
ESI The Erwin Schrödinger International Boltzmanngasse 9
Institute for Mathematical Physics A-1090 Wien, Austria

On the Complexity of Real Solving
of Bivariate Polynomial Systems

Ioannis Z. Emiris

Elias P. Tsigaridas

Vienna, Preprint ESI 1890 (2007) February 9, 2007

Supported by the Austrian Federal Ministry of Education, Science and Culture
Available via http://www.esi.ac.at

On the complexity of real solving of bivariate

polynomial systems

Ioannis Z. Emiris

National Kapodistrian University of Athens, Greece

Elias P. Tsigaridas

INRIA Sophia-Antipolis, France

December 2006

Abstract

In this paper we present algorithmic and complexity results for polyno-

mial sign evaluation over two real algebraic numbers, and for real solving

of bivariate polynomial systems. Our main tool is signed polynomial re-

mainder sequences; we exploit recent advances in univariate root isolation

as well as multipoint evaluation techniques.

Keywords: Real algebraic number, root isolation, bit complexity, Sturm

sequence.

AMS Subject Classification: 12D10: Polynomials: Location of zeros.

14P05: Real algebraic sets.

1 Introduction

The problem of algebraic system solving is fundamental. However, most of
the algorithms treat the general case or consider solutions over an algebraically
closed field. We focus on real solving in the bivariate case in order to provide pre-
cise complexity bounds and compare different algorithms. The problem is closely
related to computing the topology of a plane real algebraic curve and other im-
portant operations in non-linear computational geometry and Computer-Aided
Geometric Design. Another field of application is quantifier elimination.

Our approach is based on polynomial sign evaluation over two real algebraic
numbers. Our main tool is signed polynomial remainder sequences; we exploit
recent advances in univariate root isolation and we adapt standard multipoint
evaluation techniques. Currently, we are working on the implementation of these
methods. Another direction for future work is to exploit the fact that several of
our polynomials are expressed in terms of determinants.

1

In what follows OB means bit complexity and the ÕB-notation means that
we ignore polylogarithmic factors. For a polynomial f ∈ Z[X], deg(f) denotes
its total degree, while degX(f) denotes its degree with respect to X. By L (f)
we denote an upper bound on the bit-size of the coefficients of f (including a
bit for the sign). For a ∈ Q, L (a) is the maximum bit-size of the numerator
and the denominator.

Let M (τ) denote the bit complexity of multiplying two integers of bit-size at
most τ and M (d, τ) denote the bit complexity of multiplying two univariate poly-
nomials of degrees bounded by d and coefficient bit-size at most τ . Using FFT

[3, 25, 27], the complexities of these operations are M (τ) = OB(τ lgc1 τ) and
M (d, τ) = OB(dτ lgc2 (dτ)) for suitable constants c1, c2. So we get M (d, τ) =

ÕB(dτ). Similarly, we can compute the remainder f1 mod f2 in ÕB(dτ) if d
and τ bound the degree and bit-size of both f1, f2.

The paper is organized as follows. The next section introduces our main
tools. Section 3 focuses on multipoint evaluation of polynomials. The follow-
ing section extends the discussion to several variables. Section 5 proposes two
different approaches for the real solving of bivariate systems. The appendix
contains some background on fan-in/fan-out.

This work has been continued and extended in [8], where the implementation
of our algorithms is discussed and experimental results shown.

2 Preliminaries

We recall the main ingredients related to signed polynomial remainder sequences.
Let f =

∑p
k=0 akx

k, g =
∑q

k=0 bkx
k ∈ Z[x] where deg(f) = p ≥ q = deg(g) and

L (f) ,L (g) ≤ τ . We denote by rem (f, g) and quo (f, g) the remainder and the
quotient, respectively, of the Euclidean division of f by g, in Q[x].

Definition 2.1 [15] The signed polynomial remainder sequence of f and g,
denoted by sPRS(f, g), is the polynomial sequence

R0 = f, R1 = g, R2 = − rem (f, g) , . . . , Rk = − rem (Rk−2, Rk−1)

where rem (Rk−1, Rk) = 0. The quotient sequence of f and g is the polyno-
mial sequence {Qi}0≤i≤k, where Qi = quo (Ri, Ri+1) and the quotient boot is
(Q0, Q1, . . . , Qk−1, Rk).

There is a huge bibliography on signed polynomial remainder sequences (c.f
[2, 25, 27] and references therein). The work [26] presents a unified approach
to subresultants, while [10] studied the subresultants in arbitrary commutative
rings. For Sturm-Habicht (or Sylvester-Habicht) sequences the reader may refer
to [13] (see also [2, 15, 16]).

In this paper we consider the Sturm-Habicht sequence of f and g, denoted
SR(f, g), which contains polynomials that are proportional to the polynomials
in sPRS(f, g). Sturm-Habicht sequences achieve better bounds on the bit-size
of the coefficients and have good specialization properties, since they are defined
through determinants.

2

Theorem 2.2 [19, 16] We can compute SR(f, g) in ÕB(p2qτ). Moreover,
L (SRj(f, g)) = O((p+ q)τ).

Theorem 2.3 [15, 19] We can compute the quotient boot of SRQ(f, g), any
polynomial in the sequence SR(f, g), the resultant, and the gcd of f and g in

ÕB(pqτ). Moreover, L
(
SRQj(f, g)

)
= O(pτ).

Theorem 2.4 [15, 19] Consider polynomials f, g with degrees p, q respectively.
We can evaluate SR(f, g) over a number a ∈ Q ∪ {±∞}, such that L (a) = σ,

in ÕB(qpτ + q2σ + p2σ). If the sign of f(a) is known, then the bound becomes

in ÕB(qpτ + q2σ).

Proof. Here, SR(f, g; a) denotes the evaluated sequence. Notice that SRq+1 =
f and SRq = g. Let us forget for the moment SRq+1 . We may assume that
SRq−1 is computed, since the cost of computing one element of SR is the same
as that of computing SRQ (Th. 2.3).

We follow [15]. For two polynomials A,B of degree bounded by D and
bit-size bounded by L, we can compute SR(A,B)(a), where L (a) ≤ L, in

Õ(M (D,L)). In our case, D = O(q) and L = O(max{pτ, qσ}), thus the total

cost is ÕB(qmax{pτ, qσ}).

The last step is to evaluate SRq+1(a) = f(a), in ÕB(pmax{τ, pσ}). Thus,

the whole procedure has complexity ÕB(qmax{pτ, qσ}+ pmax{τ, pσ}). 2

Corollary 2.5 In the case where we do not know the ordering of p and q the
bound of Th. 2.4 becomes

ÕB

(
min{p, q}max{p, q}τ + min{p, q}2σ + max{p, q}2σ

)

The last term is omitted if f is already evaluated on the given point.

The output of the algorithm is an ordered list of the real algebraic numbers
that are roots of f , in isolating interval representation, where no two intervals
share a common endpoint; the list also contains the corresponding multiplicities.
Thus, if γ is a real root of f then its representation is γ ∼= (fred, [a, b]), where
fred is the square-free part of f and [a, b] is an isolating interval. Notice that
the endpoints of the isolating intervals have bit-size O(pτf) and that L (fred) =
O(p + τf).

