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Abstract

Let M be a compact Riemannian manifold without boundary isometrically
embedded into R™, Wj, , be the distribution of a Brownian bridge starting
at z € M and returning to M at time ¢. Let Q; : C(M) — C(M), (Q¢f)(x) =
fC([O,l],Rm) fw(®) Wi, (dw), and let P = {0 =ty < t; <---<t, =t} bea
partition of [0, ¢]. It was shown in [B] that

Y,
Qt1—to o 'Qtn—tn71f — e 2 f ; as |P| — 0, (1)
in C(M). Taking into consideration integral representations:
(Qti—ty+ Qta—t, 1 [)(@) = [0 (2,y)f(y)Au(dy) and (e Nz) =
Sy Mz, y,t) f(y) Ane(dy), where Ay is the volume measure on M, h(x,y,t)

is the heat kernel on M, one interprets relation (ll) as a weak convergence in
C(M) of the integral kernels:

ap(x,y) = h(z,y,1). (2)
The present paper improves the result of [A], and shows that convergence in (H)
is uniform on M x M.
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1 Introduction

Let M be a compact Riemannian manifold without boundary isometrically embed-
ded into R™, dim M = d. Define

ey
e 2t

Jur €5 Mar(dg)
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q(z,y,t) =




where Aj; is the volume measure on M. It was shown in [ that the following
limit exists relative to the family of bounded continuous functions, and defines a
probability measure on C([0, 1], R™):

fﬂ_fl(U (M) f(w) W?(dw)
¢ (dw) = lim =)
/cao,l],Rm)fw el ho) = g We (m H(U(M))

where z € M, t € [0,1], W?* is the Wiener measure on C([0,1],R™), U.(M) is the
e-neighborhood of M, m; is the evaluation mapping C([0, 1], R™) — R™, ¢ — ¢(t).
The measure Wj, , is the distribution of a Brownian motion on R™ conditioned to
return to M at time ¢ (Brownian bridge). We introduce operators @); as defined
in 2. If f is a cylinder function satisfying the relation f(w) = f(m; " (w(t))), and
g : R™ — R is such that f(w) = g(w(t)), then

@ = [ syt = [ @@

Let P={0=ty<t; <---<t, =t} be a partition of the interval [0, ], and let

QP(%?/) :/ dxy Q(I>I1,t1)/ disz(ifl,ifz,tz—tl)"'
M M (4)

/ dfn—l Q(fn—2> Tn—1, tn—l - tn—2) Q(fn—ly Y, tn - tn—l)-
M

Taking into account the representation (H), we obtain:

(Quvty~ Qeretr s 9) () = / ar(,y) 9(y) Mar(dy).

M
Let h(x,y,t), z,y € M, t € R, denote the heat kernel on the manifold M. We have

9)(x) = /M Bz, . 1) g(y) Aae ().

The paper [H states that

(Quuty - Quntn 1 9)(x) = (e g) ()

uniformly in € M. Theorem Wl below improves this result of [&].

2 Main Theorem

THEOREM 1. Let the partition P = {0 = tg < t; < --- < t, = t} satisfy the
following condition: there exists an integer k such that min{t; —t; 1} > |P|*, where
|P| denotes the mesh of P. Then, for all t € [0, 1],

li —
M qr(x,y) = h(z,y,1)

uniformly in x,y € M.



For the proof of the theorem we will need a few lemmas. For z,y € M, t € [0, 1],
we define

1 _\zfy\z
p(x,y,t) = ge %,
(2mt)2
(z.)?
E(x,y,t) = y e_d 3t ,
(2mt)2

where d(x,y) is the geodesic distance between x and .

LEMMA 1. There exist bounded functions ©1, O, O3, ©4, O5 : M x M x [0,1] - R
such that

q(z,y,t) = p(z,y,t)(1+ O1(z,y,t) ), (5)
and for all x,y € M satisfying |z —y| < t*, where i <a< %, the following relations
hold:

px,y,t) = E(x,y, 1) (1 + Og(x, y, 1) t**7), (6)
E(x,y,t) = h(z,y, t)(1+ Os(z,y, ) t*%), (7)
q(z,y,t) = h(z,y, t)(1 + Ou(x,y, t) t'*1), (8)
W, y,t) = p(x,y, t)(1+ Os(z,y, 1) t*7). (9)

Proof. The proof of relation (H) follows from the asymptotic expansion [B:

1 ry 1 1
d/ gt )\M(dy)—1—t(—scal(:v)—l——AMAM|a:— ? })—l—thl’
(2mt)2 6 16

where |R(t,y)| < Kt'/?, K is a constant, and scal(y) is the scalar curvature at the
point y. To prove (@), notice that

|ZE - y|2 = d($>y)2 + 9($>y)d($>y)4>

where 6 is bounded on M x M. Applying the Taylor expansion to e_w, we
can easily see the existence of a bounded function ©, : M x M x [0,1] — R such
that ,
Seadent + Oz, y, 1) 1!
for x,y € M satisfying |z — y| < t*. This proves relation (H). Relation (@) follows
from the following representation of h(z,y,t) for y in a neighborhood of x [:

