendieck grouK(X) of real or complex vector bundles oveéf (compare
[Hus, loc.cit.]).

4. CHARACTERISTIC CLASSES OF SMOOTH MANIFOLDS

Let us now switch to smooth manifolds, which will be an impmittintermediate step
on the way to characteristic classes of singular spacesa Borooth (or almost complex)
manifold M its real (or complex) tangent bundl&\/ is available and a characteristic class
c*(T' M) of the tangent bundI& M is called acharacteristic cohomology clags$* (M)
of the manifoldM . We also use the notation

cl (M) := cI*(TM) N [M] € HEM(M; A)

for the correspondingharacteristic homology classf the manifold M, with [M] €
HBM (M A) the fundamental class in Borel-Moore homology (e.g., sexM8], [Bre],
[CG], [Ful]) of the (oriented) manifold/. Note thatHZM (X:A) = H,.(X;A) for X
compact.

Remark 4.1. Using a relation to suitable cohomology operations, i.eegBrod squares,
Thom [Thom1] has shown that the Stiefel-Whitney class&g&\/) of a smooth manifold
M aretopologicalinvariants. Later he introduced in [Thom&jtional Pontrjagin and
L-classedor compact oriented rational PL-homology manifolds sd tha rational Pon-
trjagin classe* (M) € H*(M;Q) of a closed smooth manifold/ are combinatorial
or piecewise lineainvariants. A deep result of Novikov [Nov] implies thepological
invariance of theseational Pontrjagin classes* (M) € H*(M; Q) of a smooth manifold
M.

For aclosed orientednanifold M one has the interesting formula (compare [MiSt,
cor.11.12]):

(4.2) deg(e(M)) = /M e(TM)N[M]=x(M),

which justifies the name “Euler class”. For a closed compla&nifold A/ this formula
becomes
degle.(M)) = [ e (@ann (0] = x(1)
M
which is called theGauss—Bonnet—Chern Theorgsee [Ch3]). In this sense, the Chern
class is a higher cohomology class version of the Euler-d2o&characteristic. Similarly

deg(w. (M) = /N W (TM) N [M] = (M) mod 2
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for any closed manifold/.

More generally lefiso(G),, be the set of isomorphism classes of smooth closed (and
oriented) puren-dimensional manifolds\/ for G = O (or G = SO), or of puren-
dimensional weakly (- stably”) aimost complex manifold¥ for G = U, i.e. TM ®R%;
is a complex vector bundle (for suitahblé, with R, the trivial real line bundle ovel).

Then
Iso(G), := @ Iso(G)n

becomes a commutative graded semiring with addition andipfichtion given by disjoint
union and exterior product, withand1 given by the classes of the empty set and one point
space. Moreover any multiplicative characteristic clegscoming from the power series

f in the variablez = w!, p! or ¢! induces by

M — deg(cly (M) := /M cly(TM) N [M]

a semiring homomorphism

aZs-algebra forG = O andz = w',
@ : Iso(G). — A = { aZ[3]-algebra forG = SO andz = p*,
aZ-algebra forG = U andz = ¢!.

Let QF := Iso(G)./ ~ be the correspondingobordism ringof closed ¢ = 0O)
and oriented @ = SO) or weakly (“= stably”) almost complex manifolds{ = U) as
dicussed for example in [Stong]. Hebé ~ 0 for a closed pure-dimensionalz-manifold
M if and only if there is a compact pure+ 1-dimensionat7-manifold B with boundary
0B ~ M. Note that this is indeed a ring with[M] = [M] for G = O or —[M] = [-M]
for G = SO, U, where—M has the opposite orientation 8. Moreover, forB as above
with 9B ~ M one has

TB|0B ~TM & Ry,
so thatel3(TM) = i*cl3(T'B) fori : M ~ 9B — B the closed inclusion of the
boundary. This also explains the use of the stable tangemledor the definition of a
stably or weakly almost complex manifold. By a simple argatr#ue to Pontrjagin one
gets (compare [Stong, Theorem. on p.32]):

M~0 = deg(cls,(TM)) = / e05(TM) N [M] = 0.
M
Hence any multiplicative characteristic clag§ coming from the power serief in the
variablez = w*, p! or ¢! induces a ring homomorphism callgeénus

aZs-algebra forG = O andz = w',
(4.3) ®;: QY — A =< az[i]-algebraforG = SO andz = p',
aZ-algebraforG = U andz = c'.
In fact for A a Q-algebra this induces a one-to-one correspondence (cemigaR, Theo-
rem 6.3.1] and [HBJ, Chapter 1]) between
(1) normalized power seriesin the variable: = p* (or ct),
(2) normalized and multiplicativeharacteristic classed} over finite dimensional
base spaces, and
(3) generab : Q¢ — Afor G = SO (or G = U).
Here one uses the following structure theorem (comparenfitdheorems on p.177 and
p.110]):

Theorem 4.4. (1) (Thom)QS° ® Q = Q[[P?"(C)]|n € N] is a polynomial algebra
in the classes of the complex even dimensional projectiaessp
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(2) (Milnor) QY @ Q = Q[[P™(C)]|n € N] is a polynomial algebra in the classes of
the complex projective spaces.

In particular, the corresponding gendrg with values in aQ-algebraA, or the corre-
sponding normalized and multiplicative characteristasst(%, is uniquely determined by
the valuesb; (M) = [,, ct;(TM) N [M] for all (complex even dimensional) complex
projective spaced/ = P"(C). These are best codified by tlwgarithmg € A[[t]] of ®:
t’i—‘rl
i+1°

(4.5) g(t):=>_ @s(P'(C))-
1=0

Moreover, a genu®; : QU ® Q — A factorizes over the canonical map
2/ eQ—-20°%2Q
if and only if f(z) is an even power series in= ¢!, f(z) = h(z?) with 22 = (c¢!)? = p!
(compare [Stong, Proposition on p.177 and Theorem on pA89THBJ, Chapter 1]).
Consider for example thsignaturecs (M) of the cup-product pairing on the middle
dimensional cohomology of the closed oriented manifbidof real dimensionin, with

o(M) := 0inall other dimensions. This defines a geaus?°®Q — Q, as observed by
Thom, witha(P?"(C)) = 1 for all n (compare [Hir2, Chapter I1.8] and [Stong, Theorem

on p.220]). The signature genus comes from the normalizeepseries.(z) = ﬁ
in the variablez = p* (or f(z) = —Z— in the variablez = ¢'), whose corresponding

characteristic classf* = L* is by definition the Hirzebruch-Thom-class. This is the
content of the famouslirzebruch’s Signature Theorefeompare [Hir2, Theorem 8.2.2]
and also also with [Hir3]):

o(M) = /N ) L*(TM) N [M].

Remark 4.6. The first structure theorem about cobordism rings due to Tisahe descrip-
tion of Q¢ as a polynomial algebi@; [[M™]|n € N, n + 1 # 2¥] in the classes of suitable
closed manifolds\/™ of dimensionz, with one generator in each dimensionvith n + 1
not a power of2 (compare [Stong, Theorem on p.96]). Then each géifis— A to a
Zo-algebraA is coming form a normalized and multiplicative charactéeislassc/?, but
this correspondence is not injective.

The value® (M) of a genusb on the closed manifold/ is also called a characteristic
number of M. All these numbers can be used to classify closed manifqgide cobordism.

Theorem 4.7. (1) (Pontrjagin—ThomJwo closed”>°-manifolds are cobordant (i.e.,
represent the same element1f) if and only if all their Stiefel-Whitney numbers
are the same.

(2) (Thom-Wall)Two closed oriented>*-manifold are corbordant up to two-torsion
(i.e., represent the same elemenf)fi® ® Z[1]) if and only if all their Pontrjagin
numbers are the same.

(3) (Milnor—Novikov)Two closed stably or weakly almost complex manifold are cobo
dant (i.e., represent the same elemerfeif) if and only if all their Chern numbers
are the same.

Compare for example with [Stong, Theorem on p.95] for (1}pff§, Theorems on
p.180 and 183] for (2), and [Stong, Theorem on p.117] for (3).
5. HIRZEBRUCH-RIEMANN—ROCH AND GROTHENDIECK—RIEMANN—ROCH

Let X be a non-singular complex projective variety afié holomorphic vector bundle
over X. Note that in this context we do not need to distinguish betwigolomorphic and
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algebraic vector bundles, and similarly for coherent sheaby the so-called “GAGA-
principle” [Serre]. Then the Euler—Poincaré characterisf E is defined by

X(X, E) =) (~1) dime H'(X; Q(E)),
i>0
whereQ(E) is the coherent sheaf of germs of sectiongiof).-P. Serreconjectured in his

letter toKodaira and Spencefdated September 29, 1953) that there exists a polynomial
P(X, E) of Chern classes of the base variéfyand the vector bundI€ such that

X(X,E) = /X P(X,E)n[X].

Within three months (December 9, 1953)Hirzebruchsolved this conjecture affirma-
tively: the above looked for polynomid (X, E') can be expressed as

P(X, E) = ch*(E)td*(X)

wherech*(E) is the totalChern characteof E and¢d* (T X) is the totalTodd clas®f the
tangent bundl§' X of X . Let us recall that the cohomology clasgs (V) andtd*(V)
are defined as follows:

rank V'

ch*(V) = Z e € H**(X;Q)
i=1

and
rank V' @
td*(V) = — € H*(X;
(V) 1:I — (X;Q)
whereq;’s are the Chern roots of . Sotd* is just the normalized and multiplicative
characteristic class corrsponding to the normalized pesgesf(z) = —== inz = ¢'.

Similarly the Chern character defines a contravariant mattansformation of rings
ch*: (K(X),®,®) — (H**(X;Q), +,U)

on the Grothendieck groul (X) of complex vector bundles ovet. Then we have the
following celebrated theorem of Hirzebruch (compare [HifBeorem 21.1.1]):

Theorem 5.1. (Hirzebruch—Riemann—Roch)

(HRR) x(X,E)=T(X,E) := / (ch™(E)td* (X)) N [X].
X
T(X, E) is called theT-characteristic ([Hir2]). For a more detailed historicapact of
HRR, see [Hir3].

Remark 5.2. TheT'-characteristi@' (X, E) is a priori a rational number by the definitions
of the Todd class and Chern character, but it has tarhiategeras a consequence RR.
TheT-characteristid'(X, E) of a complex vector bundI& can be defined for any almost
complex manifold and Hirzebruch [Hirl] asked if the T-geffusX) := T(X, 1) with 1
being a trivial line bundle is always an integer. Of courds fbllows fromHRR and the
later result of Quillen tha¥ @ Q is generated by complex projective algebraic manifolds.
The identity
z z - 65
l—e? 2sinh £
allows one to introduce the Todd class
1
Td*(X) == 7> ANTX),
and therefore also th&-characteristicI’'(X, E), more generally for a so-calleSpirf-
manifold X. Here A is the so-calledA hat genus or characteristic clag®rrespond-
ing to the even normalized power serigsz) = in the variablez = ¢! or to

_z
T Z
2sinh &
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flz) = 5 fi in the variablez = p'. TheT-characteristid’(X, E) of a complex vec-

tor bundleE is then anintegerby an application of thétiyah-Singer Index theorefAS]
for a suitableDirac operator(compare [Hirl, p.197, Theorem 26.1.1]).

A. GrothendiecKcf. [BoSe]) generalizetHRR for non-singular quasi-projective alge-
braic varieties over any field and proper morphisms with Clrolvomology ring theory
instead of ordinary cohomology theory (compare also withl[Fchapter 15]). For the
complex case we can still take the ordinary cohomology théor the homology theory
by the Poincaré duality). Here we stick ourselvesdmplex projective algebraic varieties
for the sake of simplicity. For a variet, let Go(X) denote the Grothendieck group
of algebraic coherent sheaves &nand for a morphisny : X — Y the pushforward
fi: Go(X) — Go(Y) is defined by

HF) =) (-)'RLF,

i>0

whereR'f, F is (the class of ) the higher direct image sheaffof ThenGy is a covari-
ant functor with the above pushforward (see [Grotl] and [WMasimilarly let K°(X)

be the Grothendieck group of complex algebraic vector bemdverX so that one has

a canonical contravariant transformation of rifg8( ) — K( ) to the Grothendieck
group of complex vector bundles. Note that on a smooth a&ielnanifold the canon-
ical mapK®( ) — Gg( ) taking the sheaf of sections is an isomorphism. With this
isomorphism one can define characteristic classes of ampegr coherent sheaf. Then
Grothendieck showed the existence of a natural transféom&ibm the covariant functor
Gy to theQ-homology covariant functaH,.( ;Q) (see [BoSe)):

Theorem 5.3. (Grothendieck—Riemann—Roch) Let the transformation Go( ) —
Hy.( ;Q) be defined by..(F) = td*(X)ch*(F) N [X] for any smooth varietyX. Then
7, is actually natural, i.e., for any morphisgh: X — Y the following diagram commutes:

Go(X) —— H2.(X;Q)

i J»

Go(Y) — Hy.(Y;Q)
ie.,
(GRR) {0 (Ty )b (L) N [Y] = £ (td* (TX)eh™ (F) N [X]).

ClearlyHRR is induced fromGRR by considering a map fronX'to a point. Note that
the target of the transformation of the origif@RR is the cohomologyd?*( ; Q) with
the Gysin homomorphism instead of the homolddy.( ;Q), but, by the definition of
the Gysin homomorphism the origindRR can be putin as above. For a far reaching gen-
eralization ofGRR in the context of “oriented cohomology theories”, whichaaéxplains
why the Todd class appears as a “correction factor” for tieepiishforward of the Chern
character, we recommend the paper [Pan].

6. THE GENERALIZED HIRZEBRUCH-RIEMANN—ROCH

In Hirzebruch’s book [Hir2,§12.1 and§15.5] he has generalized the characteristics
Xx(X, E) andT(X, E) to the so-calledy,-characteristicy, (X, E') andT,-characteristic
T, (X, E) as follows, using a parametgr(see also [HBJ, Chapter 5]).
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Definition 6.1.

Xy(X,E) =) (Z(—l)“ dime HY(X, Q(E) @APT*X)) yP

p>0 \g=>0

- Z X(X, E® APT*X))y?
p=>0

whereT™ X is the dual of the tangent bundl&X,, i.e., the cotangent bundle &f.

T,(X,E) := Agd(y)(TX)Ch(l+y)(E) n[x],

dim X
—— ai(1+y)
tdy)(TX) := H (1 —e—ai(lty) aiy) ’
i=1 B
rank FE

ch(i4y)(E) == Z ePi(1+y)
j=1

whereq;’s are the Chern roots & X and;’s are the Chern roots df .
F. Hirzebruch [Hir2,521.3] showed the following theorem:
Theorem 6.2. (The generalized Hirzebruch—Riemann—Roch)
(g-HRR) Xo(X, E) = T,(X, ).
Theg-HRR can be shown as follows, usittRR:
Xy(X, E) = /X > X(X,E@ APT*X))y? (by definition)
p=>0

:/ > (eh*(E @ APT*X)td*(X) N [X])y?  (by HRR)
X

p=>0

_ / (Zm*(E@APT*Xﬁd*(X)y”) n[x]
X

p>0

p=>0

_ / (ch*(E)td*(X)Zch*(APT*X)yP> N [X]
X

=1

rank F dim X -
— Bj oy Tt
_/X JZZl e };[1 (1+ye )l—e—ai N [X].

. s (67} . . .
However, the powerserle(sl + ye 0‘1) pp—— ! — is nota normalized power series because
-_— P_ T

the0-degree part is +y, not1. So, by dividing this non-normalized power serieslby y
and furthermore by changing to 8;(1 + y) ande; to a;(1 + y), which does not change
the value ofy, (X, E) at all, and by noticing that

14 ye—@i(1+y) a(l+y) ai(l+y)
14y 1 — e—ai(l+y) ~ 1 — g—i(l+y)

we can see that the right hand side of the last equati@p(iX, £') (compare [HBJ, p.61-
62]). In general, letting/(z) be a normalized power series afitt) be a non-normalized

dim X
:/X (eh*(E)td*(X) 11 (1+y€_°”)> Nn[X]

- 05y,
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power series witlu := f(0) a unit, we have

rank E dim X rank E dim X f(CLOZ')
> 93 I fla) | nixi=1| > 9B [] Tl N [X].
Jj=1 1=1 Jj=1 1=1

In particular, a non-normalized power serig&) with a := f(0) € A a unit induces the
same genus as the normalized power seﬂgﬁ does.

Remark 6.3. The generalized Hirzebruch Riemann-Roch theorem is alsofar a holo-
morphic vector bundlé” over a compact complex manifold, by an application of the
Atiyah-Singer Index theorefAS].

