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Abstract

We obtain general theorems which enable the calculation of the Dixmier trace in terms of the
asymptotics of the zeta function and of the trace of the heat semigroup. We prove our results
in a general semi-finite von Neumann algebra. We find for p > 1 that the asymptotics of the
zeta function determines an ideal strictly larger than Lp,∞ on which the Dixmier trace may
be defined. We also establish stronger versions of other results on Dixmier traces and zeta
functions.
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1. Introduction

1.1. Background. The key role of the Dixmier trace in noncommutative geometry was discov-
ered by Connes around 1990, [13]. Since then, it has become a cornerstone of noncommutative
geometry. Notably, the Dixmier trace is used to define dimension, integration and has been
used in physical applications, along with heat kernel type expansions, to define ‘spectral ac-
tions’ for noncommutative field theories, [9, 15]. The Dixmier trace (or more precisely Dixmier
traces) are a family of non-normal traces on the bounded operators on a separable Hilbert
space H measuring the logarithmic divergence of the trace of a compact operator. There is
an ideal of compact operators denoted L(1,∞)(H) consisting precisely of those operators with

finite Dixmier trace. (This and the related ideals L(p,∞)(H), p > 1, are defined in detail
in Section 2 cf also [13].) Following [13] connections between Dixmier traces, zeta functions
and heat kernel asymptotics were systematically studied in [6]. Motivated by these results,
and questions arising in connection with physical applications, we substantially extend the
understanding of these matters in this article.

Briefly, for an important special case, we show that for a positive compact operator T , the

existence of the limit limr→∞
1
rTrace(T p+

1
r ) implies that the operator T lies in an ideal Zp .

The ideal Z1 is L(1,∞)(H), while for p > 1 Zp is strictly larger than L(p,∞)(H). (It is in fact

precisely what is termed, in [32, Section 1.d], the p-convexification of L(1,∞)(H).) We then

show that if limr→∞
1
rTrace(T p+

1
r ) exists it equals pTraceω(T p) for any state ω generating a

Dixmier trace, Traceω . Thus we show that the asymptotics of the zeta function singles out
the class of compact operators which have a finite Dixmier trace.

In fact the analogues of these statements are true for compact operators T in a semifinite von
Neumann algebra N with faithful, normal, semifinite trace τ for which there are corresponding
ideals Zp(N ) and L(p,∞)(N , τ). Readers unfamiliar with ideal theory in such general algebras
may restrict attention to the standard case of bounded operators on an infinite dimensional
separable Hilbert space with its usual trace (denoted by ‘Trace’ here). Our reason for striving
for generality stems from the emergence recently of applications of the semifinite von Neumann
theory [1, 2, 18, 4, 5, 35].

Our results follow primarily from (strengthened versions of) deep facts from [6] and recent
advances in the study of singular traces, some of which seem not to be well known. We also
work in this paper with general Marcinkiewicz spaces and general ‘Dixmier traces’ as these
spaces are already known to arise in the study of pseudodifferential operators [34].

Before giving a more precise account of our results, let us set out the motivations coming
from noncommutative physics and geometry. In [28] it was shown that the Moyal ‘plane’ of
dimension 2N defines a (2N,∞)-summable spectral triple. In order to prove this, the authors
used a variant of Cwikel’s inequality, and to compute Dixmier traces, they employed the zeta
function methods of [6]. Numerous other noncommutative spaces which are (p,∞)-summable
have been studied, [7, 8, 9, 17, 19, 35, 36], some with physical applications or relevance.

Examining these examples shows that except for very special and/or simple examples, eg
[7, 8, 35, 36], the determination of Dixmier summability of an operator relies on one of two
methods: Weyl’s theorem, or Cwikel type inequalities. In particular for operators arising from
‘noncommutative action principles’ (that is when we minimise functionals on noncommutative
algebras), no (classical) geometric context need exist, and so Weyl’s theorem is of no use.
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The theorems presented here offer alternative techniques for proving Dixmier summability
results, and computing Dixmier traces. This is likely to be relevant for (very) noncommutative
examples and physically inspired examples. It is also likely that via zeta function regulari-
sation of determinants, our techniques could provide criteria for one-loop renormalizability of
noncommutative field theories.

1.2. Summary of the main results. We need some notation in order to present the results.
We remark that in a semifinite von Neumann algebra N with faithful normal semifinite trace τ
the τ−compact operators are generated by projections P with τ(P ) <∞. Suppose that T is
a τ−compact positive operator in N . (If one has a semifinite spectral triple determined by an
unbounded self adjoint operator D then one should think of T as |D|−1 or (1+D2)−1/2 .) For
a given τ let τω denote a Dixmier trace corresponding to an element ω ∈ ℓ∗∞(N) or ℓ∗∞(R+).
We remark that ω must satisfy some invariance properties which we will explain in detail in
Section 3. By the zeta function of T we mean ζ(s) = τ(T s).

Consider the following hypothesis:
(*) Under the assumption that τ(T s) exists for all s > p suppose that limr→∞

1
r ζ(p+

1
r ) exists.

It is then natural to ask, in view of [6, 13], the following question:

A. If hypothesis (*) holds then does it follow that T ∈ L(p,∞)?
We prove that the answer to Question A is yes if p = 1 and no if p > 1. This leads to a second
question:
B. For p > 1 what constraint does hypothesis (*) place on the singular values of T ?

We remark that in contrast to the situation with the classical Schatten ideals it is not true
that if T ∈ L(1,∞) then T 1/p ∈ L(p,∞) . In fact there is a strictly smaller ideal inside L(1,∞)

characterized by this property. We prove correspondingly that there is an ideal Zp strictly

larger than L(p,∞) with the property that if T 1/p ∈ Zp then T ∈ L(1,∞) . We also prove that
if hypothesis (*) holds then T ∈ Zp .

This leads to the further question:
C. If hypothesis (*) holds how does the limit relate to the Dixmier trace of T p?
In fact we show that for a certain class of Dixmier traces τω

lim
r→∞

1

r
ζ(p+

1

r
) = p lim

t→∞

1

log(1 + t)

∫ t

0
µs(T )pds := pτω(T p).

Our methods then lead us to prove some stronger versions of several results in [6]. In
that paper we were forced to consider a subset of the set of all Dixmier traces determined by
requiring invariance under a certain transformation group. In the new approach of this article
we can relax many of these invariance conditions.

Then, in view of [13, p 563] and the relationship of the zeta function to the heat kernel, it is
natural to ask what hypothesis (*) implies concerning the small time asymptotics of the trace

of the heat semigroup. (We note that hypothesis (*) implies that the heat semigroup e−tT
−2

,
defined using the functional calculus, is trace class for all t > 0.) This matter is resolved in

Theorem 5.1. Let F (λ) = λ−1τ(e−λ
−2T−2

), then under hypothesis (*) for p = 1 this function
is bounded on (0,∞) and Theorem 5.1 says that for certain ω ∈ L∞((0,∞))∗ , ω(F ) is a
multiple of the Dixmier trace τω(T ).
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Conversely we know that if λ−1τ(e−λ
−2T−2

) has an asymptotic expansion in λ as λ → ∞
then the leading term in this expansion precisely determines the first singularity of τ(T s) as
Re(s) decreases. In this case, using the results described above, we find that T ∈ Z1 and the
residue of the zeta function is equal to the Dixmier trace of T .

Finally, in Section 6, we revisit a question raised in [10]. Namely, for T in some general
ideal I (in the τ−compact operators), which admits a Dixmier trace τω , what are the minimal
conditions on an algebra A such that the functional a → τω(aT ) on A is actually a trace?
This question is important in the manifold reconstruction theorem of [13]. We find that the
methods of this paper enable us to substantially generalize [10] (who answer the question only

for I = L(p,∞) ). We find that, for the same minimal conditions as in [10], there is a very large
class of Marcinkiewicz ideals I including I = Zp for which a→ τω(aT ) is a trace.