Theorem 2.6 [11, 9] (construct) Let f ∈ Z[x] have degree p and bit-size τf .
We can compute the isolating interval representation of the real roots of f and
compute their multiplicities in ÕB(p6 + p4τ2

f).

There are some observations leading to the next result on evaluating se-
quences. First, it is not needed to evaluate f over the end points of the isolating
interval. We can assume that we know this from the root isolation process. Sec-
ond, when q > p, the first elements of SR(f, g) are f, g,−f,−(g mod (−f)) . . . ,

3

thus in the evaluated sequence f(a), g(a),−f(a), . . . there is one sign variation
irrespective of the sign of g(a). Therefore, there is no need to evaluate g over
the endpoints.

Corollary 2.7 [11] (sign at 1) Given a real algebraic number α ∼= (f, [a, b]),
such that deg(f) = p, L (f) = τf , L (a) = L (b) = O(pτf), and a polynomial
g ∈ Z[x] such that deg(g) = q and L (g) = τg we can compute sign g(α), which

we denote by sign at 1(g, α) in ÕB(pqmax{τf , τg}+ pmin{p, q}2τf).

Proof. As explained above, there is no need to evaluate the polynomial of the
biggest degree, i.e the first (and the second if p < q) of SR(f, g) over a and b.
Thus the complexity is that of Cor. 2.5 without the last summand. Hence we
get

ÕB(min{p, q}max{p, q}max{τf , τg}+ min{p, q}2pτf)

It is known that sign(g(α)) = VAR(SR(f, g)(a1)) − VAR(SR(f, g)(a2)). Thus
the complexity of the operation is two times the complexity of the evaluation
of the sequence over the endpoints of the isolating interval. 2

Theorem 2.8 (Davenport-Mahler-Mignotte) [23] Let A ∈ Z[X], with deg(A) =
d and L (A) = τ , where A(0) 6= 0. Let Ω be any set of k couples of indices
(i, j) such that 1 ≤ i < j ≤ d and let the non-zero (complex) roots of A be
0 < |γ1| ≤ |γ2| ≤ · · · ≤ |γd|. Then

2kM(A)k ≥
∏

(i,j)∈Ω

|γi − γj | ≥ 2k−d(d−1)
2 M(A)

1−d−k
√

disc(A).

If we count the bit-size of all isolating intervals, we end up with ÕB(p2τf)

or ÕB(rpτf), since there are r+1 ≤ p of them, where r is number of real roots.
However, we can do better.

Corollary 2.9 (Aggregate separation) The sum of the bit-size of all isolat-

ing points of the real roots of f is ÕB(p2 + pτf).

Proof. Notice that in the worst case the isolating numbers is of magnitude
∆i = 1

2 |αi−αci
|, where αci

is the complex root that is closest to αi. Hence the
separation points sum up to 1

2

∑r
i=1 ∆i and thus the bit-size of all of them is

bounded by

lg

r∏

i=1

∆i

Using the Davenport-Mahler-Mignotte bound (Th. 2.8) one can prove [23] that

r∏

i=1

∆i ≥ 2−O(p2+pτf)

We conclude that the overall bit-size of the output is ÕB(p2 + pτf) in the worst
case. 2

4

3 Multipoint evaluation

In this section we obtain complexity bounds on evaluating a polynomial over a
set of algebraic numbers, which have the same defining polynomial. We shall
give more than one algorithm, where we improve the direct method to a more
efficient one.

The central question is to evaluate g(x) over all real roots of f(x). Recall
that the isolating points of f are of bit-size pτf . In order to compute the sign
g over the real root of f is suffices to compute the evaluation of SR(f, g) over
all the endpoints. The obvious technique is to apply Cor. 2.7 as many as r ≤ p
times, where r is the number of real roots of f . But we may do better.

Lemma 3.1 Let f, g ∈ Z[x], such that deg(f) = p, deg(g) = q, L (f) =
τf ,L (g) = τg and τ = max{τf , τg}. Assume that we have isolated the r real
roots of f and we know the values and the signs of f over the endpoints of the
isolating intervals. Then, we can compute the sign of g evaluated over all r real
roots of f in ÕB(p2qτ + p2 min{p, q}2).

Proof. Cor. 2.9 states that all isolating points together have bit-sizeO(p2+pτf).
Let sj be the bit-size of the j-th endpoint, where 0 ≤ j ≤ r ≤ p. The evaluation
of the remainder sequence over this endpoint, from cor 2.5, has complexity

ÕB(pqτ + min{p, q}2sj) (1)

In order to compute the overall cost, we should sum over all the isolating points,
i.e

ÕB(pq
∑

j

τ + min{p, q}2
∑

j

sj2),

Since the number of roots is r the first summand is ÕB(rpqτ). Using Cor. 2.9

the second summand becomes ÕB(p2 min{p, q}2 + pmin{p, q}2τf). Hence, the

overall complexity is ÕB(rpqτ + p2 min{p, q}2 + pmin{p, q}2τf). 2

The above proof corresponds to an algorithm that evaluates the quotient
boot over each algebraic number, which reduces to evaluating the quotient boot
over all isolating points.

An alternative would be to evaluate each remainder over the entire set of ra-
tional numbers and then combine these values in order to find the sign variations
per algebraic number. This can be efficiently done by means of fan-in/fan-out,
which allows for the fast evaluation of a single polynomial over a set of rational
numbers. To simplify the discussion we focus on the only relevant case, namely
p ≤ q.

Lemma 3.2 Let p ≤ q ∈ N∗. Take gi ∈ Z[x], where i takes ≤ p values,
deg(gi) = qi ≤ p, and L (gi) ≤ τg. Consider r ≤ p rational numbers of aggregate
bit-size S = O(p2 + pτf). Then, we can apply fan-in/fan-out to determine the

sign of all gi over all r numbers in ÕB(p2τg + p3S).

5

Proof. The fan-in process is dominated by that of fan-out. The number of
points to evaluate is k = r, the bit-size of the polynomial to evaluate is h = τg
and its degree is d ≤ p.

We apply Lem. 5.6 and 5.7. If qi ≥ r, then the complexity is ÕB(rτg +

rS(qi − r) + r2S), otherwise, it is ÕB(rτg + rSqi). When we sum over the O(p)
values of i, we obtain O(prτg) from the first term of each bound. The other
terms are all bounded by O(rSp), hence they sum up to O(p2rS). Overall, the

complexity is ÕB(prτg + p2rS). 2

4 Multivariate polynomials

We now prove some results concerning the computations with signed polyno-
mial remainder sequence with multivariate polynomials. For this we use binary
segmentation [19].

Let f, g ∈ (Z[y1, . . . , yk])[x] such that degx(f) = p ≥ q = degx(g), degyi
(f) ≤

di and degyi
(g) ≤ di. Moreover, let d =

∏k
i=1 di and L (f) ,L (g) ≤ τ . In the

rest of section, SR(f, g) implies the signed polynomial remainder sequence of f
and g with respect to x.