The abovenodified Todd classl,, is the normalized and multiplicative characteristic
class corresponding to the normalized power series @nc'):

1) = fy(2) = T2y QUi

The associated genug, : QU — Qy] is called the Hirzebruch,-genus A simple
residue calculation in [Hir2, Lemma 1.8.1] implies that &lrn € N:

n

(6.4) Xy (P™(C) =>_ (—y)" € Z[y) C Qly] -

1=0
So these values of"(C) determine they,-genus and the modified Todd cIa&Qy).
Moreover, the normalized power serigg =) specializes to
142 fory = —1,
fy(2) = { == fory =0,
Z fory =1.

tanh z

So the modified Todd clagd(y) defined above unifies the following three important char-
acteristic conomology classes:
(y=-1) thetotal Chern class

td1)(TX) = ¢(T'X),
(y=0) the total Todd class

tdo)(TX) = td*(TX),
(y=1) thetotal Thom-Hirzebruch L-class

tdq)(TX) = L*(TX).

Therefore, wherF = the trivial line bundle, for these special valugs= —1, 0, 1 the g-
HRR reads as follows:
(y=-1) Gauss—Bonnet—Chern Theorem

nmzéa@mmn

(y=0) Riemann—Roch Theorerdenotingy,(X) := x(X, Ox), called the arithmetic
genus ofX, to avoid a possible confusion with the above topologicéEtPoincaré char-
acteristicy (X),

Xa(X):/Xtd*(TX)ﬂ[X],

(y=1) Hirzebruch’s Signature Theorem

o(X) = /X L*(TX) N [X].
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Remark 6.5. (Poincaré—Hopf Theorem) The above Gauss—Bonnet—Chezargim due
to Chern [Ch3] is a generalization of the original Gauss—Bartheorem saying that the
integration of the Guassian curvature is equattaimes the topological Euler—-Poincaré
characteristic. There is another well-known differentigbological formula concerning
the topological Euler—Poincaré characteristic. Thahesdo-calledPoincaré —Hopf theo-
rem, saying that the index of a smooth vector fiéldwith only isolated singularites on a
smooth compact manifold/ is equal to the topological Euler—Poincaré characteristi
the manifoldM;;

Index (V') = x (M),

where the indeXndex (V) is defined to be the sum of the indices of the vector field at
the isolated singularities. See [Mil] for a beautiful irdttion to the Poincaré —Hopf
theorem. Note that the Gauss—Bonnet—Chern Theorem fofimms the Poincaré—Hopf
theorem (cf. [Wi] and [Zh]).

7. CHARACTERISTIC CLASSES OF SINGULAR VARIETIES

In the following we consider for simplicity onlgompactspaces. For a singular alge-
braic or analytic varietyX its tangent bundle is not available any longer because of the
existence of singularities, thus one cannot define its cheriatic class:/,(X) as in the
previous case of manifolds, although a “tangent-like” derglich as Zariski tangents is
available. A main theme for defining reasonable charatieri$asses for singular vari-
eties is that reasonable ones should be interesting endagbxample, they should be
geometrically or topologically interesting and quite wedlated to other well-known in-
variants of varieties and singularities (e.g., see [Mac2])

The theory of characteristic classes of vector bundl@snatural transformatiorirom
the contravariant functdVect to the contravariant conomology functé&f*( ; A). This
naturality is an important guide for developing various theories ofrabgeristic classes
for singular varieties. The knowfunctorial characteristic classef®r singular spaces are
covariantfunctorial maps

el A(X) — Ho(X;A)
from a suitable covariant theontt depending on the choice of.. Moreover, there is
always adistinguished element x € A(X) such that the correspondiraparacteristic

class of the singular spac is defined as/.(X) := c/.(1x). Finally one has the
normalization

C&(]l]y[) = Cé*(T]\/[) n [M] S H*(M,A)

for M a smooth manifold, witke¢*(TM) the corresponding characteristic cohomology
class of M. This justifies the notation/,. for this homology class transformation, which
should be seen as a relative homology class version of thenfiolg characteristic number
of the singular spac&:

B(X) = clu((ax)elx) = (ax)«(cl(1x)) € H({pt}; A) = A,

with ax : X — {pt} a constant map. Note that thermalizationimplies that forM
smooth:

f(M) = deg(cl(M)) = /M cl*(TM) N [M)]

so that this is consistent with the notion of characteristimber of the smooth manifold
M as used before.
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7.1. Stiefel-Whitney classesv... The first example of functorial characteristic classes is
the theory of singular Stiefel-Whitney homology classes twuDennis SullivariSull]
(also see [FM]). A crucial fact about the original Stiefelhitviey class is the following
fact: if T is any triangulation of a manifold’, then the sum of all the simplices of the first
barycentric subdivision is mmod 2 cycleand its homology class is equal to the Poincaré
dual of the Stiefel-Whitney class. In [Sull] D. Sullivan @pged that also aingular real
algebraic varietyX is amod 2 Euler space.e. the link of any point ofX has even Eu-
ler characteristic. And this condition implies that the safall the simplices of the first
barycentric subdivision of any triangulation &f is always amod 2 cycleand he defined
its homology class to be the singular Stiefel-Whitney clafsthe varietyX. Then, with

an insight ofDeligne Sullivan’s Stiefel-Whitney homology classes where eckdras a
natural tansformation from a certain covariant functortte inod 2 homology theory.

Let X be a complex (or real) algebraic set andAgtX) (or F™°2(X)) be the abelian
group ofZ- (or Zy-)valued complex (or real) algebraically constructibladtions on a
variety X. Then the assignmet® (or F™°42) : V — A is acontravariantfunctor (from
the category of algebraic varieties to the category of abejroups) by the usual functional
pullback for a morphisnf : X — Y: f*(a) := a o f. For a constructible sef C X, we
define

x(Z;a) = Z n-xe(ZNat(n)) (mod?2).
nez
Then it turns out that the assignmefit(or F°42): Y — A also becomes aovariant
functor by the following pushforward defined by

f@)) =x(f'(y);e) foryey.

To show that this is well-defined (i.€f, («) is again constructible) and functorial requires,
for example, stratification theory (see [Mac1]) or a suitathleory of constructible sheaves
(see [Sch3]). For later use we also point out, that here ir{dmi-)algebraic context we
do not need the assumption that our spaces are compact or the miorptis proper for
the defintion off.. This properness of for the definition of f, is only needed in the
corresponding (sub-)analytic context.

The above Sullivan’s Stiefel-Whitney class is now the sglecase of the following
Stiefel-Whitney class transformati@ompare also with [FUuMC]):

Theorem 7.1. On the category of compact real algebraic varieties theiistexa unique
natural transformation
w,t FMOR() o H (i Z)

satisfying the normalization condition that for a nonsitegwariety X
wy(lx) =w*(TX)N[X].
Here 1 x := 1x is the characteristic function oX.

Note thatf(X) = deg(w.(1x)) = x(X) mod 2 is just the Euler characteristiezod 2
of the singular spac&’.

7.2. Chern classes:,. Based orGrothendieck’sdeas or modifying Grothendieck’s con-
jecture on aRiemann—Roch type formutmncerning the constructible étale sheaves and
Chow rings (see [Grot2, Part I, not&7;), p.361 ff.]), Delignemade the following con-
jecture — this is usually simply phrased “Deligne and Grotfieck made the following
conjecture” — andR. MacPhersoiiMac1] proved it affirmatively:

Theorem 7.2. There exists a unique natural transformation
et F( ) = Hal ;2)
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from the constructible function covariant functér to the integral homology covariant
functor (in even degreedys., satisfying the“normalization” that the value of the chara
teristic functionl x := 1x of a smooth complex algebraic varie}y is the Poincaré dual
of the total Chern cohomology class:

co(lx) = " (TX)N[X].

The main ingredients ar€hern—Mather classes, local Euler obstruction and “graph
construction” The uniqueness follows from the above normalization chowland resolu-
tion of singularities. For an algebraic version of MacPbars Chern class transformation
c. over a base field of characteristic zero (taking values inviCmups), compare with
[Ken]. MacPherson’s approach [Macl] also works in the caxpinalytic context, since
the analyticity of the “graph construction” was solved by i€einski in his thesis [Kw2].

Remark 7.3. (see [KMY]) The individual component, : F( ) — Ho;( ) of the trans-
formatione, : F( ) — Ha.( ) is also a natural transformation and also any linear
combination of these components is a natural transfomati@t us consideprojective
varieties. Thenmodulo torsionthese linear combinations are thely natural tansforma-
tions from the covariant functaf to the homology functor. In particular, thationalized
MacPherson’s Chern class transformation® Q is the only such natural tansformation
satisfying theweaker normalization conditiothat for each complex projective spabe
the top dimensional component a@f(P) is the fundamental clag®]. A noteworthy fea-
ture of the proof of these statements is that one dugsieed to appeal to resolution of
singularities.

J.-P. Brasselet and M.-H. Schwaf&rSc] showed that the distinguished valug1 x)
of the characteristic function of a complex variety embetito a complex manifold is
isomorphic to theSchwartz clas§Schwl, Schw2] via the Alexander duality. Thus for a
complex algebraic variet)(, singular or nonsingulat,.(X) := ¢.(1x) is called the total
Chern—-Schwartz—MacPherson class¥ofBy considering mapping to a point, one gets

X(X) = deg(c.(1x)) = #(X) ,
which is a singular version of the Gauss—Bonnet—Chern #maor

Remark 7.4. For a singular version of the Poincarée—Hopf theorem foialagector fields,
see [Schwa3] and for the Poincaré—Hopf theorem for gendratified vector fields com-
pare with [BLSS] and the survey paper [Seal]. For a versioteims of1-forms and
characteristic cycles of constructible functions, forragde see [Sch35.0.3] and [Sch5].
There are also other notions of Chern classes of a singufaplex algebraic variety
X: Chern—Mather classeg’¢(X) ([Macl]), Fulton’s Chern classes and Fulton—Johnson
Chern classes!’(X), ¢/ (X) ([FJ] and [Ful, Ex. 4.2.6]), and for “stringy and arc Chern
classescs!"(X), c¢¢(X) see subsection 11.4. In many interesting cases these can be d
scribed ag. («x ) for a suitable constructible functiany related to some geometric prop-
erties of the singular spacé (compare [Alul, Br2, Pa, PP1, PP2, Sch1l, Sch4, Sch5, Su2)).
Of coursenx = 1x for X smooth, butin general x # 1x so that the MacPherson Chern
class transformation, is the basic one, but in generlalk = 1x is not the only possible
choice of a distinguished elemel . In particular for a local complete intersectighthe
difference between’' (X) andc.(X) is called theMilnor classof X (compare loc.cit.),
since inthe case of isolated singularitiesits informateduces to thecal Milnor number
of an isolated complete intersection singularity [SeSuB]Su

7.3. Todd classegd.. Motivated by the formulation of MacPherson’s Chern claasgr
formationc, : F — H,, P. Baum, W. Fulton and R. MacPhers(BFM1] have ex-
tendedGRR to singular varieties, by introducing the so-calledalized Chern charac-
ter ch’¥ (F) of a coherent sheaf with X embedded into a non-singular quasi-projective
variety M, as a substitute afn*(F') N [X] in the aboveGRR. Note that if X is smooth
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ch¥(F) = ch*(F) N [X]. For other constructions of localized Chern characters, se
[Kw2], [Schw2] and [Sul].
In [BFM] they showed the following theorem:

Theorem 7.5. (Baum-Fulton—MacPherson’s Riemann—Roch)
() tdu(F) :=td*(i%,Tar) N ch¥ (F) is independent of the embeddiing : X — M.
(i) Let the transformationd,. : Go( ) — Ha.( ;Q) be defined by

td.(F) = td* (i, Tar) O chY (F)

for any varietyX. Thentd, is actually natural, i.e., for any morphisth : X — Y the
following diagram commutes:

Go(X) —— H,.(X;Q)

i I»

Go(Y) —— Hy(Y;Q)

td.

i.e., forany embeddings; : X — M andiy : Y — N
(BFM-RR) td* (i Tn) N ehY (LF) = fo(td* (i5,Tar) O ch ¥ (F)) .

For a complex algebraic varietyf, singular or nonsingulatd.(X) := td.(Ox) is
called the Baum—Fulton—MacPherson’s Todd homology cl&s¥,a.e. the class of the
structure sheaf is the distingiuished elemégt := [Ox]. And we get

Xa(X) = /X 1. (X) = H(X)

which is a singular version of the Riemann—Roch theorem. iAdBFM2] this Todd class
transformation is moreover factorized through complexdtrdology, which maybe is the
most natural formulation of this transformation. For thgeddraic version of the Todd class
transformatiortd, over any base field compare with [Ful, chapter 18].

Remark 7.6 (Euler homology classy). Even though the formulation of the BFM—-RR
was motivated by that of MacPherson’s Chern class transfom, it was proved in a
completely different way. And now there is available a saniproof of MacPherson’s
theorem for the embedded context based on the theory ofatkéstic cyclesC C of con-
structible functions, with the Segre class” C of these conic characteristic cycles playing
the role of the localized Chern character in the proof of Bakniton—MacPherson. Here
these characteristic cycles are conic Lagrangian cycl@s | X, and the pullback

e :=k*CC: F(X)— Ho(X;Z)

by the zero sectio : X — T*M|X can be seen as a functorBliler homology class
transformatioreven in the context of real geometry. In particular

X(X) = deg(eo(1x)) = #(X)

also in this context. For more details of this, see [Sch4 5%chinally, this approach by
characteristic cycles also gives a new approach to theebtMfitney class transformation
w, of Sullivan as observed and explained in [FUMC].

7.4. L-classesL,. Using the notion of “perversity’M. Goresky and R. MacPherson
([GM1], [GM2]) have introducedntersection Homology Theoryin [GM1] they intro-
duced a homology.-class LEM(X) for stratified spacesy with even (co)dimensional
strata such that i{ is nonsingular it becomes the Poincaré dual of the origliem—
HirzebruchL-class: L¢M(X) = L*(TX) N [X]. Another approach to these classes is
due to J. Cheeger [Che]. And faational PL-homology manifoldsheseL-classes agree
with the classes introduced by Thom long ago in [Thom2] asadrike first characteristic
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classes of suitable singular spaces.

Later, S. Cappell and J. Shanesp@S1] (see also [CS2] and [Sh]) introduced a ho-
mology L-class transformatioi.., which turns out to be a natural transformation from
the abelian grouf(X) of cobordism classes of selfdual constructible complewémse
definition we now explain, to the rational homology group pes3$ (cf. [Y2]).

Let X be a compact complex analytic (algebraic) space Witi.X) the bounded de-
rived category of complex analytically (algebraicallynstructible complexes of sheaves
of Q-vector spaces (compare [KS] and [Sch3]). So we considendedisheaf complexes
F, which have locally constant cohomology sheaves with fiditeensional stalks along
the strata of a complex analytic (algebraic) Whitney dficgtion of X. This is a triangu-
lated category with translation funct@ = [1] given by shifting a complex one step to
the left. It also has a duality in the sense of Youssin [Youdliced by the/erdier duality
functor(compare [Sch3, Chap.4] and [KS, Chap.VIII]):

Dx := Rhom(-, k'Qy) : DY(X) — D%(X),

with k : X — {pt} a constant map, together with itsduality isomorphisnean : id =
Dx o Dx. A constructible complexr € ob(D(X)) is calledselfdual if there is an
isomorphism
d:F S Dx(F).
The pair(F, d) is calledsymmetricor skew-symmetrjaf
Dx(d)ocan=d or Dx(d)ocan = —d.

Finally an isomorphism oisometryof selfdual object.F, d) and (F’, d’) is an isomor-
phismu such that the following diagram commutes:
F o — F

~

d I
— .
Dx (F) D) Dx (F')

The isomorphism classes of such (skew-)symmetric selfdaaiplexes form a set,
which becomes anonoidwith addition induced by the direct sum. Using a definition of
Youssin [You], thecobordism group$2. (X) of (skew-)symmetric selfdual constructible
complexes onX are defined by introducing a suitaliiebordism relatiorin terms of an
octahedral diagrami e. adiagram{Oct) of the following form:

1]

NZN%
NN

Here the morph|sm marked Hy] are of degree one, the tnangles markedire com-
mutative, and the ones markédre distinguished. Finally the two composite morphisms
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from H; to Ho (via G; andGs) have to be the same, and similarly for the two composite
morphisms fromH, to H; (via F; and ).

Application of the duality functoD := Dx and a rotation byt80° about the axis con-
necting upper-left and lower-right corner induces anotieahedral diagraniRD - Oct)
such thatRD applied to(RD - Oct) gives the octahedral diagraf®? - Oct) which one
gets from(Oct) by application ofD? (compare with [You, p.387/388]). Then the octa-
hedral diagramOct) is calledsymmetricor skew-symmetridf there is an isomorphism
d: (Oct) — (RD - Oct) of octahedral diagrams such that

RD(d)ocan=d or RD(d)ocan =—d

as maps of octahedral diagraf@3ct) — (RD - Oct). Note that this induces in particular
(skew-)symmetric dualitied; andds of the cornersF; and F,, and(Oct,d) is called
an elementary cobordismetween(F;, d;) and(F», dz). This notion is a symmetric and
reflexive relation(F, d) and(F’, d’') are calledcobordantif there is a sequence

(F,d) = (Fo,do), (Fi,d1), .., (Fm,dm) = (F',d)
with (F;, d;) elementary cobordant {0741, d;+1) fori =0, ..., m — 1. Thiscobordism
relationis then an equivalence relation.