We give in Section 2 a summary of the theory of singular traces and a careful discussion of
ideals of compact operators needed in this paper. We follow this in Section 3 with some details
on the construction of Dixmier traces. The main results are proved in Section 4, for the zeta
function, and Section 5 for the heat operator. We finish with our generalization of [10].

Acknowledgement The fourth named author thanks Bruno Iochum for asking the question
that led to Corollary 4.6 and the Université de Cergy-Pontoise for hosting his visit. We also
thank Harald Grosse and Victor Gayral for advice and Evgenii Semenov for explaining to us
some subtle facts about geometry of Marcinkiewicz spaces. The first named author thanks
the Erwin Schrödinger Institute for its assistance with this research and the Clay Mathematics
Institute for financial support.

2. Preliminaries: spaces and functionals

2.1. Function spaces. The theory of singular traces on operator ideals rests on some classical
analysis which we now review for completeness.

Consider a Banach space (E, ‖ · ‖E) of real valued Lebesgue measurable functions on the
interval J = [0,∞) or else on J = N . Let x∗ denote the non-increasing, right-continuous
rearrangement of |x| given by

x∗(t) = inf{s > 0 | λ({|x|> s}) 6 t}, t > 0,

where λ denotes Lebesgue measure. Then E will be called rearrangement invariant (or r.i.) if

(i). E is an ideal lattice, that is if y ∈ E , and x is any measurable function on J with
0 6 |x| 6 |y| , then x ∈ E and ‖x‖E 6 ‖y‖E ;
(ii). if y ∈ E and if x is any measurable function on J with x∗ = y∗ , then x ∈ E and
‖x‖E = ‖y‖E .

In the case J = N , it is convenient to identify x∗ with the rearrangement of the sequence
|x| = {|xn|}∞n=1 in descending order. (The theory is in the monographs [30], [31], [32].) A r.i.
space E is said to be a fully symmetric Banach space if it has the additional property that if
y ∈ E and L1 + L∞(J) ∋ x ≺≺ y , then x ∈ E and ‖x‖E 6 ‖y‖E . Here, x ≺≺ y denotes
submajorization in the sense of Hardy-Littlewood-Pólya:

∫ t

0
x∗(s)ds 6

∫ t

0
y∗(s)ds, ∀ t > 0.
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All these spaces E satisfy L1 ∩ L∞ (J) ⊆ E ⊆ (L1 + L∞) (J), with continuous embeddings.
In this paper, we consider only fully symmetric Banach spaces E , which satisfy in addition
E ⊆ L∞(J) (a non-commutative extension of the theory of such spaces placed in the setting
of a semifinite von Neumann algebra N corresponds to ideals in N equipped with unitarily
invariant norm [29, 21, 11, 39, 6]).

Recall (see [30]) that for an arbitrary rearrangement invariant function space E = E(0,∞)
the fundamental function of E , ϕE(·), is given by

ϕE(t) = ‖χ[0,t)‖E , t > 0.

2.2. Marcinkiewicz function and sequence spaces. Our main examples of fully symmetric
function and sequence spaces are given in the following discussion. Let Ω denote the set of
concave functions ψ : [0,∞) → [0,∞) such that limt→0+ ψ(t) = 0 and limt→∞ ψ(t) = ∞. For
ψ ∈ Ω define the weighted mean function

a (x, t) =
1

ψ (t)

∫ t

0

x∗ (s) ds t > 0

and denote by M(ψ) the (Marcinkiewicz) space of measurable functions x on [0,∞) such that

(1) ‖x‖M (ψ) := sup
t>0

a (x, t) = ‖a (x, ·)‖∞ <∞.

We assume in this paper that ψ(t) = O(t) when t→ 0, which is equivalent to the continuous
embedding M(ψ) ⊆ L∞(J). The definition of the Marcinkiewicz sequence space m(ψ) of
functions on N is similar,

m(ψ) =

{

x = {xn}
∞
n=1 : ‖x‖m(ψ) := sup

N>1

1

ψ(N )

N∑

n=1

x∗n <∞

}

.

Example (i). Introduce the following functions

ψ1(t) =

{

t · log 2, 0 6 t 6 1

log(1 + t), 1 6 t <∞
,

respectively (for p > 1),

ψp(t) =

{

t, 0 6 t 6 1

t
1− 1

p , 1 6 t <∞
.

The spaces L(1,∞) and L(p,∞) are the Marcinkiewicz spaces M(ψ1) and M(ψp) respectively.

The norm given by formula (1) on the space L(p,∞) is denoted by ‖ · ‖(p,∞) , 1 6 p <∞.

Example (ii). In [34], F. Nicola considers, in connection with a class of pseudo-differential
operators, the Marcinkiwecz space M(ψ), with ψ(t) = log2(t+ 1), t > 0.

2.3. Symmetric operator spaces and functionals. We now go from function spaces to
the setting of (noncommutative) spaces of operators. Let N be a semifinite von Neumann
algebra on the separable Hilbert space H , with a fixed faithful and normal semifinite trace τ .
We recall from [26, 25] the notion of generalized singular value function. Given a self-adjoint

operator A in N , we denote by EA(·) the spectral measure of A . Then E |A|(B) ∈ N for all

Borel sets B ⊆ R , and there exists s > 0 such that τ(E |A|(s,∞)) <∞. For t > 0, we define

µt(A) = inf{s > 0 : τ(E |A|(s,∞)) 6 t}.
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The function µ(A) : [0,∞) → [0,∞] is called the generalized singular value function (or
decreasing rearrangement) of A ; note that µ(·)(A) ∈ L∞(J).

If we consider N = L∞([0,∞), m), where m denotes Lebesgue measure on [0,∞),
as an abelian von Neumann algebra acting via multiplication on the Hilbert space H =
L2([0,∞), m), with the trace given by integration with respect to m , it is easy to see that the
generalized singular value function µ(f) is precisely the decreasing rearrangement f∗ . If N
is all bounded operators (respectively, ℓ∞(N)) and τ is the standard trace (respectively, the
counting measure on N), then A ∈ N is compact if and only if limt→∞ µt(A) = 0; moreover,

µn(A) = µt(A), t ∈ [n, n+ 1), n = 0, 1, 2, . . . ,

and the sequence {µn(A)}∞
n=0

is just the sequence of eigenvalues of |A| in non-increasing order
and counted according to multiplicity.

Given a semifinite von Neumann algebra (N , τ) and a fully symmetric Banach function
space (E, ‖ · ‖E) on ([0,∞), m), satisfying E ⊆ L∞[0,∞), we define the corresponding non-
commutative space E(N , τ) by setting

E(N , τ) = {A ∈ N : µ(A) ∈ E}.

The norm is ‖A‖
E(N ,τ)

:= ‖µ(A)‖E , and the space (E(N , τ), ‖ · ‖
E(N ,τ)

) is called the (non-

commutative) fully symmetric operator space associated with (N , τ) corresponding to (E, ‖ ·
‖E). We write E(N , τ)+ for the positive operators in E(N , τ). If N = ℓ∞(N), then the space
E(N , τ) is simply the (fully) symmetric sequence space ℓE , which may be viewed as the linear
span in E of the vectors en = χ

[n−1,n)
, n > 1 (cf [31]).

The spaces M(ψ)(N , τ) associated to Marcinkiewicz function spaces are called operator
Marcinkiewicz spaces and we mostly omit the symbol (N , τ) as this should not cause any
confusion. We use, for the usual Schatten ideals in N , the notation Lp(N , τ), p > 1.

Definition 2.1. A linear functional ϕ ∈ E(N , τ)∗ is called symmetric if ϕ is positive, (that
is, ϕ(A) > 0 whenever 0 6 A ∈ E(N , τ)) and ϕ(A) 6 ϕ(A′) whenever µ(A) ≺≺ µ(A′). A
symmetric ϕ ∈ E(N , τ)∗ is called singular if it vanishes on all finite trace projections from N .