The yi-degree of the resultant of f and g, and thus of every polynomial in
the sequence SR(f, g), is bounded by degyi

(res(f, g)) ≤ (p+ q)di, thus the ring
homomorphism ψ : Z[y1, . . . , yk]→ Z[y] such that

y1 7→ y,

y2 7→ y(p+q)d1 ,

y3 7→ y(p+q)2d1d2 ,

...

yk 7→ y(p+q)k−1d1···dk−1

allows us to decode res(ψ(f), ψ(g)) = ψ(res(f, g)) in order to obtain res(f, g).
The same holds for every polynomial in SR(f, g).

Polynomials ψ(f), ψ(g) ∈ (Z[y])[x] have y−degree lower than d = (p +
q)k−1d1 · · ·dk. This is so, since in worst case f or g may contain

yd1

1 yd2

2 . . . ydk

k ,

thus ψ(f) or ψ(g) contain monomial

yd1 y(p+q)d1d2 y(p+q)2d1d2d3 . . . y(p+q)k−1d1d2...dk .

Thus, the degree in y is bounded by

(
1 + (p+ q) + (p+ q)2 + · · · (p+ q)k−1

)
d1d2 . . . dk.

6

Notice that

k−1∑

i=0

Di =
Dk − 1

D − 1
≤
Dk−1 − 1

D

1− 1
D

≤
Dk−1

1− 1
D

≤
4

3
Dk−1,

thus the y−degree is bounded by (p + q)k−1d1d2 · · ·dk = d(p+ q)k−1 and that
of their resultant is degy(res(ψ(f), ψ(g))) < (p+ q)d = (p+ q)kd1 · · ·dk.

Theorem 4.1 The computation of SR(f, g) has complexity ÕB(q(p+q)k+2d1d2 · · ·dk τ).

Proof. Each polynomial in the SR(f, g) has coefficients of bit-size bounded
2c(p+q)τ , for a suitable constant c and by assuming that τ > lg(d). We consider
the map χ : Z[y] 7→ Z, such that

y 7→ 2⌈c(p+q)τ⌉ .

Let φ = ψ ◦ χ : Z[y1, y2 . . . , yk] → Z. Then L (φ(f)) ,L (φ(g)) ≤ c (p + q)k d.

Using Th. 2.2 we conclude that the complexity is ÕB(q(p+ q)k+2dτ). 2

Theorem 4.2 [19] The computation of SRQ(f, g) any polynomial in SR(f, g),

res(f, g) have complexity ÕB(q(p+ q)k+1d1d2 · · ·dk τ).

Proof. We apply the same map as in the proof of the previous theorem and we
use Th. 2.3. 2

Theorem 4.3 The evaluation of SR(f, g) over a rational number a, i.e SR(f, g ; a),

where L (a) = σ has complexity ÕB(q(p + q)k+1dmax{τ, σ}).

Proof. First we compute the sequence SRQ(f, g) in ÕB(q(p+q)k+1d1d2 · · ·dk τ)
(Th. 4.2). Now we need to evaluate SRQ(f, g) on a. We shall use binary seg-
mentation but, first, we bound the bit-size of the resulting polynomials.

Notice that the polynomials in SRj(f, g) have total degree in y1, y2, . . . , yk

bound by (p + q)
∑k

i=1 di and coefficient bit-size bounded by (p + q)τ . Since
with respect to x the polynomials in SR(f, g) have degree bounded by O(p)
substitution x = a will yield numbers of bit-size O(pσ). Thus after the evalua-
tion we obtain polynomials in Z[y1, . . . , yk] with coefficient bit-size bounded by
max{(p+ q)τ, pσ} ≤ (p + q)max{τ, σ}.

Consider map χ : Z[y] → Z, such that y 7→ 2⌈c(p+q) max{τ,σ}⌉, for a suit-
able constant c. We apply the map φ = ψ ◦ χ to f and g. Notice that
L (φ(f)) ,L (φ(g)) ≤ cd(p + q)k max{τ, σ}. Using Thm. 2.4 we conclude that

the evaluation costs ÕB(q(p+ q)k+1dmax{τ, σ}). 2

Using the previous theorems we can obtain the following corollaries for the
bivariate case. Let f, g ∈ (Z[y])[x], such that degx(f) = p ≥ q = degx(g),
degy(f), degy(g) ≤ d and L (f) ,L (g) ≤ τ .

7

Corollary 4.4 We can compute SR(f, g) in ÕB(max{p, q}3qdτ). For any poly-
nomial in the sequence, denoted SRj(f, g), it holds that degx(SRj(f, g)) =
O(p), degy(SRj(f, g)) ≤ max{p, q}d and L (SRj(f, g)) = O(pτ).

Corollary 4.5 We can compute SRQ(f, g), any polynomial in SR(f, g), and

res(f, g) in ÕB(qmax{p, q}2dτ).

Corollary 4.6 We can compute SR(f, g ; a), where L (a) = σ, in ÕB(qmax{p, q}2dmax{τ, σ}).
For the polynomials in the evaluated sequence, denoted by SRj(f, g ; a) ∈ Z[y], it
holds that degy(SRj(f, g ; a)) ≤ max{p, q}d, and L (SRj(f, g ; a)) = O(max{p, q}max{τ, σ}).

4.1 Bivariate sign evaluation

This section focuses on computing the sign in {−1, 0, 1} of a bivariate polynomial
over one or more points in Q2.

Algorithm 1: sign at(F, α, β)

Input: F ∈ Z[x, y], α∼= (A, I1 = [a1, a2]), β ∼= (B, I2 = [b1, b2])
Output: sign(F (α, β))
compute SRQx(A, F)1

V1 ← ∅2

L1 ← SRx(A, F ; a1)3

foreach f ∈ L1 do V1 ← add(V1, sign at(f, β))4

V2 ← ∅5

L2 ← SRx(A, F ; a2)6

foreach f ∈ L2 do V2 ← add(V2, sign at(f, β))7

return (var(V1) − var(V2)) · sign(A′(α))8

We can compute the sign of a bivariate integer polynomial evaluated over
two real algebraic numbers with an algorithm similar to the univariate case. Let
F ∈ Z[x, y], α ∼= (A(x), I1) and β ∼= (B(X), I2), where I1 = [a1, a2], I2 = [b1, b2].
We wish to compute the sign of F (α, β). We denote the algorithm for this
computation by sign at(F, α, β).

We consider polynomial F ∈ (Z[y])[x]) and wish to compute its sign when
evaluated over α. This means (see [11, 27]) that we have to obtain the sign
variations of SR(A, F ; a1), respectively SR(A, F ; a2) and subtract them. After
we evaluate the sequence on a1, resp. a2, we obtain polynomials in Z[y]. In order
to obtain the sign variations, we must compute the sign of these polynomials
over β. The pseudo-code appears as Alg. 1.

Polynomial A is univariate and we assume that we already know its values
on a1, a2, from the real root isolation process. Similarly, we know the values of
B over b1, b2.

8

Theorem 4.7 (Bivariate sign at) Let F ∈ Z[x, y] such that degx(F) = degy(F) =
n1 and L (F) = σ and two real algebraic numbers α ∼= (A, Iα) = [a1, a2],
β ∼= (B, Iβ) = [b1, b2] where A,B ∈ Z[X], deg(A) = deg(B) = n2, L (A) =
L (B) = σ and Iα, Iβ ∈ Q2. Then, one computes the sign of F evaluated over α

and β, i.e sign at(F, α, β), using Alg. 1 with complexity ÕB(n3
1 n

3
2 σ), assuming

that n1 ≤ n2.