Thecobordism grouf) (X) of selfdual constructible complexes dhis the quotient
of the monoid of isomorphism classes of (skew-)symmetrifdeal complexes by this
cobordism relation. These are indeed abelian groups andistanonoids.

Consider now an algebraic (or holomorphic) map X — Y, with X, Y compact so
that f is proper. ThenRf, ~ Rfi mapsD’(X) to D%(X). Moreover, theadjunction
isomorphism

Rf.Rhom(F, f'k'Qp) ~ Rhom(RAF, k'Qut)
induces the isomorphism
(7.7) Rf.Dx = DyRf ~ Dy Rf.

so thatR f,. commutes with Verdier-dualityn particularR f. maps selfdual constructible
complexes orX to selfdual constructible complexes Brinducing group homomorphisms

fe 1 Q2(X) = Qe (Y); [(F,d)] = [(REF, Bf(d))] -

A simple example of a selfdual constructible complex is th#ted constant sheaf
Qz[n] on a complex manifold of pure dimensiom, with the duality isomorphism in-
duced from theomplex orientationf Z by Poincaré—Verdier duality:

E'Qpt ~ Qz[2n] ,withk: X — {pt} a constant map.
This is (skew-)symmetric for even (or odd).
Then the results of Cappell-Shaneson [C§5] can be reformulated as in [BSY3] (cf.
[Y2, Corollary 2.3]):

Theorem 7.8(Cappell-Shaneson}or a compact complex analytic (or algebraic) space
X there is ahomologyL-class transformation

L, : QX) =0 (X) ®0-(X) — Ho(X,Q),

which is a group homomorphism functorial for the pushdgiwmduced by a holomorphic
(or algebraic) map. The degree &f((F, d)) is thesignatureof the induced pairing

HY(X,F)®@qR x H'(X,F)®gR — R
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(by definition this i9) for a skew-symmetric pairing). Moreover, faf smooth of pure
dimensiom one has the normalization

L.((Qx[n], d)) = L*(TX) N [X].

There is also ainiquenesstatement in [CS1§5] for such anL-class transformation,
but for this one has to go outside the complex algebraic dydo@ontext.

For X pure dimensional (otherwise one should only look at the topedsional irre-
ducible components aX) one has the distinguished self-dual constructible ieteien
cohomology complexl x := ZCx, whose global cohomology calculates the intersection
(co)homology of Goresky—MacPherson. By definition one detsX) := L.(ZCx) =
LEM(X) so that

[ 200 =20
X
is the signature of the global intersection (co)homology.

Remark 7.9. Thom used in [Thom2] his combinatoriél-classes for the definition of
combinatorial Pontrjagin classesf rational PL-homology manifolds. Note that in the
context of rational homology manifoldsgtional L- and Pontrjagin classes carry the same
information (i.e. can be deduced from each other). But thigi the case for more singular
spaces, and only a correspondiiglass transformation exists for suitable singular spaces
but not a Pontrjagin class transformation.

So all these theories of characteristic homology classfaamations for singular spaces
have the same formalism, but their existence and construigidue to completely differ-
ent underlying ideasmod 2 Euler spacef®r w.., local Euler obstructiorfor c,, localized
Chern characteffor td, andduality for L,.. Nevertheless it is natural to ask for another
theory of characteristic homology classes of singular epawhich unifies these theories
for complex algebraic varieties:

Problem 7.10. (cf. [Mac2] and[Y3]) Is there a “unifying and singular versiony of
the generalized Hirzebruch—Riemann—RgeARR such that
(y=-1) _1 gives rise to the rationalized MacPherson’s Chern clas® Q,

(y=0) 0 gives rise to the Baum—Fulton—MacPherson’s Todd cldssand
(y=1) 1 gives rise to the Cappell-Shaneson’s homology L-class
An obvious obstacle for this problem is that the source dam&functors of these three

natural transformations are all different. And even if sactheory is not known, iteor-
malization conditiorfor a smooth complex algebraic manifald has to be

cly(Lar) = td () (TM) N [M]

by g-HRR so that this transformation has to be calletliazebruchtd,,.,- or T,.-class
transformation

8. RELATIVE GROTHENDIECK RINGS OF VARIETIES AND MOTIVIC CHARACTERISTIC
CLASSES

A “reasonable” answer for the above Problem 7.10 has beeirmutin [BSY3, BSY4]
via the so-calledelative Grothendieck ring of complex algebraic varietia®r X, denoted
by Ko(V/X). This ring was introduced by E. Looijenga in [Lo] and furtlstudied by F.
Bittner in [Bit]. The relative Grothendieck groulg,(V/X) ( of morphisms over a variety



22 IHORG SCHIRMANN AND SHOJI YOKURA®™)

X) is the quotient of the free abelian group of isomorphisnssts of morphisms t&
(denoted byfY — XJor[Y LR X1), modulo the followingadditivity relation:

Yo X=Zov S x4 v\ Z2—Y LX)
for Z C Y aclosed subvariety df". The ring structure is given by the fiber square: for
v L X, WL X] e Ko(v/X)

v LX) WL X] =Y xx WL X
HereY xx W Ixx9, x isgo f' = fog' wheref’ andg’ are as in the following diagram

Y oxx W —— w

| s
Y _f X.

The relative Grothendieck ringo(V/X) has the unitlx := [X Ldx, X], which later

becomes the distinguished elemédnt := [idx]. Similarly one gets an exterior product
x: Ko(V/X) x Kg(V/Y) = Ko(V/X xY).

Note that whenX = {pt} is a point, then the relative Grothendieck rihg (V/{pt}) is

nothing but the usual Grothendieck rifig, (V) of V, which is the free abelian group gen-

erated by the isomorphism classes of varieties modulo thgrsup generated by elements

of the form[V] — [V'] — [V \ V'] for a subvarietyy’ C V, and the ring structure is given
by the Cartesian product of varieties.

Remark 8.1. In some sense the Grothendieck riAg()’) can be seen as an algebraic
substitute for cobordism ring3.. of smooth manifolds, based on thdditivity instead of
a cobordism relation.

For a morphisny : X’ — X, the pushforward
fo: Ko(V/X') — Ko(V/X)
is defined by
LY & X =y L8 ).
With this pushforward, the assignmeit — K,(V/X) is a covariant functor. The
pullback
[ Ko(V/X) — Ko(V/X)
is defined as follows: for a fiber square

’

v —L— X

f/l lf
y -2 ., Xx

the pullbackf*[Y £ X] := [Y’ £ X’]. With this pullback, the assignmedf —
Ko(V/X) is a contravariant functor. Ldko™ (SV/X) be the free abelain groups on
isomorphism classes of proper morphisms from smooth vesidb a given varietyX.
Then we get the canonical quotient homomorphism

quo : Iso” (SV/X) — Ko(V/X)

which is surjective by the above additivity relation anddtiaka’s resolution of singulari-
ties [Hi]. And itturns outthat the kernel of this surjectiveap is generated by the “blow-up
relation”, more precisely we have the following theorem,iebhis due to F. Bittner [Bi,
Theorem 5.1], based on the very deep “weak factorizatioordm” ([AKMW] and [W]):
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Theorem 8.2. The relative Grothendieck groulg, (V/X) is isomorphic to the quotient of
the free abelian groufso® (SV/X) modulo the following “blow-up relation”

0— X]:=0 and BlyX' - X|-[F—-X]=[X—X]-[Y — X]
for any Cartesian “blow-up” diagram

E—" Blyx'

4k

y —*— x X
with ¢ being a closed embedding of smooth (pure dimensional)tiesiandf : X' — X

proper. Herer : Bly X’ — X' is the blow-up ofX’ alongY with E denoting the
exceptional divisor.

From this theorem we can get the following corollary:

Theorem 8.3. Let B, : V/k — A be a functor from the category of reduced separated
schemes of finite type ov€rto the category of abelian groups such that
(i) B«(0) := 0,
(i) it is covariantly functorial for proper morphisms, and
(iii) for any smooth varietyX there exists a distinguished elemént € B, (X) such that
(iii-1) for any isomorphisnk : X’ — X, h.(dx/) = dx and
(iii-2) for any Cartesian “blow-up” diagram as in the abovéh€orem 8.2 witly = idx,
W*(dBlyx) — z*wi(dE) = dX — Z*(dy) S B*(X)
Then we have by (iii-1) that there exists a unique naturat$farmation of covariant func-
tors
®: Is0™(SV/ ) — Bu( )
satisfying the normalization condition that for smodth

®([X <5 X]) = dx,

and furthermore by (iii-2) there exists a unique naturaltséormation of covariant func-
tors B
d:Ko(V/ )— B.( )
satisfying the normalization condition that for smodth
(X L X)) = dy.
Then, using results of [Gros, 1V.1.2.1] or [GNA, Propositi8.3], we can get the fol-
lowing corollary about anotivic Chern class transformationC...

Corollary 8.4. There exisits a unique natural transformation (with regge@roper maps)
mCy: Ko(V/ ) — Go( ) ®Z[y]
satisfying the normalization condition that f& smooth
- dim X . .
mC,([X =5 X]) = Y [AMT*X]y' = A, ([T*X]) N [Ox].
=0
Here A, ( ) is the so-calledotal A-class

If we composenC.|,=_1 0.1 With the natural transformatio6o( ) — Ky?( ) to
topological K-homology constructed in [BFMZ2], themC'.(X) unifies for X smooth the
following K-theoretical homology classes:

(y=-1) the top-dimensional Chern clad§” (T X) N [X]x in K-theory:

mClly=—1([idx]) = A1 ([T"X]) N [X] &k ,
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(y=0) the fundamental class in K-homology of the complex ificdah X :

mC.|y—o(lidx]) = [X]x .
(y=1) theclass of the signature operator of the underlyjrigramanifold of X (compare
with [RW]):
mC.ly=1([idx]) = M([T"X]) 0 [X]k -
Its image inKO(M)[3] c K(M)[3] is exactly Sullivan’s orientation class (X)) (up to
an identification of a suitable Bott periodicity factor, cpane [Sull2, p.201-203]).

Consider the twisted BFM—RR transformation
td(14y) : Go(X) @ Z[y] — Ha:(X) @ Qly, (1 +y)7']
defined by
td(1y)([F]) i= Y tdi((F)(1+y) ™

i>0

and extending it linearly with respect ®y] ([Y3]). Using this twisted BFM—-RR transfor-
mationtd,, ., and the above transformationC'., we define theHirzebruch class trans-
formation7,. as the composité,. := td,omC.. Then we get the following theorem:

Theorem 8.5. Let Ky(V/X) be the Grothendieck group of complex algebraic varieties
over X. Then there exists a unique natural transformation (wipect to proper maps)

Ty, : Ko(V/ )= HZM( )eQy c HZM( ) ©Qly, (1 +y)™]

such that forX nonsingular
id -~
Ty, ([X 25 X]) = tdg,)(TX) N [X].

Remark 8.6. The transformationsC, andT,. can also be defined in the same way in
the algebraic contexbver a base field of characteristic zero, using the algelweision

of the Todd tranformationd, as in [Ful, chapter 18], and in tkempactifiable complex
analytic contextusing the analytic version of the Todd tranformatialy constructed in
[Levy] (compare with [BSY 3] for more details).

For a later use, we observe thHgt commutes with the exterior product (and similarly
for mC,), i.e., the following diagram commutes:

X

KO(V/X) X KO(V/Y) E— KQ(V/X X Y)
Ty XT,

Y s U*JV JVTU*

HPM(X) ©Qy) x HEM(Y) © Qly) —— HEM(X x V) @ Q[y)-
And we have the following theorem for a compact complex algiebvariety X :

Theorem 8.7. (y = -1) There exists a unique natural transformatien Ky,(V/ ) —

F( ) such that forX nonsingulare([X i, X]) = 1x. And the following diagram
commutes

Ko(V/X) - F(X)
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(y = 0) There exists a unique natural transformatipn Ko(V/ ) — Go( ) such that
for X nonsingulary([X i, X]) = [Ox]. And thefollowing diagram commutes

Ko(V/X) (X)
X /

(y =1) There exists a unique natural transformation Ky(V/ ) — Q( ) such that for
X nonsingularw([X , X]) = [Qx[dim X]] . And the following diagram commutes

Ko V/X\ /

An original proof of the above Theorem 8.5 uses Saito’s thedmixed Hodge mod-
ules [Sai] instead of the above Theorem 8.2. In this way omeatso study such char-
acteristic classes of mixed Hodge modules, especiallyethssociated to the intersection
(co)homolgy complex (compare [To, CMS]). And an even moesgrantary proof can be
given based on some classical results of [DuBo] about thealed DuBois complex of a
singular complex algebraic variety. Only the proof of theeg = 1) of the above The-
orem 8.7 depends, up to now, on Bittner's theorem, i.e., boz@ Theorem 8.2, in other
words, on the “weak factorization theorem” ([AKMW] and [WRIso note that the trans-
formatione is defined foranyalgebraic map of not necessarily compact algebraic vasegti
and it also commutes with pullback and (exterior) produlets.more details, see [BSY3].

Remark 8.8. The reader should be warned that the transformatipasdw above do
not preserve the distinguished elements in general. For anypaotnsingular complex
algebraic varietyX one hase([idx]) = 1x, so that theHirzebruch classTy. (X) :=
T,.([idx]) specializes td"_1.(X) = c.(X) € H2.(X;Q). Butin general

V([idx]) # [Ox] € Go(X) and To.(X) # td.(X) .

But 7p..(X) = td.(X) if X has at most “Du Bois singularities”, e.g. “rational singia
ties” like, for example, toric varieties. Similarly

w(lidx]) # [ZCx] € UX) and T1.(X) # L.(X)
in general, but weonjecturethatTy..(X) = L.(X) for X arational homology manifold

Moreover, the Hirzebruch characteristic clévdisy) = T, is themost generahormal-
ized and multiplicative characteristic class of complegtge bundles

el : Vect(X) — H**(X;A),
with A aQ-algebra, which satisfies the condition of Theorem 8.3 with
dx = cl3(TX) N [X] € HEM (X5 A)
for X smooth. In fact, the correspondignus® ; factorizes as
Iso” (SV/{pt}) —— e

(8.9) l ﬁf

[}
Ko(V) — A= Hy.({pth A).
Moreover, the characteristic clas; or its genusb  is uniquely determined by

4([PH(C)) = / (cl3(TP™(C))) N [P™(C)))

P (C)
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for all n. Butif @ also factorizes oveK,(}) then we get from the decomposition
P*C) ={ptfuCu---uC"

by “additivity” and “multiplicativity” (and compare with guation (6.4)):

(8.10)  Pf([P"(C)]) =1+ (=y) +--+(-y)" with y:=1- ([P (C)]).

So @y is a specialization of thélirzebruch x,-genuscorresponding to thélirzebruch
characteristic classl,;. Of course here we use a decomposition into loe-compact
manifoldsC™, which “is classically forbidden for a genus”, with= —& ¢ ([C]).

Remark 8.11. Soadditivityis the underlying principle which “singles out” those notma
ized and multiplicative characteristic Classaé§, which have (so far) a functorial extension
to singular spaces. Also note that the specializagiea 1 corresponding to theignature
genussign = x1 and thecharacteristicL-class transformatioi* = 77 is the only one
that factorizes by the canonical m&y ® Q — Q¢ ® Q over thecobordism ring2>©

of oriented manifoldssince[P1(C)] = 0 € Q5°. In particular this “explains” why there
is no functorialPontrjagin class transformatiofor singular spaces.

For X a compact complex algebraic variety one can also deduceTrmurem 8.3 the
Chern class transformation

ce: Ko(V/X) — H2.(X;7Z),

on the relative Grothendieck grouy, (V/ X ) without appealing to MacPherson’s theorem,
since the distinguished element

dx :=c"(TX)N[X] € He(X; Z)

of a smooth spacé’ satisfies the corresponding conditions. Condition (iifellows from
the projection formula, and condition (iii-2) is an easy kqgdion (by pushing down t&)
of the classical “blowing up formula for Chern classes” [Fuiheorem 15.4] . And recent
work of Aluffi [Alu3] can be interpreted as showing that thiartsformatiorn,. factorizes
overe: Ko(V/ )— F( ).

9. BIVARIANT CHARACTERISTIC CLASSES

In [FM] (also, see [Ful]W. Fulton and R. MacPhersantroduced the notion divari-
ant Theorywhich is a simultaneous generalization of a pair of covdrgand contravariant
functors. Most pairs of covariant and contravariant thegre.g., such as homology theory,
K-theory, etc., extend to bivariant theories. A bivaridmtaryB on a suitable category
(with a distinguished class of so-called “proper” or “comdifi maps) with values in the

category of abelian groups is an assignment to each morph”lsﬁn Y in the categonC
an abelian grouf(X ER Y’), which is equipped with the following three basic operasion
(Product operations): For morphisnfis X — Y andg : Y — Z, the product operation

o BX LY)oBY % 2) - B(X L 2)

is defined.
(Pushforward operations): For morphisths X — Yandg : Y — Z with f proper, the
pushforward operation

£ BX L 7)) S BY L 2)
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is defined.
(Pullback operations): For a fiber (or more generally a deeddandependent) square

’

x 9 . x

f/J/ J/f
Yy — Y,
g
the pullback operation
¢ BX Ly)-Bx Ly
is defined. And these three operations are required to gatsfen compatibility axioms
(see [FM, Part 132.2] for details). In particular, the class of “proper” mapss to be stable
under composition and base change, and should contairealifgmaps. LeB, B’ be two
bivariant theories on such a categc@tyThen aGrothendieck transformatioinom B to B’

v:B—DB
is a collection of homomorphisms
B(X—-Y)—-B(X—=Y)

for a morphismX — Y in the categonC, which preserves the above three basic opera-
tions:

() (o e B) =~(a) ow 7(f),

(i) ~(fra) = fiy(a) and

(i) ~(g*e) = g*v().