The important examples of singular symmetric functionals that arise in noncommutative
geometry are the Dixmier traces which we describe in the next Section. For the discussion of
these we will need the following fact.

Theorem 2.2 ([24]). Let ϕ0 be a symmetric functional on E . If ϕ(A) := ϕ0(µ(A)) , for all
A > 0 , A ∈ E(N , τ) , then ϕ extends to a symmetric functional 0 6 ϕ ∈ E(N , τ)∗.

3. Invariant states and Dixmier traces.

The construction of Dixmier traces τω depends crucially on the choice of the “invariant
mean” ω . Here we explain the invariance properties we need for these invariant means via the
results summarized below (all of them are proved using fixed point theorems).

We define the shift operator T : ℓ∞ → ℓ∞, the Cesàro operator H : ℓ∞ → ℓ∞ and dilation
operators Dn : ℓ∞ → ℓ∞ for n ∈ N by the formulas

T (x1, x2, x3, . . . ) = (x2, x3, x4, . . . ).
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H (x1, x2, x3, . . .) = (x1,
x1 + x2

2
,
x1 + x2 + x3

3
, . . .),

Dn (x1, x2, x3, . . . ) = (x1, . . . , x1
︸ ︷︷ ︸

n

, x2, . . . , x2
︸ ︷︷ ︸

n

, . . .),

for all x = (x1, x2, x3, . . .) ∈ ℓ∞.

Theorem 3.1. [23] There exists a state ω̃ on ℓ∞ such that for all n > 1

ω̃ ◦ T = ω̃ ◦H = ω̃ ◦Dn = ω̃.

Now we consider analogous results for L∞ . We let R
∗
+ denote the positive reals with

multiplication as the group operation. We define the isomorphism L : L∞(R) → L∞(R∗
+)

by L(f) = f ◦ log. Next we define the Cesaro means (transforms) on L∞(R) and L∞(R∗
+),

respectively by:

H(f)(u) =
1

u

∫ u

0
f(v)dv for f ∈ L∞(R), u ∈ R

and,

M(g)(t) =
1

log t

∫ t

1
g(s)

ds

s
for g ∈ L∞(R∗

+), t > 0.

A brief calculation yields for g ∈ L∞(R∗
+), LHL−1(g)(r) = M(g)(r), i.e L intertwines the

two means.

Definition 3.2. Let Tb denote translation by b ∈ R , Da denote dilation by 1
a ∈ R

∗
+ and let

P a denote exponentiation by a ∈ R
∗
+ . That is,

Tb(f)(x) = f(x+ b) for f ∈ L∞(R),

Da(f)(x) = f
(
a−1x

)
for f ∈ L∞(R),

P a(f)(x) = f(xa) for f ∈ L∞(R∗
+).

Proposition 3.3 ([6]). If a continuous functional ω̃ on L∞(R) is invariant under the Cesaro
operator H, the shift operator Ta or the dilation operator Da then ω̃ ◦ L−1 is a continuous
functional on L∞(R∗

+) invariant under M, the dilation operator Da or P a respectively. Con-
versely, composition with L converts an M, Da or P a invariant continuous functional on
L∞(R∗

+) into an H, Ta or Da invariant continuous functional on L∞(R) .

We denote by C0(R) (respectively, C0(R
∗
+)) the continuous functions on R (respectively,

R∗
+ ) vanishing at infinity (respectively at infinity and at zero).

Theorem 3.4 ([6]). There exists a state ω̃ on L∞(R) satisfying the following conditions:
(1) ω̃(C0(R)) ≡ 0 .
(2) If f is real-valued in L∞(R) then

ess lim inf
t→∞

f(t) 6 ω̃(f) 6 ess lim sup
t→∞

f(t).

(3) If the essential support of f is compact then ω̃(f) = 0.
(4) For all a > 0 and c ∈ R ω̃ = ω̃ ◦ Tc = ω̃ ◦Da = ω̃ ◦H.

Combining Theorem 3.4 and Proposition 3.3, we obtain
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Corollary 3.5. There exists a state ω on L∞(R∗
+) satisfying the following conditions:

(1) ω(C0(R
∗
+)) ≡ 0 .

(2) If f is real-valued in L∞(R∗
+) then

ess lim inf
t→∞

f(t) 6 ω(f) 6 ess lim sup
t→∞

f(t).

(3) If the essential support of f is compact then ω(f) = 0.
(4) For all a, c > 0 ω = ω ◦Dc = ω ◦ P a = ω ◦M.

Remark 3.6. In the sequel we will consider pairs of functionals ω̃ on L∞(R), ω ∈ L∞(R∗
+)

related by ω̃ ◦ L−1 = ω .

If ω is a state on ℓ∞ (respectively, on L∞(R), L∞(R∗
+)), then we denote its value on

the element {xi}∞i=1 (respectively, f ∈ L∞(R), L∞(R∗
+)) by ω − limi→∞ xi (respectively,

ω − limt→∞ f(t)). We saw in Theorems 3.1, 3.4 and Corollary 3.5 states on ℓ∞ , L∞(R), and
L∞(R∗

+) invariant under various (group) actions. Alain Connes in [13] suggested working with
the set of states on L∞(R∗

+), which is larger then the set

{ω : ω is an M -invariant state on L∞(R∗
+)}

namely

CD(R∗
+) := {ω̃ = γ ◦M : γ is an arbitrary singular state on Cb[0,∞)}.

These states are automatically dilation invariant. In this paper, we find that for the zeta
function asymptotics it suffices to consider states that are D2 and Pα invariant for all α > 1.

In Section 5 we need a smaller set of states, namely a subset of

{ω ∈ L∞(R∗
+)∗ : ω is an M -invariant and P a -invariant state on L∞(R∗

+), a > 0}.

This subset consists of states whose existence is guaranteed by Corollary 3.5. We refer to any
state satisfying the conditions (1) to (4) of Corollary 3.5 as a DPM state (in [6] we used the
vaguer term ‘maximally invariant’). We now recall the construction of Dixmier traces for the
compact operators.

Definition 3.7. Let ω be a D2 -invariant state on ℓ∞ . The associated Dixmier trace of

T ∈ L
(1,∞)
+ (H) is the number

τω(T ) := ω-lim
N→∞

1

log(1 +N )

N∑

n=1

µn(T ).

Notice that in this definition we have chosen ω to satisfy only the dilation invariance as-
sumption even though Dixmier [20] originally imposed on ω the assumption of dilation and
translation invariance.

Definition 3.7 extends to the Marcinkiewicz spaces M(ψ)(N , τ). Fix an arbitrary D2 -
invariant state ω on L∞(R∗

+). Then the state ω is D2n -invariant, n ∈ Z and a simple
argument shows that it also satisfies conditions (1)–(3) of Corollary 3.5. For the remainder of
the paper, let ψ ∈ Ω satisfy

(2) lim
t→∞

ψ(2t)

ψ(t)
= 1.
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This condition is sufficient for the existence of singular traces or singular symmetric functionals
on the corresponding fully symmetric operator spaces [24]. Indeed, setting

(3) τω(x) := ω- lim
t→∞

a(x, t), 0 6 x ∈M(ψ)(N , τ)

(see the details in [24, p. 51]), we obtain an additive homogeneous functional on M(ψ)(N , τ)+,
which extends to a symmetric functional on M(ψ)(N , τ) by linearity. The proof of linearity
of τω in [24, p. 51] is based on the assumption that ω is D 1

2
-invariant which is equivalent to

D2 -invariance (see above).

4. The Dixmier trace on Marcinkiewicz operator spaces

4.1. Preliminaries. In this subsection we generalize and strengthen some results from [6].

Lemma 4.1. For every ψ ∈ Ω satisfying (2) and every 1 > α > 0 , there is C = C(α) such
that ψ(t) < Ctα, t > 0 .

Proof. Let 0 < α and let Q > 0 be so large that for t > Q

ψ(2t)

ψ(t)
< 2α.