Proof. First, we compute SRQx(A, F) in order to help us evaluate the sequence
SR(A, F) on the endpoints of I1. The complexity shall be dominated by that
of evaluating the sequence.

We evaluate SR(A, F) on a1 (Line 3 in Alg. 1). The first polynomial in
the sequence is A, but there is no need to consider it, since we already know
its value on a1. This computation costs ÕB(n2

1 n
3
2 σ) by applying Cor. 4.6 with

q = n1, p = n2, d = n1, τ = σ, and σ = n2σ, where the latter corresponds to
the bit-size of the endpoints.

After the evaluation we obtain a list L1, which contains O(n1) polynomials
in Z[y], of degrees bounded by O(n1n2) and coefficient bit-size bounded by
O(n1n2σ). To see why this is the coefficient bit-size, notice that the polynomials
in the sequence are of degrees O(n1) with respect to x and of coefficient bit-
size O(n2σ). Thus, after we evaluate on a1 the coefficient bit-size becomes
O(n1n2σ).

For each polynomial in L1 we compute its sign over β (Line 4 in Alg. 1) and

count the sign variations. Each sign determination costs ÕB(n2
1n

3
2σ + n3

2σ) =

ÕB(n2
1n

3
2σ). To obtain this, apply Cor. 2.7 with p = n2, q = n1n2, τf = σ,

σ = n1n2σ. Thus all the sign evaluations cost ÕB(n3
1n

3
2σ).

We do the same for the other endpoint of I1 and we subtract the sign varia-
tions. Notice that sign(A′(α)) = sign(A(b1)−A(a1)), which would cost ÕB(n3

2τ)
to obtain; but it is known in advance from the real root isolation process that
constructed α.

We conclude that the overall complexity of the algorithm is ÕB(n3
1 n

3
2 σ). 2

We extend the previous theorem to evaluating a bivariate polynomial over a
sequence of algebraic numbers defined by the same polynomial. This constitutes
our first approach to evaluating a bivariate polynomial over a sequence of pairs
of algebraic numbers.

Corollary 4.8 Consider the hypotheses of Thm. 4.7 and the problem of deter-
mining the signs of F (α, β0), . . . , F (α, βr−1), where βi

∼= (B, Ii) = [bi1, bi2] and
the number of real roots of B is r ≤ n2. Then, the bit complexity for determining
these r signs is ÕB(n3

1n
4
2σ), by direct application of Thm. 4.7.

A second approach to determining the signs of F (α, β0), . . . , F (α, βr−1),
where βi are all real roots of B ∈ Z[x], can be based upon Lem. 3.1. But
the most efficient approach is based on fan-in/fan-out:

9

Theorem 4.9 Consider determining the signs of F (α, β0), . . . , F (α, βr−1), where

βi
∼= (B, Ii) = [bi1, bi2] and

∑
iL (bi) = S = ÕB(n2σ). In addition, the number

of real roots of B is r ≤ n2. Then, the bit complexity is ÕB(n2
1n

3
2σ + n1n

4
2σ),

by using fan-in/fan-out through Lem. 3.2.

Proof. We follow Alg. 1 supporting Thm. 4.7. Computing the sequence
SRQ(f, g) and the values SR(f, g, a1) have complexity ÕB(n2

1n
3
2σ), hence they

are dominated.
The main difference from the proof of Thm. 4.7 is how to evaluate the list

L1 of O(n1) polynomials in Z[y], of degrees bounded by O(n1n2) and coefficient
bit-size bounded by O(n1n2σ). For each polynomial in L1 we compute its signs
when evaluated over all βi by using Lem. 3.2. The aggregate bit-size of the
isolating points of the βi is S = ÕB(n2σ). In the lemma’s statement, we also
set r ≤ p = min{p, q} = n2, q ≤ n1n2, τf = σ, τg = τ = n1n2σ, and obtain

ÕB(n1n
3
2σ + n4

2σ) = ÕB((n1 + n2)n
3
2σ).

The rest of the steps are as in the analysis supporting Thm. 4.7. 2

5 Algorithms for real solving

This section presents two algorithms for the real solving of bivariate systems.
Consider the following system:






F =
∑

1≤i≤d

∑

1≤j≤d

ai,jx
iyj = 0

G =
∑

1≤i≤d

∑

1≤j≤d

di,jx
iyj = 0

(2)

We assume that F,G ∈ Z[x, y] are relatively prime and that deg(F) =
deg(G) = n and L (F) = L (G) = σ. The main idea behind our algorithms is to
project the roots on the x and y axes, to compute the coordinates of the real
solutions and somehow to match them. The difference between the algorithms
is the way they match the solutions. To project we use resultants and signed
polynomial remainder sequences. The output of the algorithms is a list with
pairs of real algebraic numbers and, if possible, the multiplicities of the solutions.

5.1 The mrur solve algorithm

The input of the algorithm are the two integer polynomials of the system (2).
Notice that mrur solve assumes that the polynomials are in generic position
i.e no two distinct roots have the same x or y-coordinate. This assumption is
without loss of generality since we can always put the system in such position
by applying a shear transformation (X, Y) 7→ (X + aY, Y), where a is either a
random number or computed deterministically [12, 22].

The algorithm is called mrur solve, after modified RUR. We represent
the ordinate of a solution in a rational univariate representation in terms of

10

Algorithm 2: mrur solve (F,G)

Input: F,G ∈ Z[X, Y] such that they are in generic position
Output: The real solutions of the system F = G = 0

SR← SRy(F,G)1

/* Projection on the X axis */

Rx ← resy(F,G)2

Px,Mx ← construct(Rx)3

/* Projection on the Y axis */

Ry ← resx(F,G)4

Py,My ← construct(Ry)5

I ← intermediate points(Py)6

/* Consider the principal subresultant coefficients and

compute the roots of Rx that make them vanish */

K ← compute k(SR, Px)7

Q← ∅8

/* Matching the solutions */

foreach α ∈ Px do9

β ← find(α,K, Py, I)10

Q← add(Q, {α, β})11

return Q12

11

the abscissa. The RUR (Rational Univariate Representation) technique can be
generalized to polynomial systems of many variables [4, 20, 5, 21, 2], and it is a
generalization of the primitive element computation [24] and first presented by
Kronecker.

The algorithm is similar to [14, 12], which refers to the closely related prob-
lem of the topology of a plane real algebraic curve. A crucial step in their
algorithm is the real solving of a bivariate polynomial system. However, notice
that their algorithm stops at the rational univariate representation of the ordi-
nates. In many cases this is sufficient, but the representation of the ordinates is
implicit. If we want to perform computations with these numbers, e.g compare
them, then this representation is not sufficient.

We choose an alternative way, so that the output of the algorithm to be a
list of pairs of real algebraic numbers, by modifying the algorithm of [14, 12]
and that is why we name the algorithm modified RUR.

Another important difference between mrur solve and the algorithm of
[14, 12] is that they represent the real algebraic numbers using Thom’s encoding
[6], while we choose the isolating interval representation. The complexity of their

algorithm is ÕB(N16), where N = max{n, σ}.