B.(X) := B(X — pt) andB*(X) := B(X u, X) become a covariant functor for
proper maps and a contravariant functor, respectively. &@fothendieck transformation
v : B — B’ induces natural transformations : B, — B, and~* : B* — B’" such that
~v. commutes with the (bivariant) exterior product, i.e. thikdeing diagram commutes:

B.(X) xB,(Y) —— B.(X xY)

1o | |

B.(X) x BL(Y) —— B.L(X xY).
If we have a Grothendieck transformatign: B — B’, then via a bivariant clask €
B(X EN Y’) we get the commutative diagram

B.(Y) —— B.(Y)
v

W(
9.1) e |
B.(X) —— B.(X).

*

(b)e

This is calledthe Verdier-type Riemann—Roch formula associated to tveridint classh.

Bivariant Todd class transformation 7. The most important (and motivating) example
of such a Grothendieck transformation of bivariant thedisahebivariant Riemann—Roch
transformationr from thebivariant algebraic K-theoryK.,, of perfect complexe® ra-
tional bivariant homologyg

7 : Kag — Hog
constructed in [FM, Part II] in the complex quasi-projeetwontext. Herél is the bi-
variant homology theory corresponding to usual cohomolaity rational coefficients
constructed in [FM$§3.1] for more general cohomology theories. Then the astatia
contravariant theor§fls (X) = H*(X; Q) is the conomology, and the associated covariant
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theoryHg.(X) = HPM(X;Q) is the Borel-Moore homology. Similarfit;,, ~ K° is
the Grothendieck group of algebraic vector bundles,ldpd . ~ Gy is the Grothendieck
group of algebraic coherent sheaves. Then the associatédicariant transformation*
is theChern character

e Ko )~KO( )= HY( Q) ~Hy( ),
and the associated covariant transformation
Tt Kaga( )= Go( )= HPM( Q) ~Hg.( )

is just Baum—Fulton—MacPherson’s Todd class transfoonati, constructed in [BFM1].
And the bivariant transformationunifies many different known Riemann—Roch type the-
orems. In particular for amoothmorphismf : X — Y of possible singular varieties one
has

1 :=[Ox] € Kag(X L V),
with 7(1¢) = td*(Ty) e [f]. HereTy is the vector bundle of tangent spaces of fibers
of f, and[f] € Hg(X EN Y') is thecanonical orientatiorof the smooth morphisni.

Then the Verdier-type Riemann—Roch formula (9.1) assedi#b 1 ; becomes the usual
Verdier—Riemann—Roch theordor the Todd class transformatiat,.:

(9.2) td.(f*B) = td*(Ty) N f'td.(B) forB e Go(Y).

Heref' = [fle : HEM(Y: Q) ~ Ho.(Y) — Ho.(X) ~ HEM(X; Q) is thesmooth pull-
backin Borel-Moore homology. And for aalgebraic versiorof this bivariant Riemann-
Roch transformatiom compare with [Ful, Ex. 18.3.16].

Bivariant Stiefel-Whitney class transformationw. In the context of real geometry (e.qg.
the piecewise linear, (semi-)algebraic or subanalytidexi) one has the following inter-
esting example of a bivariant theory (with “proper” the usuwaaning). Herd-ulton—Mac-

Pherson’s bivariant groufr™°42 (X EN Y') of Zy-valued constructible functiorsnsists
of all the constructible functions o which satisfy the local Euler condition with respect
to f. Here aZ,-valued constructible function € F°%?(X) is said to satisfy théocal
Euler condition with respect t¢, if for any pointxz € X and for any local embedding
(X, z) — (RY,0) the equality

a(z) = x (BN f71(2); ) mod 2
holds, whereB. is a sufficiently smalbpenball of the origin0 with radiuse andz is any
point close tof (x) (cf. [Brl], [Sa]). In particular, ifl; := 1x belongs to the bivariant
grouplFmod2 (x ER Y’), then the morphisnf : X — Y is called anEuler morphism For
f:+ X — {pt} a constant map this just means (by the “local conic strutmireX) that
X isamod 2 Euler spacd.e. the linkdB, N X of any pointz € X has vanishing Euler
characteristic modulo 2:
X(0B: N X) = x:.(0B: N X)

=1—x.(BNX)

=1-x(B.NX;1x)=0 mod?2
Also asmoothmorphism, or a locally trivial fibration with fiber a mod 2 Eulgpace, is
always an Euler morphism.

The three operations dfi"°%2 (X ER Y') are defined as follows:

(i) the product operation

P Fmon(X i} Y) ®Fm0d2(y L Z) N Fmon(X i} Z)
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isdefined byv e 3 :=a - f*(3.
(i) the pushforward operatioffi, : F™°42 (X 2N Z) — Fmod2(y £, 7) is the usual
pushforwardf,, i.e.,

(i) for a fiber square

Y —— Y,
g

the pullback operatiog* : Fmod2(x L, y) — Fmed2(x' L, y7) is the functional

pullbackg’™, i.e.,
g (a)(@) == a(d'(2)).

Note that forf proper and anyivariant constructible functiom € F™°42(X ER Y), the
Euler-Poincaré characteristid f ' (y); ) of « restricted to each fibef~!(y) is locally
constanonY mod 2 (by the local Euler condition fof, («)).

The correspondenceF™°?2(X — Y) := F™°%2(X) assigning to a morphisnf :
X — Y the abelian group™°?2( X) of the source variety, whatever the morphisrfiis,
becomes a bivariant theory with the same operations abdvs.bilvariant theory is called
the simplebivariant theory of constructible functions (see [Sch2dl §¥6]). In passing,
what we then need to do for showing that the Fulton—-MacPhé&gyoup ofZ,-valued
constructible functions satisfying the local Euler coratitwith respect to a morphism is
a bivariant theory, is to show that the local Euler conditigth respect to a morphism is
preserved by each of these three operations.

For later use let us point out the abstract properties nefmiede definition of asimple
bivariant theory{Sch2, Definition, p.25-26]:
(SB1)We have a contravariant functét: C — Rings with values in the category of rings
with unit.
(SB2) G is also covariantly functorial with respect to proper mags & functor to the
category of Abelian groups).
(SB3) G satisfies théwo-sided projection-formuld.e. for f : X — Y proper andy €
G(Y)andg € G(X),

F((fra)UB) = aU (f.0),

i.e., f« isaleftG(Y)-module and

f(BU(fa)) = (fP)Ua,

i.e., f« isarightG(Y)-module. (Note that we do not assuift&, U) is (graded) commuta-
tive so that both versions of the usual projection formukarsgeded.)

(SB4) F' has thehase-change property* f. = f.¢"* : G(X) — G(Y”) for any fiber (or
independent) square

’

x -9 . x
f/l lf
y —%2 v,

with f, f' proper.
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Then one gets a (simple) bivariant theai@ by sG(X EN Y) := G(X), with the
obvious pushforward and pullback transformations as abBirelly the bivariant product

0 sGX LY)xsG(Y L 2) - sG(X 2L 2)

is just given bywe 3 := U f*(3), with U the given product of the ring-structure. Note that
this construction does apply not only to constructible fionsG( ) = F™°42( ) but
also to the relative Grothendieck group of complex algebrarietiesG( ) = Ko(V/ ),
even if we allow all algebraic morphisms as “proper” morphés

Let H™e2 (X ER Y') be Fulton—MacPhersontsvariant homology theoryith Z- co-
efficients, constructed from the corresponding cohomolibgpry in [FM, §3.1] so that
H™od2*(X) = H*(X;Zs) andH™(X) = HBEM(X;Z,). Then in thepiecewise
linear contextFulton and MacPherson [FM, Theorem 6A] showed the followtimego-
rem, which is a bivariant version of the singular Stiefel-¥by class transformation
wy : M2y — HBEM (1 7,):

Theorem 9.3. There existis a unique Grothendieck transformation

w: Fmon N Hmon

satisfying the normalization condition that for a morphiflom a smooth varietyX to a
point
w(lx) =w*(TX)N[X] € H™?(X) = HPM(X;Z,).

Remark 9.4. As to the bivariant mod 2 constructible functions, in the tes of real
geometry, the definition and the theory of them can be givaaninof the following cate-
gories: theP L-category, the (semi-)algebraic category and the subtoategory. Note
that the above bivariant Stiefel-Whitney class transfdiomas only proved and known in
the P L-category.

Bivariant Chern class transformation «y. Instead of mod 2 constructible functions, in
the complex analytic or algebraic context we certainly hsiveilarly the bivariant group
F(X — Y) of Z-valued constructible functions satisfying the local Ewendition with
values inZ and the bivariant homology theoB}(X — Y") with integer coefficients, and
W. Fulton and R. MacPherson conjectured or posed as a goektoexistence of a so-
calledbivariant Chern class transformatiandJ.-P. Brassele[Br1] solved it:

Theorem 9.5. For the category of embeddable complex analytic varietigh wellular
morphismsthere exists a Grothendieck transformation

v:F—H

such that for a morphisnf : X — {pt} from a nonsingular varietyX to a point{pt}
and the bivariant constructible functidh; := 1x the following normalization condition
holds:

y(Iy) = ¢ (TX) N [X] € H(X) = HPM (X; 7).

Since then, theiniguenes®f the Brasselet bivariant Chern class and the problem of
whether “ cellularness” of morphisms (which is not so easghteck) can be dropped or not
have been unresolved. In[Sa] Sabbaltonstructed a bivariant Chern class transformation
“micro-local analytically” in some cases. In [Z1], [Z2] Zhoushowed that the bivariant
Chern classes constructed by J.-P. Brasselet [Brl] andrtég constructed by C. Sabbah
[Sa] in some cases are identical in the case when the targetwis anonsingular curve
And in [Y5, Theorem (3.7)] we showed the following more geri@miqueness theorem
of bivariant Chern classes for morphisms whose target ttlasi@renonsingular of any
dimension
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Theorem 9.6. If there exists a bivariant Chern class transformatipnF — H, then it is
unique when restricted to morphisms whose target variatiesonsingular; explicitly, for
a morphismf : X — Y withY nonsingular and for any bivariant constructible function

aeF(X ER Y’) the bivariant Chern class(«) is expressed by
V() = f*s(TY) N eu(a)
wheres(TY) := ¢*(TY )~ ! is the Segre class of the tangent bundle.

The twisted clasg™*s(TY) N c.(«) shall be called thé&inzburg—Chern classf «
([Gi1, Gi2] and [Y7, Y8]). Here, the above equality needs adfiexplanation. The

left-hand-sidey(«) belongs to the bivariant homology grolf{ X ER Y') and the right-
hand-sidef*s(7Y) N c.(a) belongs to the homology grouifZ?* (X), and this equality
is up to the isomorphism

A

H(x L v) H(X — pt) —2— HPM(X)

3

o[Y]
~

where the firstisomorphism is the bivariant product withfinedamental clasg’] and the
second isomorphism is the Alexander duality map. Since we usually idenfifgX —
pt) asHEM (X) via this Alexander duality, we ignore this Alexander dugigomorphism,
unless we have to mention it. Hence we have

Ya) o [Y] = f*s(TY) New(a).
We remark that this formula follows from tregmple but cruciabbservation that

v (OZ) L4 ’VY—’Pt(]lY) = VX —pt (OZ)
and the fact thaty _., is nothing but MacPherson’s Chern class transformatiorAnd

in [BSY1] the above theorem is furthermore generalized &ddse when the target variety
can be singular but is “like a manifold”.

Definition 9.7. (cf. [BM]) Let A be a Noetherian ring. A complex variely is called an
A-homology manifold (of dimensi@m) or is said to bed-smoothif for all z € X

A i=2n

Hi(X,X\z;A) = ,
( \ @i A) {0 otherwise.

In this caseX has to be locally pure-dimensional, where we consideras a locally
constant function oX. Just look at the regular part &f, because a pure-dimensional
complex manifold is a homology manifold of dimensizm Moreover the local orientation
systemor x with stalkorx , = Han(X, X \ x; A) ~ Ax is then already trivial (on each
connected component &f) so thatX becomes anriented A-homology manifold

Example 9.8. If A = Z, aZ-homology manifold is called simply bomology manifold
(cf. [MiSt]). There are singular complex varieties whicle d&romology manifolds. Such
examples are (products of) suitable singular hypersusfagth isolated singualrities (see
[Mi2]). If A = Q, aQ-manifold is called aational homology manifold As remarked
in [BM, §1.4 Rational homology manifolds], examples of rational letmgy manifolds
include surfaces with Kleinian singularities, the modplase for curves of a given genus,
and more generallfbatake’sV -manifoldsor orbifolds In particular, the quotient of a
nonsingular variety by a finite group is a rational homologifiold.

Theorem 9.9. Let Y be a complex analytic variety which is amiented A-homology
manifoldfor some commutative Noetherian ridg If there exists a bivariant Chern class
transformationy : F® A — H ® A, then for any morphisnf : X — Y the bivariant

Chern classyy : F(X ER YV)® A — H(X ER Y) ® A is uniquely determined and it is
described by

(@) = fe (V) Nea).
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Here ¢*(Y) is theunique cohomology classuch thate, (1y) = ¢*(Y) N [Y]. (Note that
c¢*(Y) isinvertible.)

WhenY is nonsingular, we see that the cohomolgy clé$3”) is nothing but the total
Chern classe*(TY) of the tangent bundl&Y, hence the inverse*(Y)~! is the total
Segre class(TY). Therefore the twisted clags ¢*(Y) ! Ne.(a) shall also be called the
Ginzburg—Chern classf o and still denoted by,“'" (). Note that we also have in this
more general context the isomorphism

HX Ly)ea L mx - pyea —2— HEM(X)® 4

since for an orientedi-homology manifoldy” the fundamental clag§’] € HM (X) ®
A~ H(X — pt) ® A is astrong orientationin the sense of bivariant theories (compare
[BSY1]).

Existence and uniqueness of bivariant characteristic clases. Note that the proof of
Theorem 9.9 also applies in the real (semi-)algebraic oasalytic context to a bivariant
Stiefel-Whitney class transformatign Fme?2 — H™°42 (with the obvious modification
of the notations from*, ¢, to w*, w,). In a similar manner, we can show the following
theorem, which is an extended version of [Y5, Theorem (3.7)]

Theorem 9.10. The Grothendieck transformation from the bivariant algegbrK-theory
Kaig of perfect complexes

7 : Kag — Hog
constructed irfFM, Part I1] is unique on morphisms whose target varieties are rational

homology manifolds. Explicitly, for a bivariant element K, (X ER Y') with Y being
a rational homology manifold

7(a) = ftd*(Y) "' Ntd.(a e [Oy]).
Here [Oy]| € Ka+(Y) >~ Go(Y) is the class of the structure sheaf and the associated
covariant transformatiorr, : Kag«( ) ~ Go( ) — HBM( ;Q) is Baum—Fulton—

MacPherson’s Todd class transformatieh constructed ifBFM1]. Moreovertd*(Y') €
H*(Y;Q) is the Poincaré dual of the Todd clags.(Y) := td.([Oy]), which is invertible.

Conversely we ask ourselves whether the above GinzburgrClass becomes a Grothendieck
transformation for morphisms whose target varieties aientedA - homology manifolds.

Theorem 9.11. For a morphism of complex analytic varietigs: X — Y with Y an

oriented A-homology manifold, we defirg( X EN Y’) to be the set of all constructible
functionsa € F(X) satisfying the following two conditiong)(and ¢) : for any fiber
square

’

x -9 . x

f/l lf
y —2 .y,
with Y’ an oriented4A-homology manifold the following equalities hold:
(#) for any constructible functiof’ € F(Y”):
,yGin(g*a ° 6/) _ ryGin (g*a) ° ’YGin(ﬁ/),
0) .
B v g ) = g™y (a).

ThenF becomes a bivariant theory with the same operations a&iand furthermore the
transformation

Gin(

’yGin:F—>H
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is well-defined and becomes the unique Grothendieck tremstion satisfying that/&in
for morphisms to a pointis MacPherson’s Chern class tramsédionc.. : F' — H.. And
alsoF(X — pt) = F(X).

The proof of the theorem is the same as in [Y9], in which theecaken the target
variety Y is nonsingular is treated. Note that to prdveX — pt) = F(X) we need the
cross product formular multiplicativity of MacPherson’s Chern class transformatign
due toKwiecifskilKw1] (cf. [KY]), i.e. the commutativity of the following digram:

X

F(X) x F(Y) — X, F(XxY)

C*XC*J, Jrc*

HBM(X.7)x HBM(y;7) —=— HBM(X xY;Z).