=0

h(z,y,t) = E(x,y, 1) <Z i, y)t' + O(t“l))

where u; : M x M — R are continuous, ug(x, ) = 1, and V pyup(x,z) = 0. Applying
Taylor expansion to ug(z,y) for y € M satisfying |x — y| < t%, we obtain (@).
Relation (H) is a consequence of (), (@), and (@) if we notice that for ; < o < 3,
4o — 1 < 2a. Relation (H) is an immediate corollary of (H). O
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Then, there exist a bounded functions R : M x M x

LEMMA 2. Let 1 < o < 3.
0,1] x [0,1] = R, and 6 : M x M x 0,1] x [0,1] — M such that for all z,z € M,

and t1,ty € [0, 1],
/ Q($> Y, tl)h(y> 2 t2))‘M(dy) = h($> 2 b+ t2)(1 + @4(I> 9(I> 2, t1> t2)> tl) tzlla_l)
M

R($>z>t1>t2) T 20
d e 1
(27Tt1)5
Proof. Let Uy (z) ={y € M : |y — x| < t{}. Then
1 -t
[ by thl s ) < e T (10)
M\Ut, (2) (27t1)2
(27Tt1)%

/ By, )y, 2, t) s (dy)
M\Utl(m)

(/ Py, 1) h(y, 2, 1) (1 + Os (., E)E Y Aar (dy) <
M\Utl(m)

where K is a constant independent of x, z, t1, and 5. Inequality () and relation (H)
(11)

K

d

imply the existence of a constant K, such that
(27Tt1) 2

/ 0.y, )y, 2 ) s (dy) <
M\Ut, ()

Further, using relation (H) of Lemma [l and the two inequalities above, we obtain:

/ q($>y>t1)h(y>z>t2)AM(dy)
Uty (x)

| b tnt,z

Uty (x)

+tila_1 / h($7y7t1)h(y7Zat2)@4($7y7tl)AM(dy)
Uty ()

/ W, y, t1)h(y, 2, t2) Aar (dy) (1 + 117104 (0, 0(x, 2, 11, 1), 1))
M

Y

R(l’, Z, tl, tz) 6_ 51— 2a

+ d
(27Tt1)5
where R : M x M x [0,1] x [0,1] — R is bounded. Applying inequality (), we

obtain:

Y

R(l’, Z, tl, tg) 6_ 51— 2a

/ q(x,y, t)h(y, z, t2) A (dy) = h(z, z,t1 + t2) (1 + 62704 (z, O(x, z,t1,12),11))
M
(27Tt1)%



where, again, R : M x M x [0,1] x [0,1] — R is bounded by K = K; + K,. This
proves the lemma. O

We will again need the operators ()5 below, and so we recall their definition:
Q1 C01) = ). £ [ -y 5) 5wl
M

LEMMA 3. Let P be a partition of [0,t] as above, and let T = t, — t,—1, the length
of the last partition interval, be such that 74 > |P\ {t,}|. Then, as the mesh of P
tends to zero,

(Qtl—to T Qtn—tn71p ( Y, ’7‘))(1’) - h($> Y, t)? (12)
(Qt1—t0 e Qtn—tn71h ( Y, ’7‘))(1’) - h($> Y, t)? (13)

uniformly in x,y € M.
Proof. Let y be fixed. From the paper [H], we have the following inequality:

1 @uty++ Quuts — €™ 7 ) p(,y, ) < K (-5, 7)lla VTP \ {t}],

where the norm || - ||4 is described in [@]. Note that

K
||p( ! >y77)||4 < ’7‘%"—4’
where K is a constant. Next, since we assumed that |P \ {t,}| < 799, we obtain:

1(Qtrty - Qe s — e T2 (- y, 1) < KT —0, [P|—0

where K is a constant. Further, note that

(" F5u) (-, y, 7)) = /M Wz, 2t — ) p(z, 9 ) Aar(d2).

Now, in the last integral, we apply the asymptotic expansion [F] relative to the small
parameter 7 to the function hA(z, z,t — 7). We obtain:

/M h(z,z,t —7)p(z,y, T) A (d2)
= h(z,y,t—7)— %AMh(:B, Yy, t—7)
+7h(z,y,t —T) (é scal(z) + %AMAM lx — - |2}m> + TR(tT, ).
Clearly, as 7 — 0,
/M h(z,z,t —71)p(z,y, 7)A\m(dz) — h(x,y,t)
uniformly in z,y € M. This proves (). Relation () shows that () also holds. [
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LEMMA 4. Let \; € R be such that Zle ANi = 7, and let ™7 < Kmax{\},
p > 1, K a constant. Further, assume that there exists an integer ¢ > 1 such
that min{\;} > (max{\;})?. Then there exists a sufficiently small number x > 0
such that S5 A\I7® — 0, as max{\;} — 0.