5.1.1 The analysis of mrur solve

The pseudo-code of mrur solve is presented in Alg. 2. Roughly speaking the
algorithm goes like this: We project on the X axis (Lines 2 and 3) and on the
Y axis (Lines 4 and 5). Next for each real solution on the X axis we implicitly
express its ordinate and then we match it to one of the computed projections
on the Y -axis.

We assume that deg(F) = deg(G) = n and L (F) = L (G) = σ. First
we compute the sequence SR(F,G) wrt Y (Line 1 in Alg. 2) with complexity

ÕB(n5 σ) (Cor. 4.4).

Projection on the X axis (Lines 2 and 3 in Alg. 2)
In order to compute the projection on the x axis of system (2) we should elimi-
nate Y . For this we use the resultant, Rx = res(F,G) wrt Y (Line 2 in Alg. 2).

The computation of Rx (Line 2 in Alg. 2) has complexity ÕB(n4 σ).
Notice that Rx ∈ Z[X] and that deg(Rx) = O(n2) and L (Rx) = O(nσ).

Next we compute the real algebraic numbers that are the real root of Rx in
isolating interval representation (Line 3 in Alg. 2) using algorithm construct

in ÕB(n10 σ2). The representation of the real algebraic numbers contains the
square-free part of Rx, which has bit-size O(n+ nσ) = O(nσ). The endpoints
of the isolating intervals are rational numbers with bit-size O(n3 σ). Let these
algebraic numbers be

α1 < α2 < · · · < αm−1 < αm (3)

where m ≤ 2n2 is the number of real roots of Rx. The algorithm construct

returns a list, Px, that contains (in increasing order) the real algebraic numbers
that are root of Rx and a list, Mx, with their multiplicities.

12

Finally, if α is a real root of Rx, then its multiplicity as a root of Rx is
also the multiplicity of the pair (α, β) as a real solution of the system, for some
β ∈ Ralg , due to the generic position assumption.

Projection on the Y axis (Lines 4, 5 and 6 in Alg. 2)
We do exactly the same computations for the projection on the y axis. The real
roots of Ry are now contained in list Ly and their multiplicities in My .

Algorithm intermediate points computes rational numbers between the
real roots of Ry in ÕB(n5σ), and the numbers have bit-size O(n3 σ). Let the
intermediate points be qj, then the real roots of Ry and qj are in the following
order

q0 < β1 < q1 < β2 < · · · < βℓ−1 < qℓ−1 < βℓ < qℓ (4)

where ℓ ≤ 2n2 is the number of the real roots of Ry. Since the system is in
generic position, every real root of Rx has a correspondence with some real root
of Ry. This is why it holds ℓ ≤ m ≤ 2n2. The intermediate points are contained
in the list I.

The sub-algorithm compute k (Line 7 in Alg. 2)
For every real root of Rx we must compute an index k such the assumptions
of the theorem are fulfilled. This is what sub-algorithm compute k does; it
also stores k in list K. The generic position assumptions guarantee that there
is always such a unique index. We define recursively the following family of
polynomials, Γj(x):

Φ0(X) =
sr0(X)

gcd(sr0(X), sr′0(X))

Φ1(X) = gcd(Φ0(X), sr1(X)) Γ1 =
Φ0(X)

Φ1(X)

Φ2(X) = gcd(Φ1(X), sr2(X)) Γ2 =
Φ1(X)

Φ2(X)

...

Φn−1(X) = gcd(Φn−2(X), srn−1(X)) Γn−1 =
Φn−2(X)

Φn−1(X)

Recall that sri = psci ∈ Z[X] is the principal subresultant coefficient of
SRj ∈ (Z[X])[Y]. Polynomial Φ0(x) is the square-free part of Rx = sr0 =
psc0 ∈ Z[X], which we have already computed in algorithm construct(Rx)
(Line 3 in Alg. 2).

Let α be an element of the list Px, or in other words a real root of Φ0. By
construction it holds that Φ0(X) =

∏
j Γj(X) and gcd(Γj ,Γi) = 1 if j 6= i. Now

α is a real root of at most one Γj. For j such that Γj(α) = 0, it holds that
sr0(α) = sr1(α) = 0, . . . , srj(α) = 0 and srj+1(α) 6= 0. Thus the index for α is
k = j + 1. Now, α is in isolating interval representation, thus for Γj such that

13

Γj(α) = 0, it should change signs at the endpoints of the isolating interval, by
Rolle’s theorem.

Let us summarize sub-algorithm compute k: It computes the factorization
Φ0 =

∏
j Γj of the square-free part of Rx. Next, for every real root of Rx it

computes Γj that changes sign on the endpoints of the isolating interval of α,
the index that corresponds to α is k = j + 1.

Let’s now study the complexity of the algorithm. Since the Φ0 is the square-
free part ofRx it holds that deg(Φ0) = O(n2) and L (Φ0) = O(n+nσ) = O(nσ).
The polynomials Γj are divisors of the Φ0, thus

∑
j deg(Γj) = O(n2) and,

from Mignotte’s bound [17, 18], L (Γj) = O(n3σ). In order to compute the
factorization Φ0(X) =

∏
j Γj(X) we need O(n) gcd computations of polynomials

of degree O(n2) and bit-size O(n3σ). The GCD computation costs ÕB(n7 σ)

and thus the overall cost is ÕB(n8 σ).
In order for each α to find κ we should compute the sign of Γj over the

endpoints of the isolating interval of α. The number of α’s is O(n2), thus
this is also the number of the endpoints of the isolating intervals. Moreover,
their aggregate bit-size is O(n3 σ). We evaluate all Γj over all endpoints with

complexity ÕB(n6 σ), using fan-in/fan-out.

Thus the overall complexity of compute k is ÕB(n8 σ).

Matching the solutions, and algorithm Find (Lines 9–11 in Alg. 2)
We have already computed the coordinates of the real solutions and what it
remains is to match them, by sub-algorithm find. It takes as input a real root
of Rx, and computes the ordinate of the real solution of the system, say β.

Now we describe in detail the steps of the algorithm and their complexity.
For some real root α ofRx we have already computed index k. Thus we represent
the ordinate using RUR, i.e

A(α) = −
1

k

srk,k−1(α)

srk(α)
=
A1(α)

A2(α)

The generic position assumption guarantees that there is a unique βj , in
Py, such that βj = A(α), where 1 ≤ j ≤ ℓ. In order to compute j we use
intermediate points in the list I, see (4). For this, it also holds that

qj < A(α) =
A1(α)

A2(α)
< qj+1.

Thus j indicates the position of A(α) in the list of (ordered) numbers q0 < · · · <
qℓ. This can be computed by binary search in O(lg ℓ) = O(lgn) comparisons of
A(α) with the rationals qj. This is equivalent to computing the sign of Bj(X) =
A1(X)− qj A2(X) over α. Thus it suffices to execute algorithm sign at(Bj , α)
as many as O(lgn) times.