The cross product formula for Stiefel-Whitney classes éréal algebraic contextan be
shown similarly by using “resolution of singularities”, tre corresponding product for-
mula for “characteristic cycles” of constructible funat®so that a variant of this theorem
also works in the real algebraic context.

And for amuch more general versiaf Theorem 9.11, see [Sch2].

The above theorem led us to anotheiqueness theorgrvhich in a sense gives a pos-
itive solution to the general uniqueness problem concer@irothendieck transformations
posed in [FM 3§10 Open Problems]. For more details, see [BSY2].

Theorem 9.12. We define
Fx Ly)

to be the set consisting of all € sF(X EN Y’) satisfying the following condition: there

exists a bivariant clas®,, € H(X ER Y') such that for any base change: Y/ — Y
(without any requirement) of an independent square

’

X -2 X
f/l lf
y —2 .y,
and for anys’ € F(Y’) the following equality holds:
(g e §') = g"Ba @ cu(B).
ThenF is a bivariant theory. Furthermor&(X — pt) = F(X).

The above bivariant clas8,, should ideally be the unique bivariant Chern classvof
However, so far we still do not know if it is the case or not. Smvisionally we callB,, a
pseudo-bivariant,-class ofa.

Example 9.13(VRR for smooth morphisms)Let f : X — Y be asmoothmorphism of
possibly singular varieties. Then we have

1 :=1x e F(X L V)

with ¢*(Ty) e [ f] being a pseudo-bivariant-class ofl ;. HereT is the vector bundle of
tangent spaces of fibers ¢f and[f] € H(X ER Y’) is thecanonical orientatiorof the
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smooth morphisnf. Then as in Theorem 9.12 we have fére F(Y”):
c(g iy o f) = cu(f5)

¢ (Tp) O fen(B)
(Ty) o [f'] e ci(B)
g c (Ty) o g"[flec.(B)

= g" (" (Ty) o [f]) o cu(8).
Here " = [f']e : HEM(Y') ~ HL(Y') — H.(X') ~ HEM(X') is thesmooth pullback
in Borel-Moore homology, and the equality
(9.14) c(f*B) = (T )N fheu(B)

is the so-calleferdier—Riemann—Roch theoréat the smooth morphisnfi’ and the Chern
class transformation. (compare [FM, Sch1l, Y4]).

In order to remedy this unpleasant possible non-uniquenies bivariant clas3,
above, we set

PH(X LY) =
{B € H(X ER Y)|B is a pseudo-bivariant,-class of somer ¢ F(X ER Y) }

to be the set of all pseudo-bivariant-classes for the morphisth: X — Y. Itis clear
thatPH is abivariant subtheonpf H, i.e, it is a subgroup stable under the three bivariant
operations.Then we define
X Ly)=rHX Lv) ~

where the relation- is defined by

B~ B <= g'Bec.(f)=g"B ec.()
for all independent squares with: Y’ — Y and all’ € F(Y’). Certainly the relation
~ is an equivalence relation. In other words, with this idécation we want to make

possibly many pseudo-bivariant-classes into one unique bivariantclass. Indeed we
have

Theorem 9.15. Iﬁl(X ER Y) is an Abelian group andl is a bivariant theory with the
canonical operations induced from thoseHf Furthermore we have
H(X — pt) = Image(c, : F(X) — HPM(X)).
And we have the following theorem
Theorem 9.16. There exists a unique Grothendieck transformation
q: F—H
whose associated covariant transformatiomr,is F — Im(c.), where

Im(c.)(X) = Image(c* L F(X) — H}?M(X)) .

Remark 9.17. As mentioned above, a key for the above argument is the fatt.tfw) =
~v(a) @ c.(1y). So, putting it very vaguely, the bivariant clagg&y) could be said to be a
kind of “c, («) divided byc. (1y )", whatever it is meant to be. In our previous paper [Y5]
we posed the problem of whether or not there is a reasonatédeidmt homology theory
so that such a “quotient”

e ()

Cy (ﬂy)

is well-defined. The above theoﬁlis in a sense a positive answer to this problem.
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The above construction works for a more general situatich s1$
(1) there exists a natural transformatian: F.(X) — H,.(X) between two covariant
functorsF, and H.. (covariant with respect to proper maps) such tRatpt) and H., (pt)
are commutative rings with unit and such thaimaps the unit to the unit,
(2) there are two bivariant theori®andH such that the associated covariant theories are

F(X —pt) = F.(X) and H(X — pt) = HEM(X),
(3) 7. commutes with the bivariant exterior products, i.e., tHefeing diagram commutes

F.(X)xF.(Y) —— FJ(XxY)

e | |~

HBM (X)) x HBM(y) —=— HBM(X xY).

Here we assume that fof =Y = {pt} a point this exterior product agrees with the given
ring structure.

Certainly this construction works for the previomstivic Chern class transformation
mCi : Ko(V/ ) = Go( ) @Z[y]
and themotivic Hirzebruch class transformation
Ty, : Ko(V/ ) — HPM( )@ Qly.
Indeed, the bivariant theory fdt,(V/ ) is the simple bivariant theory
sKo(X —Y) := Ko(V/X),

the bivariant theory foiGo( ) ® Z[y] is Fulton—MacPherson’s bivariant algebraic K-
theory K., tensored wittZ[y], and the bivariant theory foH.( ) ® Q[y] is of course

Fulton—MacPherson’s bivariant homology thedfytensored withQ[y]. It also applies in
the real algebraic context to tistiefel-Whitney class transformation

we s FOR( ) - HEM(7,)

by using the simple bivariant theogF™°?? of Z,-valued real algebraically constructible
functions.

Remark 9.18. Let f : X — Y be asmoothmorphism of possible singular varieties. Then
also Example 9.13 works in this context, with

Iy =1y =Jids] € sKo(X LY) or 1;:=1x e sFm?2(x Ly),

andctl*(Ty) o [f] being a pseudo-bivariant class bf for c¢* (1) = Ay(T;),fd(y)(Tf)
orw*(Ty). Here the correspondingerdier—Riemann—Roch theordor the smooth mor-
phismf follows for the motivic characteristic classes”, andT},. from [BSY3, Corollary
2.1 and Corollary 3.1]. For the Stiefel-Whitney class tfansationw, it can be shown
as for Chern classes by using “resolution of singularit@s‘characteristic cycles of con-
structible functions”.

This Verdier—Riemann—Roch theorem for smooth morphismatso very important for
the definition ofG-equivariant characteristic class transformatidnghe equivariant alge-
braic context with a reductive linear algebraic group. Here we refer to [EG12H&Z]
for the equivariant Todd class transformatiedS, and to [Oh] for theequivariant Chern
class transformatior?. In fact, in future work we will construct in this equivariaal-
gebraic context equivariant versionsC'¢ and Tyci of our motivic characteristic classes,
together with the equivariant version of Theorem 8.5, ieta’“,, with ¢ and 7§} with
tdS.



36 IHORG SCHIRMANN AND SHOJI YOKURA®™)

Bivariant L-classes. At the moment we have no bivariant version of theclass trans-
formation L, with values in bivariant homology

L.: Q(X) — H.(X,0Q),

since we do not know a suitable bivariant theory, whose &ataut covariant theory is
the cobordism groug)( ) of selfdual constructible sheaf complexes. Note that is thi
case wecannotdefine asimple bivariant theory(). Of course the Grothendieck group of
constructible sheaf complexds.( ) satisfies the properties (SB1-4) with respect to the
induced proper push dowfy, pullback f* and tensor producb so that one gets a simple
bivariant theorysK.. But the problem is thaf* and® do not commute with duality in
general so that this approach doesn't appl§2fo ).

A similar problem appears in the context of real semialgietarad subanalytic geometry
for the groupFed2 () of Z,-valued constructible functions satisfying thd 2 local
Euler condition(for a constant map), which also can be interpreted as aitgiiabndition
(compare [Sch3, p.135 and Remark 5.4.4, p.367]). This gfoupondition) is also not
stable under general pullback or product so thatecareotdefine a simple bivariant theory
sF72od2 in this context (compareable 6°%2 in the real algebraic context). Nevertheless
one can define 8tiefel-Whitney class transformation

we: FEr () — HIY (5 Z)

with the help of “characteristic cycles of constructiblenétions” (compare [FuMC]),
which ismultiplicative for exterior productand satisfies the¥erdier—Riemann—Roch the-
orem for smooth morphisms

Similarly one can define in the complex algebraic or analytictext arexterior product
and smooth pullbacfor the cobordism grouf)( ) of selfdual constructible sheaf com-
plexes (compare [BSY3]), and tlieclass transformatioh. is alsomultiplicativeby an ar-
gument similarly as in the recent paper [Wo, p.26, Proposifi.16]. Also the correspond-
ing Verdier—Riemann—Roch theorem for smooth morphismsuis, tas will be explained
in a forthcoming paper. Of course on the image of the tramsétionw : Ko(V/ ) —
Q( ) this VRR theorem also follows from Theorem 8.5 (compare [BRY

Then in both these casek;class and Stiefel-Whitney class transformations, we can
apply the results of [Y6] to get at least bivariant versiofishese theories for the corre-
spondingoperational bivariant theories

10. CHARACTERISTIC CLASSES OF PROALGEBRAIC VARIETIES

A pro-algebraic varietyis defined to be a projective system of complex algebraic va-
rieties and goroalgebraic varietyis defined to be the projective limit of a pro-algebraic
variety. Proalgebraic varieties are the main objects irof@t A pro-category was first
introduced by A. Grothendieck [Grot1] and it was used to ttgye the Etale Homotopy
Theory [AM] and Shape Theory (e.g., see [Bor], [MaSe], etmy so on. In [Grom] M.
Gromov investigated thsurjunctivity i.e. being either surjective or non-injective, in the
category of proalgebraic varieties. The original or cleassurjunctivity theorem is the
so-calledAx’ Theorem{Ax], saying that every regular selfmapping of a complexedigaic
variety is surjunctive; thus if it is injective then it haslie surjective.

A very simple example of a proalgebraic variety is the CaareproductX™ of count-
able infinitely many copies of a complex algebraic vari&tywhich is one of the main ob-
jects treated in [Grom]. Then, what would be tlighern—Schwartz—MacPherson class”
of X ? In particular, what would be tH&uler—Poincaré characteristic’of X ? This
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simple question led us to a study of characteristic claségsaalgebraic varieties and
it naturally led us to the so-calledotivic measureésee [Y10, Y11]). The motivic mea-
sures/integrations have been actively studied by manylpdée., see [Cr], [DL1], [DL2],
[Kon], [Lo], [Ve2] etc.).

In a general set-up one can deal with the so-calliédnctors The bifunctors which
we consider are bifunctots : ¢ — A from a categonyC to the category4 of abelian
groups, i.e..F is a pair(F., F*) of a covariant functorF.and acontravariant functor
F* such thatF,.(X) = F*(X) for any objectX. Unless some confusion occurs, we
just denoteF (X) for F,.(X) = F*(X). A typical example is the constructible function
functor F(X). Furthermore we assume that for a final objecte Obj(C), F(pt) is a
commutative ringR with a unit. The morphism from an objedf to a final objecipt
shall be denoted byx : X — pt. Then the covariance of the bifunctér induces the
homomorphismrx. := F(rx) : F(X) — F(pt) = R, which shall be denoted by

xr: F(X) =R

and called theF-characteristi¢ just mimicking the Euler—Poincaré characteristic (with
compact supporty : F(X) — Z in the case whetF = F.

Let X = @AEA{X’\’ Tt Xy — XA} be a proalgebraic variety. Then we define

Find(x ) = h_n)l{]-'(X,\),w,\#* L F(Xn) — F(X)\ < u)},
AEA

which may not belong tahe categoryA. Another finer one can be defined as follows.
Let P = {p)\#} be aprojective systerof elements ofR by the directed sed, i.e., a set
such thapyy =1 (theunit) andpx, - puv = prv (A < p < v). For eachh € A the
subobjectF3 (X)) of x #-stable elements F (X)) is defined to be

FE(Xx)
= {m € F(Xn)| x7(man*an) = pau - x# () for any p such that < u}.
Theinductive limit
i FE(X0), m FE ) = FRX) (<))
A

considered for a proalgebraic variety,, = lim, X, is denoted by

AeA

Fevind(x ).
Of course this definition is not intrinsic to the proalgeloredriety X .., but depends on the
given projective systen{X,\, Tt Xy — XA}. But for simplicity we use this notation.

Our key observation, which is an application of standardsfan indcutive systems and
limits, is the following:

Theorem 10.1. (i) For a proalgebraic varietyX ., = @AGA{XA’ T Xy — XA} and
a projective systen?? = {p,, } of elements oR, we have the homomorphism
yipd . pstind () H_n}{xp)\# R — R},
AeA
which is called theproalgebraicF-characteristic homomorphism
(i) AssumeA = N. For a proalgebraic varietyX ., = @neN{X’“ Tnm * Xm — Xn}
and a projective syste®® = {p,..} of elements oR, the proalgebraicF-characteristic
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homomorphisny2d : Fgt-ind(X ) — H_H)ln{xpnm R — R} is realized as the homo-
morphism

Xpd s Fpt(Xoe) — Rp
defined by

_ind XF(an
(o)) = ) ____
Po1 - P12 " P23 Pn—1)n

Herepo; := 1 andR p is the ringR s of fractions ofR with respect to the multiplicatively
closed sefS consisting of all the finite products of powers of elementB.in

(iii) In particular, in the case when the above projectivesstgmP = {p°®} consists of
powers of an element, we get the homomorphism

T ind st.in 1
X P (Xe) - R

defined by

G (fon]) = 2222,

HereR[H is the localization by the multiplicatively closed $et= {p°|s € Ny}.
Note thatR g orR[ﬂ is the zero ring in the case whénc S for the corresponding
muliplicatively closed sef. A typical example for the above theorem is the following.

Example 10.2. Let X, = @neN{X"’”"m X — Xn} be a proalgebraic variety
such that for each the structure morphism,, 41 : X,,41 — X,, satisfies the condition
that the Euler—Poincaré characteristics of the fibers,0f .1 are non-zero (which implies
the surjectivity of the morphism,, ,,+1) and constant; for example,, ,+1 : X411 — X,

is a locally trivial fiber bundle with fiber variety being,, and x(F,,) # 0 Let us denote
the constant Euler—Poincaré characteristic of the fibttseomorphismr,, 41 @ Xp41 —

X, by e, and we set, := 1. Then we get the canonical proalgebraic Euler—Poincaré
characteristic homomorphism

Xind . Find(Xoo) N @
described by
. Qp
de ([an]) _ X( )

eo-e1-exen1
In particular, if the Euler—Poincaré characteristigsare all the same, say, = ¢ for any
n, then the canonical proalgebraic Euler—Poincaré charatic homomorphisnyi»d :

Fnd(X,.) — Qis described by™ ([a,]) = x(ern)

Pn—l ’

and furthermore the target rir(g

can be replaced by the rid@[ﬂ :

Note that this example applies especially to the Cartesradyzt X of countable
infinitely many copies of a complex algebraic varietywith x(X) # 0. In fact this
example of Cartesian products is a special case of the foipmore general example:

Example 10.3. We make the following additional assumptions for our bifiomnc

(1) The contravariant functaF* takes values in the category obmmutative rings
with unit. The corresponding unit itF(X) is denoted byl x, and F(X) becomes an
R := F(pt)-algebra by the pullback farx : X — pt.

(2) F* andF. are related for a morphistfi: X — Y by theprojection formula

fola-f*B) = fu(a)- 8 foralla € F(X)ands e F(Y)
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so thatf, : F(X) — F(Y)is F(Y)- andR-linear. (This is just a special case of our
simple bivariant theories, where all morphisms are “proard only the “trivial fiber
squares” are “independent”.)

Consider a proalgebraic variety,, = @neN{X"’ Tnm : Xm — Xn} such that for
eachn the structure morphism,, ,,+1 : X, 4+1 — X, satisfies the condition

Tnntix(Ix, ) =en - 1x, € F(X,) forsomee, € R, witheg := 1.
Then we get the canonical proalgebr#iecharacteristic homomorphisms
Y, P (X ) = F(X1)e and x4 FM(X) - Re
described by

Tl and g (o)) = 02

Xifnfixl (lom]) = '
€o-€1-€2° "Cp—1 €o-€1 €2 Cp—1

Here R (or F(X1)g) is the ring of fractions ofR with respect to the multiplicatively
closed set consisting of all the finite products of powershefé¢lements; (or their pull-
backs toX).

Consider a bifunctor as in example 10.3, with: X — Y being a morphism such
f«(lx) = ey - 1y for somee; € R. Then one gets that for any € F(Y'):

foffa= f(lx - ffa) =ef - a,
so that for any morphism: Y — 7 (e.g.,g = wy : Y — pt):
(go «(fra) = gu(fuf*a)
= g« (ef -Q)
=es - g«(a).
Hence, if we set in the context of the example
{1 n=m
Pnm =

€n " Enitl - Em—1 n <m,

thenP := {p..} is a projective system anfz-nd(X ) = Find(X ) for both notions
of Euler characteristics working over the base spAgeor overpt. Thus the above de-
scription of y'24, andy’2¢ follows from Theorem 10.1.