Proof. We have

T
(max{A;})®
Choosing x < piq proves the lemma. O
Proof of Theorem . We have

ap(@,y) = (Qu—to =+ Quur—ta2 4+ Yt — t1)) (2).
Applying relation (H), we obtain

NN NS < K7l

(J’P(ZE, y) =
(14t = ta) O4(a 9.t = tat) ) @uicta = Qe B (-3t = b)),
(14)
where :Egl) € M is a point on M depending on all points of the partition P. Contin-

uing transformations of the last term in (EZN), we obtain:
(Qt1—to c Qi —ty s h( Yyt — tn—l))(z) =
(Qtl—to Qb gt s / G Yn—1,tn1 —tn2) M(Un—1, Y, tn —tn1) A (dyn—1) ) (z).

M
Applying Lemma @ we obtain

(Qtito - Qo —ty o M-y, b — tua)) ()
= (Qtl—tg o Qyoty s MY T — 1)
X (1+ (th-1 — tn—2)4a_1 CAE >yzg,::1t)n,2> tho1 — tn_2) ) (z)
R, —o(x,y,P)
(27T(tn—1 - tn—2))
where Ry_o(2,y,P) = (Qu—to*** Qtn_s—tn_s R(+, Y, ta—1, tn—2))(x), where the func-
tion R(-, -, -, ) is as described in Lemma B The function R,_» is obviously

bounded by the same constant K as the function R. Finally, applying the mean
value theorem to the function ©,4, we obtain

(Qt1—to e Qtn71—tn72 h( Y, tn - tn—l)) (ZL’)

= (1 + (tnoy — tpo)* ! @4(:v§?_1), ygl_l), tho1 — th—2) )

1
2ty _1—tp_2)1 72
2

X (Qt1—to T Qtn72_tn73 h( Yy tpo — tn)) (ZL’) (15)
Rn_g(:v,y,P) ; 6—m?23’

(27T(tn—1 - tn—2)) 2



where :Egl_l) and ygl_l)

satisfying 7 = ¢, — t,_n > |73|F19 Also, this implies that 7 — (t,—ny1 — thon) <
1

|73|F19, and hence, 7 < |P|ﬁ +|P| < 2|P|79. Repeating the argument used in ()

N — 2 times, we obtain

are points on the manifold M. Let N be the smallest number

(J’P(l',y):
14 (ty — o 1)64(:v7> Yt — e 1))

(

X(l—l— tyo1 —tn 2)4a 1@((" 1)’ygl 1) tn—l_tn—2))"'
( (n—N+1) (n—N+1)
(

X(1+ (tnns1 — b)) Ou(zps Yp yln—N41 — tn—N))

X Qt1 —tg ° Qtan—tn—Nfl h( Yty — tn—N)) (I)
N k—2 4a—1

_l_ Z Rn—k ($7 y7 P) Hj:l (1 ‘l’ (tn—J _dtn—j_l) ) 6_ z(tn—k+1*1tn7k)172a ’
k=2 (27T(tn—k+1 - tn—k))E

where all functions R, are bounded by the same constant. Now we just have to
prove that as |P| — 0,

(Qt1—t0 e Qtnfw—tanﬂh ( Yty — tn—N)) (I) - h($> Y, t)a (16)

(14 (tn — ta1) Ou(zS), y,ty — taor) )

X(l—l—(tn L=t 2)4a 1@ ( (n— 1)’y§)n 1) ot _tn—2)) (17)
X (1 + (tn—N—l—l - tn—N)4a ! @ ( ’(/;L N+1)>y’§>n_N+1)>tn—N+l - tn—N)) - 17

i Ry g2y, P) T2 (1 + (b — taja)™ )

1
_ 6_2(tn,k+1*tn7k)172a — 0 (18)
— 27 (tp—g1 — tnr))2

uniformly in x,y € M. Note that |73|Flg <ty —tpn <2 |73|Flg By Lemma B,

(Qtl—to e Qtn,N—tn,N71h ( Y, T)) (ZL’) - h($> Y, t)>

and the convergence is uniform in z,y € M. Further, for simplicity introduce the
notation 7; = t, —t,_;, fori =1,..., N, and O = 0, ( e ZH,yP it — i)
Relation () holds if and only if

> log(1+77101) =0, s [P| = 0.
i=1

To prove this, we use the inequality

log(1 4 e 1eW) < £a=1@®,

7



To treat negative numbers 7 'O we consider the mesh of P small enough, so
that |7*1@0| < O|P[**~! < ¢, where C is a constant, and ¢ is sufficiently small,
so that inequality

1 , ,
57O <log(1+ 7f7'O0)

holds. Considering both cases of a positive and a negative value of 7,'* 10" we
write down this inequality in the form

1 , . .
5 min{0, 77100} < log(1 + rle~te®) < a1l

From this and from the fact that all ©® are bounded by the same constant C, it
follows that the uniform convergence in z,y € M in () will hold if

fo‘l_l — 0, as|P|—0.

This will follow from Lemma Blif we choose o < % sufficiently close to % Thus, ()
is proved. Relation (&) is obvious if we notice that all functions Ry are bounded
by the same constant, and the products by which Ry are being multiplied converge
uniformly to 1. Hence, we have proved that

li —
M qr(x,y) = h(z,y,1)

uniformly in x,y € M. The theorem is proved. O
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