There is C > 1 so large that ψ(t) 6 Ctα for all t < Q . Suppose there is a first Q0 > Q for
which ψ(Q0) = CQα0 . Then

ψ(Q0)

ψ(Q0/2)
>

CQα0
C(Q0/2)α

= 2α,

which is a contradiction. Consequently, ψ(t) < Ctα for all t > 0. �

Recall that for any τ -measurable operator T , the distribution function of T is defined by

λt(T ) := τ(χ(t,∞)(|T |)), t > 0,

where χ(t,∞)(|T |) is the spectral projection of |T | corresponding to the interval (t,∞) (see
[26]). By Proposition 2.2 of [26],

µs(T ) = inf{t > 0 : λt(T ) 6 s}.

We infer that for any τ -measurable operator T , the distribution function λ(·)(T ) coincides
with the (classical) distribution function of µ(·)(T ). From this formula and the fact that λ is
right-continuous, we can easily see that for t > 0, s > 0

s > λt ⇐⇒ µs 6 t.

Or equivalently,

s < λt ⇐⇒ µs > t.

Using Remark 3.3 of [26] this implies that:

(4)

∫ λt

0

µs(T )ds =

∫

[0,λt)

µs(T )ds = τ(|T |χ(t,∞)(|T |)), t > 0.

Lemma 4.2. For T ∈M(ψ) T > 0 and any β > 1 there is a C = C(β) such that λ1/t(T ) <

Ctβ for every t > 0 .
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Proof. Let α = 1 − 1/β and λ1/t(T ) = a . Hence µ(a−0)(T ) > 1/t. Then by Lemma 4.1
there is C1 > 0 such that

‖T‖ψ = sup
0<h<∞

∫ h
0 µs(T )ds

ψ(t)
>

∫ a
0 µ(a−0)(T )ds

ψ(a)
=
aµ(a−0)(T )

ψ(a)
>
a(1/t)

C1aα
= a1−α/(C1t).

Consequently

λ1/t(T ) = a < (C1‖T‖ψt)
1/(1−α) = Ctβ .

�

Remark. Since β > 1 could be arbitrary, it is obvious that the constant C could be replaced
by 1 if t is sufficiently large.

In the sequel we will suppose that ψ possesses the following property

(5) A(β) = supt>0
ψ(tβ)

ψ(t)
→ 1, if β ↓ 1.

Observe that if ψ(t) = log(1 + t)γ , γ > 0, then condition (5) is satisfied.

Proposition 4.3. (cf. [6, Proposition 2.4]) For T ∈ M(ψ) positive let ω be D2 and Pα -
invariant, α > 1 state on L∞(R∗

+) . Then

τω(T ) = ω − lim
t→∞

1

ψ(t))

∫ t

0
µs(T )ds = ω − lim

t→∞

1

ψ(t)
τ(Tχ( 1

t
,∞)(T ))

and if one of the ω− limits is a true limit then so is the other.

Proof. We first note that
∫ t

0
µs(T )ds 6

∫ λ 1
t
(T )

0
µs(T )ds+ 1, t > 0.

Indeed, the inequality above holds trivially if t 6 λ 1
t
(T ). If t > λ 1

t
(T ), then

∫ t

0

µs(T )ds =

∫ λ 1
t
(T )

0

µs(T )ds+

∫ t

λ 1
t
(T )

µs(T )ds.

Now s > λ 1
t
(T ) implies that µs(T ) 6 1

t so we have

∫ t

0

µs(T )ds 6

∫ λ 1
t
(T )

0

µs(T )ds+
1

t
(t− λ 1

t
(T )) 6

∫ λ 1
t
(T )

0

µs(T )ds+ 1.

Using this observation and lemma and remark above we see that for α > 1 eventually
∫ t

0

µs(T )ds 6

∫ λ 1
t
(T )

0

µs(T )ds+ 1 6

∫ tα

0

µs(T )ds+ 1

and so eventually

1

ψ(t)

∫ t

0
µs(T )ds 6

1

ψ(t)
(

∫ λ 1
t
(T )

0
µs(T )ds+ 1) 6

1

ψ(t)
(

∫ tα

0
µs(T )ds+ 1)

6
ψ(tα)

ψ(t)ψ(tα)
(

∫ tα

0

µs(T )ds+ 1).
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Taking the ω -limit we get

τω(T ) 6 ω − lim
t→∞

1

ψ(t)

∫ λ 1
t
(T )

0

µs(T )ds 6 ω − lim
t→∞

1

ψ(t)

∫ tα

0

µs(T )ds

6 ω − lim
t→∞

A(α)

ψ(tα)

∫ tα

0
µs(T )ds = A(α)τω(T )

where the last line uses Pα, α > 1, invariance. Due to equality (4) and since the previous
inequalities hold for all α > 1 and by assumption (5) we have A(α) → 1 we get the conclusion
of the proposition for ω -limits.

To see the last assertion of the Proposition suppose that limt→∞
1
ψ(t)

∫ t
0 µs(T )ds = B then

by the above argument for any ǫ > 0 and sufficiently large t > 0 we get

B − ǫ 6
1

ψ(t)
τ(Tχ( 1

t
,∞)(T )) 6 A(α)(B + ǫ)

for all α > 1 and since A(α) → 1, limt→∞
1
ψ(t)τ(Tχ( 1

t
,∞)(T )) = B . On the other hand if the

limit limt→∞
1
ψ(t)

τ(Tχ( 1
t
,∞)(T )) exists and equals B say then

lim sup
t→∞

1

ψ(t)

∫ t

0
µs(T )ds 6 B 6 A(α) lim inf

t→∞

1

ψ(t)

∫ t

0
µs(T )ds

for all α > 1 and so limt→∞
1

ψ(t)

∫ t
0 µs(T )ds = B as well. �

Corollary 4.4. Under the conditions of the preceding Proposition the expression

ω − lim
t→∞

1

ψ(t)
τ(Tχ( 1

t
,∞)(T ))

can be replaced by

ω − lim
t→∞

1

ψ(t)
τ(Tχ( 1

t
,1)(T )).

If the real limit exists then the prefix ω may be removed.

The proof is immediate since ψ(∞) = ∞ and the difference of these limits is

lim
t→∞

1

ψ(t)
τ(Tχ(1,∞)(T )) = lim

t→∞

1

ψ(t)

∫ λ1(T )

0
µs(T )ds = 0.

4.2. An alternative description of L(1,∞) . The zeta function of a positive compact operator
T is given by ζ(s) = τ(T s) for real positive s on the assumption that there exists some s0
for which the trace is finite. Note that it is then true that τ(T s) < ∞ for all s > s0 . In
this subsection we will always assume τ(T s) < ∞ for all s > 1 and we are interested in the
asymptotic behavior of ζ(s) as s→ 1.

Let us define the space

Z1 = {T ∈ N : ‖T‖Z1 = lim sup
p↓1

(p− 1)τ(|T |p) <∞}.

Since we also have the other equivalent definition

‖T‖Z1 = lim sup
p↓1

(p− 1)(

∫ ∞

0

µt(|T |)
pdt)1/p = lim sup

p↓1
(p− 1)‖T‖Lp
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(recall that we use the notation Lp for the Schatten ideals in (N , τ)) the ordinary properties
of the semi-norm for ‖ · ‖Z1 are immediate.

Theorem 4.5. (i) Let T > 0 , T ∈ N and lim sups→0 sτ(T
1+s) = C <∞, then

lim sup
u→∞

1

lnu

∫ u

0
µt(T )dt 6 Ce.

(ii) The spaces Z1 and L1,∞ coincide. Moreover, if N is a type I factor with the standard

trace, or else N is semifinite and the trace is non-atomic then denoting by L1,∞
0 the closure

of L1(N , τ) in L1,∞ , we have for any T ∈ C1

distL1,∞ (T,L1,∞
0 ) = lim sup

u→∞

1

lnu

∫ u

0
µt(T )dt 6 e‖T‖Z1

and ‖T‖Z1 6 ‖T‖1,∞ .