A “motivic” version of the Euler—Poincaré characteristic 7' (X) — Z is the homo-
morphisml'y : F(X) — Ky(V/X) “tautologically” defined by
FX(Z aw]lw) = Zaw[W — X] y
w w
or better is the composit := 7x. o'y : F(X) — Ky(V). Note thatl'x commutes

with the pullbackf* (but not with the pushforwargl.). Then we get the following theorem,
which is a generalization of the (naive) motivic measure:

Theorem 10.4. (i) For a proalgebraic varietyX,, = @AGA{XA’“# Xy — XA}

and a projective syster&@ = {w#} of Grothendieck classes, we get thealgebraic
Grothendieck class homomorphism

Find . Fét.ind(Xoo) N H_H}{X’Y)\# . KO(V) — KO(V)}
AEA

(i) AssumeA = N. For a proalgebraic varietyX,, = @%N{Xn,wnm X, —

Xn} and a projective syste = {v, .} of Grothendieck classes, we have the following
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canonical proalgebraic Grothendieck class homomorphism

[ind . Fét'ind(Xoo) — Ko(V)a
which is defined by

[ind ([an]) : I(an)

B o1 Y12 Y23 - "Y(n—l)n.
Here we setys; := 1 and Ky(V)¢ is the ring of fractions ofK; (V) with respect to the
multiplicatively closed set consisting of finite produdtpowers of elements 6f.
(i) Let X, = @neN{X"’ Tm : Xm — Xn} be a proalgebraic variety such that each
structure morphisnt,, 11 : X,,4+1 — X, satisfies the condition:

Tnmt1«([idx, . ]) = 1 - [idx,] € Ko(V/X,,) forsomey, € Ko(V);

for exampler,, ,+1 @ Xn41 — X, is a Zariski locally trivial fiber bundle with fiber
variety beingF,, (in which case one can takg, := [F,] € Ky(V)). Then the canonical
proalgebraic Grothendieck class homomorphisms

LRy F(Xoo) = Ko(V/X1)g and I F(Xo) — Ko(V)a
are described by

T (fa)) = 00y pea g, - TO0)

Here v := 1 and Ko(V)q (or Ko(V/X1)c) is the ring of fractions ofKy (V) with
respect to the multiplicatively closed set consisting atdiproducts of powers of,,
(m=1,2,3---) (or their pullbacks taXy).

(iv) In particular, if -, =  for all n, then the canonical proalgebraic Grothendieck class
homomorphisms

rgd: Frd(X) — Ko(V/X1)e and T4 (X ) — Ko(V)g

are described by
7Tl,n*(FXn (O[n)) F(aﬂ)
,yn—l ,yn—l :
In this special case the quotient ring, (V) (or Ko(V/X1)e) shall be simply denoted
bng(V)»y (Or KO(V/Xl)»Y).

IR ([en]) = and '™ ([an]) =

Example 10.5. The arc spac& (X) of an algebraic variet is defined to be the projec-
tive limit of the projective system consisting of the trutezharc varietieZ,, (X) of jets
of ordern together with the canonical projectiong ,+1 : £n+1(X) — £,(X). Note
that £o(X) = X so that this time we usé = N,. Thus the arc space is a nontrivial
example of a proalgebraic variety. ¥ is nonsingularand of complex dimensiod, then
the projectionr,, 11 : Ln+1(X) — L,(X) is a Zariski locally trivial fiber bundle with
fiber beingC?. Thus in this case, in (iv) of Theorem 10.4 the Grothendidaksy is L,
with L := [C].

An element of"" (X ) = lim _ F(X)) is called arindconstructible functiorand
up to now we have not discussed the role of functions, evenghi is called “function”.
In fact, the indconstructible function can be considered matural way as a function on
the proalgebraic variety simply as follows: for,] € F"(X) = lim, _ F(X)) the
value of[a;] at a point(z,,) € X = @AGA X, is defined by

el (@) = ()
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which is well-defined. So, if we lefF'un(X., Z) be the abelian group &-valued func-
tions onX ., then the homomorphism
U lim F(X)) — Fun(Xe, Z) defined by ¥ ([an]) ((z4)) := ax(@a)
AeA

shall be called the “functionization” homomorphism.

One can describe this in a fancier way as follows. kgt: X, — X, denote the
canonical projection. Consider the following commutatiliegram (which follows from
Ta = Tap © Tu(A < p)):

F(XX)

X\
LSV Fun(X,Z)
F(X,)

Then the “functionization” homomorphis# : lim, F(Xy) = Fun(X«,Z) is the
unigue homomorphism such that the following diagram conastut

/\

Find(x, Fun(Xo, Z).

To avoid some possible confusion, the mdg(e{m]) = mia) shall be denoted byv)] oo
For a constructible séV, € X, by definition we have

M, Joo = 11 -

7, 1(W,) is called aproconstructible or a cylinder semimicking [Cr]. The charac-
teristic function supported on a proconstructible set ikedaa procharacteristic function
and a finite linear combination of procharacteristic fuont is called groconstructible
function Let FP™(X.,) denote the abelian group of all proconstructible functionghe

proalgebraic variety ., = @Ae[\ X, o Xy — XA}. Thus we have the following

Proposition 10.6. For a proalgebraic varietyX ., = hm)\eA{X)" Tapt Xy — XA}

FP™(X ) = Image (¥ : F"(X) — Fun(Xw,Z)) U7r

If the structure morphisms,,, : X, — X (A < p) are all surjectlve, then we have
Frd(X o) 2 FPO(X o).

In the case of the arc spad® X) of a nonsingular varietyX, since each structure
morphismm, 11 : Ln+1(X) — L£,(X) is always surjective, we get the following

Corollary 10.7. AssumeX is anonsingulavariety of dimensiod. Then we have for the
arc spacel(X) the canonical isomorphism

Fird(L(X)) =2 FPe(L(X)),
together with the following canonical Grothendieck classiomorphisms
e FPo(L(X)) — Ko(V/X) ey and T : FPO(L(X)) — Ko(V)
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described by

7oLz, (x) (o))
[L]nd

In particular, we get that3¢ (1 2(x)) = [idx] andI'™ (1-(x)) = [X].

IR ([om)o) = and T4 ([a,] ) =

SoTzd andTi»d define finitely additive measurgsy andy on the algebra of cylinder
sets in the arc spad® X) of anonsingulawariety X, which are callechaive motivic mea-
sures So we can rewrit€'y («) andI'™(a) for a € FP™(L£(X)) as motivic integrals

rpd(q) = / adux and I'"d(q) z/ adu.
L(X) L£(X)

Therefore we see that our proalgebraic Grothendieck classomorphisms of Theorem
10.4 are a generalization of these naive motivic meastitese for “naive” we point out
that for the applications of a good motivic integration the@@.g., as described in the next
section) one needs to consider a suitaoimpletiorof Ko (V/X) 4 or Ko(V)r«] SO that
more general sets than just cylinder sets become “meagtirabliso the use of the “rela-
tive measureT'2d over the base spacg due to Looijenga [Lo] is more recent, and will
become important in the next section.

When we extendlacPherson’s Chern class transformatifilacl] to a category of
proalgebraic varieties, we appeal to tAvariant Theory To fit it in with the notion of
bifunctorsused before, we assume for simplicity tladitmorphisms in the underlying cat-
egory are “proper”, e.g. in the topological context we workyowith compactspaces.
More generally, applyingpivariant characteristic classes, namely Grothendieek$for-
mations(as in Theorem 9.16), given in the previous section, we caa general theory of
characteristic classes of proalgebraic varietigs follows:

For a morphismf : X — Y and a bivariant class € B(X ER Y'), the pair(f;b) is
called abivariant-class-equipped morphisand we just expressf; b) : X — Y. LetB be
a bivariant theory having units. If a syste{m#} of bivariant classes satisfies that

b)\)\ZIXA and b#VOb)\#Zb)\u ()\<,u<z/),

then we call the system projective system of bivariant classés{r, : X, — X, } and
{bx.} are projective systems, then the systgfm,; by,) : X, — X} shall be callech
projective system of bivariant-class-equipped morphisms

For a bivariant theroyB having units on the categoiy and for a projective system
{(mruiban) + X, — Xo} of bivariant-class-equipped morphisms, the inductivétlim

n%n{lﬂuxm, bue  Bo(X2) = B.(X,) }
shall be denoted by
Bl (Xoo; {bxu})
emphasizing the projective systdf , } of bivariant classes, because the above inductive
limit surely depends on the choice of it. So we make the cawtriunctorB.. into a bi-

functor using the functorial “Gysin homomorphisnig,e : B.. (X)) — B.(X,) induced
by the projective syster{wbw}. For example, in the above Example 10.2 we have that

Find (Xoo) _ Fi*nd (Xooa {]17Uu }) .

Definition 10.8. Let {f\ : X\ — Y)}.ca be a pro-morphism of pro-algebraic varieties
{Xmm“ X, — XA} and {Y)\,pA“ 2 Y, — YA}. If the following commutative
diagram for\ <
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X H L Y#

”l er

X)\ EEEE— Y)\
Ix

is a fiber square, then we call the pro-morphi§ffi, : X\ — Yy}.ca afiber-square
pro-morphismabusing words.

With these definitions we have the following theorem:

Theorem 10.9. (i) Let~ : B — B’ be a Grothendieck transformation between two bivari-
ant theoriesB, B’ : C — A and let{(m,;bx,) : X, — X\ } be a projective system of
bivariant-class-equipped morphisms. Then we get thevidtlg pro-version of the natural
transformationy, : B, — B.:

A B (Xoci {ba}) = BL™ (Koo {3(bas)}).

(i) Let {f\ : Y, — X} be a fiber-square pro-morphism between two projective syste
{(papidrn) + Y. — Ya} and {(mau;bry) @ X, — X} of bivariant-class-equipped
morphisms such that,, = f;b,,. Then we have the following commutative diagram:

nd

B (Vaos {d}) —— B (Ve {3(d2)))

| s

B (Xoo; {bau}) T B/ (Xoo; {y(ban)})-

*

(iii) Let B.(pt) = B! (pt) be a commutative rin@ with a unit and we assume that the
homomorphismy : B.(pt) — B, (pt) is the identity. LetP = {p,,} be a projective
system of elements,,, € R. Then we get the commutative diagram

Bit,'li)nd (Xoo§ {bAu})

ind

ind h_r)n)\eA{xp)\# ’R—>R}

B/stind (Xoo; {v(bm)})

If we apply this theorem to Brasselet’s bivariant Chern €IgBr1] or to the one of
[BSY1], we get a proalgebraic versiaff'! of MacPherson’s Chern class transformation
cs : F'— H,. But of course we also can apply it to the bivariant versiohsu motivic
characteristic class transformationg’, and7,.

As a very simple example, consider a proalgebraic variéty = @AGA{XA, Tap °

X, — XA}, whose structure maps,,, are smooth (and therefore “Euler morphisms”)
and proper. Then we can apply the proalgebraic MacPher§irésn class transformation
cind to

Find(x ) = Find (XOO; {1, }) .
Note that in this case(llr,,,) = ¢*(Tx,,) ® [7x,] by theVerdier Riemann-Roch theorem
for a smooth morphisyrso thatH, ™! (XOO; {y(llw)}) is just the inductive limit of the
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following system of “twisted” smooth pullbacks in homolagy
Ty = (Try, ) Ny, Ho(X\Z) — Ho(X5Z)

Suitable modifications of such “inductive limits of twiststhooth pullback morphisms”
are closely related to the constructionesfuivariant characteristic classé€e.g., see [Oh,
§3.3, p.12-13)).

11. STRINGY AND ARC CHARACTERISTIC CLASSES OF SINGULAR SPACES

In this last section we explain another and more recent sidarof characteristic classes
to singular spaces. These a@ functorial theories as before, but have a better “birationa
invariance”, in particular foK-equivalentmanifolds, i.e.M; (i = 1, 2) are irreducible (or
pure dimensional) complex algebraic manifolds dominatea bhird such manifold\/,
with m; : M — M, proper birational{ = 1, 2) such that the pullbacks of their canoni-
cal bundles (or divisorsy; Ky, ~ w3 Ky, are isomorphic (or linearly equivalent). For
exampleM; and M, are bothCalabi-Yau manifold& the sense that their canonical bun-
dle is trivial. In fact the origin of these classes and ineats goes back to two different
generalizations of Hirzebruchjg,-genus (which was related to our motivic characteristic
classesnC, andT,,).

The first one is thé&-polynomial or Hodge characteristi&(X)(u,v) € Z[u,v] de-
fined in terms of Deligne’snixed Hodge structurfDel, De2] for the cohomology with
compact support (X, Q) of a complex algebraic variety (e.g., see [Sri]). We have tha
E(X)(1,1) = x(X) for any varietyX and E(X)(—y, 1) = x,(X) for X smooth and
compact. In the 90'¥. Batyrev[Bat1] extended this E-polynomial tostringy E-function
E4 and stringy Euler numberg*!” of “log-terminal pairs”(X, D) relating them in some
cases known as the “McKay correspondence” to orbifold iaveds of suitable quotient
varieties. He also used in [Bat2] methods from p-adic iradgn theory to prove that
different “crepant resolutions” of a given singular spaaed alsadbirationally equivalent
Calabi—Yau manifoldshave equal Betti numbers. Later bh KontsevicHKon] invented
“motivic integration” (with some analogy to p-adic intetjom) for extending these results
from Betti numbers to Hodge numbers.

The other generalization of thg,-genus is the (complexlliptic genusell;, studied by
I. Krichever [Krich] and G. Hohn [H6hn]. As observed By Totaro[To] (also see [BF]),
this is the most general genus on the complex cobordismQihge Q, which can be in-
variant under a suitable notion of “flops”. Later on this wateaded byL. Borisov and A.
Libgober[BL1] and C.-L. Wang[Wang] for showing the invariance of this elliptic genus
elly, for K-equivalent complex algebraic manifolds, a notion comiagf“minimal model
theory”. Both works use the very deep “weak factorizatioaditem” ([AKMW)] and [W])
for the comparison of different resolution spaces. Theg aisroduced in this way thel-
liptic homology clas€l, (X) of aQ-Gorenstein log-terminaingular complex algebraic
variety X [BL2, Wang]. HereQQ-Gorensteirfor a normal irreducible (or pure dimensional)
variety X just means that some multipte Kx (r € N) of the canonical Weil divisoK x
is already a Cartier divisor, with = 1 corresponding to &orenstein varietye.g. X is
smooth). HereKx is just the closure of a canonical divisor on the regular .phrtfact,
Borisov-Libgober proved in [BL2] a very general version leét'McKay correspondence”
for this elliptic homology class.

More recently simplestringy Chern classes’®”(X) were introduced byluffi [Alu4],
based on the “weak factorization theorem”, and indepetyldyt de Fernex, Lupercio,
Nevins and UribdFLNU], based on “motivic integration” and MacPherson’s\étorial
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Chern class transformatien. In fact Aluffi pointed out that there are two possible noton
of such classes, depending on two different choices of aesystf “relative canonical
divisors” K. for suitable resolution of singularities: M — X (i.e. 7 is proper and\/
smooth), which he calls the2-flavor” and “w-flavor”.

The “w-flavor” is related to “stringy invariants and stringy cheteristic classes” (like
Egir, Ell. andc'™). Here one assumeX is irreducible andQ-Gorenstein so that the
relative canonical divisoK, := K — n*Kx is at least &Q- Cartier divisor (class).
Moreover it is supported on the exceptional lodu®f the resolution, which is supposed
to be (contained in) a normal crossing divisor with smootkeducible component&;.
ThenK, ~ %", a; - E; for some fixeda; € Q (depending on the resolution). And for
the definition of all these “stringy invariants” one needs tonditiona; > —1 for all 3,
which exactly means tha has onlylog-terminal singularitieslf this condition holds for
one such resolution, then it is true for any resolutions f tfpe. A resolutiorr is called
crepant if K, ~ 7*Kx, e.9., alla; = 0 for E a hormal crossing divisor as before.

The “Q-flavor” is related to what we call “arc invariants and arc i@zeristic classes”,
because these generalize corresponding “arc invariaft®eoef and Loesef{DL1, 56]
and [DL2,84.4.1]), which they introduced already before by their work“motivic inte-
gration”. In this caseX is only assumed to be purkdimensional and< is defined for
all resolutionsr such that the canonical magg Q4 — Q4, of Kahler differentials has an
imageZ ® Q4¢, with 7 a principal ideal in0,, (this can always be achieved by Hironaka
[Hi]). Then K is defined byZ = Oy (— K, ). The effective Cartier divisoK ; is again
supported on the exceptional locsof the resolution, which can also be supposed to be
(contained in) a normal crossing divisor with smooth irreithle componentds;. Then
one can introduce the, € Ny as before.