For the complexity of sign at(Bj , α), recall that α is defined by a polyno-
mial of degree O(n2), bit-size O(nσ) and that the bit-size of the endpoints of
the isolating intervals is O(n3 σ). Moreover, L (qj) = O(n3σ) and deg(A1) =

14

Algorithm 3: grid solve(F,G)

Input: F,G ∈ Z[x, y]
Output: The real solutions of F = G = 0

Rx ← resy(F,G)1

Lx,Mx ← construct(Rx)2

Ry ← resx(F,G)3

Ly,My ← construct(Ry)4

Q← ∅5

foreach α ∈ Lx do6

foreach β ∈ Ly do7

if sign at(F, α, β) = 0 ∧ sign at(G, α, β) = 0 then8

Q← add(Q, {α, β})9

return Q10

deg(srk,k−1) = O(n2), deg(A2) = deg(srk) = O(n2), L (A1) = O(nσ), L (A2) =
O(nσ). Thus deg(Bj) = O(n2) and L (Bj) = O(n3 σ). We conclude that the

algorithms sign at(Pj , α) and find have total complexity ÕB(n7σ).
As for the overall complexity of the loop (Lines 9-11) notice that the number

of α’s is O(n2). Thus the overall complexity is ÕB(n9σ).

Theorem 5.1 (mrur solve) Let F,G ∈ Z[X, Y] such that they are in generic
position, are relative prime, their total degrees are bounded by n and their bit-
size by σ. Real solving the system F = G = 0 using mrur solve has complexity
ÕB(n10σ2).

Proof. The projection phases of the algorithm have complexity ÕB(n10 σ2).
The factorization of the square-free part of Rx and the computation of the in-
dices k have complexity ÕB(n8 σ). The loop (Line 9) has complexity ÕB(n9 σ)

since it is executed O(n2) times and each step has complexity ÕB(n7 σ). 2

5.2 The grid solve algorithm

The algorithm grid solve, the pseudo-code of which appears in Alg. 3, is
straightforward (Nicola Wolpert has used a similar method in her PhD the-
sis). We compute the real algebraic numbers that correspond to the x and
y coordinates of the real solutions, as real roots of the resultants resx(F,G)
and resy(F,G). Then, we match them using sign at (Alg. 1), by testing all
rectangles in this grid.

The input of the algorithm is the polynomials F,G ∈ Z[x, y] and its out-
put is a list of pairs of real algebraic numbers represented in isolating interval
representation. This list is represented by Q in Alg. 3. The algorithm also

15

outputs rational axis-aligned rectangles, guaranteed to contain a single root of
the system.

The algorithm is correct since the coordinates of all the real roots of the
system are real roots of resx(F,G) or resy(F,G) and from the fact that a pair
(α, β) ∈ R2

alg is real solution of the system iff F (α, β) = G(α, β) = 0.
Even though the algorithm is obvious, to the best of our knowledge this is the

first time that its complexity is studied. The disadvantage of the algorithm is
that exact implementation of sign at (Alg. 1) is high. However, its simplicity
makes it attractive and arithmetic filtering can speed up its implementation.
The algorithm also requires no genericity assumption on the input.

Last but not least, the algorithm allows the use of heuristics. In particular,
we may exploit easily computed bounds on the number of roots, such as the
Mixed Volume, which also reflects the sparseness of the equations. When we
have identified as many real roots, the algorithm stops. More importantly, we
can test whether there are any real roots with a given abscissa α, in order to
eliminate columns in the grid which are empty of real roots. The following
theorem provides the complexity of the algorithm.

Theorem 5.2 (grid solve) Let F,G ∈ Z[x, y] relative prime with total degree
bounded by n and coefficient bit-size bounded by σ. Isolating all real roots of the
system F = G = 0 using grid solve has complexity ÕB(n13 + n12σ), provided
σ = O(n2).

Proof. First we project the system on the x axis, by computing the resultant
of F and G wrt y, i.e Rx (Line 1 in Alg. 3). The complexity of this step is

ÕB(n4σ). To see this use Cor. 4.5 with p = q = d = n and τ = σ. Notice that
deg(Rx) = O(n2) and L (Rx) = O(nσ).

We compute the real algebraic numbers that real roots of Rx, in isolating
interval representation (Line 2 in Alg. 3) with complexity ÕB(n12 + n10σ2)
(Th. 2.6 with p = n2 and τ = nσ) and we store them in Lx. This complexity
shall be dominated provided that σ = O(n2). We do the same for the y axis
(Lines 3 and 4 in Alg. 3) and store the algebraic numbers in Ly.

The representation of the real algebraic numbers that we have computed
contains the square-free part of Rx, or Ry. In both cases the bit-size of the
polynomial is O(n2 + nσ) [2, 11]. The isolating intervals have as endpoints
rational numbers of bit size O(n4 + n3 σ).

Let rx, resp. ry be the size of Lx, resp. Ly , i.e the number of real roots of
the corresponding resultants. Both are bounded by O(n2).

Now it remains to check the candidate root pairs by evaluating F,G on them.
Here is a first method: form all possible pairs of real algebraic numbers from

Lx and Ly and check for every such pair if both F and G vanish (Line 8 in Alg. 3).

This is achieved by sign at (Alg. 1). Each evaluation costs ÕB(n11 + n10σ)
by Th. 4.7, with n1 = n, n2 = n2 and σ = n2 + nσ. In the worst case we
perform rx ry = O(n4) sign evaluations and the overall complexity becomes

ÕB(n15 + n14σ). This complexity dominates that of isolating each resultant’s
roots.

16

Another method uses fan-in/fan-out on the remainder sequences. For each
α ∈ Lx, the algorithm evaluates F (α, y), then G(α, y), over all βj ∈ Ly, by

Thm. 4.9. There are O(n2) operations, each with bit complexity ÕB(n9(n2 +

nσ)), hence the total cost is ÕB(n13 + n12σ). This complexity dominates that
of isolating the resultant’s roots provided that σ = O(n2). 2

We now examine the multiplicity of a root (α, β) of the system. Refer to [7,
sec.8.7] for its definition as the exponent of factor (βx− αy) in the resultant of
the (homogenized) polynomials. This holds under the assumption that the two
polynomials do not share any common factor, which is implicitly checked by the
previous phase of real root isolation. Our algorithm reduces to bivariate sign
determination and does not require bivariate factorization. We shall use the
resultant, since it allows for multiplicities to “project”. More formally, the sum
of multiplicities of all roots (α, βj) equals the multiplicity of root x = α in the
respective resultant polynomial. It is possible to change the coordinate frame so
as to ensure that different roots project to different points on the x-axis. Here,
we take a more “symbolic” approach.

Assume, for now, that (α, β) = (0, 0) and consider the resultant

Rt(x) = resy (f(x + ty, y), g(x + ty, y)) ,

where t is a new parameter that will ensure that the (horizontal) shear of the
coordinates is sufficiently generic. Let m(t) be the multiplicity of 0 as a root of
Rt(x). The intersection multiplicity of (0, 0) is mint{m(t)}.

Clearly, Rt(x) ∈ (Z[t])[x], i.e its coefficients lie in Z[t]. Moreover, m(t) is
equal to the number of trailing coefficients that vanish. The minimum such
number counts the trailing coefficients that are identically zero as elements of
Z[t], and this is easy to find once we have computed Rt(x).