Proof. (i) By assumption for every ǫ > 0 there is an s0 > 0 such that for all s ∈ [0, s0]

(6) s

∫ ∞

0
µt(T )1+sdt 6 C + ǫ.

Then, for u > 1 according to Hölder’s inequality and (6) we have

∫ u

0
µt(T )dt 6

(∫ u

0
µt(T )1+sdt

) 1
1+s
(∫ u

0
1

1+s
s dt

) s
1+s

6

(
s

s

∫ ∞

0
µt(T )1+sdt

) 1
1+s

u
s

1+s 6 ((C + ǫ)/s)
1

1+su
s

1+s 6 (C + ǫ)
1

s
us.

Set u0 = e1/s0 and for u > u0 set s = 1/ lnu(< s0). Then u = eln u and by the previous
inequality

∫ u

0

µt(T )dt 6 (C + ǫ)
1

s
us = (C + ǫ)

elnu
1

ln u

1
lnu

= (C + ǫ)e lnu.

That is we have the inequality

1

lnu

∫ u

0
µt(T )dt 6 (C + ǫ)e for u > u0.

Since

‖T‖L1,∞ = sup
16u6∞

1

ln(1 + u)

∫ u

0
µt(T )dt

we conclude that T ∈ L1,∞ . Moreover, since ǫ > 0 is arbitrary

lim sup
u→∞

1

lnu

∫ u

0
µt(T )dt 6 eC.

Hence (i) and the embedding Z1 ⊂ L1,∞ are established.

The equality distL1,∞(T,L1,∞
0 ) = lim supu→∞

1
lnu

∫ u
0 µt(T )dt is well-known in the special

case when the algebra N is commutative (see e.g. [22, Proposition 2.1] and references
therein). The general case follows from this special case, due to the combination of the follow-
ing facts. Firstly, the inequality µ(x)−µ(y) ≺≺ µ(x−y) (see [21]) together with the fact that

L1,∞ is fully symmetric yields the inequality distL1,∞(T,L1,∞
0 ) > distL1,∞ (µ(T ),L1,∞

0 (0,∞))

or distL1,∞(T,L1,∞
0 ) > distL1,∞ (µ(T ),L1,∞

0 (N)), depending whether N is of type II or
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I . Secondly, fix an arbitrary T ∈ L1,∞(N ). Due to [11], there exists a rearrangement-
preserving (and thus, isometric) embedding ϕT of L1,∞(0,∞) (respectively, L1,∞(N) in
the type I setting) into L1,∞(N ) such that ϕT (µ(T )) = T . This observation shows that

distL1,∞ (T,L1,∞
0 ) 6 distL1,∞ (µ(T ),L1,∞

0 (0,∞)).

The argument above also proves the equality and the first inequality in (ii).

To complete the proof of (ii), let us take an arbitrary T ∈ L1,∞ and note that by the
definition of the norm in the Marcinkiewicz space L1,∞ we have x ≺≺ ‖T‖1,∞/(1 + t). Since
the spaces Lp(N , τ), 1 6 p 6 ∞, are fully symmetric operator spaces we have

‖T‖p 6 ‖T‖1,∞‖1/(1 + t)‖p, p > 1.

Taking the p-th power we get
∫ ∞

0
µt(T )p dt 6 ‖T‖p1,∞

∫ ∞

0
1/(1 + t)pdt = ‖T‖p1,∞

1

p− 1
.

If now p ↓ 1 we conclude that

‖T‖Z1 = lim sup
p↓1

(p− 1)

∫ ∞

0
µt(T )p dt 6 ‖T‖1,∞.

Hence, L1,∞ ⊂ Z1 . Due to the first part of the proof we infer that the spaces Z1 and L1,∞

are coincident. �

Corollary 4.6. Let T ∈ N be positive with τ(T s) < ∞ for all s > 1 . If limr→∞
1
r τ(T

1+ 1
r )

exists then T ∈ L(1,∞) .

4.3. The case p > 1. Our approach above to the study of Z1 allows us to generalize imme-
diately. Let us define a class of spaces Zq, q > 1 by:

Zq = {T ∈ N+ : ‖T‖Zq = lim sup
p↓q

((p− q)τ(T p))1/p <∞}.

Setting r = 1 + p−q
q = p

q , we have

‖T‖Zq = lim sup
p↓q

((p− q)τ(T q(1+(p−q)/q)))1/p = (q lim sup
p↓q

(p− q)/qτ((T q)(1+(p−q)/q)))1/p

= q1/q(lim sup
r↓1

((r− 1)τ((T q)r))1/(qr) = (q‖T q‖Z1)
1/q.

Now it is clear that T ∈ Zq if and only if T q ∈ Z1 and ‖T‖Zq = (q‖T q‖Z1)
1/q .

We now state a few consequences of Theorem 4.5. The classical p-convexification procedure
for an arbitrary Banach lattice X is described in [32, Section 1.d] and is sometimes termed
power norm transformation. It is simply a direct generalization of the procedure of defining
Lp -spaces from an L1 -space.

The proof of the first corollary below is immediate.

Corollary 4.7. (i) There is a more convenient equivalent formula for the semi-norm ‖ · ‖Zq

namely

‖T‖+
Zq

= ‖T q‖
1/q
Z1
, q > 1.
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(ii) The space Zq coincides as a set with the q -convexification of the operator space L1,∞ :

L1,∞
q = {T ∈ N+ : ‖T‖q1,∞ = sup

1<u<∞

(∫ u
0 µt(T )qdt

log(1 + u)

)1/q

<∞}.

If N is a type I factor with the standard trace, or else N is semifinite and the trace is non-
atomic then the semi-norms ‖ · ‖Zq and dist

L1,∞
q

(·,L1,∞
q,0 ) are equivalent. Here, L1,∞

q,0 is the

closure of L1(N , τ) in L1,∞
q .

Corollary 4.8. (i) An element T ∈ Zp, p > 1, iff T p ∈ L1,∞ . Moreover

(7)
1

r

∫ ∞

0
µt(T )p+1/rdt =

1

r
τ(T p+1/r) = p

1

pr
τ(T p(1+1/pr)).

and for r > 0 the expression in (7) belongs to L∞(R∗
+) .

(ii) If T ∈ Lp,∞ then T ∈ Zp .

(iii) If T is a positive in N such that limr→∞
1
r τ(T

p+ 1
r ) exists, then T ∈ Zp .

Proof. The first statement is immediate from earlier results. To prove (ii) we remind the

reader that T ∈ Lp,∞ iff µt(T ) 6 C min(1, t−1/p) for some C <∞. Then as r → ∞

1

r

∫ ∞

0

µt(T )p+1/rdt 6 C
1

r
(1 +

∫ ∞

1

t−1−1/prdt) = C
1

r
(1 − prt−1/pr|∞1 ) = C

(1 + pr)

r
<∞.

For (iii), we note that if limr→∞
1
r τ(T

p+ 1
r ) exists, then T p ∈ Z1 and by (i) T ∈ Zp �

In view of the preceding corollary we have the following implications

T ∈ Lp,∞ =⇒ T ∈ Zp,

T ∈ Zp ⇐⇒ T p ∈ Z1 = L1,∞.

Hence, everything which has been proved for T ∈ Z1 = L1,∞ is automatically true for S = T p

provided T ∈ Zp or especially if T ∈ Lp,∞ .

4.4. The space Zp, p > 1 is strictly larger than Lp,∞ . We deduce the result in the title
of this subsection by proving that the analogue of Theorem 4.5 does not hold when p > 1.

Proposition 4.9. The assumption supr>1
1
r τ(T

p+ 1
r ) <∞ does not guarantee T ∈ L(p,∞) .