For X already smooth, both notions of a relative canonical divisg agree with the
divisor of the Jacobian of defined by the sectior of K;; ® 7* K% corresponding to
the canonical map*Q4 — Q4,. Note that in both cases the corresponding resolutions
m: M — X as above form a directed set, i.e. two of them can be domimatedhird one
of this type (and taking suitable limits over this directed sorresponds to the view point
of Aluffi [Alud]). If ' : M’ — M is a proper birational map with andr o 7’ as above,
then the relative canonical divisors have (in both cases)dhowing crucial transitivity

property:
(11.1) Krow ~ Ky + 7" K .
Then all these new invarianf§X) for a singular spac& as above are described as
I(X) :=m (I(M) - J( Ei, ai})) € B«(X)

for such a special resolutian: M — X, with £ a normal crossing divisor with smooth
irreducible component®’;, whereI (M) € B.(M) is the corresponding invariant of the
smooth spacé/, together with some “correction terny’({ E;, a;}) € B*(M) depending
on the exceptional divisdr and the multiplicities,; defined by the relative canonical divi-
sor K. HereB, andB* are suitable covariant and contravariant theories takatges in
the category of Abelian groups and commutative rings witi, welated by the projection
formula as in Example 10.3. Typical examples are

(1) B.(X) = B*(X) = A is a commutative ring with unit (with all pullbacks and
pushforwards being the identity transformati@i)), so that/(M) € A corre-
sponds to a suitable generalized “Euler characteristie typariant”.

(2) B. andB* correspond to suitable homology and cohomology theories li
(B.(X),B*(X)) = (HPM(X) @ A, H*(X) ® A) or (B.(X), B*(X)) =
(Go(X) ® A,K°(X) ® A), so thatI (M) € B.(M) is a suitable characteristic
class ofM.
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(3) B(X) := B.(X) = B*(X) is a bifunctor as in Example 10.3, e.g. like con-
structible function#3(X) = F(X) ® A or relative Grothendieck rings of varieties
Ko(V/X) ® A coming up from “motivic integrals”.

If I(X) € B.(X) is such an invariant not depending on the choice of the résolu, then
the same is true foy..(I(X)) € B'(X) for any natural transformation of covariant theories
v : B« — B.,. For examplel (X) € H,.(X) ® A is a characteristic homology class with
X compact, andeg := v, : H.(X)® A — H.({pt}) ® A = A'is justits degree (or push
down to a point). Or we apply suitable “completions” of ourtiwi@ characteristic class
transformationsnC,. andT,. to invariantsl/ (X)) coming from motivic integration!

There are two ways to show that the final redylX’) does not depend on the choice of
the resolution. One is to use “motivic integration with itartsformation rule” related to
the “Jacobian factorJ ({E;, a;}):

(11.2) / L™ day =7, / L=t Ka) g

L(M) L(M")
for 7' : M’ — M a proper birational map of manifolds add := [C] € Ky(V). This
suggests to think of (X) as the pushforward of an “integral with respect to the ireatri
I(M)™

I(X) =m. /M L&~ dr(m).

The other one is to use the “weak factorization theorem”, livicly case only the invariance
under suitable “blowing ups” has to be checked.

MoreoverJ({E;,a;}) = 1 in case alla; = 0, so thatl(X) = m.(I(M)) in the case
of a crepant resolution In particularr,(I(M)) doesnot depend on the choice of this
crepant resolution. Suppose two possibilygularspacesX; (i = 1, 2) are K-equivalent
in the sense that they are dominated by a manifdldwith =, : M — X, a resolution
of singularities such that the relative canonical divisars are defined{ = 1,2) and
equal. After taking another resolution 8f, we can even assume that the exceptional
locus of both maps is contained in a normal crossing divisawith smooth irreducible
componentss; (here we use the transitivity property of the relative cdnahdivisors).
But then the correction factof({ E;, a;}) for both maps is the same, so that

I(X1) =m(I(M) - J({Es a:})) and I(Xz) = mou(I(M) - J({Es, ai}))
i.e. both invariantd (X, ) andI(X3) are “dominated” by the same element coming from
M. In particular
I(X1) = I(X2)
in the case of “Euler characteristic type invariants”, and
deg(I(X,)) = deg(I(X2))

in the case of “characteristic homology classes” for comppacesX;. If we are working
in the “w-flavor” of stringy homology classes(X;) ¢ HZM(X;) ® A for Q-Gorenstein

varietiesX;, we can use the first Chern clas§Kx,) := w € H*(X;; Q) (for A
aQ-algebra) to modifyl (X;) into

I'(X;) = f(c' (Kx,)) - 1(X:) € HPM(X;) @ A
By the projection formulathese new invariant'(X;) and I’ (X,) are also “dominated”
by the same element coming frodd, where f € A[[z]] can be any power series. If
X, are both Gorenstein, we can do the same thing for correspgndvariants/ (X;) €
Go(X) ® A by using polynomials in the (inverse) clasiﬁil] € K°(X;) of the canon-
ical Cartier divisors (instead of their first Chern classes)
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Note that the approach by resolution of singularities i$edént from our approach to
functorial “motivic characteristic classes” based on ‘@igity” (i.e. decomposing a sin-
gular space into smooth pieces), but nevertheless thelyfiic®gether as we now explain.

11.1. Elliptic classes. Let us start with the definition of tHeomplex) elliptic clas§ LL(E)
of a complex vector bundl® — X. Consider the formal power series
A(E) =) t"A"E and S,(E):=)» t"S"E,
n>0 n>0
with A™E and S™ E the corresponding exterior and symmetric powelrofso A" E = 0
for n > rank FE, with A, the totalA class, which was also used in our definition of the
motivic Chern class transformationC, in Corollary 8.4). Then one has
MES®F)=ME)N(F),Si(E®F) =S (E)S:(F), andA(E)S_(E) = 1.

So these operations extend to the Grothendieck group of lexmyector bundles (and
similarly in the algebraic context):

Av S (K(X),®) — (1+K(X)[[H], ®) ¢ (KX)[[t], ).

Then we define theomplex elliptic class
ELL(E) = ELL(y, q)(E) € K(X)[[q]][y*"]
of a complex vector bundlE' — X as€LL(y, q)(E) := Ay(E*) @ W(E), with
(11.3) W(E) = Q) (qun (E*) @ Ay-ign(E) @ Syn (B*) @ Sy (E)) :
n>1

More generally thelliptic class of ordelk

ELLy(E) = ELLi(y.)(E) € K(X)[[g|[y*"] withk € Z
of a complex vector bundl® — X is defined as the twisted class
(11.4) ELLK(E) :=det(E)* " ® ELL(E) ,

with det(E) := Ak £(E) being the determinant line bundle & So&LL(E) (or
ELL(E)) is a one (or two) parameter deformation of the total LambldascA, (E*),
with
ELLy(E) =ELL(E) and ELL(E)|,=0 = Ay (E*).
For M a complex projective algebraic manifold (or a compact alntosnplex mani-
fold) one can introduce as ib they-characteristic

X(M,ELLy(E)) € Q[[k, ¢]]ly™"]
of ELL,(FE) as

X(M, ELLL(E)) := /N " (ELL(E)) -t (TM) 0 [M]

= / e R (E) L ch*(ELL(E)) - td*(TM) N [M] .
M

Note that in the last term one can introducas a formal parameteth*(£LLy(E)) and
ch*(ELL(E))) aremultiplicative(but not normalized) characteristic classes so that we get
the induced Krichever—Hohalliptic genus

el - ) @ Q — Q[lk, qllly™"],
with
elly(M) := x(M, ELL,(TM))

X
(11.5) / e ke' (TM) ey (ELL(TM)) - td* (TM) N [M] .
M
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The correspondingomplex elliptic genusll := elly : QY @ Q — Q[[q]][y*?] given by
ello(M)

= / ch* W(TM)) - ch* (A, T* M) - td*(T'M) N [M]
M
= xy(M,W(TM)) (byg-HRR)
= x (M, Q) (Aygn (TM*) © A1 (TM) @ Sgn (TM*) © Sy (TM)))

n>1
was formally interpreted by E. Witten as tsé-equivarianty,-genusy, (S*, LM) of the
free loop spac&CM = {f : S' — M| f smooth} of M (see [HBJ, Appendix I1I] and
[BF)).
Xty (M) 2= ell.(M)]q=0 € Q[y][[K]]
is called thewistedy,-genusof A :

(11.6) Xky(M) = / e ke (TM) _cp* (A, (T* M) - td*(TM) N [M] .
M

Another specialization is theal elliptic genuseli|,—1, which factorizes over the oriented
cobordism ring

ellly=1 : 7% ® Q — Q[[q]] -
This one parameter genus interpolates between the sigrgeaus (for; — 0) and theA-
genus (foi; — 00), and was formally interpreted by Witten as thie-equivariant signature
o(St, LM) of the free loop spacé M of the oriented manifold/ (compare [HBJ§6]
and [BF]).

Remark 11.7. We point out that there are many different normalizationshef elliptic
genus and classes in the literature. First of all many ast{iike [BL1, BL2, To, Wang])
use —y instead ofy so that their elliptic genus is related to te ,-genus. But what
is maybe more important, we do not work with “normalized cltderistic classes”, i.e.
the power serieg'(z) € Q[[k, ¢]][y="][[z]] in the variablez = ¢! corresponding to the
multiplicative characteristic clas*(€LL,( )) has a constant coefficient:= f(0) #

1, sincech*(ELL(E))|4=0 = ch*(A,(E*)) impliesa = 1 +y € Q[y*'|(k = 0,¢ = 0).
So twisting f(z) to a normalized power serieﬁj—) (as used in [BF, To, Wang]) would
change the elliptic genus onlyfél# for M an (almost) complex manifold of complex
dimensionn, and similarly a characteristic homology clags( ) € HZM( )® A
would just be multiplied by, —%. For example, in Theorem 8.5 we could have started with

the natural transformation (with respect to proper maps):
Ty i=td, omC, : Ko(V/ ) — HEM( )@ Qly,
satisfying the normalization that fdr/ nonsingular

Ty (M S M]) = ch*(A,T* M) - td* (T M) 0 [M].

And “twisting” by 1 + y would then give our motivic characteristic class transfation
Ty« with

118)  Tya( )=0+y) " Ty )eHIM( )@Qly, (1+y) .

But since we work in this section only with pure dimensiorzaes, this “twisting” does
not matter for the question of getting invariants of pure @sional singular complex
algebraic varieties. Similarly it will be enough to congidaly the complex elliptic genus
and classes correspondingite= 0 (as in [BL1, BL2]), since the case of genekalollows
from the projection formula (as already explained befog8g) the elliptic classe§li*(z, 7)
used in [BL1, BL2] correspond in our notation to

_ dim(M)

EW (z,7)(TM) =y~ 2 - td"(TM)-ch*(ELL(TM))(—vy,q) ,
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with y = 2™ andq = €277,

With these notations, we can now explain the definition ofi@mrand Libgober ([BL2,
Definition 3.2] withG := {id}) for theirelliptic class&il. ((X, D)) of a “Kawamata log-
terminal pair(X, D), i.e. X is a normal irreducible complex algebraic variety, with
a Q-Weil divisor on X such thatK x + D is aQ-Cartier divisor satisfying the following
condition: There is a resolution of singularities M — X with the exceptional locug’
and the support ok, (D) := K — 7*(Kx + D) contained in a normal crossing divisor
with smooth irreducible components (i € I) such thatk; (D) ~ 3. a; - E;, with all
a; € Q satisfying the inequality; > —1. Note that the last condition is then independent
of the choice of such a resolution (compare [KM, DefinitioB4.Corollary 2.31]), with
the caseD = 0 corresponding to the caseX"is Q-Gorenstein with only log-terminal
singularities”. Moreover, the “relative canonical divisi (D) of D" also satisfies the
transitivity property

(11.9) Kron' (D) ~ Ky (D) + 7* K (D)

for ' : M’ — M a proper birational map with andr o 7’ as before. Then the Borisov—
Libgober elliptic class is:

(11.10) &il,((X, D)) (2, 7) := ms <(5u*(z, (ITM)N M) (B, ai)(z, ﬂ) ,

with

(2 — (a; + 1)z, 7)0(—2,7)

271

(2 — 2z,7)0(—(a; + 1)z, 7)

2me

J(E;,a:)(z,7) := € H*(M;Q)[y, l] -

Hered(z, ) is the Jacobi theta function in= 2™ andq = €*™", withe¢; = ¢! (E;) €
H?(M, 7Z) the first Chern class of the smooth divisgy.

The proof of the independence of the resolutiamses the “weak factorization theorem”
for reducing it to the comparison with a suitable blowing lgng a smooth center. Using
some modularity properties of titefunction, this is finally reduced to the vanishing of a
suitable residue (of an elliptic function with exactly onelgg compare [BL2, p.11] and
[Wang,§4]). If X is compact, then

(11.11) ell((X, D)) := deg(ElL.((X, D))

is just thesingular elliptic genu®f the Kawamata log-terminal paiX, D) as defined in
[BL1, Definition 3.1] (up to a normalization factor).

Later on we only need the following limit formula (with= ¢27*):

: (y — DA —yrtle )
Tl_lgloo J(Eza a‘l)(27 7-) = (y‘““ — 1)(1 — ye_ei)
(y—y» (A —e )
(ot —1)(1 —ye~e:)
Note that the multiplicative characteristic class

T3 (E) = ch*(ELL(E))|q=0 - td*(E) = ch* (A, (E")) - td*(E)

(11.12)

exactly corresponds to the non-normalized power sefies = 25F4<_) in the variable
z = c* (see§6). If we denote for/ C I the closed embedding : E; :=(,., E; — M
of the submanifold?; (with Ey := M), then one has by the “adjunction formula”

iy =1 en,

icJ
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with TE; =i%5(TM — 3, , O(E;)) (compare [HBJ, p.36]):
i (T} (TES) N [Es]) = (TyM)n M) n [ W
icJ

So altogether we get the following “limit formula” (with = ¢27%):
lim y®m)/2 . g1l (X, D))

T—100

~ (e
— . (7=, (TM) )n ;
(T, ( g a1+1 (1 — ye—el)))
(11.13) - y— y‘““
=1 (D ige(Toye(E)) - i)
JcI ies ¥
a;+1
L y—y
= Z W*ZJ*(T—y*(EJ)) ' aiT_l ’
JcI ies

Recall that we use the notatioh (E ;) = cl* (T E;)N[E ] for the characteristic homology
class of a manifold (corresponding to a characteristicsetéisof vector bundles).

11.2. Motivic integration. Motivic integration was invented by Kontsevich [Kon] for
showing that birational equivalent Calabi—Yau manifoldsénequal Hodge numbers. In
all details with many different applications it was deveddpby Denef and Loeser (e.g.
[DL1, DL2, DL3]), with some improvements by Looijenga [Lajho in particular intro-
duced the calculus of relative Grothendieck ringg()/X) of algebraic varieties. For
a nice introduction to “stringy invariants of singular spat we recommend [Vel, Ve2].
Even though motivic integration can be directly studied imgslar spaces, we restrict our-
selves to the simpler case of smooth spaces, which will begndéor our applications.
Also in this way it can easily be compared to results comingifthe use of the “weak fac-
torization theorem”. For a quick introduction to “motivintegration on smooth spaces”
compare with [Cr] (where by Corollary 10.7 all arguments@f][extend to the framework
of “relative motivic measures”).

Let M be a pured-dimensional complex algebraic manifold aft = Zle a; F;
be an effective normal crossing divisor (e.g; € Np) on M, with smooth irreducible
components;. Then one can introduce on the arc spa¢é/) = {~.,|u € M} the order
function alongE:

ord(E Z a; -ord(E;) : L(M) — Nog U oo,

with ord(FE;)(v.) := ordg f; o %( ) the zero order off; o v,(t) € C[[t]] at the origin, if
fi is alocal defining equation df; near the point. € M. In particular

ord(D;)(vw) =0 u ¢ D; and ord(D;)(y.) =00 < v, CD; .

Then{ord(E) = n} C L(M) isfor alln € Ny a proconstructible or cylinder seéh the
sense 0f10. Then one would like to introduce the following motivitégral:

(11.14) / L dpn o= Y pne({ord(E) = p}) - L7
() peNo

with values in the localized ring(o (/M )r4; as in Corollary 10.7. Recall that we nor-
malized the (naive) motivic measugg, in such a way that fo/ = 0 we get :

/ Ldpn = [M] € Ko(V/M) L .
L(M)

But the problems with the definition (11.14) are that this & a finite series and that
{ord(E) = oo} is not a cylinder set inL(M). Both problems are solved by taking a
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suitable completion of<,(V/M )« More precisely forX a complex algebraic variety

Ietﬁ(V/X) be the completion ok, (V/ X ) [L~!] with respect to the following dimension
filtration (for & — —o0):

Fy(Ko(V/X)[L™Y))is generated biX’ — X]L~"with dim(X') —n < k.