Now take new parameters ρ, ξ and consider the resultant

Rt(x) = resy (f(x − ρ+ ty − tξ, y − ξ), g(x− ρ+ ty − tξ, y− ξ)) ,

which lies in (Z[t, ρ, ξ])[x]. The intersection multiplicity of some root (α, β) ∈
(Ralg ,Ralg) will be obtained as the number of trailing coefficients in (Z[ρ, ξ])[t],
which vanish when ρ = α, ξ = β.

Example 5.3 Take the circle f = (x− 1)2 + y2 − a, and line g = y with roots
(0, 0), (2, 0). We focus on (0, 0) and assume that (α, β) = (0, 0). In the text we
have described the transformation

f(x + ty, y) = y2(1 + t2) + 2ty(x− 1) + (x2 − 2x), g(x+ ty, y) = y.

Computing Rt(x) = x2 − 2x will give 1 as the multiplicity of (0, 0). Notice that
Rt(x) happens to be independent of t. More interesting is the projection on the
y-axis by transforming

f(x, y + tx) = x2(1 + t2) + 2x(ty− 1) + y2 , g(x, y+ tx) = y + tx.

Then, R(y) = y2 − 2ty which gives again 1 as the multiplicity of (0, 0).

17

Theorem 5.4 Consider the setting of Thm. 5.2. Having isolated all real roots
of the system f = g = 0, it is possible to determine their multiplicities with
complexity ÕB(n15σ).

Proof. We use binary segmentation to compute the resultant of two polynomi-
als in (Z[x, t, ρ, ξ])[y]. We apply Thm. 4.2 by setting p = q = di = n, k = 4, τ =

σ, thus arriving at ÕB(n10σ).
The resultant coefficients with respect to x (we call them x-coefficients) are

themselves polynomials in (Z[ρ, ξ])[t] of degree O(n2) in t. To test whether an
x-coefficient vanishes, we must check its own t-coefficients, which lie in Z[ρ, ξ],
until one does not vanish. If they all vanish, the x-coefficient is zero and the
multiplicity of (α, β) is incremented by one. There will be O(n2) x-coefficients
that may vanish in the course of the entire algorithm, because this is the sum
of all multiplicities.

Let us denote by Ti(ρ, ξ) the t-coefficient corresponding to ti. Testing Ti(ρ, ξ)
can be implemented by a bivariate sign-at operation. The polynomial has de-
gree O(n2) in ρ and in ξ, and bit-size nσ. By Thm. 4.9, the complexity is

ÕB(n11σ); in fact, this returns all signs Ti(α, β0), . . . , Ti(α, βr), for all roots βj

of the defining polynomial. Hence the cost is ÕB(n15σ). 2

References

[1] A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The Design and Analysis of
Computer Algorithms. Addison-Wesley, Reading, Mass., 1974.

[2] S. Basu, R. Pollack, and M-F.Roy. Algorithms in Real Algebraic Geome-
try, volume 10 of Algorithms and Computation in Mathematics. Springer-
Verlag, 2003.

[3] D. Bini and V.Y. Pan. Polynomial and Matrix Computations, volume 1:
Fundamental Algorithms. Birkhäuser, Boston, 1994.

[4] J. Canny. The Complexity of Robot Motion Planning. ACM – MIT Press
Doctoral Dissertation Award Series. MIT Press, Cambridge, MA, 1987.

[5] J. Canny. Some algebraic and geometric computations in PSPACE. In
Proc. ACM Symp. Theory of Computing, pages 460–467, 1988.

[6] M. Coste and M. F. Roy. Thom’s lemma, the coding of real algebraic
numbers and the computation of the topology of semi-algebraic sets. J.
Symb. Comput., 5(1/2):121–129, 1988.

[7] D. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and Algorithms. Under-
graduate Texts in Mathematics. Springer-Verlag, New York, 2nd edition,
1997.

18

[8] D. Diochnos, I. Z. Emiris, and E. P. Tsigaridas. On the Complexity of real
solving bivariate systems. Manuscript, 2007.

[9] Z. Du, V. Sharma, and C. K. Yap. Amortized bound for root isolation
via Sturm sequences. In D. Wang and L. Zhi, editors, Intern. Workshop
on Symbolic Numeric Computing, School of Science, Beihang University,
Beijing, China, 2005.

[10] M. El Kahoui. An elementary approach to subresultants theory. J. Symb.
Comput., 35(3):281–292, 2003.

[11] I. Z. Emiris, B. Mourrain, and E. P. Tsigaridas. Real Algebraic Numbers:
Complexity Analysis and Experimentation. In P. Hertling, C. Hoffmann,
W. Luther, and N. Revol, editors, Reliable Implementations of Real Number
Algorithms: Theory and Practice, LNCS (to appear). Springer Verlag, 2006.
also available in www.inria.fr/rrrt/rr-5897.html.

[12] L. González-Vega and M. El Kahoui. An improved upper complexity bound
for the topology computation of a real algebraic plane curve. J. Complexity,
12(4):527–544, 1996.

[13] L. González-Vega, H. Lombardi, T. Recio, and M-F. Roy. Sturm-Habicht
Sequence. In ISSAC, pages 136–146, 1989.

[14] L. Gonzalez-Vega and I. Necula. Efficient topology determination of im-
plicitly defined algebraic plane curves. Computer Aided Geometric Design,
19(9):719–743, December 2002.

[15] T. Lickteig and M-F. Roy. Sylvester-Habicht Sequences and Fast Cauchy
Index Computation. J. Symb. Comput., 31(3):315–341, 2001.

[16] H. Lombardi, M-F. Roy, and M. Safey El Din. New Structure Theorem for
Subresultants. J. Symb. Comput., 29(4-5):663–689, 2000.

[17] M. Mignotte. Mathematics for computer algebra. Springer-Verlag, New
York, 1991.

[18] M. Mignotte and D. Stefanescu. Polynomials: An algorithmic approach.
Springer, 1999.

[19] D. Reischert. Asymptotically fast computation of subresultants. In ISSAC,
pages 233–240, 1997.

[20] J. Renegar. On the worst-case arithmetic complexity of approximating
zeros of systems of polynomials. SIAM J. Computing, 18:350–370, 1989.

[21] F. Rouillier. Solving zero-dimensional systems through the rational univari-
ate representation. Journal of Applicable Algebra in Engineering, Commu-
nication and Computing, 9(5):433–461, 1999.

19

[22] T. Sakkalis and R. Farouki. Singular points of algebraic curves. J. Symb.
Comput., 9(4):405–421, 1990.

[23] E. P. Tsigaridas and I. Z. Emiris. Univariate polynomial real root isolation:
Continued fractions revisited. In Y. Azar and T. Erlebach, editors, In Proc.
14th European Symposium of Algorithms (ESA), volume 4168 of LNCS,
pages 817–828, Zurich, Switzerland, 2006. Springer Verlag.

[24] B. van der Waerden. Modern Algebra. Ungar, 1953. Volumes 1-2.

[25] J. von zur Gathen and J. Gerhard. Modern Computer Algebra. Cambridge
Univ. Press, Cambridge, U.K., 2nd edition, 2003.