Proof. We use the notation µt(T ) := x(t), t > 0. The proof is based on the observation
(see [30] and also detailed explanations in [39, Section 5]) that the ordinary norm

‖x‖ψ = sup
t>0

∫ t
0 x

∗(s)ds

ψ(t)

in the Marcinkiewicz space M(ψ) (here, ψ ∈ Ω as in Section 2) is equivalent to the quasi-norm

Fψ(x) = sup
0<t<∞

tx∗(t)

ψ(t)

provided that lim inft→∞
ψ(2t)
ψ(t) > 1. For ψp(t) = t1−1/p, p > 1, the norm ‖ · ‖ψp and quasi-

norm Fp(·) = Fψp(·) are equivalent. In other words, the norm of any element T from the ideal

L(p,∞) is equivalent to Fp(x). This is not the case for ψ0(t) := ln(1+ t) (that is the functional

F0(·) = Fψ0(·) and the norm in L(1,∞) are not equivalent) and it is easy to locate a function
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z(t) = z∗(t) such that ‖z‖ψ0 < ∞ but F0(z) = supt>0 z
∗(t)t = ∞. For example, we take

z(t) = n/2n
2

for t ∈ (2(n−1)2, 2n
2
], n = 1, 2, ..., and z(t) = 1 for t ∈ [0, 1]. It is easy to verify

that there exists 0 < C <∞ such that
∫ t

0
z∗(s)ds 6 C ln(1 + t)

(that is z ≺≺ C/(1 + t)) and at the same time

z(t)t|
t=2n2 = z(2n

2
)2n

2
= n, n = 1, 2, ...

(that is F0(z) = ∞).

Observe that since z ≺≺ C/(1 + t), we have for every ν > 0
∫ ∞

0
z(t)1+νdt 6 C

∫ ∞

0
(1/(1 + t))1+νdt = C/ν <∞.

Now, let us fix p > 1 and set x(t) = z1/p(t) for t > 0. The estimate above gives

s

∫ ∞

0
xp+s(t)dt = p(s/p

∫ ∞

0
z(t)1+s/pdt) 6 Cp <∞.

Nevertheless,

Fp(x) = sup
0<t<∞

x(t)t1/p = (F0(z))
1/p = ∞.

That is the condition supr>1
1
r τ(T

p+ 1
r ) <∞ does not imply T ∈ L(p,∞) . �

We remark that while Zp, p > 1 is the p-convexification of the ideal L1,∞ ; in turn, the
ideal Lp,∞ is the p-convexification of some subideal in L1,∞ , which is termed the ‘small ideal’
in [6]. We will establish this latter fact in subsection 5.2.

4.5. Limits of zeta functions. Our earlier results enable us to considerably weaken the
hypotheses in one of the main theorems of [6]. First we recall the following preliminary result
proved in [6].

Proposition 4.10. (weak∗ -Karamata theorem) Let ω̃ ∈ L∞(R)∗ be a dilation invariant state
and let β be a real valued, increasing, right continuous function on R+ which is zero at zero and

such that the integral h(r) =
∫∞
0 e−

t
r dβ(t) converges for all r > 0 and C = ω̃− limr→∞

1
rh(r)

exists. Then

ω̃ − lim
r→∞

1

r
h(r) = ω̃ − lim

t→∞

β(t)

t
.

The classical Karamata theorem has a similar statement with the ω̃ limits replaced by
ordinary limits.

In the following we will take T ∈ L(1,∞) positive, ||T || 6 1 with spectral resolution T =
∫
λdE(λ). We would like to integrate with respect to dτ(E(λ)); unfortunately, these scalars

τ(E(λ)) are, in general, all infinite. To remedy this situation, we instead must integrate with
respect to the increasing (negative) real-valued function NT (λ) = τ(E(λ) − 1) for λ > 0.
Away from 0, the increments τ(△E(λ)) and △NT (λ) are, of course, identical. The following
theorem is a strengthened version of Theorem 3.1 of [6] made possible by Proposition 4.3.
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Theorem 4.11. For T ∈ L(1,∞) positive, ||T || 6 1 let ω be a D2 -dilation and Pα -invariant,
α > 1 state on L∞(R∗

+) . Let ω̃ = ω ◦L where L is given in Section 3, then we have:

τω(T ) = ω̃ − lim
1

r
τ(T 1+ 1

r ).

If limr→∞
1
r τ(T

1+ 1
r ) exists then

τω(T ) = lim
r→∞

1

r
τ(T 1+ 1

r )

for an arbitrary dilation invariant functional ω ∈ L∞(R∗
+)∗ .

Proof. The proof is just a minor rewriting of the corresponding argument in [6]. By Proposi-

tion 3.3, the state ω̃ is dilation invariant and by Theorem 4.5(i) h(r) = 1
r τ(T

1+ 1
r ) ∈ L∞(R+).

So, we can apply the weak∗ -Karamata theorem. First write τ(T 1+ 1
r ) =

∫ 1
0+ λ

1+ 1
r dNT (λ).

Thus setting λ = e−u

τ(T 1+ 1
r ) =

∫ ∞

0

e−
u
r dβ(u)

where β(u) =
∫ 0
u e

−vdNT (e−v) = −
∫ u
0 e

−vdNT (e−v). Since the change of variable λ = e−u is
strictly decreasing, β is, in fact, nonnegative and increasing. By the weak∗ -Karamata theorem
applied to ω̃ ∈ L∞(R)∗

ω̃ − lim
r→∞

1

r
τ(T 1+ 1

r ) = ω̃ − lim
u→∞

β(u)

u
.

Next with the substitution ρ = e−v we get:

(8) ω̃ − lim
u→∞

β(u)

u
= ω̃ − lim

u→∞

1

u

∫ 1

e−u

ρdNT (ρ).

Set f(u) = β(u)
u . We want to make the change of variable u = log t or in other words to

consider f ◦ log = Lf . This is permissable by the discussion in Section 3 which tells us that if
we start with a functional ω ∈ L∞(R∗

+)∗ as in the theorem we may replace it by the functional
ω̃ = ω ◦L which is dilation invariant with

ω̃ − lim
r→∞

1

r
τ(T 1+ 1

r ) = ω̃ − lim
u→∞

β(u)

u

= ω̃ − lim
u→∞

f(u) = ω − lim
t→∞

Lf(t) = ω − lim
t→∞

1

log t

∫ 1

1/t
λdNT (λ).

Now, by Proposition 4.3 and Corollary 4.4 applied to ψ(t) = log(1 + t) ∼ log t

ω − lim
t→∞

1

log t

∫ 1

1/t

λdNT (λ) = ω − lim
t→∞

1

log t
τ(χ( 1

t
,1](T )T ) = τω(T ).

This completes the proof of the first part of the theorem.

The proof of the second part is similar. Using the classical Karamata theorem we obtain
the following analogue of (8):

lim
r→∞

1

r
τ(T 1+r) = lim

β(u)

u
= lim

u→∞

1

u

∫ 1

e−u
ρdNT (ρ).
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Making the substitution u = log t on the right hand side we have by Proposition 4.3

lim
u→∞

1

u

∫ 1

e−u

ρdNT (ρ) = lim
t→∞

1

log t

∫ 1

1
t

λdNT (λ) = τω(T ) = lim
t→∞

1

log(1 + t)

∫ t

0
µs(T )ds.

�

We now deduce some corollaries of the discussion above. Retaining the notation as in the
previous theorem we let ω be a D2 -dilation and Pα -invariant, α > 1 state on L∞(R∗

+). Let

ω̃ = ω ◦ L . The assumption that 1
r ζ(T

1+ 1
r ) is bounded in r means that, by Theorem 4.5,

T ∈ Z1 = L1,∞ . Then by Theorem 4.11

ω̃ − lim
r→∞

1

r
ζ(T 1+ 1

r ) = τω(T ).