Remark 11.15.Here we consideK()V/X) as an algebra ovdty (V) := Ko(V/{pt}) by
the pullbacke’, forax : X — {pt} = Spec(C) the constant structure map.9fC Ky (V)

is a multiplicatively closed subset, then we can localize¢bmmutative ring<, (V/X)
with respect to the induced multiplicatively closed subsg(S) C Ky(V/X), or we
can localizeK,(V/X) as anKy(V)-module with respect t§. Both localizations can be
identified, sincer’; is injective (compose with any mafpt} — X), and are denoted by
Ko(V/X)s. IncaseS = {L"|n € Ng}, withL := [C] € K,(V), we also use the notation
Ko(V/X)[L~1] above.

Also note that the filtration and completion as above are @iibfe with push dowry.
and exterior produdK so that in partlcuIaM(V/X) is aM(V) M(V/{pt})-module,
with an mduced\/I( )-linear push dowry. : (V/X) — M(V/Y) forf: X - Y an
algebraic morphism.

Let us come back to our motivic integral (11.14) on the mddife/. The composed
relative motivic measure
fiar 2 FP7O(L(M)) — M(V/M)

can now be extended from cylinder sets to a more general afédsseasurable subsets” of
the arc spac& (M) in such a way thaford(E) = oo} becomes measurable with measure

0, and the series (11.14) above ConvergeﬁhV/M). So now one can define

(11.16) / L= B dfiyy = 3" fin({ord(E) = p}) L™ € M(V/M) .
L(M) pENp
Moreover it can easily be computed with:= W € M(V)
—ord(E) j- o L-1
L= diy = > (B =M ] g
L(M) IC{1,...k} icl
k
=TT (b 1B = M)+ [\ E; — 1))
(11.17) 1’:1
=TT (s = 1)< (B = M) + [idar])
=1
L—1
= Br - M)- ][ (=~ 1)
Ic{1,...,k} el

Here we use the notation:

=) E: (WithEy:=M),and Ef:=E/\ |J) Ei,
i€l i€{l,...,k}\I

and the facto.La T = 13;(_‘1{;31) has to be developed as the corresponding geometric

series mM(V). Recall that multiplication iri/\/I\(V/M) is induced from taking the fiber
product overM, with [id,/] the corresponding unit element. Also note that the second
equality above follows from

[E; — M| - [M\E; — M]=[0 — M]=0.
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The other piece of information that we need is ttensformation rule
(11.18) / L5 djiyy =7, / Lord K i g
L(M) L(M")

for 7’ : M’ — M a proper birational map of pure dimensional complex algebraani-
folds such that’*E + K, is a normal crossing divisor with smooth irreducible compo-
nents.

Assume now that we have a proper birational mapM — X, with X pure dimen-
sional but possibly singular, together with a Cartier diwi® on M such thatD and the
exceptional locus of are contained in (the support of). Finally we assume

Ko(D):=Kr =D~ a; E,

with all a; € Z satisfying the inequality; > —1 (i.e. a; € Ny). Here we of course use the
relative canonical divisoK . in the “Q-flavor”. Then we define the followinmotivic arc
invariant

(X, D)) € M(V/X)
of the pair(X, D):

(11.19) £U¢((X, D)) := m, (/ L—ord(Kﬂ(D))dﬂNI) ’

L(M)
which more explicitly can be calculated as in (11.17). Thigriant is “independent” of
the choice ofr in the following sense. Let’ : M’ — M be a proper birational map of
pure dimensional complex algebraic manifolds such #ab and the exceptional locus
of ron’ : M’ — X is contained in a normal crossing divisor with smooth irrgitle
components. Then

Kron (W/*D) = Kron — D = W/*Kﬂ(D) + K
is also an effective Cartier divisor with
(X, D)) = £7((X, 7™ D))

by the transformation rule. So this is an invariant of the |pai, D), if we considerD as

a Cartier divisor (in the sense of Aluffi [Alu4]) on the dired set of all such resolutions
m: M — X. In particular€°7¢(X) := £97¢((X, 0)) is an invariant of the singular space
X. Infactin the language of [DL1, sec.6] and [DL2, sec.4.43 just the “motivic volume
of the arc spacé&(X)” of the singular space:

£9re(X) = / 1 djix .
L(X)
And this fits with our general description in the introductiaf this section, if we set
I(M) :=[idpy] € M(V/M), with J({E;, a;}) := / LB dfiyy .

L(M)

For the corresponding “stringy invariant” in thev*flavor”, first one has to extend
these motivic integrals tQ-Cartier divisors supported on a normal crossing divisahwi
smooth irreducible components;, i.e. we start with a strict normal crossing divisor
E = Y°F | a;E; on the smooth manifold/, with a; € Q such that- - E is a Cartier
divisor for somer € N, i.e. r - a; € Z for all i. Add a formal variabld.+ to ﬁ(V) (and
a}L% to ﬁ(V/X)), with (L*)" = L. Then one can introduce and evaluate the integral

(11.20) / L= B iy =" fing({ord(rE) = p}) - (L7)77,
L(M) pel
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with value inﬁ(V/M)[L%], if a; > —1 for all .. Moreover the corresponding formula
(11.17) withL**! := (L7)™(e+1)) and transformation rule (11.18) are also true in this
more general context (compare with [Vel, Appendix] for mdetails).

With these improvements, one can introduce for a “Kawanwgaérminal pai X, D)”
the correspondingotivic stringy invarian{(for a suitabler € N):

(X, D)) € M(V/X)[L¥].
Let D be aQ-Weil divisor on the normal and irreducible complex variety such that
Kx +D isaQ-Cartier divisor (withr- (K x + D) a Cartier divisor) satisfying the following
condition: There is a resolution of singularities M — X with the exceptional locug’
and the support oK, (D) := Ky — 7*(Kx + D) contained in a normal crossing divisor

with smooth irreducible components, (i € I) such that (D) ~ >, a; - E;, with all
a; € Q satisfying the inequality, > —1. Then we set

(11.21) E((X, D)) =, < / L‘ord(K"(D))dﬂM> :
L(M)

which can be more explicitly calculated as in (11.17). Onceenthis is an invariant of the
pair (X, D), not depending on the resolutiarby the transformation rule. In the language
of [DL1, DL2, DL3]itis for D = 0 just the “motivic Gorenstein volume of the arc space
L(X)" of the singular spacé,, i.e. the following “motivic integral” on the singular spac
X:

55”’((}()) :/ L—ord(KX) dﬂx )
L(X)

Note that by our convention$*!"((X, D)) = £°((X, D)) in caseD a Cartier divisor
(with strict normal crossing) on a smooth manifold= M.

11.3. Stringy/arc E-function and Euler characteristic. By application of suitable trans-
formations, one can build from the motivic invariari&'” (X, D)) and £9¢((X, D))
other invariants. For example by pushing down by a constapt m

const, : ﬁ(V/X)[L%] — ﬁ(V)[L%] ,
one can transform these “relative invariants ox€rto “absolute invariants” (with- = 1
in the case of “arc invariants”). And then one can apply foaraple the “E-function
characteristic” . ) )

E:MW)[L7] = Zu, o][[(uv) "] [(uv) "],
which is defined with the help of Deligne’s mixed Hodge thedilyen
Ewr((X, D)) :== E(£*"((X, D)))
becomes Batyrev'stringy E-functionof the Kawamata log terminal pa{X, D) (as in
[Bat1]). Similarly
Earc(X) = E(EGTC(X))

is the “Hodge-arc invariant” ofX in the sense of [DL1§6] and [DL2, §4.4.1] (up to

a normalization factofuv)®”(X) coming from a different normalization of the motivic
measure).

HereE : Ko(V) — Zu,v] is induced from

(11.22) X — E(X):= Z (=1 dime (gripgr,) JHUX", C)) uPv?

4,p,q=0
with F' the decreasing Hodge filtration afid the increasing weight filtration of Deligne’s
canonical and functoriahixed Hodge structuren H:(X*" Q) [Del, De2]. HereX*"
means the complex algebraic varietywith its classical (and not the Zariski) topology.
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This E-polynomial satisfies the defining “additivity” reilat of £y ()), because the corre-
sponding long exact cohomology sequence is strictly coilgatith the filtrationsF' and
W (i.e. the sequence remains exact after applicatiqn@_fgrﬁq).

In particular, E(1,1)(X) = x(X) is the topological Euler characteristic of. Fi-
nally classical Hodge theory implies, foX smooth and compacthe “purity result”
grit H (X, C) = 0for p + q # i, together with

hPe(X) ::Z (=) (=1)PT - dime (gr%grgqué(Xa", C))
i>0
=dimc (grh HPT1(X"",C)) = dimcHY(X"", APT* X ")
=dimcHI(X, A\PT*X) .

Remark 11.23. One can get the transformatidh: Ky (V) — Z[u, v] also as an applica-
tion of Theorem 8.3 (but in a less explicit way), since theanant

dx =E(X) = Y (=" dimc HI(X, APT* X )uPv*
P,q=0
for X compact and smooth satisfies the corresponding propeiitié$ &nd (iii-2).
In particular,y, (X) = E(—y, 1)(X) for X smooth and compact bg{HRR), so that
this E-function is another generalization of thg-genus. Butthe classéX | for X smooth

and compact generaf€, (V) so that we get the following Hodge theoretic description for
any X (with T}, our Hirzebruch class transformation of Theorem 8.5):

(11.24) T,.([X]) = > (=1)'dime (grip HA(X™,C)) (=y)” = E(—y, 1)(X) .
i,p>0
Moreover, forX # () of dimensiond, x,(X) := E(—y, 1)(X) is a polynomial of degree
d, with E(L) = E(C) = uv € Z[u, v] so that one gets an induced map
E : M(V)[L¥] = Z[u, o][[(w0) ]][(u0)*] -

By (11.17) we get the following explicit description &%, ((X, D)), withw: M — X a
resolution of singularities such that, (D) ~ . a, - E; is a strict normal crossing divisor
with a; > —1 for all i as before (and similarly faE,,,..((X))):

PalX0) = Y B[]
Ic{1,...,k} el
(11.25) o 1
= Z E(EI)'H((uv)ai+l_1 -1).
Ic{1,...,k} el

Putting(u, v) = (—y, 1) gives a similar formula for (or defines) the “stringy-characteris-
tic” x;'"((X, D)) (or the “arcy,-characteristic’x¢"“((X))), and also the limiu, v — 1
exists with

X"((X, D)) == lim By ((X;D))

w,v—1
1
= X(E7) -
(11.26) Ic{lz.,k} g a; +1
a;
S SRR | =
Ic{1,....k} er "

This x*t"((X, D)) is just Batyrev'sstringy Euler numbeof the log-terminal paif X, D)
(as defined in [Bat1]). Similarly®"¢(X) is just thearc Euler characteristiof X in the
sense of [DL1§6] and [DL2, §4.4.1]. Finally note that (11.25) and the “limit formula”
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(11.13) for the elliptic clas€l((X, D)) of the pair(X, D) imply for X compact (with
27wz Y-
y=em)):

@127 gm0 (X, D) = x5((X, D)) = Eaurl (X, D)3, 1)

-y

11.4. Stringy and arc characteristic classes.Recall our motivic characteristic class trans-
formationsmC., form Corollary 8.4,T,,, from Theorem 8.5 and’,.. from Remark 11.7.
HereT,( )= (1+y)~*-T,:( )foralli, sothatboth classes carry the same informa-
tion. These classes all satisfy. ([C]) = —y, so that they induce similar transformations
onKo(V/X)[L™1:
mC, : Ko(V/X)[L™'] — Go(X) @ Z[y,y '],
Tye, Ty s Ko(V/X)[L7'] — HPY(X) @ Qly,y ']

And these extend by [BSY3, Corollary 2.1.1, Corollary 3]1dlthe completions

mC, s M(V/X)[L¥] — Go(X) ® Z[y) [y~ N[(~9)7].
T, Ty, - MV/X)IL7) — HPY(X) @ Qlullly ' TI(-»)7].

*9 Tk

(11.28)

So we can introduce fotl, = mC.,T,., T,. the correspondingtringy characteristic
homology classl$*"((X, D)) of the Kawamata log-terminal pai¥, D) by

(11.29) (X, D)) : = el (£37((X, D))) .

Moreover these transformationg® commute with proper push down and exterior prod-
ucts, in particular they are a ring homomorphismsXoe= {pt}. Therefore one gets from
the commutative diagram

X x{pt} —"— X —— {pt}

rit| [

Y x {pt} ——— Y — {pt},

with f : X — Y proper,a € J\/Z(V/X) andg e J\/Z(V), the following important equality:

) (fula- (ax)*B)) = c (fepx«(a ¥ 3))
=l (py«(f x idpt)s (@ ® 3))
= py« (2 (fula)) Kl (B))
= (fulcl2 (@) - (ay) el (B) -

By (11.17) we get the following explicit description @t!" ((X, D)), withw : M — X a
resolution of singularities such that, (D) ~ . a, - E; is a strict normal crossing divisor
with a; > —1 for all i as before:

clst((X, D)) = Z Cl*([E?*X])'H (—y)—1

(11.30)

. el
(11.31) Tttt (e N
_y — —y z
- Y aE-x)-I] NECEES
Ic{1,...,k} el Y

But E; is a closed smooth submanifold 8f so thatcl.([E; — X]) is just the proper
pushforward taX of the corresponding characteristic (homology) class

c«(Er) = c*(TEr) N [Ey] for cl, =mCy, Tyu, Ty -
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Thestringy Hirzebruch classeg;!" (X, D)) andTyifT((X, D)) interpolate by (11.13)
and (11.31) in the following sense between #ikptic class&il.((X, D)) of Borisov-
Libgober defined in (11.10):

(11.32)  lim y X2 EN((X, D)) (z,7) = T (X, D)) fory = e*™*

and for compacf thestringy E-functionFE,;,((X, D)) of Batyrev as in (11.25):
Xy (X, D)) : = deg (T, (X, D)))

—yx

= deg(T?]. (X, D))) = Estr((X, D))(y: 1) -

o

So these stringy Hirzebruch classes are “in between” thgtieliclass and the stringy
E-function, and as suitable limits they are “weaker” thansthenore general invariants.
But they have the following good properties of both of them:

e The stringy Hirzebruch classes come from a functorial “tideli characteristic
homology class.

e The stringyE-function comes from the “additiveE-polynomiablefined by Hodge
theory, which does not have a homology class version (compih [BSY 3,85]).

e The elliptic class is a homology class, which does not coramfan “additive”
characteristic class (of vector bundles), since the cpaedingelliptic genusis
more general than thdirzebruchy,-genus which is the most general “additive”
genus of such a class.

(11.33)

Finally the stringy Hirzebruch claﬁf’ D)) specializes fogy = —1 in the follow-
ing way to thestringy Chern class:'"((X, D))o (X, D) asintroduced in [Alu4, FLNU]:
(11.34) lim_ Ts"((X,D)) =" (X, D)) e HPM(X)® Q.

Yy——
In fact
1
li TS”’XD T 1.([F] — X)) -
Jm, T D)= 3 T - XD IT oy
(11.35) “
— I )
= > Tl x) )]
Ic{1,...,k} el
So by Theorem 8.7 (foy = —1) we get:
1
Jim TECD) = e 3 e IT o)
(11.36) Ic{1,...k} ’ zeCIL
—_— I .
= ¥ O] oy mledEn)
Ic{1,...,k} el

And the right hand side is just'” (X, D)) by [Alu4, §§3.4 5.5,6.5] and [FLNU, Corol-
lary 2.5,84]. In a similar way one gets fafl, = mC., T+, T,. the arc characteristic
classes

(11.37) (X, D)) : = cll (5‘”’0((X, D))) ,
with
(11.38) Jim | Tre((X, D)) = e27((X, D)) € HPM (X) © Q

the Chern clasg,, 1(—D) dcx of the pair(X, —D) as introduced and studied in [Alu4,
§63.3,5.5], with ‘L —o"4(%= (D)) corresponding td(—D) for L — —y — 17,

Of course it is also natural to look at the other specialagy — 0 andy — 1 of the

stringy and arc characteristic classé¥"/“"*((X, D)) for cl, = mC,, Ty, T,.. But the
limit y — 1 doesn't exist in general so that oo@nnot introduce “stringy or arc L-classes
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and signature” in this generality. But if we specialize i1 @31) forD = 0toy = 0, then
we get by “additivity”:
lim mC$"(X) = 7. ([On]) = lim mC¥(X)
y—0 y—0
and
lim T;}?’(X) =m(Td"(TM)N[M]) = ;11% Ty (X) -

y—0
In particular the middle terms are independent of a resoiuti: M — X, whose excep-
tional locus is contained in a strictly normal crossing dori And by the “weak factoriza-
tion theorem” one can even conclude (compare [BSY3, Cano8&]):

Proposition 11.39.Let7 : M — X be a resolution of singularities of the pure dimen-
sional complex algebraic variety{. Then the classes

1.([Oum]) € Go(X) and 7. (Td*(TM)N[M]) € HBM(X) 2 Q
are independent af.

Note that this result implies by the projection formula a jecture of Rosenberg [Ro]
about “an analogue of the Novikov Conjecture in complex latgie geometry” (compare
also with [BW]). Similarly one can use our stringy charaiggc classes in the context of
“higher genera” in the spirit of the “higher elliptic genéiaf [BL3], even in the context of
K-homology. This will be explained in a future work.
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