[26] J. von zur Gathen and T. Lücking. Subresultants revisited. Theor. Comput.
Sci., 1-3(297):199–239, 2003.

[27] C.K. Yap. Fundamental Problems of Algorithmic Algebra. Oxford Univer-
sity Press, New York, 2000.

Appendix

Multipoint evaluation will be based on the fan-in and fan-out method, well-
known from the multiple evaluation of univariate polynomials [3, 1]. The main
idea is that evaluation at point bi is equivalent to computing the remainder
mod(x− bi).

We are given k points b0, . . . , bk−1, such that their bit-size is bounded by

L (bi) = σi ≤ σ. Let us denote the sum of all bit-sizes
∑k−1

i=0 σi by S ≤ kσ.
The fan-in algorithm constructs bottom-up a binary tree with ⌈lg k⌉ + 1

levels. Wlog, let us assume k is a power of 2, i.e k = 2µ.
At level ℓ = 0, the leaves of the tree, are the polynomials m0,j(x) = x− bj,

where 0 ≤ j < k − 1. The root polynomial corresponds to level ℓ = lg k = µ
and equals mµ,0(x) =

∏k−1
j=0 (x− bj). Hence, L (mµ,0) = S.

At level ℓ, where 0 ≤ ℓ ≤ lgk = µ, there are k/2ℓ = 2µ−ℓ polynomials, which
we denote by mℓ,j, where 0 ≤ j < 2µ−ℓ. Such a polynomial is the product of
two polynomials at level ℓ− 1, namely

mℓ,j(x) = mℓ−1,2j(x) ·mℓ−1,2j+1(x), j = 0, . . . , 2µ−ℓ − 1.

Moreover, deg(mℓ,j) = 2ℓ and

L (mℓ,j) =

(j+1)2ℓ−1∑

i=j2ℓ

σi.

Lemma 5.5 (Fan-in) Given are points b0, . . . , bk−1 ∈ Q of bit-size σi respec-

tively, where
∑k−1

i=0 σi = S. Then, the fan-in phase has complexity in ÕB(kS).

20

Proof. The cost at each level is

2µ−ℓ−1∑

j=0

M


2ℓ,

(j+1)2ℓ−1∑

i=j2ℓ

σi


 = ÕB(2ℓS)

and the total cost is
µ∑

ℓ=0

ÕB(2ℓS) = ÕB(kS)

using the multi-linearity of the complexity of multiplication. 2

Let g be a polynomial that we wish to evaluate on all points bj ; assume
L (g) = h. The fan-out phase uses the polynomials produced at fan-in, in top-
down fashion, so as to compute, at the end, all remainders g(x) mod bj. Recall
that the fan-in tree has µ + 1 = lg k + 1 levels. The main idea is to use the
following rule:

g(x) mod mℓ,j(x) = [g(x) mod mℓ,j ·M(x)] mod mℓ,j(x), (5)

where M(x) is the polynomial corresponding to that sibling of the node contain-
ing mℓ,j(x), which multiplies the latter in order to define their common parent.
More specifically, M(x) is either mℓ,j+1(x) or mℓ,j−1(x). Hence, the remainder
inside the square brackets in (5) is computed at the parent node, because its
divisor is mℓ+1,⌊j/2⌋(x).

Lemma 5.6 (Fan-out, case 1) Consider the setting of Lem. 5.5 and let g(x)
have degree d ≥ k and bit-size h. Each bi, i = 0, . . . , k−1, has size bounded by σi,
respectively. If

∑k−1
i=0 σi = S, then the complexity is ÕB(kh+ kS(d− k)+ k2S).

Proof. The first step of the fan-out phase is to compute g(x) mod m0,µ(x) with

complexity ÕB(d(h+ S)). The remainder has bit-size O((d− k)S + h).
At the next level (ℓ = µ−1) the degree drops at most 2µ−1. Each of the two

remainders has bit-size 2µ−1 ·
∑

i σi + (d− k)S + h, where the sum ranges over
distinct sets of k/2 indices. For simplicity, let us focus on the first remainder,

with bit-size 2µ−1 ·
∑k/2−1

i=0 σi +(d−k)S+h. The divisor’s degree is 2µ−1, hence
the complexity of computing the 2 remainders of this level will be proportional
(ignoring polylogarithmic factors) to that degree. Hence, the level’s complexity

is ÕB(k(d− k)S + kh+ 4µS).
At level ℓ = µ− 2, the first of the 4 remainders has bit-size

(d− k)S + h+ 2µ−2

k/4−1∑

i=0

σi + 2µ−1

k/2−1∑

i=0

σi.

The divisor’s degree is 2µ−2, hence the complexity of computing the 4 remainders
will be roughly proportional to it. Hence, the level’s complexity is ÕB(k(d −
k)S + kh+ 4µ−2S + 4µ−22S).

21

At level ℓ, the first remainder has bit-size

(d− k)S + h+ 2ℓ
2ℓ−1∑

i=0

σi + · · ·+ 2µ−2

k/4−1∑

i=0

σi + 2µ−1

k/2−1∑

i=0

σi.

The divisor’s degree is 2ℓ+1, hence the complexity of computing the k/2ℓ = 2µ−ℓ

remainders of this level will be proportional to it. Hence, the level’s complexity
is

k

2ℓ
2ℓ+1[(d− k)S + h] + 4ℓ2S + 4ℓ+12S + · · ·4µ−12S.

Let us explain the 2nd term above. Corresponding to the first remainder, the

complexity is 22ℓ+1
∑2ℓ−1

i=0 σi. One must sum over all remainders, thus summing
over all σi.

How about the 3rd term? For the first remainder the complexity is 22ℓ+2
∑2ℓ

i=0 σi.
Now, summing over all remainders, we use all σi’s twice, hence obtain 2S. The
other terms are deduced similarly.

Now, we sum for ℓ ≥ 0 up to ℓ < µ = lg k. Imagine a “vertical” summation.
The sum of first terms gives µk[(d− k)S + h]. The rest of terms yields

µ−1∑

ℓ=0

(ℓ+ 1)4ℓ2S =
1

2

µ∑

ℓ=1

ℓ4ℓS = O(µ4µS) = O∗(k2S).

2

Lemma 5.7 (Fan-out, case 2) Consider the setting of Lem. 5.6 and let g(x)

have degree d < k. Then, the fan-out phase has complexity ÕB(kh+ kSd).

Proof. If d < k then the first levels give all remainders equal to g(x). For
maximum ℓ such that 2ℓ < d = deg(g), the computation starts. Hence, at level
ℓ ≃ lg d, all k/2ℓ subtrees must be considered, each in a fan-out computation.

Using the previous lemma, then each subtree costs ÕB(2ℓh+22ℓS). Multiplying
this cost by k/2ℓ yields the overall bound. 2

In conclusion, the bit complexity of fan-in is always dominated by that of
fan-out. Furthermore, this complexity cannot be asymptotically improved by
use of modular arithmetic and the Chinese remainder theorem.

22

	Introduction
	Preliminaries
	Multipoint evaluation
	Multivariate polynomials
	Bivariate sign evaluation

	Algorithms for real solving
	The mrur_solve algorithm
	The analysis of mrur_solve

	The grid_solve algorithm