Consequently using (7) if either T ∈ Zp or if T ∈ Lp,∞, p > 1 we have the formulae

(9) ω̃ − lim
r→∞

1

r
ζ(T p+

1
r ) = ω̃ − lim

r→∞

1

r
τ(T p+1/r) = pω̃ − lim

pr→∞

1

pr
τ(T p(1+1/pr)) = pτω(T p)

where the last step uses dilation invariance of ω̃ , which is guaranteed by our choice of ω . The
equation (9) together with Theorem 4.11 tell us that if one of the limits in the previous equality

is true then so are the others. In particular, if limr→∞
1
r ζ(T

p+ 1
r ) exists, then T ∈ Zp and

lim
r→∞

1

r
ζ(T p+

1
r ) = p lim

t→∞

1

log(1 + t)

∫ t

0
µs(T

p)ds.

5. The heat semigroup formula

5.1. Asymptotics of the trace of the heat semigroup. Throughout this section T > 0.

For q ∈ R+ we define e−T
−q

as the operator that is zero on kerT and on ker T⊥ is defined in
the usual way by the functional calculus. We remark that if T > 0, T ∈ Zp for some p > 1

then e−tT
−q

is trace class for all t > 0. This is because if x ∈ E , where (E, ‖ · ‖E) is any
symmetric (or r.i.) space then

‖x‖E > ‖x∗(t)χ[0,s](t)‖E > x∗(s)‖χ[0,s]‖E = x∗(s)ϕ(s),

where ϕ(·) is the fundamental function of E . Consequently, x∗(s) 6 ‖x‖E/ϕ(s). For E =

Zp = L1,∞
p (see Corollary 4.7(ii)) the fundamental function is ϕ(s) = (s/log(1+ s))1/p Hence,

for every t > 0

µs(e
−tT−q

) = e−t/(µs(T ))q
6 e−tC(s/log(1+s))q/p

6 e−tCs
q/p−ǫ

for some C > 0 all 0 < p, q and 0 < ǫ < q/p . Thus τ(e−tT
−q) < ∞ for q > 0 (since ǫ > 0 is

arbitrary).

Theorem 5.1. (cf [6]) If T > 0 , T ∈ Zp , 1 6 p <∞ then, choosing ω to be DPM invariant
and ω̃ to be related with ω as in Remark 3.6, we have for q > 0

ω − lim
λ→∞

1

λ
τ(e−T

−qλ−q/p
) =

1

q
Γ(p/q)ω̃ − lim

r→∞

1

r
ζ(p+

1

r
) =

p

q
Γ(p/q)τω(T

p).

Proof. We have, using the Laplace transform,

T s =
1

Γ(s/q)

∫ ∞

0

ts/q−1e−tT
−q
dt.
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Then

Γ(s/q)ζ(s) = Γ(s/q)τ(T s) =

∫ ∞

0
ts/q−1τ(e−tT

−q
)dt.

We split this integral into two parts,
∫ 1
0 and

∫∞
1 and call the second integral R(r) where

s = p+ 1
r . Then

R(r) =

∫ ∞

1
tp/q+1/(qr)−1τ(e−tT

−q
)dt.

The integrand decays exponentially in t as t→ ∞ because T−q > ‖T q‖−11 so that

τ(e−tT
−q

) 6 τ(e−T
−q
e
− t−1

‖Tq‖ ).

Then we can conclude that R(r) is bounded independently of r and so limr→∞
1
rR(r) = 0.

For the other integral
∫ 1
0 t

p/q+1/(qr)−1τ(e−tT
−q

)dt we can make the substitution t = e−µq/p .
Then elementary calculus gives
∫ 1

0
tp/q+1/(qr)−1τ(e−tT

−q
)dt = −q/p

∫ 0

∞
e
−µ(1+ 1

pr
))
τ(e−e

−µq/pT−q
)dµ = q/p

∫ ∞

0
e
− µ

pr dβ(µ)

where β(µ) =
∫ µ
0 e

−vτ(e−e
−vq/pT−q

)dv . Hence we can now write

Γ(p/q +
1

rq
)ζ(p+

1

r
) = q/p

∫ ∞

0
e
− µ

pr dβ(µ) + R(r).

Then we have (remembering that the term 1
rR(r) has limit zero as r → ∞)

ω̃ − lim
r→∞

1

r
Γ(p/q +

1

pr
)ζ(p+

1

r
) = Γ(p/q)ω̃ − lim

r→∞

1

r
ζ(p+

1

r
)

= ω̃ − lim
r→∞

q

pr

∫ ∞

0
e−µ/prdβ(µ) = qω̃ − lim

r→∞

1

r

∫ ∞

0
e−µ/rdβ(µ)

where the last step uses the assumed dilation invariance of ω̃ . So

ω̃ − lim
r→∞

1

r
Γ(p/q +

1

pr
)ζ(p+

1

r
) = qω̃ − lim

r→∞

1

r

∫ ∞

0

e−
µ
r dβ(µ)

Now we are exactly in a position to use the weak*-Karamata theorem above to evaluate the
RHS. Indeed, we now conclude

ω̃ − lim
r→∞

1

r

∫ ∞

0

e−
µ
r dβ(µ) = ω̃ − lim

µ→∞

β(µ)

µ
.

We can summarise the preceding in the equation

(10) Γ(p/q)ω̃ − lim
r→∞

1

r
ζ(p+

1

r
) = qω̃ − lim

µ→∞

β(µ)

µ
.

Now make the change of variable λ = ev in the defining expression for β(µ) to obtain

β(µ)

µ
=

1

µ

∫ eµ

1
λ−2τ(e−λ

−q/pT−q
)dλ

Make the substitution µ = log t so the RHS becomes

1

log t

∫ t

1
λ−2τ(e−T

−qλ−q/p
)dλ = g1(t)
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This is the Cesaro mean of

g2(λ) =
1

λ
τ(e−T

−qλ−q/p
).

Thus as we chose ω ∈ L∞(R∗
+)∗ to be M invariant and ω̃ to be related to ω as in Remark

3.6 we have

ω̃ − lim
µ→∞

β(µ)

µ
= ω(g1) = ω(g2).

Then using (10), we obtain

Γ(p/q)ω̃ − lim
r→∞

1

r
ζ(p+

1

r
) = qω(g2) = qω − lim

λ→∞

1

λ
τ(e−T

−qλ−q/p
)

Thus by (9) we obtain the statement of the theorem:

Γ(p/q)ω̃ − lim
r→∞

1

r
ζ(p+

1

r
) = qω − lim

λ→∞

1

λ
τ(e−T

−qλ−q/p
) = pΓ(p/q)τω(T

p).

�

5.2. The Lp,∞ -case and the ’small’ ideal. As T ∈ Lp,∞ means that µt(T )t1/p < C < ∞
and µt(T

p) = µt(T )p we conclude that µt(T
p)t < Cp <∞. That is T ∈ Lp,∞ =⇒ S = T p ∈ I

where I is the so called ‘small’ subideal of L1,∞ identified in [6]. Recall that I is specified
by the condition on the singular values of T > 0, T ∈ L1,∞ : µs(T ) 6 C/s for some constant
C > 0. In subsection 4.1 [6] we proved the following result by a direct argument that avoids
the use of the zeta function. If ω is M invariant and satisfies conditions (1),(2),(3) of Theorem
3.4 and T ∈ I then

ω − lim
λ→∞

λ−1τ(e−λ
−2T−2

) = Γ(3/2)τω(T ).

We may now apply this stronger result of [6] to operators S ∈ I where S = T p and T ∈ Lp,∞

to obtain the equality

ω − lim
λ→∞

λ−1τ(e−λ
−2S−2

) = Γ(3/2)τω(S).

Hence we obtain the following result

(11) If T ∈ Lp,∞ then ω − lim
λ→∞

λ−1τ(e−λ
−2T−2p

) = Γ(3/2)τω(T
p).

Note that we have obtained this result under weaker conditions on ω than the more general
Theorem 5.1 where T ∈ Zp . It would be interesting to understand an example in noncommu-
tative geometry where Zp arises naturally. We remark that in classical geometric examples
such as differential operators on manifolds it is Lp,∞ p > 1 and the ‘small ideal’ I that arise
naturally.

A further idea motivated by the geometric case is that one may argue the other way, from
a knowledge of the asymptotics of the trace of the heat semigroup, to information on the

zeta function. Thus let us assume that the trace of the heat operator τ(e−tT
−2

) exists for all
t > 0 and in addition has an asymptotic expansion in inverse powers of t as t → 0. These
assumptions hold for Dirac Laplacians for example in classical geometry and it is well known
in this case that one can infer from the asymptotic expansion the nature of the first singularity
of ζ(s) (as Re s decreases) from the leading term in inverse powers of t. We now explain this
in some detail.
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Thus assume that τ(e−tT
−2

) = Ct−p/2 + lower order powers of t−1 as t → 0. We recall

that as in Theorem 5.1 τ(e−tT
−2

) → 0 exponentially as t→ ∞. We introduce

(12) ζ1(s) =
1

Γ(s/2)

∫ 1

0
ts/2−1τ(e−tT

−2
)dt, s > p

and

ζ2(s) =
1

Γ(s/2)

∫ ∞

1
ts/2−1τ(e−tT

−2
)dt, s > 0.

Then ζ2 is analytic in a neighborhood of s = p and we may write ζ(s) = τ(T s) := ζ1(s)+ζ2(s)
for Re s > p . Then the only contribution to the singularity at s = p comes from ζ1 . Now

1

Γ(s/2)

∫ 1

0

ts/2−1Ct−p/2dt =
C

Γ(s/2)(s/2− p/2)

and thus substitution in (12) gives

ζ(s) = τ(T s) =
C

Γ(s/2)(s/2− p/2)
+K(s)

where K(s) is holomorphic for s = p . (We note that the lower order terms in the asymptotic
expansion do contribute to the term K(s) but these contributions are analytic near s =
p .) Thus we may take the limit lims→p(s − p)ζ(s) and only the first term contributes as
lims→p(s− p)K(s) = 0.

Proposition 5.2. If τ(e−tT
−2

) has an asymptotic expansion in inverse powers of t with the

leading term being C/tp/2 for some constant C then T ∈ Zp and

lim
s→p

(s− p)τ(T s) = pτω(T p)

for any D2 (and M ) invariant ω .

6. Application to spectral triples

Throughout this Section the following assumptions hold. We let D be an unbounded self
adjoint densely defined operator on H affiliated to N (this amounts to (1 +D2)−1 ∈ N ). We
suppose that A is a *-algebra in N consisting of operators a such that [D, a] is bounded and
refer to the triple (D,A,N ) as a semifinite spectral triple.

Denote for brevity Mψ := M(ψ)(N , τ) with ψ as in Section 4, satisfying (2). As in
Corollary 4.7, we consider the following p-convexification of Mψ

Mψ,p := {T ∈ N+ : ‖T‖ψ,p = sup
1<u<∞

(
∫ u
0 µt(T )pdt)1/p

ψ1/p(u)
<∞}, p > 1.

We let τω be a Dixmier trace on Mψ corresponding to a suitable singular state ω . Suppose
that (1 + D2)−p/2 ∈ Mψ , or equivalently that (1 + D2)−1/2 ∈ Mψ,p . In applications of

noncommutative geometry the functional ϕω on A given by ϕω(a) = τω(a(1 + D2)−p/2)
plays a key role. In particular it is of interest to know if this functional is a trace on A.
In [10] this question was answered in the affirmative for the case of (1 + D2)−1/2 ∈ Lp,∞ .
Their proof generalizes to our setting. In particular, it holds under the weaker assumption
(1 + D2)−1/2 ∈ Zp .
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Theorem 6.1. Under the immediately preceding hypotheses we have

ϕω(ab) = ϕω(ba) a, b ∈ A.

The proof is an extension of the approach in [10]. We need four preliminary facts. Some
may be proved in a similar way to the corresponding results in [10].

Lemma 6.2. Given a spectral triple (D,A,N ) we have
(i) For a, b ∈ N the Hölder inequality

τω(ab) 6 τω(|a|p)1/pτ(|b|q)1/q

for p, q > 1 , 1
p + 1

q = 1 , holds.

(ii) For any r with 0 < r < 1 and a ∈ A the operator [(1+D2)r/2, a] is bounded and satisfies

||[(1 + D2)r/2, a]|| 6 C||[D, a]||

where the constant C > 0 does not depend on a.
(iii) Let T ∈ Mψ and f(t) = µt(T ) so that f is a bounded decreasing function on (0,∞) from
M(ψ) , then fα ∈ L1(R+) for every α > 1 .

(iv) The statement of the theorem (for (1 + D2)−p/2 ∈ Mψ ) is implied by

τω(|[(1 + D2)−p/2, a]|) = 0 for all a ∈ A.

Proof. (i) We have by [11, Proposition 1.1] and by the Hölder inequality for function spaces
∫ t

0

µs(ab)ds 6

∫ t

0

µs(a)µs(b)ds 6 (

∫ t

0

µs(a)
pds)1/p(

∫ t

0

µs(b)
qds)1/q

Dividing by ψ(t) and applying the functional ω we get

τω(ab) 6 ω





(∫ t
0 µs(a)

pds

ψ(t)

)1/p(∫ t
0 µs(b)

qds

ψ(t)

)1/q




6 ω

(∫ t
0 µs(a)

pds

ψ(t)

)1/p

ω

(∫ t
0 µs(b)

qds

ψ(t)

)1/q

= τω(|a|p)1/pτω(|b|q)1/q

using Hölder inequality for states on abelian C∗ -algebras. We omit the proof for p = 1,
q = ∞.

(ii) If N is taken in its left regular representation, then the claim follows immediately from
[38, Theorem 3.1]. The general case is done in [37, Theorem 2.4.3]. Note, that the assumption
made in [10] that D has a bounded inverse is now redundant.

(iii) Using the inequalities preceding Lemma 4.3, we have for any β > 1 f(t) 6 C′ 1
t1/β for

some C′ > 0 and all sufficiently large t’s. Since α > 1 is given, we can choose β so that
α
β = γ > 1, and so fα(t) 6 C′/tγ which gives the required result.

(iv) Let T = (1+D2)−p/2 and a, b ∈ A. Then we know that for T ′ ∈ Mψ τω(T ′a) = τω(aT ′)
(see [13] or [6, Lemma 3.2(i)]) and hence

ϕω([a, b]) = τω(Tab− aTb) = τω([T, a]b).

Then
|τω([T, a]b)| 6 τω(|[T, a]|)||b||) = 0
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with the last equality is implied by the hypothesis of the lemma. �

Choose r with 0 < r < 1 such that k = p/r ∈ N . Following [10], we see that the proof of
the theorem rests on the identity (for k ∈ N)

[a, (1 + D2)−kr/2] =

k∑

j=1

(1 + D2)−jr/2[(1 + D2)r/2, a](1 + D2)(j−k−1)r/2

where we are using part (ii) of the Lemma to give boundedness of [(1 + D2)r/2, a] . We now
apply the previous identity to obtain:

τω(|[a, (1 + D2)−p/2]|) = τω(|[a, (1 + D2)−kr/2]|)

6

k∑

j=1

τω[|(1 + D2)−jr/2[(1 + D2)r/2, a](1 + D2)(j−k−1)r/2|]

Hence choosing pj = 2p
r(2j−1)

, qj = 2p
r(2k−2j+1)

and applying part (i) of the Lemma,

τω(|[a, (1+D2)−p]|) 6 ||[(1+D2)r/2, a]||
k∑

j=1

(τω((1+D2)−pjjr/2))1/pj(τω((1+D2)(j−k−1)qjr/2))1/qj

The exponents pjjr/2 and (j−k−1)qjr/2 are larger than p so using part (iii) of the Lemma,
the Dixmier trace in the last two terms vanishes. Now use part (iv) of the Lemma to complete
the proof of the Theorem.
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